Skip to content
GitLab
Menu
Projects
Groups
Snippets
Loading...
Help
Help
Support
Community forum
Keyboard shortcuts
?
Submit feedback
Contribute to GitLab
Sign in / Register
Toggle navigation
Menu
Open sidebar
gaoqiong
composable_kernel
Commits
d0b2508d
Commit
d0b2508d
authored
Nov 07, 2022
by
letaoqin
Browse files
start add example
parent
8a4253ba
Changes
4
Hide whitespace changes
Inline
Side-by-side
Showing
4 changed files
with
1523 additions
and
14 deletions
+1523
-14
example/09_convnd_fwd/convnd_fwd_dl_fp16.cpp
example/09_convnd_fwd/convnd_fwd_dl_fp16.cpp
+10
-10
example/09_convnd_fwd/run_convnd_fwd_example.inc
example/09_convnd_fwd/run_convnd_fwd_example.inc
+4
-4
include/ck/tensor_operation/gpu/device/device_grouped_conv_fwd_dl_multiple_d_nhwc_kyxc_nhwk.hpp
.../device_grouped_conv_fwd_dl_multiple_d_nhwc_kyxc_nhwk.hpp
+938
-0
include/ck/tensor_operation/gpu/grid/gridwise_gemm_dl_multiple_d.hpp
...tensor_operation/gpu/grid/gridwise_gemm_dl_multiple_d.hpp
+571
-0
No files found.
example/09_convnd_fwd/convnd_fwd_dl_fp16.cpp
View file @
d0b2508d
// SPDX-License-Identifier: MIT
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2022, Advanced Micro Devices, Inc. All rights reserved.
// Copyright (c) 2018-2022, Advanced Micro Devices, Inc. All rights reserved.
#include "convnd_fwd_
dl_
common.hpp"
#include "convnd_fwd_common.hpp"
#include "ck/tensor_operation/gpu/device/device_grouped_conv_fwd_dl_nhwc_kyxc_nhwk.hpp"
#include "ck/tensor_operation/gpu/device/device_grouped_conv_fwd_dl_
multiple_d_
nhwc_kyxc_nhwk.hpp"
#include "ck/library/utility/convolution_host_tensor_descriptor_helper.hpp"
#include "ck/library/utility/convolution_host_tensor_descriptor_helper.hpp"
...
@@ -26,14 +26,14 @@ static constexpr auto GemmPadingSpec = ck::tensor_operation::device::GemmSpecial
...
@@ -26,14 +26,14 @@ static constexpr auto GemmPadingSpec = ck::tensor_operation::device::GemmSpecial
template
<
ck
::
index_t
NDimSpatial
,
typename
InLayout
,
typename
WeiLayout
,
typename
OutLayout
>
template
<
ck
::
index_t
NDimSpatial
,
typename
InLayout
,
typename
WeiLayout
,
typename
OutLayout
>
// clang-format off
// clang-format off
using
DeviceGroupedConvNDFwdInstance
=
ck
::
tensor_operation
::
device
::
DeviceGroupedConvFwdDl_NHWC_KYXC_NHWK
using
DeviceGroupedConvNDFwdInstance
=
ck
::
tensor_operation
::
device
::
DeviceGroupedConvFwdDl
MultipleD
_NHWC_KYXC_NHWK
// ######| NDim| InData| WeiData| OutData| AccData| InLayout| WeiLayout| OutLayout| In| Wei| Out| Convolution| GEMM| Block| MPer| NPer| K0Per| K1| M1Per| N1Per| KPer| M11N11Thread| M11N11Thread| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| BBlockTransfer| BBlockTransfer| BBlockTransfer| BBlockTransfer| BBlockTransfer| BBlockTransfer| BBlockTransfer| CThreadTransfer| CThreadTransfer| CThreadTransfer|
// ######| NDim| InData| WeiData|
MultpleD|
OutData| AccData| InLayout| WeiLayout|
MultipleD|
OutLayout| In| Wei| Out| Convolution| GEMM| Block| MPer| NPer| K0Per| K1| M1Per| N1Per| KPer| M11N11Thread| M11N11Thread| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| BBlockTransfer| BBlockTransfer| BBlockTransfer| BBlockTransfer| BBlockTransfer| BBlockTransfer| BBlockTransfer| CThreadTransfer| CThreadTransfer| CThreadTransfer|
// ######| Spatial| Type| Type| Type| Type|
|
| | Elementwise| Elementwise| Elementwise| Forward| Spacialization| Size| Block| Block| Block| | ThreadM111| ThreadN111| Thread| ClusterM110Xs| ClusterN110Xs| ThreadSliceLengths| ThreadClusterLengths| ThreadCluster| SrcAccess| SrcVectorTensor| SrcVectorTensor| DstVectorTensor| ThreadSliceLengths| ThreadClusterLengths| ThreadCluster| SrcAccess| SrcVectorTensor| SrcVectorTensor| DstVectorTensor| SrcDstAccess| SrcDstVectorDim| DstScalarPerVector|
// ######| Spatial| Type| Type| Type| Type|
Type| | | Layout
| | Elementwise| Elementwise| Elementwise| Forward| Spacialization| Size| Block| Block| Block| | ThreadM111| ThreadN111| Thread| ClusterM110Xs| ClusterN110Xs| ThreadSliceLengths| ThreadClusterLengths| ThreadCluster| SrcAccess| SrcVectorTensor| SrcVectorTensor| DstVectorTensor| ThreadSliceLengths| ThreadClusterLengths| ThreadCluster| SrcAccess| SrcVectorTensor| SrcVectorTensor| DstVectorTensor| SrcDstAccess| SrcDstVectorDim| DstScalarPerVector|
// ######| | | | | |
|
| | Operation| Operation| Operation| Specialization| | | | | | | | | | | | K0_M0_M1_K1| K0_M0_M1_K1| ArrangeOrder| Order| Lengths_K0_M0_M1_K1| ContiguousDimOrder| Lengths_K0_M0_M1_K1| K0_N0_N1_K1| K0_N0_N1_K1| ArrangeOrder| Order| Lengths_K0_N0_N1_K1| ContiguousDimOrder| Lengths_K0_N0_N1_K1| Order| | |
// ######| | | | | |
| | |
| | Operation| Operation| Operation| Specialization| | | | | | | | | | | | K0_M0_M1_K1| K0_M0_M1_K1| ArrangeOrder| Order| Lengths_K0_M0_M1_K1| ContiguousDimOrder| Lengths_K0_M0_M1_K1| K0_N0_N1_K1| K0_N0_N1_K1| ArrangeOrder| Order| Lengths_K0_N0_N1_K1| ContiguousDimOrder| Lengths_K0_N0_N1_K1| Order| | |
// ######| | | | | |
|
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
// ######| | | | | |
| | |
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
<
NDimSpatial
,
InDataType
,
WeiDataType
,
OutDataType
,
AccDataType
,
InLayout
,
WeiLayout
,
OutLayout
,
InElementOp
,
WeiElementOp
,
OutElementOp
,
ConvSpec
,
GemmPadingSpec
,
256
,
128
,
128
,
16
,
2
,
4
,
4
,
1
,
S
<
8
,
2
>
,
S
<
8
,
2
>
,
S
<
8
,
1
,
1
,
2
>
,
S
<
2
,
1
,
128
,
1
>
,
S
<
1
,
2
,
0
,
3
>
,
S
<
1
,
2
,
0
,
3
>
,
S
<
4
,
1
,
1
,
2
>
,
S
<
1
,
2
,
0
,
3
>
,
S
<
1
,
1
,
1
,
2
>
,
S
<
8
,
1
,
1
,
2
>
,
S
<
2
,
1
,
128
,
1
>
,
S
<
1
,
2
,
0
,
3
>
,
S
<
1
,
2
,
0
,
3
>
,
S
<
4
,
1
,
1
,
2
>
,
S
<
1
,
2
,
0
,
3
>
,
S
<
1
,
1
,
1
,
2
>
,
S
<
0
,
1
,
2
,
3
,
4
,
5
>
,
5
,
4
>
;
<
NDimSpatial
,
InDataType
,
WeiDataType
,
ck
::
Tuple
<>
,
OutDataType
,
AccDataType
,
InLayout
,
WeiLayout
,
ck
::
Tuple
<>
,
OutLayout
,
InElementOp
,
WeiElementOp
,
OutElementOp
,
ConvSpec
,
GemmPadingSpec
,
256
,
128
,
128
,
16
,
2
,
4
,
4
,
1
,
S
<
8
,
2
>
,
S
<
8
,
2
>
,
S
<
8
,
1
,
1
,
2
>
,
S
<
2
,
1
,
128
,
1
>
,
S
<
1
,
2
,
0
,
3
>
,
S
<
1
,
2
,
0
,
3
>
,
S
<
4
,
1
,
1
,
2
>
,
S
<
1
,
2
,
0
,
3
>
,
S
<
1
,
1
,
1
,
2
>
,
S
<
8
,
1
,
1
,
2
>
,
S
<
2
,
1
,
128
,
1
>
,
S
<
1
,
2
,
0
,
3
>
,
S
<
1
,
2
,
0
,
3
>
,
S
<
4
,
1
,
1
,
2
>
,
S
<
1
,
2
,
0
,
3
>
,
S
<
1
,
1
,
1
,
2
>
,
S
<
0
,
1
,
2
,
3
,
4
,
5
>
,
5
,
4
>
;
// clang-format on
// clang-format on
#include "run_convnd_fwd_
dl_
example.inc"
#include "run_convnd_fwd_example.inc"
int
main
(
int
argc
,
char
*
argv
[])
{
return
run_convnd_fwd_
dl_
example
(
argc
,
argv
)
?
0
:
1
;
}
int
main
(
int
argc
,
char
*
argv
[])
{
return
run_convnd_fwd_example
(
argc
,
argv
)
?
0
:
1
;
}
example/09_convnd_fwd/run_convnd_fwd_example.inc
View file @
d0b2508d
...
@@ -80,18 +80,18 @@ bool run_convnd_fwd_example(int argc, char* argv[])
...
@@ -80,18 +80,18 @@ bool run_convnd_fwd_example(int argc, char* argv[])
namespace
ctc
=
ck
::
tensor_layout
::
convolution
;
namespace
ctc
=
ck
::
tensor_layout
::
convolution
;
if
(
conv_param
.
num_dim_spatial_
==
1
)
/*
if(conv_param.num_dim_spatial_ == 1)
{
{
return run(ck::Number<1>{}, ctc::GNWC{}, ctc::GKXC{}, ctc::GNWK{});
return run(ck::Number<1>{}, ctc::GNWC{}, ctc::GKXC{}, ctc::GNWK{});
}
}
else
if
(
conv_param
.
num_dim_spatial_
==
2
)
else
*/
if
(
conv_param
.
num_dim_spatial_
==
2
)
{
{
return
run
(
ck
::
Number
<
2
>
{},
ctc
::
GNHWC
{},
ctc
::
GKYXC
{},
ctc
::
GNHWK
{});
return
run
(
ck
::
Number
<
2
>
{},
ctc
::
GNHWC
{},
ctc
::
GKYXC
{},
ctc
::
GNHWK
{});
}
}
else
if
(
conv_param
.
num_dim_spatial_
==
3
)
/*
else if(conv_param.num_dim_spatial_ == 3)
{
{
return run(ck::Number<3>{}, ctc::GNDHWC{}, ctc::GKZYXC{}, ctc::GNDHWK{});
return run(ck::Number<3>{}, ctc::GNDHWC{}, ctc::GKZYXC{}, ctc::GNDHWK{});
}
}
*/
return
true
;
return
true
;
}
}
include/ck/tensor_operation/gpu/device/device_grouped_conv_fwd_dl_multiple_d_nhwc_kyxc_nhwk.hpp
0 → 100644
View file @
d0b2508d
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2022, Advanced Micro Devices, Inc. All rights reserved.
#pragma once
#include <functional>
#include <iostream>
#include <iterator>
#include <numeric>
#include <sstream>
#include "ck/utility/common_header.hpp"
#include "ck/tensor_description/tensor_descriptor.hpp"
#include "ck/tensor_description/tensor_descriptor_helper.hpp"
#include "ck/tensor_operation/gpu/device/tensor_layout.hpp"
#include "ck/tensor_operation/gpu/device/convolution_forward_specialization.hpp"
#include "ck/tensor_operation/operator_transform/transform_conv_fwd_to_gemm.hpp"
#include "ck/tensor_operation/gpu/device/device_grouped_conv_fwd_multiple_d.hpp"
#include "ck/tensor_operation/gpu/device/gemm_specialization.hpp"
#include "ck/tensor_operation/gpu/device/matrix_padder.hpp"
#include "ck/tensor_operation/gpu/grid/gridwise_gemm_dl_multiple_d.hpp"
#include "ck/host_utility/device_prop.hpp"
#include "ck/host_utility/kernel_launch.hpp"
#include "ck/host_utility/io.hpp"
namespace
ck
{
namespace
tensor_operation
{
namespace
device
{
namespace
{
template
<
index_t
NumDTensor
>
struct
ComputePtrOffsetOfStridedBatch
{
ComputePtrOffsetOfStridedBatch
()
=
default
;
ComputePtrOffsetOfStridedBatch
(
index_t
BatchStrideA
,
index_t
BatchStrideB
,
Array
<
ck
::
index_t
,
NumDTensor
>
BatchStrideDs
,
index_t
BatchStrideE
)
:
BatchStrideA_
(
BatchStrideA
),
BatchStrideB_
(
BatchStrideB
),
BatchStrideDs_
(
BatchStrideDs
),
BatchStrideE_
(
BatchStrideE
)
{
}
__host__
__device__
constexpr
long_index_t
GetAPtrOffset
(
index_t
g_idx
)
const
{
return
g_idx
*
static_cast
<
long_index_t
>
(
BatchStrideA_
);
}
__host__
__device__
constexpr
long_index_t
GetBPtrOffset
(
index_t
g_idx
)
const
{
return
g_idx
*
static_cast
<
long_index_t
>
(
BatchStrideB_
);
}
__host__
__device__
constexpr
auto
GetDsPtrOffset
(
index_t
g_idx
)
const
{
Array
<
long_index_t
,
NumDTensor
>
ds_offset
;
static_for
<
0
,
NumDTensor
,
1
>
{}(
[
&
](
auto
i
)
{
ds_offset
(
i
)
=
g_idx
*
static_cast
<
long_index_t
>
(
BatchStrideDs_
[
i
]);
});
return
ds_offset
;
}
__host__
__device__
constexpr
long_index_t
GetEPtrOffset
(
index_t
g_idx
)
const
{
return
g_idx
*
static_cast
<
long_index_t
>
(
BatchStrideE_
);
}
index_t
BatchStrideA_
;
index_t
BatchStrideB_
;
Array
<
ck
::
index_t
,
NumDTensor
>
BatchStrideDs_
;
index_t
BatchStrideE_
;
};
/*
* \brief Wrapper function of GridwiseGemm::Run to realize BatchedGEMM.
*
* \tparam ComputePtrOffsetOfBatch Class that computes the base pointer offsets of A, B, C matrix
* given the batch. For example, ComputePtrOffsetOfStridedBatch() computes the offsets of evenly
* strided batched, but we can easily extend to other layouts. The returned offset can be either \p
* index_t or \p long_index_t. If it returns \p long_index_t, we are not subject to the 2GB
* limitations.
*
* \tparam Block2ETileMap Block2ETileMap::CalculateBottomIndex() takes in id of a workgroup and
* returns the 2D index of the tile that it computes. \see
* GridwiseGemm_k0mk1_k0nk1_mn_xdlops_v2r3::Run().
*
* \note Using \p ComputePtrOffsetOfBatch gives us the flexibility that 2 workgroups can compute 2
* tiles from different matrices. Keep in mind that these 2 matrices can share the same grid
* descriptor (like in BatchedGEMM), or use their own grid descriptors (in GroupedGemm). \link
* device_conv3d_fwd_xdl_ndhwc_kzyxc_ndhwk.hpp kernel_gemm_xdlops_v2r3_for_conv3d \endlink for \link
* DeviceConv3d \endlink uses the same concept, but currently does NOT encapsulate the computing of
* pointer offset into \p ComputePtrOffsetOfStridedBatch.
*
* \note \p Block2ETileMap allows customized mapping between a workgroup and the C-tile it computes.
* Together with \p ComputePtrOffsetOfBatch, we can reuse GridwiseGemm (and GridwiseGemm fusion ) to
* realize BatchedGemm and GroupedGemm (and the corresponding GEMM fusion).
*
*/
template
<
typename
GridwiseGemm
,
typename
ABDataType
,
typename
DsPointer
,
typename
EDataType
,
typename
AGridDesc_K0_M0_M1_K1
,
typename
BGridDesc_K0_N0_N1_K1
,
typename
DsGridDesc_M0_M10_M11_N0_N10_N11
,
typename
CGridDesc_M0_M10_M11_N0_N10_N11
,
typename
Block2CTileMap
,
typename
ComputePtrOffsetOfBatch
,
bool
HasMainKBlockLoop
,
bool
HasDoubleTailKBlockLoop
>
__global__
void
#if CK_USE_LAUNCH_BOUNDS
__launch_bounds__
(
CK_MAX_THREAD_PER_BLOCK
,
CK_MIN_BLOCK_PER_CU
)
#endif
kernel_grouped_conv_fwd_dl_multiple_d
(
const
ABDataType
*
__restrict__
p_a_grid
,
const
ABDataType
*
__restrict__
p_b_grid
,
DsPointer
p_ds_grid
,
EDataType
*
__restrict__
p_e_grid
,
const
index_t
batch_count
,
const
AGridDesc_K0_M0_M1_K1
a_grid_desc_k0_m0_m1_k1
,
const
BGridDesc_K0_N0_N1_K1
b_grid_desc_k0_n0_n1_k1
,
const
DsGridDesc_M0_M10_M11_N0_N10_N11
ds_grid_desc_m0_m10_m11_n0_n10_n11
,
const
CGridDesc_M0_M10_M11_N0_N10_N11
e_grid_desc_m0_m10_m11_n0_n10_n11
,
const
Block2CTileMap
block_2_ctile_map
,
const
ComputePtrOffsetOfBatch
compute_ptr_offset_of_batch
)
{
#if(!defined(__HIP_DEVICE_COMPILE__) || defined(__gfx906__) || defined(__gfx1030__))
// offset base pointer for each work-group
const
index_t
num_blocks_per_batch
=
__builtin_amdgcn_readfirstlane
(
get_grid_size
()
/
batch_count
);
const
index_t
g_idx
=
__builtin_amdgcn_readfirstlane
(
get_block_1d_id
()
/
num_blocks_per_batch
);
const
long_index_t
a_batch_offset
=
__builtin_amdgcn_readfirstlane
(
static_cast
<
long_index_t
>
(
compute_ptr_offset_of_batch
.
GetAPtrOffset
(
g_idx
)));
const
long_index_t
b_batch_offset
=
__builtin_amdgcn_readfirstlane
(
static_cast
<
long_index_t
>
(
compute_ptr_offset_of_batch
.
GetBPtrOffset
(
g_idx
)));
const
long_index_t
c_batch_offset
=
__builtin_amdgcn_readfirstlane
(
static_cast
<
long_index_t
>
(
compute_ptr_offset_of_batch
.
GetEPtrOffset
(
g_idx
)));
const
auto
ds_batch_offset
=
compute_ptr_offset_of_batch
.
GetDsPtrOffset
(
g_idx
);
constexpr
index_t
shared_block_size
=
GridwiseGemm
::
GetSharedMemoryNumberOfByte
()
/
sizeof
(
ABDataType
);
__shared__
ABDataType
p_shared
[
shared_block_size
];
DsPointer
p_ds_grid_grp
;
static
constexpr
index_t
NumDTensor
=
DsGridDesc_M0_M10_M11_N0_N10_N11
::
Size
();
static_for
<
0
,
NumDTensor
,
1
>
{}(
[
&
](
auto
i
)
{
p_ds_grid_grp
(
i
)
=
p_ds_grid
[
i
]
+
ds_batch_offset
[
i
];
});
GridwiseGemm
::
Run
(
p_a_grid
+
a_batch_offset
,
p_b_grid
+
b_batch_offset
,
p_ds_grid_grp
,
p_e_grid
+
c_batch_offset
,
p_shared
,
a_grid_desc_k0_m0_m1_k1
,
b_grid_desc_k0_n0_n1_k1
,
ds_grid_desc_m0_m10_m11_n0_n10_n11
,
e_grid_desc_m0_m10_m11_n0_n10_n11
,
block_2_ctile_map
,
integral_constant
<
bool
,
HasMainKBlockLoop
>
{},
integral_constant
<
bool
,
HasDoubleTailKBlockLoop
>
{});
#else
ignore
=
p_a_grid
;
ignore
=
p_b_grid
;
ignore
=
p_ds_grid
;
ignore
=
p_e_grid
;
ignore
=
batch_count
;
ignore
=
a_grid_desc_k0_m0_m1_k1
;
ignore
=
b_grid_desc_k0_n0_n1_k1
;
ignore
=
ds_grid_desc_m0_m10_m11_n0_n10_n11
;
ignore
=
e_grid_desc_m0_m10_m11_n0_n10_n11
;
ignore
=
compute_ptr_offset_of_batch
;
ignore
=
block_2_ctile_map
;
compute_ptr_offset_of_batch
.
GetAPtrOffset
(
0
);
compute_ptr_offset_of_batch
.
GetBPtrOffset
(
0
);
compute_ptr_offset_of_batch
.
GetEPtrOffset
(
0
);
#endif
}
}
// namespace
//
// @brief Device Convolution operation.
//
// Supports:
// @li Forward convolution with up to 3 spatial dimentions
// @li Input tensor in GNWC data format
// @li Weight tensor in GKXC data format
// @li Output tensor in GNWK data format
//
// 1D:
// out[N, Wo, K] = in[N, Wi, C] * wei[K, X, C]
// 2D:
// out[N, Ho, Wo, K] = in[N, Hi, Wi, C] * wei[K, Y, X, C]
// 3D:
// out[N, Do, Ho, Wo, K] = in[N, Di, Hi, Wi, C] * wei[K, Z, Y, X, C]
//
template
<
index_t
NDimSpatial
,
typename
ADataType
,
typename
BDataType
,
typename
DsLayout
,
typename
EDataType
,
typename
AccDataType
,
typename
ALayout
,
typename
BLayout
,
typename
DsDataType
,
typename
CLayout
,
typename
AElementwiseOperation
,
typename
BElementwiseOperation
,
typename
CDElementwiseOperation
,
ConvolutionForwardSpecialization
ConvForwardSpecialization
,
GemmSpecialization
GemmSpec
,
index_t
BlockSize
,
index_t
MPerBlock
,
index_t
NPerBlock
,
index_t
K0PerBlock
,
index_t
K1
,
index_t
M1PerThread
,
index_t
N1PerThread
,
index_t
KPerThread
,
typename
M1N1ThreadClusterM1Xs
,
typename
M1N1ThreadClusterN1Xs
,
typename
ABlockTransferThreadSliceLengths_K0_M0_M1_K1
,
typename
ABlockTransferThreadClusterLengths_K0_M0_M1_K1
,
typename
ABlockTransferThreadClusterArrangeOrder
,
typename
ABlockTransferSrcAccessOrder
,
typename
ABlockTransferSrcVectorTensorLengths_K0_M0_M1_K1
,
typename
ABlockTransferSrcVectorTensorContiguousDimOrder
,
typename
ABlockTransferDstVectorTensorLengths_K0_M0_M1_K1
,
typename
BBlockTransferThreadSliceLengths_K0_N0_N1_K1
,
typename
BBlockTransferThreadClusterLengths_K0_N0_N1_K1
,
typename
BBlockTransferThreadClusterArrangeOrder
,
typename
BBlockTransferSrcAccessOrder
,
typename
BBlockTransferSrcVectorTensorLengths_K0_N0_N1_K1
,
typename
BBlockTransferSrcVectorTensorContiguousDimOrder
,
typename
BBlockTransferDstVectorTensorLengths_K0_N0_N1_K1
,
typename
CThreadTransferSrcDstAccessOrder
,
index_t
CThreadTransferSrcDstVectorDim
,
index_t
CThreadTransferDstScalarPerVector
>
struct
DeviceGroupedConvFwdDlMultipleD_NHWC_KYXC_NHWK
:
public
DeviceGroupedConvFwdMultipleD
<
NDimSpatial
,
ALayout
,
BLayout
,
DsLayout
,
CLayout
,
ADataType
,
BDataType
,
DsDataType
,
EDataType
,
AElementwiseOperation
,
BElementwiseOperation
,
CDElementwiseOperation
>
{
using
DeviceOp
=
DeviceGroupedConvFwdDlMultipleD_NHWC_KYXC_NHWK
;
static
constexpr
index_t
NumDTensor
=
DsDataType
::
Size
();
static
constexpr
auto
I0
=
Number
<
0
>
{};
static
constexpr
auto
I1
=
Number
<
1
>
{};
static
constexpr
auto
I2
=
Number
<
2
>
{};
static
constexpr
auto
I3
=
Number
<
3
>
{};
static
constexpr
auto
conv_to_gemm_transformer
=
TransformConvFwdToGemm
<
NDimSpatial
,
ConvForwardSpecialization
>
{};
static
constexpr
auto
matrix_padder
=
MatrixPadder
<
GemmSpec
,
index_t
,
index_t
,
index_t
>
{
MPerBlock
,
NPerBlock
,
K0PerBlock
};
template
<
typename
ALay
>
static
auto
MakeAGridDescriptor_AK0_M_AK1
(
const
std
::
array
<
index_t
,
NDimSpatial
+
3
>&
a_g_n_c_wis_lengths
,
const
std
::
array
<
index_t
,
NDimSpatial
+
3
>&
a_g_n_c_wis_strides
,
const
std
::
array
<
index_t
,
NDimSpatial
+
3
>&
b_g_k_c_xs_lengths
,
const
std
::
array
<
index_t
,
NDimSpatial
+
3
>&
b_g_k_c_xs_strides
,
const
std
::
array
<
index_t
,
NDimSpatial
+
3
>&
e_g_n_k_wos_lengths
,
const
std
::
array
<
index_t
,
NDimSpatial
+
3
>&
e_g_n_k_wos_strides
,
const
std
::
array
<
index_t
,
NDimSpatial
>&
conv_filter_strides
,
const
std
::
array
<
index_t
,
NDimSpatial
>&
conv_filter_dilations
,
const
std
::
array
<
index_t
,
NDimSpatial
>&
input_left_pads
,
const
std
::
array
<
index_t
,
NDimSpatial
>&
input_right_pads
)
{
const
auto
in_gemmmraw_gemmkraw_desc
=
conv_to_gemm_transformer
.
template
MakeADescriptor_M_K
<
ALay
>(
a_g_n_c_wis_lengths
,
a_g_n_c_wis_strides
,
b_g_k_c_xs_lengths
,
b_g_k_c_xs_strides
,
e_g_n_k_wos_lengths
,
e_g_n_k_wos_strides
,
conv_filter_strides
,
conv_filter_dilations
,
input_left_pads
,
input_right_pads
);
const
auto
in_gemmm_gemmk_desc
=
matrix_padder
.
PadADescriptor_M_K
(
in_gemmmraw_gemmkraw_desc
);
const
auto
M
=
in_gemmm_gemmk_desc
.
GetLength
(
I0
);
const
auto
K
=
in_gemmm_gemmk_desc
.
GetLength
(
I1
);
const
auto
AK0
=
K
/
K1
;
return
transform_tensor_descriptor
(
in_gemmm_gemmk_desc
,
make_tuple
(
make_unmerge_transform
(
make_tuple
(
AK0
,
K1
)),
make_pass_through_transform
(
M
)),
make_tuple
(
Sequence
<
1
>
{},
Sequence
<
0
>
{}),
make_tuple
(
Sequence
<
0
,
2
>
{},
Sequence
<
1
>
{}));
}
template
<
typename
BLay
>
static
auto
MakeBGridDescriptor_BK0_N_BK1
(
const
std
::
array
<
index_t
,
NDimSpatial
+
3
>&
b_g_k_c_xs_lengths
,
const
std
::
array
<
index_t
,
NDimSpatial
+
3
>&
b_g_k_c_xs_strides
)
{
const
auto
wei_gemmnraw_gemmkraw_desc
=
conv_to_gemm_transformer
.
template
MakeBDescriptor_N_K
<
BLay
>(
b_g_k_c_xs_lengths
,
b_g_k_c_xs_strides
);
const
auto
wei_gemmn_gemmk_desc
=
matrix_padder
.
PadBDescriptor_N_K
(
wei_gemmnraw_gemmkraw_desc
);
const
auto
N
=
wei_gemmn_gemmk_desc
.
GetLength
(
I0
);
const
auto
K
=
wei_gemmn_gemmk_desc
.
GetLength
(
I1
);
const
auto
BK0
=
K
/
K1
;
return
transform_tensor_descriptor
(
wei_gemmn_gemmk_desc
,
make_tuple
(
make_unmerge_transform
(
make_tuple
(
BK0
,
K1
)),
make_pass_through_transform
(
N
)),
make_tuple
(
Sequence
<
1
>
{},
Sequence
<
0
>
{}),
make_tuple
(
Sequence
<
0
,
2
>
{},
Sequence
<
1
>
{}));
}
template
<
typename
CLay
>
static
auto
MakeEGridDescriptor_M_N
(
const
std
::
array
<
index_t
,
NDimSpatial
+
3
>&
e_g_n_k_wos_lengths
,
const
std
::
array
<
index_t
,
NDimSpatial
+
3
>&
e_g_n_k_wos_strides
)
{
const
auto
out_gemmmraw_gemmnraw_desc
=
conv_to_gemm_transformer
.
template
MakeCDescriptor_M_N
<
CLay
>(
e_g_n_k_wos_lengths
,
e_g_n_k_wos_strides
);
const
auto
out_gemmm_gemmn_desc
=
matrix_padder
.
PadCDescriptor_M_N
(
out_gemmmraw_gemmnraw_desc
);
return
out_gemmm_gemmn_desc
;
}
static
auto
MakeDsGridDescriptor_M_N
(
const
std
::
array
<
std
::
array
<
index_t
,
NDimSpatial
+
3
>
,
NumDTensor
>&
ds_g_n_k_wos_lengths
,
const
std
::
array
<
std
::
array
<
index_t
,
NDimSpatial
+
3
>
,
NumDTensor
>&
ds_g_n_k_wos_strides
)
{
return
generate_tuple
(
[
&
](
auto
i
)
{
using
DLayout
=
remove_cvref_t
<
tuple_element_t
<
i
.
value
,
DsLayout
>>
;
return
DeviceOp
::
MakeEGridDescriptor_M_N
<
DLayout
>
(
ds_g_n_k_wos_lengths
[
i
],
ds_g_n_k_wos_strides
[
i
]);
},
Number
<
NumDTensor
>
{});
}
// desc for problem definition
using
AGridDesc_AK0_M_AK1
=
remove_cvref_t
<
decltype
(
MakeAGridDescriptor_AK0_M_AK1
<
ALayout
>
({},
{},
{},
{},
{},
{},
{},
{},
{},
{}))
>
;
using
BGridDesc_BK0_N_BK1
=
remove_cvref_t
<
decltype
(
MakeBGridDescriptor_BK0_N_BK1
<
BLayout
>
({},
{}))
>
;
using
DsGridDesc_M_N
=
remove_cvref_t
<
decltype
(
MakeDsGridDescriptor_M_N
({},
{}))
>
;
using
EGridDesc_M_N
=
remove_cvref_t
<
decltype
(
MakeEGridDescriptor_M_N
<
CLayout
>
({},
{}))
>
;
// GridwiseGemm
using
GridwiseGemm
=
GridwiseGemmDlMultipleD_km_kn_mn
<
BlockSize
,
ADataType
,
AccDataType
,
DsLayout
,
EDataType
,
InMemoryDataOperationEnum
::
Set
,
AGridDesc_AK0_M_AK1
,
BGridDesc_BK0_N_BK1
,
EGridDesc_M_N
,
MPerBlock
,
NPerBlock
,
K0PerBlock
,
K1
,
M1PerThread
,
N1PerThread
,
KPerThread
,
M1N1ThreadClusterM1Xs
,
M1N1ThreadClusterN1Xs
,
ABlockTransferThreadSliceLengths_K0_M0_M1_K1
,
ABlockTransferThreadClusterLengths_K0_M0_M1_K1
,
ABlockTransferThreadClusterArrangeOrder
,
ABlockTransferSrcAccessOrder
,
ABlockTransferSrcVectorTensorLengths_K0_M0_M1_K1
,
ABlockTransferSrcVectorTensorContiguousDimOrder
,
ABlockTransferDstVectorTensorLengths_K0_M0_M1_K1
,
BBlockTransferThreadSliceLengths_K0_N0_N1_K1
,
BBlockTransferThreadClusterLengths_K0_N0_N1_K1
,
BBlockTransferThreadClusterArrangeOrder
,
BBlockTransferSrcAccessOrder
,
BBlockTransferSrcVectorTensorLengths_K0_N0_N1_K1
,
BBlockTransferSrcVectorTensorContiguousDimOrder
,
BBlockTransferDstVectorTensorLengths_K0_N0_N1_K1
,
CThreadTransferSrcDstAccessOrder
,
CThreadTransferSrcDstVectorDim
,
CThreadTransferDstScalarPerVector
>
;
using
AGridDesc_K0_M0_M1_K1
=
decltype
(
GridwiseGemm
::
MakeAGridDescriptor_K0_M0_M1_K1
(
AGridDesc_AK0_M_AK1
{}));
using
BGridDesc_K0_N0_N1_K1
=
decltype
(
GridwiseGemm
::
MakeBGridDescriptor_K0_N0_N1_K1
(
BGridDesc_BK0_N_BK1
{}));
using
DsGridDesc_M0_M10_M11_N0_N10_N11
=
decltype
(
GridwiseGemm
::
MakeDsGridDescriptor_M0_M10_M11_N0_N10_N11
(
DsGridDesc_M_N
{}));
using
CGridDesc_M0_M10_M11_N0_N10_N11
=
decltype
(
GridwiseGemm
::
MakeCGridDescriptor_M0_M10_M11_N0_N10_N11
(
EGridDesc_M_N
{}));
using
DefaultBlock2CTileMap
=
decltype
(
GridwiseGemm
::
MakeDefaultBlock2CTileMap
(
EGridDesc_M_N
{}));
// Argument
struct
Argument
:
public
BaseArgument
{
Argument
(
const
void
*
p_a
,
const
void
*
p_b
,
const
std
::
array
<
const
void
*
,
NumDTensor
>&
p_ds
,
void
*
p_e
,
const
std
::
array
<
index_t
,
NDimSpatial
+
3
>&
a_g_n_c_wis_lengths
,
const
std
::
array
<
index_t
,
NDimSpatial
+
3
>&
a_g_n_c_wis_strides
,
const
std
::
array
<
index_t
,
NDimSpatial
+
3
>&
b_g_k_c_xs_lengths
,
const
std
::
array
<
index_t
,
NDimSpatial
+
3
>&
b_g_k_c_xs_strides
,
const
std
::
array
<
std
::
array
<
index_t
,
NDimSpatial
+
3
>
,
NumDTensor
>&
ds_g_n_k_wos_lengths
,
const
std
::
array
<
std
::
array
<
index_t
,
NDimSpatial
+
3
>
,
NumDTensor
>&
ds_g_n_k_wos_strides
,
const
std
::
array
<
index_t
,
NDimSpatial
+
3
>&
e_g_n_k_wos_lengths
,
const
std
::
array
<
index_t
,
NDimSpatial
+
3
>&
e_g_n_k_wos_strides
,
const
std
::
array
<
index_t
,
NDimSpatial
>&
conv_filter_strides
,
const
std
::
array
<
index_t
,
NDimSpatial
>&
conv_filter_dilations
,
const
std
::
array
<
index_t
,
NDimSpatial
>&
input_left_pads
,
const
std
::
array
<
index_t
,
NDimSpatial
>&
input_right_pads
,
const
AElementwiseOperation
&
a_element_op
,
const
BElementwiseOperation
&
b_element_op
,
const
CDElementwiseOperation
&
cd_element_op
)
:
p_a_grid_
{
static_cast
<
const
ADataType
*>
(
p_a
)},
p_b_grid_
{
static_cast
<
const
BDataType
*>
(
p_b
)},
p_ds_grid_
{},
p_e_grid_
{
static_cast
<
EDataType
*>
(
p_e
)},
num_group_
{
a_g_n_c_wis_lengths
[
0
]},
a_grid_desc_ak0_m_ak1_
{
DeviceOp
::
MakeAGridDescriptor_AK0_M_AK1
<
ALayout
>
(
a_g_n_c_wis_lengths
,
a_g_n_c_wis_strides
,
b_g_k_c_xs_lengths
,
b_g_k_c_xs_strides
,
e_g_n_k_wos_lengths
,
e_g_n_k_wos_strides
,
conv_filter_strides
,
conv_filter_dilations
,
input_left_pads
,
input_right_pads
)},
b_grid_desc_bk0_n_bk1_
{
DeviceOp
::
MakeBGridDescriptor_BK0_N_BK1
<
BLayout
>
(
b_g_k_c_xs_lengths
,
b_g_k_c_xs_strides
)},
e_grid_desc_m_n_
{
DeviceOp
::
MakeEGridDescriptor_M_N
<
CLayout
>
(
e_g_n_k_wos_lengths
,
e_g_n_k_wos_strides
)},
a_grid_desc_k0_m0_m1_k1_
{},
b_grid_desc_k0_n0_n1_k1_
{},
ds_grid_desc_m0_m10_m11_n0_n10_n11_
{},
e_grid_desc_m0_m10_m11_n0_n10_n11_
{},
block_2_ctile_map_
{},
compute_ptr_offset_of_batch_
{},
a_element_op_
{
a_element_op
},
b_element_op_
{
b_element_op
},
cd_element_op_
{
cd_element_op
},
a_g_n_c_wis_lengths_
{
a_g_n_c_wis_lengths
},
a_g_n_c_wis_strides_
{
a_g_n_c_wis_strides
},
b_g_k_c_xs_lengths_
{
b_g_k_c_xs_lengths
},
b_g_k_c_xs_strides_
{
b_g_k_c_xs_strides
},
e_g_n_k_wos_lengths_
{
e_g_n_k_wos_lengths
},
e_g_n_k_wos_strides_
{
e_g_n_k_wos_strides
},
conv_filter_strides_
{
conv_filter_strides
},
conv_filter_dilations_
{
conv_filter_dilations
},
input_left_pads_
{
input_left_pads
},
input_right_pads_
{
input_right_pads
}
{
// A/B/E Batch Stride
compute_ptr_offset_of_batch_
.
BatchStrideA_
=
a_g_n_c_wis_strides
[
0
];
compute_ptr_offset_of_batch_
.
BatchStrideB_
=
b_g_k_c_xs_strides
[
0
];
compute_ptr_offset_of_batch_
.
BatchStrideE_
=
e_g_n_k_wos_strides
[
0
];
// populate pointer, batch stride, desc for Ds
static_for
<
0
,
NumDTensor
,
1
>
{}([
&
](
auto
i
)
{
using
DLayout
=
remove_cvref_t
<
tuple_element_t
<
i
.
value
,
DsLayout
>>
;
using
DDataType
=
remove_cvref_t
<
tuple_element_t
<
i
.
value
,
DsDataType
>>
;
// D pointer
p_ds_grid_
(
i
)
=
static_cast
<
const
DDataType
*>
(
p_ds
[
i
]);
// D batch stride
compute_ptr_offset_of_batch_
.
BatchStrideDs_
(
i
)
=
ds_g_n_k_wos_strides
[
i
][
0
];
// D desc
ds_grid_desc_m_n_
(
i
)
=
DeviceOp
::
MakeEGridDescriptor_M_N
<
DLayout
>
(
ds_g_n_k_wos_lengths
[
i
],
ds_g_n_k_wos_strides
[
i
]);
});
// populate desc for Ds/E
if
(
GridwiseGemm
::
CheckValidity
(
a_grid_desc_ak0_m_ak1_
,
b_grid_desc_bk0_n_bk1_
,
e_grid_desc_m_n_
))
{
a_grid_desc_k0_m0_m1_k1_
=
GridwiseGemm
::
MakeAGridDescriptor_K0_M0_M1_K1
(
a_grid_desc_ak0_m_ak1_
);
b_grid_desc_k0_n0_n1_k1_
=
GridwiseGemm
::
MakeBGridDescriptor_K0_N0_N1_K1
(
b_grid_desc_bk0_n_bk1_
);
e_grid_desc_m0_m10_m11_n0_n10_n11_
=
GridwiseGemm
::
MakeCGridDescriptor_M0_M10_M11_N0_N10_N11
(
e_grid_desc_m_n_
);
ds_grid_desc_m0_m10_m11_n0_n10_n11_
=
GridwiseGemm
::
MakeDsGridDescriptor_M0_M10_M11_N0_N10_N11
(
ds_grid_desc_m_n_
);
block_2_ctile_map_
=
GridwiseGemm
::
MakeDefaultBlock2CTileMap
(
e_grid_desc_m_n_
);
}
}
void
Print
()
const
{
std
::
cout
<<
"A[K0, M, K1]: "
<<
a_grid_desc_ak0_m_ak1_
<<
std
::
endl
;
std
::
cout
<<
"B[K0, N, K1]: "
<<
b_grid_desc_bk0_n_bk1_
<<
std
::
endl
;
std
::
cout
<<
"E[M, N]: "
<<
e_grid_desc_m_n_
<<
std
::
endl
;
std
::
cout
<<
"num_group: "
<<
num_group_
<<
std
::
endl
;
std
::
cout
<<
"A[k0, m0, m1, k1]: "
<<
a_grid_desc_k0_m0_m1_k1_
<<
std
::
endl
;
std
::
cout
<<
"B[k0, n0, n1, k1]: "
<<
b_grid_desc_k0_n0_n1_k1_
<<
std
::
endl
;
std
::
cout
<<
"A[m0, m10, m11, n0, n10, n11]: "
<<
e_grid_desc_m0_m10_m11_n0_n10_n11_
<<
std
::
endl
;
}
// private:
// pointers
const
ADataType
*
p_a_grid_
;
const
BDataType
*
p_b_grid_
;
typename
GridwiseGemm
::
DsGridPointer
p_ds_grid_
;
EDataType
*
p_e_grid_
;
// tensor descriptors for problem definiton
index_t
num_group_
;
AGridDesc_AK0_M_AK1
a_grid_desc_ak0_m_ak1_
;
BGridDesc_BK0_N_BK1
b_grid_desc_bk0_n_bk1_
;
DsGridDesc_M_N
ds_grid_desc_m_n_
;
EGridDesc_M_N
e_grid_desc_m_n_
;
// tensor descriptors for block/thread-wise copy
AGridDesc_K0_M0_M1_K1
a_grid_desc_k0_m0_m1_k1_
;
BGridDesc_K0_N0_N1_K1
b_grid_desc_k0_n0_n1_k1_
;
DsGridDesc_M0_M10_M11_N0_N10_N11
ds_grid_desc_m0_m10_m11_n0_n10_n11_
;
CGridDesc_M0_M10_M11_N0_N10_N11
e_grid_desc_m0_m10_m11_n0_n10_n11_
;
// block-to-e-tile map
DefaultBlock2CTileMap
block_2_ctile_map_
;
// for computing batch offset
ComputePtrOffsetOfStridedBatch
<
NumDTensor
>
compute_ptr_offset_of_batch_
;
// element-wise op
AElementwiseOperation
a_element_op_
;
BElementwiseOperation
b_element_op_
;
CDElementwiseOperation
cd_element_op_
;
// for checking IsSupportedArgument()
std
::
array
<
index_t
,
NDimSpatial
+
3
>
a_g_n_c_wis_lengths_
;
std
::
array
<
index_t
,
NDimSpatial
+
3
>
a_g_n_c_wis_strides_
;
std
::
array
<
index_t
,
NDimSpatial
+
3
>
b_g_k_c_xs_lengths_
;
std
::
array
<
index_t
,
NDimSpatial
+
3
>
b_g_k_c_xs_strides_
;
std
::
array
<
std
::
array
<
index_t
,
NDimSpatial
+
3
>
,
NumDTensor
>
ds_g_n_k_wos_lengths_
;
std
::
array
<
std
::
array
<
index_t
,
NDimSpatial
+
3
>
,
NumDTensor
>
ds_g_n_k_wos_strides_
;
std
::
array
<
index_t
,
NDimSpatial
+
3
>
e_g_n_k_wos_lengths_
;
std
::
array
<
index_t
,
NDimSpatial
+
3
>
e_g_n_k_wos_strides_
;
std
::
array
<
index_t
,
NDimSpatial
>
conv_filter_strides_
;
std
::
array
<
index_t
,
NDimSpatial
>
conv_filter_dilations_
;
std
::
array
<
index_t
,
NDimSpatial
>
input_left_pads_
;
std
::
array
<
index_t
,
NDimSpatial
>
input_right_pads_
;
};
// Invoker
struct
Invoker
:
public
BaseInvoker
{
using
Argument
=
DeviceOp
::
Argument
;
float
Run
(
const
Argument
&
arg
,
const
StreamConfig
&
stream_config
)
{
if
(
stream_config
.
log_level_
>
0
)
{
arg
.
Print
();
}
if
(
!
GridwiseGemm
::
CheckValidity
(
arg
.
a_grid_desc_ak0_m_ak1_
,
arg
.
b_grid_desc_bk0_n_bk1_
,
arg
.
e_grid_desc_m_n_
))
{
throw
std
::
runtime_error
(
"wrong! DeviceGroupedConvFwdDlMultipleD_NHWC_KYXC_NHWK has invalid setting"
);
}
std
::
cout
<<
stream_config
.
log_level_
<<
std
::
endl
;
const
index_t
grid_size
=
GridwiseGemm
::
CalculateGridSize
(
arg
.
e_grid_desc_m_n_
.
GetLength
(
I0
),
arg
.
e_grid_desc_m_n_
.
GetLength
(
I1
))
*
arg
.
num_group_
;
auto
launch_kernel
=
[
&
](
auto
has_main_k_block_loop
,
auto
has_double_tail_k_block_loop
)
{
constexpr
bool
has_main_loop
=
has_main_k_block_loop
.
value
;
constexpr
bool
has_double_loop
=
has_double_tail_k_block_loop
;
const
auto
kernel
=
kernel_grouped_conv_fwd_dl_multiple_d
<
GridwiseGemm
,
ADataType
,
// TODO: distiguish A/B datatype
typename
GridwiseGemm
::
DsGridPointer
,
EDataType
,
DeviceOp
::
AGridDesc_K0_M0_M1_K1
,
DeviceOp
::
BGridDesc_K0_N0_N1_K1
,
DeviceOp
::
DsGridDesc_M0_M10_M11_N0_N10_N11
,
DeviceOp
::
CGridDesc_M0_M10_M11_N0_N10_N11
,
DefaultBlock2CTileMap
,
ComputePtrOffsetOfStridedBatch
<
NumDTensor
>
,
has_main_loop
,
has_double_loop
>
;
return
launch_and_time_kernel
(
stream_config
,
kernel
,
dim3
(
grid_size
),
dim3
(
BlockSize
),
0
,
arg
.
p_a_grid_
,
arg
.
p_b_grid_
,
arg
.
p_ds_grid_
,
arg
.
p_e_grid_
,
arg
.
a_g_n_c_wis_lengths_
[
0
],
// Group count
arg
.
a_grid_desc_k0_m0_m1_k1_
,
arg
.
b_grid_desc_k0_n0_n1_k1_
,
arg
.
ds_grid_desc_m0_m10_m11_n0_n10_n11_
,
arg
.
e_grid_desc_m0_m10_m11_n0_n10_n11_
,
arg
.
block_2_ctile_map_
,
arg
.
compute_ptr_offset_of_batch_
);
};
const
auto
K0
=
arg
.
a_grid_desc_k0_m0_m1_k1_
.
GetLength
(
I0
);
const
bool
has_main_k_block_loop
=
GridwiseGemm
::
CalculateHasMainKBlockLoop
(
K0
);
const
bool
has_double_tail_k_block_loop
=
GridwiseGemm
::
CalculateHasDoubleTailKBlockLoop
(
K0
);
if
(
has_main_k_block_loop
&&
has_double_tail_k_block_loop
)
{
return
launch_kernel
(
integral_constant
<
bool
,
true
>
{},
integral_constant
<
bool
,
true
>
{});
}
else
if
(
has_main_k_block_loop
&&
!
has_double_tail_k_block_loop
)
{
return
launch_kernel
(
integral_constant
<
bool
,
true
>
{},
integral_constant
<
bool
,
false
>
{});
}
else
if
(
!
has_main_k_block_loop
&&
has_double_tail_k_block_loop
)
{
return
launch_kernel
(
integral_constant
<
bool
,
false
>
{},
integral_constant
<
bool
,
true
>
{});
}
else
{
return
launch_kernel
(
integral_constant
<
bool
,
false
>
{},
integral_constant
<
bool
,
false
>
{});
}
return
0
;
}
float
Run
(
const
BaseArgument
*
p_arg
,
const
StreamConfig
&
stream_config
=
StreamConfig
{})
override
{
return
Run
(
*
dynamic_cast
<
const
Argument
*>
(
p_arg
),
stream_config
);
}
};
static
bool
IsSupportedArgument
(
const
Argument
&
arg
)
{
namespace
ctc
=
tensor_layout
::
convolution
;
// check device
if
(
!
(
ck
::
get_device_name
()
==
"gfx906"
||
ck
::
get_device_name
()
==
"gfx1030"
))
{
return
false
;
}
// check ConvolutionForwardSpecialization
if
constexpr
(
ConvForwardSpecialization
==
ConvolutionForwardSpecialization
::
Filter1x1Stride1Pad0
)
{
// check if it's 1x1, stride=1 conv
for
(
index_t
i
=
0
;
i
<
NDimSpatial
;
++
i
)
{
const
index_t
X
=
arg
.
b_g_k_c_xs_lengths_
[
i
+
3
];
const
index_t
ConvStride
=
arg
.
conv_filter_strides_
[
i
];
const
index_t
LeftPad
=
arg
.
input_left_pads_
[
i
];
const
index_t
RightPad
=
arg
.
input_right_pads_
[
i
];
if
(
!
(
X
==
1
&&
ConvStride
==
1
&&
LeftPad
==
0
&&
RightPad
==
0
))
{
std
::
cout
<<
"Filter1x1Stride1Pad0 check: i = "
<<
i
<<
" X = "
<<
X
<<
" ConvStride = "
<<
ConvStride
<<
" LeftPad = "
<<
LeftPad
<<
" RightPad = "
<<
RightPad
<<
std
::
endl
;
return
false
;
}
}
}
else
if
constexpr
(
ConvForwardSpecialization
==
ConvolutionForwardSpecialization
::
Filter1x1Pad0
)
{
// check if it's 1x1 conv
for
(
index_t
i
=
0
;
i
<
NDimSpatial
;
++
i
)
{
const
index_t
X
=
arg
.
b_g_k_c_xs_lengths_
[
i
+
3
];
const
index_t
LeftPad
=
arg
.
input_left_pads_
[
i
];
const
index_t
RightPad
=
arg
.
input_right_pads_
[
i
];
if
(
!
(
X
==
1
&&
LeftPad
==
0
&&
RightPad
==
0
))
{
std
::
cout
<<
"Filter1x1Stride1Pad0 check: i = "
<<
i
<<
" X = "
<<
X
<<
" LeftPad = "
<<
LeftPad
<<
" RightPad = "
<<
RightPad
<<
std
::
endl
;
return
false
;
}
}
}
// check vector access of A
// FIXME: layout
if
constexpr
(
is_same_v
<
ALayout
,
ctc
::
G_NW_C
>
||
is_same_v
<
ALayout
,
ctc
::
G_NHW_C
>
||
is_same_v
<
ALayout
,
ctc
::
G_NDHW_C
>
||
is_same_v
<
ALayout
,
ctc
::
GNWC
>
||
is_same_v
<
ALayout
,
ctc
::
GNHWC
>
||
is_same_v
<
ALayout
,
ctc
::
GNDHWC
>
||
is_same_v
<
ALayout
,
ctc
::
NWGC
>
||
is_same_v
<
ALayout
,
ctc
::
NHWGC
>
||
is_same_v
<
ALayout
,
ctc
::
NDHWGC
>
)
{
auto
srcVectorLengths
=
ABlockTransferSrcVectorTensorLengths_K0_M0_M1_K1
{};
if
(
srcVectorLengths
[
I1
]
!=
1
||
srcVectorLengths
[
I2
]
!=
1
)
{
return
false
;
}
if
(
K1
%
srcVectorLengths
[
I3
]
!=
0
||
K0PerBlock
%
srcVectorLengths
[
I0
]
!=
0
)
{
return
false
;
}
const
index_t
C
=
arg
.
a_g_n_c_wis_lengths_
[
2
];
if
(
C
%
(
srcVectorLengths
[
I0
]
*
srcVectorLengths
[
I3
])
!=
0
)
{
return
false
;
}
}
else
{
return
false
;
}
// check vector access of B
// FIXME: layout
if
constexpr
(
is_same_v
<
BLayout
,
ctc
::
G_K_X_C
>
||
is_same_v
<
BLayout
,
ctc
::
G_K_YX_C
>
||
is_same_v
<
BLayout
,
ctc
::
G_K_ZYX_C
>
||
is_same_v
<
BLayout
,
ctc
::
GKXC
>
||
is_same_v
<
BLayout
,
ctc
::
GKYXC
>
||
is_same_v
<
BLayout
,
ctc
::
GKZYXC
>
||
is_same_v
<
BLayout
,
ctc
::
KXGC
>
||
is_same_v
<
BLayout
,
ctc
::
KYXGC
>
||
is_same_v
<
BLayout
,
ctc
::
KZYXGC
>
)
{
auto
srcVectorLengths
=
BBlockTransferSrcVectorTensorLengths_K0_N0_N1_K1
{};
if
(
srcVectorLengths
[
I1
]
!=
1
||
srcVectorLengths
[
I2
]
!=
1
)
{
return
false
;
}
if
(
K1
%
srcVectorLengths
[
I3
]
!=
0
||
K0PerBlock
%
srcVectorLengths
[
I0
]
!=
0
)
{
return
false
;
}
const
index_t
C
=
arg
.
b_g_k_c_xs_lengths_
[
2
];
if
(
C
%
(
srcVectorLengths
[
I0
]
*
srcVectorLengths
[
I3
])
!=
0
)
{
return
false
;
}
}
else
{
return
false
;
}
// check vector access of E
if
constexpr
(
is_same_v
<
CLayout
,
ctc
::
G_NW_K
>
||
is_same_v
<
CLayout
,
ctc
::
G_NHW_K
>
||
is_same_v
<
CLayout
,
ctc
::
G_NDHW_K
>
||
is_same_v
<
CLayout
,
ctc
::
GNWK
>
||
is_same_v
<
CLayout
,
ctc
::
GNHWK
>
||
is_same_v
<
CLayout
,
ctc
::
GNDHWK
>
||
is_same_v
<
CLayout
,
ctc
::
NWGK
>
||
is_same_v
<
CLayout
,
ctc
::
NHWGK
>
||
is_same_v
<
CLayout
,
ctc
::
NDHWGK
>
)
{
const
index_t
K
=
arg
.
e_g_n_k_wos_lengths_
[
2
];
if
(
!
(
K
%
CThreadTransferDstScalarPerVector
==
0
&&
CThreadTransferSrcDstVectorDim
==
5
))
{
return
false
;
}
}
else
{
return
false
;
}
// check Gridwise GEMM
return
GridwiseGemm
::
CheckValidity
(
arg
.
a_grid_desc_ak0_m_ak1_
,
arg
.
b_grid_desc_bk0_n_bk1_
,
arg
.
e_grid_desc_m_n_
);
}
bool
IsSupportedArgument
(
const
BaseArgument
*
p_arg
)
override
{
return
IsSupportedArgument
(
*
dynamic_cast
<
const
Argument
*>
(
p_arg
));
}
static
auto
MakeArgument
(
const
void
*
p_a
,
const
void
*
p_b
,
const
std
::
array
<
const
void
*
,
NumDTensor
>&
p_ds
,
void
*
p_e
,
const
std
::
array
<
index_t
,
NDimSpatial
+
3
>&
a_g_n_c_wis_lengths
,
const
std
::
array
<
index_t
,
NDimSpatial
+
3
>&
a_g_n_c_wis_strides
,
const
std
::
array
<
index_t
,
NDimSpatial
+
3
>&
b_g_k_c_xs_lengths
,
const
std
::
array
<
index_t
,
NDimSpatial
+
3
>&
b_g_k_c_xs_strides
,
const
std
::
array
<
std
::
array
<
index_t
,
NDimSpatial
+
3
>
,
NumDTensor
>&
ds_g_n_k_wos_lengths
,
const
std
::
array
<
std
::
array
<
index_t
,
NDimSpatial
+
3
>
,
NumDTensor
>&
ds_g_n_k_wos_strides
,
const
std
::
array
<
index_t
,
NDimSpatial
+
3
>&
e_g_n_k_wos_lengths
,
const
std
::
array
<
index_t
,
NDimSpatial
+
3
>&
e_g_n_k_wos_strides
,
const
std
::
array
<
index_t
,
NDimSpatial
>&
conv_filter_strides
,
const
std
::
array
<
index_t
,
NDimSpatial
>&
conv_filter_dilations
,
const
std
::
array
<
index_t
,
NDimSpatial
>&
input_left_pads
,
const
std
::
array
<
index_t
,
NDimSpatial
>&
input_right_pads
,
const
AElementwiseOperation
&
a_element_op
,
const
BElementwiseOperation
&
b_element_op
,
const
CDElementwiseOperation
&
cd_element_op
)
{
return
Argument
{
p_a
,
p_b
,
p_ds
,
p_e
,
a_g_n_c_wis_lengths
,
a_g_n_c_wis_strides
,
b_g_k_c_xs_lengths
,
b_g_k_c_xs_strides
,
ds_g_n_k_wos_lengths
,
ds_g_n_k_wos_strides
,
e_g_n_k_wos_lengths
,
e_g_n_k_wos_strides
,
conv_filter_strides
,
conv_filter_dilations
,
input_left_pads
,
input_right_pads
,
a_element_op
,
b_element_op
,
cd_element_op
};
}
static
auto
MakeInvoker
()
{
return
Invoker
{};
}
std
::
unique_ptr
<
BaseArgument
>
MakeArgumentPointer
(
const
void
*
p_a
,
const
void
*
p_b
,
const
std
::
array
<
const
void
*
,
NumDTensor
>&
p_ds
,
void
*
p_e
,
const
std
::
array
<
index_t
,
NDimSpatial
+
3
>&
a_g_n_c_wis_lengths
,
const
std
::
array
<
index_t
,
NDimSpatial
+
3
>&
a_g_n_c_wis_strides
,
const
std
::
array
<
index_t
,
NDimSpatial
+
3
>&
b_g_k_c_xs_lengths
,
const
std
::
array
<
index_t
,
NDimSpatial
+
3
>&
b_g_k_c_xs_strides
,
const
std
::
array
<
std
::
array
<
index_t
,
NDimSpatial
+
3
>
,
NumDTensor
>&
ds_g_n_k_wos_lengths
,
const
std
::
array
<
std
::
array
<
index_t
,
NDimSpatial
+
3
>
,
NumDTensor
>&
ds_g_n_k_wos_strides
,
const
std
::
array
<
index_t
,
NDimSpatial
+
3
>&
e_g_n_k_wos_lengths
,
const
std
::
array
<
index_t
,
NDimSpatial
+
3
>&
e_g_n_k_wos_strides
,
const
std
::
array
<
index_t
,
NDimSpatial
>&
conv_filter_strides
,
const
std
::
array
<
index_t
,
NDimSpatial
>&
conv_filter_dilations
,
const
std
::
array
<
index_t
,
NDimSpatial
>&
input_left_pads
,
const
std
::
array
<
index_t
,
NDimSpatial
>&
input_right_pads
,
const
AElementwiseOperation
&
a_element_op
,
const
BElementwiseOperation
&
b_element_op
,
const
CDElementwiseOperation
&
cd_element_op
)
override
{
return
std
::
make_unique
<
Argument
>
(
p_a
,
p_b
,
p_ds
,
p_e
,
a_g_n_c_wis_lengths
,
a_g_n_c_wis_strides
,
b_g_k_c_xs_lengths
,
b_g_k_c_xs_strides
,
ds_g_n_k_wos_lengths
,
ds_g_n_k_wos_strides
,
e_g_n_k_wos_lengths
,
e_g_n_k_wos_strides
,
conv_filter_strides
,
conv_filter_dilations
,
input_left_pads
,
input_right_pads
,
a_element_op
,
b_element_op
,
cd_element_op
);
}
std
::
unique_ptr
<
BaseInvoker
>
MakeInvokerPointer
()
override
{
return
std
::
make_unique
<
Invoker
>
(
Invoker
{});
}
std
::
string
GetTypeString
()
const
override
{
auto
str
=
std
::
stringstream
();
// clang-format off
str
<<
"DeviceGroupedConvFwdDlMultipleD_NHWC_KYXC_NHWK"
<<
"<"
<<
BlockSize
<<
", "
<<
MPerBlock
<<
", "
<<
NPerBlock
<<
", "
<<
K0PerBlock
<<
", "
<<
getConvForwardSpecializationString
(
ConvForwardSpecialization
)
<<
">"
;
// clang-format on
return
str
.
str
();
}
};
}
// namespace device
}
// namespace tensor_operation
}
// namespace ck
include/ck/tensor_operation/gpu/grid/gridwise_gemm_dl_multiple_d.hpp
0 → 100644
View file @
d0b2508d
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2022, Advanced Micro Devices, Inc. All rights reserved.
#pragma once
#include "ck/utility/common_header.hpp"
#include "ck/tensor_description/multi_index_transform_helper.hpp"
#include "ck/tensor_description/tensor_descriptor.hpp"
#include "ck/tensor_description/tensor_descriptor_helper.hpp"
#include "ck/tensor_operation/gpu/grid/block_to_ctile_map.hpp"
#include "ck/tensor_operation/gpu/grid/gridwise_gemm_pipeline_v1.hpp"
#include "ck/tensor_operation/gpu/block/blockwise_gemm_dl_v2r3.hpp"
#include "ck/tensor_operation/gpu/block/blockwise_tensor_slice_transfer_v5r1.hpp"
#include "ck/tensor_operation/gpu/thread/threadwise_tensor_slice_transfer.hpp"
#include "ck/tensor_operation/gpu/thread/threadwise_tensor_slice_set.hpp"
#include "ck/tensor_operation/gpu/element/element_wise_operation.hpp"
namespace
ck
{
template
<
index_t
BlockSize
,
typename
FloatAB
,
typename
FloatAcc
,
typename
DsDataType
,
typename
FloatC
,
InMemoryDataOperationEnum
CGlobalMemoryDataOperation
,
typename
AGridDesc_K0_M_K1
,
typename
BGridDesc_K0_N_K1
,
typename
CGridDesc_M_N
,
index_t
MPerBlock
,
index_t
NPerBlock
,
index_t
K0PerBlock
,
index_t
K1Value
,
index_t
M1PerThreadM111
,
index_t
N1PerThreadN111
,
index_t
KPerThread
,
typename
M11N11ThreadClusterM110Xs
,
typename
M11N11ThreadClusterN110Xs
,
typename
ABlockTransferThreadSliceLengths_K0_M0_M1_K1
,
typename
ABlockTransferThreadClusterLengths_K0_M0_M1_K1
,
typename
ABlockTransferThreadClusterArrangeOrder
,
typename
ABlockTransferSrcAccessOrder
,
typename
ABlockTransferSrcVectorTensorLengths_K0_M0_M1_K1
,
typename
ABlockTransferSrcVectorTensorContiguousDimOrder
,
typename
ABlockTransferDstVectorTensorLengths_K0_M0_M1_K1
,
typename
BBlockTransferThreadSliceLengths_K0_N0_N1_K1
,
typename
BBlockTransferThreadClusterLengths_K0_N0_N1_K1
,
typename
BBlockTransferThreadClusterArrangeOrder
,
typename
BBlockTransferSrcAccessOrder
,
typename
BBlockTransferSrcVectorTensorLengths_K0_N0_N1_K1
,
typename
BBlockTransferSrcVectorTensorContiguousDimOrder
,
typename
BBlockTransferDstVectorTensorLengths_K0_N0_N1_K1
,
typename
CThreadTransferSrcDstAccessOrder
,
index_t
CThreadTransferSrcDstVectorDim
,
index_t
CThreadTransferDstScalarPerVector
>
struct
GridwiseGemmDlMultipleD_km_kn_mn
{
static
constexpr
index_t
NumDTensor
=
DsDataType
::
Size
();
static
constexpr
auto
I0
=
Number
<
0
>
{};
static
constexpr
auto
I1
=
Number
<
1
>
{};
static
constexpr
auto
I2
=
Number
<
2
>
{};
static
constexpr
auto
I3
=
Number
<
3
>
{};
// K1 should be Number<...>
static
constexpr
auto
K1
=
Number
<
K1Value
>
{};
// ck::Tuple<const D0DataType*, const D1DataType*, ...>
static
constexpr
auto
MakeDsGridPointer
()
{
return
generate_tuple
(
[
&
](
auto
i
)
{
using
DDataType
=
remove_cvref_t
<
tuple_element_t
<
i
.
value
,
DsDataType
>>
;
return
static_cast
<
const
DDataType
*>
(
nullptr
);
},
Number
<
NumDTensor
>
{});
}
__host__
__device__
static
constexpr
index_t
GetSharedMemoryNumberOfByte
()
{
// TODO: change this. I think it needs multi-dimensional alignment
constexpr
auto
max_lds_align
=
K1
;
// TODO: check alignment
// A matrix in LDS memory, dst of blockwise copy
constexpr
auto
a_block_desc_k_m
=
make_naive_tensor_descriptor_aligned
(
make_tuple
(
Number
<
K0PerBlock
>
{},
Number
<
MPerBlock
>
{},
K1
),
max_lds_align
);
// TODO: check alignment
// B matrix in LDS memory, dst of blockwise copy
constexpr
auto
b_block_desc_k_n
=
make_naive_tensor_descriptor_aligned
(
make_tuple
(
Number
<
K0PerBlock
>
{},
Number
<
NPerBlock
>
{},
K1
),
max_lds_align
);
// TODO: check alignment
// LDS allocation for A and B: be careful of alignment
constexpr
auto
a_block_aligned_space_size
=
math
::
integer_least_multiple
(
a_block_desc_k_m
.
GetElementSpaceSize
(),
max_lds_align
);
constexpr
auto
b_block_aligned_space_size
=
math
::
integer_least_multiple
(
b_block_desc_k_n
.
GetElementSpaceSize
(),
max_lds_align
);
return
2
*
(
a_block_aligned_space_size
+
b_block_aligned_space_size
)
*
sizeof
(
FloatAB
);
}
__host__
__device__
static
constexpr
bool
CheckValidity
(
const
AGridDesc_K0_M_K1
&
a_grid_desc_k0_m_k1
,
const
BGridDesc_K0_N_K1
&
b_grid_desc_k0_n_k1
,
const
CGridDesc_M_N
&
c_grid_desc_m_n
)
{
const
auto
M
=
a_grid_desc_k0_m_k1
.
GetLength
(
I1
);
const
auto
N
=
b_grid_desc_k0_n_k1
.
GetLength
(
I1
);
const
auto
K0
=
a_grid_desc_k0_m_k1
.
GetLength
(
I0
);
// TODO: also check validity of all components (blockwise-copy, threadwise-copy, etc)
return
(
M
==
c_grid_desc_m_n
.
GetLength
(
I0
)
&&
N
==
c_grid_desc_m_n
.
GetLength
(
I1
)
&&
K0
==
b_grid_desc_k0_n_k1
.
GetLength
(
I0
)
&&
K1
==
a_grid_desc_k0_m_k1
.
GetLength
(
I2
)
&&
K1
==
b_grid_desc_k0_n_k1
.
GetLength
(
I2
))
&&
(
M
%
MPerBlock
==
0
&&
N
%
NPerBlock
==
0
&&
K0
%
K0PerBlock
==
0
);
}
__host__
__device__
static
constexpr
index_t
CalculateGridSize
(
index_t
M
,
index_t
N
)
{
const
index_t
grid_size
=
(
M
/
MPerBlock
)
*
(
N
/
NPerBlock
);
return
grid_size
;
}
__host__
__device__
static
constexpr
bool
CalculateHasMainKBlockLoop
(
index_t
K0
)
{
const
bool
has_main_k_block_loop
=
(
K0
+
K0PerBlock
)
/
(
2
*
K0PerBlock
)
>
1
;
return
has_main_k_block_loop
;
}
__host__
__device__
static
constexpr
bool
CalculateHasDoubleTailKBlockLoop
(
index_t
K0
)
{
const
bool
has_double_tail_k_block_loop
=
(
K0
/
K0PerBlock
)
%
2
==
0
;
return
has_double_tail_k_block_loop
;
}
__host__
__device__
static
constexpr
auto
MakeAGridDescriptor_K0_M0_M1_K1
(
const
AGridDesc_K0_M_K1
&
a_grid_desc_k0_m_k1
)
{
const
auto
K0
=
a_grid_desc_k0_m_k1
.
GetLength
(
I0
);
const
auto
M
=
a_grid_desc_k0_m_k1
.
GetLength
(
I1
);
const
auto
M1
=
Number
<
MPerBlock
>
{};
const
auto
M0
=
M
/
M1
;
const
auto
a_grid_desc_k0_m0_m1_k1
=
transform_tensor_descriptor
(
a_grid_desc_k0_m_k1
,
make_tuple
(
make_pass_through_transform
(
K0
),
make_unmerge_transform
(
make_tuple
(
M0
,
M1
)),
make_pass_through_transform
(
K1
)),
make_tuple
(
Sequence
<
0
>
{},
Sequence
<
1
>
{},
Sequence
<
2
>
{}),
make_tuple
(
Sequence
<
0
>
{},
Sequence
<
1
,
2
>
{},
Sequence
<
3
>
{}));
return
a_grid_desc_k0_m0_m1_k1
;
}
__host__
__device__
static
constexpr
auto
MakeBGridDescriptor_K0_N0_N1_K1
(
const
BGridDesc_K0_N_K1
&
b_grid_desc_k0_n_k1
)
{
const
auto
K0
=
b_grid_desc_k0_n_k1
.
GetLength
(
I0
);
const
auto
N
=
b_grid_desc_k0_n_k1
.
GetLength
(
I1
);
const
auto
N1
=
Number
<
NPerBlock
>
{};
const
auto
N0
=
N
/
N1
;
const
auto
b_grid_desc_k0_n0_n1_k1
=
transform_tensor_descriptor
(
b_grid_desc_k0_n_k1
,
make_tuple
(
make_pass_through_transform
(
K0
),
make_unmerge_transform
(
make_tuple
(
N0
,
N1
)),
make_pass_through_transform
(
K1
)),
make_tuple
(
Sequence
<
0
>
{},
Sequence
<
1
>
{},
Sequence
<
2
>
{}),
make_tuple
(
Sequence
<
0
>
{},
Sequence
<
1
,
2
>
{},
Sequence
<
3
>
{}));
return
b_grid_desc_k0_n0_n1_k1
;
}
__host__
__device__
static
constexpr
auto
MakeCGridDescriptor_M0_M10_M11_N0_N10_N11
(
const
CGridDesc_M_N
&
c_grid_desc_m_n
)
{
const
auto
M
=
c_grid_desc_m_n
.
GetLength
(
I0
);
const
auto
N
=
c_grid_desc_m_n
.
GetLength
(
I1
);
constexpr
auto
M1
=
Number
<
MPerBlock
>
{};
constexpr
auto
N1
=
Number
<
NPerBlock
>
{};
const
auto
M0
=
M
/
M1
;
const
auto
N0
=
N
/
N1
;
constexpr
auto
M11
=
Number
<
container_reduce
(
M11N11ThreadClusterM110Xs
{},
math
::
multiplies
{},
I1
)
*
M1PerThreadM111
>
{};
constexpr
auto
N11
=
Number
<
container_reduce
(
M11N11ThreadClusterN110Xs
{},
math
::
multiplies
{},
I1
)
*
N1PerThreadN111
>
{};
constexpr
auto
M10
=
M1
/
M11
;
constexpr
auto
N10
=
N1
/
N11
;
const
auto
c_grid_desc_m0_m10_m11_n0_n10_n11
=
transform_tensor_descriptor
(
c_grid_desc_m_n
,
make_tuple
(
make_unmerge_transform
(
make_tuple
(
M0
,
M10
,
M11
)),
make_unmerge_transform
(
make_tuple
(
N0
,
N10
,
N11
))),
make_tuple
(
Sequence
<
0
>
{},
Sequence
<
1
>
{}),
make_tuple
(
Sequence
<
0
,
1
,
2
>
{},
Sequence
<
3
,
4
,
5
>
{}));
return
c_grid_desc_m0_m10_m11_n0_n10_n11
;
}
// Ds desc for source in blockwise copy
template
<
typename
DsGridDesc_M_N
>
__host__
__device__
static
constexpr
auto
MakeDsGridDescriptor_M0_M10_M11_N0_N10_N11
(
const
DsGridDesc_M_N
&
ds_grid_desc_m_n
)
{
return
generate_tuple
(
[
&
](
auto
i
)
{
return
MakeCGridDescriptor_M0_M10_M11_N0_N10_N11
(
ds_grid_desc_m_n
[
i
]);
},
Number
<
NumDTensor
>
{});
}
// return block_id to C matrix tile idx (m0, n0) mapping
__host__
__device__
static
constexpr
auto
MakeDefaultBlock2CTileMap
(
const
CGridDesc_M_N
&
c_grid_desc_m_n
)
{
return
BlockToCTileMap_M00_N00_M01_N01
<
MPerBlock
,
NPerBlock
,
CGridDesc_M_N
>
(
c_grid_desc_m_n
);
}
using
AGridDesc_K0_M0_M1_K1
=
decltype
(
MakeAGridDescriptor_K0_M0_M1_K1
(
AGridDesc_K0_M_K1
{}));
using
BGridDesc_K0_N0_N1_K1
=
decltype
(
MakeBGridDescriptor_K0_N0_N1_K1
(
BGridDesc_K0_N_K1
{}));
using
CGridDesc_M0_M10_M11_N0_N10_N11
=
decltype
(
MakeCGridDescriptor_M0_M10_M11_N0_N10_N11
(
CGridDesc_M_N
{}));
using
Block2CTileMap
=
decltype
(
MakeDefaultBlock2CTileMap
(
CGridDesc_M_N
{}));
using
DsGridPointer
=
decltype
(
MakeDsGridPointer
());
template
<
typename
DsGridDesc_M0_M10_M11_N0_N10_N11
,
bool
HasMainKBlockLoop
,
bool
HasDoubleTailKBlockLoop
>
__device__
static
void
Run
(
const
FloatAB
*
__restrict__
p_a_grid
,
const
FloatAB
*
__restrict__
p_b_grid
,
DsGridPointer
p_ds_grid
,
FloatC
*
__restrict__
p_c_grid
,
FloatAB
*
__restrict__
p_shared_block
,
const
AGridDesc_K0_M0_M1_K1
&
a_grid_desc_k0_m0_m1_k1
,
const
BGridDesc_K0_N0_N1_K1
&
b_grid_desc_k0_n0_n1_k1
,
const
DsGridDesc_M0_M10_M11_N0_N10_N11
&
ds_grid_desc_m0_m10_m11_n0_n10_n11
,
const
CGridDesc_M0_M10_M11_N0_N10_N11
&
c_grid_desc_m0_m10_m11_n0_n10_n11
,
const
Block2CTileMap
&
block_2_ctile_map
,
integral_constant
<
bool
,
HasMainKBlockLoop
>
,
integral_constant
<
bool
,
HasDoubleTailKBlockLoop
>
)
{
ignore
=
p_ds_grid
;
ignore
=
ds_grid_desc_m0_m10_m11_n0_n10_n11
;
const
auto
a_global_buf
=
make_dynamic_buffer
<
AddressSpaceEnum
::
Global
>
(
p_a_grid
,
a_grid_desc_k0_m0_m1_k1
.
GetElementSpaceSize
());
const
auto
b_global_buf
=
make_dynamic_buffer
<
AddressSpaceEnum
::
Global
>
(
p_b_grid
,
b_grid_desc_k0_n0_n1_k1
.
GetElementSpaceSize
());
auto
c_grid_buf
=
make_dynamic_buffer
<
AddressSpaceEnum
::
Global
>
(
p_c_grid
,
c_grid_desc_m0_m10_m11_n0_n10_n11
.
GetElementSpaceSize
());
// divide block work by [M, N]
const
auto
c_m0_n0_block_cluster_idx
=
block_2_ctile_map
.
CalculateBottomIndex
(
make_multi_index
(
get_block_1d_id
()));
// HACK: this force index data into SGPR
const
index_t
im0
=
__builtin_amdgcn_readfirstlane
(
c_m0_n0_block_cluster_idx
[
I0
]);
const
index_t
in0
=
__builtin_amdgcn_readfirstlane
(
c_m0_n0_block_cluster_idx
[
I1
]);
if
(
!
block_2_ctile_map
.
ValidCTileIndex
(
make_tuple
(
im0
,
in0
),
make_tuple
(
c_grid_desc_m0_m10_m11_n0_n10_n11
.
GetLength
(
I0
),
c_grid_desc_m0_m10_m11_n0_n10_n11
.
GetLength
(
I3
))))
{
return
;
}
// TODO: change this. I think it needs multi-dimensional alignment
constexpr
auto
max_lds_align
=
K1
;
// TODO: check alignment
// A matrix in LDS memory, dst of blockwise copy
// be careful of LDS alignment
constexpr
auto
a_block_desc_k0_m0_m1_k1
=
make_naive_tensor_descriptor_aligned
(
make_tuple
(
Number
<
K0PerBlock
>
{},
I1
,
Number
<
MPerBlock
>
{},
K1
),
max_lds_align
);
// TODO: check alignment
// B matrix in LDS memory, dst of blockwise copy
// be careful of LDS alignment
constexpr
auto
b_block_desc_k0_n0_n1_k1
=
make_naive_tensor_descriptor_aligned
(
make_tuple
(
Number
<
K0PerBlock
>
{},
I1
,
Number
<
NPerBlock
>
{},
K1
),
max_lds_align
);
// TODO: check alignment
// A matrix in LDS memory, for blockwise GEMM
constexpr
auto
a_k0_m_k1_block_desc
=
make_naive_tensor_descriptor_aligned
(
make_tuple
(
Number
<
K0PerBlock
>
{},
Number
<
MPerBlock
>
{},
K1
),
max_lds_align
);
// TODO: check alignment
// B matrix in LDS memory, for blockwise GEMM
constexpr
auto
b_k0_n_k1_block_desc
=
make_naive_tensor_descriptor_aligned
(
make_tuple
(
Number
<
K0PerBlock
>
{},
Number
<
NPerBlock
>
{},
K1
),
max_lds_align
);
static_assert
(
a_block_desc_k0_m0_m1_k1
.
GetElementSpaceSize
()
==
a_k0_m_k1_block_desc
.
GetElementSpaceSize
()
&&
b_block_desc_k0_n0_n1_k1
.
GetElementSpaceSize
()
==
b_k0_n_k1_block_desc
.
GetElementSpaceSize
()
&&
"wrong!"
);
// A matrix blockwise copy
auto
a_blockwise_copy
=
BlockwiseTensorSliceTransfer_v5r1
<
BlockSize
,
InMemoryDataOperationEnum
::
Set
,
Sequence
<
K0PerBlock
,
1
,
MPerBlock
,
K1
.
value
>
,
ABlockTransferThreadSliceLengths_K0_M0_M1_K1
,
ABlockTransferThreadClusterLengths_K0_M0_M1_K1
,
ABlockTransferThreadClusterArrangeOrder
,
FloatAB
,
FloatAB
,
remove_reference_t
<
decltype
(
a_grid_desc_k0_m0_m1_k1
)
>
,
decltype
(
a_block_desc_k0_m0_m1_k1
),
ABlockTransferSrcAccessOrder
,
Sequence
<
0
,
1
,
2
,
3
>
,
ABlockTransferSrcVectorTensorLengths_K0_M0_M1_K1
,
// SrcVectorTensorLengths
ABlockTransferDstVectorTensorLengths_K0_M0_M1_K1
,
// DstVectorTensorLengths
ABlockTransferSrcVectorTensorContiguousDimOrder
,
// SrcVectorTensorContiguousDimOrder
Sequence
<
0
,
1
,
2
,
3
>
,
// DstVectorTensorContiguousDimOrder
false
,
true
>
(
a_grid_desc_k0_m0_m1_k1
,
make_multi_index
(
0
,
im0
,
0
,
0
),
a_block_desc_k0_m0_m1_k1
,
make_multi_index
(
0
,
0
,
0
,
0
));
// B matrix blockwise copy
auto
b_blockwise_copy
=
BlockwiseTensorSliceTransfer_v5r1
<
BlockSize
,
InMemoryDataOperationEnum
::
Set
,
Sequence
<
K0PerBlock
,
1
,
NPerBlock
,
K1
.
value
>
,
BBlockTransferThreadSliceLengths_K0_N0_N1_K1
,
BBlockTransferThreadClusterLengths_K0_N0_N1_K1
,
BBlockTransferThreadClusterArrangeOrder
,
FloatAB
,
FloatAB
,
remove_reference_t
<
decltype
(
b_grid_desc_k0_n0_n1_k1
)
>
,
decltype
(
b_block_desc_k0_n0_n1_k1
),
BBlockTransferSrcAccessOrder
,
Sequence
<
0
,
1
,
2
,
3
>
,
BBlockTransferSrcVectorTensorLengths_K0_N0_N1_K1
,
// SrcVectorTensorLengths
BBlockTransferDstVectorTensorLengths_K0_N0_N1_K1
,
// DstVectorTensorLengths
BBlockTransferSrcVectorTensorContiguousDimOrder
,
// SrcVectorTensorContiguousDimOrder
Sequence
<
0
,
1
,
2
,
3
>
,
// DstVectorTensorContiguousDimOrder
false
,
true
>
(
b_grid_desc_k0_n0_n1_k1
,
make_multi_index
(
0
,
in0
,
0
,
0
),
b_block_desc_k0_n0_n1_k1
,
make_multi_index
(
0
,
0
,
0
,
0
));
// GEMM definition
// c_mtx += transpose(a_mtx) * b_mtx
// a_mtx[K0PerBlock, MPerBlock] is in LDS
// b_mtx[KPerBlocl, NPerBlock] is in LDS
// c_mtx[MPerBlock, NPerBlock] is distributed among threads, and saved in
// register
const
auto
blockwise_gemm
=
BlockwiseGemmDl_A_BK0_BM_BK1_B_BK0_BN_BK1_C_BM0_BM1_BN0_BN1_pipeline_BM0_2_BN0_2
<
BlockSize
,
FloatAB
,
FloatAB
,
FloatAcc
,
decltype
(
a_k0_m_k1_block_desc
),
decltype
(
b_k0_n_k1_block_desc
),
M1PerThreadM111
,
N1PerThreadN111
,
KPerThread
,
M11N11ThreadClusterM110Xs
,
M11N11ThreadClusterN110Xs
,
M1PerThreadM111
,
N1PerThreadN111
>
{};
constexpr
auto
c_m10_m11_n10_n11_thread_tensor_lengths
=
decltype
(
blockwise_gemm
)
::
GetCThreadTensorLengths_BM0_BM1_BN0_BN1
();
constexpr
auto
c_thread_desc_m10_m11_n10_n11
=
make_naive_tensor_descriptor_packed
(
sequence_to_tuple_of_number
(
c_m10_m11_n10_n11_thread_tensor_lengths
));
// LDS allocation for A and B: be careful of alignment
constexpr
auto
a_block_aligned_space_size
=
math
::
integer_least_multiple
(
a_block_desc_k0_m0_m1_k1
.
GetElementSpaceSize
(),
max_lds_align
);
constexpr
auto
b_block_aligned_space_size
=
math
::
integer_least_multiple
(
b_block_desc_k0_n0_n1_k1
.
GetElementSpaceSize
(),
max_lds_align
);
FloatAB
*
p_a_block_double
=
p_shared_block
;
FloatAB
*
p_b_block_double
=
p_shared_block
+
2
*
a_block_aligned_space_size
;
// register allocation for output
auto
c_thread_buf
=
make_static_buffer
<
AddressSpaceEnum
::
Vgpr
,
FloatAcc
>
(
c_thread_desc_m10_m11_n10_n11
.
GetElementSpaceSize
());
// Initialize C
c_thread_buf
.
Clear
();
constexpr
auto
a_block_slice_copy_step
=
make_multi_index
(
K0PerBlock
,
0
,
0
,
0
);
constexpr
auto
b_block_slice_copy_step
=
make_multi_index
(
K0PerBlock
,
0
,
0
,
0
);
auto
a_block_even_buf
=
make_dynamic_buffer
<
AddressSpaceEnum
::
Lds
>
(
p_a_block_double
,
a_block_desc_k0_m0_m1_k1
.
GetElementSpaceSize
());
auto
b_block_even_buf
=
make_dynamic_buffer
<
AddressSpaceEnum
::
Lds
>
(
p_b_block_double
,
b_block_desc_k0_n0_n1_k1
.
GetElementSpaceSize
());
auto
a_block_odd_buf
=
make_dynamic_buffer
<
AddressSpaceEnum
::
Lds
>
(
p_a_block_double
+
a_block_aligned_space_size
,
a_block_desc_k0_m0_m1_k1
.
GetElementSpaceSize
());
auto
b_block_odd_buf
=
make_dynamic_buffer
<
AddressSpaceEnum
::
Lds
>
(
p_b_block_double
+
b_block_aligned_space_size
,
b_block_desc_k0_n0_n1_k1
.
GetElementSpaceSize
());
// LDS double buffer: preload data into LDS
{
a_blockwise_copy
.
RunRead
(
a_grid_desc_k0_m0_m1_k1
,
a_global_buf
);
b_blockwise_copy
.
RunRead
(
b_grid_desc_k0_n0_n1_k1
,
b_global_buf
);
a_blockwise_copy
.
RunWrite
(
a_block_desc_k0_m0_m1_k1
,
a_block_even_buf
);
b_blockwise_copy
.
RunWrite
(
b_block_desc_k0_n0_n1_k1
,
b_block_even_buf
);
}
if
constexpr
(
HasMainKBlockLoop
)
{
const
auto
K0
=
a_grid_desc_k0_m0_m1_k1
.
GetLength
(
I0
);
index_t
k_block_data_begin
=
0
;
// LDS double buffer: main body
// use Do-While loop instead of For loop to simplify control flow
do
{
// even iteration
a_blockwise_copy
.
MoveSrcSliceWindow
(
a_grid_desc_k0_m0_m1_k1
,
a_block_slice_copy_step
);
b_blockwise_copy
.
MoveSrcSliceWindow
(
b_grid_desc_k0_n0_n1_k1
,
b_block_slice_copy_step
);
// LDS doubel buffer: load next data from device mem
a_blockwise_copy
.
RunRead
(
a_grid_desc_k0_m0_m1_k1
,
a_global_buf
);
b_blockwise_copy
.
RunRead
(
b_grid_desc_k0_n0_n1_k1
,
b_global_buf
);
block_sync_lds
();
// LDS double buffer: GEMM on current data
blockwise_gemm
.
Run
(
c_thread_desc_m10_m11_n10_n11
,
a_block_even_buf
,
b_block_even_buf
,
c_thread_buf
);
// LDS double buffer: store next data to LDS
a_blockwise_copy
.
RunWrite
(
a_block_desc_k0_m0_m1_k1
,
a_block_odd_buf
);
b_blockwise_copy
.
RunWrite
(
b_block_desc_k0_n0_n1_k1
,
b_block_odd_buf
);
// odd iteration
a_blockwise_copy
.
MoveSrcSliceWindow
(
a_grid_desc_k0_m0_m1_k1
,
a_block_slice_copy_step
);
b_blockwise_copy
.
MoveSrcSliceWindow
(
b_grid_desc_k0_n0_n1_k1
,
b_block_slice_copy_step
);
// LDS doubel buffer: load next data from device mem
a_blockwise_copy
.
RunRead
(
a_grid_desc_k0_m0_m1_k1
,
a_global_buf
);
b_blockwise_copy
.
RunRead
(
b_grid_desc_k0_n0_n1_k1
,
b_global_buf
);
block_sync_lds
();
// LDS double buffer: GEMM on current data
blockwise_gemm
.
Run
(
c_thread_desc_m10_m11_n10_n11
,
a_block_odd_buf
,
b_block_odd_buf
,
c_thread_buf
);
// LDS double buffer: store next data to LDS
a_blockwise_copy
.
RunWrite
(
a_block_desc_k0_m0_m1_k1
,
a_block_even_buf
);
b_blockwise_copy
.
RunWrite
(
b_block_desc_k0_n0_n1_k1
,
b_block_even_buf
);
k_block_data_begin
+=
2
*
K0PerBlock
;
}
while
(
k_block_data_begin
<
K0
-
2
*
K0PerBlock
);
}
// LDS double buffer: tail
if
constexpr
(
HasDoubleTailKBlockLoop
)
// if has 2 iteration left
{
a_blockwise_copy
.
MoveSrcSliceWindow
(
a_grid_desc_k0_m0_m1_k1
,
a_block_slice_copy_step
);
b_blockwise_copy
.
MoveSrcSliceWindow
(
b_grid_desc_k0_n0_n1_k1
,
b_block_slice_copy_step
);
block_sync_lds
();
// LDS double buffer: load last data from device mem
a_blockwise_copy
.
RunRead
(
a_grid_desc_k0_m0_m1_k1
,
a_global_buf
);
b_blockwise_copy
.
RunRead
(
b_grid_desc_k0_n0_n1_k1
,
b_global_buf
);
// LDS double buffer: GEMM on 2nd-last data
blockwise_gemm
.
Run
(
c_thread_desc_m10_m11_n10_n11
,
a_block_even_buf
,
b_block_even_buf
,
c_thread_buf
);
// LDS double buffer: store last data to LDS
a_blockwise_copy
.
RunWrite
(
a_block_desc_k0_m0_m1_k1
,
a_block_odd_buf
);
b_blockwise_copy
.
RunWrite
(
b_block_desc_k0_n0_n1_k1
,
b_block_odd_buf
);
block_sync_lds
();
// LDS double buffer: GEMM on last data
blockwise_gemm
.
Run
(
c_thread_desc_m10_m11_n10_n11
,
a_block_odd_buf
,
b_block_odd_buf
,
c_thread_buf
);
}
else
// if has 1 iteration left
{
__syncthreads
();
// LDS double buffer: GEMM on last data
blockwise_gemm
.
Run
(
c_thread_desc_m10_m11_n10_n11
,
a_block_even_buf
,
b_block_even_buf
,
c_thread_buf
);
}
// output: register to global memory
{
constexpr
auto
c_thread_desc_m0_m10_m11_n0_n10_n11
=
make_naive_tensor_descriptor_packed
(
make_tuple
(
I1
,
Number
<
c_m10_m11_n10_n11_thread_tensor_lengths
[
I0
]
>
{},
Number
<
c_m10_m11_n10_n11_thread_tensor_lengths
[
I1
]
>
{},
I1
,
Number
<
c_m10_m11_n10_n11_thread_tensor_lengths
[
I2
]
>
{},
Number
<
c_m10_m11_n10_n11_thread_tensor_lengths
[
I3
]
>
{}));
const
auto
c_m10_m11_n10_n11_thread_origin_idx_on_block
=
blockwise_gemm
.
CalculateCThreadOriginOnBlock_BM0_BM1_BN0_BN1
(
get_thread_local_1d_id
());
ThreadwiseTensorSliceTransfer_v1r3
<
FloatAcc
,
FloatC
,
decltype
(
c_thread_desc_m0_m10_m11_n0_n10_n11
),
decltype
(
c_grid_desc_m0_m10_m11_n0_n10_n11
),
ck
::
tensor_operation
::
element_wise
::
PassThrough
,
Sequence
<
1
,
c_m10_m11_n10_n11_thread_tensor_lengths
[
I0
],
c_m10_m11_n10_n11_thread_tensor_lengths
[
I1
],
1
,
c_m10_m11_n10_n11_thread_tensor_lengths
[
I2
],
c_m10_m11_n10_n11_thread_tensor_lengths
[
I3
]
>
,
CThreadTransferSrcDstAccessOrder
,
CThreadTransferSrcDstVectorDim
,
CThreadTransferDstScalarPerVector
,
CGlobalMemoryDataOperation
,
1
,
true
>
{
c_grid_desc_m0_m10_m11_n0_n10_n11
,
make_multi_index
(
im0
,
c_m10_m11_n10_n11_thread_origin_idx_on_block
[
I0
],
c_m10_m11_n10_n11_thread_origin_idx_on_block
[
I1
],
in0
,
c_m10_m11_n10_n11_thread_origin_idx_on_block
[
I2
],
c_m10_m11_n10_n11_thread_origin_idx_on_block
[
I3
]),
ck
::
tensor_operation
::
element_wise
::
PassThrough
{}}
.
Run
(
c_thread_desc_m0_m10_m11_n0_n10_n11
,
make_tuple
(
I0
,
I0
,
I0
,
I0
,
I0
,
I0
),
c_thread_buf
,
c_grid_desc_m0_m10_m11_n0_n10_n11
,
c_grid_buf
);
}
}
};
}
// namespace ck
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
.
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment