Commit cfc80c01 authored by ltqin's avatar ltqin
Browse files

Merge branch 'develop' into ck_conv_bww_fp16

parents 69ea9ad9 6d4450ef
......@@ -590,7 +590,8 @@ struct
MakeCGridDescriptor_MBlock_MXdlPerWave_MWaveMPerXdl_NBlock_NXdlPerWave_NWaveNPerXdl(
c1_grid_desc_m_n_);
block_2_ctile_map_ = GridwiseGemm::MakeBlock2CTileMap(c_grid_desc_m_n_, M01, N01);
block_2_ctile_map_ =
GridwiseGemm::MakeDefaultBlock2CTileMap(c_grid_desc_m_n_, M01, N01);
}
}
......@@ -614,7 +615,7 @@ struct
typename GridwiseGemm::
C1GridDescriptor_MBlock_MXdlPerWave_MWaveMPerXdl_NBlock_NXdlPerWave_NWaveNPerXdl
c1_grid_desc_mblock_mxdlperwave_mwavemperxdl_nblock_nxdlperwave_nwavenperxdl_;
typename GridwiseGemm::Block2CTileMap block_2_ctile_map_;
typename GridwiseGemm::DefaultBlock2CTileMap block_2_ctile_map_;
index_t M01_;
index_t N01_;
InElementwiseOperation in_element_op_;
......@@ -694,7 +695,7 @@ struct
InElementwiseOperation,
WeiElementwiseOperation,
OutElementwiseOperation,
remove_reference_t<typename GridwiseGemm::Block2CTileMap>,
remove_reference_t<typename GridwiseGemm::DefaultBlock2CTileMap>,
true>;
ave_time = launch_and_time_kernel(
......@@ -738,7 +739,7 @@ struct
InElementwiseOperation,
WeiElementwiseOperation,
OutElementwiseOperation,
remove_reference_t<typename GridwiseGemm::Block2CTileMap>,
remove_reference_t<typename GridwiseGemm::DefaultBlock2CTileMap>,
false>;
ave_time = launch_and_time_kernel(
......
......@@ -561,7 +561,8 @@ struct DeviceConv2dFwdXdl_C_Shuffle_Bias_Activation_Input_N_Hi_Wi_C_Weight_K_Y_X
MakeCGridDescriptor_MBlock_MXdlPerWave_MWaveMPerXdl_NBlock_NXdlPerWave_NWaveNPerXdl(
c0_grid_desc_m_n_);
block_2_ctile_map_ = GridwiseGemm::MakeBlock2CTileMap(c_grid_desc_m_n_, M01, N01);
block_2_ctile_map_ =
GridwiseGemm::MakeDefaultBlock2CTileMap(c_grid_desc_m_n_, M01, N01);
}
}
......@@ -579,7 +580,7 @@ struct DeviceConv2dFwdXdl_C_Shuffle_Bias_Activation_Input_N_Hi_Wi_C_Weight_K_Y_X
typename GridwiseGemm::
C0GridDescriptor_MBlock_MXdlPerWave_MWaveMPerXdl_NBlock_NXdlPerWave_NWaveNPerXdl
c0_grid_desc_mblock_mxdlperwave_mwavemperxdl_nblock_nxdlperwave_nwavenperxdl_;
typename GridwiseGemm::Block2CTileMap block_2_ctile_map_;
typename GridwiseGemm::DefaultBlock2CTileMap block_2_ctile_map_;
index_t M01_;
index_t N01_;
InElementwiseOperation in_element_op_;
......@@ -653,7 +654,7 @@ struct DeviceConv2dFwdXdl_C_Shuffle_Bias_Activation_Input_N_Hi_Wi_C_Weight_K_Y_X
InElementwiseOperation,
WeiElementwiseOperation,
OutElementwiseOperation,
remove_reference_t<typename GridwiseGemm::Block2CTileMap>,
remove_reference_t<typename GridwiseGemm::DefaultBlock2CTileMap>,
true>;
ave_time = launch_and_time_kernel(
......@@ -692,7 +693,7 @@ struct DeviceConv2dFwdXdl_C_Shuffle_Bias_Activation_Input_N_Hi_Wi_C_Weight_K_Y_X
InElementwiseOperation,
WeiElementwiseOperation,
OutElementwiseOperation,
remove_reference_t<typename GridwiseGemm::Block2CTileMap>,
remove_reference_t<typename GridwiseGemm::DefaultBlock2CTileMap>,
false>;
ave_time = launch_and_time_kernel(
......
......@@ -432,10 +432,11 @@ struct DeviceConv2dFwdXdl_C_Shuffle_Input_N_Hi_Wi_C_Weight_K_Y_X_C_Output_N_Ho_W
OutElementwiseOperation,
MPerBlock,
NPerBlock,
K0PerBlock,
K0PerBlock * K1,
K1, // AK1
K1, // BK1
MPerXdl,
NPerXdl,
K1,
MXdlPerWave,
NXdlPerWave,
ABlockTransferThreadClusterLengths_K0_M_K1,
......@@ -525,7 +526,8 @@ struct DeviceConv2dFwdXdl_C_Shuffle_Input_N_Hi_Wi_C_Weight_K_Y_X_C_Output_N_Ho_W
MakeCGridDescriptor_MBlock_MXdlPerWave_MWaveMPerXdl_NBlock_NXdlPerWave_NWaveNPerXdl(
c_grid_desc_m_n_);
block_2_ctile_map_ = GridwiseGemm::MakeBlock2CTileMap(c_grid_desc_m_n_, M01, N01);
block_2_ctile_map_ =
GridwiseGemm::MakeDefaultBlock2CTileMap(c_grid_desc_m_n_, M01, N01);
}
}
......@@ -538,7 +540,7 @@ struct DeviceConv2dFwdXdl_C_Shuffle_Input_N_Hi_Wi_C_Weight_K_Y_X_C_Output_N_Ho_W
typename GridwiseGemm::
CGridDescriptor_MBlock_MXdlPerWave_MWaveMPerXdl_NBlock_NXdlPerWave_NWaveNPerXdl
c_grid_desc_mblock_mxdlperwave_mwavemperxdl_nblock_nxdlperwave_nwavenperxdl_;
typename GridwiseGemm::Block2CTileMap block_2_ctile_map_;
typename GridwiseGemm::DefaultBlock2CTileMap block_2_ctile_map_;
index_t M01_;
index_t N01_;
InElementwiseOperation in_element_op_;
......@@ -628,7 +630,7 @@ struct DeviceConv2dFwdXdl_C_Shuffle_Input_N_Hi_Wi_C_Weight_K_Y_X_C_Output_N_Ho_W
InElementwiseOperation,
WeiElementwiseOperation,
OutElementwiseOperation,
remove_reference_t<typename GridwiseGemm::Block2CTileMap>,
remove_reference_t<typename GridwiseGemm::DefaultBlock2CTileMap>,
true>;
ave_time = launch_and_time_kernel(
......@@ -662,7 +664,7 @@ struct DeviceConv2dFwdXdl_C_Shuffle_Input_N_Hi_Wi_C_Weight_K_Y_X_C_Output_N_Ho_W
InElementwiseOperation,
WeiElementwiseOperation,
OutElementwiseOperation,
remove_reference_t<typename GridwiseGemm::Block2CTileMap>,
remove_reference_t<typename GridwiseGemm::DefaultBlock2CTileMap>,
false>;
ave_time = launch_and_time_kernel(
......
......@@ -415,7 +415,8 @@ struct DeviceConv2dFwdXdl_Input_N_Hi_Wi_C_Weight_K_Y_X_C_Output_N_Ho_Wo_K
c_grid_desc_m0_n0_m1_n1_m2_m3_m4_n2_ =
GridwiseGemm::MakeCGridDescriptor_M0_N0_M1_N1_M2_M3_M4_N2(c_grid_desc_m_n_);
block_2_ctile_map_ = GridwiseGemm::MakeBlock2CTileMap(c_grid_desc_m_n_, M01, N01);
block_2_ctile_map_ =
GridwiseGemm::MakeDefaultBlock2CTileMap(c_grid_desc_m_n_, M01, N01);
}
}
......@@ -428,7 +429,7 @@ struct DeviceConv2dFwdXdl_Input_N_Hi_Wi_C_Weight_K_Y_X_C_Output_N_Ho_Wo_K
CGridDesc_M_N c_grid_desc_m_n_;
typename GridwiseGemm::CGridDesc_M0_N0_M1_N1_M2_M3_M4_N2
c_grid_desc_m0_n0_m1_n1_m2_m3_m4_n2_;
typename GridwiseGemm::Block2CTileMap block_2_ctile_map_;
typename GridwiseGemm::DefaultBlock2CTileMap block_2_ctile_map_;
index_t M01_;
index_t N01_;
InElementwiseOperation in_element_op_;
......@@ -471,7 +472,7 @@ struct DeviceConv2dFwdXdl_Input_N_Hi_Wi_C_Weight_K_Y_X_C_Output_N_Ho_Wo_K
arg.N01_))
{
throw std::runtime_error(
"wrong! GridwiseGemm_km_kn_m0m1n0n1_xdlops_v2r3 has invalid setting");
"wrong! GridwiseGemm_k0mk1_k0nk1_mn_xdlops_v2r3 has invalid setting");
}
const index_t grid_size = GridwiseGemm::CalculateGridSize(arg.c_grid_desc_m_n_);
......@@ -494,7 +495,7 @@ struct DeviceConv2dFwdXdl_Input_N_Hi_Wi_C_Weight_K_Y_X_C_Output_N_Ho_Wo_K
InElementwiseOperation,
WeiElementwiseOperation,
OutElementwiseOperation,
remove_reference_t<typename GridwiseGemm::Block2CTileMap>,
remove_reference_t<typename GridwiseGemm::DefaultBlock2CTileMap>,
true>;
ave_time = launch_and_time_kernel(kernel,
......@@ -525,7 +526,7 @@ struct DeviceConv2dFwdXdl_Input_N_Hi_Wi_C_Weight_K_Y_X_C_Output_N_Ho_Wo_K
InElementwiseOperation,
WeiElementwiseOperation,
OutElementwiseOperation,
remove_reference_t<typename GridwiseGemm::Block2CTileMap>,
remove_reference_t<typename GridwiseGemm::DefaultBlock2CTileMap>,
false>;
ave_time = launch_and_time_kernel(kernel,
......
#ifndef DEVICE_CONV3D_FWD_NAIVE_HPP
#define DEVICE_CONV3D_FWD_NAIVE_HPP
#include <iostream>
#include <memory>
#include <sstream>
#include "convolution_utility.hpp"
#include "device.hpp"
#include "device_conv_fwd.hpp"
#include "common_header.hpp"
#include "naive_conv_fwd.hpp"
namespace ck {
namespace tensor_operation {
namespace device {
// specialization for #D conv: in[n, di, hi, wi, c] * wei[k, z, y, x, c] = out[n, do, ho, wo, k]
template <typename InDataType,
typename WeiDataType, // WeiDataType must be the same as InDataType
typename OutDataType,
typename AccDataType,
typename InElementwiseOperation,
typename WeiElementwiseOperation,
typename OutElementwiseOperation>
struct DeviceConv3dFwdNaive_Input_N_Di_Hi_Wi_C_Weight_K_Z_Y_X_C_Output_N_Do_Ho_Wo_K
: public DeviceConvFwd<InElementwiseOperation, WeiElementwiseOperation, OutElementwiseOperation>
{
using DeviceOp = DeviceConv3dFwdNaive_Input_N_Di_Hi_Wi_C_Weight_K_Z_Y_X_C_Output_N_Do_Ho_Wo_K;
using ADataType = InDataType;
using BDataType = WeiDataType;
using CDataType = OutDataType;
// TODO make A/B datatype different
using ABDataType = InDataType;
// Argument
struct Argument : public BaseArgument
{
Argument(const InDataType* p_in,
const WeiDataType* p_wei,
OutDataType* p_out,
const index_t N,
const index_t K,
const index_t C,
std::vector<ck::index_t> input_spatial_lengths,
std::vector<ck::index_t> filter_spatial_lengths,
std::vector<ck::index_t> output_spatial_lengths,
std::vector<ck::index_t> conv_filter_strides,
std::vector<ck::index_t> conv_filter_dilations,
std::vector<ck::index_t> input_left_pads,
std::vector<ck::index_t> input_right_pads,
InElementwiseOperation in_element_op,
WeiElementwiseOperation wei_element_op,
OutElementwiseOperation out_element_op)
: N_{N},
K_{K},
C_{C},
in_spatial_lengths_{input_spatial_lengths},
filter_spatial_lengths_{filter_spatial_lengths},
out_spatial_lengths_{output_spatial_lengths},
conv_filter_strides_{conv_filter_strides},
conv_filter_dilations_{conv_filter_dilations},
in_left_pads_{input_left_pads},
in_right_pads_{input_right_pads},
p_in_{p_in},
p_wei_{p_wei},
p_out_{p_out},
in_element_op_{in_element_op},
wei_element_op_{wei_element_op},
out_element_op_{out_element_op}
{
}
// private:
index_t N_;
index_t K_;
index_t C_;
std::vector<index_t> in_spatial_lengths_;
std::vector<index_t> filter_spatial_lengths_;
std::vector<index_t> out_spatial_lengths_;
std::vector<index_t> conv_filter_strides_;
std::vector<index_t> conv_filter_dilations_;
std::vector<index_t> in_left_pads_;
std::vector<index_t> in_right_pads_;
const InDataType* p_in_;
const WeiDataType* p_wei_;
OutDataType* p_out_;
InElementwiseOperation in_element_op_;
WeiElementwiseOperation wei_element_op_;
OutElementwiseOperation out_element_op_;
};
// Invoker
struct Invoker : public BaseInvoker
{
using Argument = DeviceOp::Argument;
float Run(const Argument& arg, int nrepeat = 1)
{
const auto naive_conv3d_fwd =
ref::naive_conv_fwd_ndhwc_kzyxc_ndhwk<InDataType,
WeiDataType,
OutDataType,
AccDataType,
InElementwiseOperation,
WeiElementwiseOperation,
OutElementwiseOperation>;
float ave_time = launch_and_time_kernel(naive_conv3d_fwd,
nrepeat,
dim3(256),
dim3(256),
0,
arg.p_in_,
arg.p_wei_,
arg.p_out_,
arg.N_,
arg.K_,
arg.C_,
arg.in_spatial_lengths_[0],
arg.in_spatial_lengths_[1],
arg.in_spatial_lengths_[2],
arg.filter_spatial_lengths_[0],
arg.filter_spatial_lengths_[1],
arg.filter_spatial_lengths_[2],
arg.out_spatial_lengths_[0],
arg.out_spatial_lengths_[1],
arg.out_spatial_lengths_[2],
arg.conv_filter_strides_[0],
arg.conv_filter_strides_[1],
arg.conv_filter_strides_[2],
arg.conv_filter_dilations_[0],
arg.conv_filter_dilations_[1],
arg.conv_filter_dilations_[2],
arg.in_left_pads_[0],
arg.in_left_pads_[1],
arg.in_left_pads_[2]);
return ave_time;
}
// polymorphic
float Run(const BaseArgument* p_arg, int nrepeat = 1) override
{
return Run(*dynamic_cast<const Argument*>(p_arg), nrepeat);
}
};
static constexpr bool IsValidCompilationParameter()
{
// TODO: properly implement this check
return true;
}
static bool IsSupportedArgument(const Argument& arg)
{
std::vector<index_t> out_spatial_lengths =
ConvolutionUtility::ComputeOutputSpatialLengths(arg.in_spatial_lengths_,
arg.filter_spatial_lengths_,
arg.conv_filter_strides_,
arg.conv_filter_dilations_,
arg.in_left_pads_,
arg.in_right_pads_);
bool out_lengths_are_consistent = out_spatial_lengths[0] == arg.out_spatial_lengths_[0] &&
out_spatial_lengths[1] == arg.out_spatial_lengths_[1] &&
out_spatial_lengths[2] == arg.out_spatial_lengths_[2];
return out_lengths_are_consistent;
}
// polymorphic
bool IsSupportedArgument(const BaseArgument* p_arg) override
{
return IsSupportedArgument(*dynamic_cast<const Argument*>(p_arg));
}
static auto MakeArgument(const InDataType* p_in,
const WeiDataType* p_wei,
OutDataType* p_out,
const index_t N,
const index_t K,
const index_t C,
std::vector<ck::index_t> input_spatial_lengths,
std::vector<ck::index_t> filter_spatial_lengths,
std::vector<ck::index_t> output_spatial_lengths,
std::vector<ck::index_t> conv_filter_strides,
std::vector<ck::index_t> conv_filter_dilations,
std::vector<ck::index_t> input_left_pads,
std::vector<ck::index_t> input_right_pads,
InElementwiseOperation in_element_op,
WeiElementwiseOperation wei_element_op,
OutElementwiseOperation out_element_op)
{
return Argument{p_in,
p_wei,
p_out,
N,
K,
C,
input_spatial_lengths,
filter_spatial_lengths,
output_spatial_lengths,
conv_filter_strides,
conv_filter_dilations,
input_left_pads,
input_right_pads,
in_element_op,
wei_element_op,
out_element_op};
}
static auto MakeInvoker() { return Invoker{}; }
// polymorphic
std::unique_ptr<BaseArgument>
MakeArgumentPointer(const void* p_in,
const void* p_wei,
void* p_out,
const index_t N,
const index_t K,
const index_t C,
std::vector<ck::index_t> input_spatial_lengths,
std::vector<ck::index_t> filter_spatial_lengths,
std::vector<ck::index_t> output_spatial_lengths,
std::vector<ck::index_t> conv_filter_strides,
std::vector<ck::index_t> conv_filter_dilations,
std::vector<ck::index_t> input_left_pads,
std::vector<ck::index_t> input_right_pads,
InElementwiseOperation in_element_op,
WeiElementwiseOperation wei_element_op,
OutElementwiseOperation out_element_op) override
{
return std::make_unique<Argument>(static_cast<const InDataType*>(p_in),
static_cast<const WeiDataType*>(p_wei),
static_cast<OutDataType*>(p_out),
N,
K,
C,
input_spatial_lengths,
filter_spatial_lengths,
output_spatial_lengths,
conv_filter_strides,
conv_filter_dilations,
input_left_pads,
input_right_pads,
in_element_op,
wei_element_op,
out_element_op);
}
// polymorphic
std::unique_ptr<BaseInvoker> MakeInvokerPointer() override
{
return std::make_unique<Invoker>(Invoker{});
}
std::string GetTypeString() const override
{
auto str = std::stringstream();
// clang-format off
str << "DeviceConv3dFwdNaive_Input_N_Di_Hi_Wi_C_Weight_K_Z_Y_X_C_Output_N_Do_Ho_Wo_K<>";
// clang-format on
return str.str();
}
};
} // namespace device
} // namespace tensor_operation
} // namespace ck
#endif
#ifndef DEVICE_CONV3D_FWD_XDL_HPP
#define DEVICE_CONV3D_FWD_XDL_HPP
#include <iostream>
#include <memory>
#include <sstream>
#include "device.hpp"
#include "device_conv_fwd.hpp"
#include "common_header.hpp"
#include "tensor_layout.hpp"
#include "convolution_forward_specialization.hpp"
#include "tensor_descriptor.hpp"
#include "tensor_descriptor_helper.hpp"
#include "transform_forward_convolution3d_into_gemm_v4r4r4_ndhwc_kzyxc_ndhwk.hpp"
#include "gridwise_gemm_xdlops_v2r3.hpp"
namespace ck {
namespace tensor_operation {
namespace device {
template <typename GridwiseGemm,
typename FloatAB,
typename FloatC,
typename AGridDesc_K0_M_K1,
typename BGridDesc_K0_N_K1,
typename CGridDesc_M0_N0_M1_N1_M2_M3_M4_N2,
typename AElementwiseOperation,
typename BElementwiseOperation,
typename CElementwiseOperation,
typename Block2CTileMap,
bool HasMainKBlockLoop>
__global__ void
#if CK_USE_LAUNCH_BOUNDS
__launch_bounds__(CK_MAX_THREAD_PER_BLOCK, CK_MIN_BLOCK_PER_CU)
#endif
kernel_gemm_xdlops_v2r3_for_conv3d(
const FloatAB* __restrict__ p_a_grid,
const FloatAB* __restrict__ p_b_grid,
FloatC* __restrict__ p_c_grid,
const index_t num_batches,
const index_t a_batch_stride,
const index_t b_batch_stride,
const index_t c_batch_stride,
const AGridDesc_K0_M_K1 a_grid_desc_k0_m_k1,
const BGridDesc_K0_N_K1 b_grid_desc_k0_n_k1,
const CGridDesc_M0_N0_M1_N1_M2_M3_M4_N2 c_grid_desc_m0_n0_m1_n1_m2_m3_m4_n2,
const AElementwiseOperation a_element_op,
const BElementwiseOperation b_element_op,
const CElementwiseOperation c_element_op,
const Block2CTileMap block_2_ctile_map)
{
const index_t num_blocks_per_batch =
__builtin_amdgcn_readfirstlane(get_grid_size() / num_batches);
const index_t g_idx = __builtin_amdgcn_readfirstlane(get_block_1d_id() / num_blocks_per_batch);
const long_index_t a_batch_offset =
__builtin_amdgcn_readfirstlane(static_cast<long_index_t>(a_batch_stride) * g_idx);
const long_index_t b_batch_offset =
__builtin_amdgcn_readfirstlane(static_cast<long_index_t>(b_batch_stride) * g_idx);
const long_index_t c_batch_offset =
__builtin_amdgcn_readfirstlane(static_cast<long_index_t>(c_batch_stride) * g_idx);
__shared__ char p_shared[GridwiseGemm::GetSharedMemoryNumberOfByte()];
GridwiseGemm::template Run<HasMainKBlockLoop>(p_a_grid + a_batch_offset,
p_b_grid + b_batch_offset,
p_c_grid + c_batch_offset,
p_shared,
a_grid_desc_k0_m_k1,
b_grid_desc_k0_n_k1,
c_grid_desc_m0_n0_m1_n1_m2_m3_m4_n2,
a_element_op,
b_element_op,
c_element_op,
block_2_ctile_map);
}
// specialization for #D conv: in[n, di, hi, wi, c] * wei[k, z, y, x, c] = out[n, do, ho, wo, k]
template <typename InDataType,
typename WeiDataType, // WeiDataType must be the same as InDataType
typename OutDataType,
typename AccDataType,
typename InElementwiseOperation,
typename WeiElementwiseOperation,
typename OutElementwiseOperation,
ConvolutionForwardSpecialization_t ConvForwardSpecialization,
ck::index_t BlockSize,
ck::index_t MPerBlock,
ck::index_t NPerBlock,
ck::index_t K0PerBlock,
ck::index_t K1,
ck::index_t MPerXDL,
ck::index_t NPerXDL,
ck::index_t MXdlPerWave,
ck::index_t NXdlPerWave,
typename ABlockTransferThreadClusterLengths_K0_M_K1,
typename ABlockTransferThreadClusterArrangeOrder,
typename ABlockTransferSrcAccessOrder,
ck::index_t ABlockTransferSrcVectorDim,
ck::index_t ABlockTransferSrcScalarPerVector,
ck::index_t ABlockTransferDstScalarPerVector_K1,
bool ABlockLdsAddExtraM,
typename BBlockTransferThreadClusterLengths_K0_N_K1,
typename BBlockTransferThreadClusterArrangeOrder,
typename BBlockTransferSrcAccessOrder,
ck::index_t BBlockTransferSrcVectorDim,
ck::index_t BBlockTransferSrcScalarPerVector,
ck::index_t BBlockTransferDstScalarPerVector_K1,
bool BBlockLdsAddExtraN,
ck::index_t CThreadTransferSrcDstVectorDim,
ck::index_t CThreadTransferDstScalarPerVector>
struct DeviceConv3dFwdXdl_Input_N_Di_Hi_Wi_C_Weight_K_Z_Y_X_C_Output_N_Do_Ho_Wo_K
: public DeviceConvFwd<InElementwiseOperation, WeiElementwiseOperation, OutElementwiseOperation>
{
using DeviceOp = DeviceConv3dFwdXdl_Input_N_Di_Hi_Wi_C_Weight_K_Z_Y_X_C_Output_N_Do_Ho_Wo_K;
using ADataType = InDataType;
using BDataType = WeiDataType;
using CDataType = OutDataType;
// TODO make A/B datatype different
using ABDataType = InDataType;
static constexpr auto I0 = Number<0>{};
static constexpr auto I1 = Number<1>{};
static constexpr auto I2 = Number<2>{};
static constexpr auto I3 = Number<3>{};
/*
* \brief Split the number of batches, \p N, into N = B * N1, such that the memory
* space of input and output tensors stays with the value range of index_t, and each subbatch
* can be dealed with GridwiseGemm.
*/
static index_t GetMaxAllowableSubBatchSize(const index_t N,
const index_t K,
const index_t C,
std::vector<ck::index_t> input_spatial_lengths,
std::vector<ck::index_t> output_spatial_lengths)
{
const index_t Di = input_spatial_lengths[0];
const index_t Hi = input_spatial_lengths[1];
const index_t Wi = input_spatial_lengths[2];
const index_t Do = output_spatial_lengths[0];
const index_t Ho = output_spatial_lengths[1];
const index_t Wo = output_spatial_lengths[2];
// N1 should satisfy that
// 1) N % N1 = 0;
// 2) N1 * (Do * Ho * Wo * K) < (2^31 - 1)
// 3) N1 * (Di * Hi * Wi * C) < (2^31 - 1)
//
// Do NOT confuse (B, N1) in this function with (B, N1) in gridewise GEMM.
auto N1 = N + 1;
const auto stride =
math::max(long_index_t(Do) * Ho * Wo * K, long_index_t(Di) * Hi * Wi * C);
const index_t max_stride = NumericLimits<index_t>::Max();
for(index_t n0 = 1; n0 <= N; ++n0)
{
index_t n1 = N / n0;
if(n0 * n1 == N && long_index_t(n1) * long_index_t(stride) < max_stride)
{
N1 = n1;
break;
}
}
const auto B = N / N1;
if(B * N1 != N)
{
throw std::runtime_error(__func__ +
std::string(": failed to find num_subbatches for conv3d.\n"));
}
return N1;
}
static auto
MakeABCGridDescriptor_A_K0_M_K1_B_K0_N_K1_C_M_N(const index_t N,
const index_t K,
const index_t C,
std::vector<ck::index_t> input_spatial_lengths,
std::vector<ck::index_t> filter_spatial_lengths,
std::vector<ck::index_t> output_spatial_lengths,
std::vector<ck::index_t> conv_filter_strides,
std::vector<ck::index_t> conv_filter_dilations,
std::vector<ck::index_t> input_left_pads,
std::vector<ck::index_t> input_right_pads)
{
assert(input_spatial_lengths.size() > 2);
assert(filter_spatial_lengths.size() > 2);
assert(conv_filter_strides.size() > 2);
assert(conv_filter_dilations.size() > 2);
assert(input_left_pads.size() > 2);
assert(input_right_pads.size() > 2);
const index_t Di = input_spatial_lengths[0];
const index_t Hi = input_spatial_lengths[1];
const index_t Wi = input_spatial_lengths[2];
const index_t Z = filter_spatial_lengths[0];
const index_t Y = filter_spatial_lengths[1];
const index_t X = filter_spatial_lengths[2];
const index_t Do = output_spatial_lengths[0];
const index_t Ho = output_spatial_lengths[1];
const index_t Wo = output_spatial_lengths[2];
if constexpr(ConvForwardSpecialization ==
ConvolutionForwardSpecialization_t::Filter1x1Stride1Pad0)
{
static_assert(ConvForwardSpecialization == -1, "Not implemented!");
}
else if constexpr(ConvForwardSpecialization ==
ConvolutionForwardSpecialization_t::Filter1x1Pad0)
{
static_assert(ConvForwardSpecialization == -1, "Not implemented!");
}
else
{
const auto in_desc_n_di_hi_wi_c =
make_naive_tensor_descriptor_packed(make_tuple(N, Di, Hi, Wi, C));
const auto wei_desc_k_z_y_x_c =
make_naive_tensor_descriptor_packed(make_tuple(K, Z, Y, X, C));
const auto out_desc_n_do_ho_wo_k =
make_naive_tensor_descriptor_packed(make_tuple(N, Do, Ho, Wo, K));
const auto descs =
transform_forward_convolution3d_into_gemm_v4r4r4_ndhwc_kzyxc_ndhwk_pad(
in_desc_n_di_hi_wi_c,
wei_desc_k_z_y_x_c,
out_desc_n_do_ho_wo_k,
make_tuple(
conv_filter_strides[0], conv_filter_strides[1], conv_filter_strides[2]),
make_tuple(conv_filter_dilations[0],
conv_filter_dilations[1],
conv_filter_dilations[2]),
make_tuple(input_left_pads[0], input_left_pads[1], input_left_pads[2]),
make_tuple(input_right_pads[0], input_right_pads[1], input_right_pads[2]),
Number<K1>{});
return descs;
}
}
using ABCGridDescs = remove_cvref_t<decltype(MakeABCGridDescriptor_A_K0_M_K1_B_K0_N_K1_C_M_N(
1, 1, 1, {1, 1, 1}, {1, 1, 1}, {1, 1, 1}, {1, 1, 1}, {1, 1, 1}, {1, 1, 1}, {1, 1, 1}))>;
using AGridDesc_K0_M_K1 = remove_cvref_t<decltype(ABCGridDescs{}[I0])>;
using BGridDesc_K0_N_K1 = remove_cvref_t<decltype(ABCGridDescs{}[I1])>;
using CGridDesc_M_N = remove_cvref_t<decltype(ABCGridDescs{}[I2])>;
struct Block2CTileMapMaker
{
Block2CTileMapMaker(index_t num_batches) : num_batches_(num_batches) {}
__host__ __device__ constexpr auto
MakeBlock2CTileMap(const CGridDesc_M_N& c_grid_desc_m_n, index_t M01, index_t N01)
{
const auto M = c_grid_desc_m_n.GetLength(I0);
const auto N = c_grid_desc_m_n.GetLength(I1);
constexpr auto M1 = Number<MPerBlock>{};
constexpr auto N1 = Number<NPerBlock>{};
const auto M0 = M / M1;
const auto N0 = N / N1;
const auto M00 = M0 / M01;
const auto N00 = N0 / N01;
const auto g_m00_m01_n00_n01_to_m0_n0_block_cluster_adaptor =
make_single_stage_tensor_adaptor(
make_tuple(make_insert_transform(num_batches_),
make_unmerge_transform(make_tuple(M00, M01)),
make_unmerge_transform(make_tuple(N00, N01))),
make_tuple(Sequence<>{}, Sequence<0>{}, Sequence<1>{}),
make_tuple(Sequence<0>{}, Sequence<1, 3>{}, Sequence<2, 4>{}));
const auto globalblockid_to_g_m00_m01_n00_n01_block_cluster_adaptor =
make_single_stage_tensor_adaptor(
make_tuple(make_merge_transform(make_tuple(num_batches_, M00, N00, M01, N01))),
make_tuple(Sequence<0, 1, 2, 3, 4>{}),
make_tuple(Sequence<0>{}));
const auto globalblockid_to_m0_n0_block_cluster_adaptor =
chain_tensor_adaptors(g_m00_m01_n00_n01_to_m0_n0_block_cluster_adaptor,
globalblockid_to_g_m00_m01_n00_n01_block_cluster_adaptor);
return globalblockid_to_m0_n0_block_cluster_adaptor;
}
private:
index_t num_batches_;
};
using GridwiseGemm = GridwiseGemm_k0mk1_k0nk1_mn_xdlops_v2r3<
BlockSize,
InDataType,
AccDataType,
OutDataType,
InMemoryDataOperationEnum_t::Set,
AGridDesc_K0_M_K1,
BGridDesc_K0_N_K1,
CGridDesc_M_N,
InElementwiseOperation,
WeiElementwiseOperation,
OutElementwiseOperation,
MPerBlock,
NPerBlock,
K0PerBlock,
MPerXDL,
NPerXDL,
K1,
MXdlPerWave,
NXdlPerWave,
ABlockTransferThreadClusterLengths_K0_M_K1,
Sequence<1, 0, 2>, // ABlockTransferThreadClusterArrangeOrder,
Sequence<1, 0, 2>, // ABlockTransferSrcAccessOrder,
2,
ABlockTransferSrcScalarPerVector,
ABlockTransferDstScalarPerVector_K1,
false, // AThreadTransferSrcResetCoordinateAfterRun,
ABlockLdsAddExtraM,
BBlockTransferThreadClusterLengths_K0_N_K1,
Sequence<1, 0, 2>, // ABlockTransferThreadClusterArrangeOrder,
Sequence<1, 0, 2>, // ABlockTransferSrcAccessOrder,
2,
BBlockTransferSrcScalarPerVector,
BBlockTransferDstScalarPerVector_K1,
false, // BThreadTransferSrcResetCoordinateAfterRun,
BBlockLdsAddExtraN,
Sequence<2, 3, 0, 1, 7, 5, 4, 6>,
7,
CThreadTransferDstScalarPerVector>;
using CGridDesc_M0_N0_M1_N1_M2_M3_M4_N2 =
decltype(GridwiseGemm::MakeCGridDescriptor_M0_N0_M1_N1_M2_M3_M4_N2(CGridDesc_M_N{}));
using Block2CTileMap =
decltype(Block2CTileMapMaker{1}.MakeBlock2CTileMap(CGridDesc_M_N{}, 1, 1));
// Argument
struct Argument : public BaseArgument
{
Argument(const InDataType* p_in,
const WeiDataType* p_wei,
OutDataType* p_out,
const index_t N,
const index_t K,
const index_t C,
std::vector<ck::index_t> input_spatial_lengths,
std::vector<ck::index_t> filter_spatial_lengths,
std::vector<ck::index_t> output_spatial_lengths,
std::vector<ck::index_t> conv_filter_strides,
std::vector<ck::index_t> conv_filter_dilations,
std::vector<ck::index_t> input_left_pads,
std::vector<ck::index_t> input_right_pads,
index_t M01,
index_t N01,
InElementwiseOperation in_element_op,
WeiElementwiseOperation wei_element_op,
OutElementwiseOperation out_element_op)
: p_a_grid_{p_in},
p_b_grid_{p_wei},
p_c_grid_{p_out},
M01_{M01},
N01_{N01},
in_element_op_{in_element_op},
wei_element_op_{wei_element_op},
out_element_op_{out_element_op}
{
const index_t subbatch_size =
GetMaxAllowableSubBatchSize(N, K, C, input_spatial_lengths, output_spatial_lengths);
num_subbatches_ = N / subbatch_size;
const auto descs =
MakeABCGridDescriptor_A_K0_M_K1_B_K0_N_K1_C_M_N(subbatch_size,
K,
C,
input_spatial_lengths,
filter_spatial_lengths,
output_spatial_lengths,
conv_filter_strides,
conv_filter_dilations,
input_left_pads,
input_right_pads);
a_grid_desc_k0_m_k1_ = descs[I0];
b_grid_desc_k0_n_k1_ = descs[I1];
c_grid_desc_m_n_ = descs[I2];
a_batch_stride_ = a_grid_desc_k0_m_k1_.GetElementSpaceSize();
b_batch_stride_ = 0;
c_batch_stride_ = c_grid_desc_m_n_.GetElementSpaceSize();
if(GridwiseGemm::CheckValidity(
a_grid_desc_k0_m_k1_, b_grid_desc_k0_n_k1_, c_grid_desc_m_n_, M01_, N01_))
{
c_grid_desc_m0_n0_m1_n1_m2_m3_m4_n2_ =
GridwiseGemm::MakeCGridDescriptor_M0_N0_M1_N1_M2_M3_M4_N2(c_grid_desc_m_n_);
block_2_ctile_map_ = Block2CTileMapMaker{num_subbatches_}.MakeBlock2CTileMap(
c_grid_desc_m_n_, M01, N01);
}
}
// private:
const InDataType* p_a_grid_;
const WeiDataType* p_b_grid_;
OutDataType* p_c_grid_;
index_t num_subbatches_;
index_t a_batch_stride_;
index_t b_batch_stride_;
index_t c_batch_stride_;
AGridDesc_K0_M_K1 a_grid_desc_k0_m_k1_;
BGridDesc_K0_N_K1 b_grid_desc_k0_n_k1_;
CGridDesc_M_N c_grid_desc_m_n_;
CGridDesc_M0_N0_M1_N1_M2_M3_M4_N2 c_grid_desc_m0_n0_m1_n1_m2_m3_m4_n2_;
Block2CTileMap block_2_ctile_map_;
index_t M01_;
index_t N01_;
InElementwiseOperation in_element_op_;
WeiElementwiseOperation wei_element_op_;
OutElementwiseOperation out_element_op_;
};
// Invoker
struct Invoker : public BaseInvoker
{
using Argument = DeviceOp::Argument;
float Run(const Argument& arg, int nrepeat = 1)
{
{
std::cout << "num_batches_of_GEMM = " << arg.num_subbatches_ << std::endl;
std::cout << "a_grid_desc_k0_m_k1{" << arg.a_grid_desc_k0_m_k1_.GetLength(I0)
<< ", " << arg.a_grid_desc_k0_m_k1_.GetLength(I1) << ", "
<< arg.a_grid_desc_k0_m_k1_.GetLength(I2) << "}" << std::endl;
std::cout << "b_grid_desc_k0_n_k1{" << arg.b_grid_desc_k0_n_k1_.GetLength(I0)
<< ", " << arg.b_grid_desc_k0_n_k1_.GetLength(I1) << ", "
<< arg.b_grid_desc_k0_n_k1_.GetLength(I2) << "}" << std::endl;
std::cout << "c_grid_desc_m_n{ " << arg.c_grid_desc_m_n_.GetLength(I0) << ", "
<< arg.c_grid_desc_m_n_.GetLength(I1) << "}" << std::endl;
}
if(!GridwiseGemm::CheckValidity(arg.a_grid_desc_k0_m_k1_,
arg.b_grid_desc_k0_n_k1_,
arg.c_grid_desc_m_n_,
arg.M01_,
arg.N01_))
{
throw std::runtime_error(
"wrong! GridwiseGemm_k0mk1_k0nk1_mn_xdlops_v2r3 has invalid setting");
}
// todo: grid_size times arg.num_subbatches_
const index_t grid_size =
GridwiseGemm::CalculateGridSize(arg.c_grid_desc_m_n_) * arg.num_subbatches_;
const auto K0 = arg.a_grid_desc_k0_m_k1_.GetLength(I0);
const bool has_main_k0_block_loop = GridwiseGemm::CalculateHasMainK0BlockLoop(K0);
float ave_time = 0;
if(has_main_k0_block_loop)
{
const auto kernel = kernel_gemm_xdlops_v2r3_for_conv3d<
GridwiseGemm,
InDataType,
OutDataType,
remove_reference_t<AGridDesc_K0_M_K1>,
remove_reference_t<BGridDesc_K0_N_K1>,
remove_reference_t<CGridDesc_M0_N0_M1_N1_M2_M3_M4_N2>,
InElementwiseOperation,
WeiElementwiseOperation,
OutElementwiseOperation,
remove_reference_t<Block2CTileMap>,
true>;
ave_time = launch_and_time_kernel(kernel,
nrepeat,
dim3(grid_size),
dim3(BlockSize),
0,
arg.p_a_grid_,
arg.p_b_grid_,
arg.p_c_grid_,
arg.num_subbatches_,
arg.a_batch_stride_,
arg.b_batch_stride_,
arg.c_batch_stride_,
arg.a_grid_desc_k0_m_k1_,
arg.b_grid_desc_k0_n_k1_,
arg.c_grid_desc_m0_n0_m1_n1_m2_m3_m4_n2_,
arg.in_element_op_,
arg.wei_element_op_,
arg.out_element_op_,
arg.block_2_ctile_map_);
}
else
{
const auto kernel = kernel_gemm_xdlops_v2r3_for_conv3d<
GridwiseGemm,
InDataType,
OutDataType,
remove_reference_t<AGridDesc_K0_M_K1>,
remove_reference_t<BGridDesc_K0_N_K1>,
remove_reference_t<CGridDesc_M0_N0_M1_N1_M2_M3_M4_N2>,
InElementwiseOperation,
WeiElementwiseOperation,
OutElementwiseOperation,
remove_reference_t<Block2CTileMap>,
false>;
ave_time = launch_and_time_kernel(kernel,
nrepeat,
dim3(grid_size),
dim3(BlockSize),
0,
arg.p_a_grid_,
arg.p_b_grid_,
arg.p_c_grid_,
arg.num_subbatches_,
arg.a_batch_stride_,
arg.b_batch_stride_,
arg.c_batch_stride_,
arg.a_grid_desc_k0_m_k1_,
arg.b_grid_desc_k0_n_k1_,
arg.c_grid_desc_m0_n0_m1_n1_m2_m3_m4_n2_,
arg.in_element_op_,
arg.wei_element_op_,
arg.out_element_op_,
arg.block_2_ctile_map_);
}
return ave_time;
}
// polymorphic
float Run(const BaseArgument* p_arg, int nrepeat = 1) override
{
return Run(*dynamic_cast<const Argument*>(p_arg), nrepeat);
}
};
static constexpr bool IsValidCompilationParameter()
{
// TODO: properly implement this check
return true;
}
static bool IsSupportedArgument(const Argument& arg)
{
return GridwiseGemm::CheckValidity(arg.a_grid_desc_k0_m_k1_,
arg.b_grid_desc_k0_n_k1_,
arg.c_grid_desc_m_n_,
arg.M01_,
arg.N01_);
}
// polymorphic
bool IsSupportedArgument(const BaseArgument* p_arg) override
{
return IsSupportedArgument(*dynamic_cast<const Argument*>(p_arg));
}
static auto MakeArgument(const InDataType* p_in,
const WeiDataType* p_wei,
OutDataType* p_out,
const index_t N,
const index_t K,
const index_t C,
std::vector<ck::index_t> input_spatial_lengths,
std::vector<ck::index_t> filter_spatial_lengths,
std::vector<ck::index_t> output_spatial_lengths,
std::vector<ck::index_t> conv_filter_strides,
std::vector<ck::index_t> conv_filter_dilations,
std::vector<ck::index_t> input_left_pads,
std::vector<ck::index_t> input_right_pads,
InElementwiseOperation in_element_op,
WeiElementwiseOperation wei_element_op,
OutElementwiseOperation out_element_op)
{
return Argument{p_in,
p_wei,
p_out,
N,
K,
C,
input_spatial_lengths,
filter_spatial_lengths,
output_spatial_lengths,
conv_filter_strides,
conv_filter_dilations,
input_left_pads,
input_right_pads,
1,
1,
in_element_op,
wei_element_op,
out_element_op};
}
static auto MakeInvoker() { return Invoker{}; }
// polymorphic
std::unique_ptr<BaseArgument>
MakeArgumentPointer(const void* p_in,
const void* p_wei,
void* p_out,
const index_t N,
const index_t K,
const index_t C,
std::vector<ck::index_t> input_spatial_lengths,
std::vector<ck::index_t> filter_spatial_lengths,
std::vector<ck::index_t> output_spatial_lengths,
std::vector<ck::index_t> conv_filter_strides,
std::vector<ck::index_t> conv_filter_dilations,
std::vector<ck::index_t> input_left_pads,
std::vector<ck::index_t> input_right_pads,
InElementwiseOperation in_element_op,
WeiElementwiseOperation wei_element_op,
OutElementwiseOperation out_element_op) override
{
return std::make_unique<Argument>(static_cast<const InDataType*>(p_in),
static_cast<const WeiDataType*>(p_wei),
static_cast<OutDataType*>(p_out),
N,
K,
C,
input_spatial_lengths,
filter_spatial_lengths,
output_spatial_lengths,
conv_filter_strides,
conv_filter_dilations,
input_left_pads,
input_right_pads,
1,
1,
in_element_op,
wei_element_op,
out_element_op);
}
// polymorphic
std::unique_ptr<BaseInvoker> MakeInvokerPointer() override
{
return std::make_unique<Invoker>(Invoker{});
}
std::string GetTypeString() const override
{
auto str = std::stringstream();
// clang-format off
str << "DeviceConv3dFwdXdl_Input_N_Di_Hi_Wi_C_Weight_K_Z_Y_X_C_Output_N_Do_Ho_Wo_K"
<< "<"
<< BlockSize << ", "
<< MPerBlock << ", "
<< NPerBlock << ", "
<< K0PerBlock
<< ">";
// clang-format on
return str.str();
}
};
} // namespace device
} // namespace tensor_operation
} // namespace ck
#endif
#ifndef DEVICE_CONVND_FWD_XDL_NHWC_KYXC_NHWK_HPP
#define DEVICE_CONVND_FWD_XDL_NHWC_KYXC_NHWK_HPP
#include <functional>
#include <iostream>
#include <iterator>
#include <numeric>
#include <sstream>
#include "device.hpp"
#include "device_base.hpp"
#include "device_conv_fwd.hpp"
#include "convolution_forward_specialization.hpp"
#include "common_header.hpp"
#include "tensor_layout.hpp"
#include "tensor_descriptor.hpp"
#include "tensor_descriptor_helper.hpp"
#include "gridwise_gemm_xdlops_v2r3.hpp"
namespace ck {
namespace tensor_operation {
namespace device {
//
// @brief Device Convolution operation.
//
// Supports:
// @li Inputs with up to 3 spatial dimentions
// @li Input tensor in NHWC data format
// @li Weight tensor in KYXC data format
// @li Output tensor in NHWK data format
//
// 1D:
// out[N, Wo, K] = in[N, Wi, C] * wei[K, X, C]
// 2D:
// out[N, Ho, Wo, K] = in[N, Hi, Wi, C] * wei[K, Y, X, C]
// 3D:
// out[N, Do, Ho, Wo, K] = in[N, Di, Hi, Wi, C] * wei[K, Z, Y, X, C]
//
template <typename InDataType,
typename WeiDataType,
typename OutDataType,
typename AccDataType,
typename InElementwiseOperation,
typename WeiElementwiseOperation,
typename OutElementwiseOperation,
ConvolutionForwardSpecialization_t ConvForwardSpecialization,
ck::index_t NumDimSpatial,
ck::index_t BlockSize,
ck::index_t MPerBlock,
ck::index_t NPerBlock,
ck::index_t K0PerBlock,
ck::index_t K1,
ck::index_t MPerXDL,
ck::index_t NPerXDL,
ck::index_t MXdlPerWave,
ck::index_t NXdlPerWave,
typename ABlockTransferThreadClusterLengths_K0_M_K1,
typename ABlockTransferThreadClusterArrangeOrder,
typename ABlockTransferSrcAccessOrder,
ck::index_t ABlockTransferSrcVectorDim,
ck::index_t ABlockTransferSrcScalarPerVector,
ck::index_t ABlockTransferDstScalarPerVector_K1,
bool ABlockLdsAddExtraM,
typename BBlockTransferThreadClusterLengths_K0_N_K1,
typename BBlockTransferThreadClusterArrangeOrder,
typename BBlockTransferSrcAccessOrder,
ck::index_t BBlockTransferSrcVectorDim,
ck::index_t BBlockTransferSrcScalarPerVector,
ck::index_t BBlockTransferDstScalarPerVector_K1,
bool BBlockLdsAddExtraN,
ck::index_t CThreadTransferSrcDstVectorDim,
ck::index_t CThreadTransferDstScalarPerVector>
struct DeviceConvNDFwdXdl_Input_N_Hi_Wi_C_Weight_K_Y_X_C_Output_N_Ho_Wo_K
: public DeviceConvFwd<InElementwiseOperation, WeiElementwiseOperation, OutElementwiseOperation>
{
using DeviceOp = DeviceConvNDFwdXdl_Input_N_Hi_Wi_C_Weight_K_Y_X_C_Output_N_Ho_Wo_K;
using ADataType = InDataType;
using BDataType = WeiDataType;
using CDataType = OutDataType;
// TODO make A/B datatype different
using ABDataType = InDataType;
static constexpr index_t NDimSpatial = NumDimSpatial;
static constexpr auto I0 = Number<0>{};
static constexpr auto I1 = Number<1>{};
static constexpr auto I2 = Number<2>{};
static constexpr auto I3 = Number<3>{};
static constexpr auto K1Number = Number<K1>{};
static constexpr auto GemmK1Number = K1Number;
static auto GetWeightTensorDescriptor(ck::index_t gemm_n, ck::index_t gemm_k)
{
const ck::index_t gemm_k0 = gemm_k / GemmK1Number;
const auto wei_k_yxc_grid_desc =
make_naive_tensor_descriptor_packed(make_tuple(gemm_n, gemm_k));
// wei_gemmk0_gemmn_gemmk1_grid_desc
return transform_tensor_descriptor(
wei_k_yxc_grid_desc,
make_tuple(make_unmerge_transform(make_tuple(gemm_k0, GemmK1Number)),
make_pass_through_transform(gemm_n)),
make_tuple(Sequence<1>{}, Sequence<0>{}),
make_tuple(Sequence<0, 2>{}, Sequence<1>{}));
}
static auto
GetOutputTensorDescriptor(ck::index_t gemm_m, ck::index_t gemm_n, ck::index_t gemm_m_pad)
{
const auto out_gemmmraw_gemmn_grid_desc =
make_naive_tensor_descriptor_packed(make_tuple(gemm_m, gemm_n));
// out_gemmm_gemmn_grid_desc
return transform_tensor_descriptor(out_gemmmraw_gemmn_grid_desc,
make_tuple(make_right_pad_transform(gemm_m, gemm_m_pad),
make_pass_through_transform(gemm_n)),
make_tuple(Sequence<0>{}, Sequence<1>{}),
make_tuple(Sequence<0>{}, Sequence<1>{}));
}
template <ck::index_t NDim, typename std::enable_if<NDim == 1, bool>::type = false>
static auto GetInputTensorDescriptor(ck::index_t N,
ck::index_t C,
ck::index_t gemm_m,
ck::index_t gemm_k,
ck::index_t gemm_m_pad,
const std::vector<ck::index_t>& input_spatial_lengths,
const std::vector<ck::index_t>& filter_spatial_lengths,
const std::vector<ck::index_t>& output_spatial_lengths,
const std::vector<ck::index_t>& conv_filter_strides,
const std::vector<ck::index_t>& conv_filter_dilations,
const std::vector<ck::index_t>& input_left_pads,
const std::vector<ck::index_t>& input_right_pads)
{
const ck::index_t gemm_k0 = gemm_k / GemmK1Number;
const index_t Wi = input_spatial_lengths[0];
const index_t Wo = output_spatial_lengths[0];
const index_t ConvStrideW = conv_filter_strides[0];
if constexpr(ConvForwardSpecialization ==
ConvolutionForwardSpecialization_t::Filter1x1Stride1Pad0)
{
const auto in_gemmmraw_gemmk_grid_desc =
make_naive_tensor_descriptor_packed(make_tuple(gemm_m, gemm_k));
// in_gemmk0_gemmm_gemmk1_grid_desc
return transform_tensor_descriptor(
in_gemmmraw_gemmk_grid_desc,
make_tuple(make_unmerge_transform(make_tuple(gemm_k0, GemmK1Number)),
make_right_pad_transform(gemm_m, gemm_m_pad)),
make_tuple(Sequence<1>{}, Sequence<0>{}),
make_tuple(Sequence<0, 2>{}, Sequence<1>{}));
}
else if constexpr(ConvForwardSpecialization ==
ConvolutionForwardSpecialization_t::Filter1x1Pad0)
{
const auto in_n_wi_c_grid_desc =
make_naive_tensor_descriptor_packed(make_tuple(N, Wi, C));
const auto in_n_wo_c_grid_desc = transform_tensor_descriptor(
in_n_wi_c_grid_desc,
make_tuple(make_pass_through_transform(N),
make_embed_transform(make_tuple(Wo), make_tuple(ConvStrideW)),
make_pass_through_transform(C)),
make_tuple(Sequence<0>{}, Sequence<1>{}, Sequence<2>{}),
make_tuple(Sequence<0>{}, Sequence<1>{}, Sequence<2>{}));
const auto in_gemmk0_gemmmraw_gemmk1_grid_desc = transform_tensor_descriptor(
in_n_wo_c_grid_desc,
make_tuple(make_unmerge_transform(make_tuple(gemm_k0, GemmK1Number)),
make_merge_transform(make_tuple(N, Wo))),
make_tuple(Sequence<2>{}, Sequence<0, 1>{}),
make_tuple(Sequence<0, 2>{}, Sequence<1>{}));
// in_gemmk0_gemmm_gemmk1_grid_desc
return transform_tensor_descriptor(
in_gemmk0_gemmmraw_gemmk1_grid_desc,
make_tuple(make_pass_through_transform(gemm_k0),
make_right_pad_transform(gemm_m, gemm_m_pad),
make_pass_through_transform(GemmK1Number)),
make_tuple(Sequence<0>{}, Sequence<1>{}, Sequence<2>{}),
make_tuple(Sequence<0>{}, Sequence<1>{}, Sequence<2>{}));
}
else
{
const index_t X = filter_spatial_lengths[0];
const index_t ConvDilationW = conv_filter_dilations[0];
const index_t InLeftPadW = input_left_pads[0];
const index_t InRightPadW = input_right_pads[0];
const auto in_n_wi_c_grid_desc =
make_naive_tensor_descriptor_packed(make_tuple(N, Wi, C));
const auto in_n_wip_c_grid_desc = transform_tensor_descriptor(
in_n_wi_c_grid_desc,
make_tuple(make_pass_through_transform(N),
make_pad_transform(Wi, InLeftPadW, InRightPadW),
make_pass_through_transform(C)),
make_tuple(Sequence<0>{}, Sequence<1>{}, Sequence<2>{}),
make_tuple(Sequence<0>{}, Sequence<1>{}, Sequence<2>{}));
const auto in_n_x_wo_c_grid_desc = transform_tensor_descriptor(
in_n_wip_c_grid_desc,
make_tuple(
make_pass_through_transform(N),
make_embed_transform(make_tuple(X, Wo), make_tuple(ConvDilationW, ConvStrideW)),
make_pass_through_transform(C)),
make_tuple(Sequence<0>{}, Sequence<1>{}, Sequence<2>{}),
make_tuple(Sequence<0>{}, Sequence<1, 2>{}, Sequence<3>{}));
const auto in_gemmk_gemmmraw_grid_desc =
transform_tensor_descriptor(in_n_x_wo_c_grid_desc,
make_tuple(make_merge_transform(make_tuple(X, C)),
make_merge_transform(make_tuple(N, Wo))),
make_tuple(Sequence<1, 3>{}, Sequence<0, 2>{}),
make_tuple(Sequence<0>{}, Sequence<1>{}));
const auto in_gemmk0_gemmmraw_gemmk1_grid_desc = transform_tensor_descriptor(
in_gemmk_gemmmraw_grid_desc,
make_tuple(make_unmerge_transform(make_tuple(gemm_k0, GemmK1Number)),
make_pass_through_transform(gemm_m)),
make_tuple(Sequence<0>{}, Sequence<1>{}),
make_tuple(Sequence<0, 2>{}, Sequence<1>{}));
// in_gemmk0_gemmm_gemmk1_grid_desc
return transform_tensor_descriptor(
in_gemmk0_gemmmraw_gemmk1_grid_desc,
make_tuple(make_pass_through_transform(gemm_k0),
make_right_pad_transform(gemm_m, gemm_m_pad),
make_pass_through_transform(GemmK1Number)),
make_tuple(Sequence<0>{}, Sequence<1>{}, Sequence<2>{}),
make_tuple(Sequence<0>{}, Sequence<1>{}, Sequence<2>{}));
}
}
template <ck::index_t NDim, typename std::enable_if<NDim == 2, bool>::type = false>
static auto GetInputTensorDescriptor(ck::index_t N,
ck::index_t C,
ck::index_t gemm_m,
ck::index_t gemm_k,
ck::index_t gemm_m_pad,
const std::vector<ck::index_t>& input_spatial_lengths,
const std::vector<ck::index_t>& filter_spatial_lengths,
const std::vector<ck::index_t>& output_spatial_lengths,
const std::vector<ck::index_t>& conv_filter_strides,
const std::vector<ck::index_t>& conv_filter_dilations,
const std::vector<ck::index_t>& input_left_pads,
const std::vector<ck::index_t>& input_right_pads)
{
const ck::index_t gemm_k0 = gemm_k / GemmK1Number;
const index_t Hi = input_spatial_lengths[0];
const index_t Wi = input_spatial_lengths[1];
const index_t Ho = output_spatial_lengths[0];
const index_t Wo = output_spatial_lengths[1];
const index_t ConvStrideH = conv_filter_strides[0];
const index_t ConvStrideW = conv_filter_strides[1];
if constexpr(ConvForwardSpecialization ==
ConvolutionForwardSpecialization_t::Filter1x1Stride1Pad0)
{
const auto in_gemmmraw_gemmk_grid_desc =
make_naive_tensor_descriptor_packed(make_tuple(gemm_m, gemm_k));
// in_gemmk0_gemmm_gemmk1_grid_desc
return transform_tensor_descriptor(
in_gemmmraw_gemmk_grid_desc,
make_tuple(make_unmerge_transform(make_tuple(gemm_k0, GemmK1Number)),
make_right_pad_transform(gemm_m, gemm_m_pad)),
make_tuple(Sequence<1>{}, Sequence<0>{}),
make_tuple(Sequence<0, 2>{}, Sequence<1>{}));
}
else if constexpr(ConvForwardSpecialization ==
ConvolutionForwardSpecialization_t::Filter1x1Pad0)
{
const auto in_n_hi_wi_c_grid_desc =
make_naive_tensor_descriptor_packed(make_tuple(N, Hi, Wi, C));
const auto in_n_ho_wo_c_grid_desc = transform_tensor_descriptor(
in_n_hi_wi_c_grid_desc,
make_tuple(make_pass_through_transform(N),
make_embed_transform(make_tuple(Ho), make_tuple(ConvStrideH)),
make_embed_transform(make_tuple(Wo), make_tuple(ConvStrideW)),
make_pass_through_transform(C)),
make_tuple(Sequence<0>{}, Sequence<1>{}, Sequence<2>{}, Sequence<3>{}),
make_tuple(Sequence<0>{}, Sequence<1>{}, Sequence<2>{}, Sequence<3>{}));
const auto in_gemmk0_gemmmraw_gemmk1_grid_desc = transform_tensor_descriptor(
in_n_ho_wo_c_grid_desc,
make_tuple(make_unmerge_transform(make_tuple(gemm_k0, GemmK1Number)),
make_merge_transform(make_tuple(N, Ho, Wo))),
make_tuple(Sequence<3>{}, Sequence<0, 1, 2>{}),
make_tuple(Sequence<0, 2>{}, Sequence<1>{}));
// in_gemmk0_gemmm_gemmk1_grid_desc
return transform_tensor_descriptor(
in_gemmk0_gemmmraw_gemmk1_grid_desc,
make_tuple(make_pass_through_transform(gemm_k0),
make_right_pad_transform(gemm_m, gemm_m_pad),
make_pass_through_transform(GemmK1Number)),
make_tuple(Sequence<0>{}, Sequence<1>{}, Sequence<2>{}),
make_tuple(Sequence<0>{}, Sequence<1>{}, Sequence<2>{}));
}
else
{
const index_t Y = filter_spatial_lengths[0];
const index_t X = filter_spatial_lengths[1];
const index_t ConvDilationH = conv_filter_dilations[0];
const index_t ConvDilationW = conv_filter_dilations[1];
const index_t InLeftPadH = input_left_pads[0];
const index_t InLeftPadW = input_left_pads[1];
const index_t InRightPadH = input_right_pads[0];
const index_t InRightPadW = input_right_pads[1];
const auto in_n_hi_wi_c_grid_desc =
make_naive_tensor_descriptor_packed(make_tuple(N, Hi, Wi, C));
const auto in_n_hip_wip_c_grid_desc = transform_tensor_descriptor(
in_n_hi_wi_c_grid_desc,
make_tuple(make_pass_through_transform(N),
make_pad_transform(Hi, InLeftPadH, InRightPadH),
make_pad_transform(Wi, InLeftPadW, InRightPadW),
make_pass_through_transform(C)),
make_tuple(Sequence<0>{}, Sequence<1>{}, Sequence<2>{}, Sequence<3>{}),
make_tuple(Sequence<0>{}, Sequence<1>{}, Sequence<2>{}, Sequence<3>{}));
const auto in_n_y_ho_x_wo_c_grid_desc = transform_tensor_descriptor(
in_n_hip_wip_c_grid_desc,
make_tuple(
make_pass_through_transform(N),
make_embed_transform(make_tuple(Y, Ho), make_tuple(ConvDilationH, ConvStrideH)),
make_embed_transform(make_tuple(X, Wo), make_tuple(ConvDilationW, ConvStrideW)),
make_pass_through_transform(C)),
make_tuple(Sequence<0>{}, Sequence<1>{}, Sequence<2>{}, Sequence<3>{}),
make_tuple(Sequence<0>{}, Sequence<1, 2>{}, Sequence<3, 4>{}, Sequence<5>{}));
const auto in_gemmk_gemmmraw_grid_desc =
transform_tensor_descriptor(in_n_y_ho_x_wo_c_grid_desc,
make_tuple(make_merge_transform(make_tuple(Y, X, C)),
make_merge_transform(make_tuple(N, Ho, Wo))),
make_tuple(Sequence<1, 3, 5>{}, Sequence<0, 2, 4>{}),
make_tuple(Sequence<0>{}, Sequence<1>{}));
const auto in_gemmk0_gemmmraw_gemmk1_grid_desc = transform_tensor_descriptor(
in_gemmk_gemmmraw_grid_desc,
make_tuple(make_unmerge_transform(make_tuple(gemm_k0, GemmK1Number)),
make_pass_through_transform(gemm_m)),
make_tuple(Sequence<0>{}, Sequence<1>{}),
make_tuple(Sequence<0, 2>{}, Sequence<1>{}));
// in_gemmk0_gemmm_gemmk1_grid_desc
return transform_tensor_descriptor(
in_gemmk0_gemmmraw_gemmk1_grid_desc,
make_tuple(make_pass_through_transform(gemm_k0),
make_right_pad_transform(gemm_m, gemm_m_pad),
make_pass_through_transform(GemmK1Number)),
make_tuple(Sequence<0>{}, Sequence<1>{}, Sequence<2>{}),
make_tuple(Sequence<0>{}, Sequence<1>{}, Sequence<2>{}));
}
}
static index_t GetGemmMRaw(ck::index_t N,
const std::vector<ck::index_t>& output_spatial_lengths)
{
return N * std::accumulate(std::begin(output_spatial_lengths),
std::end(output_spatial_lengths),
1,
std::multiplies<ck::index_t>());
}
static index_t GetGemmK(ck::index_t C, const std::vector<ck::index_t>& filter_spatial_lengths)
{
return C * std::accumulate(std::begin(filter_spatial_lengths),
std::end(filter_spatial_lengths),
1,
std::multiplies<ck::index_t>());
}
static auto
MakeABCGridDescriptor_A_K0_M_K1_B_K0_N_K1_C_M_N(ck::index_t N,
ck::index_t K,
ck::index_t C,
std::vector<ck::index_t> input_spatial_lengths,
std::vector<ck::index_t> filter_spatial_lengths,
std::vector<ck::index_t> output_spatial_lengths,
std::vector<ck::index_t> conv_filter_strides,
std::vector<ck::index_t> conv_filter_dilations,
std::vector<ck::index_t> input_left_pads,
std::vector<ck::index_t> input_right_pads)
{
using namespace ck;
const index_t GemmMRaw = GetGemmMRaw(N, output_spatial_lengths);
const index_t GemmN = K;
const index_t GemmK = GetGemmK(C, filter_spatial_lengths);
const auto GemmMPad = math::integer_least_multiple(GemmMRaw, MPerBlock) - GemmMRaw;
assert(GemmK % GemmK1Number == 0);
// C = A^T*B
// A:
const auto in_gemmk0_gemmm_gemmk1_grid_desc =
GetInputTensorDescriptor<NumDimSpatial>(N,
C,
GemmMRaw,
GemmK,
GemmMPad,
input_spatial_lengths,
filter_spatial_lengths,
output_spatial_lengths,
conv_filter_strides,
conv_filter_dilations,
input_left_pads,
input_right_pads);
// B:
const auto wei_gemmk0_gemmn_gemmk1_grid_desc = GetWeightTensorDescriptor(GemmN, GemmK);
// C:
const auto out_gemmm_gemmn_grid_desc = GetOutputTensorDescriptor(GemmMRaw, GemmN, GemmMPad);
return make_tuple(in_gemmk0_gemmm_gemmk1_grid_desc,
wei_gemmk0_gemmn_gemmk1_grid_desc,
out_gemmm_gemmn_grid_desc);
}
template <ck::index_t NDim, typename std::enable_if<NDim == 1, bool>::type = false>
static auto GetABCGridDesc()
{
return MakeABCGridDescriptor_A_K0_M_K1_B_K0_N_K1_C_M_N(
1, 1, 1, {1}, {1}, {1}, {1}, {1}, {1}, {1});
}
template <ck::index_t NDim, typename std::enable_if<NDim == 2, bool>::type = false>
static auto GetABCGridDesc()
{
return MakeABCGridDescriptor_A_K0_M_K1_B_K0_N_K1_C_M_N(
1, 1, 1, {1, 1}, {1, 1}, {1, 1}, {1, 1}, {1, 1}, {1, 1}, {1, 1});
}
using ABCGridDescs = decltype(GetABCGridDesc<NumDimSpatial>());
using AGridDesc_K0_M_K1 = remove_cvref_t<decltype(ABCGridDescs{}[I0])>;
using BGridDesc_K0_N_K1 = remove_cvref_t<decltype(ABCGridDescs{}[I1])>;
using CGridDesc_M_N = remove_cvref_t<decltype(ABCGridDescs{}[I2])>;
// GridwiseGemm
using GridwiseGemm = GridwiseGemm_k0mk1_k0nk1_mn_xdlops_v2r3<
BlockSize,
ABDataType, // TODO: distinguish A/B datatype
AccDataType,
CDataType,
InMemoryDataOperationEnum_t::Set,
AGridDesc_K0_M_K1,
BGridDesc_K0_N_K1,
CGridDesc_M_N,
InElementwiseOperation,
WeiElementwiseOperation,
OutElementwiseOperation,
MPerBlock,
NPerBlock,
K0PerBlock,
MPerXDL,
NPerXDL,
K1,
MXdlPerWave,
NXdlPerWave,
ABlockTransferThreadClusterLengths_K0_M_K1,
Sequence<1, 0, 2>, // ABlockTransferThreadClusterArrangeOrder,
Sequence<1, 0, 2>, // ABlockTransferSrcAccessOrder,
2, // ABlockTransferSrcVectorDim,
ABlockTransferSrcScalarPerVector,
ABlockTransferDstScalarPerVector_K1,
false, // AThreadTransferSrcResetCoordinateAfterRun,
ABlockLdsAddExtraM,
BBlockTransferThreadClusterLengths_K0_N_K1,
Sequence<1, 0, 2>, // BBlockTransferThreadClusterArrangeOrder,
Sequence<1, 0, 2>, // BBlockTransferSrcAccessOrder,
2, // BBlockTransferSrcVectorDim,
BBlockTransferSrcScalarPerVector,
BBlockTransferDstScalarPerVector_K1,
false, // BThreadTransferSrcResetCoordinateAfterRun,
BBlockLdsAddExtraN,
Sequence<2, 3, 0, 1, 7, 5, 4, 6>, // CThreadTransferSrcDstAccessOrder,
7, // CThreadTransferSrcDstVectorDim,
CThreadTransferDstScalarPerVector>;
// Argument
struct Argument : public BaseArgument
{
Argument(const InDataType* p_in_grid,
const WeiDataType* p_wei_grid,
OutDataType* p_out_grid,
ck::index_t N,
ck::index_t K,
ck::index_t C,
std::vector<ck::index_t> input_spatial_lengths,
std::vector<ck::index_t> filter_spatial_lengths,
std::vector<ck::index_t> output_spatial_lengths,
std::vector<ck::index_t> conv_filter_strides,
std::vector<ck::index_t> conv_filter_dilations,
std::vector<ck::index_t> input_left_pads,
std::vector<ck::index_t> input_right_pads,
ck::index_t M01,
ck::index_t N01,
InElementwiseOperation in_element_op,
WeiElementwiseOperation wei_element_op,
OutElementwiseOperation out_element_op)
: p_a_grid_{p_in_grid},
p_b_grid_{p_wei_grid},
p_c_grid_{p_out_grid},
a_grid_desc_k0_m_k1_{},
b_grid_desc_k0_n_k1_{},
c_grid_desc_m_n_{},
c_grid_desc_m0_n0_m1_n1_m2_m3_m4_n2_{},
block_2_ctile_map_{},
M01_{M01},
N01_{N01},
in_element_op_{in_element_op},
wei_element_op_{wei_element_op},
out_element_op_{out_element_op},
Conv_N_{N},
Conv_K_{K},
Conv_C_{C},
filter_spatial_lengths_{filter_spatial_lengths},
conv_filter_strides_{conv_filter_strides},
input_left_pads_{input_left_pads},
input_right_pads_{input_right_pads}
{
const auto descs =
DeviceOp::MakeABCGridDescriptor_A_K0_M_K1_B_K0_N_K1_C_M_N(N,
K,
C,
input_spatial_lengths,
filter_spatial_lengths,
output_spatial_lengths,
conv_filter_strides,
conv_filter_dilations,
input_left_pads,
input_right_pads);
a_grid_desc_k0_m_k1_ = descs[I0];
b_grid_desc_k0_n_k1_ = descs[I1];
c_grid_desc_m_n_ = descs[I2];
if(GridwiseGemm::CheckValidity(
a_grid_desc_k0_m_k1_, b_grid_desc_k0_n_k1_, c_grid_desc_m_n_, M01_, N01_))
{
c_grid_desc_m0_n0_m1_n1_m2_m3_m4_n2_ =
GridwiseGemm::MakeCGridDescriptor_M0_N0_M1_N1_M2_M3_M4_N2(c_grid_desc_m_n_);
block_2_ctile_map_ =
GridwiseGemm::MakeDefaultBlock2CTileMap(c_grid_desc_m_n_, M01, N01);
}
}
// private:
const ADataType* p_a_grid_;
const BDataType* p_b_grid_;
CDataType* p_c_grid_;
AGridDesc_K0_M_K1 a_grid_desc_k0_m_k1_;
BGridDesc_K0_N_K1 b_grid_desc_k0_n_k1_;
CGridDesc_M_N c_grid_desc_m_n_;
typename GridwiseGemm::CGridDesc_M0_N0_M1_N1_M2_M3_M4_N2
c_grid_desc_m0_n0_m1_n1_m2_m3_m4_n2_;
typename GridwiseGemm::DefaultBlock2CTileMap block_2_ctile_map_;
index_t M01_;
index_t N01_;
InElementwiseOperation in_element_op_;
WeiElementwiseOperation wei_element_op_;
OutElementwiseOperation out_element_op_;
// for checking IsSupportedArgument()
index_t Conv_N_;
index_t Conv_K_;
index_t Conv_C_;
std::vector<index_t> filter_spatial_lengths_;
std::vector<index_t> conv_filter_strides_;
std::vector<index_t> input_left_pads_;
std::vector<index_t> input_right_pads_;
};
// Invoker
struct Invoker : public BaseInvoker
{
using Argument = DeviceOp::Argument;
float Run(const Argument& arg, int nrepeat = 1)
{
{
std::cout << "arg.a_grid_desc_k0_m_k1_{" << arg.a_grid_desc_k0_m_k1_.GetLength(I0)
<< ", " << arg.a_grid_desc_k0_m_k1_.GetLength(I1) << ", "
<< arg.a_grid_desc_k0_m_k1_.GetLength(I2) << "}" << std::endl;
std::cout << "arg.b_grid_desc_k0_n_k1_{" << arg.b_grid_desc_k0_n_k1_.GetLength(I0)
<< ", " << arg.b_grid_desc_k0_n_k1_.GetLength(I1) << ", "
<< arg.b_grid_desc_k0_n_k1_.GetLength(I2) << "}" << std::endl;
std::cout << "arg.c_grid_desc_m_n_{ " << arg.c_grid_desc_m_n_.GetLength(I0) << ", "
<< arg.c_grid_desc_m_n_.GetLength(I1) << "}" << std::endl;
}
if(!GridwiseGemm::CheckValidity(arg.a_grid_desc_k0_m_k1_,
arg.b_grid_desc_k0_n_k1_,
arg.c_grid_desc_m_n_,
arg.M01_,
arg.N01_))
{
throw std::runtime_error(
"wrong! GridwiseGemm_km_kn_m0m1n0n1_xdlops_v2r3 has invalid setting");
}
const index_t grid_size = GridwiseGemm::CalculateGridSize(arg.c_grid_desc_m_n_);
const auto K0 = arg.a_grid_desc_k0_m_k1_.GetLength(I0);
const bool has_main_k0_block_loop = GridwiseGemm::CalculateHasMainK0BlockLoop(K0);
float ave_time = 0;
if(has_main_k0_block_loop)
{
const auto kernel = kernel_gemm_xdlops_v2r3<
GridwiseGemm,
ADataType, // TODO: distiguish A/B datatype
CDataType,
remove_reference_t<DeviceOp::AGridDesc_K0_M_K1>,
remove_reference_t<DeviceOp::BGridDesc_K0_N_K1>,
remove_reference_t<typename GridwiseGemm::CGridDesc_M0_N0_M1_N1_M2_M3_M4_N2>,
InElementwiseOperation,
WeiElementwiseOperation,
OutElementwiseOperation,
remove_reference_t<typename GridwiseGemm::DefaultBlock2CTileMap>,
true>;
ave_time = launch_and_time_kernel(kernel,
nrepeat,
dim3(grid_size),
dim3(BlockSize),
0,
arg.p_a_grid_,
arg.p_b_grid_,
arg.p_c_grid_,
arg.a_grid_desc_k0_m_k1_,
arg.b_grid_desc_k0_n_k1_,
arg.c_grid_desc_m0_n0_m1_n1_m2_m3_m4_n2_,
arg.in_element_op_,
arg.wei_element_op_,
arg.out_element_op_,
arg.block_2_ctile_map_);
}
else
{
const auto kernel = kernel_gemm_xdlops_v2r3<
GridwiseGemm,
ADataType, // TODO: distiguish A/B datatype
CDataType,
remove_reference_t<DeviceOp::AGridDesc_K0_M_K1>,
remove_reference_t<DeviceOp::BGridDesc_K0_N_K1>,
remove_reference_t<typename GridwiseGemm::CGridDesc_M0_N0_M1_N1_M2_M3_M4_N2>,
InElementwiseOperation,
WeiElementwiseOperation,
OutElementwiseOperation,
remove_reference_t<typename GridwiseGemm::DefaultBlock2CTileMap>,
false>;
ave_time = launch_and_time_kernel(kernel,
nrepeat,
dim3(grid_size),
dim3(BlockSize),
0,
arg.p_a_grid_,
arg.p_b_grid_,
arg.p_c_grid_,
arg.a_grid_desc_k0_m_k1_,
arg.b_grid_desc_k0_n_k1_,
arg.c_grid_desc_m0_n0_m1_n1_m2_m3_m4_n2_,
arg.in_element_op_,
arg.wei_element_op_,
arg.out_element_op_,
arg.block_2_ctile_map_);
}
return ave_time;
}
float Run(const BaseArgument* p_arg, int nrepeat = 1) override
{
return Run(*dynamic_cast<const Argument*>(p_arg), nrepeat);
}
};
static constexpr bool IsValidCompilationParameter()
{
// TODO: properly implement this check
return true;
}
static bool IsSupportedArgument(const Argument& arg)
{
if constexpr(ConvForwardSpecialization ==
ConvolutionForwardSpecialization_t::Filter1x1Stride1Pad0)
{
// check if it's 1x1, stride=1 conv
for(ck::index_t i = 0; i < NumDimSpatial; ++i)
{
if(!(arg.filter_spatial_lengths_[i] == 1 && arg.conv_filter_strides_[i] == 1 &&
arg.input_left_pads_[i] == 0 && arg.input_right_pads_[i] == 0))
{
return false;
}
}
}
else if constexpr(ConvForwardSpecialization ==
ConvolutionForwardSpecialization_t::Filter1x1Pad0)
{
// check if it's 1x1 conv
for(ck::index_t i = 0; i < NumDimSpatial; ++i)
{
if(!(arg.filter_spatial_lengths_[i] == 1 && arg.input_left_pads_[i] == 0 &&
arg.input_right_pads_[i] == 0))
{
return false;
}
}
}
// vector load A/B matrix from global memory
if(!(ABlockTransferSrcVectorDim == 2 && BBlockTransferSrcVectorDim == 2 &&
arg.Conv_C_ % ABlockTransferSrcScalarPerVector == 0 &&
arg.Conv_C_ % BBlockTransferSrcScalarPerVector == 0))
{
return false;
}
// vector store C matrix into global memory
if(!(arg.Conv_K_ % CThreadTransferDstScalarPerVector == 0))
{
return false;
}
// Gridwise GEMM size
return GridwiseGemm::CheckValidity(arg.a_grid_desc_k0_m_k1_,
arg.b_grid_desc_k0_n_k1_,
arg.c_grid_desc_m_n_,
arg.M01_,
arg.N01_);
}
bool IsSupportedArgument(const BaseArgument* p_arg) override
{
return IsSupportedArgument(*dynamic_cast<const Argument*>(p_arg));
}
static auto MakeArgument(const InDataType* p_in_grid,
const WeiDataType* p_wei_grid,
OutDataType* p_out_grid,
ck::index_t N,
ck::index_t K,
ck::index_t C,
std::vector<ck::index_t> input_spatial_lengths,
std::vector<ck::index_t> filter_spatial_lengths,
std::vector<ck::index_t> output_spatial_lengths,
std::vector<ck::index_t> conv_filter_strides,
std::vector<ck::index_t> conv_filter_dilations,
std::vector<ck::index_t> input_left_pads,
std::vector<ck::index_t> input_right_pads,
InElementwiseOperation in_element_op,
WeiElementwiseOperation wei_element_op,
OutElementwiseOperation out_element_op)
{
return Argument{p_in_grid,
p_wei_grid,
p_out_grid,
N,
K,
C,
input_spatial_lengths,
filter_spatial_lengths,
output_spatial_lengths,
conv_filter_strides,
conv_filter_dilations,
input_left_pads,
input_right_pads,
1,
1,
in_element_op,
wei_element_op,
out_element_op};
}
static auto MakeInvoker() { return Invoker{}; }
std::unique_ptr<BaseArgument>
MakeArgumentPointer(const void* p_in_grid,
const void* p_wei_grid,
void* p_out_grid,
ck::index_t N,
ck::index_t K,
ck::index_t C,
std::vector<ck::index_t> input_spatial_lengths,
std::vector<ck::index_t> filter_spatial_lengths,
std::vector<ck::index_t> output_spatial_lengths,
std::vector<ck::index_t> conv_filter_strides,
std::vector<ck::index_t> conv_filter_dilations,
std::vector<ck::index_t> input_left_pads,
std::vector<ck::index_t> input_right_pads,
InElementwiseOperation in_element_op,
WeiElementwiseOperation wei_element_op,
OutElementwiseOperation out_element_op) override
{
return std::make_unique<Argument>(static_cast<const InDataType*>(p_in_grid),
static_cast<const WeiDataType*>(p_wei_grid),
static_cast<OutDataType*>(p_out_grid),
N,
K,
C,
input_spatial_lengths,
filter_spatial_lengths,
output_spatial_lengths,
conv_filter_strides,
conv_filter_dilations,
input_left_pads,
input_right_pads,
1,
1,
in_element_op,
wei_element_op,
out_element_op);
}
std::unique_ptr<BaseInvoker> MakeInvokerPointer() override
{
return std::make_unique<Invoker>(Invoker{});
}
std::string GetTypeString() const override
{
auto str = std::stringstream();
// clang-format off
str << "DeviceConv" << std::to_string(NumDimSpatial)
<< "DFwdXdl_Input_N_Hi_Wi_C_Weight_K_Y_X_C_Output_N_Ho_Wo_K"
<< "<"
<< BlockSize << ", "
<< MPerBlock << ", "
<< NPerBlock << ", "
<< K0PerBlock
<< ">";
// clang-format on
return str.str();
}
};
} // namespace device
} // namespace tensor_operation
} // namespace ck
#endif
......@@ -52,7 +52,8 @@ template <typename ADataType,
ck::index_t BBlockTransferDstScalarPerVector_K1,
bool BBlockLdsAddExtraN,
ck::index_t CThreadTransferSrcDstVectorDim,
ck::index_t CThreadTransferDstScalarPerVector>
ck::index_t CThreadTransferDstScalarPerVector,
ck::index_t NumPrefetch = 1>
struct DeviceGemmXdl
: public DeviceGemm<AElementwiseOperation, BElementwiseOperation, CElementwiseOperation>
{
......@@ -218,7 +219,8 @@ struct DeviceGemmXdl
BBlockLdsAddExtraN,
Sequence<0, 2, 4, 5, 6, 1, 3, 7>, // CThreadTransferSrcDstAccessOrder,
CThreadTransferSrcDstVectorDim,
CThreadTransferDstScalarPerVector>;
CThreadTransferDstScalarPerVector,
NumPrefetch>;
// Argument
struct Argument : public BaseArgument
......@@ -261,7 +263,8 @@ struct DeviceGemmXdl
c_grid_desc_m0_n0_m1_n1_m2_m3_m4_n2_ =
GridwiseGemm::MakeCGridDescriptor_M0_N0_M1_N1_M2_M3_M4_N2(c_grid_desc_m_n_);
block_2_ctile_map_ = GridwiseGemm::MakeBlock2CTileMap(c_grid_desc_m_n_, M01, N01);
block_2_ctile_map_ =
GridwiseGemm::MakeDefaultBlock2CTileMap(c_grid_desc_m_n_, M01, N01);
}
}
......@@ -274,7 +277,7 @@ struct DeviceGemmXdl
CGridDesc_M_N c_grid_desc_m_n_;
typename GridwiseGemm::CGridDesc_M0_N0_M1_N1_M2_M3_M4_N2
c_grid_desc_m0_n0_m1_n1_m2_m3_m4_n2_;
typename GridwiseGemm::Block2CTileMap block_2_ctile_map_;
typename GridwiseGemm::DefaultBlock2CTileMap block_2_ctile_map_;
index_t M01_;
index_t N01_;
AElementwiseOperation a_element_op_;
......@@ -309,7 +312,7 @@ struct DeviceGemmXdl
arg.N01_))
{
throw std::runtime_error(
"wrong! GridwiseGemm_km_kn_m0m1n0n1_xdlops_v2r3 has invalid setting");
"wrong! GridwiseGemm_k0mk1_k0nk1_mn_xdlops_v2r3 has invalid setting");
}
const index_t grid_size = GridwiseGemm::CalculateGridSize(arg.c_grid_desc_m_n_);
......@@ -332,7 +335,7 @@ struct DeviceGemmXdl
AElementwiseOperation,
BElementwiseOperation,
CElementwiseOperation,
remove_reference_t<typename GridwiseGemm::Block2CTileMap>,
remove_reference_t<typename GridwiseGemm::DefaultBlock2CTileMap>,
true>;
ave_time = launch_and_time_kernel(kernel,
......@@ -363,7 +366,7 @@ struct DeviceGemmXdl
AElementwiseOperation,
BElementwiseOperation,
CElementwiseOperation,
remove_reference_t<typename GridwiseGemm::Block2CTileMap>,
remove_reference_t<typename GridwiseGemm::DefaultBlock2CTileMap>,
false>;
ave_time = launch_and_time_kernel(kernel,
......@@ -493,7 +496,12 @@ struct DeviceGemmXdl
<< BlockSize << ", "
<< MPerBlock << ", "
<< NPerBlock << ", "
<< K0PerBlock
<< K0PerBlock << ", "
<< K1 << ", "
<< MPerXDL << ", "
<< NPerXDL << ", "
<< MXdlPerWave << ", "
<< NXdlPerWave
<< ">";
// clang-format on
......
......@@ -4,9 +4,7 @@
#include <iostream>
#include <sstream>
#include "device.hpp"
#include "device_base.hpp"
#include "device_gemm.hpp"
#include "device_gemm_xdl.hpp"
#include "common_header.hpp"
#include "tensor_layout.hpp"
#include "tensor_descriptor.hpp"
......@@ -31,8 +29,9 @@ template <
ck::index_t BlockSize,
ck::index_t MPerBlock,
ck::index_t NPerBlock,
ck::index_t K0PerBlock,
ck::index_t K1,
ck::index_t KPerBlock,
ck::index_t AK1,
ck::index_t BK1,
ck::index_t MPerXDL,
ck::index_t NPerXDL,
ck::index_t MXdlPerWave,
......@@ -54,7 +53,8 @@ template <
index_t CShuffleMXdlPerWavePerShuffle,
index_t CShuffleNXdlPerWavePerShuffle,
typename CBlockTransferClusterLengths_MBlock_MXdlPerWave_MWaveMPerXdl_NBlock_NXdlPerWave_NWaveNPerXdl,
index_t CBlockTransferScalarPerVector_NWaveNPerXdl>
index_t CBlockTransferScalarPerVector_NWaveNPerXdl,
index_t NumPrefetch = 1>
struct DeviceGemmXdl_C_Shuffle
: public DeviceGemm<AElementwiseOperation, BElementwiseOperation, CElementwiseOperation>
{
......@@ -62,13 +62,11 @@ struct DeviceGemmXdl_C_Shuffle
static constexpr auto I1 = Number<1>{};
static constexpr auto I2 = Number<2>{};
static constexpr auto K1Number = Number<K1>{};
static auto MakeAGridDescriptor_K0_M_K1(index_t M, index_t K, index_t StrideA)
{
assert(K % K1 == 0);
assert(K % AK1 == 0);
const index_t K0 = K / K1;
const index_t K0 = K / AK1;
const auto a_grid_desc_m_k = [&]() {
if constexpr(is_same<tensor_layout::gemm::RowMajor, ALayout>::value)
......@@ -81,21 +79,20 @@ struct DeviceGemmXdl_C_Shuffle
}
}();
const auto a_grid_desc_k0_m_k1 =
transform_tensor_descriptor(a_grid_desc_m_k,
make_tuple(make_unmerge_transform(make_tuple(K0, K1Number)),
make_pass_through_transform(M)),
make_tuple(Sequence<1>{}, Sequence<0>{}),
make_tuple(Sequence<0, 2>{}, Sequence<1>{}));
const auto a_grid_desc_k0_m_k1 = transform_tensor_descriptor(
a_grid_desc_m_k,
make_tuple(make_unmerge_transform(make_tuple(K0, AK1)), make_pass_through_transform(M)),
make_tuple(Sequence<1>{}, Sequence<0>{}),
make_tuple(Sequence<0, 2>{}, Sequence<1>{}));
return a_grid_desc_k0_m_k1;
}
static auto MakeBGridDescriptor_K0_N_K1(index_t K, index_t N, index_t StrideB)
{
assert(K % K1 == 0);
assert(K % BK1 == 0);
const index_t K0 = K / K1;
const index_t K0 = K / BK1;
const auto b_grid_desc_k_n = [&]() {
if constexpr(is_same<tensor_layout::gemm::RowMajor, BLayout>::value)
......@@ -108,12 +105,11 @@ struct DeviceGemmXdl_C_Shuffle
}
}();
const auto b_grid_desc_k0_n_k1 =
transform_tensor_descriptor(b_grid_desc_k_n,
make_tuple(make_unmerge_transform(make_tuple(K0, K1Number)),
make_pass_through_transform(N)),
make_tuple(Sequence<0>{}, Sequence<1>{}),
make_tuple(Sequence<0, 2>{}, Sequence<1>{}));
const auto b_grid_desc_k0_n_k1 = transform_tensor_descriptor(
b_grid_desc_k_n,
make_tuple(make_unmerge_transform(make_tuple(K0, BK1)), make_pass_through_transform(N)),
make_tuple(Sequence<0>{}, Sequence<1>{}),
make_tuple(Sequence<0, 2>{}, Sequence<1>{}));
return b_grid_desc_k0_n_k1;
}
......@@ -149,10 +145,11 @@ struct DeviceGemmXdl_C_Shuffle
CElementwiseOperation,
MPerBlock,
NPerBlock,
K0PerBlock,
KPerBlock,
AK1,
BK1,
MPerXDL,
NPerXDL,
K1,
MXdlPerWave,
NXdlPerWave,
ABlockTransferThreadClusterLengths_K0_M_K1,
......@@ -174,7 +171,8 @@ struct DeviceGemmXdl_C_Shuffle
CShuffleMXdlPerWavePerShuffle,
CShuffleNXdlPerWavePerShuffle,
CBlockTransferClusterLengths_MBlock_MXdlPerWave_MWaveMPerXdl_NBlock_NXdlPerWave_NWaveNPerXdl,
CBlockTransferScalarPerVector_NWaveNPerXdl>;
CBlockTransferScalarPerVector_NWaveNPerXdl,
NumPrefetch>;
// Argument
struct Argument : public BaseArgument
......@@ -221,7 +219,8 @@ struct DeviceGemmXdl_C_Shuffle
MakeCGridDescriptor_MBlock_MXdlPerWave_MWaveMPerXdl_NBlock_NXdlPerWave_NWaveNPerXdl(
c_grid_desc_m_n_);
block_2_ctile_map_ = GridwiseGemm::MakeBlock2CTileMap(c_grid_desc_m_n_, M01, N01);
block_2_ctile_map_ =
GridwiseGemm::MakeDefaultBlock2CTileMap(c_grid_desc_m_n_, M01, N01);
}
}
......@@ -235,7 +234,7 @@ struct DeviceGemmXdl_C_Shuffle
typename GridwiseGemm::
CGridDescriptor_MBlock_MXdlPerWave_MWaveMPerXdl_NBlock_NXdlPerWave_NWaveNPerXdl
c_grid_desc_mblock_mxdlperwave_mwavemperxdl_nblock_nxdlperwave_nwavenperxdl_;
typename GridwiseGemm::Block2CTileMap block_2_ctile_map_;
typename GridwiseGemm::DefaultBlock2CTileMap block_2_ctile_map_;
index_t M01_;
index_t N01_;
AElementwiseOperation a_element_op_;
......@@ -295,7 +294,7 @@ struct DeviceGemmXdl_C_Shuffle
AElementwiseOperation,
BElementwiseOperation,
CElementwiseOperation,
remove_reference_t<typename GridwiseGemm::Block2CTileMap>,
remove_reference_t<typename GridwiseGemm::DefaultBlock2CTileMap>,
true>;
ave_time = launch_and_time_kernel(
......@@ -329,7 +328,7 @@ struct DeviceGemmXdl_C_Shuffle
AElementwiseOperation,
BElementwiseOperation,
CElementwiseOperation,
remove_reference_t<typename GridwiseGemm::Block2CTileMap>,
remove_reference_t<typename GridwiseGemm::DefaultBlock2CTileMap>,
false>;
ave_time = launch_and_time_kernel(
......@@ -460,7 +459,9 @@ struct DeviceGemmXdl_C_Shuffle
<< BlockSize << ", "
<< MPerBlock << ", "
<< NPerBlock << ", "
<< K0PerBlock
<< KPerBlock << ", "
<< AK1 << ", "
<< BK1
<< ">";
// clang-format on
......
......@@ -235,7 +235,8 @@ struct DeviceGemmXdl_C_Shuffle_Bias_2d
MakeCGridDescriptor_MBlock_MXdlPerWave_MWaveMPerXdl_NBlock_NXdlPerWave_NWaveNPerXdl(
c_grid_desc_m_n_);
block_2_ctile_map_ = GridwiseGemm::MakeBlock2CTileMap(c_grid_desc_m_n_, M01, N01);
block_2_ctile_map_ =
GridwiseGemm::MakeDefaultBlock2CTileMap(c_grid_desc_m_n_, M01, N01);
}
}
......@@ -254,7 +255,7 @@ struct DeviceGemmXdl_C_Shuffle_Bias_2d
typename GridwiseGemm::
CGridDescriptor_MBlock_MXdlPerWave_MWaveMPerXdl_NBlock_NXdlPerWave_NWaveNPerXdl
c_grid_desc_mblock_mxdlperwave_mwavemperxdl_nblock_nxdlperwave_nwavenperxdl_;
typename GridwiseGemm::Block2CTileMap block_2_ctile_map_;
typename GridwiseGemm::DefaultBlock2CTileMap block_2_ctile_map_;
index_t M01_;
index_t N01_;
AElementwiseOperation a_element_op_;
......@@ -320,7 +321,7 @@ struct DeviceGemmXdl_C_Shuffle_Bias_2d
AElementwiseOperation,
BElementwiseOperation,
CElementwiseOperation,
remove_reference_t<typename GridwiseGemm::Block2CTileMap>,
remove_reference_t<typename GridwiseGemm::DefaultBlock2CTileMap>,
true>;
ave_time = launch_and_time_kernel(
......@@ -359,7 +360,7 @@ struct DeviceGemmXdl_C_Shuffle_Bias_2d
AElementwiseOperation,
BElementwiseOperation,
CElementwiseOperation,
remove_reference_t<typename GridwiseGemm::Block2CTileMap>,
remove_reference_t<typename GridwiseGemm::DefaultBlock2CTileMap>,
false>;
ave_time = launch_and_time_kernel(
......
......@@ -240,7 +240,8 @@ struct DeviceGemmXdl_C_Shuffle_Bias_Activation
MakeCGridDescriptor_MBlock_MXdlPerWave_MWaveMPerXdl_NBlock_NXdlPerWave_NWaveNPerXdl(
c0_grid_desc_m_n_);
block_2_ctile_map_ = GridwiseGemm::MakeBlock2CTileMap(c_grid_desc_m_n_, M01, N01);
block_2_ctile_map_ =
GridwiseGemm::MakeDefaultBlock2CTileMap(c_grid_desc_m_n_, M01, N01);
}
}
......@@ -259,7 +260,7 @@ struct DeviceGemmXdl_C_Shuffle_Bias_Activation
typename GridwiseGemm::
C0GridDescriptor_MBlock_MXdlPerWave_MWaveMPerXdl_NBlock_NXdlPerWave_NWaveNPerXdl
c0_grid_desc_mblock_mxdlperwave_mwavemperxdl_nblock_nxdlperwave_nwavenperxdl_;
typename GridwiseGemm::Block2CTileMap block_2_ctile_map_;
typename GridwiseGemm::DefaultBlock2CTileMap block_2_ctile_map_;
index_t M01_;
index_t N01_;
AElementwiseOperation a_element_op_;
......@@ -325,7 +326,7 @@ struct DeviceGemmXdl_C_Shuffle_Bias_Activation
AElementwiseOperation,
BElementwiseOperation,
CElementwiseOperation,
remove_reference_t<typename GridwiseGemm::Block2CTileMap>,
remove_reference_t<typename GridwiseGemm::DefaultBlock2CTileMap>,
true>;
ave_time = launch_and_time_kernel(
......@@ -364,7 +365,7 @@ struct DeviceGemmXdl_C_Shuffle_Bias_Activation
AElementwiseOperation,
BElementwiseOperation,
CElementwiseOperation,
remove_reference_t<typename GridwiseGemm::Block2CTileMap>,
remove_reference_t<typename GridwiseGemm::DefaultBlock2CTileMap>,
false>;
ave_time = launch_and_time_kernel(
......
......@@ -274,7 +274,8 @@ struct DeviceGemmXdl_C_Shuffle_Bias_Activation_Add
MakeCGridDescriptor_MBlock_MXdlPerWave_MWaveMPerXdl_NBlock_NXdlPerWave_NWaveNPerXdl(
c1_grid_desc_m_n_);
block_2_ctile_map_ = GridwiseGemm::MakeBlock2CTileMap(c_grid_desc_m_n_, M01, N01);
block_2_ctile_map_ =
GridwiseGemm::MakeDefaultBlock2CTileMap(c_grid_desc_m_n_, M01, N01);
}
}
......@@ -298,7 +299,7 @@ struct DeviceGemmXdl_C_Shuffle_Bias_Activation_Add
typename GridwiseGemm::
C1GridDescriptor_MBlock_MXdlPerWave_MWaveMPerXdl_NBlock_NXdlPerWave_NWaveNPerXdl
c1_grid_desc_mblock_mxdlperwave_mwavemperxdl_nblock_nxdlperwave_nwavenperxdl_;
typename GridwiseGemm::Block2CTileMap block_2_ctile_map_;
typename GridwiseGemm::DefaultBlock2CTileMap block_2_ctile_map_;
index_t M01_;
index_t N01_;
AElementwiseOperation a_element_op_;
......@@ -370,7 +371,7 @@ struct DeviceGemmXdl_C_Shuffle_Bias_Activation_Add
AElementwiseOperation,
BElementwiseOperation,
CElementwiseOperation,
remove_reference_t<typename GridwiseGemm::Block2CTileMap>,
remove_reference_t<typename GridwiseGemm::DefaultBlock2CTileMap>,
true>;
ave_time = launch_and_time_kernel(
......@@ -414,7 +415,7 @@ struct DeviceGemmXdl_C_Shuffle_Bias_Activation_Add
AElementwiseOperation,
BElementwiseOperation,
CElementwiseOperation,
remove_reference_t<typename GridwiseGemm::Block2CTileMap>,
remove_reference_t<typename GridwiseGemm::DefaultBlock2CTileMap>,
false>;
ave_time = launch_and_time_kernel(
......
#ifndef DEVICE_GEMM_XDL_SPLITK_C_SHUFFLE_HPP
#define DEVICE_GEMM_XDL_SPLITK_C_SHUFFLE_HPP
#include <iostream>
#include <sstream>
#include "device.hpp"
#include "device_base.hpp"
#include "device_gemm.hpp"
#include "common_header.hpp"
#include "tensor_layout.hpp"
#include "tensor_descriptor.hpp"
#include "tensor_descriptor_helper.hpp"
#include "gridwise_gemm_xdlops_v2r4r2.hpp"
#include "gemm_specialization.hpp"
#ifndef CK_RUN_KERNEL_AND_TIME
#define CK_RUN_KERNEL_AND_TIME 1
#endif
namespace ck {
namespace tensor_operation {
namespace device {
template <typename ADataType,
typename BDataType,
typename CDataType,
typename AccDataType,
typename ALayout,
typename BLayout,
typename CLayout,
typename AElementwiseOperation,
typename BElementwiseOperation,
typename CElementwiseOperation,
GemmSpecialization_t GemmSpecialization,
ck::index_t BlockSize,
ck::index_t MPerBlock,
ck::index_t NPerBlock,
ck::index_t K0PerBlock,
ck::index_t K1,
ck::index_t MPerXDL,
ck::index_t NPerXDL,
ck::index_t MXdlPerWave,
ck::index_t NXdlPerWave,
typename ABlockTransferThreadClusterLengths_K0_M_K1,
typename ABlockTransferThreadClusterArrangeOrder,
typename ABlockTransferSrcAccessOrder,
ck::index_t ABlockTransferSrcVectorDim,
ck::index_t ABlockTransferSrcScalarPerVector,
ck::index_t ABlockTransferDstScalarPerVector_K1,
bool ABlockLdsAddExtraM,
typename BBlockTransferThreadClusterLengths_K0_N_K1,
typename BBlockTransferThreadClusterArrangeOrder,
typename BBlockTransferSrcAccessOrder,
ck::index_t BBlockTransferSrcVectorDim,
ck::index_t BBlockTransferSrcScalarPerVector,
ck::index_t BBlockTransferDstScalarPerVector_K1,
bool BBlockLdsAddExtraN,
index_t CShuffleMRepeatPerShuffle,
index_t CShuffleNRepeatPerShuffle,
typename CBlockTransferClusterLengths_MBlock_MPerBlock_NBlock_NPerBlock,
index_t CBlockTransferScalarPerVector_NWaveNPerXDL>
struct DeviceGemmXdlSplitKCShuffle
: public DeviceGemm<AElementwiseOperation, BElementwiseOperation, CElementwiseOperation>
{
static constexpr auto I0 = Number<0>{};
static constexpr auto I1 = Number<1>{};
static constexpr auto I2 = Number<2>{};
static constexpr auto I3 = Number<3>{};
static constexpr auto K1Number = Number<K1>{};
static auto
MakeAGridDescriptor_KBatch_K0_M_K1(index_t M, index_t K, index_t StrideA, int KBatch, int KPad)
{
assert(KPad % (K1 * KBatch) == 0);
const index_t K0 = KPad / (K1 * KBatch);
const auto a_grid_desc_m_k = [&]() {
if constexpr(is_same<tensor_layout::gemm::RowMajor, ALayout>::value)
{
return make_naive_tensor_descriptor(make_tuple(M, K), make_tuple(StrideA, I1));
}
else if constexpr(is_same<tensor_layout::gemm::ColumnMajor, ALayout>::value)
{
return make_naive_tensor_descriptor(make_tuple(M, K), make_tuple(I1, StrideA));
}
}();
const auto a_grid_desc_m_kpad = transform_tensor_descriptor(
a_grid_desc_m_k,
make_tuple(make_right_pad_transform(K, KPad - K), make_pass_through_transform(M)),
make_tuple(Sequence<0>{}, Sequence<1>{}),
make_tuple(Sequence<0>{}, Sequence<1>{}));
if constexpr(GemmSpecialization == GemmSpecialization_t::MNPadding)
{
const auto PadM = (MPerBlock - M % MPerBlock) % MPerBlock;
return transform_tensor_descriptor(
a_grid_desc_m_kpad,
make_tuple(make_unmerge_transform(make_tuple(KBatch, K0, K1Number)),
make_right_pad_transform(M, PadM)),
make_tuple(Sequence<1>{}, Sequence<0>{}),
make_tuple(Sequence<0, 1, 3>{}, Sequence<2>{}));
}
else
{
return transform_tensor_descriptor(
a_grid_desc_m_kpad,
make_tuple(make_unmerge_transform(make_tuple(KBatch, K0, K1Number)),
make_pass_through_transform(M)),
make_tuple(Sequence<1>{}, Sequence<0>{}),
make_tuple(Sequence<0, 1, 3>{}, Sequence<2>{}));
}
}
static auto
MakeBGridDescriptor_KBatch_K0_N_K1(index_t K, index_t N, index_t StrideB, int KBatch, int KPad)
{
assert(KPad % (K1 * KBatch) == 0);
const index_t K0 = KPad / (K1 * KBatch);
const auto b_grid_desc_k_n = [&]() {
if constexpr(is_same<tensor_layout::gemm::RowMajor, BLayout>::value)
{
return make_naive_tensor_descriptor(make_tuple(K, N), make_tuple(StrideB, I1));
}
else if constexpr(is_same<tensor_layout::gemm::ColumnMajor, BLayout>::value)
{
return make_naive_tensor_descriptor(make_tuple(K, N), make_tuple(I1, StrideB));
}
}();
const auto b_grid_desc_kpad_n = transform_tensor_descriptor(
b_grid_desc_k_n,
make_tuple(make_right_pad_transform(K, KPad - K), make_pass_through_transform(N)),
make_tuple(Sequence<0>{}, Sequence<1>{}),
make_tuple(Sequence<0>{}, Sequence<1>{}));
if constexpr(GemmSpecialization == GemmSpecialization_t::MNPadding)
{
const auto PadN = (NPerBlock - N % NPerBlock) % NPerBlock;
return transform_tensor_descriptor(
b_grid_desc_kpad_n,
make_tuple(make_unmerge_transform(make_tuple(KBatch, K0, K1Number)),
make_right_pad_transform(N, PadN)),
make_tuple(Sequence<0>{}, Sequence<1>{}),
make_tuple(Sequence<0, 1, 3>{}, Sequence<2>{}));
}
else
{
return transform_tensor_descriptor(
b_grid_desc_kpad_n,
make_tuple(make_unmerge_transform(make_tuple(KBatch, K0, K1Number)),
make_pass_through_transform(N)),
make_tuple(Sequence<0>{}, Sequence<1>{}),
make_tuple(Sequence<0, 1, 3>{}, Sequence<2>{}));
}
}
static auto MakeCGridDescriptor_M_N(index_t M, index_t N, index_t StrideC)
{
const auto c_grid_desc_m_n = [&]() {
if constexpr(is_same<tensor_layout::gemm::RowMajor, CLayout>::value)
{
return make_naive_tensor_descriptor(make_tuple(M, N), make_tuple(StrideC, I1));
}
else if constexpr(is_same<tensor_layout::gemm::ColumnMajor, CLayout>::value)
{
return make_naive_tensor_descriptor(make_tuple(M, N), make_tuple(I1, StrideC));
}
}();
if constexpr(GemmSpecialization == GemmSpecialization_t::MNPadding)
{
const auto PadM = (MPerBlock - M % MPerBlock) % MPerBlock;
const auto PadN = (NPerBlock - N % NPerBlock) % NPerBlock;
return transform_tensor_descriptor(
c_grid_desc_m_n,
make_tuple(make_right_pad_transform(M, PadM), make_right_pad_transform(N, PadN)),
make_tuple(Sequence<0>{}, Sequence<1>{}),
make_tuple(Sequence<0>{}, Sequence<1>{}));
}
else
{
return transform_tensor_descriptor(
c_grid_desc_m_n,
make_tuple(make_pass_through_transform(M), make_pass_through_transform(N)),
make_tuple(Sequence<0>{}, Sequence<1>{}),
make_tuple(Sequence<0>{}, Sequence<1>{}));
}
}
static auto GetKPad(index_t K, index_t KBatch)
{
const index_t K0 = math::integer_divide_ceil(K, K1 * K0PerBlock * KBatch) * K0PerBlock;
const index_t KPad = KBatch * K0 * K1;
return KPad;
}
using AGridDesc_K0_M_K1 = decltype(MakeAGridDescriptor_KBatch_K0_M_K1(1, 1, 1, 1, 1));
using BGridDesc_K0_N_K1 = decltype(MakeBGridDescriptor_KBatch_K0_N_K1(1, 1, 1, 1, 1));
using CGridDesc_M_N = decltype(MakeCGridDescriptor_M_N(1, 1, 1));
// GridwiseGemm
using GridwiseGemm = GridwiseGemm_bk0mk1_bk0nk1_mn_xdlops_v2r4r2<
BlockSize,
ADataType, // TODO: distinguish A/B datatype
AccDataType,
CDataType,
InMemoryDataOperationEnum_t::Set,
AGridDesc_K0_M_K1,
BGridDesc_K0_N_K1,
CGridDesc_M_N,
AElementwiseOperation,
BElementwiseOperation,
CElementwiseOperation,
MPerBlock,
NPerBlock,
K0PerBlock,
MPerXDL,
NPerXDL,
K1,
MXdlPerWave,
NXdlPerWave,
ABlockTransferThreadClusterLengths_K0_M_K1,
ABlockTransferThreadClusterArrangeOrder,
ABlockTransferSrcAccessOrder,
ABlockTransferSrcVectorDim,
ABlockTransferSrcScalarPerVector,
ABlockTransferDstScalarPerVector_K1,
false, // AThreadTransferSrcResetCoordinateAfterRun,
ABlockLdsAddExtraM,
BBlockTransferThreadClusterLengths_K0_N_K1,
BBlockTransferThreadClusterArrangeOrder,
BBlockTransferSrcAccessOrder,
BBlockTransferSrcVectorDim,
BBlockTransferSrcScalarPerVector,
BBlockTransferDstScalarPerVector_K1,
false, // BThreadTransferSrcResetCoordinateAfterRun,
BBlockLdsAddExtraN,
CShuffleMRepeatPerShuffle,
CShuffleNRepeatPerShuffle,
CBlockTransferScalarPerVector_NWaveNPerXDL,
CBlockTransferClusterLengths_MBlock_MPerBlock_NBlock_NPerBlock>;
// GridwiseGemm
using GridwiseGemmAtomicAdd = GridwiseGemm_bk0mk1_bk0nk1_mn_xdlops_v2r4r2<
BlockSize,
ADataType, // TODO: distinguish A/B datatype
AccDataType,
CDataType,
InMemoryDataOperationEnum_t::AtomicAdd,
AGridDesc_K0_M_K1,
BGridDesc_K0_N_K1,
CGridDesc_M_N,
AElementwiseOperation,
BElementwiseOperation,
CElementwiseOperation,
MPerBlock,
NPerBlock,
K0PerBlock,
MPerXDL,
NPerXDL,
K1,
MXdlPerWave,
NXdlPerWave,
ABlockTransferThreadClusterLengths_K0_M_K1,
ABlockTransferThreadClusterArrangeOrder,
ABlockTransferSrcAccessOrder,
ABlockTransferSrcVectorDim,
ABlockTransferSrcScalarPerVector,
ABlockTransferDstScalarPerVector_K1,
false, // AThreadTransferSrcResetCoordinateAfterRun,
ABlockLdsAddExtraM,
BBlockTransferThreadClusterLengths_K0_N_K1,
BBlockTransferThreadClusterArrangeOrder,
BBlockTransferSrcAccessOrder,
BBlockTransferSrcVectorDim,
BBlockTransferSrcScalarPerVector,
BBlockTransferDstScalarPerVector_K1,
false, // BThreadTransferSrcResetCoordinateAfterRun,
BBlockLdsAddExtraN,
CShuffleMRepeatPerShuffle,
CShuffleNRepeatPerShuffle,
CBlockTransferScalarPerVector_NWaveNPerXDL,
CBlockTransferClusterLengths_MBlock_MPerBlock_NBlock_NPerBlock>;
using CGridDesc_MBlock_MPerBlock_NBlock_NPerBlock =
decltype(GridwiseGemm::MakeCGridDesc_MBlock_MPerBlock_NBlock_NPerBlock(CGridDesc_M_N{}));
using Block2CTileMap =
decltype(GridwiseGemm::MakeCBlockClusterAdaptor(CGridDesc_M_N{}, 1, 1, 1));
// Argument
struct Argument : public BaseArgument
{
Argument(const ADataType* p_a_grid,
const BDataType* p_b_grid,
CDataType* p_c_grid,
index_t M,
index_t N,
index_t K,
index_t StrideA,
index_t StrideB,
index_t StrideC,
index_t M01,
index_t N01,
AElementwiseOperation a_element_op,
BElementwiseOperation b_element_op,
CElementwiseOperation c_element_op,
index_t k_batch)
: p_a_grid_{p_a_grid},
p_b_grid_{p_b_grid},
p_c_grid_{p_c_grid},
a_grid_desc_kbatch_k0_m_k1_{},
b_grid_desc_kbatch_k0_n_k1_{},
c_grid_desc_m_n_{},
c_grid_desc_mblock_mperblock_nblock_nperblock_{},
block_2_ctile_map_{},
M01_{M01},
N01_{N01},
a_element_op_{a_element_op},
b_element_op_{b_element_op},
c_element_op_{c_element_op},
k_batch_{k_batch}
{
int KPad = DeviceGemmXdlSplitKCShuffle::GetKPad(K, k_batch_);
a_grid_desc_kbatch_k0_m_k1_ =
DeviceGemmXdlSplitKCShuffle::MakeAGridDescriptor_KBatch_K0_M_K1(
M, K, StrideA, k_batch_, KPad);
b_grid_desc_kbatch_k0_n_k1_ =
DeviceGemmXdlSplitKCShuffle::MakeBGridDescriptor_KBatch_K0_N_K1(
K, N, StrideB, k_batch_, KPad);
c_grid_desc_m_n_ = DeviceGemmXdlSplitKCShuffle::MakeCGridDescriptor_M_N(M, N, StrideC);
if(GridwiseGemm::CheckValidity(a_grid_desc_kbatch_k0_m_k1_,
b_grid_desc_kbatch_k0_n_k1_,
c_grid_desc_m_n_,
M01_,
N01_))
{
c_grid_desc_mblock_mperblock_nblock_nperblock_ =
GridwiseGemm::MakeCGridDesc_MBlock_MPerBlock_NBlock_NPerBlock(c_grid_desc_m_n_);
block_2_ctile_map_ =
GridwiseGemm::MakeCBlockClusterAdaptor(c_grid_desc_m_n_, M01, N01, k_batch_);
}
}
// private:
const ADataType* p_a_grid_;
const BDataType* p_b_grid_;
CDataType* p_c_grid_;
AGridDesc_K0_M_K1 a_grid_desc_kbatch_k0_m_k1_;
BGridDesc_K0_N_K1 b_grid_desc_kbatch_k0_n_k1_;
CGridDesc_M_N c_grid_desc_m_n_;
CGridDesc_MBlock_MPerBlock_NBlock_NPerBlock c_grid_desc_mblock_mperblock_nblock_nperblock_;
Block2CTileMap block_2_ctile_map_;
index_t M01_;
index_t N01_;
AElementwiseOperation a_element_op_;
BElementwiseOperation b_element_op_;
CElementwiseOperation c_element_op_;
index_t k_batch_;
};
// Invoker
struct Invoker : public BaseInvoker
{
using Argument = DeviceGemmXdlSplitKCShuffle::Argument;
void ShowInfo(const Argument& arg)
{
std::cout << "arg.a_grid_desc_kbatch_k0_m_k1_{"
<< arg.a_grid_desc_kbatch_k0_m_k1_.GetLength(I0) << ", "
<< arg.a_grid_desc_kbatch_k0_m_k1_.GetLength(I1) << ", "
<< arg.a_grid_desc_kbatch_k0_m_k1_.GetLength(I2) << ", "
<< arg.a_grid_desc_kbatch_k0_m_k1_.GetLength(I3) << "}" << std::endl;
std::cout << "arg.b_grid_desc_kbatch_k0_n_k1_{"
<< arg.b_grid_desc_kbatch_k0_n_k1_.GetLength(I0) << ", "
<< arg.b_grid_desc_kbatch_k0_n_k1_.GetLength(I1) << ", "
<< arg.b_grid_desc_kbatch_k0_n_k1_.GetLength(I2) << ", "
<< arg.b_grid_desc_kbatch_k0_n_k1_.GetLength(I3) << "}" << std::endl;
std::cout << "arg.c_grid_desc_m_n_{ " << arg.c_grid_desc_m_n_.GetLength(I0) << ", "
<< arg.c_grid_desc_m_n_.GetLength(I1) << "}" << std::endl;
}
float Run(const Argument& arg, int nrepeat = 1)
{
const auto kbatch = arg.a_grid_desc_kbatch_k0_m_k1_.GetLength(I0);
if(!GridwiseGemm::CheckValidity(arg.a_grid_desc_kbatch_k0_m_k1_,
arg.b_grid_desc_kbatch_k0_n_k1_,
arg.c_grid_desc_m_n_,
arg.M01_,
arg.N01_))
{
throw std::runtime_error(
"wrong! GridwiseGemm_bk0mk1_bk0nk1_mn_xdlops_v2r4r2 has invalid setting");
}
const index_t grid_size = GridwiseGemm::CalculateGridSize(arg.c_grid_desc_m_n_, kbatch);
const auto K0 = arg.a_grid_desc_kbatch_k0_m_k1_.GetLength(I1);
const bool has_main_k0_block_loop = GridwiseGemm::CalculateHasMainK0BlockLoop(K0);
float ave_time = 0;
const auto Run = [&](const auto& kernel) {
if(nrepeat > 0)
{
ShowInfo(arg);
ave_time =
launch_and_time_kernel(kernel,
nrepeat,
dim3(grid_size),
dim3(BlockSize),
0,
arg.p_a_grid_,
arg.p_b_grid_,
arg.p_c_grid_,
arg.a_grid_desc_kbatch_k0_m_k1_,
arg.b_grid_desc_kbatch_k0_n_k1_,
arg.c_grid_desc_mblock_mperblock_nblock_nperblock_,
arg.a_element_op_,
arg.b_element_op_,
arg.c_element_op_,
arg.block_2_ctile_map_);
}
if(kbatch > 1 || nrepeat <= 0)
{
hipGetErrorString(hipMemset(
arg.p_c_grid_,
0,
arg.c_grid_desc_mblock_mperblock_nblock_nperblock_.GetElementSpaceSize() *
sizeof(CDataType)));
launch_kernel(kernel,
dim3(grid_size),
dim3(BlockSize),
0,
arg.p_a_grid_,
arg.p_b_grid_,
arg.p_c_grid_,
arg.a_grid_desc_kbatch_k0_m_k1_,
arg.b_grid_desc_kbatch_k0_n_k1_,
arg.c_grid_desc_mblock_mperblock_nblock_nperblock_,
arg.a_element_op_,
arg.b_element_op_,
arg.c_element_op_,
arg.block_2_ctile_map_);
}
};
if(has_main_k0_block_loop)
{
if(kbatch == 1)
{
const auto kernel = kernel_gemm_xdlops_v2r4r2<
GridwiseGemm,
ADataType, // TODO: distiguish A/B datatype
CDataType,
remove_reference_t<DeviceGemmXdlSplitKCShuffle::AGridDesc_K0_M_K1>,
remove_reference_t<DeviceGemmXdlSplitKCShuffle::BGridDesc_K0_N_K1>,
remove_reference_t<DeviceGemmXdlSplitKCShuffle::
CGridDesc_MBlock_MPerBlock_NBlock_NPerBlock>,
AElementwiseOperation,
BElementwiseOperation,
CElementwiseOperation,
remove_reference_t<DeviceGemmXdlSplitKCShuffle::Block2CTileMap>,
true>;
Run(kernel);
}
else
{
const auto kernel = kernel_gemm_xdlops_v2r4r2<
GridwiseGemmAtomicAdd,
ADataType, // TODO: distiguish A/B datatype
CDataType,
remove_reference_t<DeviceGemmXdlSplitKCShuffle::AGridDesc_K0_M_K1>,
remove_reference_t<DeviceGemmXdlSplitKCShuffle::BGridDesc_K0_N_K1>,
remove_reference_t<DeviceGemmXdlSplitKCShuffle::
CGridDesc_MBlock_MPerBlock_NBlock_NPerBlock>,
AElementwiseOperation,
BElementwiseOperation,
CElementwiseOperation,
remove_reference_t<DeviceGemmXdlSplitKCShuffle::Block2CTileMap>,
true>;
Run(kernel);
}
}
else
{
if(kbatch == 1)
{
const auto kernel = kernel_gemm_xdlops_v2r4r2<
GridwiseGemm,
ADataType, // TODO: distiguish A/B datatype
CDataType,
remove_reference_t<DeviceGemmXdlSplitKCShuffle::AGridDesc_K0_M_K1>,
remove_reference_t<DeviceGemmXdlSplitKCShuffle::BGridDesc_K0_N_K1>,
remove_reference_t<DeviceGemmXdlSplitKCShuffle::
CGridDesc_MBlock_MPerBlock_NBlock_NPerBlock>,
AElementwiseOperation,
BElementwiseOperation,
CElementwiseOperation,
remove_reference_t<DeviceGemmXdlSplitKCShuffle::Block2CTileMap>,
false>;
Run(kernel);
}
else
{
const auto kernel = kernel_gemm_xdlops_v2r4r2<
GridwiseGemmAtomicAdd,
ADataType, // TODO: distiguish A/B datatype
CDataType,
remove_reference_t<DeviceGemmXdlSplitKCShuffle::AGridDesc_K0_M_K1>,
remove_reference_t<DeviceGemmXdlSplitKCShuffle::BGridDesc_K0_N_K1>,
remove_reference_t<DeviceGemmXdlSplitKCShuffle::
CGridDesc_MBlock_MPerBlock_NBlock_NPerBlock>,
AElementwiseOperation,
BElementwiseOperation,
CElementwiseOperation,
remove_reference_t<DeviceGemmXdlSplitKCShuffle::Block2CTileMap>,
false>;
Run(kernel);
}
}
return ave_time;
}
// polymorphic
float Run(const BaseArgument* p_arg, int nrepeat = 1) override
{
return Run(*dynamic_cast<const Argument*>(p_arg), nrepeat);
}
};
static constexpr bool IsValidCompilationParameter()
{
// TODO: properly implement this check
return true;
}
static bool IsSupportedArgument(const Argument& arg)
{
return GridwiseGemm::CheckValidity(arg.a_grid_desc_kbatch_k0_m_k1_,
arg.b_grid_desc_kbatch_k0_n_k1_,
arg.c_grid_desc_m_n_,
arg.M01_,
arg.N01_);
}
// polymorphic
bool IsSupportedArgument(const BaseArgument* p_arg) override
{
return IsSupportedArgument(*dynamic_cast<const Argument*>(p_arg));
}
static auto MakeArgument(const ADataType* p_a,
const BDataType* p_b,
CDataType* p_c,
index_t M,
index_t N,
index_t K,
index_t StrideA,
index_t StrideB,
index_t StrideC,
AElementwiseOperation a_element_op,
BElementwiseOperation b_element_op,
CElementwiseOperation c_element_op,
index_t KBatch)
{
return Argument{p_a,
p_b,
p_c,
M,
N,
K,
StrideA,
StrideB,
StrideC,
1,
1,
a_element_op,
b_element_op,
c_element_op,
KBatch};
}
static auto MakeInvoker() { return Invoker{}; }
// polymorphic
std::unique_ptr<BaseArgument> MakeArgumentPointer(const void* p_a,
const void* p_b,
void* p_c,
index_t M,
index_t N,
index_t K,
index_t StrideA,
index_t StrideB,
index_t StrideC,
AElementwiseOperation a_element_op,
BElementwiseOperation b_element_op,
CElementwiseOperation c_element_op,
ck::index_t KBatch = 1) override
{
return std::make_unique<Argument>(static_cast<const ADataType*>(p_a),
static_cast<const BDataType*>(p_b),
static_cast<CDataType*>(p_c),
M,
N,
K,
StrideA,
StrideB,
StrideC,
1,
1,
a_element_op,
b_element_op,
c_element_op,
KBatch);
}
// polymorphic
std::unique_ptr<BaseInvoker> MakeInvokerPointer() override
{
return std::make_unique<Invoker>(Invoker{});
}
// polymorphic
std::string GetTypeString() const override
{
auto str = std::stringstream();
// clang-format off
str << "DeviceGemmXdlSplitKCShuffle"
<< "<"
<< BlockSize << ", "
<< MPerBlock << ", "
<< NPerBlock << ", "
<< K0PerBlock
<< ">";
// clang-format on
return str.str();
}
};
} // namespace device
} // namespace tensor_operation
} // namespace ck
#endif
......@@ -12,41 +12,102 @@ namespace gemm {
struct RowMajor : public BaseTensorLayout
{
static constexpr const char* name = "RowMajor";
};
struct ColumnMajor : public BaseTensorLayout
{
static constexpr const char* name = "ColumnMajor";
};
} // namespace gemm
namespace convolution {
// 1D Conv
struct NWC : public BaseTensorLayout
{
static constexpr const char* name = "NWC";
};
struct KXC : public BaseTensorLayout
{
static constexpr const char* name = "KXC";
};
struct NWK : public BaseTensorLayout
{
static constexpr const char* name = "NWK";
};
struct NCW : public BaseTensorLayout
{
static constexpr const char* name = "NCW";
};
struct KCX : public BaseTensorLayout
{
static constexpr const char* name = "KCX";
};
struct NKW : public BaseTensorLayout
{
static constexpr const char* name = "NKW";
};
// 2D Conv
struct NHWC : public BaseTensorLayout
{
static constexpr const char* name = "NHWC";
};
struct KYXC : public BaseTensorLayout
{
static constexpr const char* name = "KYXC";
};
struct NHWK : public BaseTensorLayout
{
static constexpr const char* name = "NHWK";
};
struct NCHW : public BaseTensorLayout
{
static constexpr const char* name = "NCHW";
};
struct KCYX : public BaseTensorLayout
{
static constexpr const char* name = "KCYX";
};
struct NKHW : public BaseTensorLayout
{
static constexpr const char* name = "NKHW";
};
struct NDHWC : public BaseTensorLayout
{
};
struct KZYXC : public BaseTensorLayout
{
};
struct NDHWK : public BaseTensorLayout
{
};
} // namespace convolution
template <
typename Layout,
typename std::enable_if<std::is_base_of<BaseTensorLayout, Layout>::value, bool>::type = false>
std::ostream& operator<<(std::ostream& os, const Layout&)
{
os << Layout::name;
return os;
}
} // namespace tensor_layout
} // namespace ck
#endif
#include <stdlib.h>
#include "config.hpp"
#include "device_convnd_fwd_xdl_nhwc_kyxc_nhwk.hpp"
#include "element_wise_operation.hpp"
#include "device_operation_instance.hpp"
namespace ck {
namespace tensor_operation {
namespace device {
namespace device_conv1d_fwd_instance {
using F32 = float;
template <ck::index_t... Is>
using S = ck::Sequence<Is...>;
using PassThrough = ck::tensor_operation::element_wise::PassThrough;
static constexpr auto ConvFwdDefault =
ck::tensor_operation::device::ConvolutionForwardSpecialization_t::Default;
static constexpr auto ConvFwd1x1P0 =
ck::tensor_operation::device::ConvolutionForwardSpecialization_t::Filter1x1Pad0;
static constexpr auto ConvFwd1x1S1P0 =
ck::tensor_operation::device::ConvolutionForwardSpecialization_t::Filter1x1Stride1Pad0;
//------------------------------------------------------------------------------
// Conv1D
//------------------------------------------------------------------------------
// Compilation parameters for in[n, wi, c] * wei[k, x, c] = out[n, wo, k]
using device_conv1d_fwd_xdl_nwc_kxc_nwk_f32_instances = std::tuple<
// clang-format off
//################################################################| InData| WeiData| OutData| AccData| In| Wei| Out| ConvForward| NumDim| Block| MPer| NPer| K0Per| K1| MPer| NPer| MXdl| NXdl| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockLds| BBlockTransfer| BBlockTransfer| BBlockTransfer| BlockTransfer| BBlockTransfer| BBlockTransfer| BBlockLds| CThreadTransfer| CThreadTransfer|
//################################################################| Type| Type| Type| Type| Elementwise| Elementwise| Elementwise| Specialization|Spatial| Size| Block| Block| Block| | XDL| XDL| Per| Per| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| AddExtraM| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| AddExtraN| SrcDstVectorDim| DstScalar|
//################################################################| | | | | Operation| Operation| Operation| | | | | | | | | | Wave| Wave| Lengths_K0_M_K1| ArrangeOrder| | | PerVector| PerVector_K1| | Lengths_K0_N_K1| ArrangeOrder| | | PerVector| PerVector_K1| | | PerVector|
//################################################################| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
DeviceConvNDFwdXdl_Input_N_Hi_Wi_C_Weight_K_Y_X_C_Output_N_Ho_Wo_K< F32, F32, F32, F32, PassThrough, PassThrough, PassThrough, ConvFwdDefault, 1, 256, 256, 128, 4, 4, 32, 32, 4, 2, S<4, 64, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 4, 4, true, S<4, 64, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 4, 4, true, 7, 1>,
DeviceConvNDFwdXdl_Input_N_Hi_Wi_C_Weight_K_Y_X_C_Output_N_Ho_Wo_K< F32, F32, F32, F32, PassThrough, PassThrough, PassThrough, ConvFwdDefault, 1, 256, 128, 256, 4, 4, 32, 32, 2, 4, S<4, 64, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 4, 4, true, S<4, 64, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 4, 4, true, 7, 1>,
DeviceConvNDFwdXdl_Input_N_Hi_Wi_C_Weight_K_Y_X_C_Output_N_Ho_Wo_K< F32, F32, F32, F32, PassThrough, PassThrough, PassThrough, ConvFwdDefault, 1, 128, 128, 128, 4, 4, 32, 32, 4, 2, S<4, 32, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 4, 4, true, S<4, 32, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 4, 4, true, 7, 1>,
DeviceConvNDFwdXdl_Input_N_Hi_Wi_C_Weight_K_Y_X_C_Output_N_Ho_Wo_K< F32, F32, F32, F32, PassThrough, PassThrough, PassThrough, ConvFwdDefault, 1, 256, 128, 128, 4, 4, 32, 32, 2, 2, S<4, 64, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 4, 4, true, S<4, 64, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 4, 4, true, 7, 1>,
DeviceConvNDFwdXdl_Input_N_Hi_Wi_C_Weight_K_Y_X_C_Output_N_Ho_Wo_K< F32, F32, F32, F32, PassThrough, PassThrough, PassThrough, ConvFwdDefault, 1, 128, 128, 64, 4, 4, 32, 32, 2, 2, S<4, 32, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 4, 4, true, S<4, 32, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 4, 4, true, 7, 1>,
DeviceConvNDFwdXdl_Input_N_Hi_Wi_C_Weight_K_Y_X_C_Output_N_Ho_Wo_K< F32, F32, F32, F32, PassThrough, PassThrough, PassThrough, ConvFwdDefault, 1, 128, 64, 128, 4, 4, 32, 32, 2, 2, S<4, 32, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 4, 4, true, S<4, 32, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 4, 4, true, 7, 1>,
DeviceConvNDFwdXdl_Input_N_Hi_Wi_C_Weight_K_Y_X_C_Output_N_Ho_Wo_K< F32, F32, F32, F32, PassThrough, PassThrough, PassThrough, ConvFwdDefault, 1, 64, 64, 64, 4, 4, 32, 32, 2, 2, S<4, 16, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 4, 4, true, S<4, 16, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 4, 4, true, 7, 1>,
DeviceConvNDFwdXdl_Input_N_Hi_Wi_C_Weight_K_Y_X_C_Output_N_Ho_Wo_K< F32, F32, F32, F32, PassThrough, PassThrough, PassThrough, ConvFwdDefault, 1, 256, 128, 64, 4, 4, 32, 32, 2, 1, S<4, 64, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 4, 4, true, S<4, 64, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 4, 4, true, 7, 1>,
DeviceConvNDFwdXdl_Input_N_Hi_Wi_C_Weight_K_Y_X_C_Output_N_Ho_Wo_K< F32, F32, F32, F32, PassThrough, PassThrough, PassThrough, ConvFwdDefault, 1, 256, 64, 128, 4, 4, 32, 32, 1, 2, S<4, 64, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 4, 4, true, S<4, 64, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 4, 4, true, 7, 1>,
DeviceConvNDFwdXdl_Input_N_Hi_Wi_C_Weight_K_Y_X_C_Output_N_Ho_Wo_K< F32, F32, F32, F32, PassThrough, PassThrough, PassThrough, ConvFwdDefault, 1, 128, 128, 32, 4, 4, 32, 32, 2, 1, S<4, 32, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 4, 4, true, S<4, 32, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 4, 4, true, 7, 1>,
DeviceConvNDFwdXdl_Input_N_Hi_Wi_C_Weight_K_Y_X_C_Output_N_Ho_Wo_K< F32, F32, F32, F32, PassThrough, PassThrough, PassThrough, ConvFwdDefault, 1, 128, 32, 128, 4, 4, 32, 32, 1, 2, S<4, 32, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 4, 4, true, S<4, 32, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 4, 4, true, 7, 1>,
DeviceConvNDFwdXdl_Input_N_Hi_Wi_C_Weight_K_Y_X_C_Output_N_Ho_Wo_K< F32, F32, F32, F32, PassThrough, PassThrough, PassThrough, ConvFwdDefault, 1, 64, 64, 32, 4, 4, 32, 32, 2, 1, S<4, 16, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 4, 4, true, S<4, 16, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 4, 4, true, 7, 1>,
DeviceConvNDFwdXdl_Input_N_Hi_Wi_C_Weight_K_Y_X_C_Output_N_Ho_Wo_K< F32, F32, F32, F32, PassThrough, PassThrough, PassThrough, ConvFwdDefault, 1, 64, 32, 64, 4, 4, 32, 32, 1, 2, S<4, 16, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 4, 4, true, S<4, 16, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 4, 4, true, 7, 1>
// clang-format on
>;
using device_conv1d_fwd_xdl_nwc_kxc_nwk_1x1_p0_f32_instances = std::tuple<
// clang-format off
//################################################################| InData| WeiData| OutData| AccData| In| Wei| Out| ConvForward| NumDim| Block| MPer| NPer| K0Per| K1| MPer| NPer| MXdl| NXdl| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockLds| BBlockTransfer| BBlockTransfer| BBlockTransfer| BlockTransfer| BBlockTransfer| BBlockTransfer| BBlockLds| CThreadTransfer| CThreadTransfer|
//################################################################| Type| Type| Type| Type| Elementwise| Elementwise| Elementwise| Specialization|Spatial| Size| Block| Block| Block| | XDL| XDL| Per| Per| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| AddExtraM| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| AddExtraN| SrcDstVectorDim| DstScalar|
//################################################################| | | | | Operation| Operation| Operation| | | | | | | | | | Wave| Wave| Lengths_K0_M_K1| ArrangeOrder| | | PerVector| PerVector_K1| | Lengths_K0_N_K1| ArrangeOrder| | | PerVector| PerVector_K1| | | PerVector|
//################################################################| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
DeviceConvNDFwdXdl_Input_N_Hi_Wi_C_Weight_K_Y_X_C_Output_N_Ho_Wo_K< F32, F32, F32, F32, PassThrough, PassThrough, PassThrough, ConvFwd1x1P0, 1, 256, 256, 128, 4, 4, 32, 32, 4, 2, S<4, 64, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 4, 4, true, S<4, 64, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 4, 4, true, 7, 1>,
DeviceConvNDFwdXdl_Input_N_Hi_Wi_C_Weight_K_Y_X_C_Output_N_Ho_Wo_K< F32, F32, F32, F32, PassThrough, PassThrough, PassThrough, ConvFwd1x1P0, 1, 256, 128, 256, 4, 4, 32, 32, 2, 4, S<4, 64, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 4, 4, true, S<4, 64, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 4, 4, true, 7, 1>,
DeviceConvNDFwdXdl_Input_N_Hi_Wi_C_Weight_K_Y_X_C_Output_N_Ho_Wo_K< F32, F32, F32, F32, PassThrough, PassThrough, PassThrough, ConvFwd1x1P0, 1, 128, 128, 128, 4, 4, 32, 32, 4, 2, S<4, 32, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 4, 4, true, S<4, 32, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 4, 4, true, 7, 1>,
DeviceConvNDFwdXdl_Input_N_Hi_Wi_C_Weight_K_Y_X_C_Output_N_Ho_Wo_K< F32, F32, F32, F32, PassThrough, PassThrough, PassThrough, ConvFwd1x1P0, 1, 256, 128, 128, 4, 4, 32, 32, 2, 2, S<4, 64, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 4, 4, true, S<4, 64, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 4, 4, true, 7, 1>,
DeviceConvNDFwdXdl_Input_N_Hi_Wi_C_Weight_K_Y_X_C_Output_N_Ho_Wo_K< F32, F32, F32, F32, PassThrough, PassThrough, PassThrough, ConvFwd1x1P0, 1, 128, 128, 64, 4, 4, 32, 32, 2, 2, S<4, 32, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 4, 4, true, S<4, 32, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 4, 4, true, 7, 1>,
DeviceConvNDFwdXdl_Input_N_Hi_Wi_C_Weight_K_Y_X_C_Output_N_Ho_Wo_K< F32, F32, F32, F32, PassThrough, PassThrough, PassThrough, ConvFwd1x1P0, 1, 128, 64, 128, 4, 4, 32, 32, 2, 2, S<4, 32, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 4, 4, true, S<4, 32, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 4, 4, true, 7, 1>,
DeviceConvNDFwdXdl_Input_N_Hi_Wi_C_Weight_K_Y_X_C_Output_N_Ho_Wo_K< F32, F32, F32, F32, PassThrough, PassThrough, PassThrough, ConvFwd1x1P0, 1, 64, 64, 64, 4, 4, 32, 32, 2, 2, S<4, 16, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 4, 4, true, S<4, 16, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 4, 4, true, 7, 1>,
DeviceConvNDFwdXdl_Input_N_Hi_Wi_C_Weight_K_Y_X_C_Output_N_Ho_Wo_K< F32, F32, F32, F32, PassThrough, PassThrough, PassThrough, ConvFwd1x1P0, 1, 256, 128, 64, 4, 4, 32, 32, 2, 1, S<4, 64, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 4, 4, true, S<4, 64, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 4, 4, true, 7, 1>,
DeviceConvNDFwdXdl_Input_N_Hi_Wi_C_Weight_K_Y_X_C_Output_N_Ho_Wo_K< F32, F32, F32, F32, PassThrough, PassThrough, PassThrough, ConvFwd1x1P0, 1, 256, 64, 128, 4, 4, 32, 32, 1, 2, S<4, 64, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 4, 4, true, S<4, 64, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 4, 4, true, 7, 1>,
DeviceConvNDFwdXdl_Input_N_Hi_Wi_C_Weight_K_Y_X_C_Output_N_Ho_Wo_K< F32, F32, F32, F32, PassThrough, PassThrough, PassThrough, ConvFwd1x1P0, 1, 128, 128, 32, 4, 4, 32, 32, 2, 1, S<4, 32, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 4, 4, true, S<4, 32, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 4, 4, true, 7, 1>,
DeviceConvNDFwdXdl_Input_N_Hi_Wi_C_Weight_K_Y_X_C_Output_N_Ho_Wo_K< F32, F32, F32, F32, PassThrough, PassThrough, PassThrough, ConvFwd1x1P0, 1, 128, 32, 128, 4, 4, 32, 32, 1, 2, S<4, 32, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 4, 4, true, S<4, 32, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 4, 4, true, 7, 1>,
DeviceConvNDFwdXdl_Input_N_Hi_Wi_C_Weight_K_Y_X_C_Output_N_Ho_Wo_K< F32, F32, F32, F32, PassThrough, PassThrough, PassThrough, ConvFwd1x1P0, 1, 64, 64, 32, 4, 4, 32, 32, 2, 1, S<4, 16, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 4, 4, true, S<4, 16, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 4, 4, true, 7, 1>,
DeviceConvNDFwdXdl_Input_N_Hi_Wi_C_Weight_K_Y_X_C_Output_N_Ho_Wo_K< F32, F32, F32, F32, PassThrough, PassThrough, PassThrough, ConvFwd1x1P0, 1, 64, 32, 64, 4, 4, 32, 32, 1, 2, S<4, 16, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 4, 4, true, S<4, 16, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 4, 4, true, 7, 1>
// clang-format on
>;
using device_conv1d_fwd_xdl_nwc_kxc_nwk_1x1_s1_p0_f32_instances = std::tuple<
// clang-format off
//################################################################| InData| WeiData| OutData| AccData| In| Wei| Out| ConvForward| NumDim| Block| MPer| NPer| K0Per| K1| MPer| NPer| MXdl| NXdl| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockLds| BBlockTransfer| BBlockTransfer| BBlockTransfer| BlockTransfer| BBlockTransfer| BBlockTransfer| BBlockLds| CThreadTransfer| CThreadTransfer|
//################################################################| Type| Type| Type| Type| Elementwise| Elementwise| Elementwise| Specialization|Spatial| Size| Block| Block| Block| | XDL| XDL| Per| Per| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| AddExtraM| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| AddExtraN| SrcDstVectorDim| DstScalar|
//################################################################| | | | | Operation| Operation| Operation| | | | | | | | | | Wave| Wave| Lengths_K0_M_K1| ArrangeOrder| | | PerVector| PerVector_K1| | Lengths_K0_N_K1| ArrangeOrder| | | PerVector| PerVector_K1| | | PerVector|
//################################################################| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
DeviceConvNDFwdXdl_Input_N_Hi_Wi_C_Weight_K_Y_X_C_Output_N_Ho_Wo_K< F32, F32, F32, F32, PassThrough, PassThrough, PassThrough, ConvFwd1x1S1P0, 1, 256, 256, 128, 4, 4, 32, 32, 4, 2, S<4, 64, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 4, 4, true, S<4, 64, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 4, 4, true, 7, 1>,
DeviceConvNDFwdXdl_Input_N_Hi_Wi_C_Weight_K_Y_X_C_Output_N_Ho_Wo_K< F32, F32, F32, F32, PassThrough, PassThrough, PassThrough, ConvFwd1x1S1P0, 1, 256, 128, 256, 4, 4, 32, 32, 2, 4, S<4, 64, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 4, 4, true, S<4, 64, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 4, 4, true, 7, 1>,
DeviceConvNDFwdXdl_Input_N_Hi_Wi_C_Weight_K_Y_X_C_Output_N_Ho_Wo_K< F32, F32, F32, F32, PassThrough, PassThrough, PassThrough, ConvFwd1x1S1P0, 1, 128, 128, 128, 4, 4, 32, 32, 4, 2, S<4, 32, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 4, 4, true, S<4, 32, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 4, 4, true, 7, 1>,
DeviceConvNDFwdXdl_Input_N_Hi_Wi_C_Weight_K_Y_X_C_Output_N_Ho_Wo_K< F32, F32, F32, F32, PassThrough, PassThrough, PassThrough, ConvFwd1x1S1P0, 1, 256, 128, 128, 4, 4, 32, 32, 2, 2, S<4, 64, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 4, 4, true, S<4, 64, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 4, 4, true, 7, 1>,
DeviceConvNDFwdXdl_Input_N_Hi_Wi_C_Weight_K_Y_X_C_Output_N_Ho_Wo_K< F32, F32, F32, F32, PassThrough, PassThrough, PassThrough, ConvFwd1x1S1P0, 1, 128, 128, 64, 4, 4, 32, 32, 2, 2, S<4, 32, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 4, 4, true, S<4, 32, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 4, 4, true, 7, 1>,
DeviceConvNDFwdXdl_Input_N_Hi_Wi_C_Weight_K_Y_X_C_Output_N_Ho_Wo_K< F32, F32, F32, F32, PassThrough, PassThrough, PassThrough, ConvFwd1x1S1P0, 1, 128, 64, 128, 4, 4, 32, 32, 2, 2, S<4, 32, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 4, 4, true, S<4, 32, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 4, 4, true, 7, 1>,
DeviceConvNDFwdXdl_Input_N_Hi_Wi_C_Weight_K_Y_X_C_Output_N_Ho_Wo_K< F32, F32, F32, F32, PassThrough, PassThrough, PassThrough, ConvFwd1x1S1P0, 1, 64, 64, 64, 4, 4, 32, 32, 2, 2, S<4, 16, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 4, 4, true, S<4, 16, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 4, 4, true, 7, 1>,
DeviceConvNDFwdXdl_Input_N_Hi_Wi_C_Weight_K_Y_X_C_Output_N_Ho_Wo_K< F32, F32, F32, F32, PassThrough, PassThrough, PassThrough, ConvFwd1x1S1P0, 1, 256, 128, 64, 4, 4, 32, 32, 2, 1, S<4, 64, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 4, 4, true, S<4, 64, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 4, 4, true, 7, 1>,
DeviceConvNDFwdXdl_Input_N_Hi_Wi_C_Weight_K_Y_X_C_Output_N_Ho_Wo_K< F32, F32, F32, F32, PassThrough, PassThrough, PassThrough, ConvFwd1x1S1P0, 1, 256, 64, 128, 4, 4, 32, 32, 1, 2, S<4, 64, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 4, 4, true, S<4, 64, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 4, 4, true, 7, 1>,
DeviceConvNDFwdXdl_Input_N_Hi_Wi_C_Weight_K_Y_X_C_Output_N_Ho_Wo_K< F32, F32, F32, F32, PassThrough, PassThrough, PassThrough, ConvFwd1x1S1P0, 1, 128, 128, 32, 4, 4, 32, 32, 2, 1, S<4, 32, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 4, 4, true, S<4, 32, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 4, 4, true, 7, 1>,
DeviceConvNDFwdXdl_Input_N_Hi_Wi_C_Weight_K_Y_X_C_Output_N_Ho_Wo_K< F32, F32, F32, F32, PassThrough, PassThrough, PassThrough, ConvFwd1x1S1P0, 1, 128, 32, 128, 4, 4, 32, 32, 1, 2, S<4, 32, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 4, 4, true, S<4, 32, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 4, 4, true, 7, 1>,
DeviceConvNDFwdXdl_Input_N_Hi_Wi_C_Weight_K_Y_X_C_Output_N_Ho_Wo_K< F32, F32, F32, F32, PassThrough, PassThrough, PassThrough, ConvFwd1x1S1P0, 1, 64, 64, 32, 4, 4, 32, 32, 2, 1, S<4, 16, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 4, 4, true, S<4, 16, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 4, 4, true, 7, 1>,
DeviceConvNDFwdXdl_Input_N_Hi_Wi_C_Weight_K_Y_X_C_Output_N_Ho_Wo_K< F32, F32, F32, F32, PassThrough, PassThrough, PassThrough, ConvFwd1x1S1P0, 1, 64, 32, 64, 4, 4, 32, 32, 1, 2, S<4, 16, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 4, 4, true, S<4, 16, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 4, 4, true, 7, 1>
// clang-format on
>;
void add_device_conv1d_fwd_xdl_nwc_kxc_nwk_f32_instances(
std::vector<DeviceConvFwdPtr<PassThrough, PassThrough, PassThrough>>& instances)
{
add_device_operation_instances(instances, device_conv1d_fwd_xdl_nwc_kxc_nwk_f32_instances{});
add_device_operation_instances(instances,
device_conv1d_fwd_xdl_nwc_kxc_nwk_1x1_p0_f32_instances{});
add_device_operation_instances(instances,
device_conv1d_fwd_xdl_nwc_kxc_nwk_1x1_s1_p0_f32_instances{});
}
} // namespace device_conv1d_fwd_instance
} // namespace device
} // namespace tensor_operation
} // namespace ck
#include <stdlib.h>
#include "config.hpp"
#include "device_conv2d_fwd_xdl_nhwc_kyxc_nhwk.hpp"
#include "device_convnd_fwd_xdl_nhwc_kyxc_nhwk.hpp"
#include "element_wise_operation.hpp"
#include "device_operation_instance.hpp"
......@@ -28,67 +28,67 @@ static constexpr auto ConvFwd1x1S1P0 =
// Compilation parameters for in[n, hi, wi, c] * wei[k, y, x, c] = out[n, ho, wo, k]
using device_conv2d_fwd_xdl_nhwc_kyxc_nhwk_f32_instances = std::tuple<
// clang-format off
//################################################################| InData| WeiData| OutData| AccData| In| Wei| Out| ConvForward| Block| MPer| NPer| K0Per| K1| MPer| NPer| MXdl| NXdl| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockLds| BBlockTransfer| BBlockTransfer| BBlockTransfer| BlockTransfer| BBlockTransfer| BBlockTransfer| BBlockLds| CThreadTransfer| CThreadTransfer|
//################################################################| Type| Type| Type| Type| Elementwise| Elementwise| Elementwise| Specialization| Size| Block| Block| Block| | XDL| XDL| Per| Per| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| AddExtraM| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| AddExtraN| SrcDstVectorDim| DstScalar|
//################################################################| | | | | Operation| Operation| Operation| | | | | | | | | Wave| Wave| Lengths_K0_M_K1| ArrangeOrder| | | PerVector| PerVector_K1| | Lengths_K0_N_K1| ArrangeOrder| | | PerVector| PerVector_K1| | | PerVector|
//################################################################| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
DeviceConv2dFwdXdl_Input_N_Hi_Wi_C_Weight_K_Y_X_C_Output_N_Ho_Wo_K< F32, F32, F32, F32, PassThrough, PassThrough, PassThrough, ConvFwdDefault, 256, 256, 128, 4, 4, 32, 32, 4, 2, S<4, 64, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 4, 4, true, S<4, 64, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 4, 4, true, 7, 1>,
DeviceConv2dFwdXdl_Input_N_Hi_Wi_C_Weight_K_Y_X_C_Output_N_Ho_Wo_K< F32, F32, F32, F32, PassThrough, PassThrough, PassThrough, ConvFwdDefault, 256, 128, 256, 4, 4, 32, 32, 2, 4, S<4, 64, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 4, 4, true, S<4, 64, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 4, 4, true, 7, 1>,
DeviceConv2dFwdXdl_Input_N_Hi_Wi_C_Weight_K_Y_X_C_Output_N_Ho_Wo_K< F32, F32, F32, F32, PassThrough, PassThrough, PassThrough, ConvFwdDefault, 128, 128, 128, 4, 4, 32, 32, 4, 2, S<4, 32, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 4, 4, true, S<4, 32, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 4, 4, true, 7, 1>,
DeviceConv2dFwdXdl_Input_N_Hi_Wi_C_Weight_K_Y_X_C_Output_N_Ho_Wo_K< F32, F32, F32, F32, PassThrough, PassThrough, PassThrough, ConvFwdDefault, 256, 128, 128, 4, 4, 32, 32, 2, 2, S<4, 64, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 4, 4, true, S<4, 64, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 4, 4, true, 7, 1>,
DeviceConv2dFwdXdl_Input_N_Hi_Wi_C_Weight_K_Y_X_C_Output_N_Ho_Wo_K< F32, F32, F32, F32, PassThrough, PassThrough, PassThrough, ConvFwdDefault, 128, 128, 64, 4, 4, 32, 32, 2, 2, S<4, 32, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 4, 4, true, S<4, 32, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 4, 4, true, 7, 1>,
DeviceConv2dFwdXdl_Input_N_Hi_Wi_C_Weight_K_Y_X_C_Output_N_Ho_Wo_K< F32, F32, F32, F32, PassThrough, PassThrough, PassThrough, ConvFwdDefault, 128, 64, 128, 4, 4, 32, 32, 2, 2, S<4, 32, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 4, 4, true, S<4, 32, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 4, 4, true, 7, 1>,
DeviceConv2dFwdXdl_Input_N_Hi_Wi_C_Weight_K_Y_X_C_Output_N_Ho_Wo_K< F32, F32, F32, F32, PassThrough, PassThrough, PassThrough, ConvFwdDefault, 64, 64, 64, 4, 4, 32, 32, 2, 2, S<4, 16, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 4, 4, true, S<4, 16, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 4, 4, true, 7, 1>,
DeviceConv2dFwdXdl_Input_N_Hi_Wi_C_Weight_K_Y_X_C_Output_N_Ho_Wo_K< F32, F32, F32, F32, PassThrough, PassThrough, PassThrough, ConvFwdDefault, 256, 128, 64, 4, 4, 32, 32, 2, 1, S<4, 64, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 4, 4, true, S<4, 64, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 4, 4, true, 7, 1>,
DeviceConv2dFwdXdl_Input_N_Hi_Wi_C_Weight_K_Y_X_C_Output_N_Ho_Wo_K< F32, F32, F32, F32, PassThrough, PassThrough, PassThrough, ConvFwdDefault, 256, 64, 128, 4, 4, 32, 32, 1, 2, S<4, 64, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 4, 4, true, S<4, 64, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 4, 4, true, 7, 1>,
DeviceConv2dFwdXdl_Input_N_Hi_Wi_C_Weight_K_Y_X_C_Output_N_Ho_Wo_K< F32, F32, F32, F32, PassThrough, PassThrough, PassThrough, ConvFwdDefault, 128, 128, 32, 4, 4, 32, 32, 2, 1, S<4, 32, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 4, 4, true, S<4, 32, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 4, 4, true, 7, 1>,
DeviceConv2dFwdXdl_Input_N_Hi_Wi_C_Weight_K_Y_X_C_Output_N_Ho_Wo_K< F32, F32, F32, F32, PassThrough, PassThrough, PassThrough, ConvFwdDefault, 128, 32, 128, 4, 4, 32, 32, 1, 2, S<4, 32, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 4, 4, true, S<4, 32, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 4, 4, true, 7, 1>,
DeviceConv2dFwdXdl_Input_N_Hi_Wi_C_Weight_K_Y_X_C_Output_N_Ho_Wo_K< F32, F32, F32, F32, PassThrough, PassThrough, PassThrough, ConvFwdDefault, 64, 64, 32, 4, 4, 32, 32, 2, 1, S<4, 16, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 4, 4, true, S<4, 16, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 4, 4, true, 7, 1>,
DeviceConv2dFwdXdl_Input_N_Hi_Wi_C_Weight_K_Y_X_C_Output_N_Ho_Wo_K< F32, F32, F32, F32, PassThrough, PassThrough, PassThrough, ConvFwdDefault, 64, 32, 64, 4, 4, 32, 32, 1, 2, S<4, 16, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 4, 4, true, S<4, 16, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 4, 4, true, 7, 1>
//################################################################| InData| WeiData| OutData| AccData| In| Wei| Out| ConvForward| NumDim| Block| MPer| NPer| K0Per| K1| MPer| NPer| MXdl| NXdl| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockLds| BBlockTransfer| BBlockTransfer| BBlockTransfer| BlockTransfer| BBlockTransfer| BBlockTransfer| BBlockLds| CThreadTransfer| CThreadTransfer|
//################################################################| Type| Type| Type| Type| Elementwise| Elementwise| Elementwise| Specialization|Spatial| Size| Block| Block| Block| | XDL| XDL| Per| Per| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| AddExtraM| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| AddExtraN| SrcDstVectorDim| DstScalar|
//################################################################| | | | | Operation| Operation| Operation| | | | | | | | | | Wave| Wave| Lengths_K0_M_K1| ArrangeOrder| | | PerVector| PerVector_K1| | Lengths_K0_N_K1| ArrangeOrder| | | PerVector| PerVector_K1| | | PerVector|
//################################################################| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
DeviceConvNDFwdXdl_Input_N_Hi_Wi_C_Weight_K_Y_X_C_Output_N_Ho_Wo_K< F32, F32, F32, F32, PassThrough, PassThrough, PassThrough, ConvFwdDefault, 2, 256, 256, 128, 4, 4, 32, 32, 4, 2, S<4, 64, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 4, 4, true, S<4, 64, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 4, 4, true, 7, 1>,
DeviceConvNDFwdXdl_Input_N_Hi_Wi_C_Weight_K_Y_X_C_Output_N_Ho_Wo_K< F32, F32, F32, F32, PassThrough, PassThrough, PassThrough, ConvFwdDefault, 2, 256, 128, 256, 4, 4, 32, 32, 2, 4, S<4, 64, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 4, 4, true, S<4, 64, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 4, 4, true, 7, 1>,
DeviceConvNDFwdXdl_Input_N_Hi_Wi_C_Weight_K_Y_X_C_Output_N_Ho_Wo_K< F32, F32, F32, F32, PassThrough, PassThrough, PassThrough, ConvFwdDefault, 2, 128, 128, 128, 4, 4, 32, 32, 4, 2, S<4, 32, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 4, 4, true, S<4, 32, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 4, 4, true, 7, 1>,
DeviceConvNDFwdXdl_Input_N_Hi_Wi_C_Weight_K_Y_X_C_Output_N_Ho_Wo_K< F32, F32, F32, F32, PassThrough, PassThrough, PassThrough, ConvFwdDefault, 2, 256, 128, 128, 4, 4, 32, 32, 2, 2, S<4, 64, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 4, 4, true, S<4, 64, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 4, 4, true, 7, 1>,
DeviceConvNDFwdXdl_Input_N_Hi_Wi_C_Weight_K_Y_X_C_Output_N_Ho_Wo_K< F32, F32, F32, F32, PassThrough, PassThrough, PassThrough, ConvFwdDefault, 2, 128, 128, 64, 4, 4, 32, 32, 2, 2, S<4, 32, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 4, 4, true, S<4, 32, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 4, 4, true, 7, 1>,
DeviceConvNDFwdXdl_Input_N_Hi_Wi_C_Weight_K_Y_X_C_Output_N_Ho_Wo_K< F32, F32, F32, F32, PassThrough, PassThrough, PassThrough, ConvFwdDefault, 2, 128, 64, 128, 4, 4, 32, 32, 2, 2, S<4, 32, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 4, 4, true, S<4, 32, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 4, 4, true, 7, 1>,
DeviceConvNDFwdXdl_Input_N_Hi_Wi_C_Weight_K_Y_X_C_Output_N_Ho_Wo_K< F32, F32, F32, F32, PassThrough, PassThrough, PassThrough, ConvFwdDefault, 2, 64, 64, 64, 4, 4, 32, 32, 2, 2, S<4, 16, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 4, 4, true, S<4, 16, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 4, 4, true, 7, 1>,
DeviceConvNDFwdXdl_Input_N_Hi_Wi_C_Weight_K_Y_X_C_Output_N_Ho_Wo_K< F32, F32, F32, F32, PassThrough, PassThrough, PassThrough, ConvFwdDefault, 2, 256, 128, 64, 4, 4, 32, 32, 2, 1, S<4, 64, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 4, 4, true, S<4, 64, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 4, 4, true, 7, 1>,
DeviceConvNDFwdXdl_Input_N_Hi_Wi_C_Weight_K_Y_X_C_Output_N_Ho_Wo_K< F32, F32, F32, F32, PassThrough, PassThrough, PassThrough, ConvFwdDefault, 2, 256, 64, 128, 4, 4, 32, 32, 1, 2, S<4, 64, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 4, 4, true, S<4, 64, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 4, 4, true, 7, 1>,
DeviceConvNDFwdXdl_Input_N_Hi_Wi_C_Weight_K_Y_X_C_Output_N_Ho_Wo_K< F32, F32, F32, F32, PassThrough, PassThrough, PassThrough, ConvFwdDefault, 2, 128, 128, 32, 4, 4, 32, 32, 2, 1, S<4, 32, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 4, 4, true, S<4, 32, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 4, 4, true, 7, 1>,
DeviceConvNDFwdXdl_Input_N_Hi_Wi_C_Weight_K_Y_X_C_Output_N_Ho_Wo_K< F32, F32, F32, F32, PassThrough, PassThrough, PassThrough, ConvFwdDefault, 2, 128, 32, 128, 4, 4, 32, 32, 1, 2, S<4, 32, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 4, 4, true, S<4, 32, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 4, 4, true, 7, 1>,
DeviceConvNDFwdXdl_Input_N_Hi_Wi_C_Weight_K_Y_X_C_Output_N_Ho_Wo_K< F32, F32, F32, F32, PassThrough, PassThrough, PassThrough, ConvFwdDefault, 2, 64, 64, 32, 4, 4, 32, 32, 2, 1, S<4, 16, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 4, 4, true, S<4, 16, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 4, 4, true, 7, 1>,
DeviceConvNDFwdXdl_Input_N_Hi_Wi_C_Weight_K_Y_X_C_Output_N_Ho_Wo_K< F32, F32, F32, F32, PassThrough, PassThrough, PassThrough, ConvFwdDefault, 2, 64, 32, 64, 4, 4, 32, 32, 1, 2, S<4, 16, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 4, 4, true, S<4, 16, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 4, 4, true, 7, 1>
// clang-format on
>;
using device_conv2d_fwd_xdl_nhwc_kyxc_nhwk_1x1_p0_f32_instances = std::tuple<
// clang-format off
//################################################################| InData| WeiData| OutData| AccData| In| Wei| Out| ConvForward| Block| MPer| NPer| K0Per| K1| MPer| NPer| MXdl| NXdl| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockLds| BBlockTransfer| BBlockTransfer| BBlockTransfer| BlockTransfer| BBlockTransfer| BBlockTransfer| BBlockLds| CThreadTransfer| CThreadTransfer|
//################################################################| Type| Type| Type| Type| Elementwise| Elementwise| Elementwise| Specialization| Size| Block| Block| Block| | XDL| XDL| Per| Per| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| AddExtraM| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| AddExtraN| SrcDstVectorDim| DstScalar|
//################################################################| | | | | Operation| Operation| Operation| | | | | | | | | Wave| Wave| Lengths_K0_M_K1| ArrangeOrder| | | PerVector| PerVector_K1| | Lengths_K0_N_K1| ArrangeOrder| | | PerVector| PerVector_K1| | | PerVector|
//################################################################| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
DeviceConv2dFwdXdl_Input_N_Hi_Wi_C_Weight_K_Y_X_C_Output_N_Ho_Wo_K< F32, F32, F32, F32, PassThrough, PassThrough, PassThrough, ConvFwd1x1P0, 256, 256, 128, 4, 4, 32, 32, 4, 2, S<4, 64, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 4, 4, true, S<4, 64, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 4, 4, true, 7, 1>,
DeviceConv2dFwdXdl_Input_N_Hi_Wi_C_Weight_K_Y_X_C_Output_N_Ho_Wo_K< F32, F32, F32, F32, PassThrough, PassThrough, PassThrough, ConvFwd1x1P0, 256, 128, 256, 4, 4, 32, 32, 2, 4, S<4, 64, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 4, 4, true, S<4, 64, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 4, 4, true, 7, 1>,
DeviceConv2dFwdXdl_Input_N_Hi_Wi_C_Weight_K_Y_X_C_Output_N_Ho_Wo_K< F32, F32, F32, F32, PassThrough, PassThrough, PassThrough, ConvFwd1x1P0, 128, 128, 128, 4, 4, 32, 32, 4, 2, S<4, 32, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 4, 4, true, S<4, 32, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 4, 4, true, 7, 1>,
DeviceConv2dFwdXdl_Input_N_Hi_Wi_C_Weight_K_Y_X_C_Output_N_Ho_Wo_K< F32, F32, F32, F32, PassThrough, PassThrough, PassThrough, ConvFwd1x1P0, 256, 128, 128, 4, 4, 32, 32, 2, 2, S<4, 64, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 4, 4, true, S<4, 64, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 4, 4, true, 7, 1>,
DeviceConv2dFwdXdl_Input_N_Hi_Wi_C_Weight_K_Y_X_C_Output_N_Ho_Wo_K< F32, F32, F32, F32, PassThrough, PassThrough, PassThrough, ConvFwd1x1P0, 128, 128, 64, 4, 4, 32, 32, 2, 2, S<4, 32, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 4, 4, true, S<4, 32, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 4, 4, true, 7, 1>,
DeviceConv2dFwdXdl_Input_N_Hi_Wi_C_Weight_K_Y_X_C_Output_N_Ho_Wo_K< F32, F32, F32, F32, PassThrough, PassThrough, PassThrough, ConvFwd1x1P0, 128, 64, 128, 4, 4, 32, 32, 2, 2, S<4, 32, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 4, 4, true, S<4, 32, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 4, 4, true, 7, 1>,
DeviceConv2dFwdXdl_Input_N_Hi_Wi_C_Weight_K_Y_X_C_Output_N_Ho_Wo_K< F32, F32, F32, F32, PassThrough, PassThrough, PassThrough, ConvFwd1x1P0, 64, 64, 64, 4, 4, 32, 32, 2, 2, S<4, 16, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 4, 4, true, S<4, 16, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 4, 4, true, 7, 1>,
DeviceConv2dFwdXdl_Input_N_Hi_Wi_C_Weight_K_Y_X_C_Output_N_Ho_Wo_K< F32, F32, F32, F32, PassThrough, PassThrough, PassThrough, ConvFwd1x1P0, 256, 128, 64, 4, 4, 32, 32, 2, 1, S<4, 64, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 4, 4, true, S<4, 64, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 4, 4, true, 7, 1>,
DeviceConv2dFwdXdl_Input_N_Hi_Wi_C_Weight_K_Y_X_C_Output_N_Ho_Wo_K< F32, F32, F32, F32, PassThrough, PassThrough, PassThrough, ConvFwd1x1P0, 256, 64, 128, 4, 4, 32, 32, 1, 2, S<4, 64, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 4, 4, true, S<4, 64, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 4, 4, true, 7, 1>,
DeviceConv2dFwdXdl_Input_N_Hi_Wi_C_Weight_K_Y_X_C_Output_N_Ho_Wo_K< F32, F32, F32, F32, PassThrough, PassThrough, PassThrough, ConvFwd1x1P0, 128, 128, 32, 4, 4, 32, 32, 2, 1, S<4, 32, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 4, 4, true, S<4, 32, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 4, 4, true, 7, 1>,
DeviceConv2dFwdXdl_Input_N_Hi_Wi_C_Weight_K_Y_X_C_Output_N_Ho_Wo_K< F32, F32, F32, F32, PassThrough, PassThrough, PassThrough, ConvFwd1x1P0, 128, 32, 128, 4, 4, 32, 32, 1, 2, S<4, 32, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 4, 4, true, S<4, 32, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 4, 4, true, 7, 1>,
DeviceConv2dFwdXdl_Input_N_Hi_Wi_C_Weight_K_Y_X_C_Output_N_Ho_Wo_K< F32, F32, F32, F32, PassThrough, PassThrough, PassThrough, ConvFwd1x1P0, 64, 64, 32, 4, 4, 32, 32, 2, 1, S<4, 16, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 4, 4, true, S<4, 16, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 4, 4, true, 7, 1>,
DeviceConv2dFwdXdl_Input_N_Hi_Wi_C_Weight_K_Y_X_C_Output_N_Ho_Wo_K< F32, F32, F32, F32, PassThrough, PassThrough, PassThrough, ConvFwd1x1P0, 64, 32, 64, 4, 4, 32, 32, 1, 2, S<4, 16, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 4, 4, true, S<4, 16, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 4, 4, true, 7, 1>
//################################################################| InData| WeiData| OutData| AccData| In| Wei| Out| ConvForward| NumDim| Block| MPer| NPer| K0Per| K1| MPer| NPer| MXdl| NXdl| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockLds| BBlockTransfer| BBlockTransfer| BBlockTransfer| BlockTransfer| BBlockTransfer| BBlockTransfer| BBlockLds| CThreadTransfer| CThreadTransfer|
//################################################################| Type| Type| Type| Type| Elementwise| Elementwise| Elementwise| Specialization|Spatial| Size| Block| Block| Block| | XDL| XDL| Per| Per| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| AddExtraM| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| AddExtraN| SrcDstVectorDim| DstScalar|
//################################################################| | | | | Operation| Operation| Operation| | | | | | | | | | Wave| Wave| Lengths_K0_M_K1| ArrangeOrder| | | PerVector| PerVector_K1| | Lengths_K0_N_K1| ArrangeOrder| | | PerVector| PerVector_K1| | | PerVector|
//################################################################| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
DeviceConvNDFwdXdl_Input_N_Hi_Wi_C_Weight_K_Y_X_C_Output_N_Ho_Wo_K< F32, F32, F32, F32, PassThrough, PassThrough, PassThrough, ConvFwd1x1P0, 2, 256, 256, 128, 4, 4, 32, 32, 4, 2, S<4, 64, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 4, 4, true, S<4, 64, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 4, 4, true, 7, 1>,
DeviceConvNDFwdXdl_Input_N_Hi_Wi_C_Weight_K_Y_X_C_Output_N_Ho_Wo_K< F32, F32, F32, F32, PassThrough, PassThrough, PassThrough, ConvFwd1x1P0, 2, 256, 128, 256, 4, 4, 32, 32, 2, 4, S<4, 64, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 4, 4, true, S<4, 64, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 4, 4, true, 7, 1>,
DeviceConvNDFwdXdl_Input_N_Hi_Wi_C_Weight_K_Y_X_C_Output_N_Ho_Wo_K< F32, F32, F32, F32, PassThrough, PassThrough, PassThrough, ConvFwd1x1P0, 2, 128, 128, 128, 4, 4, 32, 32, 4, 2, S<4, 32, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 4, 4, true, S<4, 32, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 4, 4, true, 7, 1>,
DeviceConvNDFwdXdl_Input_N_Hi_Wi_C_Weight_K_Y_X_C_Output_N_Ho_Wo_K< F32, F32, F32, F32, PassThrough, PassThrough, PassThrough, ConvFwd1x1P0, 2, 256, 128, 128, 4, 4, 32, 32, 2, 2, S<4, 64, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 4, 4, true, S<4, 64, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 4, 4, true, 7, 1>,
DeviceConvNDFwdXdl_Input_N_Hi_Wi_C_Weight_K_Y_X_C_Output_N_Ho_Wo_K< F32, F32, F32, F32, PassThrough, PassThrough, PassThrough, ConvFwd1x1P0, 2, 128, 128, 64, 4, 4, 32, 32, 2, 2, S<4, 32, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 4, 4, true, S<4, 32, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 4, 4, true, 7, 1>,
DeviceConvNDFwdXdl_Input_N_Hi_Wi_C_Weight_K_Y_X_C_Output_N_Ho_Wo_K< F32, F32, F32, F32, PassThrough, PassThrough, PassThrough, ConvFwd1x1P0, 2, 128, 64, 128, 4, 4, 32, 32, 2, 2, S<4, 32, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 4, 4, true, S<4, 32, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 4, 4, true, 7, 1>,
DeviceConvNDFwdXdl_Input_N_Hi_Wi_C_Weight_K_Y_X_C_Output_N_Ho_Wo_K< F32, F32, F32, F32, PassThrough, PassThrough, PassThrough, ConvFwd1x1P0, 2, 64, 64, 64, 4, 4, 32, 32, 2, 2, S<4, 16, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 4, 4, true, S<4, 16, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 4, 4, true, 7, 1>,
DeviceConvNDFwdXdl_Input_N_Hi_Wi_C_Weight_K_Y_X_C_Output_N_Ho_Wo_K< F32, F32, F32, F32, PassThrough, PassThrough, PassThrough, ConvFwd1x1P0, 2, 256, 128, 64, 4, 4, 32, 32, 2, 1, S<4, 64, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 4, 4, true, S<4, 64, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 4, 4, true, 7, 1>,
DeviceConvNDFwdXdl_Input_N_Hi_Wi_C_Weight_K_Y_X_C_Output_N_Ho_Wo_K< F32, F32, F32, F32, PassThrough, PassThrough, PassThrough, ConvFwd1x1P0, 2, 256, 64, 128, 4, 4, 32, 32, 1, 2, S<4, 64, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 4, 4, true, S<4, 64, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 4, 4, true, 7, 1>,
DeviceConvNDFwdXdl_Input_N_Hi_Wi_C_Weight_K_Y_X_C_Output_N_Ho_Wo_K< F32, F32, F32, F32, PassThrough, PassThrough, PassThrough, ConvFwd1x1P0, 2, 128, 128, 32, 4, 4, 32, 32, 2, 1, S<4, 32, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 4, 4, true, S<4, 32, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 4, 4, true, 7, 1>,
DeviceConvNDFwdXdl_Input_N_Hi_Wi_C_Weight_K_Y_X_C_Output_N_Ho_Wo_K< F32, F32, F32, F32, PassThrough, PassThrough, PassThrough, ConvFwd1x1P0, 2, 128, 32, 128, 4, 4, 32, 32, 1, 2, S<4, 32, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 4, 4, true, S<4, 32, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 4, 4, true, 7, 1>,
DeviceConvNDFwdXdl_Input_N_Hi_Wi_C_Weight_K_Y_X_C_Output_N_Ho_Wo_K< F32, F32, F32, F32, PassThrough, PassThrough, PassThrough, ConvFwd1x1P0, 2, 64, 64, 32, 4, 4, 32, 32, 2, 1, S<4, 16, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 4, 4, true, S<4, 16, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 4, 4, true, 7, 1>,
DeviceConvNDFwdXdl_Input_N_Hi_Wi_C_Weight_K_Y_X_C_Output_N_Ho_Wo_K< F32, F32, F32, F32, PassThrough, PassThrough, PassThrough, ConvFwd1x1P0, 2, 64, 32, 64, 4, 4, 32, 32, 1, 2, S<4, 16, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 4, 4, true, S<4, 16, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 4, 4, true, 7, 1>
// clang-format on
>;
using device_conv2d_fwd_xdl_nhwc_kyxc_nhwk_1x1_s1_p0_f32_instances = std::tuple<
// clang-format off
//################################################################| InData| WeiData| OutData| AccData| In| Wei| Out| ConvForward| Block| MPer| NPer| K0Per| K1| MPer| NPer| MXdl| NXdl| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockLds| BBlockTransfer| BBlockTransfer| BBlockTransfer| BlockTransfer| BBlockTransfer| BBlockTransfer| BBlockLds| CThreadTransfer| CThreadTransfer|
//################################################################| Type| Type| Type| Type| Elementwise| Elementwise| Elementwise| Specialization| Size| Block| Block| Block| | XDL| XDL| Per| Per| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| AddExtraM| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| AddExtraN| SrcDstVectorDim| DstScalar|
//################################################################| | | | | Operation| Operation| Operation| | | | | | | | | Wave| Wave| Lengths_K0_M_K1| ArrangeOrder| | | PerVector| PerVector_K1| | Lengths_K0_N_K1| ArrangeOrder| | | PerVector| PerVector_K1| | | PerVector|
//################################################################| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
DeviceConv2dFwdXdl_Input_N_Hi_Wi_C_Weight_K_Y_X_C_Output_N_Ho_Wo_K< F32, F32, F32, F32, PassThrough, PassThrough, PassThrough, ConvFwd1x1S1P0, 256, 256, 128, 4, 4, 32, 32, 4, 2, S<4, 64, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 4, 4, true, S<4, 64, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 4, 4, true, 7, 1>,
DeviceConv2dFwdXdl_Input_N_Hi_Wi_C_Weight_K_Y_X_C_Output_N_Ho_Wo_K< F32, F32, F32, F32, PassThrough, PassThrough, PassThrough, ConvFwd1x1S1P0, 256, 128, 256, 4, 4, 32, 32, 2, 4, S<4, 64, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 4, 4, true, S<4, 64, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 4, 4, true, 7, 1>,
DeviceConv2dFwdXdl_Input_N_Hi_Wi_C_Weight_K_Y_X_C_Output_N_Ho_Wo_K< F32, F32, F32, F32, PassThrough, PassThrough, PassThrough, ConvFwd1x1S1P0, 128, 128, 128, 4, 4, 32, 32, 4, 2, S<4, 32, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 4, 4, true, S<4, 32, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 4, 4, true, 7, 1>,
DeviceConv2dFwdXdl_Input_N_Hi_Wi_C_Weight_K_Y_X_C_Output_N_Ho_Wo_K< F32, F32, F32, F32, PassThrough, PassThrough, PassThrough, ConvFwd1x1S1P0, 256, 128, 128, 4, 4, 32, 32, 2, 2, S<4, 64, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 4, 4, true, S<4, 64, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 4, 4, true, 7, 1>,
DeviceConv2dFwdXdl_Input_N_Hi_Wi_C_Weight_K_Y_X_C_Output_N_Ho_Wo_K< F32, F32, F32, F32, PassThrough, PassThrough, PassThrough, ConvFwd1x1S1P0, 128, 128, 64, 4, 4, 32, 32, 2, 2, S<4, 32, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 4, 4, true, S<4, 32, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 4, 4, true, 7, 1>,
DeviceConv2dFwdXdl_Input_N_Hi_Wi_C_Weight_K_Y_X_C_Output_N_Ho_Wo_K< F32, F32, F32, F32, PassThrough, PassThrough, PassThrough, ConvFwd1x1S1P0, 128, 64, 128, 4, 4, 32, 32, 2, 2, S<4, 32, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 4, 4, true, S<4, 32, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 4, 4, true, 7, 1>,
DeviceConv2dFwdXdl_Input_N_Hi_Wi_C_Weight_K_Y_X_C_Output_N_Ho_Wo_K< F32, F32, F32, F32, PassThrough, PassThrough, PassThrough, ConvFwd1x1S1P0, 64, 64, 64, 4, 4, 32, 32, 2, 2, S<4, 16, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 4, 4, true, S<4, 16, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 4, 4, true, 7, 1>,
DeviceConv2dFwdXdl_Input_N_Hi_Wi_C_Weight_K_Y_X_C_Output_N_Ho_Wo_K< F32, F32, F32, F32, PassThrough, PassThrough, PassThrough, ConvFwd1x1S1P0, 256, 128, 64, 4, 4, 32, 32, 2, 1, S<4, 64, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 4, 4, true, S<4, 64, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 4, 4, true, 7, 1>,
DeviceConv2dFwdXdl_Input_N_Hi_Wi_C_Weight_K_Y_X_C_Output_N_Ho_Wo_K< F32, F32, F32, F32, PassThrough, PassThrough, PassThrough, ConvFwd1x1S1P0, 256, 64, 128, 4, 4, 32, 32, 1, 2, S<4, 64, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 4, 4, true, S<4, 64, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 4, 4, true, 7, 1>,
DeviceConv2dFwdXdl_Input_N_Hi_Wi_C_Weight_K_Y_X_C_Output_N_Ho_Wo_K< F32, F32, F32, F32, PassThrough, PassThrough, PassThrough, ConvFwd1x1S1P0, 128, 128, 32, 4, 4, 32, 32, 2, 1, S<4, 32, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 4, 4, true, S<4, 32, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 4, 4, true, 7, 1>,
DeviceConv2dFwdXdl_Input_N_Hi_Wi_C_Weight_K_Y_X_C_Output_N_Ho_Wo_K< F32, F32, F32, F32, PassThrough, PassThrough, PassThrough, ConvFwd1x1S1P0, 128, 32, 128, 4, 4, 32, 32, 1, 2, S<4, 32, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 4, 4, true, S<4, 32, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 4, 4, true, 7, 1>,
DeviceConv2dFwdXdl_Input_N_Hi_Wi_C_Weight_K_Y_X_C_Output_N_Ho_Wo_K< F32, F32, F32, F32, PassThrough, PassThrough, PassThrough, ConvFwd1x1S1P0, 64, 64, 32, 4, 4, 32, 32, 2, 1, S<4, 16, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 4, 4, true, S<4, 16, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 4, 4, true, 7, 1>,
DeviceConv2dFwdXdl_Input_N_Hi_Wi_C_Weight_K_Y_X_C_Output_N_Ho_Wo_K< F32, F32, F32, F32, PassThrough, PassThrough, PassThrough, ConvFwd1x1S1P0, 64, 32, 64, 4, 4, 32, 32, 1, 2, S<4, 16, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 4, 4, true, S<4, 16, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 4, 4, true, 7, 1>
//################################################################| InData| WeiData| OutData| AccData| In| Wei| Out| ConvForward| NumDim| Block| MPer| NPer| K0Per| K1| MPer| NPer| MXdl| NXdl| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockLds| BBlockTransfer| BBlockTransfer| BBlockTransfer| BlockTransfer| BBlockTransfer| BBlockTransfer| BBlockLds| CThreadTransfer| CThreadTransfer|
//################################################################| Type| Type| Type| Type| Elementwise| Elementwise| Elementwise| Specialization|Spatial| Size| Block| Block| Block| | XDL| XDL| Per| Per| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| AddExtraM| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| AddExtraN| SrcDstVectorDim| DstScalar|
//################################################################| | | | | Operation| Operation| Operation| | | | | | | | | | Wave| Wave| Lengths_K0_M_K1| ArrangeOrder| | | PerVector| PerVector_K1| | Lengths_K0_N_K1| ArrangeOrder| | | PerVector| PerVector_K1| | | PerVector|
//################################################################| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
DeviceConvNDFwdXdl_Input_N_Hi_Wi_C_Weight_K_Y_X_C_Output_N_Ho_Wo_K< F32, F32, F32, F32, PassThrough, PassThrough, PassThrough, ConvFwd1x1S1P0, 2, 256, 256, 128, 4, 4, 32, 32, 4, 2, S<4, 64, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 4, 4, true, S<4, 64, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 4, 4, true, 7, 1>,
DeviceConvNDFwdXdl_Input_N_Hi_Wi_C_Weight_K_Y_X_C_Output_N_Ho_Wo_K< F32, F32, F32, F32, PassThrough, PassThrough, PassThrough, ConvFwd1x1S1P0, 2, 256, 128, 256, 4, 4, 32, 32, 2, 4, S<4, 64, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 4, 4, true, S<4, 64, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 4, 4, true, 7, 1>,
DeviceConvNDFwdXdl_Input_N_Hi_Wi_C_Weight_K_Y_X_C_Output_N_Ho_Wo_K< F32, F32, F32, F32, PassThrough, PassThrough, PassThrough, ConvFwd1x1S1P0, 2, 128, 128, 128, 4, 4, 32, 32, 4, 2, S<4, 32, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 4, 4, true, S<4, 32, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 4, 4, true, 7, 1>,
DeviceConvNDFwdXdl_Input_N_Hi_Wi_C_Weight_K_Y_X_C_Output_N_Ho_Wo_K< F32, F32, F32, F32, PassThrough, PassThrough, PassThrough, ConvFwd1x1S1P0, 2, 256, 128, 128, 4, 4, 32, 32, 2, 2, S<4, 64, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 4, 4, true, S<4, 64, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 4, 4, true, 7, 1>,
DeviceConvNDFwdXdl_Input_N_Hi_Wi_C_Weight_K_Y_X_C_Output_N_Ho_Wo_K< F32, F32, F32, F32, PassThrough, PassThrough, PassThrough, ConvFwd1x1S1P0, 2, 128, 128, 64, 4, 4, 32, 32, 2, 2, S<4, 32, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 4, 4, true, S<4, 32, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 4, 4, true, 7, 1>,
DeviceConvNDFwdXdl_Input_N_Hi_Wi_C_Weight_K_Y_X_C_Output_N_Ho_Wo_K< F32, F32, F32, F32, PassThrough, PassThrough, PassThrough, ConvFwd1x1S1P0, 2, 128, 64, 128, 4, 4, 32, 32, 2, 2, S<4, 32, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 4, 4, true, S<4, 32, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 4, 4, true, 7, 1>,
DeviceConvNDFwdXdl_Input_N_Hi_Wi_C_Weight_K_Y_X_C_Output_N_Ho_Wo_K< F32, F32, F32, F32, PassThrough, PassThrough, PassThrough, ConvFwd1x1S1P0, 2, 64, 64, 64, 4, 4, 32, 32, 2, 2, S<4, 16, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 4, 4, true, S<4, 16, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 4, 4, true, 7, 1>,
DeviceConvNDFwdXdl_Input_N_Hi_Wi_C_Weight_K_Y_X_C_Output_N_Ho_Wo_K< F32, F32, F32, F32, PassThrough, PassThrough, PassThrough, ConvFwd1x1S1P0, 2, 256, 128, 64, 4, 4, 32, 32, 2, 1, S<4, 64, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 4, 4, true, S<4, 64, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 4, 4, true, 7, 1>,
DeviceConvNDFwdXdl_Input_N_Hi_Wi_C_Weight_K_Y_X_C_Output_N_Ho_Wo_K< F32, F32, F32, F32, PassThrough, PassThrough, PassThrough, ConvFwd1x1S1P0, 2, 256, 64, 128, 4, 4, 32, 32, 1, 2, S<4, 64, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 4, 4, true, S<4, 64, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 4, 4, true, 7, 1>,
DeviceConvNDFwdXdl_Input_N_Hi_Wi_C_Weight_K_Y_X_C_Output_N_Ho_Wo_K< F32, F32, F32, F32, PassThrough, PassThrough, PassThrough, ConvFwd1x1S1P0, 2, 128, 128, 32, 4, 4, 32, 32, 2, 1, S<4, 32, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 4, 4, true, S<4, 32, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 4, 4, true, 7, 1>,
DeviceConvNDFwdXdl_Input_N_Hi_Wi_C_Weight_K_Y_X_C_Output_N_Ho_Wo_K< F32, F32, F32, F32, PassThrough, PassThrough, PassThrough, ConvFwd1x1S1P0, 2, 128, 32, 128, 4, 4, 32, 32, 1, 2, S<4, 32, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 4, 4, true, S<4, 32, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 4, 4, true, 7, 1>,
DeviceConvNDFwdXdl_Input_N_Hi_Wi_C_Weight_K_Y_X_C_Output_N_Ho_Wo_K< F32, F32, F32, F32, PassThrough, PassThrough, PassThrough, ConvFwd1x1S1P0, 2, 64, 64, 32, 4, 4, 32, 32, 2, 1, S<4, 16, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 4, 4, true, S<4, 16, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 4, 4, true, 7, 1>,
DeviceConvNDFwdXdl_Input_N_Hi_Wi_C_Weight_K_Y_X_C_Output_N_Ho_Wo_K< F32, F32, F32, F32, PassThrough, PassThrough, PassThrough, ConvFwd1x1S1P0, 2, 64, 32, 64, 4, 4, 32, 32, 1, 2, S<4, 16, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 4, 4, true, S<4, 16, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 4, 4, true, 7, 1>
// clang-format on
>;
......
#include <stdlib.h>
#include "config.hpp"
#include "device_gemm_xdl_c_shuffle.hpp"
#include "element_wise_operation.hpp"
#include "device_operation_instance.hpp"
namespace ck {
namespace tensor_operation {
namespace device {
namespace device_gemm_instance {
using F16 = ck::half_t;
using F32 = float;
using Row = ck::tensor_layout::gemm::RowMajor;
using Col = ck::tensor_layout::gemm::ColumnMajor;
template <ck::index_t... Is>
using S = ck::Sequence<Is...>;
using PassThrough = ck::tensor_operation::element_wise::PassThrough;
// Compilation parameters for a[m, k] * b[n, k] = c[m, n]
using device_gemm_xdl_c_shuffle_2_stage_f16_f16_f16_mk_nk_mn_instances = std::tuple<
// clang-format off
//#####################| AData| BData| CData| AccData| ALayout| BLayout| CLayout| A| B| C| Block| MPer| NPer| KPer| AK1| BK1| MPer| NPer| MXdl| NXdl| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockLds| BBlockTransfer| BBlockTransfer| BBlockTransfer| BlockTransfer| BBlockTransfer| BBlockTransfer| BBlockLds| CShuffle| CShuffle| CBlockTransferClusterLengths| CBlockTransfer| Num|
//#####################| Type| Type| Type| Type| | | | Elementwise| Elementwise| Elementwise| Size| Block| Block| Block| | | XDL| XDL| Per| Per| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| AddExtraM| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| AddExtraN| MXdlPerWave| NXdlPerWave| _MBlock_MXdlPerWave_MWaveMPerXdl| ScalarPerVector| Prefetch|
//#####################| | | | | | | | Operation| Operation| Operation| | | | | | | | | Wave| Wave| Lengths_K0_M_K1| ArrangeOrder| | | PerVector| PerVector_K1| | Lengths_K0_N_K1| ArrangeOrder| | | PerVector| PerVector_K1| | PerShuffle| PerShuffle| _NBlock_NXdlPerWave_NWaveNPerXdl| _NWaveNPerXdl| |
//#####################| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
DeviceGemmXdl_C_Shuffle< F16, F16, F16, F32, Row, Col, Row, PassThrough, PassThrough, PassThrough, 256, 256, 128, 32, 8, 8, 32, 32, 4, 2, S<4, 64, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, true, S<4, 64, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, true, 1, 1, S<1, 1, 32, 1, 1, 8>, 8, 2>,
DeviceGemmXdl_C_Shuffle< F16, F16, F16, F32, Row, Col, Row, PassThrough, PassThrough, PassThrough, 256, 128, 256, 32, 8, 8, 32, 32, 2, 4, S<4, 64, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, true, S<4, 64, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, true, 1, 1, S<1, 1, 32, 1, 1, 8>, 8, 2>,
DeviceGemmXdl_C_Shuffle< F16, F16, F16, F32, Row, Col, Row, PassThrough, PassThrough, PassThrough, 128, 128, 128, 32, 8, 8, 32, 32, 4, 2, S<4, 32, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, true, S<4, 32, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, true, 1, 1, S<1, 1, 16, 1, 1, 8>, 8, 2>,
DeviceGemmXdl_C_Shuffle< F16, F16, F16, F32, Row, Col, Row, PassThrough, PassThrough, PassThrough, 256, 128, 128, 32, 8, 8, 32, 32, 2, 2, S<4, 64, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, true, S<4, 64, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, true, 1, 1, S<1, 1, 32, 1, 1, 8>, 8, 2>,
DeviceGemmXdl_C_Shuffle< F16, F16, F16, F32, Row, Col, Row, PassThrough, PassThrough, PassThrough, 128, 128, 64, 32, 8, 8, 32, 32, 2, 2, S<4, 32, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, true, S<4, 32, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, true, 1, 1, S<1, 1, 32, 1, 1, 4>, 8, 2>,
DeviceGemmXdl_C_Shuffle< F16, F16, F16, F32, Row, Col, Row, PassThrough, PassThrough, PassThrough, 128, 64, 128, 32, 8, 8, 32, 32, 2, 2, S<4, 32, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, true, S<4, 32, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, true, 1, 1, S<1, 1, 16, 1, 1, 8>, 8, 2>,
DeviceGemmXdl_C_Shuffle< F16, F16, F16, F32, Row, Col, Row, PassThrough, PassThrough, PassThrough, 64, 64, 64, 32, 8, 8, 32, 32, 2, 2, S<4, 16, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, true, S<4, 16, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, true, 1, 1, S<1, 1, 16, 1, 1, 4>, 8, 2>,
DeviceGemmXdl_C_Shuffle< F16, F16, F16, F32, Row, Col, Row, PassThrough, PassThrough, PassThrough, 256, 128, 64, 32, 8, 8, 32, 32, 2, 1, S<4, 64, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, true, S<4, 64, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, true, 1, 1, S<1, 1, 32, 1, 1, 8>, 8, 2>,
DeviceGemmXdl_C_Shuffle< F16, F16, F16, F32, Row, Col, Row, PassThrough, PassThrough, PassThrough, 256, 64, 128, 32, 8, 8, 32, 32, 1, 2, S<4, 64, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, true, S<4, 64, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, true, 1, 1, S<1, 1, 32, 1, 1, 8>, 8, 2>,
DeviceGemmXdl_C_Shuffle< F16, F16, F16, F32, Row, Col, Row, PassThrough, PassThrough, PassThrough, 128, 128, 32, 32, 8, 8, 32, 32, 2, 1, S<4, 32, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, true, S<4, 32, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, true, 1, 1, S<1, 1, 32, 1, 1, 4>, 8, 2>,
DeviceGemmXdl_C_Shuffle< F16, F16, F16, F32, Row, Col, Row, PassThrough, PassThrough, PassThrough, 128, 32, 128, 32, 8, 8, 32, 32, 1, 2, S<4, 32, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, true, S<4, 32, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, true, 1, 1, S<1, 1, 16, 1, 1, 8>, 8, 2>,
DeviceGemmXdl_C_Shuffle< F16, F16, F16, F32, Row, Col, Row, PassThrough, PassThrough, PassThrough, 64, 64, 32, 32, 8, 8, 32, 32, 2, 1, S<4, 16, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, true, S<4, 16, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, true, 1, 1, S<1, 1, 16, 1, 1, 4>, 8, 2>,
DeviceGemmXdl_C_Shuffle< F16, F16, F16, F32, Row, Col, Row, PassThrough, PassThrough, PassThrough, 64, 32, 64, 32, 8, 8, 32, 32, 1, 2, S<4, 16, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, true, S<4, 16, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, true, 1, 1, S<1, 1, 16, 1, 1, 4>, 8, 2>
// clang-format on
>;
void add_device_gemm_xdl_c_shuffle_2_stage_f16_f16_f16_mk_nk_mn_instances(
std::vector<DeviceGemmPtr<PassThrough, PassThrough, PassThrough>>& instances)
{
add_device_operation_instances(
instances, device_gemm_xdl_c_shuffle_2_stage_f16_f16_f16_mk_nk_mn_instances{});
}
} // namespace device_gemm_instance
} // namespace device
} // namespace tensor_operation
} // namespace ck
......@@ -21,23 +21,30 @@ using S = ck::Sequence<Is...>;
using PassThrough = ck::tensor_operation::element_wise::PassThrough;
// Compilation parameters for a[k, m] * b[k, n] = c[m, n]
using device_gemm_xdl_c_shuffle_f16_f16_f16_km_kn_mn_instances =
std::tuple<
// clang-format off
//#####################|AData| BData| CData| AccData| ALayout| BLayout| CLayout| A| B| C| Block| MPer| NPer| K0Per| K1| MPer| NPer| MXdl| NXdl| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockLds| BBlockTransfer| BBlockTransfer| BBlockTransfer| BlockTransfer| BBlockTransfer| BBlockTransfer| BBlockLds| CShuffle| CShuffle| CBlockTransferClusterLengths| CBlockTransfer|
//#####################| Type| Type| Type| Type| | | | Elementwise| Elementwise| Elementwise| Size| Block| Block| Block| | XDL| XDL| Per| Per| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| AddExtraM| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| AddExtraN| MXdlPerWave| NXdlPerWave| _MBlock_MXdlPerWave_MWaveMPerXdl| ScalarPerVector|
//#####################| | | | | | | | Operation| Operation| Operation| | | | | | | | Wave| Wave| Lengths_K0_M_K1| ArrangeOrder| | | PerVector| PerVector_K1| | Lengths_K0_N_K1| ArrangeOrder| | | PerVector| PerVector_K1| | PerShuffle| PerShuffle| _NBlock_NXdlPerWave_NWaveNPerXdl| _NWaveNPerXdl|
//#####################| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
DeviceGemmXdl_C_Shuffle< F16, F16, F16, F32, Col, Row, Row, PassThrough, PassThrough, PassThrough, 256, 256, 128, 4, 8, 32, 32, 4, 2, S<4, 64, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 4, 8, true, S<4, 64, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 2, 8, true, 1, 1, S<1, 1, 32, 1, 1, 8>, 8>,
DeviceGemmXdl_C_Shuffle< F16, F16, F16, F32, Col, Row, Row, PassThrough, PassThrough, PassThrough, 256, 128, 256, 4, 8, 32, 32, 2, 4, S<4, 64, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 2, 8, true, S<4, 64, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 4, 8, true, 1, 1, S<1, 1, 32, 1, 1, 8>, 8>,
DeviceGemmXdl_C_Shuffle< F16, F16, F16, F32, Col, Row, Row, PassThrough, PassThrough, PassThrough, 128, 128, 128, 4, 8, 32, 32, 4, 2, S<4, 32, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 4, 8, true, S<4, 32, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 4, 8, true, 1, 1, S<1, 1, 16, 1, 1, 8>, 8>,
DeviceGemmXdl_C_Shuffle< F16, F16, F16, F32, Col, Row, Row, PassThrough, PassThrough, PassThrough, 256, 128, 128, 4, 8, 32, 32, 2, 2, S<4, 64, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 2, 8, true, S<4, 64, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 2, 8, true, 1, 1, S<1, 1, 32, 1, 1, 8>, 8>,
DeviceGemmXdl_C_Shuffle< F16, F16, F16, F32, Col, Row, Row, PassThrough, PassThrough, PassThrough, 128, 128, 64, 4, 8, 32, 32, 2, 2, S<4, 32, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 4, 8, true, S<4, 32, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 2, 8, true, 1, 1, S<1, 1, 32, 1, 1, 4>, 8>,
DeviceGemmXdl_C_Shuffle< F16, F16, F16, F32, Col, Row, Row, PassThrough, PassThrough, PassThrough, 128, 64, 128, 4, 8, 32, 32, 2, 2, S<4, 32, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 2, 8, true, S<4, 32, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 4, 8, true, 1, 1, S<1, 1, 16, 1, 1, 8>, 8>,
DeviceGemmXdl_C_Shuffle< F16, F16, F16, F32, Col, Row, Row, PassThrough, PassThrough, PassThrough, 256, 128, 64, 4, 8, 32, 32, 2, 1, S<4, 64, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 2, 8, true, S<4, 64, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 1, 8, true, 1, 1, S<1, 1, 16, 1, 1, 4>, 8>,
DeviceGemmXdl_C_Shuffle< F16, F16, F16, F32, Col, Row, Row, PassThrough, PassThrough, PassThrough, 256, 64, 128, 4, 8, 32, 32, 1, 2, S<4, 64, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 1, 8, true, S<4, 64, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 2, 8, true, 1, 1, S<1, 1, 32, 1, 1, 8>, 8>
// clang-format on
>;
using device_gemm_xdl_c_shuffle_f16_f16_f16_km_kn_mn_instances = std::tuple<
// clang-format off
//#####################|AData| BData| CData| AccData| ALayout| BLayout| CLayout| A| B| C| Block| MPer| NPer| KPer| AK1| BK1| MPer| NPer| MXdl| NXdl| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockLds| BBlockTransfer| BBlockTransfer| BBlockTransfer| BlockTransfer| BBlockTransfer| BBlockTransfer| BBlockLds| CShuffle| CShuffle| CBlockTransferClusterLengths| CBlockTransfer|
//#####################| Type| Type| Type| Type| | | | Elementwise| Elementwise| Elementwise| Size| Block| Block| Block| | | XDL| XDL| Per| Per| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| AddExtraM| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| AddExtraN| MXdlPerWave| NXdlPerWave| _MBlock_MXdlPerWave_MWaveMPerXdl| ScalarPerVector|
//#####################| | | | | | | | Operation| Operation| Operation| | | | | | | | | Wave| Wave| Lengths_K0_M_K1| ArrangeOrder| | | PerVector| PerVector_K1| | Lengths_K0_N_K1| ArrangeOrder| | | PerVector| PerVector_K1| | PerShuffle| PerShuffle| _NBlock_NXdlPerWave_NWaveNPerXdl| _NWaveNPerXdl|
//#####################| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
DeviceGemmXdl_C_Shuffle< F16, F16, F16, F32, Col, Row, Row, PassThrough, PassThrough, PassThrough, 256, 256, 128, 32, 2, 2, 32, 32, 4, 2, S<4, 64, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 4, 2, false, S<8, 32, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 4, 2, false, 1, 1, S<1, 1, 32, 1, 1, 8>, 8>,
DeviceGemmXdl_C_Shuffle< F16, F16, F16, F32, Col, Row, Row, PassThrough, PassThrough, PassThrough, 256, 256, 128, 32, 8, 8, 32, 32, 4, 2, S<4, 64, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 4, 8, true, S<4, 64, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 2, 8, true, 1, 1, S<1, 1, 32, 1, 1, 8>, 8>,
DeviceGemmXdl_C_Shuffle< F16, F16, F16, F32, Col, Row, Row, PassThrough, PassThrough, PassThrough, 256, 128, 256, 32, 4, 4, 32, 32, 2, 4, S<8, 32, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 4, 2, false, S<4, 64, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 4, 2, false, 1, 1, S<1, 1, 32, 1, 1, 8>, 8>,
DeviceGemmXdl_C_Shuffle< F16, F16, F16, F32, Col, Row, Row, PassThrough, PassThrough, PassThrough, 256, 128, 256, 32, 8, 8, 32, 32, 2, 4, S<4, 64, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 2, 8, true, S<4, 64, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 4, 8, true, 1, 1, S<1, 1, 32, 1, 1, 8>, 8>,
DeviceGemmXdl_C_Shuffle< F16, F16, F16, F32, Col, Row, Row, PassThrough, PassThrough, PassThrough, 128, 128, 128, 32, 2, 2, 32, 32, 4, 2, S<4, 32, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 4, 2, false, S<4, 32, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 4, 2, false, 1, 1, S<1, 1, 16, 1, 1, 8>, 8>,
DeviceGemmXdl_C_Shuffle< F16, F16, F16, F32, Col, Row, Row, PassThrough, PassThrough, PassThrough, 128, 128, 128, 32, 8, 8, 32, 32, 4, 2, S<4, 32, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 4, 8, true, S<4, 32, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 4, 8, true, 1, 1, S<1, 1, 16, 1, 1, 8>, 8>,
DeviceGemmXdl_C_Shuffle< F16, F16, F16, F32, Col, Row, Row, PassThrough, PassThrough, PassThrough, 256, 128, 128, 32, 2, 2, 32, 32, 2, 2, S<8, 32, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 4, 2, false, S<8, 32, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 4, 2, false, 1, 1, S<1, 1, 32, 1, 1, 8>, 8>,
DeviceGemmXdl_C_Shuffle< F16, F16, F16, F32, Col, Row, Row, PassThrough, PassThrough, PassThrough, 256, 128, 128, 32, 8, 8, 32, 32, 2, 2, S<4, 64, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 2, 8, true, S<4, 64, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 2, 8, true, 1, 1, S<1, 1, 32, 1, 1, 8>, 8>,
DeviceGemmXdl_C_Shuffle< F16, F16, F16, F32, Col, Row, Row, PassThrough, PassThrough, PassThrough, 128, 128, 64, 32, 2, 2, 32, 32, 2, 2, S<4, 32, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 4, 2, false, S<4, 16, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 4, 2, false, 1, 1, S<1, 1, 32, 1, 1, 4>, 8>,
DeviceGemmXdl_C_Shuffle< F16, F16, F16, F32, Col, Row, Row, PassThrough, PassThrough, PassThrough, 128, 128, 64, 32, 8, 8, 32, 32, 2, 2, S<4, 32, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 4, 8, true, S<4, 32, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 2, 8, true, 1, 1, S<1, 1, 32, 1, 1, 4>, 8>,
DeviceGemmXdl_C_Shuffle< F16, F16, F16, F32, Col, Row, Row, PassThrough, PassThrough, PassThrough, 128, 64, 128, 32, 2, 2, 32, 32, 2, 2, S<8, 16, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 4, 2, false, S<4, 32, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 4, 2, false, 1, 1, S<1, 1, 16, 1, 1, 8>, 8>,
DeviceGemmXdl_C_Shuffle< F16, F16, F16, F32, Col, Row, Row, PassThrough, PassThrough, PassThrough, 128, 64, 128, 32, 8, 8, 32, 32, 2, 2, S<4, 32, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 2, 8, true, S<4, 32, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 4, 8, true, 1, 1, S<1, 1, 16, 1, 1, 8>, 8>,
DeviceGemmXdl_C_Shuffle< F16, F16, F16, F32, Col, Row, Row, PassThrough, PassThrough, PassThrough, 256, 128, 64, 32, 2, 2, 32, 32, 2, 1, S<8, 32, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 4, 2, false, S<16,16, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 4, 2, false, 1, 1, S<1, 1, 16, 1, 1, 4>, 8>,
DeviceGemmXdl_C_Shuffle< F16, F16, F16, F32, Col, Row, Row, PassThrough, PassThrough, PassThrough, 256, 128, 64, 32, 8, 8, 32, 32, 2, 1, S<4, 64, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 2, 8, true, S<4, 64, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 1, 8, true, 1, 1, S<1, 1, 16, 1, 1, 4>, 8>,
DeviceGemmXdl_C_Shuffle< F16, F16, F16, F32, Col, Row, Row, PassThrough, PassThrough, PassThrough, 256, 64, 128, 32, 2, 2, 32, 32, 1, 2, S<16,16, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 4, 2, false, S<8, 32, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 4, 2, false, 1, 1, S<1, 1, 32, 1, 1, 8>, 8>,
DeviceGemmXdl_C_Shuffle< F16, F16, F16, F32, Col, Row, Row, PassThrough, PassThrough, PassThrough, 256, 64, 128, 32, 8, 8, 32, 32, 1, 2, S<4, 64, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 1, 8, true, S<4, 64, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 2, 8, true, 1, 1, S<1, 1, 32, 1, 1, 8>, 8>
// clang-format on
>;
void add_device_gemm_xdl_c_shuffle_f16_f16_f16_km_kn_mn_instances(
std::vector<DeviceGemmPtr<PassThrough, PassThrough, PassThrough>>& instances)
......
......@@ -21,23 +21,30 @@ using S = ck::Sequence<Is...>;
using PassThrough = ck::tensor_operation::element_wise::PassThrough;
// Compilation parameters for a[k, m] * b[n, k] = c[m, n]
using device_gemm_xdl_c_shuffle_f16_f16_f16_km_nk_mn_instances =
std::tuple<
// clang-format off
//#####################|AData| BData| CData| AccData| ALayout| BLayout| CLayout| A| B| C| Block| MPer| NPer| K0Per| K1| MPer| NPer| MXdl| NXdl| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockLds| BBlockTransfer| BBlockTransfer| BBlockTransfer| BlockTransfer| BBlockTransfer| BBlockTransfer| BBlockLds| CShuffle| CShuffle| CBlockTransferClusterLengths| CBlockTransfer|
//#####################| Type| Type| Type| Type| | | | Elementwise| Elementwise| Elementwise| Size| Block| Block| Block| | XDL| XDL| Per| Per| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| AddExtraM| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| AddExtraN| MXdlPerWave| NXdlPerWave| _MBlock_MXdlPerWave_MWaveMPerXdl| ScalarPerVector|
//#####################| | | | | | | | Operation| Operation| Operation| | | | | | | | Wave| Wave| Lengths_K0_M_K1| ArrangeOrder| | | PerVector| PerVector_K1| | Lengths_K0_N_K1| ArrangeOrder| | | PerVector| PerVector_K1| | PerShuffle| PerShuffle| _NBlock_NXdlPerWave_NWaveNPerXdl| _NWaveNPerXdl|
//#####################| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
DeviceGemmXdl_C_Shuffle< F16, F16, F16, F32, Col, Col, Row, PassThrough, PassThrough, PassThrough, 256, 256, 128, 4, 8, 32, 32, 4, 2, S<4, 64, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 4, 8, true, S<4, 64, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, true, 1, 1, S<1, 1, 32, 1, 1, 8>, 8>,
DeviceGemmXdl_C_Shuffle< F16, F16, F16, F32, Col, Col, Row, PassThrough, PassThrough, PassThrough, 256, 128, 256, 4, 8, 32, 32, 2, 4, S<4, 64, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 2, 8, true, S<4, 64, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, true, 1, 1, S<1, 1, 32, 1, 1, 8>, 8>,
DeviceGemmXdl_C_Shuffle< F16, F16, F16, F32, Col, Col, Row, PassThrough, PassThrough, PassThrough, 128, 128, 128, 4, 8, 32, 32, 4, 2, S<4, 32, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 4, 8, true, S<4, 32, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, true, 1, 1, S<1, 1, 16, 1, 1, 8>, 8>,
DeviceGemmXdl_C_Shuffle< F16, F16, F16, F32, Col, Col, Row, PassThrough, PassThrough, PassThrough, 256, 128, 128, 4, 8, 32, 32, 2, 2, S<4, 64, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 2, 8, true, S<4, 64, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, true, 1, 1, S<1, 1, 32, 1, 1, 8>, 8>,
DeviceGemmXdl_C_Shuffle< F16, F16, F16, F32, Col, Col, Row, PassThrough, PassThrough, PassThrough, 128, 128, 64, 4, 8, 32, 32, 2, 2, S<4, 32, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 4, 8, true, S<4, 32, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, true, 1, 1, S<1, 1, 32, 1, 1, 4>, 8>,
DeviceGemmXdl_C_Shuffle< F16, F16, F16, F32, Col, Col, Row, PassThrough, PassThrough, PassThrough, 128, 64, 128, 4, 8, 32, 32, 2, 2, S<4, 32, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 2, 8, true, S<4, 32, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, true, 1, 1, S<1, 1, 16, 1, 1, 8>, 8>,
DeviceGemmXdl_C_Shuffle< F16, F16, F16, F32, Col, Col, Row, PassThrough, PassThrough, PassThrough, 256, 128, 64, 4, 8, 32, 32, 2, 1, S<4, 64, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 2, 8, true, S<4, 64, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, true, 1, 1, S<1, 1, 16, 1, 1, 4>, 8>,
DeviceGemmXdl_C_Shuffle< F16, F16, F16, F32, Col, Col, Row, PassThrough, PassThrough, PassThrough, 256, 64, 128, 4, 8, 32, 32, 1, 2, S<4, 64, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 1, 8, true, S<4, 64, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, true, 1, 1, S<1, 1, 32, 1, 1, 8>, 8>
// clang-format on
>;
using device_gemm_xdl_c_shuffle_f16_f16_f16_km_nk_mn_instances = std::tuple<
// clang-format off
//#####################|AData| BData| CData| AccData| ALayout| BLayout| CLayout| A| B| C| Block| MPer| NPer| KPer| AK1| BK1| MPer| NPer| MXdl| NXdl| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockLds| BBlockTransfer| BBlockTransfer| BBlockTransfer| BlockTransfer| BBlockTransfer| BBlockTransfer| BBlockLds| CShuffle| CShuffle| CBlockTransferClusterLengths| CBlockTransfer|
//#####################| Type| Type| Type| Type| | | | Elementwise| Elementwise| Elementwise| Size| Block| Block| Block| | | XDL| XDL| Per| Per| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| AddExtraM| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| AddExtraN| MXdlPerWave| NXdlPerWave| _MBlock_MXdlPerWave_MWaveMPerXdl| ScalarPerVector|
//#####################| | | | | | | | Operation| Operation| Operation| | | | | | | | | Wave| Wave| Lengths_K0_M_K1| ArrangeOrder| | | PerVector| PerVector_K1| | Lengths_K0_N_K1| ArrangeOrder| | | PerVector| PerVector_K1| | PerShuffle| PerShuffle| _NBlock_NXdlPerWave_NWaveNPerXdl| _NWaveNPerXdl|
//#####################| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
DeviceGemmXdl_C_Shuffle< F16, F16, F16, F32, Col, Col, Row, PassThrough, PassThrough, PassThrough, 256, 256, 128, 32, 2, 8, 32, 32, 4, 2, S<4, 64, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 4, 2, false, S<4, 64, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, true, 1, 1, S<1, 1, 32, 1, 1, 8>, 8>,
DeviceGemmXdl_C_Shuffle< F16, F16, F16, F32, Col, Col, Row, PassThrough, PassThrough, PassThrough, 256, 256, 128, 32, 8, 8, 32, 32, 4, 2, S<4, 64, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 4, 8, true, S<4, 64, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, true, 1, 1, S<1, 1, 32, 1, 1, 8>, 8>,
DeviceGemmXdl_C_Shuffle< F16, F16, F16, F32, Col, Col, Row, PassThrough, PassThrough, PassThrough, 256, 128, 256, 32, 2, 8, 32, 32, 2, 4, S<8, 32, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 4, 2, false, S<4, 64, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, true, 1, 1, S<1, 1, 32, 1, 1, 8>, 8>,
DeviceGemmXdl_C_Shuffle< F16, F16, F16, F32, Col, Col, Row, PassThrough, PassThrough, PassThrough, 256, 128, 256, 32, 8, 8, 32, 32, 2, 4, S<4, 64, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 2, 8, true, S<4, 64, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, true, 1, 1, S<1, 1, 32, 1, 1, 8>, 8>,
DeviceGemmXdl_C_Shuffle< F16, F16, F16, F32, Col, Col, Row, PassThrough, PassThrough, PassThrough, 128, 128, 128, 32, 2, 8, 32, 32, 4, 2, S<4, 32, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 4, 2, false, S<4, 32, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, true, 1, 1, S<1, 1, 16, 1, 1, 8>, 8>,
DeviceGemmXdl_C_Shuffle< F16, F16, F16, F32, Col, Col, Row, PassThrough, PassThrough, PassThrough, 128, 128, 128, 32, 8, 8, 32, 32, 4, 2, S<4, 32, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 4, 8, true, S<4, 32, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, true, 1, 1, S<1, 1, 16, 1, 1, 8>, 8>,
DeviceGemmXdl_C_Shuffle< F16, F16, F16, F32, Col, Col, Row, PassThrough, PassThrough, PassThrough, 256, 128, 128, 32, 2, 8, 32, 32, 2, 2, S<8, 32, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 4, 2, false, S<4, 64, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, true, 1, 1, S<1, 1, 32, 1, 1, 8>, 8>,
DeviceGemmXdl_C_Shuffle< F16, F16, F16, F32, Col, Col, Row, PassThrough, PassThrough, PassThrough, 256, 128, 128, 32, 8, 8, 32, 32, 2, 2, S<4, 64, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 2, 8, true, S<4, 64, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, true, 1, 1, S<1, 1, 32, 1, 1, 8>, 8>,
DeviceGemmXdl_C_Shuffle< F16, F16, F16, F32, Col, Col, Row, PassThrough, PassThrough, PassThrough, 128, 128, 64, 32, 2, 8, 32, 32, 2, 2, S<4, 32, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 4, 2, false, S<4, 32, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, true, 1, 1, S<1, 1, 32, 1, 1, 4>, 8>,
DeviceGemmXdl_C_Shuffle< F16, F16, F16, F32, Col, Col, Row, PassThrough, PassThrough, PassThrough, 128, 128, 64, 32, 8, 8, 32, 32, 2, 2, S<4, 32, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 4, 8, true, S<4, 32, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, true, 1, 1, S<1, 1, 32, 1, 1, 4>, 8>,
DeviceGemmXdl_C_Shuffle< F16, F16, F16, F32, Col, Col, Row, PassThrough, PassThrough, PassThrough, 128, 64, 128, 32, 2, 8, 32, 32, 2, 2, S<8, 16, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 4, 2, false, S<4, 32, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, true, 1, 1, S<1, 1, 16, 1, 1, 8>, 8>,
DeviceGemmXdl_C_Shuffle< F16, F16, F16, F32, Col, Col, Row, PassThrough, PassThrough, PassThrough, 128, 64, 128, 32, 8, 8, 32, 32, 2, 2, S<4, 32, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 2, 8, true, S<4, 32, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, true, 1, 1, S<1, 1, 16, 1, 1, 8>, 8>,
DeviceGemmXdl_C_Shuffle< F16, F16, F16, F32, Col, Col, Row, PassThrough, PassThrough, PassThrough, 256, 128, 64, 32, 2, 8, 32, 32, 2, 1, S<8, 32, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 4, 2, false, S<4, 64, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, true, 1, 1, S<1, 1, 16, 1, 1, 4>, 8>,
DeviceGemmXdl_C_Shuffle< F16, F16, F16, F32, Col, Col, Row, PassThrough, PassThrough, PassThrough, 256, 128, 64, 32, 8, 8, 32, 32, 2, 1, S<4, 64, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 2, 8, true, S<4, 64, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, true, 1, 1, S<1, 1, 16, 1, 1, 4>, 8>,
DeviceGemmXdl_C_Shuffle< F16, F16, F16, F32, Col, Col, Row, PassThrough, PassThrough, PassThrough, 256, 64, 128, 32, 2, 8, 32, 32, 1, 2, S<16,16, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 4, 2, false, S<4, 64, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, true, 1, 1, S<1, 1, 32, 1, 1, 8>, 8>,
DeviceGemmXdl_C_Shuffle< F16, F16, F16, F32, Col, Col, Row, PassThrough, PassThrough, PassThrough, 256, 64, 128, 32, 8, 8, 32, 32, 1, 2, S<4, 64, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 1, 8, true, S<4, 64, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, true, 1, 1, S<1, 1, 32, 1, 1, 8>, 8>
// clang-format on
>;
void add_device_gemm_xdl_c_shuffle_f16_f16_f16_km_nk_mn_instances(
std::vector<DeviceGemmPtr<PassThrough, PassThrough, PassThrough>>& instances)
......
......@@ -21,23 +21,30 @@ using S = ck::Sequence<Is...>;
using PassThrough = ck::tensor_operation::element_wise::PassThrough;
// Compilation parameters for a[m, k] * b[k, n] = c[m, n]
using device_gemm_xdl_c_shuffle_f16_f16_f16_mk_kn_mn_instances =
std::tuple<
// clang-format off
//#####################|AData| BData| CData| AccData| ALayout| BLayout| CLayout| A| B| C| Block| MPer| NPer| K0Per| K1| MPer| NPer| MXdl| NXdl| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockLds| BBlockTransfer| BBlockTransfer| BBlockTransfer| BlockTransfer| BBlockTransfer| BBlockTransfer| BBlockLds| CShuffle| CShuffle| CBlockTransferClusterLengths| CBlockTransfer|
//#####################| Type| Type| Type| Type| | | | Elementwise| Elementwise| Elementwise| Size| Block| Block| Block| | XDL| XDL| Per| Per| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| AddExtraM| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| AddExtraN| MXdlPerWave| NXdlPerWave| _MBlock_MXdlPerWave_MWaveMPerXdl| ScalarPerVector|
//#####################| | | | | | | | Operation| Operation| Operation| | | | | | | | Wave| Wave| Lengths_K0_M_K1| ArrangeOrder| | | PerVector| PerVector_K1| | Lengths_K0_N_K1| ArrangeOrder| | | PerVector| PerVector_K1| | PerShuffle| PerShuffle| _NBlock_NXdlPerWave_NWaveNPerXdl| _NWaveNPerXdl|
//#####################| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
DeviceGemmXdl_C_Shuffle< F16, F16, F16, F32, Row, Row, Row, PassThrough, PassThrough, PassThrough, 256, 256, 128, 4, 8, 32, 32, 4, 2, S<4, 64, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, true, S<4, 64, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 2, 8, true, 1, 1, S<1, 1, 32, 1, 1, 8>, 8>,
DeviceGemmXdl_C_Shuffle< F16, F16, F16, F32, Row, Row, Row, PassThrough, PassThrough, PassThrough, 256, 128, 256, 4, 8, 32, 32, 2, 4, S<4, 64, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, true, S<4, 64, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 4, 8, true, 1, 1, S<1, 1, 32, 1, 1, 8>, 8>,
DeviceGemmXdl_C_Shuffle< F16, F16, F16, F32, Row, Row, Row, PassThrough, PassThrough, PassThrough, 128, 128, 128, 4, 8, 32, 32, 4, 2, S<4, 32, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, true, S<4, 32, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 4, 8, true, 1, 1, S<1, 1, 16, 1, 1, 8>, 8>,
DeviceGemmXdl_C_Shuffle< F16, F16, F16, F32, Row, Row, Row, PassThrough, PassThrough, PassThrough, 256, 128, 128, 4, 8, 32, 32, 2, 2, S<4, 64, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, true, S<4, 64, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 2, 8, true, 1, 1, S<1, 1, 32, 1, 1, 8>, 8>,
DeviceGemmXdl_C_Shuffle< F16, F16, F16, F32, Row, Row, Row, PassThrough, PassThrough, PassThrough, 128, 128, 64, 4, 8, 32, 32, 2, 2, S<4, 32, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, true, S<4, 32, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 2, 8, true, 1, 1, S<1, 1, 32, 1, 1, 4>, 8>,
DeviceGemmXdl_C_Shuffle< F16, F16, F16, F32, Row, Row, Row, PassThrough, PassThrough, PassThrough, 128, 64, 128, 4, 8, 32, 32, 2, 2, S<4, 32, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, true, S<4, 32, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 4, 8, true, 1, 1, S<1, 1, 16, 1, 1, 8>, 8>,
DeviceGemmXdl_C_Shuffle< F16, F16, F16, F32, Row, Row, Row, PassThrough, PassThrough, PassThrough, 256, 128, 64, 4, 8, 32, 32, 2, 1, S<4, 64, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, true, S<4, 64, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 1, 8, true, 1, 1, S<1, 1, 16, 1, 1, 4>, 8>,
DeviceGemmXdl_C_Shuffle< F16, F16, F16, F32, Row, Row, Row, PassThrough, PassThrough, PassThrough, 256, 64, 128, 4, 8, 32, 32, 1, 2, S<4, 64, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, true, S<4, 64, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 2, 8, true, 1, 1, S<1, 1, 32, 1, 1, 8>, 8>
// clang-format on
>;
using device_gemm_xdl_c_shuffle_f16_f16_f16_mk_kn_mn_instances = std::tuple<
// clang-format off
//#####################|AData| BData| CData| AccData| ALayout| BLayout| CLayout| A| B| C| Block| MPer| NPer| KPer| AK1| BK1| MPer| NPer| MXdl| NXdl| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockLds| BBlockTransfer| BBlockTransfer| BBlockTransfer| BlockTransfer| BBlockTransfer| BBlockTransfer| BBlockLds| CShuffle| CShuffle| CBlockTransferClusterLengths| CBlockTransfer|
//#####################| Type| Type| Type| Type| | | | Elementwise| Elementwise| Elementwise| Size| Block| Block| Block| | | XDL| XDL| Per| Per| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| AddExtraM| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| AddExtraN| MXdlPerWave| NXdlPerWave| _MBlock_MXdlPerWave_MWaveMPerXdl| ScalarPerVector|
//#####################| | | | | | | | Operation| Operation| Operation| | | | | | | | | Wave| Wave| Lengths_K0_M_K1| ArrangeOrder| | | PerVector| PerVector_K1| | Lengths_K0_N_K1| ArrangeOrder| | | PerVector| PerVector_K1| | PerShuffle| PerShuffle| _NBlock_NXdlPerWave_NWaveNPerXdl| _NWaveNPerXdl|
//#####################| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
DeviceGemmXdl_C_Shuffle< F16, F16, F16, F32, Row, Row, Row, PassThrough, PassThrough, PassThrough, 256, 256, 128, 32, 8, 2, 32, 32, 4, 2, S<4, 64, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, true, S<8, 32, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 4, 2, false, 1, 1, S<1, 1, 32, 1, 1, 8>, 8>,
DeviceGemmXdl_C_Shuffle< F16, F16, F16, F32, Row, Row, Row, PassThrough, PassThrough, PassThrough, 256, 256, 128, 32, 8, 8, 32, 32, 4, 2, S<4, 64, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, true, S<4, 64, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 2, 8, true, 1, 1, S<1, 1, 32, 1, 1, 8>, 8>,
DeviceGemmXdl_C_Shuffle< F16, F16, F16, F32, Row, Row, Row, PassThrough, PassThrough, PassThrough, 256, 128, 256, 32, 8, 2, 32, 32, 2, 4, S<4, 64, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, true, S<4, 64, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 4, 2, false, 1, 1, S<1, 1, 32, 1, 1, 8>, 8>,
DeviceGemmXdl_C_Shuffle< F16, F16, F16, F32, Row, Row, Row, PassThrough, PassThrough, PassThrough, 256, 128, 256, 32, 8, 8, 32, 32, 2, 4, S<4, 64, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, true, S<4, 64, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 4, 8, true, 1, 1, S<1, 1, 32, 1, 1, 8>, 8>,
DeviceGemmXdl_C_Shuffle< F16, F16, F16, F32, Row, Row, Row, PassThrough, PassThrough, PassThrough, 128, 128, 128, 32, 8, 2, 32, 32, 4, 2, S<4, 32, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, true, S<4, 32, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 4, 2, false, 1, 1, S<1, 1, 16, 1, 1, 8>, 8>,
DeviceGemmXdl_C_Shuffle< F16, F16, F16, F32, Row, Row, Row, PassThrough, PassThrough, PassThrough, 128, 128, 128, 32, 8, 8, 32, 32, 4, 2, S<4, 32, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, true, S<4, 32, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 4, 8, true, 1, 1, S<1, 1, 16, 1, 1, 8>, 8>,
DeviceGemmXdl_C_Shuffle< F16, F16, F16, F32, Row, Row, Row, PassThrough, PassThrough, PassThrough, 256, 128, 128, 32, 8, 2, 32, 32, 2, 2, S<4, 64, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, true, S<8, 32, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 4, 2, false, 1, 1, S<1, 1, 32, 1, 1, 8>, 8>,
DeviceGemmXdl_C_Shuffle< F16, F16, F16, F32, Row, Row, Row, PassThrough, PassThrough, PassThrough, 256, 128, 128, 32, 8, 8, 32, 32, 2, 2, S<4, 64, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, true, S<4, 64, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 2, 8, true, 1, 1, S<1, 1, 32, 1, 1, 8>, 8>,
DeviceGemmXdl_C_Shuffle< F16, F16, F16, F32, Row, Row, Row, PassThrough, PassThrough, PassThrough, 128, 128, 64, 32, 8, 2, 32, 32, 2, 2, S<4, 32, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, true, S<8, 16, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 4, 2, false, 1, 1, S<1, 1, 32, 1, 1, 4>, 8>,
DeviceGemmXdl_C_Shuffle< F16, F16, F16, F32, Row, Row, Row, PassThrough, PassThrough, PassThrough, 128, 128, 64, 32, 8, 8, 32, 32, 2, 2, S<4, 32, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, true, S<4, 32, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 2, 8, true, 1, 1, S<1, 1, 32, 1, 1, 4>, 8>,
DeviceGemmXdl_C_Shuffle< F16, F16, F16, F32, Row, Row, Row, PassThrough, PassThrough, PassThrough, 128, 64, 128, 32, 8, 2, 32, 32, 2, 2, S<4, 32, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, true, S<4, 32, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 4, 2, false, 1, 1, S<1, 1, 16, 1, 1, 8>, 8>,
DeviceGemmXdl_C_Shuffle< F16, F16, F16, F32, Row, Row, Row, PassThrough, PassThrough, PassThrough, 128, 64, 128, 32, 8, 8, 32, 32, 2, 2, S<4, 32, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, true, S<4, 32, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 4, 8, true, 1, 1, S<1, 1, 16, 1, 1, 8>, 8>,
DeviceGemmXdl_C_Shuffle< F16, F16, F16, F32, Row, Row, Row, PassThrough, PassThrough, PassThrough, 256, 128, 64, 32, 8, 2, 32, 32, 2, 1, S<4, 64, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, true, S<16,16, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 4, 2, false, 1, 1, S<1, 1, 16, 1, 1, 4>, 8>,
DeviceGemmXdl_C_Shuffle< F16, F16, F16, F32, Row, Row, Row, PassThrough, PassThrough, PassThrough, 256, 128, 64, 32, 8, 8, 32, 32, 2, 1, S<4, 64, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, true, S<4, 64, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 1, 8, true, 1, 1, S<1, 1, 16, 1, 1, 4>, 8>,
DeviceGemmXdl_C_Shuffle< F16, F16, F16, F32, Row, Row, Row, PassThrough, PassThrough, PassThrough, 256, 64, 128, 32, 8, 2, 32, 32, 1, 2, S<4, 64, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, true, S<8, 32, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 4, 2, false, 1, 1, S<1, 1, 32, 1, 1, 8>, 8>,
DeviceGemmXdl_C_Shuffle< F16, F16, F16, F32, Row, Row, Row, PassThrough, PassThrough, PassThrough, 256, 64, 128, 32, 8, 8, 32, 32, 1, 2, S<4, 64, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, true, S<4, 64, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 2, 8, true, 1, 1, S<1, 1, 32, 1, 1, 8>, 8>
// clang-format on
>;
void add_device_gemm_xdl_c_shuffle_f16_f16_f16_mk_kn_mn_instances(
std::vector<DeviceGemmPtr<PassThrough, PassThrough, PassThrough>>& instances)
......
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment