Commit ce72f286 authored by Jun Liu's avatar Jun Liu
Browse files

Merge branch 'amd-develop' into amd-master

parents 50320413 f30e5975
......@@ -83,4 +83,23 @@ using HostConvBwdWeightInstance = ck::tensor_operation::host::ReferenceConvBwdWe
#include "run_grouped_conv_bwd_weight_example.inc"
int main(int argc, char* argv[]) { return !run_grouped_conv_bwd_weight_example(argc, argv); }
int main(int argc, char* argv[])
{
ExecutionConfig config;
ck::utils::conv::ConvParam conv_param = DefaultConvParam;
if(!parse_cmd_args(argc, argv, config, conv_param))
{
return 1;
}
switch(conv_param.num_dim_spatial_)
{
case 1: return !run_grouped_conv_bwd_weight<1>(config, conv_param);
case 2: return !run_grouped_conv_bwd_weight<2>(config, conv_param);
case 3: return !run_grouped_conv_bwd_weight<3>(config, conv_param);
default: break;
}
return 1;
}
......@@ -5,7 +5,7 @@ template <ck::index_t NDimSpatial>
bool run_grouped_conv_bwd_weight(const ExecutionConfig& config,
const ck::utils::conv::ConvParam& conv_param)
{
// Dl op doesn't support split_k > 1
// Dl and WMMA ops don't support split_k > 1
constexpr ck::index_t split_k = 1;
const auto in_g_n_c_wis_desc =
......@@ -143,23 +143,3 @@ bool run_grouped_conv_bwd_weight(const ExecutionConfig& config,
return true;
}
bool run_grouped_conv_bwd_weight_example(int argc, char* argv[])
{
ExecutionConfig config;
ck::utils::conv::ConvParam conv_param = DefaultConvParam;
if(!parse_cmd_args(argc, argv, config, conv_param))
{
return false;
}
switch(conv_param.num_dim_spatial_)
{
case 1: return run_grouped_conv_bwd_weight<1>(config, conv_param);
case 2: return run_grouped_conv_bwd_weight<2>(config, conv_param);
case 3: return run_grouped_conv_bwd_weight<3>(config, conv_param);
}
return false;
}
......@@ -114,12 +114,15 @@ void host_gemm_layernorm(Tensor<HDataType>& h_m_n,
BetaDataType,
HDataType,
AccDataType,
AccDataType,
HElementOp,
2,
1>;
Tensor<EMeanVarDataType> e_m_n(HostTensorDescriptor{M, N});
Tensor<AccDataType> c_m_n(HostTensorDescriptor{M, N});
Tensor<AccDataType> save_mean({M});
Tensor<AccDataType> save_inv_std({M});
auto ref_gemm = ReferenceGemm{};
auto ref_gemm_invoker = ref_gemm.MakeInvoker();
......@@ -145,7 +148,7 @@ void host_gemm_layernorm(Tensor<HDataType>& h_m_n,
auto ref_layernorm_invoker = ref_layernorm.MakeInvoker();
auto ref_layernorm_argument = ref_layernorm.MakeArgument(
e_m_n, gamma_n, beta_n, h_m_n, h_element_op, {M, N}, {1}, epsilon);
e_m_n, gamma_n, beta_n, h_m_n, save_mean, save_inv_std, h_element_op, {M, N}, {1}, epsilon);
ref_layernorm_invoker.Run(ref_layernorm_argument);
}
......
add_custom_target(example_cgemm_xdl)
add_example_executable(example_cgemm_xdl_bf16 cgemm_xdl_bf16.cpp)
if(result EQUAL 0)
add_dependencies(example_cgemm_xdl example_cgemm_xdl_bf16)
endif()
add_example_dependencies(example_cgemm_xdl example_cgemm_xdl_bf16)
add_example_executable(example_cgemm_xdl_fp16 cgemm_xdl_fp16.cpp)
if(result EQUAL 0)
add_dependencies(example_cgemm_xdl example_cgemm_xdl_fp16)
endif()
add_example_dependencies(example_cgemm_xdl example_cgemm_xdl_fp16)
add_example_executable(example_cgemm_xdl_fp32 cgemm_xdl_fp32.cpp)
if(result EQUAL 0)
add_dependencies(example_cgemm_xdl example_cgemm_xdl_fp32)
endif()
add_example_dependencies(example_cgemm_xdl example_cgemm_xdl_fp32)
add_example_executable(example_cgemm_xdl_int8 cgemm_xdl_int8.cpp)
if(result EQUAL 0)
add_dependencies(example_cgemm_xdl example_cgemm_xdl_int8)
endif()
add_example_dependencies(example_cgemm_xdl example_cgemm_xdl_int8)
if(USE_BITINT_EXTENSION_INT4)
add_example_executable(example_cgemm_xdl_int4 cgemm_xdl_int4.cpp)
add_dependencies(example_cgemm_xdl example_cgemm_xdl_int4)
add_example_executable(example_cgemm_xdl_int4 cgemm_xdl_int4.cpp)
add_example_dependencies(example_cgemm_xdl example_cgemm_xdl_int4)
endif()
add_custom_target(example_batched_gemm_xdl)
add_example_executable(example_batched_gemm_xdl_fp32 batched_gemm_xdl_fp32.cpp)
if(result EQUAL 0)
add_dependencies(example_batched_gemm_xdl example_batched_gemm_xdl_fp32)
endif()
add_example_dependencies(example_batched_gemm_xdl example_batched_gemm_xdl_fp32)
add_example_executable(example_batched_gemm_xdl_fp16 batched_gemm_xdl_fp16.cpp)
if(result EQUAL 0)
add_dependencies(example_batched_gemm_xdl example_batched_gemm_xdl_fp16)
endif()
add_example_dependencies(example_batched_gemm_xdl example_batched_gemm_xdl_fp16)
add_example_executable(example_batched_gemm_xdl_bf16 batched_gemm_xdl_bf16.cpp)
if(result EQUAL 0)
add_dependencies(example_batched_gemm_xdl example_batched_gemm_xdl_bf16)
endif()
add_example_dependencies(example_batched_gemm_xdl example_batched_gemm_xdl_bf16)
add_example_executable(example_batched_gemm_xdl_int8 batched_gemm_xdl_int8.cpp)
if(result EQUAL 0)
add_dependencies(example_batched_gemm_xdl example_batched_gemm_xdl_int8)
endif()
add_example_dependencies(example_batched_gemm_xdl example_batched_gemm_xdl_int8)
if(USE_BITINT_EXTENSION_INT4)
add_example_executable(example_batched_gemm_xdl_int4 batched_gemm_xdl_int4.cpp)
if(result EQUAL 0)
add_dependencies(example_batched_gemm_xdl example_batched_gemm_xdl_int4)
endif()
add_example_executable(example_batched_gemm_xdl_int4 batched_gemm_xdl_int4.cpp)
add_example_dependencies(example_batched_gemm_xdl example_batched_gemm_xdl_int4)
endif()
......@@ -3,12 +3,15 @@
#include "common.hpp"
using XDataType = ck::half_t;
using GammaDataType = ck::half_t;
using BetaDataType = ck::half_t;
using YDataType = ck::half_t;
using ComputeDataType = float;
using PassThrough = ck::tensor_operation::element_wise::PassThrough;
using XDataType = ck::half_t;
using GammaDataType = ck::half_t;
using BetaDataType = ck::half_t;
using YDataType = ck::half_t;
using SaveMeanInvStdDataType = float;
using ComputeDataType = float;
using PassThrough = ck::tensor_operation::element_wise::PassThrough;
#define SAVE_MEAN_INV_STD
constexpr int Rank = 2;
constexpr int NumReduceDim = 1;
......@@ -19,6 +22,7 @@ using DeviceInstance =
BetaDataType,
ComputeDataType,
YDataType,
SaveMeanInvStdDataType,
PassThrough,
Rank,
NumReduceDim,
......@@ -33,7 +37,8 @@ using DeviceInstance =
8, // GammaScalarPerVector
1, // BetaVecDim (0=M, 1=K)
8, // BetaScalarPerVector
8>; // OutScalarPerVector
8, // YScalarPerVector
1>; // SaveMeanInvStdScalarPerVector
#include "run_layernorm_example.inc"
int main() { return run_groupnorm_example<DeviceInstance>(); }
......@@ -3,12 +3,15 @@
#include "common.hpp"
using XDataType = ck::half_t;
using GammaDataType = ck::half_t;
using BetaDataType = ck::half_t;
using YDataType = ck::half_t;
using ComputeDataType = float;
using PassThrough = ck::tensor_operation::element_wise::PassThrough;
using XDataType = ck::half_t;
using GammaDataType = ck::half_t;
using BetaDataType = ck::half_t;
using YDataType = ck::half_t;
using SaveMeanInvStdDataType = float;
using ComputeDataType = float;
using PassThrough = ck::tensor_operation::element_wise::PassThrough;
#define SAVE_MEAN_INV_STD
constexpr int Rank = 2;
constexpr int NumReduceDim = 1;
......@@ -19,6 +22,7 @@ using DeviceInstance =
BetaDataType,
ComputeDataType,
YDataType,
SaveMeanInvStdDataType,
PassThrough,
Rank,
NumReduceDim,
......@@ -33,7 +37,8 @@ using DeviceInstance =
8, // GammaScalarPerVector
1, // BetaVecDim (0=M, 1=K)
8, // BetaScalarPerVector
8>; // YScalarPerVector
8, // YScalarPerVector
1>; // SaveMeanInvStdScalarPerVector
#include "run_layernorm_example.inc"
......
......@@ -10,22 +10,13 @@ int run_groupnorm_example()
ck::index_t M = 1024;
ck::index_t N = 1024;
ck::index_t Stride = N;
auto f_host_tensor_descriptor1d = [](std::size_t len, std::size_t stride) {
return HostTensorDescriptor({len}, {stride});
};
auto f_host_tensor_descriptor2d = [](std::size_t row, std::size_t col, std::size_t stride) {
using namespace ck::literals;
return HostTensorDescriptor({row, col}, {stride, 1_uz});
};
Tensor<XDataType> x(f_host_tensor_descriptor2d(M, N, Stride));
Tensor<GammaDataType> gamma(f_host_tensor_descriptor1d(N, 1));
Tensor<BetaDataType> beta(f_host_tensor_descriptor1d(N, 1));
Tensor<YDataType> y(f_host_tensor_descriptor2d(M, N, Stride));
Tensor<XDataType> x({M, N});
Tensor<GammaDataType> gamma({N});
Tensor<BetaDataType> beta({N});
Tensor<YDataType> y({M, N});
Tensor<SaveMeanInvStdDataType> save_mean({M});
Tensor<SaveMeanInvStdDataType> save_inv_std({M});
x.GenerateTensorValue(GeneratorTensor_3<XDataType>{0.0, 1.0});
gamma.GenerateTensorValue(GeneratorTensor_3<GammaDataType>{0.0, 1.0});
......@@ -35,6 +26,11 @@ int run_groupnorm_example()
DeviceMem gamma_dev(sizeof(GammaDataType) * gamma.mDesc.GetElementSpaceSize());
DeviceMem beta_dev(sizeof(BetaDataType) * beta.mDesc.GetElementSpaceSize());
DeviceMem y_dev(sizeof(YDataType) * y.mDesc.GetElementSpaceSize());
#ifdef SAVE_MEAN_INV_STD
DeviceMem save_mean_dev(sizeof(SaveMeanInvStdDataType) * save_mean.mDesc.GetElementSpaceSize());
DeviceMem save_inv_std_dev(sizeof(SaveMeanInvStdDataType) *
save_inv_std.mDesc.GetElementSpaceSize());
#endif
x_dev.ToDevice(x.mData.data());
gamma_dev.ToDevice(gamma.mData.data());
......@@ -47,14 +43,23 @@ int run_groupnorm_example()
{0, 1},
{0, 1},
std::vector<ck::index_t>{y.mDesc.GetStrides().begin(), y.mDesc.GetStrides().end()},
std::vector<ck::index_t>{save_mean.mDesc.GetStrides().begin(),
save_mean.mDesc.GetStrides().end()},
std::vector<ck::index_t>{save_mean.mDesc.GetStrides().begin(),
save_mean.mDesc.GetStrides().end()},
{1},
1e-4,
x_dev.GetDeviceBuffer(),
gamma_dev.GetDeviceBuffer(),
beta_dev.GetDeviceBuffer(),
y_dev.GetDeviceBuffer(),
#ifdef SAVE_MEAN_INV_STD
save_mean_dev.GetDeviceBuffer(),
save_inv_std_dev.GetDeviceBuffer(),
#else
nullptr,
nullptr,
#endif
PassThrough{});
if(!device_instance.IsSupportedArgument(argument_ptr.get()))
......@@ -72,24 +77,45 @@ int run_groupnorm_example()
bool pass = true;
{
Tensor<YDataType> host_y(f_host_tensor_descriptor2d(M, N, Stride));
using ReferenceInstance = ck::tensor_operation::host::ReferenceLayernorm<XDataType,
GammaDataType,
BetaDataType,
YDataType,
ComputeDataType,
PassThrough,
Rank,
NumReduceDim>;
Tensor<YDataType> host_y({M, N});
Tensor<SaveMeanInvStdDataType> host_save_mean({M});
Tensor<SaveMeanInvStdDataType> host_save_inv_std({M});
using ReferenceInstance =
ck::tensor_operation::host::ReferenceLayernorm<XDataType,
GammaDataType,
BetaDataType,
YDataType,
SaveMeanInvStdDataType,
ComputeDataType,
PassThrough,
Rank,
NumReduceDim>;
ReferenceInstance ref;
auto ref_argument =
ref.MakeArgument(x, gamma, beta, host_y, PassThrough{}, {M, N}, {1}, 1e-4);
auto ref_invoker = ref.MakeInvoker();
auto ref_argument = ref.MakeArgument(x,
gamma,
beta,
host_y,
host_save_mean,
host_save_inv_std,
PassThrough{},
{M, N},
{1},
1e-4);
auto ref_invoker = ref.MakeInvoker();
ref_invoker.Run(ref_argument);
y_dev.FromDevice(y.mData.data());
pass &= ck::utils::check_err(y, host_y, "Error: Incorrect results", 1e-3, 1e-3);
pass &= ck::utils::check_err(y, host_y, "Error: Incorrect results (y)", 1e-3, 1e-3);
#ifdef SAVE_MEAN_INV_STD
save_mean_dev.FromDevice(save_mean.mData.data());
save_inv_std_dev.FromDevice(save_inv_std.mData.data());
pass &= ck::utils::check_err(
save_mean, host_save_mean, "Error: Incorrect results (mean)", 1e-3, 1e-3);
pass &= ck::utils::check_err(
save_inv_std, host_save_inv_std, "Error: Incorrect results (inv_std)", 1e-3, 1e-3);
#endif
}
return (pass ? 0 : 1);
......
......@@ -3,44 +3,38 @@ list(APPEND gpu_list2 gfx1100 gfx1101 gfx1102)
set(target 0)
foreach(gpu IN LISTS GPU_TARGETS)
if(gpu IN_LIST gpu_list1 AND target EQUAL 0)
add_custom_target(example_grouped_conv_fwd_multiple_d)
add_example_executable(example_grouped_conv_fwd_bias_relu_add_xdl_fp16 grouped_conv_fwd_bias_relu_add_xdl_fp16.cpp)
if(result EQUAL 0)
add_dependencies(example_grouped_conv_fwd_multiple_d example_grouped_conv_fwd_bias_relu_add_xdl_fp16)
endif()
add_example_executable(example_grouped_conv_fwd_xdl_fp16 grouped_conv_fwd_xdl_fp16.cpp)
if(result EQUAL 0)
add_dependencies(example_grouped_conv_fwd_multiple_d example_grouped_conv_fwd_xdl_fp16)
endif()
add_example_executable(example_grouped_conv_fwd_bias_relu_add_xdl_fp32 grouped_conv_fwd_bias_relu_add_xdl_fp32.cpp)
if(result EQUAL 0)
add_dependencies(example_grouped_conv_fwd_multiple_d example_grouped_conv_fwd_bias_relu_add_xdl_fp32)
endif()
add_example_executable(example_grouped_conv_fwd_bias_relu_add_xdl_bf16 grouped_conv_fwd_bias_relu_add_xdl_bf16.cpp)
if(result EQUAL 0)
add_dependencies(example_grouped_conv_fwd_multiple_d example_grouped_conv_fwd_bias_relu_add_xdl_bf16)
endif()
add_example_executable(example_grouped_conv_fwd_bias_relu_add_xdl_int8 grouped_conv_fwd_bias_relu_add_xdl_int8.cpp)
if(result EQUAL 0)
add_dependencies(example_grouped_conv_fwd_multiple_d example_grouped_conv_fwd_bias_relu_add_xdl_int8)
endif()
if(USE_BITINT_EXTENSION_INT4)
add_example_executable(example_grouped_conv_fwd_bias_relu_add_xdl_int4 grouped_conv_fwd_bias_relu_add_xdl_int4.cpp)
if(result EQUAL 0)
add_dependencies(example_grouped_conv_fwd_multiple_d example_grouped_conv_fwd_bias_relu_add_xdl_int4)
endif()
endif() # USE_BITINT_EXTENSION_INT4
set(target 1)
endif()
if(gpu IN_LIST gpu_list1 AND target EQUAL 0)
add_custom_target(example_grouped_conv_fwd_multiple_d)
add_example_executable(example_grouped_conv_fwd_bias_relu_add_xdl_fp16 grouped_conv_fwd_bias_relu_add_xdl_fp16.cpp)
add_example_dependencies(example_grouped_conv_fwd_multiple_d example_grouped_conv_fwd_bias_relu_add_xdl_fp16)
add_example_executable(example_grouped_conv_fwd_xdl_fp16 grouped_conv_fwd_xdl_fp16.cpp)
add_example_dependencies(example_grouped_conv_fwd_multiple_d example_grouped_conv_fwd_xdl_fp16)
add_example_executable(example_grouped_conv_fwd_bias_relu_add_xdl_fp32 grouped_conv_fwd_bias_relu_add_xdl_fp32.cpp)
add_example_dependencies(example_grouped_conv_fwd_multiple_d example_grouped_conv_fwd_bias_relu_add_xdl_fp32)
add_example_executable(example_grouped_conv_fwd_bias_relu_add_xdl_bf16 grouped_conv_fwd_bias_relu_add_xdl_bf16.cpp)
add_example_dependencies(example_grouped_conv_fwd_multiple_d example_grouped_conv_fwd_bias_relu_add_xdl_bf16)
add_example_executable(example_grouped_conv_fwd_bias_relu_add_xdl_int8 grouped_conv_fwd_bias_relu_add_xdl_int8.cpp)
add_example_dependencies(example_grouped_conv_fwd_multiple_d example_grouped_conv_fwd_bias_relu_add_xdl_int8)
if(USE_BITINT_EXTENSION_INT4)
add_example_executable(example_grouped_conv_fwd_bias_relu_add_xdl_int4 grouped_conv_fwd_bias_relu_add_xdl_int4.cpp)
add_example_dependencies(example_grouped_conv_fwd_multiple_d example_grouped_conv_fwd_bias_relu_add_xdl_int4)
endif() # USE_BITINT_EXTENSION_INT4
set(target 1)
endif()
endforeach()
set(target 0)
foreach(gpu IN LISTS GPU_TARGETS)
if(gpu IN_LIST gpu_list2 AND target EQUAL 0)
add_example_executable(example_grouped_conv_fwd_bias_relu_add_wmma_fp16 grouped_conv_fwd_bias_relu_add_wmma_fp16.cpp)
add_example_executable(example_grouped_conv_fwd_bias_relu_add_wmma_int8 grouped_conv_fwd_bias_relu_add_wmma_int8.cpp)
set(target 1)
endif()
if(gpu IN_LIST gpu_list2 AND target EQUAL 0)
add_example_executable(example_grouped_conv_fwd_bias_relu_add_wmma_fp16 grouped_conv_fwd_bias_relu_add_wmma_fp16.cpp)
add_example_executable(example_grouped_conv_fwd_bias_relu_add_wmma_int8 grouped_conv_fwd_bias_relu_add_wmma_int8.cpp)
set(target 1)
endif()
endforeach()
......@@ -4,7 +4,7 @@ arg1: verification (0=no, 1=yes)
arg2: initialization (0=no init, 1=integer value, 2=decimal value)
arg3: time kernel (0=no, 1=yes)
Following arguments (depending on number of spatial dims):
Number of spatial dimensions (1=Conv1d, 2=Conv2d, 3=Conv3d)
Number of spatial dimensions (1=Conv1D, 2=Conv2D, 3=Conv3D)
G, N, K, C,
<filter spatial dimensions>, (ie Y, X for 2D)
<input image spatial dimensions>, (ie Hi, Wi for 2D)
......
add_custom_target(example_gemm_scale_softmax_gemm)
add_example_executable(example_batched_gemm_scale_softmax_gemm_xdl_fp16 batched_gemm_scale_softmax_gemm_xdl_fp16.cpp)
if(result EQUAL 0)
add_dependencies(example_gemm_scale_softmax_gemm example_batched_gemm_scale_softmax_gemm_xdl_fp16)
endif()
add_example_dependencies(example_gemm_scale_softmax_gemm example_batched_gemm_scale_softmax_gemm_xdl_fp16)
add_example_executable(example_batched_gemm_scale_softmax_gemm_permute_xdl_fp16 batched_gemm_scale_softmax_gemm_permute_xdl_fp16.cpp)
if(result EQUAL 0)
add_dependencies(example_gemm_scale_softmax_gemm example_batched_gemm_scale_softmax_gemm_permute_xdl_fp16)
endif()
add_example_dependencies(example_gemm_scale_softmax_gemm example_batched_gemm_scale_softmax_gemm_permute_xdl_fp16)
add_example_executable(example_grouped_gemm_scale_softmax_gemm_permute_xdl_fp16 grouped_gemm_scale_softmax_gemm_permute_xdl_fp16.cpp)
if(result EQUAL 0)
add_dependencies(example_gemm_scale_softmax_gemm example_grouped_gemm_scale_softmax_gemm_permute_xdl_fp16)
endif()
add_example_dependencies(example_gemm_scale_softmax_gemm example_grouped_gemm_scale_softmax_gemm_permute_xdl_fp16)
add_example_executable(example_batched_gemm_lower_triangle_scale_softmax_gemm_permute_xdl_fp16 batched_gemm_lower_triangle_scale_softmax_gemm_permute_xdl_fp16.cpp)
if(result EQUAL 0)
add_dependencies(example_gemm_scale_softmax_gemm example_batched_gemm_lower_triangle_scale_softmax_gemm_permute_xdl_fp16)
endif()
add_example_dependencies(example_gemm_scale_softmax_gemm example_batched_gemm_lower_triangle_scale_softmax_gemm_permute_xdl_fp16)
add_example_executable(example_grouped_gemm_lower_triangle_scale_softmax_gemm_permute_xdl_fp16 grouped_gemm_lower_triangle_scale_softmax_gemm_permute_xdl_fp16.cpp)
if(result EQUAL 0)
add_dependencies(example_gemm_scale_softmax_gemm example_grouped_gemm_lower_triangle_scale_softmax_gemm_permute_xdl_fp16)
endif()
add_example_dependencies(example_gemm_scale_softmax_gemm example_grouped_gemm_lower_triangle_scale_softmax_gemm_permute_xdl_fp16)
add_example_executable(example_batched_gemm_scale_softmax_gemm_xdl_bf16 batched_gemm_scale_softmax_gemm_xdl_bf16.cpp)
if(result EQUAL 0)
add_dependencies(example_gemm_scale_softmax_gemm example_batched_gemm_scale_softmax_gemm_xdl_bf16)
endif()
add_example_dependencies(example_gemm_scale_softmax_gemm example_batched_gemm_scale_softmax_gemm_xdl_bf16)
add_example_executable(example_batched_gemm_scale_softmax_gemm_permute_xdl_bf16 batched_gemm_scale_softmax_gemm_permute_xdl_bf16.cpp)
if(result EQUAL 0)
add_dependencies(example_gemm_scale_softmax_gemm example_batched_gemm_scale_softmax_gemm_permute_xdl_bf16)
endif()
add_example_dependencies(example_gemm_scale_softmax_gemm example_batched_gemm_scale_softmax_gemm_permute_xdl_bf16)
......@@ -4,28 +4,23 @@ foreach(gpu IN LISTS GPU_TARGETS)
if(gpu IN_LIST gpu_list AND target EQUAL 0)
add_custom_target(example_splitK_gemm_xdl)
add_example_executable(example_splitK_gemm_xdl_fp32 splitK_gemm_xdl_fp32.cpp)
if(result EQUAL 0)
add_dependencies(example_splitK_gemm_xdl example_splitK_gemm_xdl_fp32)
endif()
add_example_executable(example_splitK_gemm_xdl_fp16 splitK_gemm_xdl_fp16.cpp)
if(result EQUAL 0)
add_dependencies(example_splitK_gemm_xdl example_splitK_gemm_xdl_fp16)
endif()
add_example_executable(example_splitK_gemm_xdl_bf16 splitK_gemm_xdl_bf16.cpp)
if(result EQUAL 0)
add_dependencies(example_splitK_gemm_xdl example_splitK_gemm_xdl_bf16)
endif()
add_example_executable(example_splitK_gemm_xdl_int8 splitK_gemm_xdl_int8.cpp)
if(result EQUAL 0)
add_dependencies(example_splitK_gemm_xdl example_splitK_gemm_xdl_int8)
endif()
add_example_executable(example_splitK_gemm_xdl_fp32 splitK_gemm_xdl_fp32.cpp)
add_example_dependencies(example_splitK_gemm_xdl example_splitK_gemm_xdl_fp32)
add_example_executable(example_splitK_gemm_xdl_fp16 splitK_gemm_xdl_fp16.cpp)
add_example_dependencies(example_splitK_gemm_xdl example_splitK_gemm_xdl_fp16)
add_example_executable(example_splitK_gemm_xdl_bf16 splitK_gemm_xdl_bf16.cpp)
add_example_dependencies(example_splitK_gemm_xdl example_splitK_gemm_xdl_bf16)
add_example_executable(example_splitK_gemm_xdl_int8 splitK_gemm_xdl_int8.cpp)
add_example_dependencies(example_splitK_gemm_xdl example_splitK_gemm_xdl_int8)
if(USE_BITINT_EXTENSION_INT4)
add_example_executable(example_splitK_gemm_xdl_int4 splitK_gemm_xdl_int4.cpp)
if(result EQUAL 0)
add_dependencies(example_splitK_gemm_xdl example_splitK_gemm_xdl_int4)
endif()
add_example_executable(example_splitK_gemm_xdl_int4 splitK_gemm_xdl_int4.cpp)
add_example_dependencies(example_splitK_gemm_xdl example_splitK_gemm_xdl_int4)
endif()
set(target 1)
endif()
endforeach()
......@@ -2,27 +2,26 @@ list(APPEND gpu_list_xdl gfx908 gfx90a gfx940 gfx941 gfx942)
list(APPEND gpu_list_wmma gfx1100 gfx1101 gfx1102)
set(target 0)
foreach(gpu IN LISTS GPU_TARGETS)
if(gpu IN_LIST gpu_list_xdl AND target EQUAL 0)
add_custom_target(example_grouped_conv_bwd_data)
add_example_executable(example_grouped_conv_bwd_data_xdl_fp16 grouped_conv_bwd_data_xdl_fp16.cpp)
if(result EQUAL 0)
add_dependencies(example_grouped_conv_bwd_data example_grouped_conv_bwd_data_xdl_fp16)
endif()
add_example_executable(example_grouped_conv_bwd_data_bias_relu_xdl_fp16 grouped_conv_bwd_data_bias_relu_xdl_fp16.cpp)
if(result EQUAL 0)
add_dependencies(example_grouped_conv_bwd_data example_grouped_conv_bwd_data_bias_relu_xdl_fp16)
endif()
set(target 1)
endif()
if(gpu IN_LIST gpu_list_xdl AND target EQUAL 0)
add_custom_target(example_grouped_conv_bwd_data)
add_example_executable(example_grouped_conv_bwd_data_xdl_fp16 grouped_conv_bwd_data_xdl_fp16.cpp)
add_example_dependencies(example_grouped_conv_bwd_data example_grouped_conv_bwd_data_xdl_fp16)
add_example_executable(example_grouped_conv_bwd_data_bias_relu_xdl_fp16 grouped_conv_bwd_data_bias_relu_xdl_fp16.cpp)
add_example_dependencies(example_grouped_conv_bwd_data example_grouped_conv_bwd_data_bias_relu_xdl_fp16)
set(target 1)
endif()
endforeach()
foreach(gpu IN LISTS GPU_TARGETS)
if(gpu IN_LIST gpu_list_wmma AND target EQUAL 0)
add_custom_target(example_grouped_conv_bwd_data)
add_example_executable(example_grouped_conv_bwd_data_wmma_fp16 grouped_conv_bwd_data_wmma_fp16.cpp)
if(result EQUAL 0)
add_dependencies(example_grouped_conv_bwd_data example_grouped_conv_bwd_data_wmma_fp16)
endif()
set(target 1)
endif()
if(gpu IN_LIST gpu_list_wmma AND target EQUAL 0)
add_custom_target(example_grouped_conv_bwd_data)
add_example_executable(example_grouped_conv_bwd_data_wmma_fp16 grouped_conv_bwd_data_wmma_fp16.cpp)
add_example_dependencies(example_grouped_conv_bwd_data example_grouped_conv_bwd_data_wmma_fp16)
set(target 1)
endif()
endforeach()
add_custom_target(example_permute)
add_example_executable(example_permute_1xHxW_fp16 permute_1xHxW_fp16.cpp)
if(result EQUAL 0)
add_dependencies(example_permute example_permute_1xHxW_fp16)
endif()
add_example_dependencies(example_permute example_permute_1xHxW_fp16)
add_example_executable(example_permute_NxHxW_fp16 permute_NxHxW_fp16.cpp)
if(result EQUAL 0)
add_dependencies(example_permute example_permute_NxHxW_fp16)
endif()
add_example_dependencies(example_permute example_permute_NxHxW_fp16)
add_example_executable(example_permute_HxWx4_fp16 permute_HxWx4_fp16.cpp)
if(result EQUAL 0)
add_dependencies(example_permute example_permute_HxWx4_fp16)
endif()
add_example_dependencies(example_permute example_permute_HxWx4_fp16)
......@@ -6,11 +6,14 @@
constexpr int Rank = 5;
constexpr int NumReduceDim = 3;
using XDataType = ck::half_t;
using GammaDataType = ck::half_t;
using BetaDataType = ck::half_t;
using YDataType = ck::half_t;
using ComputeDataType = float;
using XDataType = ck::half_t;
using GammaDataType = ck::half_t;
using BetaDataType = ck::half_t;
using YDataType = ck::half_t;
using SaveMeanInvStdDataType = float;
using ComputeDataType = float;
#define SAVE_MEAN_INV_STD
struct YElementOp
{
......@@ -39,6 +42,7 @@ using DeviceInstance =
BetaDataType,
ComputeDataType,
YDataType,
SaveMeanInvStdDataType,
YElementOp,
Rank,
NumReduceDim,
......@@ -53,7 +57,8 @@ using DeviceInstance =
2, // GammaScalarPerVector
1, // BetaVecDim (0=M, 1=K)
2, // BetaScalarPerVector
2>; // OutScalarPerVector
2, // YScalarPerVector
1>; // SaveMeanInvStdScalarPerVector
#include "run_groupnorm_example.inc"
......
......@@ -6,12 +6,15 @@
constexpr int Rank = 5;
constexpr int NumReduceDim = 3;
using XDataType = ck::half_t;
using GammaDataType = ck::half_t;
using BetaDataType = ck::half_t;
using YDataType = ck::half_t;
using ComputeDataType = float;
using YElementOp = ck::tensor_operation::element_wise::Swish;
using XDataType = ck::half_t;
using GammaDataType = ck::half_t;
using BetaDataType = ck::half_t;
using YDataType = ck::half_t;
using SaveMeanInvStdDataType = float;
using ComputeDataType = float;
using YElementOp = ck::tensor_operation::element_wise::Swish;
#define SAVE_MEAN_INV_STD
using DeviceInstance =
ck::tensor_operation::device::DeviceNormalizationSplitKImpl<XDataType,
......@@ -19,6 +22,7 @@ using DeviceInstance =
BetaDataType,
ComputeDataType,
YDataType,
SaveMeanInvStdDataType,
YElementOp,
Rank,
NumReduceDim,
......@@ -33,7 +37,8 @@ using DeviceInstance =
2, // GammaScalarPerVector
1, // BetaVecDim (0=M, 1=K)
2, // BetaScalarPerVector
2>; // OutScalarPerVector
2, // YScalarPerVector
1>; // SaveMeanInvStdScalarPerVector
#include "run_groupnorm_example.inc"
......
......@@ -6,12 +6,15 @@
constexpr int Rank = 5;
constexpr int NumReduceDim = 3;
using XDataType = ck::half_t;
using GammaDataType = ck::half_t;
using BetaDataType = ck::half_t;
using YDataType = ck::half_t;
using ComputeDataType = float;
using YElementOp = ck::tensor_operation::element_wise::Swish;
using XDataType = ck::half_t;
using GammaDataType = ck::half_t;
using BetaDataType = ck::half_t;
using YDataType = ck::half_t;
using SaveMeanInvStdDataType = float;
using ComputeDataType = float;
using YElementOp = ck::tensor_operation::element_wise::Swish;
#define SAVE_MEAN_INV_STD
using DeviceInstance =
ck::tensor_operation::device::DeviceNormalizationImpl<XDataType,
......@@ -19,6 +22,7 @@ using DeviceInstance =
BetaDataType,
ComputeDataType,
YDataType,
SaveMeanInvStdDataType,
YElementOp,
Rank,
NumReduceDim,
......@@ -33,7 +37,8 @@ using DeviceInstance =
2, // GammaScalarPerVector
1, // BetaVecDim (0=M, 1=K)
2, // BetaScalarPerVector
2>; // OutScalarPerVector
2, // YScalarPerVector
1>; // SaveMeanInvStdScalarPerVector
#include "run_groupnorm_example.inc"
......
......@@ -34,6 +34,8 @@ int run_groupnorm_example(int argc, char* argv[])
Tensor<YDataType> y({N, H, W, G, C});
Tensor<GammaDataType> gamma({G, C});
Tensor<BetaDataType> beta({G, C});
Tensor<SaveMeanInvStdDataType> save_mean({N, G});
Tensor<SaveMeanInvStdDataType> save_inv_std({N, G});
ck::utils::FillUniformDistribution<XDataType>{0.f, 1.f}(x);
ck::utils::FillUniformDistribution<GammaDataType>{0.f, 1.f}(gamma);
......@@ -43,6 +45,11 @@ int run_groupnorm_example(int argc, char* argv[])
DeviceMem gamma_dev(sizeof(GammaDataType) * gamma.mDesc.GetElementSpaceSize());
DeviceMem beta_dev(sizeof(BetaDataType) * beta.mDesc.GetElementSpaceSize());
DeviceMem y_dev(sizeof(YDataType) * y.mDesc.GetElementSpaceSize());
#ifdef SAVE_MEAN_INV_STD
DeviceMem save_mean_dev(sizeof(SaveMeanInvStdDataType) * save_mean.mDesc.GetElementSpaceSize());
DeviceMem save_inv_std_dev(sizeof(SaveMeanInvStdDataType) *
save_inv_std.mDesc.GetElementSpaceSize());
#endif
x_dev.ToDevice(x.mData.data());
gamma_dev.ToDevice(gamma.mData.data());
......@@ -57,14 +64,23 @@ int run_groupnorm_example(int argc, char* argv[])
{0, 0, 0, C, 1},
{0, 0, 0, C, 1},
std::vector<ck::index_t>{y.mDesc.GetStrides().begin(), y.mDesc.GetStrides().end()},
std::vector<ck::index_t>{save_mean.mDesc.GetStrides().begin(),
save_mean.mDesc.GetStrides().end()},
std::vector<ck::index_t>{save_mean.mDesc.GetStrides().begin(),
save_mean.mDesc.GetStrides().end()},
{1, 2, 4}, // reduction dimension: [H, W, C]
1e-6,
x_dev.GetDeviceBuffer(),
gamma_dev.GetDeviceBuffer(),
beta_dev.GetDeviceBuffer(),
y_dev.GetDeviceBuffer(),
#ifdef SAVE_MEAN_INV_STD
save_mean_dev.GetDeviceBuffer(),
save_inv_std_dev.GetDeviceBuffer(),
#else
nullptr,
nullptr,
#endif
y_element_op);
if(!device_instance.IsSupportedArgument(argument_ptr.get()))
......@@ -92,21 +108,40 @@ int run_groupnorm_example(int argc, char* argv[])
bool pass = true;
{
Tensor<YDataType> host_y({N, H, W, G, C});
using ReferenceInstance = ck::tensor_operation::host::ReferenceGroupnorm<XDataType,
GammaDataType,
BetaDataType,
YDataType,
ComputeDataType,
YElementOp>;
Tensor<SaveMeanInvStdDataType> host_save_mean(HostTensorDescriptor{N, G});
Tensor<SaveMeanInvStdDataType> host_save_inv_std(HostTensorDescriptor{N, G});
using ReferenceInstance =
ck::tensor_operation::host::ReferenceGroupnorm<XDataType,
GammaDataType,
BetaDataType,
YDataType,
SaveMeanInvStdDataType,
ComputeDataType,
YElementOp>;
ReferenceInstance ref;
auto ref_argument =
ref.MakeArgument(x, gamma, beta, host_y, y_element_op, {N, H, W, G, C}, 1e-6);
auto ref_invoker = ref.MakeInvoker();
auto ref_argument = ref.MakeArgument(x,
gamma,
beta,
host_y,
host_save_mean,
host_save_inv_std,
y_element_op,
{N, H, W, G, C},
1e-6);
auto ref_invoker = ref.MakeInvoker();
ref_invoker.Run(ref_argument);
y_dev.FromDevice(y.mData.data());
pass &= ck::utils::check_err(y, host_y, "Error: Incorrect results", 1e-3, 1e-3);
#ifdef SAVE_MEAN_INV_STD
save_mean_dev.FromDevice(save_mean.mData.data());
save_inv_std_dev.FromDevice(save_inv_std.mData.data());
pass &= ck::utils::check_err(
save_mean, host_save_mean, "Error: Incorrect results (mean)", 1e-3, 1e-3);
pass &= ck::utils::check_err(
save_inv_std, host_save_inv_std, "Error: Incorrect results (inv_std)", 1e-3, 1e-3);
#endif
}
return (pass ? 0 : 1);
......
......@@ -167,20 +167,31 @@ int main()
XElementwiseOperation>(x, a, b, mn, XElementwiseOperation{});
Tensor<YDataType> host_y(f_host_tensor_descriptor2d(M, N, Stride));
Tensor<AccDataType> host_save_mean({M});
Tensor<AccDataType> host_save_inv_std({M});
using ReferenceInstance =
ck::tensor_operation::host::ReferenceLayernorm<XDataType,
GammaDataType,
BetaDataType,
YDataType,
AccDataType,
AccDataType,
YElementwiseOperation,
Rank,
NumReduceDim>;
ReferenceInstance ref;
auto ref_argument =
ref.MakeArgument(x, gamma, beta, host_y, YElementwiseOperation{}, {M, N}, {1}, 1e-4);
auto ref_invoker = ref.MakeInvoker();
auto ref_argument = ref.MakeArgument(x,
gamma,
beta,
host_y,
host_save_mean,
host_save_inv_std,
YElementwiseOperation{},
{M, N},
{1},
1e-4);
auto ref_invoker = ref.MakeInvoker();
ref_invoker.Run(ref_argument);
y_dev.FromDevice(y.mData.data());
......
list(APPEND gpu_list gfx908 gfx90a gfx940 gfx941 gfx942)
set(target 0)
foreach(gpu IN LISTS GPU_TARGETS)
if(gpu IN_LIST gpu_list AND target EQUAL 0)
add_custom_target(example_im2col_col2im)
add_example_executable(example_image_to_column_f32 image_to_column_f32.cpp)
add_dependencies(example_im2col_col2im example_image_to_column_f32)
add_example_executable(example_column_to_image_f32 column_to_image_f32.cpp)
add_dependencies(example_im2col_col2im example_column_to_image_f32)
set(target 1)
endif()
if(gpu IN_LIST gpu_list AND target EQUAL 0)
add_custom_target(example_im2col_col2im)
add_example_executable(example_image_to_column_f32 image_to_column_f32.cpp)
add_example_dependencies(example_im2col_col2im example_image_to_column_f32)
add_example_executable(example_column_to_image_f32 column_to_image_f32.cpp)
add_example_dependencies(example_im2col_col2im example_column_to_image_f32)
set(target 1)
endif()
endforeach()
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment