Skip to content
GitLab
Menu
Projects
Groups
Snippets
Loading...
Help
Help
Support
Community forum
Keyboard shortcuts
?
Submit feedback
Contribute to GitLab
Sign in / Register
Toggle navigation
Menu
Open sidebar
gaoqiong
composable_kernel
Commits
cc902506
Commit
cc902506
authored
Nov 07, 2023
by
Bartlomiej Kocot
Committed by
Bartłomiej Kocot
Nov 07, 2023
Browse files
Add instances
parent
83be9a70
Changes
6
Show whitespace changes
Inline
Side-by-side
Showing
6 changed files
with
513 additions
and
0 deletions
+513
-0
library/include/ck/library/tensor_operation_instance/gpu/grouped_conv_fwd/device_grouped_conv_fwd_xdl_scaleadd_ab_instance.hpp
..._fwd/device_grouped_conv_fwd_xdl_scaleadd_ab_instance.hpp
+127
-0
library/include/ck/library/tensor_operation_instance/gpu/grouped_convolution_forward_scaleadd_ab.hpp
..._instance/gpu/grouped_convolution_forward_scaleadd_ab.hpp
+179
-0
library/src/tensor_operation_instance/gpu/grouped_conv3d_fwd_scaleadd_ab/xdl/device_grouped_conv3d_fwd_xdl_scaleadd_ab_ndhwgc_gkzyxc_ndhwgk_bf16_instance.cpp
...wd_xdl_scaleadd_ab_ndhwgc_gkzyxc_ndhwgk_bf16_instance.cpp
+52
-0
library/src/tensor_operation_instance/gpu/grouped_conv3d_fwd_scaleadd_ab/xdl/device_grouped_conv3d_fwd_xdl_scaleadd_ab_ndhwgc_gkzyxc_ndhwgk_f16_instance.cpp
...fwd_xdl_scaleadd_ab_ndhwgc_gkzyxc_ndhwgk_f16_instance.cpp
+52
-0
library/src/tensor_operation_instance/gpu/grouped_conv3d_fwd_scaleadd_ab/xdl/device_grouped_conv3d_fwd_xdl_scaleadd_ab_ndhwgc_gkzyxc_ndhwgk_f32_instance.cpp
...fwd_xdl_scaleadd_ab_ndhwgc_gkzyxc_ndhwgk_f32_instance.cpp
+52
-0
library/src/tensor_operation_instance/gpu/grouped_conv3d_fwd_scaleadd_ab/xdl/device_grouped_conv3d_fwd_xdl_scaleadd_ab_ndhwgc_gkzyxc_ndhwgk_int8_instance.cpp
...wd_xdl_scaleadd_ab_ndhwgc_gkzyxc_ndhwgk_int8_instance.cpp
+51
-0
No files found.
library/include/ck/library/tensor_operation_instance/gpu/grouped_conv_fwd/device_grouped_conv_fwd_xdl_scaleadd_ab_instance.hpp
0 → 100644
View file @
cc902506
// SPDX-License-Identifier: MIT
// Copyright (c) 2023, Advanced Micro Devices, Inc. All rights reserved.
#include "ck/ck.hpp"
#include "ck/tensor_operation/gpu/device/tensor_layout.hpp"
#include "ck/tensor_operation/gpu/device/impl/device_grouped_conv_fwd_multiple_d_xdl_cshuffle.hpp"
#include "ck/tensor_operation/gpu/device/convolution_forward_specialization.hpp"
#include "ck/tensor_operation/gpu/device/gemm_specialization.hpp"
#include "ck/tensor_operation/gpu/element/element_wise_operation.hpp"
namespace
ck
{
namespace
tensor_operation
{
namespace
device
{
namespace
instance
{
using
BF16
=
ck
::
bhalf_t
;
using
F16
=
ck
::
half_t
;
using
F32
=
float
;
template
<
ck
::
index_t
...
Is
>
using
S
=
ck
::
Sequence
<
Is
...
>
;
using
namespace
ck
::
tensor_layout
::
convolution
;
using
PassThrough
=
ck
::
tensor_operation
::
element_wise
::
PassThrough
;
using
ScaleAdd
=
ck
::
tensor_operation
::
element_wise
::
ScaleAdd
;
static
constexpr
auto
ConvFwdDefault
=
ck
::
tensor_operation
::
device
::
ConvolutionForwardSpecialization
::
Default
;
static
constexpr
auto
ConvFwd1x1P0
=
ConvolutionForwardSpecialization
::
Filter1x1Pad0
;
static
constexpr
auto
ConvFwd1x1S1P0
=
ConvolutionForwardSpecialization
::
Filter1x1Stride1Pad0
;
static
constexpr
auto
ConvFwdOddC
=
ck
::
tensor_operation
::
device
::
ConvolutionForwardSpecialization
::
OddC
;
static
constexpr
auto
GemmMNKPadding
=
GemmSpecialization
::
MNKPadding
;
template
<
index_t
NDimSpatial
,
typename
ALayout
,
typename
BLayout
,
typename
ELayout
,
ConvolutionForwardSpecialization
ConvSpec
>
using
device_grouped_conv_fwd_xdl_scaleadd_ab_bf16_instances
=
std
::
tuple
<
// clang-format off
//########################################| NumDim| A| B| Ds| E| AData| BData| AccData| CShuffle| Ds| EData| A| B| CDE| ConvForward| GEMM| NumGemmK| Block| MPer| NPer| KPer| AK1| BK1| MPer| NPer| MXdl| NXdl| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockLds| BBlockTransfer| BBlockTransfer| BBlockTransfer| BlockTransfer| BBlockTransfer| BBlockTransfer| BBlockLds| CShuffle| CShuffle| CBlockTransferClusterLengths| CBlockTransfer|
//########################################| Spatial| Layout| Layout| Layout| Layout| Type| Type| Type| DataType| DataType| Type| Elementwise| Elementwise| Elementwise| Specialization| Specialization| Prefetch| Size| Block| Block| Block| | | XDL| XDL| Per| Per| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| AddExtraM| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| AddExtraN| MXdlPerWave| NXdlPerWave| _MBlock_MWaveMPerXdl| ScalarPerVector|
//########################################| | | | | | | | | | | | Operation| Operation| Operation| | | Stage| | | | | | | | | Wave| Wave| Lengths_K0_M_K1| ArrangeOrder| | | PerVector| PerVector_K1| | Lengths_K0_N_K1| ArrangeOrder| | | PerVector| PerVector_K1| | PerShuffle| PerShuffle| _NBlock_NWaveNPerXdl| _NWaveNPerXdl|
//########################################| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
// generic instance
DeviceGroupedConvFwdMultipleD_Xdl_CShuffle
<
NDimSpatial
,
ALayout
,
BLayout
,
ck
::
Tuple
<>
,
ELayout
,
ck
::
Tuple
<
BF16
,
BF16
>
,
ck
::
Tuple
<
BF16
,
BF16
>
,
F32
,
BF16
,
ck
::
Tuple
<>
,
BF16
,
ScaleAdd
,
ScaleAdd
,
PassThrough
,
ConvSpec
,
GemmMNKPadding
,
1
,
64
,
64
,
64
,
32
,
8
,
8
,
32
,
32
,
2
,
2
,
S
<
4
,
16
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
1
,
1
,
1
,
S
<
4
,
16
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
1
,
1
,
1
,
1
,
1
,
S
<
1
,
16
,
1
,
4
>
,
1
>
,
// instances for small conv.K and conv.C
DeviceGroupedConvFwdMultipleD_Xdl_CShuffle
<
NDimSpatial
,
ALayout
,
BLayout
,
ck
::
Tuple
<>
,
ELayout
,
ck
::
Tuple
<
BF16
,
BF16
>
,
ck
::
Tuple
<
BF16
,
BF16
>
,
F32
,
BF16
,
ck
::
Tuple
<>
,
BF16
,
ScaleAdd
,
ScaleAdd
,
PassThrough
,
ConvSpec
,
GemmMNKPadding
,
1
,
64
,
64
,
32
,
32
,
8
,
8
,
32
,
32
,
2
,
1
,
S
<
4
,
16
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
8
,
8
,
1
,
S
<
4
,
16
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
8
,
8
,
1
,
1
,
1
,
S
<
1
,
16
,
1
,
4
>
,
1
>
,
DeviceGroupedConvFwdMultipleD_Xdl_CShuffle
<
NDimSpatial
,
ALayout
,
BLayout
,
ck
::
Tuple
<>
,
ELayout
,
ck
::
Tuple
<
BF16
,
BF16
>
,
ck
::
Tuple
<
BF16
,
BF16
>
,
F32
,
BF16
,
ck
::
Tuple
<>
,
BF16
,
ScaleAdd
,
ScaleAdd
,
PassThrough
,
ConvSpec
,
GemmMNKPadding
,
1
,
256
,
128
,
128
,
32
,
8
,
8
,
32
,
32
,
2
,
2
,
S
<
4
,
64
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
1
,
1
,
1
,
S
<
4
,
64
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
1
,
1
,
1
,
1
,
1
,
S
<
1
,
32
,
1
,
8
>
,
8
>
,
DeviceGroupedConvFwdMultipleD_Xdl_CShuffle
<
NDimSpatial
,
ALayout
,
BLayout
,
ck
::
Tuple
<>
,
ELayout
,
ck
::
Tuple
<
BF16
,
BF16
>
,
ck
::
Tuple
<
BF16
,
BF16
>
,
F32
,
BF16
,
ck
::
Tuple
<>
,
BF16
,
ScaleAdd
,
ScaleAdd
,
PassThrough
,
ConvSpec
,
GemmMNKPadding
,
1
,
256
,
256
,
128
,
32
,
8
,
8
,
32
,
32
,
4
,
2
,
S
<
4
,
64
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
8
,
8
,
1
,
S
<
4
,
64
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
8
,
8
,
1
,
1
,
1
,
S
<
1
,
32
,
1
,
8
>
,
8
>
// clang-format on
>
;
template
<
index_t
NDimSpatial
,
typename
ALayout
,
typename
BLayout
,
typename
ELayout
,
ConvolutionForwardSpecialization
ConvSpec
>
using
device_grouped_conv_fwd_xdl_scaleadd_ab_f16_instances
=
std
::
tuple
<
// clang-format off
//########################################| NumDim| A| B| Ds| E| AData| BData| AccData| CShuffle| Ds| EData| A| B| CDE| ConvForward| GEMM| NumGemmK| Block| MPer| NPer| KPer| AK1| BK1| MPer| NPer| MXdl| NXdl| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockLds| BBlockTransfer| BBlockTransfer| BBlockTransfer| BlockTransfer| BBlockTransfer| BBlockTransfer| BBlockLds| CShuffle| CShuffle| CBlockTransferClusterLengths| CBlockTransfer|
//########################################| Spatial| Layout| Layout| Layout| Layout| Type| Type| Type| DataType| DataType| Type| Elementwise| Elementwise| Elementwise| Specialization| Specialization| Prefetch| Size| Block| Block| Block| | | XDL| XDL| Per| Per| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| AddExtraM| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| AddExtraN| MXdlPerWave| NXdlPerWave| _MBlock_MWaveMPerXdl| ScalarPerVector|
//########################################| | | | | | | | | | | | Operation| Operation| Operation| | | Stage| | | | | | | | | Wave| Wave| Lengths_K0_M_K1| ArrangeOrder| | | PerVector| PerVector_K1| | Lengths_K0_N_K1| ArrangeOrder| | | PerVector| PerVector_K1| | PerShuffle| PerShuffle| _NBlock_NWaveNPerXdl| _NWaveNPerXdl|
//########################################| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
// generic instance
DeviceGroupedConvFwdMultipleD_Xdl_CShuffle
<
NDimSpatial
,
ALayout
,
BLayout
,
ck
::
Tuple
<>
,
ELayout
,
ck
::
Tuple
<
F16
,
F16
>
,
ck
::
Tuple
<
F16
,
F16
>
,
F32
,
F16
,
ck
::
Tuple
<>
,
F16
,
ScaleAdd
,
ScaleAdd
,
PassThrough
,
ConvSpec
,
GemmMNKPadding
,
1
,
64
,
64
,
64
,
32
,
8
,
8
,
32
,
32
,
2
,
2
,
S
<
4
,
16
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
1
,
1
,
1
,
S
<
4
,
16
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
1
,
1
,
1
,
1
,
1
,
S
<
1
,
16
,
1
,
4
>
,
1
>
,
// instances for small conv.K and conv.C
DeviceGroupedConvFwdMultipleD_Xdl_CShuffle
<
NDimSpatial
,
ALayout
,
BLayout
,
ck
::
Tuple
<>
,
ELayout
,
ck
::
Tuple
<
F16
,
F16
>
,
ck
::
Tuple
<
F16
,
F16
>
,
F32
,
F16
,
ck
::
Tuple
<>
,
F16
,
ScaleAdd
,
ScaleAdd
,
PassThrough
,
ConvSpec
,
GemmMNKPadding
,
1
,
64
,
64
,
32
,
32
,
8
,
8
,
32
,
32
,
2
,
1
,
S
<
4
,
16
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
8
,
8
,
1
,
S
<
4
,
16
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
8
,
8
,
1
,
1
,
1
,
S
<
1
,
16
,
1
,
4
>
,
1
>
,
DeviceGroupedConvFwdMultipleD_Xdl_CShuffle
<
NDimSpatial
,
ALayout
,
BLayout
,
ck
::
Tuple
<>
,
ELayout
,
ck
::
Tuple
<
F16
,
F16
>
,
ck
::
Tuple
<
F16
,
F16
>
,
F32
,
F16
,
ck
::
Tuple
<>
,
F16
,
ScaleAdd
,
ScaleAdd
,
PassThrough
,
ConvSpec
,
GemmMNKPadding
,
1
,
256
,
128
,
128
,
32
,
8
,
8
,
32
,
32
,
2
,
2
,
S
<
4
,
64
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
1
,
1
,
1
,
S
<
4
,
64
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
1
,
1
,
1
,
1
,
1
,
S
<
1
,
32
,
1
,
8
>
,
8
>
,
DeviceGroupedConvFwdMultipleD_Xdl_CShuffle
<
NDimSpatial
,
ALayout
,
BLayout
,
ck
::
Tuple
<>
,
ELayout
,
ck
::
Tuple
<
F16
,
F16
>
,
ck
::
Tuple
<
F16
,
F16
>
,
F32
,
F16
,
ck
::
Tuple
<>
,
F16
,
ScaleAdd
,
ScaleAdd
,
PassThrough
,
ConvSpec
,
GemmMNKPadding
,
1
,
256
,
256
,
128
,
32
,
8
,
8
,
32
,
32
,
4
,
2
,
S
<
4
,
64
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
8
,
8
,
1
,
S
<
4
,
64
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
8
,
8
,
1
,
1
,
1
,
S
<
1
,
32
,
1
,
8
>
,
8
>
// clang-format on
>
;
template
<
index_t
NDimSpatial
,
typename
ALayout
,
typename
BLayout
,
typename
ELayout
,
ConvolutionForwardSpecialization
ConvSpec
>
using
device_grouped_conv_fwd_xdl_scaleadd_ab_f32_instances
=
std
::
tuple
<
// clang-format off
//########################################| NumDim| A| B| Ds| E| AData| BData| AccData| CShuffle| Ds| EData| A| B| CDE| ConvForward| GEMM| NumGemmK| Block| MPer| NPer| KPer| AK1| BK1| MPer| NPer| MXdl| NXdl| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockLds| BBlockTransfer| BBlockTransfer| BBlockTransfer| BlockTransfer| BBlockTransfer| BBlockTransfer| BBlockLds| CShuffle| CShuffle| CBlockTransferClusterLengths| CBlockTransfer|
//########################################| Spatial| Layout| Layout| Layout| Layout| Type| Type| Type| DataType| DataType| Type| Elementwise| Elementwise| Elementwise| Specialization| Specialization| Prefetch| Size| Block| Block| Block| | | XDL| XDL| Per| Per| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| AddExtraM| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| AddExtraN| MXdlPerWave| NXdlPerWave| _MBlock_MWaveMPerXdl| ScalarPerVector|
//########################################| | | | | | | | | | | | Operation| Operation| Operation| | | Stage| | | | | | | | | Wave| Wave| Lengths_K0_M_K1| ArrangeOrder| | | PerVector| PerVector_K1| | Lengths_K0_N_K1| ArrangeOrder| | | PerVector| PerVector_K1| | PerShuffle| PerShuffle| _NBlock_NWaveNPerXdl| _NWaveNPerXdl|
//########################################| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
// generic instance
DeviceGroupedConvFwdMultipleD_Xdl_CShuffle
<
NDimSpatial
,
ALayout
,
BLayout
,
ck
::
Tuple
<>
,
ELayout
,
ck
::
Tuple
<
F32
,
F32
>
,
ck
::
Tuple
<
F32
,
F32
>
,
F32
,
F32
,
ck
::
Tuple
<>
,
F32
,
ScaleAdd
,
ScaleAdd
,
PassThrough
,
ConvSpec
,
GemmMNKPadding
,
1
,
64
,
64
,
64
,
16
,
4
,
4
,
32
,
32
,
2
,
2
,
S
<
4
,
16
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
1
,
1
,
1
,
S
<
4
,
16
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
1
,
1
,
1
,
1
,
1
,
S
<
1
,
8
,
1
,
8
>
,
1
>
,
// instances for small conv.K and conv.C
DeviceGroupedConvFwdMultipleD_Xdl_CShuffle
<
NDimSpatial
,
ALayout
,
BLayout
,
ck
::
Tuple
<>
,
ELayout
,
ck
::
Tuple
<
F32
,
F32
>
,
ck
::
Tuple
<
F32
,
F32
>
,
F32
,
F32
,
ck
::
Tuple
<>
,
F32
,
ScaleAdd
,
ScaleAdd
,
PassThrough
,
ConvSpec
,
GemmMNKPadding
,
1
,
64
,
64
,
32
,
16
,
4
,
4
,
32
,
32
,
2
,
1
,
S
<
4
,
16
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
4
,
4
,
1
,
S
<
4
,
16
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
4
,
4
,
1
,
1
,
1
,
S
<
1
,
8
,
1
,
8
>
,
1
>
,
DeviceGroupedConvFwdMultipleD_Xdl_CShuffle
<
NDimSpatial
,
ALayout
,
BLayout
,
ck
::
Tuple
<>
,
ELayout
,
ck
::
Tuple
<
F32
,
F32
>
,
ck
::
Tuple
<
F32
,
F32
>
,
F32
,
F32
,
ck
::
Tuple
<>
,
F32
,
ScaleAdd
,
ScaleAdd
,
PassThrough
,
ConvSpec
,
GemmMNKPadding
,
1
,
256
,
128
,
128
,
16
,
4
,
4
,
32
,
32
,
2
,
2
,
S
<
4
,
64
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
1
,
1
,
1
,
S
<
4
,
64
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
1
,
1
,
1
,
1
,
1
,
S
<
1
,
16
,
1
,
16
>
,
4
>
,
DeviceGroupedConvFwdMultipleD_Xdl_CShuffle
<
NDimSpatial
,
ALayout
,
BLayout
,
ck
::
Tuple
<>
,
ELayout
,
ck
::
Tuple
<
F32
,
F32
>
,
ck
::
Tuple
<
F32
,
F32
>
,
F32
,
F32
,
ck
::
Tuple
<>
,
F32
,
ScaleAdd
,
ScaleAdd
,
PassThrough
,
ConvSpec
,
GemmMNKPadding
,
1
,
256
,
256
,
128
,
16
,
4
,
4
,
32
,
32
,
4
,
2
,
S
<
4
,
64
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
4
,
4
,
1
,
S
<
4
,
64
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
4
,
4
,
1
,
1
,
1
,
S
<
1
,
16
,
1
,
16
>
,
4
>
// clang-format on
>
;
template
<
index_t
NDimSpatial
,
typename
ALayout
,
typename
BLayout
,
typename
ELayout
,
ConvolutionForwardSpecialization
ConvSpec
>
using
device_grouped_conv_fwd_xdl_scaleadd_ab_int8_instances
=
std
::
tuple
<
// clang-format off
//########################################| NumDim| A| B| Ds| E| AData| BData| AccData| CShuffle| Ds| EData| A| B| CDE| ConvForward| GEMM| NumGemmK| Block| MPer| NPer| KPer| AK1| BK1| MPer| NPer| MXdl| NXdl| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockLds| BBlockTransfer| BBlockTransfer| BBlockTransfer| BlockTransfer| BBlockTransfer| BBlockTransfer| BBlockLds| CShuffle| CShuffle| CBlockTransferClusterLengths| CBlockTransfer|
//########################################| Spatial| Layout| Layout| Layout| Layout| Type| Type| Type| DataType| DataType| Type| Elementwise| Elementwise| Elementwise| Specialization| Specialization| Prefetch| Size| Block| Block| Block| | | XDL| XDL| Per| Per| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| AddExtraM| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| AddExtraN| MXdlPerWave| NXdlPerWave| _MBlock_MWaveMPerXdl| ScalarPerVector|
//########################################| | | | | | | | | | | | Operation| Operation| Operation| | | Stage| | | | | | | | | Wave| Wave| Lengths_K0_M_K1| ArrangeOrder| | | PerVector| PerVector_K1| | Lengths_K0_N_K1| ArrangeOrder| | | PerVector| PerVector_K1| | PerShuffle| PerShuffle| _NBlock_NWaveNPerXdl| _NWaveNPerXdl|
//########################################| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
// generic instance
DeviceGroupedConvFwdMultipleD_Xdl_CShuffle
<
NDimSpatial
,
ALayout
,
BLayout
,
ck
::
Tuple
<>
,
ELayout
,
ck
::
Tuple
<
int8_t
,
int8_t
>
,
ck
::
Tuple
<
int8_t
,
int8_t
>
,
int32_t
,
int8_t
,
ck
::
Tuple
<>
,
int8_t
,
ScaleAdd
,
ScaleAdd
,
PassThrough
,
ConvSpec
,
GemmMNKPadding
,
1
,
64
,
64
,
64
,
32
,
8
,
8
,
32
,
32
,
2
,
2
,
S
<
4
,
16
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
1
,
1
,
1
,
S
<
4
,
16
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
1
,
1
,
1
,
1
,
1
,
S
<
1
,
16
,
1
,
4
>
,
1
>
,
// instances for small conv.K and conv.C
DeviceGroupedConvFwdMultipleD_Xdl_CShuffle
<
NDimSpatial
,
ALayout
,
BLayout
,
ck
::
Tuple
<>
,
ELayout
,
ck
::
Tuple
<
int8_t
,
int8_t
>
,
ck
::
Tuple
<
int8_t
,
int8_t
>
,
int32_t
,
int8_t
,
ck
::
Tuple
<>
,
int8_t
,
ScaleAdd
,
ScaleAdd
,
PassThrough
,
ConvSpec
,
GemmMNKPadding
,
1
,
64
,
64
,
32
,
32
,
8
,
8
,
32
,
32
,
2
,
1
,
S
<
4
,
16
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
8
,
8
,
1
,
S
<
4
,
16
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
8
,
8
,
1
,
1
,
1
,
S
<
1
,
16
,
1
,
4
>
,
1
>
,
DeviceGroupedConvFwdMultipleD_Xdl_CShuffle
<
NDimSpatial
,
ALayout
,
BLayout
,
ck
::
Tuple
<>
,
ELayout
,
ck
::
Tuple
<
int8_t
,
int8_t
>
,
ck
::
Tuple
<
int8_t
,
int8_t
>
,
int32_t
,
int8_t
,
ck
::
Tuple
<>
,
int8_t
,
ScaleAdd
,
ScaleAdd
,
PassThrough
,
ConvSpec
,
GemmMNKPadding
,
1
,
256
,
128
,
128
,
32
,
8
,
8
,
32
,
32
,
2
,
2
,
S
<
4
,
64
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
1
,
1
,
1
,
S
<
4
,
64
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
1
,
1
,
1
,
1
,
1
,
S
<
1
,
32
,
1
,
8
>
,
8
>
,
DeviceGroupedConvFwdMultipleD_Xdl_CShuffle
<
NDimSpatial
,
ALayout
,
BLayout
,
ck
::
Tuple
<>
,
ELayout
,
ck
::
Tuple
<
int8_t
,
int8_t
>
,
ck
::
Tuple
<
int8_t
,
int8_t
>
,
int32_t
,
int8_t
,
ck
::
Tuple
<>
,
int8_t
,
ScaleAdd
,
ScaleAdd
,
PassThrough
,
ConvSpec
,
GemmMNKPadding
,
1
,
256
,
256
,
128
,
32
,
8
,
8
,
32
,
32
,
4
,
2
,
S
<
4
,
64
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
8
,
8
,
1
,
S
<
4
,
64
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
8
,
8
,
1
,
1
,
1
,
S
<
1
,
32
,
1
,
8
>
,
8
>
// clang-format on
>
;
}
// namespace instance
}
// namespace device
}
// namespace tensor_operation
}
// namespace ck
library/include/ck/library/tensor_operation_instance/gpu/grouped_convolution_forward_scaleadd_ab.hpp
0 → 100644
View file @
cc902506
// SPDX-License-Identifier: MIT
// Copyright (c) 2023, Advanced Micro Devices, Inc. All rights reserved.
#pragma once
#include <vector>
#include <memory>
#include "ck/ck.hpp"
#include "ck/tensor_operation/gpu/device/device_grouped_conv_fwd_multiple_d.hpp"
#include "ck/tensor_operation/gpu/device/tensor_layout.hpp"
#include "ck/tensor_operation/gpu/element/element_wise_operation.hpp"
#include "ck/library/tensor_operation_instance/device_operation_instance_factory.hpp"
namespace
ck
{
namespace
tensor_operation
{
namespace
device
{
namespace
instance
{
using
PassThrough
=
ck
::
tensor_operation
::
element_wise
::
PassThrough
;
using
ScaleAdd
=
ck
::
tensor_operation
::
element_wise
::
ScaleAdd
;
#ifdef CK_ENABLE_BF16
// grouped conv3d forward multi AB scaleadd, NDHWGC/GKZYXC/NDHWGK
void
add_device_grouped_conv3d_fwd_xdl_scaleadd_ab_ndhwgc_gkzyxc_ndhwgk_bf16_instances
(
std
::
vector
<
std
::
unique_ptr
<
DeviceGroupedConvFwdMultipleD
<
3
,
NDHWGC
,
GKZYXC
,
ck
::
Tuple
<>
,
NDHWGK
,
ck
::
Tuple
<
BF16
,
BF16
>
,
ck
::
Tuple
<
BF16
,
BF16
>
,
ck
::
Tuple
<>
,
BF16
,
ScaleAdd
,
ScaleAdd
,
PassThrough
>>>&
instances
);
#endif
#ifdef CK_ENABLE_FP16
void
add_device_grouped_conv3d_fwd_xdl_scaleadd_ab_ndhwgc_gkzyxc_ndhwgk_f16_instances
(
std
::
vector
<
std
::
unique_ptr
<
DeviceGroupedConvFwdMultipleD
<
3
,
NDHWGC
,
GKZYXC
,
ck
::
Tuple
<>
,
NDHWGK
,
ck
::
Tuple
<
F16
,
F16
>
,
ck
::
Tuple
<
F16
,
F16
>
,
ck
::
Tuple
<>
,
F16
,
ScaleAdd
,
ScaleAdd
,
PassThrough
>>>&
instances
);
#endif
#ifdef CK_ENABLE_FP32
void
add_device_grouped_conv3d_fwd_xdl_scaleadd_ab_ndhwgc_gkzyxc_ndhwgk_f32_instances
(
std
::
vector
<
std
::
unique_ptr
<
DeviceGroupedConvFwdMultipleD
<
3
,
NDHWGC
,
GKZYXC
,
ck
::
Tuple
<>
,
NDHWGK
,
ck
::
Tuple
<
F32
,
F32
>
,
ck
::
Tuple
<
F32
,
F32
>
,
ck
::
Tuple
<>
,
F32
,
ScaleAdd
,
ScaleAdd
,
PassThrough
>>>&
instances
);
#endif
#ifdef CK_ENABLE_INT8
void
add_device_grouped_conv3d_fwd_xdl_scaleadd_ab_ndhwgc_gkzyxc_ndhwgk_int8_instances
(
std
::
vector
<
std
::
unique_ptr
<
DeviceGroupedConvFwdMultipleD
<
3
,
NDHWGC
,
GKZYXC
,
ck
::
Tuple
<>
,
NDHWGK
,
ck
::
Tuple
<
int8_t
,
int8_t
>
,
ck
::
Tuple
<
int8_t
,
int8_t
>
,
ck
::
Tuple
<>
,
int8_t
,
ScaleAdd
,
ScaleAdd
,
PassThrough
>>>&
instances
);
#endif
template
<
ck
::
index_t
NumDimSpatial
,
typename
InLayout
,
typename
WeiLayout
,
typename
DLayouts
,
typename
OutLayout
,
typename
InDataType
,
typename
WeiDataType
,
typename
DDataTypes
,
typename
OutDataType
,
typename
ComputeType
>
struct
DeviceOperationInstanceFactory
<
ck
::
tensor_operation
::
device
::
DeviceGroupedConvFwdMultipleD
<
NumDimSpatial
,
InLayout
,
WeiLayout
,
DLayouts
,
OutLayout
,
InDataType
,
WeiDataType
,
DDataTypes
,
OutDataType
,
ck
::
tensor_operation
::
element_wise
::
ScaleAdd
,
ck
::
tensor_operation
::
element_wise
::
ScaleAdd
,
ck
::
tensor_operation
::
element_wise
::
PassThrough
,
ComputeType
>>
{
using
DeviceOp
=
DeviceGroupedConvFwdMultipleD
<
NumDimSpatial
,
InLayout
,
WeiLayout
,
DLayouts
,
OutLayout
,
InDataType
,
WeiDataType
,
DDataTypes
,
OutDataType
,
ck
::
tensor_operation
::
element_wise
::
ScaleAdd
,
ck
::
tensor_operation
::
element_wise
::
ScaleAdd
,
ck
::
tensor_operation
::
element_wise
::
PassThrough
,
ComputeType
>
;
static
auto
GetInstances
()
{
std
::
vector
<
std
::
unique_ptr
<
DeviceOp
>>
op_ptrs
;
if
constexpr
(
NumDimSpatial
==
3
&&
is_same_v
<
InLayout
,
NDHWGC
>
&&
is_same_v
<
WeiLayout
,
GKZYXC
>
&&
is_same_v
<
OutLayout
,
NDHWGK
>
)
{
#ifdef CK_ENABLE_FP32
if
constexpr
(
is_same_v
<
InDataType
,
ck
::
Tuple
<
float
,
float
>>
&&
is_same_v
<
WeiDataType
,
ck
::
Tuple
<
float
,
float
>>
&&
is_same_v
<
OutDataType
,
float
>
&&
is_same_v
<
ComputeType
,
float
>
)
{
add_device_grouped_conv3d_fwd_xdl_scaleadd_ab_ndhwgc_gkzyxc_ndhwgk_f32_instances
(
op_ptrs
);
}
#endif
#ifdef CK_ENABLE_FP16
if
constexpr
(
is_same_v
<
InDataType
,
ck
::
Tuple
<
half_t
,
half_t
>>
&&
is_same_v
<
WeiDataType
,
ck
::
Tuple
<
half_t
,
half_t
>>
&&
is_same_v
<
OutDataType
,
half_t
>
&&
is_same_v
<
ComputeType
,
half_t
>
)
{
add_device_grouped_conv3d_fwd_xdl_scaleadd_ab_ndhwgc_gkzyxc_ndhwgk_f16_instances
(
op_ptrs
);
}
#endif
#ifdef CK_ENABLE_BF16
if
constexpr
(
is_same_v
<
InDataType
,
ck
::
Tuple
<
ck
::
bhalf_t
,
ck
::
bhalf_t
>>
&&
is_same_v
<
WeiDataType
,
ck
::
Tuple
<
ck
::
bhalf_t
,
ck
::
bhalf_t
>>
&&
is_same_v
<
OutDataType
,
ck
::
bhalf_t
>
&&
is_same_v
<
ComputeType
,
ck
::
bhalf_t
>
)
{
add_device_grouped_conv3d_fwd_xdl_scaleadd_ab_ndhwgc_gkzyxc_ndhwgk_bf16_instances
(
op_ptrs
);
}
#endif
#ifdef CK_ENABLE_INT8
if
constexpr
(
is_same_v
<
InDataType
,
ck
::
Tuple
<
int8_t
,
int8_t
>>
&&
is_same_v
<
WeiDataType
,
ck
::
Tuple
<
int8_t
,
int8_t
>>
&&
is_same_v
<
OutDataType
,
int8_t
>
&&
is_same_v
<
ComputeType
,
int8_t
>
)
{
add_device_grouped_conv3d_fwd_xdl_scaleadd_ab_ndhwgc_gkzyxc_ndhwgk_int8_instances
(
op_ptrs
);
}
#endif
}
return
op_ptrs
;
}
};
}
// namespace instance
}
// namespace device
}
// namespace tensor_operation
}
// namespace ck
library/src/tensor_operation_instance/gpu/grouped_conv3d_fwd_scaleadd_ab/xdl/device_grouped_conv3d_fwd_xdl_scaleadd_ab_ndhwgc_gkzyxc_ndhwgk_bf16_instance.cpp
0 → 100644
View file @
cc902506
// SPDX-License-Identifier: MIT
// Copyright (c) 2023, Advanced Micro Devices, Inc. All rights reserved.
#include "ck/library/tensor_operation_instance/gpu/grouped_conv_fwd/device_grouped_conv_fwd_xdl_scaleadd_ab_instance.hpp"
#include "ck/library/tensor_operation_instance/add_device_operation_instance.hpp"
namespace
ck
{
namespace
tensor_operation
{
namespace
device
{
namespace
instance
{
void
add_device_grouped_conv3d_fwd_xdl_scaleadd_ab_ndhwgc_gkzyxc_ndhwgk_bf16_instances
(
std
::
vector
<
std
::
unique_ptr
<
DeviceGroupedConvFwdMultipleD
<
3
,
NDHWGC
,
GKZYXC
,
ck
::
Tuple
<>
,
NDHWGK
,
ck
::
Tuple
<
BF16
,
BF16
>
,
ck
::
Tuple
<
BF16
,
BF16
>
,
ck
::
Tuple
<>
,
BF16
,
ScaleAdd
,
ScaleAdd
,
PassThrough
>>>&
instances
)
{
add_device_operation_instances
(
instances
,
device_grouped_conv_fwd_xdl_scaleadd_ab_bf16_instances
<
3
,
NDHWGC
,
GKZYXC
,
NDHWGK
,
ConvFwdDefault
>
{});
add_device_operation_instances
(
instances
,
device_grouped_conv_fwd_xdl_scaleadd_ab_bf16_instances
<
3
,
NDHWGC
,
GKZYXC
,
NDHWGK
,
ConvFwd1x1P0
>
{});
add_device_operation_instances
(
instances
,
device_grouped_conv_fwd_xdl_scaleadd_ab_bf16_instances
<
3
,
NDHWGC
,
GKZYXC
,
NDHWGK
,
ConvFwd1x1S1P0
>
{});
}
}
// namespace instance
}
// namespace device
}
// namespace tensor_operation
}
// namespace ck
library/src/tensor_operation_instance/gpu/grouped_conv3d_fwd_scaleadd_ab/xdl/device_grouped_conv3d_fwd_xdl_scaleadd_ab_ndhwgc_gkzyxc_ndhwgk_f16_instance.cpp
0 → 100644
View file @
cc902506
// SPDX-License-Identifier: MIT
// Copyright (c) 2023, Advanced Micro Devices, Inc. All rights reserved.
#include "ck/library/tensor_operation_instance/gpu/grouped_conv_fwd/device_grouped_conv_fwd_xdl_scaleadd_ab_instance.hpp"
#include "ck/library/tensor_operation_instance/add_device_operation_instance.hpp"
namespace
ck
{
namespace
tensor_operation
{
namespace
device
{
namespace
instance
{
void
add_device_grouped_conv3d_fwd_xdl_scaleadd_ab_ndhwgc_gkzyxc_ndhwgk_f16_instances
(
std
::
vector
<
std
::
unique_ptr
<
DeviceGroupedConvFwdMultipleD
<
3
,
NDHWGC
,
GKZYXC
,
ck
::
Tuple
<>
,
NDHWGK
,
ck
::
Tuple
<
F16
,
F16
>
,
ck
::
Tuple
<
F16
,
F16
>
,
ck
::
Tuple
<>
,
F16
,
ScaleAdd
,
ScaleAdd
,
PassThrough
>>>&
instances
)
{
add_device_operation_instances
(
instances
,
device_grouped_conv_fwd_xdl_scaleadd_ab_f16_instances
<
3
,
NDHWGC
,
GKZYXC
,
NDHWGK
,
ConvFwdDefault
>
{});
add_device_operation_instances
(
instances
,
device_grouped_conv_fwd_xdl_scaleadd_ab_f16_instances
<
3
,
NDHWGC
,
GKZYXC
,
NDHWGK
,
ConvFwd1x1P0
>
{});
add_device_operation_instances
(
instances
,
device_grouped_conv_fwd_xdl_scaleadd_ab_f16_instances
<
3
,
NDHWGC
,
GKZYXC
,
NDHWGK
,
ConvFwd1x1S1P0
>
{});
}
}
// namespace instance
}
// namespace device
}
// namespace tensor_operation
}
// namespace ck
library/src/tensor_operation_instance/gpu/grouped_conv3d_fwd_scaleadd_ab/xdl/device_grouped_conv3d_fwd_xdl_scaleadd_ab_ndhwgc_gkzyxc_ndhwgk_f32_instance.cpp
0 → 100644
View file @
cc902506
// SPDX-License-Identifier: MIT
// Copyright (c) 2023, Advanced Micro Devices, Inc. All rights reserved.
#include "ck/library/tensor_operation_instance/gpu/grouped_conv_fwd/device_grouped_conv_fwd_xdl_scaleadd_ab_instance.hpp"
#include "ck/library/tensor_operation_instance/add_device_operation_instance.hpp"
namespace
ck
{
namespace
tensor_operation
{
namespace
device
{
namespace
instance
{
void
add_device_grouped_conv3d_fwd_xdl_scaleadd_ab_ndhwgc_gkzyxc_ndhwgk_f32_instances
(
std
::
vector
<
std
::
unique_ptr
<
DeviceGroupedConvFwdMultipleD
<
3
,
NDHWGC
,
GKZYXC
,
ck
::
Tuple
<>
,
NDHWGK
,
ck
::
Tuple
<
F32
,
F32
>
,
ck
::
Tuple
<
F32
,
F32
>
,
ck
::
Tuple
<>
,
F32
,
ScaleAdd
,
ScaleAdd
,
PassThrough
>>>&
instances
)
{
add_device_operation_instances
(
instances
,
device_grouped_conv_fwd_xdl_scaleadd_ab_f32_instances
<
3
,
NDHWGC
,
GKZYXC
,
NDHWGK
,
ConvFwdDefault
>
{});
add_device_operation_instances
(
instances
,
device_grouped_conv_fwd_xdl_scaleadd_ab_f32_instances
<
3
,
NDHWGC
,
GKZYXC
,
NDHWGK
,
ConvFwd1x1P0
>
{});
add_device_operation_instances
(
instances
,
device_grouped_conv_fwd_xdl_scaleadd_ab_f32_instances
<
3
,
NDHWGC
,
GKZYXC
,
NDHWGK
,
ConvFwd1x1S1P0
>
{});
}
}
// namespace instance
}
// namespace device
}
// namespace tensor_operation
}
// namespace ck
library/src/tensor_operation_instance/gpu/grouped_conv3d_fwd_scaleadd_ab/xdl/device_grouped_conv3d_fwd_xdl_scaleadd_ab_ndhwgc_gkzyxc_ndhwgk_int8_instance.cpp
0 → 100644
View file @
cc902506
// SPDX-License-Identifier: MIT
// Copyright (c) 2023, Advanced Micro Devices, Inc. All rights reserved.
#include "ck/library/tensor_operation_instance/gpu/grouped_conv_fwd/device_grouped_conv_fwd_xdl_scaleadd_ab_instance.hpp"
#include "ck/library/tensor_operation_instance/add_device_operation_instance.hpp"
namespace
ck
{
namespace
tensor_operation
{
namespace
device
{
namespace
instance
{
void
add_device_grouped_conv3d_fwd_xdl_scaleadd_ab_ndhwgc_gkzyxc_ndhwgk_int8_instances
(
std
::
vector
<
std
::
unique_ptr
<
DeviceGroupedConvFwdMultipleD
<
3
,
NDHWGC
,
GKZYXC
,
ck
::
Tuple
<>
,
NDHWGK
,
ck
::
Tuple
<
int8_t
,
int8_t
>
,
ck
::
Tuple
<
int8_t
,
int8_t
>
,
ck
::
Tuple
<>
,
int8_t
,
ScaleAdd
,
ScaleAdd
,
PassThrough
>>>&
instances
)
{
add_device_operation_instances
(
instances
,
device_grouped_conv_fwd_xdl_scaleadd_ab_int8_instances
<
3
,
NDHWGC
,
GKZYXC
,
NDHWGK
,
ConvFwdDefault
>
{});
add_device_operation_instances
(
instances
,
device_grouped_conv_fwd_xdl_scaleadd_ab_int8_instances
<
3
,
NDHWGC
,
GKZYXC
,
NDHWGK
,
ConvFwd1x1P0
>
{});
add_device_operation_instances
(
instances
,
device_grouped_conv_fwd_xdl_scaleadd_ab_int8_instances
<
3
,
NDHWGC
,
GKZYXC
,
NDHWGK
,
ConvFwd1x1S1P0
>
{});
}
}
// namespace instance
}
// namespace device
}
// namespace tensor_operation
}
// namespace ck
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
.
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment