Commit cc6a534f authored by aska-0096's avatar aska-0096
Browse files

Merge branch 'develop' of...

Merge branch 'develop' of https://github.com/ROCmSoftwarePlatform/composable_kernel into navi3x_md_bgemm_conv_gemmsoftmaxgemm
parents 27dc055b cb3fac4d
......@@ -13,10 +13,16 @@ namespace ck {
namespace tensor_operation {
namespace device {
template <index_t Rank,
template <typename InDataType,
typename AccDataType,
typename OutDataType,
index_t Rank,
index_t NumReduceDim,
typename ReduceOperation,
typename InElementwiseOperation,
typename AccElementwiseOperation>
typename AccElementwiseOperation,
bool PropagateNan,
bool OutputIndex>
struct DeviceReduce : public BaseOperator
{
static constexpr index_t NumOutDim = (Rank - NumReduceDim == 0) ? 1 : Rank - NumReduceDim;
......@@ -27,8 +33,8 @@ struct DeviceReduce : public BaseOperator
const std::array<index_t, NumOutDim> outLengths,
const std::array<index_t, NumOutDim> outStrides,
const std::array<int, NumReduceDim> reduceDims,
float alpha,
float beta,
double alpha,
double beta,
const void* in_dev,
const void* in_index_dev,
void* out_dev,
......@@ -39,12 +45,26 @@ struct DeviceReduce : public BaseOperator
virtual std::unique_ptr<BaseInvoker> MakeInvokerPointer() = 0;
};
template <index_t Rank,
template <typename InDataType,
typename AccDataType,
typename OutDataType,
index_t Rank,
index_t NumReduceDim,
typename ReduceOperation,
typename InElementwiseOperation,
typename AccElementwiseOperation>
using DeviceReducePtr = std::unique_ptr<
DeviceReduce<Rank, NumReduceDim, InElementwiseOperation, AccElementwiseOperation>>;
typename AccElementwiseOperation,
bool PropagateNan,
bool OutputIndex>
using DeviceReducePtr = std::unique_ptr<DeviceReduce<InDataType,
AccDataType,
OutDataType,
Rank,
NumReduceDim,
ReduceOperation,
InElementwiseOperation,
AccElementwiseOperation,
PropagateNan,
OutputIndex>>;
} // namespace device
} // namespace tensor_operation
......
......@@ -27,10 +27,8 @@ struct DeviceSoftmax : public BaseOperator
// @param[in] inLengths Input tensor extent(s) from high to low dimension
// @param[in] inStrides Input tensor stride(s) from high to low dimension
// @param[in] reduceDims The dimension(s) the normalization operation is applied
// @param[in] alpha Typeless pointer in host memory storing the alpha scaling
// value as type AccDataType
// @param[in] beta Typeless pointer in host memory storing the beta scaling
// value as type AccDataType
// @param[in] alpha double type value
// @param[in] beta double type value
// @param[in] in_dev Typeless const pointer in device memory storing the input
// tensor
// @param out_dev Typeless pointer in device memory storing the output tensor
......@@ -43,8 +41,8 @@ struct DeviceSoftmax : public BaseOperator
MakeArgumentPointer(const std::vector<index_t> inLengths,
const std::vector<index_t> inStrides,
const std::vector<int> reduceDims,
const void* alpha,
const void* beta,
double alpha,
double beta,
const void* in_dev,
void* out_dev,
InElementwiseOp in_elementwise_op,
......
......@@ -13,7 +13,7 @@
#include "ck/tensor_operation/gpu/device/gemm_specialization.hpp"
#include "ck/tensor_operation/gpu/device/matrix_padder.hpp"
#include "ck/tensor_operation/gpu/device/tensor_layout.hpp"
#include "ck/tensor_operation/gpu/grid/gridwise_batched_gemm_softmax_gemm_xdl_cshuffle_v1.hpp"
#include "ck/tensor_operation/gpu/grid/gridwise_batched_gemm_multiple_d_softmax_gemm_xdl_cshuffle_v1.hpp"
#include "ck/tensor_operation/operator_transform/transform_contraction_to_gemm.hpp"
#include "ck/host_utility/device_prop.hpp"
#include "ck/host_utility/kernel_launch.hpp"
......@@ -25,15 +25,17 @@ namespace device {
template <typename GridwiseGemm,
typename FloatAB,
typename FloatC,
typename D0sPointer,
typename AElementwiseOperation,
typename BElementwiseOperation,
typename AccElementwiseOperation,
typename C0DEElementwiseOperation,
typename B1ElementwiseOperation,
typename CElementwiseOperation,
typename C1DEElementwiseOperation,
typename AGridDesc_AK0_M_AK1,
typename BGridDesc_BK0_N_BK1,
typename B1GridDesc_BK0_N_BK1,
typename CGridDescriptor_MBlock_MPerBlock_NBlock_NPerBlock,
typename C1GridDescriptor_MBlock_MPerBlock_NBlock_NPerBlock,
typename D0sGridDescriptor_M0_N0_M1_N1_M2_N2_M3_N3_N4_N5,
typename Block2CTileMap,
typename ComputeBasePtrOfStridedBatch,
typename C0MatrixMask,
......@@ -47,16 +49,19 @@ __global__ void
const FloatAB* __restrict__ p_b_grid,
const FloatAB* __restrict__ p_b1_grid,
FloatC* __restrict__ p_c_grid,
D0sPointer p_d0s_grid,
const AElementwiseOperation a_element_op,
const BElementwiseOperation b_element_op,
const AccElementwiseOperation acc_element_op,
const C0DEElementwiseOperation c0de_element_op,
const B1ElementwiseOperation b1_element_op,
const CElementwiseOperation c_element_op,
const C1DEElementwiseOperation c1de_element_op,
const AGridDesc_AK0_M_AK1 a_grid_desc_ak0_m_ak1,
const BGridDesc_BK0_N_BK1 b_grid_desc_bk0_n_bk1,
const B1GridDesc_BK0_N_BK1 b1_grid_desc_bk0_n_bk1,
const CGridDescriptor_MBlock_MPerBlock_NBlock_NPerBlock
c_grid_desc_mblock_mperblock_nblock_nperblock,
const C1GridDescriptor_MBlock_MPerBlock_NBlock_NPerBlock
c1_grid_desc_mblock_mperblock_nblock_nperblock,
const D0sGridDescriptor_M0_N0_M1_N1_M2_N2_M3_N3_N4_N5
d0s_griddesc_m0_n0_m1_n1_m2_n2_m3_n3_n4_n5,
const Block2CTileMap block_2_ctile_map,
const index_t batch_count,
const ComputeBasePtrOfStridedBatch compute_base_ptr_of_batch,
......@@ -77,20 +82,28 @@ __global__ void
const long_index_t c_batch_offset = __builtin_amdgcn_readfirstlane(
static_cast<long_index_t>(compute_base_ptr_of_batch.GetCBasePtr(g_idx)));
static_for<0, p_d0s_grid.Size(), 1>{}([&](auto In) {
const long_index_t d0_batch_offset = __builtin_amdgcn_readfirstlane(
static_cast<long_index_t>(compute_base_ptr_of_batch.GetD0BasePtr(g_idx, In)));
p_d0s_grid(In) = p_d0s_grid(In) + d0_batch_offset;
});
GridwiseGemm::template Run<HasMainKBlockLoop>(p_a_grid + a_batch_offset,
p_b_grid + b_batch_offset,
p_b1_grid + b1_batch_offset,
p_c_grid + c_batch_offset,
p_d0s_grid,
p_shared,
a_element_op,
b_element_op,
acc_element_op,
c0de_element_op,
b1_element_op,
c_element_op,
c1de_element_op,
a_grid_desc_ak0_m_ak1,
b_grid_desc_bk0_n_bk1,
b1_grid_desc_bk0_n_bk1,
c_grid_desc_mblock_mperblock_nblock_nperblock,
c1_grid_desc_mblock_mperblock_nblock_nperblock,
d0s_griddesc_m0_n0_m1_n1_m2_n2_m3_n3_n4_n5,
block_2_ctile_map,
c0_matrix_mask);
#else
......@@ -100,13 +113,14 @@ __global__ void
ignore = p_c_grid;
ignore = a_element_op;
ignore = b_element_op;
ignore = acc_element_op;
ignore = c0de_element_op;
ignore = b1_element_op;
ignore = c_element_op;
ignore = c1de_element_op;
ignore = a_grid_desc_ak0_m_ak1;
ignore = b_grid_desc_bk0_n_bk1;
ignore = b1_grid_desc_bk0_n_bk1;
ignore = c_grid_desc_mblock_mperblock_nblock_nperblock;
ignore = c1_grid_desc_mblock_mperblock_nblock_nperblock;
ignore = d0s_griddesc_m0_n0_m1_n1_m2_n2_m3_n3_n4_n5;
ignore = block_2_ctile_map;
ignore = batch_count;
ignore = compute_base_ptr_of_batch;
......@@ -126,15 +140,15 @@ template <index_t NumDimG,
typename BDataType,
typename B1DataType,
typename CDataType,
typename Acc0BiasDataType,
typename Acc1BiasDataType,
typename D0sDataType,
typename D1sDataType,
typename GemmAccDataType,
typename CShuffleDataType,
typename AElementwiseOperation,
typename BElementwiseOperation,
typename AccElementwiseOperation,
typename C0DEElementwiseOperation,
typename B1ElementwiseOperation,
typename CElementwiseOperation,
typename C1DEElementwiseOperation,
GemmSpecialization GemmSpec,
TensorSpecialization ASpec,
TensorSpecialization BSpec,
......@@ -192,23 +206,23 @@ struct DeviceBatchedGemmSoftmaxGemmPermute_Xdl_CShuffle
BDataType,
B1DataType,
CDataType,
Acc0BiasDataType,
Acc1BiasDataType,
D0sDataType,
D1sDataType,
AElementwiseOperation,
BElementwiseOperation,
AccElementwiseOperation,
C0DEElementwiseOperation,
B1ElementwiseOperation,
CElementwiseOperation,
C1DEElementwiseOperation,
MaskingSpec>
{
static_assert(NumDimG > 0 && NumDimM > 0 && NumDimN > 0 && NumDimK > 0 && NumDimO > 0,
"Number of dimension must be greater than 0");
static constexpr index_t NumAcc0Bias = Acc0BiasDataType::Size();
static constexpr index_t NumAcc1Bias = Acc1BiasDataType::Size();
static constexpr index_t NumD0Tensor = D0sDataType::Size();
static constexpr index_t NumD1Tensor = D1sDataType::Size();
// TODO ANT: implement bias combination
static_assert(NumAcc0Bias == 0 && NumAcc0Bias == 0, "Bias addition is unimplemented");
static_assert(NumD1Tensor == 0, "Gemm1 Bias addition is unimplemented");
#if 0
// TODO ANT: use alias
......@@ -261,14 +275,40 @@ struct DeviceBatchedGemmSoftmaxGemmPermute_Xdl_CShuffle
Number<B1K1>{});
}
static auto MakeD0sGridDescriptor_M_N(
const std::array<std::vector<ck::index_t>, NumD0Tensor>& acc0_biases_gs_ms_ns_lengths,
const std::array<std::vector<ck::index_t>, NumD0Tensor>& acc0_biases_gs_ms_ns_strides)
{
return generate_tuple(
[&](auto i) {
return Transform::MakeCGridDescriptor_M_N(acc0_biases_gs_ms_ns_lengths[i],
acc0_biases_gs_ms_ns_strides[i]);
},
Number<NumD0Tensor>{});
}
static auto MakeD0sGridDescriptor_G_M_N(
const std::array<std::vector<ck::index_t>, NumD0Tensor>& acc0_biases_gs_ms_ns_lengths,
const std::array<std::vector<ck::index_t>, NumD0Tensor>& acc0_biases_gs_ms_ns_strides)
{
return generate_tuple(
[&](auto i) {
return Transform::MakeCGridDescriptor_G_M_N(acc0_biases_gs_ms_ns_lengths[i],
acc0_biases_gs_ms_ns_strides[i]);
},
Number<NumD0Tensor>{});
}
using AGridDesc_AK0_M_AK1 = decltype(MakeAGridDescriptor_AK0_M_AK1({}, {}));
using BGridDesc_BK0_N_BK1 = decltype(MakeBGridDescriptor_BK0_N_BK1({}, {}));
using B1GridDesc_BK0_N_BK1 = decltype(MakeB1GridDescriptor_BK0_N_BK1({}, {}));
using CGridDesc_M_N = decltype(Transform::MakeCGridDescriptor_M_N({}, {}));
using C1GridDesc_M_N = decltype(Transform::MakeCGridDescriptor_M_N({}, {}));
using AGridDesc_G_M_K = decltype(Transform::MakeAGridDescriptor_G_M_K({}, {}));
using BGridDesc_G_N_K = decltype(Transform::MakeB0GridDescriptor_G_N_K({}, {}));
using B1GridDesc_G_N_K = decltype(Transform::MakeB1GridDescriptor_G_N_K({}, {}));
using CGridDesc_G_M_N = decltype(Transform::MakeCGridDescriptor_G_M_N({}, {}));
using C1GridDesc_G_M_N = decltype(Transform::MakeCGridDescriptor_G_M_N({}, {}));
using D0sGridDesc_M_N = decltype(MakeD0sGridDescriptor_M_N({}, {}));
using D0sGridDesc_G_M_N = decltype(MakeD0sGridDescriptor_G_M_N({}, {}));
constexpr static auto make_MaskOutPredicate()
{
......@@ -288,11 +328,13 @@ struct DeviceBatchedGemmSoftmaxGemmPermute_Xdl_CShuffle
ComputeBasePtrOfStridedBatch(const AGridDesc_G_M_K& a_grid_desc_g_m_k,
const BGridDesc_G_N_K& b_grid_desc_g_n_k,
const B1GridDesc_G_N_K& b1_grid_desc_g_n_k,
const CGridDesc_G_M_N& c_grid_desc_g_m_n)
const C1GridDesc_G_M_N& c1_grid_desc_g_m_n,
const D0sGridDesc_G_M_N& d0s_grid_desc_g_m_n)
: a_grid_desc_g_m_k_(a_grid_desc_g_m_k),
b_grid_desc_g_n_k_(b_grid_desc_g_n_k),
b1_grid_desc_g_n_k_(b1_grid_desc_g_n_k),
c_grid_desc_g_m_n_(c_grid_desc_g_m_n)
c1_grid_desc_g_m_n_(c1_grid_desc_g_m_n),
d0s_grid_desc_g_m_n_(d0s_grid_desc_g_m_n)
{
}
......@@ -313,32 +355,42 @@ struct DeviceBatchedGemmSoftmaxGemmPermute_Xdl_CShuffle
__host__ __device__ constexpr long_index_t GetCBasePtr(index_t g_idx) const
{
return c_grid_desc_g_m_n_.CalculateOffset(make_multi_index(g_idx, 0, 0));
return c1_grid_desc_g_m_n_.CalculateOffset(make_multi_index(g_idx, 0, 0));
}
template <index_t I>
__host__ __device__ constexpr long_index_t GetD0BasePtr(index_t g_idx,
Number<I> d0_idx) const
{
return d0s_grid_desc_g_m_n_[d0_idx].CalculateOffset(make_multi_index(g_idx, 0, 0));
}
private:
AGridDesc_G_M_K a_grid_desc_g_m_k_;
BGridDesc_G_N_K b_grid_desc_g_n_k_;
B1GridDesc_G_N_K b1_grid_desc_g_n_k_;
CGridDesc_G_M_N c_grid_desc_g_m_n_;
C1GridDesc_G_M_N c1_grid_desc_g_m_n_;
D0sGridDesc_G_M_N d0s_grid_desc_g_m_n_;
};
// GridwiseGemm
using GridwiseGemm = GridwiseBatchedGemmSoftmaxGemm_Xdl_CShuffle<
using GridwiseGemm = GridwiseBatchedGemmMultipleDSoftmaxGemm_Xdl_CShuffle<
ADataType, // TODO: distinguish A/B datatype
GemmAccDataType,
CShuffleDataType,
CDataType,
D0sDataType,
AElementwiseOperation,
BElementwiseOperation,
AccElementwiseOperation,
C0DEElementwiseOperation,
B1ElementwiseOperation,
CElementwiseOperation,
C1DEElementwiseOperation,
InMemoryDataOperationEnum::Set,
AGridDesc_AK0_M_AK1,
BGridDesc_BK0_N_BK1,
B1GridDesc_BK0_N_BK1,
CGridDesc_M_N,
C1GridDesc_M_N,
D0sGridDesc_M_N,
NumGemmKPrefetchStage,
BlockSize,
MPerBlock,
......@@ -395,8 +447,8 @@ struct DeviceBatchedGemmSoftmaxGemmPermute_Xdl_CShuffle
const BDataType* p_b_grid,
const B1DataType* p_b1_grid,
CDataType* p_c_grid,
const std::array<void*, NumAcc0Bias> p_acc0_biases,
const std::array<void*, NumAcc1Bias> p_acc1_biases,
const std::array<void*, NumD0Tensor> p_acc0_biases,
const std::array<void*, NumD1Tensor> p_acc1_biases,
const std::vector<index_t>& a_gs_ms_ks_lengths,
const std::vector<index_t>& a_gs_ms_ks_strides,
const std::vector<index_t>& b_gs_ns_ks_lengths,
......@@ -405,44 +457,48 @@ struct DeviceBatchedGemmSoftmaxGemmPermute_Xdl_CShuffle
const std::vector<index_t>& b1_gs_gemm1ns_gemm1ks_strides, // b1_gs_os_ns_strides
const std::vector<index_t>& c_gs_ms_gemm1ns_lengths, // c_gs_ms_os_lengths
const std::vector<index_t>& c_gs_ms_gemm1ns_strides, // c_gs_ms_os_strides
const std::array<std::vector<ck::index_t>, NumAcc0Bias> acc0_biases_gs_ms_ns_lengths,
const std::array<std::vector<ck::index_t>, NumAcc0Bias> acc0_biases_gs_ms_ns_strides,
const std::array<std::vector<ck::index_t>, NumAcc1Bias>
const std::array<std::vector<ck::index_t>, NumD0Tensor>& acc0_biases_gs_ms_ns_lengths,
const std::array<std::vector<ck::index_t>, NumD0Tensor>& acc0_biases_gs_ms_ns_strides,
const std::array<std::vector<ck::index_t>, NumD1Tensor>&
acc1_biases_gs_ms_gemm1ns_lengths, // acc1_biases_gs_ms_os_lengths
const std::array<std::vector<ck::index_t>, NumAcc1Bias>
const std::array<std::vector<ck::index_t>, NumD1Tensor>&
acc1_biases_gs_ms_gemm1ns_strides, // acc1_biases_gs_ms_os_strides
AElementwiseOperation a_element_op,
BElementwiseOperation b_element_op,
AccElementwiseOperation acc_element_op,
C0DEElementwiseOperation c0de_element_op,
B1ElementwiseOperation b1_element_op,
CElementwiseOperation c_element_op)
C1DEElementwiseOperation c1de_element_op)
: p_a_grid_{p_a_grid},
p_b_grid_{p_b_grid},
p_b1_grid_{p_b1_grid},
p_c_grid_{p_c_grid},
p_d0s_grid_{},
a_grid_desc_ak0_m_ak1_{
DeviceOp::MakeAGridDescriptor_AK0_M_AK1(a_gs_ms_ks_lengths, a_gs_ms_ks_strides)},
b_grid_desc_bk0_n_bk1_{
DeviceOp::MakeBGridDescriptor_BK0_N_BK1(b_gs_ns_ks_lengths, b_gs_ns_ks_strides)},
b1_grid_desc_bk0_n_bk1_{DeviceOp::MakeB1GridDescriptor_BK0_N_BK1(
b1_gs_gemm1ns_gemm1ks_lengths, b1_gs_gemm1ns_gemm1ks_strides)},
c_grid_desc_m_n_{Transform::MakeCGridDescriptor_M_N(c_gs_ms_gemm1ns_lengths,
c_gs_ms_gemm1ns_strides)},
c1_grid_desc_m_n_{Transform::MakeCGridDescriptor_M_N(c_gs_ms_gemm1ns_lengths,
c_gs_ms_gemm1ns_strides)},
a_grid_desc_g_m_k_{
Transform::MakeAGridDescriptor_G_M_K(a_gs_ms_ks_lengths, a_gs_ms_ks_strides)},
b_grid_desc_g_n_k_{
Transform::MakeB0GridDescriptor_G_N_K(b_gs_ns_ks_lengths, b_gs_ns_ks_strides)},
b1_grid_desc_g_n_k_{Transform::MakeB1GridDescriptor_G_N_K(
b1_gs_gemm1ns_gemm1ks_lengths, b1_gs_gemm1ns_gemm1ks_strides)},
c_grid_desc_g_m_n_{Transform::MakeCGridDescriptor_G_M_N(c_gs_ms_gemm1ns_lengths,
c_gs_ms_gemm1ns_strides)},
c_grid_desc_mblock_mperblock_nblock_nperblock_{},
block_2_ctile_map_{GridwiseGemm::MakeDefaultBlock2CTileMap(c_grid_desc_m_n_)},
c1_grid_desc_g_m_n_{Transform::MakeCGridDescriptor_G_M_N(c_gs_ms_gemm1ns_lengths,
c_gs_ms_gemm1ns_strides)},
d0s_grid_desc_g_m_n_{DeviceOp::MakeD0sGridDescriptor_G_M_N(
acc0_biases_gs_ms_ns_lengths, acc0_biases_gs_ms_ns_strides)},
c1_grid_desc_mblock_mperblock_nblock_nperblock_{},
d0s_grid_desc_m0_n0_m1_n1_m2_n2_m3_n3_n4_n5_{},
block_2_ctile_map_{GridwiseGemm::MakeDefaultBlock2CTileMap(c1_grid_desc_m_n_)},
a_element_op_{a_element_op},
b_element_op_{b_element_op},
acc_element_op_{acc_element_op},
c0de_element_op_{c0de_element_op},
b1_element_op_{b1_element_op},
c_element_op_{c_element_op},
c1de_element_op_{c1de_element_op},
c0_matrix_mask_{b_grid_desc_g_n_k_.GetLength(I1)},
raw_lengths_mz_nz_kz_gemm1nz_{a_gs_ms_ks_lengths[NumDimG + NumDimM - 1],
b_gs_ns_ks_lengths[NumDimG + NumDimN - 1],
......@@ -456,27 +512,39 @@ struct DeviceBatchedGemmSoftmaxGemmPermute_Xdl_CShuffle
b1_gs_gemm1ns_gemm1ks_strides[NumDimG + NumDimO + NumDimN - 1]},
c_mz_gemm1nz_strides_{c_gs_ms_gemm1ns_strides[NumDimG + NumDimM - 1],
c_gs_ms_gemm1ns_strides[NumDimG + NumDimM + NumDimO - 1]},
batch_count_{c_grid_desc_g_m_n_.GetLength(I0)},
compute_base_ptr_of_batch_{
a_grid_desc_g_m_k_, b_grid_desc_g_n_k_, b1_grid_desc_g_n_k_, c_grid_desc_g_m_n_}
batch_count_{c1_grid_desc_g_m_n_.GetLength(I0)},
compute_base_ptr_of_batch_{a_grid_desc_g_m_k_,
b_grid_desc_g_n_k_,
b1_grid_desc_g_n_k_,
c1_grid_desc_g_m_n_,
d0s_grid_desc_g_m_n_}
{
// TODO ANT: implement bias addition
ignore = p_acc0_biases;
ignore = p_acc1_biases;
ignore = acc0_biases_gs_ms_ns_lengths;
ignore = acc0_biases_gs_ms_ns_strides;
ignore = acc1_biases_gs_ms_gemm1ns_lengths;
ignore = acc1_biases_gs_ms_gemm1ns_strides;
static_for<0, NumD0Tensor, 1>{}([&](auto i) {
using D0DataType = remove_cvref_t<tuple_element_t<i.value, D0sDataType>>;
// D0 pointer
p_d0s_grid_(i) = static_cast<const D0DataType*>(p_acc0_biases[i]);
});
if(GridwiseGemm::CheckValidity(a_grid_desc_ak0_m_ak1_,
b_grid_desc_bk0_n_bk1_,
b1_grid_desc_bk0_n_bk1_,
c_grid_desc_m_n_,
c1_grid_desc_m_n_,
block_2_ctile_map_))
{
c_grid_desc_mblock_mperblock_nblock_nperblock_ =
GridwiseGemm::MakeCGridDescriptor_MBlock_MPerBlock_NBlock_NPerBlock(
c_grid_desc_m_n_);
c1_grid_desc_mblock_mperblock_nblock_nperblock_ =
GridwiseGemm::MakeC1GridDescriptor_MBlock_MPerBlock_NBlock_NPerBlock(
c1_grid_desc_m_n_);
D0sGridDesc_M_N d0s_grid_desc_m_n{DeviceOp::MakeD0sGridDescriptor_M_N(
acc0_biases_gs_ms_ns_lengths, acc0_biases_gs_ms_ns_strides)};
d0s_grid_desc_m0_n0_m1_n1_m2_n2_m3_n3_n4_n5_ =
GridwiseGemm::MakeD0sGridDescriptor_M0_N0_M1_N1_M2_N2_M3_N3_N4_N5(
d0s_grid_desc_m_n);
}
}
......@@ -491,9 +559,9 @@ struct DeviceBatchedGemmSoftmaxGemmPermute_Xdl_CShuffle
std::cout << "b1_grid_desc_g_n_k_: " << b1_grid_desc_g_n_k_.GetLength(I0) << ", "
<< b1_grid_desc_g_n_k_.GetLength(I1) << ", "
<< b1_grid_desc_g_n_k_.GetLength(I2) << '\n';
std::cout << "c_grid_desc_g_m_n_: " << c_grid_desc_g_m_n_.GetLength(I0) << ", "
<< c_grid_desc_g_m_n_.GetLength(I1) << ", "
<< c_grid_desc_g_m_n_.GetLength(I2) << '\n';
std::cout << "c1_grid_desc_g_m_n_: " << c1_grid_desc_g_m_n_.GetLength(I0) << ", "
<< c1_grid_desc_g_m_n_.GetLength(I1) << ", "
<< c1_grid_desc_g_m_n_.GetLength(I2) << '\n';
}
// pointers
......@@ -501,18 +569,23 @@ struct DeviceBatchedGemmSoftmaxGemmPermute_Xdl_CShuffle
const BDataType* p_b_grid_;
const B1DataType* p_b1_grid_;
CDataType* p_c_grid_;
typename GridwiseGemm::D0sGridPointer p_d0s_grid_;
// tensor descriptor
AGridDesc_AK0_M_AK1 a_grid_desc_ak0_m_ak1_;
BGridDesc_BK0_N_BK1 b_grid_desc_bk0_n_bk1_;
B1GridDesc_BK0_N_BK1 b1_grid_desc_bk0_n_bk1_;
CGridDesc_M_N c_grid_desc_m_n_;
C1GridDesc_M_N c1_grid_desc_m_n_;
AGridDesc_G_M_K a_grid_desc_g_m_k_;
BGridDesc_G_N_K b_grid_desc_g_n_k_;
B1GridDesc_G_N_K b1_grid_desc_g_n_k_;
CGridDesc_G_M_N c_grid_desc_g_m_n_;
typename GridwiseGemm::CGridDescriptor_MBlock_MPerBlock_NBlock_NPerBlock
c_grid_desc_mblock_mperblock_nblock_nperblock_;
C1GridDesc_G_M_N c1_grid_desc_g_m_n_;
D0sGridDesc_G_M_N d0s_grid_desc_g_m_n_;
typename GridwiseGemm::C1GridDescriptor_MBlock_MPerBlock_NBlock_NPerBlock
c1_grid_desc_mblock_mperblock_nblock_nperblock_;
typename GridwiseGemm::D0sGridDescriptor_M0_N0_M1_N1_M2_N2_M3_N3_N4_N5
d0s_grid_desc_m0_n0_m1_n1_m2_n2_m3_n3_n4_n5_;
// block-to-c-tile map
typename GridwiseGemm::DefaultBlock2CTileMap block_2_ctile_map_;
......@@ -520,9 +593,9 @@ struct DeviceBatchedGemmSoftmaxGemmPermute_Xdl_CShuffle
// element-wise op
AElementwiseOperation a_element_op_;
BElementwiseOperation b_element_op_;
AccElementwiseOperation acc_element_op_;
C0DEElementwiseOperation c0de_element_op_;
B1ElementwiseOperation b1_element_op_;
CElementwiseOperation c_element_op_;
C1DEElementwiseOperation c1de_element_op_;
// check C0 masking and padding
C0MatrixMask c0_matrix_mask_;
......@@ -551,7 +624,7 @@ struct DeviceBatchedGemmSoftmaxGemmPermute_Xdl_CShuffle
}
const index_t grid_size =
arg.block_2_ctile_map_.CalculateGridSize(arg.c_grid_desc_m_n_) * arg.batch_count_;
arg.block_2_ctile_map_.CalculateGridSize(arg.c1_grid_desc_m_n_) * arg.batch_count_;
// Gemm0_K
const auto K =
......@@ -564,15 +637,17 @@ struct DeviceBatchedGemmSoftmaxGemmPermute_Xdl_CShuffle
GridwiseGemm,
ADataType, // TODO: distiguish A/B datatype
CDataType,
typename GridwiseGemm::D0sGridPointer,
AElementwiseOperation,
BElementwiseOperation,
AccElementwiseOperation,
C0DEElementwiseOperation,
B1ElementwiseOperation,
CElementwiseOperation,
C1DEElementwiseOperation,
DeviceOp::AGridDesc_AK0_M_AK1,
DeviceOp::BGridDesc_BK0_N_BK1,
DeviceOp::B1GridDesc_BK0_N_BK1,
typename GridwiseGemm::CGridDescriptor_MBlock_MPerBlock_NBlock_NPerBlock,
typename GridwiseGemm::C1GridDescriptor_MBlock_MPerBlock_NBlock_NPerBlock,
typename GridwiseGemm::D0sGridDescriptor_M0_N0_M1_N1_M2_N2_M3_N3_N4_N5,
typename GridwiseGemm::DefaultBlock2CTileMap,
ComputeBasePtrOfStridedBatch,
C0MatrixMask,
......@@ -587,15 +662,17 @@ struct DeviceBatchedGemmSoftmaxGemmPermute_Xdl_CShuffle
arg.p_b_grid_,
arg.p_b1_grid_,
arg.p_c_grid_,
arg.p_d0s_grid_,
arg.a_element_op_,
arg.b_element_op_,
arg.acc_element_op_,
arg.c0de_element_op_,
arg.b1_element_op_,
arg.c_element_op_,
arg.c1de_element_op_,
arg.a_grid_desc_ak0_m_ak1_,
arg.b_grid_desc_bk0_n_bk1_,
arg.b1_grid_desc_bk0_n_bk1_,
arg.c_grid_desc_mblock_mperblock_nblock_nperblock_,
arg.c1_grid_desc_mblock_mperblock_nblock_nperblock_,
arg.d0s_grid_desc_m0_n0_m1_n1_m2_n2_m3_n3_n4_n5_,
arg.block_2_ctile_map_,
arg.batch_count_,
arg.compute_base_ptr_of_batch_,
......@@ -644,9 +721,9 @@ struct DeviceBatchedGemmSoftmaxGemmPermute_Xdl_CShuffle
// TODO ANT: Check if tensor specialization & strides mismatch
// Check if C permute dimension matches GEMM + GEMM shape
const index_t c_g = arg.c_grid_desc_g_m_n_.GetLength(I0); // unpadded
const index_t c_m = arg.c_grid_desc_m_n_.GetLength(I0);
const index_t c_gemm1n = arg.c_grid_desc_m_n_.GetLength(I1);
const index_t c_g = arg.c1_grid_desc_g_m_n_.GetLength(I0); // unpadded
const index_t c_m = arg.c1_grid_desc_m_n_.GetLength(I0);
const index_t c_gemm1n = arg.c1_grid_desc_m_n_.GetLength(I1);
const index_t a_m = arg.a_grid_desc_ak0_m_ak1_.GetLength(I1);
const index_t b1_gemm1n = arg.b1_grid_desc_bk0_n_bk1_.GetLength(I1);
......@@ -696,7 +773,7 @@ struct DeviceBatchedGemmSoftmaxGemmPermute_Xdl_CShuffle
return GridwiseGemm::CheckValidity(arg.a_grid_desc_ak0_m_ak1_,
arg.b_grid_desc_bk0_n_bk1_,
arg.b1_grid_desc_bk0_n_bk1_,
arg.c_grid_desc_m_n_,
arg.c1_grid_desc_m_n_,
arg.block_2_ctile_map_);
}
......@@ -711,8 +788,8 @@ struct DeviceBatchedGemmSoftmaxGemmPermute_Xdl_CShuffle
const BDataType* p_b,
const B1DataType* p_b1,
CDataType* p_c,
const std::array<void*, NumAcc0Bias> p_acc0_biases,
const std::array<void*, NumAcc1Bias> p_acc1_biases,
const std::array<void*, NumD0Tensor> p_acc0_biases,
const std::array<void*, NumD1Tensor> p_acc1_biases,
const std::vector<index_t>& a_gs_ms_ks_lengths,
const std::vector<index_t>& a_gs_ms_ks_strides,
const std::vector<index_t>& b_gs_ns_ks_lengths,
......@@ -721,17 +798,17 @@ struct DeviceBatchedGemmSoftmaxGemmPermute_Xdl_CShuffle
const std::vector<index_t>& b1_gs_gemm1ns_gemm1ks_strides, // b1_gs_os_ns_strides
const std::vector<index_t>& c_gs_ms_gemm1ns_lengths, // c_gs_ms_os_lengths
const std::vector<index_t>& c_gs_ms_gemm1ns_strides, // c_gs_ms_os_strides
const std::array<std::vector<ck::index_t>, NumAcc0Bias> acc0_biases_gs_ms_ns_lengths,
const std::array<std::vector<ck::index_t>, NumAcc0Bias> acc0_biases_gs_ms_ns_strides,
const std::array<std::vector<ck::index_t>, NumAcc1Bias>
const std::array<std::vector<ck::index_t>, NumD0Tensor> acc0_biases_gs_ms_ns_lengths,
const std::array<std::vector<ck::index_t>, NumD0Tensor> acc0_biases_gs_ms_ns_strides,
const std::array<std::vector<ck::index_t>, NumD1Tensor>
acc1_biases_gs_ms_gemm1ns_lengths, // acc1_biases_gs_ms_os_lengths
const std::array<std::vector<ck::index_t>, NumAcc1Bias>
const std::array<std::vector<ck::index_t>, NumD1Tensor>
acc1_biases_gs_ms_gemm1ns_strides, // acc1_biases_gs_ms_os_strides
AElementwiseOperation a_element_op,
BElementwiseOperation b_element_op,
AccElementwiseOperation acc_element_op,
C0DEElementwiseOperation c0de_element_op,
B1ElementwiseOperation b1_element_op,
CElementwiseOperation c_element_op)
C1DEElementwiseOperation c1de_element_op)
{
return Argument{p_a,
p_b,
......@@ -753,9 +830,9 @@ struct DeviceBatchedGemmSoftmaxGemmPermute_Xdl_CShuffle
acc1_biases_gs_ms_gemm1ns_strides, // acc1_biases_gs_ms_os_strides
a_element_op,
b_element_op,
acc_element_op,
c0de_element_op,
b1_element_op,
c_element_op};
c1de_element_op};
}
static auto MakeInvoker() { return Invoker{}; }
......@@ -767,8 +844,8 @@ struct DeviceBatchedGemmSoftmaxGemmPermute_Xdl_CShuffle
const void* p_b,
const void* p_b1,
void* p_c,
const std::array<void*, NumAcc0Bias> p_acc0_biases,
const std::array<void*, NumAcc1Bias> p_acc1_biases,
const std::array<void*, NumD0Tensor> p_acc0_biases,
const std::array<void*, NumD1Tensor> p_acc1_biases,
const std::vector<index_t>& a_gs_ms_ks_lengths,
const std::vector<index_t>& a_gs_ms_ks_strides,
const std::vector<index_t>& b_gs_ns_ks_lengths,
......@@ -777,17 +854,17 @@ struct DeviceBatchedGemmSoftmaxGemmPermute_Xdl_CShuffle
const std::vector<index_t>& b1_gs_gemm1ns_gemm1ks_strides, // b1_gs_os_ns_strides
const std::vector<index_t>& c_gs_ms_gemm1ns_lengths, // c_gs_ms_os_lengths
const std::vector<index_t>& c_gs_ms_gemm1ns_strides, // c_gs_ms_os_strides
const std::array<std::vector<ck::index_t>, NumAcc0Bias> acc0_biases_gs_ms_ns_lengths,
const std::array<std::vector<ck::index_t>, NumAcc0Bias> acc0_biases_gs_ms_ns_strides,
const std::array<std::vector<ck::index_t>, NumAcc1Bias>
const std::array<std::vector<ck::index_t>, NumD0Tensor> acc0_biases_gs_ms_ns_lengths,
const std::array<std::vector<ck::index_t>, NumD0Tensor> acc0_biases_gs_ms_ns_strides,
const std::array<std::vector<ck::index_t>, NumD1Tensor>
acc1_biases_gs_ms_gemm1ns_lengths, // acc1_biases_gs_ms_os_lengths
const std::array<std::vector<ck::index_t>, NumAcc1Bias>
const std::array<std::vector<ck::index_t>, NumD1Tensor>
acc1_biases_gs_ms_gemm1ns_strides, // acc1_biases_gs_ms_os_strides
AElementwiseOperation a_element_op,
BElementwiseOperation b_element_op,
AccElementwiseOperation acc_element_op,
C0DEElementwiseOperation c0de_element_op,
B1ElementwiseOperation b1_element_op,
CElementwiseOperation c_element_op) override
C1DEElementwiseOperation c1de_element_op) override
{
return std::make_unique<Argument>(static_cast<const ADataType*>(p_a),
static_cast<const BDataType*>(p_b),
......@@ -809,9 +886,9 @@ struct DeviceBatchedGemmSoftmaxGemmPermute_Xdl_CShuffle
acc1_biases_gs_ms_gemm1ns_strides,
a_element_op,
b_element_op,
acc_element_op,
c0de_element_op,
b1_element_op,
c_element_op);
c1de_element_op);
}
// polymorphic
......
......@@ -8,7 +8,7 @@
#include "ck/utility/math.hpp"
#include "ck/utility/sequence.hpp"
#include "ck/tensor_operation/gpu/device/device_elementwise_base.hpp"
#include "ck/tensor_operation/gpu/device/device_elementwise.hpp"
#include "ck/tensor_operation/gpu/grid/gridwise_elementwise_2d.hpp"
#include "ck/tensor_description/tensor_descriptor_helper.hpp"
......@@ -26,10 +26,10 @@ template <typename InDataTypeTuple,
index_t NPerThread,
typename InScalarPerVectorSeq,
typename OutScalarPerVectorSeq>
struct DeviceElementwise : public DeviceElementwiseBase<InDataTypeTuple,
OutDataTypeTuple,
ElementwiseOperation,
NumDim_m + NumDim_n>
struct DeviceElementwise2dImpl : public DeviceElementwise<InDataTypeTuple,
OutDataTypeTuple,
ElementwiseOperation,
NumDim_m + NumDim_n>
{
static constexpr index_t NumDim = NumDim_m + NumDim_n;
......
......@@ -8,7 +8,7 @@
#include "ck/utility/math.hpp"
#include "ck/utility/sequence.hpp"
#include "ck/tensor_operation/gpu/device/device_elementwise_base.hpp"
#include "ck/tensor_operation/gpu/device/device_elementwise.hpp"
#include "ck/tensor_operation/gpu/grid/gridwise_elementwise_1d.hpp"
#include "ck/tensor_description/tensor_descriptor_helper.hpp"
......@@ -25,8 +25,8 @@ template <typename InDataTypeTuple,
index_t MPerThread,
typename InScalarPerVectorSeq,
typename OutScalarPerVectorSeq>
struct DeviceElementwise
: public DeviceElementwiseBase<InDataTypeTuple, OutDataTypeTuple, ElementwiseOperation, NumDim>
struct DeviceElementwiseImpl
: public DeviceElementwise<InDataTypeTuple, OutDataTypeTuple, ElementwiseOperation, NumDim>
{
static constexpr int NumInput = InDataTypeTuple::Size();
static constexpr int NumOutput = OutDataTypeTuple::Size();
......
......@@ -270,18 +270,18 @@ struct DeviceElementwiseNormalizationImpl
const std::vector<index_t> reduceDims,
XElementwiseOperation x_elementwise_op,
YElementwiseOperation y_elementwise_op,
AccDataType epsilon,
double epsilon,
const std::array<const void*, NumInput> in_dev_buffers,
const GammaDataType* p_gamma,
const BetaDataType* p_beta,
YDataType* p_y)
: epsilon_(epsilon),
p_gamma_(p_gamma),
: p_gamma_(p_gamma),
p_beta_(p_beta),
p_y_(p_y),
x_elementwise_op_(x_elementwise_op),
y_elementwise_op_(y_elementwise_op)
{
epsilon_ = static_cast<AccDataType>(epsilon);
Lengths_ = shuffle_tensor_dimensions<Rank, NumReduceDim>(lengths, reduceDims);
for(int i = 0; i < NumInput; i++)
......@@ -533,6 +533,11 @@ struct DeviceElementwiseNormalizationImpl
return (false);
}
if(p_arg_->x_lds_size_ >= 65536)
{
return (false);
}
return true;
};
......@@ -543,7 +548,7 @@ struct DeviceElementwiseNormalizationImpl
const std::vector<index_t> betaStrides,
const std::vector<index_t> yStrides,
const std::vector<index_t> reduceDims,
AccDataType epsilon,
double epsilon,
const std::array<const void*, NumInput> in_dev_buffers,
const void* p_gamma,
const void* p_beta,
......
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2022, Advanced Micro Devices, Inc. All rights reserved.
#pragma once
#include <iostream>
#include <sstream>
#include "ck/utility/common_header.hpp"
#include "ck/tensor_description/tensor_descriptor.hpp"
#include "ck/tensor_description/tensor_descriptor_helper.hpp"
#include "ck/tensor_operation/gpu/device/tensor_layout.hpp"
#include "ck/tensor_operation/gpu/device/device_gemm_multiple_d.hpp"
#include "ck/tensor_operation/gpu/device/gemm_specialization.hpp"
#include "ck/tensor_operation/gpu/grid/gridwise_gemm_dl_multiple_d.hpp"
#include "ck/host_utility/device_prop.hpp"
#include "ck/host_utility/kernel_launch.hpp"
namespace ck {
template <typename GridwiseGemm,
typename ABDataType,
typename DsPointer,
typename EDataType,
typename AElementwiseOperation,
typename BElementwiseOperation,
typename CDEElementwiseOperation,
typename AGridDesc_K0_M0_M1_K1,
typename BGridDesc_K0_N0_N1_K1,
typename DsGridDesc_M0_M10_M11_N0_N10_N11,
typename CGridDesc_M0_M10_M11_N0_N10_N11,
typename Block2CTileMap,
bool HasMainKBlockLoop,
bool HasDoubleTailKBlockLoop>
__global__ void
#if CK_USE_LAUNCH_BOUNDS
__launch_bounds__(CK_MAX_THREAD_PER_BLOCK, CK_MIN_BLOCK_PER_CU)
#endif
kernel_gemm_dl_multiple_d(
const ABDataType* __restrict__ p_a_grid,
const ABDataType* __restrict__ p_b_grid,
DsPointer p_ds_grid,
EDataType* __restrict__ p_e_grid,
const AElementwiseOperation a_element_op,
const BElementwiseOperation b_element_op,
const CDEElementwiseOperation cde_element_op,
const AGridDesc_K0_M0_M1_K1 a_grid_desc_k0_m0_m1_k1,
const BGridDesc_K0_N0_N1_K1 b_grid_desc_k0_n0_n1_k1,
const DsGridDesc_M0_M10_M11_N0_N10_N11 ds_grid_desc_m0_m10_m11_n0_n10_n11,
const CGridDesc_M0_M10_M11_N0_N10_N11 e_grid_desc_m0_m10_m11_n0_n10_n11,
const Block2CTileMap block_2_ctile_map)
{
#if(!defined(__HIP_DEVICE_COMPILE__) || defined(__gfx906__) || defined(__gfx908__) || \
defined(__gfx1030__))
constexpr index_t shared_block_size =
GridwiseGemm::GetSharedMemoryNumberOfByte() / sizeof(ABDataType);
__shared__ ABDataType p_shared[shared_block_size];
GridwiseGemm::Run(p_a_grid,
p_b_grid,
p_ds_grid,
p_e_grid,
p_shared,
a_element_op,
b_element_op,
cde_element_op,
a_grid_desc_k0_m0_m1_k1,
b_grid_desc_k0_n0_n1_k1,
ds_grid_desc_m0_m10_m11_n0_n10_n11,
e_grid_desc_m0_m10_m11_n0_n10_n11,
block_2_ctile_map,
integral_constant<bool, HasMainKBlockLoop>{},
integral_constant<bool, HasDoubleTailKBlockLoop>{});
#else
ignore = p_a_grid;
ignore = p_b_grid;
ignore = p_ds_grid;
ignore = p_e_grid;
ignore = a_element_op;
ignore = b_element_op;
ignore = cde_element_op;
ignore = a_grid_desc_k0_m0_m1_k1;
ignore = b_grid_desc_k0_n0_n1_k1;
ignore = ds_grid_desc_m0_m10_m11_n0_n10_n11;
ignore = e_grid_desc_m0_m10_m11_n0_n10_n11;
ignore = block_2_ctile_map;
#endif
}
} // namespace ck
namespace ck {
namespace tensor_operation {
namespace device {
template <typename ALayout,
typename BLayout,
typename DsLayout,
typename ELayout,
typename ADataType,
typename BDataType,
typename AccDataType,
typename DsDataType,
typename EDataType,
typename AElementwiseOperation,
typename BElementwiseOperation,
typename CDEElementwiseOperation,
GemmSpecialization GemmSpec,
index_t BlockSize,
index_t MPerBlock,
index_t NPerBlock,
index_t K0PerBlock,
index_t K1,
index_t M1PerThread,
index_t N1PerThread,
index_t KPerThread,
typename M1N1ThreadClusterM1Xs,
typename M1N1ThreadClusterN1Xs,
typename ABlockTransferThreadSliceLengths_K0_M0_M1_K1,
typename ABlockTransferThreadClusterLengths_K0_M0_M1_K1,
typename ABlockTransferThreadClusterArrangeOrder,
typename ABlockTransferSrcAccessOrder,
typename ABlockTransferSrcVectorTensorLengths_K0_M0_M1_K1,
typename ABlockTransferSrcVectorTensorContiguousDimOrder,
typename ABlockTransferDstVectorTensorLengths_K0_M0_M1_K1,
typename BBlockTransferThreadSliceLengths_K0_N0_N1_K1,
typename BBlockTransferThreadClusterLengths_K0_N0_N1_K1,
typename BBlockTransferThreadClusterArrangeOrder,
typename BBlockTransferSrcAccessOrder,
typename BBlockTransferSrcVectorTensorLengths_K0_N0_N1_K1,
typename BBlockTransferSrcVectorTensorContiguousDimOrder,
typename BBlockTransferDstVectorTensorLengths_K0_N0_N1_K1,
typename CThreadTransferSrcDstAccessOrder,
index_t CThreadTransferSrcDstVectorDim,
index_t CThreadTransferDstScalarPerVector,
enable_if_t<
is_same_v<AElementwiseOperation, ck::tensor_operation::element_wise::PassThrough> &&
is_same_v<BElementwiseOperation, ck::tensor_operation::element_wise::PassThrough>,
bool> = false>
struct DeviceGemmMultipleD_Dl : public DeviceGemmMultipleD<ALayout,
BLayout,
DsLayout,
ELayout,
ADataType,
BDataType,
DsDataType,
EDataType,
AElementwiseOperation,
BElementwiseOperation,
CDEElementwiseOperation>
{
using DeviceOp = DeviceGemmMultipleD_Dl;
static constexpr index_t NumDTensor = DsDataType::Size();
static constexpr auto I0 = Number<0>{};
static constexpr auto I1 = Number<1>{};
static constexpr auto I2 = Number<2>{};
static constexpr auto I3 = Number<3>{};
static constexpr auto I4 = Number<4>{};
static constexpr auto I5 = Number<5>{};
static constexpr auto K1Number = Number<K1>{};
static auto MakeAGridDescriptor_K0_M_K1(index_t M, index_t K, index_t StrideA)
{
assert(K % K1 == 0);
const index_t K0 = K / K1;
const auto a_grid_desc_m_k = [&]() {
if constexpr(is_same<tensor_layout::gemm::RowMajor, ALayout>::value)
{
return make_naive_tensor_descriptor(make_tuple(M, K), make_tuple(StrideA, I1));
}
else if constexpr(is_same<tensor_layout::gemm::ColumnMajor, ALayout>::value)
{
return make_naive_tensor_descriptor(make_tuple(M, K), make_tuple(I1, StrideA));
}
}();
if constexpr(GemmSpec == GemmSpecialization::MNPadding)
{
const auto PadM = (MPerBlock - M % MPerBlock) % MPerBlock;
return transform_tensor_descriptor(
a_grid_desc_m_k,
make_tuple(make_unmerge_transform(make_tuple(K0, K1Number)),
make_right_pad_transform(M, PadM)),
make_tuple(Sequence<1>{}, Sequence<0>{}),
make_tuple(Sequence<0, 2>{}, Sequence<1>{}));
}
else
{
return transform_tensor_descriptor(
a_grid_desc_m_k,
make_tuple(make_unmerge_transform(make_tuple(K0, K1Number)),
make_pass_through_transform(M)),
make_tuple(Sequence<1>{}, Sequence<0>{}),
make_tuple(Sequence<0, 2>{}, Sequence<1>{}));
}
}
static auto MakeBGridDescriptor_K0_N_K1(index_t K, index_t N, index_t StrideB)
{
assert(K % K1 == 0);
const index_t K0 = K / K1;
const auto b_grid_desc_k_n = [&]() {
if constexpr(is_same<tensor_layout::gemm::RowMajor, BLayout>::value)
{
return make_naive_tensor_descriptor(make_tuple(K, N), make_tuple(StrideB, I1));
}
else if constexpr(is_same<tensor_layout::gemm::ColumnMajor, BLayout>::value)
{
return make_naive_tensor_descriptor(make_tuple(K, N), make_tuple(I1, StrideB));
}
}();
if constexpr(GemmSpec == GemmSpecialization::MNPadding)
{
const auto PadN = (NPerBlock - N % NPerBlock) % NPerBlock;
return transform_tensor_descriptor(
b_grid_desc_k_n,
make_tuple(make_unmerge_transform(make_tuple(K0, K1Number)),
make_right_pad_transform(N, PadN)),
make_tuple(Sequence<0>{}, Sequence<1>{}),
make_tuple(Sequence<0, 2>{}, Sequence<1>{}));
}
else
{
return transform_tensor_descriptor(
b_grid_desc_k_n,
make_tuple(make_unmerge_transform(make_tuple(K0, K1Number)),
make_pass_through_transform(N)),
make_tuple(Sequence<0>{}, Sequence<1>{}),
make_tuple(Sequence<0, 2>{}, Sequence<1>{}));
}
}
template <typename ELay>
static auto MakeEGridDescriptor_M_N(index_t M, index_t N, index_t StrideE)
{
const auto c_grid_desc_m_n = [&]() {
if constexpr(is_same<tensor_layout::gemm::RowMajor, ELay>::value)
{
return make_naive_tensor_descriptor(make_tuple(M, N), make_tuple(StrideE, I1));
}
else if constexpr(is_same<tensor_layout::gemm::ColumnMajor, ELay>::value)
{
return make_naive_tensor_descriptor(make_tuple(M, N), make_tuple(I1, StrideE));
}
}();
if constexpr(GemmSpec == GemmSpecialization::MNPadding)
{
const auto PadM = (MPerBlock - M % MPerBlock) % MPerBlock;
const auto PadN = (NPerBlock - N % NPerBlock) % NPerBlock;
return transform_tensor_descriptor(
c_grid_desc_m_n,
make_tuple(make_right_pad_transform(M, PadM), make_right_pad_transform(N, PadN)),
make_tuple(Sequence<0>{}, Sequence<1>{}),
make_tuple(Sequence<0>{}, Sequence<1>{}));
}
else
{
return transform_tensor_descriptor(
c_grid_desc_m_n,
make_tuple(make_pass_through_transform(M), make_pass_through_transform(N)),
make_tuple(Sequence<0>{}, Sequence<1>{}),
make_tuple(Sequence<0>{}, Sequence<1>{}));
}
}
static auto MakeDsGridDescriptor_M_N(const std::array<index_t, NumDTensor>& MRaws,
const std::array<index_t, NumDTensor>& NRaws,
const std::array<index_t, NumDTensor>& DsStride)
{
return generate_tuple(
[&](auto i) {
using DLayout = remove_cvref_t<tuple_element_t<i.value, DsLayout>>;
return DeviceOp::MakeEGridDescriptor_M_N<DLayout>(MRaws[i], NRaws[i], DsStride[i]);
},
Number<NumDTensor>{});
}
using AGridDesc_K0_M_K1 = decltype(MakeAGridDescriptor_K0_M_K1(1, 1, 1));
using BGridDesc_K0_N_K1 = decltype(MakeBGridDescriptor_K0_N_K1(1, 1, 1));
using DsGridDesc_M_N = decltype(MakeDsGridDescriptor_M_N({}, {}, {}));
using EGridDesc_M_N = decltype(MakeEGridDescriptor_M_N<ELayout>(1, 1, 1));
// GridwiseGemm
using GridwiseGemm =
GridwiseGemmDlMultipleD_km_kn_mn<BlockSize,
ADataType,
AccDataType,
DsDataType,
EDataType,
AElementwiseOperation,
BElementwiseOperation,
CDEElementwiseOperation,
InMemoryDataOperationEnum::Set,
AGridDesc_K0_M_K1,
BGridDesc_K0_N_K1,
EGridDesc_M_N,
MPerBlock,
NPerBlock,
K0PerBlock,
K1,
M1PerThread,
N1PerThread,
KPerThread,
M1N1ThreadClusterM1Xs,
M1N1ThreadClusterN1Xs,
ABlockTransferThreadSliceLengths_K0_M0_M1_K1,
ABlockTransferThreadClusterLengths_K0_M0_M1_K1,
ABlockTransferThreadClusterArrangeOrder,
ABlockTransferSrcAccessOrder,
ABlockTransferSrcVectorTensorLengths_K0_M0_M1_K1,
ABlockTransferSrcVectorTensorContiguousDimOrder,
ABlockTransferDstVectorTensorLengths_K0_M0_M1_K1,
BBlockTransferThreadSliceLengths_K0_N0_N1_K1,
BBlockTransferThreadClusterLengths_K0_N0_N1_K1,
BBlockTransferThreadClusterArrangeOrder,
BBlockTransferSrcAccessOrder,
BBlockTransferSrcVectorTensorLengths_K0_N0_N1_K1,
BBlockTransferSrcVectorTensorContiguousDimOrder,
BBlockTransferDstVectorTensorLengths_K0_N0_N1_K1,
CThreadTransferSrcDstAccessOrder,
CThreadTransferSrcDstVectorDim,
CThreadTransferDstScalarPerVector>;
using AGridDesc_K0_M0_M1_K1 =
decltype(GridwiseGemm::MakeAGridDescriptor_K0_M0_M1_K1(AGridDesc_K0_M_K1{}));
using BGridDesc_K0_N0_N1_K1 =
decltype(GridwiseGemm::MakeBGridDescriptor_K0_N0_N1_K1(BGridDesc_K0_N_K1{}));
using DsGridDesc_M0_M10_M11_N0_N10_N11 =
decltype(GridwiseGemm::MakeDsGridDescriptor_M0_M10_M11_N0_N10_N11(DsGridDesc_M_N{}));
using EGridDesc_M0_M10_M11_N0_N10_N11 =
decltype(GridwiseGemm::MakeCGridDescriptor_M0_M10_M11_N0_N10_N11(EGridDesc_M_N{}));
using DefaultBlock2CTileMap =
decltype(GridwiseGemm::MakeDefaultBlock2CTileMap(EGridDesc_M_N{}));
// Argument
struct Argument : public BaseArgument
{
Argument(const void* p_a_grid,
const void* p_b_grid,
std::array<const void*, NumDTensor> p_ds_grid,
void* p_e_grid,
index_t M,
index_t N,
index_t K,
index_t StrideA,
index_t StrideB,
std::array<index_t, NumDTensor> StrideDs,
index_t StrideE,
AElementwiseOperation a_element_op,
BElementwiseOperation b_element_op,
CDEElementwiseOperation cde_element_op)
: p_a_grid_{static_cast<const ADataType*>(p_a_grid)},
p_b_grid_{static_cast<const BDataType*>(p_b_grid)},
p_ds_grid_{},
p_e_grid_{static_cast<EDataType*>(p_e_grid)},
a_grid_desc_k0_m0_m1_k1_{},
b_grid_desc_k0_n0_n1_k1_{},
e_grid_desc_m0_m10_m11_n0_n10_n11_{},
block_2_ctile_map_{},
a_element_op_{a_element_op},
b_element_op_{b_element_op},
cde_element_op_{cde_element_op}
{
a_grid_desc_k0_m_k1_ =
DeviceGemmMultipleD_Dl::MakeAGridDescriptor_K0_M_K1(M, K, StrideA);
b_grid_desc_k0_n_k1_ =
DeviceGemmMultipleD_Dl::MakeBGridDescriptor_K0_N_K1(K, N, StrideB);
static_for<0, NumDTensor, 1>{}([&](auto i) {
using DLayout = remove_cvref_t<tuple_element_t<i.value, DsLayout>>;
using DDataType = remove_cvref_t<tuple_element_t<i.value, DsDataType>>;
// D pointer
p_ds_grid_(i) = static_cast<const DDataType*>(p_ds_grid[i]);
// D desc
ds_grid_desc_m_n_(i) =
DeviceOp::MakeEGridDescriptor_M_N<DLayout>(M, N, StrideDs[i]);
});
e_grid_desc_m_n_ =
DeviceGemmMultipleD_Dl::MakeEGridDescriptor_M_N<ELayout>(M, N, StrideE);
if(GridwiseGemm::CheckValidity(
a_grid_desc_k0_m_k1_, b_grid_desc_k0_n_k1_, e_grid_desc_m_n_))
{
a_grid_desc_k0_m0_m1_k1_ =
GridwiseGemm::MakeAGridDescriptor_K0_M0_M1_K1(a_grid_desc_k0_m_k1_);
b_grid_desc_k0_n0_n1_k1_ =
GridwiseGemm::MakeBGridDescriptor_K0_N0_N1_K1(b_grid_desc_k0_n_k1_);
ds_grid_desc_m0_m10_m11_n0_n10_n11_ =
GridwiseGemm::MakeDsGridDescriptor_M0_M10_M11_N0_N10_N11(ds_grid_desc_m_n_);
e_grid_desc_m0_m10_m11_n0_n10_n11_ =
GridwiseGemm::MakeCGridDescriptor_M0_M10_M11_N0_N10_N11(e_grid_desc_m_n_);
block_2_ctile_map_ = GridwiseGemm::MakeDefaultBlock2CTileMap(e_grid_desc_m_n_);
}
}
// private:
const ADataType* p_a_grid_;
const BDataType* p_b_grid_;
typename GridwiseGemm::DsGridPointer p_ds_grid_;
EDataType* p_e_grid_;
AGridDesc_K0_M_K1 a_grid_desc_k0_m_k1_;
BGridDesc_K0_N_K1 b_grid_desc_k0_n_k1_;
DsGridDesc_M_N ds_grid_desc_m_n_;
EGridDesc_M_N e_grid_desc_m_n_;
AGridDesc_K0_M0_M1_K1 a_grid_desc_k0_m0_m1_k1_;
BGridDesc_K0_N0_N1_K1 b_grid_desc_k0_n0_n1_k1_;
DsGridDesc_M0_M10_M11_N0_N10_N11 ds_grid_desc_m0_m10_m11_n0_n10_n11_;
EGridDesc_M0_M10_M11_N0_N10_N11 e_grid_desc_m0_m10_m11_n0_n10_n11_;
DefaultBlock2CTileMap block_2_ctile_map_;
// TODO: unused since gridwise_gemm_dl_v1r3 does NOT support prologue for the time being.
AElementwiseOperation a_element_op_;
BElementwiseOperation b_element_op_;
CDEElementwiseOperation cde_element_op_;
};
// Invoker
struct Invoker : public BaseInvoker
{
using Argument = DeviceGemmMultipleD_Dl::Argument;
float Run(const Argument& arg, const StreamConfig& stream_config = StreamConfig{})
{
{
std::cout << "arg.a_grid_desc_k0_m0_m1_k1_{"
<< arg.a_grid_desc_k0_m_k1_.GetLength(I0) << ", "
<< arg.a_grid_desc_k0_m_k1_.GetLength(I1) << ", "
<< arg.a_grid_desc_k0_m_k1_.GetLength(I2) << "}" << std::endl;
std::cout << "arg.b_grid_desc_k0_n0_n1_k1_{"
<< arg.b_grid_desc_k0_n_k1_.GetLength(I0) << ", "
<< arg.b_grid_desc_k0_n_k1_.GetLength(I1) << ", "
<< arg.b_grid_desc_k0_n_k1_.GetLength(I2) << "}" << std::endl;
std::cout << "arg.e_grid_desc_m_n_{ " << arg.e_grid_desc_m_n_.GetLength(I0) << ", "
<< arg.e_grid_desc_m_n_.GetLength(I1) << "}" << std::endl;
}
if(!GridwiseGemm::CheckValidity(
arg.a_grid_desc_k0_m_k1_, arg.b_grid_desc_k0_n_k1_, arg.e_grid_desc_m_n_))
{
throw std::runtime_error(
"wrong! GridwiseGemmDlMultipleD_km_kn_mn has invalid setting");
}
const index_t grid_size = GridwiseGemm::CalculateGridSize(
arg.e_grid_desc_m_n_.GetLength(I0), arg.e_grid_desc_m_n_.GetLength(I1));
auto launch_kernel = [&](auto has_main_k_block_loop,
auto has_double_tail_k_block_loop) {
constexpr bool has_main_loop = has_main_k_block_loop.value;
constexpr bool has_double_loop = has_double_tail_k_block_loop.value;
const auto kernel =
kernel_gemm_dl_multiple_d<GridwiseGemm,
ADataType,
typename GridwiseGemm::DsGridPointer,
EDataType,
AElementwiseOperation,
BElementwiseOperation,
CDEElementwiseOperation,
DeviceOp::AGridDesc_K0_M0_M1_K1,
DeviceOp::BGridDesc_K0_N0_N1_K1,
DeviceOp::DsGridDesc_M0_M10_M11_N0_N10_N11,
DeviceOp::EGridDesc_M0_M10_M11_N0_N10_N11,
DefaultBlock2CTileMap,
has_main_loop,
has_double_loop>;
return launch_and_time_kernel(stream_config,
kernel,
dim3(grid_size),
dim3(BlockSize),
0,
arg.p_a_grid_,
arg.p_b_grid_,
arg.p_ds_grid_,
arg.p_e_grid_,
arg.a_element_op_,
arg.b_element_op_,
arg.cde_element_op_,
arg.a_grid_desc_k0_m0_m1_k1_,
arg.b_grid_desc_k0_n0_n1_k1_,
arg.ds_grid_desc_m0_m10_m11_n0_n10_n11_,
arg.e_grid_desc_m0_m10_m11_n0_n10_n11_,
arg.block_2_ctile_map_);
};
const auto K0 = arg.a_grid_desc_k0_m0_m1_k1_.GetLength(I0);
const bool has_main_k_block_loop = GridwiseGemm::CalculateHasMainKBlockLoop(K0);
const bool has_double_tail_k_block_loop =
GridwiseGemm::CalculateHasDoubleTailKBlockLoop(K0);
if(has_main_k_block_loop && has_double_tail_k_block_loop)
{
return launch_kernel(integral_constant<bool, true>{},
integral_constant<bool, true>{});
}
else if(has_main_k_block_loop && !has_double_tail_k_block_loop)
{
return launch_kernel(integral_constant<bool, true>{},
integral_constant<bool, false>{});
}
else if(!has_main_k_block_loop && has_double_tail_k_block_loop)
{
return launch_kernel(integral_constant<bool, false>{},
integral_constant<bool, true>{});
}
else
{
return launch_kernel(integral_constant<bool, false>{},
integral_constant<bool, false>{});
}
}
// polymorphic
float Run(const BaseArgument* p_arg,
const StreamConfig& stream_config = StreamConfig{}) override
{
return Run(*dynamic_cast<const Argument*>(p_arg), stream_config);
}
};
static constexpr bool IsValidCompilationParameter()
{
// TODO: properly implement this check
return true;
}
static bool IsSupportedArgument(const Argument& arg)
{
if(ck::get_device_name() == "gfx906" || ck::get_device_name() == "gfx908" ||
ck::get_device_name() == "gfx1030")
{
return GridwiseGemm::CheckValidity(
arg.a_grid_desc_k0_m_k1_, arg.b_grid_desc_k0_n_k1_, arg.e_grid_desc_m_n_);
}
else
{
return false;
}
}
// polymorphic
bool IsSupportedArgument(const BaseArgument* p_arg) override
{
return IsSupportedArgument(*dynamic_cast<const Argument*>(p_arg));
}
static auto MakeArgument(const void* p_a,
const void* p_b,
std::array<const void*, NumDTensor> p_ds,
void* p_e,
index_t M,
index_t N,
index_t K,
index_t StrideA,
index_t StrideB,
std::array<ck::index_t, NumDTensor> StrideDs,
index_t StrideE,
AElementwiseOperation a_element_op,
BElementwiseOperation b_element_op,
CDEElementwiseOperation cde_element_op)
{
return Argument{p_a,
p_b,
p_ds,
p_e,
M,
N,
K,
StrideA,
StrideB,
StrideDs,
StrideE,
a_element_op,
b_element_op,
cde_element_op};
}
static auto MakeInvoker() { return Invoker{}; }
// polymorphic
std::unique_ptr<BaseArgument>
MakeArgumentPointer(const void* p_a,
const void* p_b,
std::array<const void*, NumDTensor> p_ds,
void* p_e,
index_t M,
index_t N,
index_t K,
index_t StrideA,
index_t StrideB,
std::array<ck::index_t, NumDTensor> StrideDs,
index_t StrideE,
AElementwiseOperation a_element_op,
BElementwiseOperation b_element_op,
CDEElementwiseOperation cde_element_op) override
{
return std::make_unique<Argument>(p_a,
p_b,
p_ds,
p_e,
M,
N,
K,
StrideA,
StrideB,
StrideDs,
StrideE,
a_element_op,
b_element_op,
cde_element_op);
}
// polymorphic
std::unique_ptr<BaseInvoker> MakeInvokerPointer() override
{
return std::make_unique<Invoker>(Invoker{});
}
// polymorphic
std::string GetTypeString() const override
{
auto str = std::stringstream();
// clang-format off
str << "DeviceGemmMultipleD_Dl"
<< "<"
<< BlockSize << ", "
<< MPerBlock << ", "
<< NPerBlock << ", "
<< K0PerBlock << ", "
<< K1 << ", "
<< M1PerThread << ", "
<< N1PerThread << ", "
<< KPerThread
<< ">";
// clang-format on
return str.str();
}
};
} // namespace device
} // namespace tensor_operation
} // namespace ck
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2022, Advanced Micro Devices, Inc. All rights reserved.
#pragma once
#include <iostream>
#include <sstream>
#include "ck/utility/common_header.hpp"
#include "ck/tensor_description/tensor_descriptor.hpp"
#include "ck/tensor_description/tensor_descriptor_helper.hpp"
#include "ck/tensor_operation/gpu/device/tensor_layout.hpp"
#include "ck/tensor_operation/gpu/device/device_gemm_multiple_d_layernorm.hpp"
#include "ck/tensor_operation/gpu/device/gemm_specialization.hpp"
#include "ck/tensor_operation/gpu/device/matrix_padder.hpp"
#include "ck/tensor_operation/gpu/grid/gemm_layernorm/gridwise_gemm_multiple_d_welford_first_half_xdl_cshuffle.hpp"
#include "ck/tensor_operation/gpu/grid/gemm_layernorm/gridwise_welford_second_half_layernorm2d.hpp"
#include "ck/host_utility/device_prop.hpp"
#include "ck/host_utility/kernel_launch.hpp"
namespace ck {
template <typename GridwiseGemmWelford,
typename ABDataType,
typename DsPointer,
typename EMeanVarDataType,
typename AElementwiseOperation,
typename BElementwiseOperation,
typename CDEElementwiseOperation,
typename AGridDesc_AK0_M_AK1,
typename BGridDesc_BK0_N_BK1,
typename DsGridDescriptor_MBlock_MPerBlock_NBlock_NPerBlock,
typename EGridDescriptor_MBlock_MPerBlock_NBlock_NPerBlock,
typename MeanVarGridDescriptor_MBlock_MPerBlock_NBlock,
typename CountGridDescriptor_MBlock_MPerBlock_NBlock,
typename Block2ETileMap,
bool HasMainKBlockLoop>
__global__ void
#if CK_USE_LAUNCH_BOUNDS
__launch_bounds__(CK_MAX_THREAD_PER_BLOCK, CK_MIN_BLOCK_PER_CU)
#endif
kernel_gemm_multiple_d_welford_first_half_xdl_cshuffle(
const ABDataType* __restrict__ p_a_grid,
const ABDataType* __restrict__ p_b_grid,
DsPointer p_ds_grid,
EMeanVarDataType* __restrict__ p_e_grid,
EMeanVarDataType* __restrict__ p_welford_mean_grid,
EMeanVarDataType* __restrict__ p_welford_var_grid,
int32_t* __restrict__ p_welford_count_grid,
const AElementwiseOperation a_element_op,
const BElementwiseOperation b_element_op,
const CDEElementwiseOperation cde_element_op,
const AGridDesc_AK0_M_AK1 a_grid_desc_ak0_m_ak1,
const BGridDesc_BK0_N_BK1 b_grid_desc_bk0_n_bk1,
const DsGridDescriptor_MBlock_MPerBlock_NBlock_NPerBlock
ds_grid_desc_mblock_mperblock_nblock_nperblock,
const EGridDescriptor_MBlock_MPerBlock_NBlock_NPerBlock
e_grid_desc_mblock_mperblock_nblock_nperblock,
const MeanVarGridDescriptor_MBlock_MPerBlock_NBlock
mean_var_grid_desc_mblock_mperblock_nblock,
const CountGridDescriptor_MBlock_MPerBlock_NBlock
count_grid_desc_mblock_mperblock_nblock,
const Block2ETileMap block_2_etile_map,
index_t NRaw)
{
#if(!defined(__HIP_DEVICE_COMPILE__) || defined(__gfx908__) || defined(__gfx90a__))
__shared__ char p_shared[GridwiseGemmWelford::GetSharedMemoryNumberOfByte()];
GridwiseGemmWelford::template Run<HasMainKBlockLoop>(
p_a_grid,
p_b_grid,
p_ds_grid,
p_e_grid,
p_welford_mean_grid,
p_welford_var_grid,
p_welford_count_grid,
p_shared,
a_element_op,
b_element_op,
cde_element_op,
a_grid_desc_ak0_m_ak1,
b_grid_desc_bk0_n_bk1,
ds_grid_desc_mblock_mperblock_nblock_nperblock,
e_grid_desc_mblock_mperblock_nblock_nperblock,
mean_var_grid_desc_mblock_mperblock_nblock,
count_grid_desc_mblock_mperblock_nblock,
block_2_etile_map,
NRaw);
#else
ignore = p_a_grid;
ignore = p_b_grid;
ignore = p_ds_grid;
ignore = p_e_grid;
ignore = p_welford_mean_grid;
ignore = p_welford_var_grid;
ignore = p_welford_count_grid;
ignore = a_element_op;
ignore = b_element_op;
ignore = cde_element_op;
ignore = a_grid_desc_ak0_m_ak1;
ignore = b_grid_desc_bk0_n_bk1;
ignore = ds_grid_desc_mblock_mperblock_nblock_nperblock;
ignore = e_grid_desc_mblock_mperblock_nblock_nperblock;
ignore = mean_var_grid_desc_mblock_mperblock_nblock;
ignore = count_grid_desc_mblock_mperblock_nblock;
ignore = block_2_etile_map;
ignore = NRaw;
#endif
}
template <typename GridwiseWelfordLayernorm,
typename EMeanVarDataType,
typename HDataType,
typename GammaDataType,
typename BetaDataType,
typename ComputeDataType,
typename EHGridDesc_M_N,
typename LayernormMeanVarGridDesc_M_NBlock,
typename LayernormCountGridDesc_M_NBlock,
typename GammaBetaGridDesc_N,
typename HElementwiseOperation>
__global__ void
#if CK_USE_LAUNCH_BOUNDS
__launch_bounds__(CK_MAX_THREAD_PER_BLOCK, CK_MIN_BLOCK_PER_CU)
#endif
kernel_welford_layernorm2d_second_half(
const EMeanVarDataType* __restrict__ p_e_grid,
const EMeanVarDataType* __restrict__ p_in_welford_mean_grid,
const EMeanVarDataType* __restrict__ p_in_welford_var_grid,
const int32_t* __restrict__ p_in_welford_count_grid,
const GammaDataType* __restrict__ p_gamma_grid,
const BetaDataType* __restrict__ p_beta_grid,
HDataType* __restrict__ p_h_grid,
const EHGridDesc_M_N e_grid_desc_m_n,
const EHGridDesc_M_N h_grid_desc_m_n,
const LayernormMeanVarGridDesc_M_NBlock mean_var_grid_desc_m_nblock,
const LayernormCountGridDesc_M_NBlock count_grid_desc_m_nblock,
const GammaBetaGridDesc_N gamma_grid_desc_n,
const GammaBetaGridDesc_N beta_grid_desc_n,
index_t numMeanVarCountBlockTileIteration_N,
index_t NBlockClusterLength,
ComputeDataType epsilon,
HElementwiseOperation h_element_op)
{
GridwiseWelfordLayernorm::Run(p_e_grid,
p_in_welford_mean_grid,
p_in_welford_var_grid,
p_in_welford_count_grid,
p_gamma_grid,
p_beta_grid,
p_h_grid,
e_grid_desc_m_n,
h_grid_desc_m_n,
mean_var_grid_desc_m_nblock,
count_grid_desc_m_nblock,
gamma_grid_desc_n,
beta_grid_desc_n,
numMeanVarCountBlockTileIteration_N,
NBlockClusterLength,
epsilon,
h_element_op);
}
} // namespace ck
namespace ck {
namespace tensor_operation {
namespace device {
// GEMM:
// input : A[M, K]
// input : B[N, K]
// input : D0[M, N], D1[M, N], ...
// output : E[M, N]
// output : H[M, N]
// C = a_op(A) * b_op(B)
// E = cde_op(C, D0, D1, ...)
// H = layernorm(E)
// Assume:
// D0, D1, ... and E have the same layout
// Calculate mean & variance along N dimension in layernorm(E)
template <typename ALayout,
typename BLayout,
typename DsLayout,
typename HLayout,
typename ADataType,
typename BDataType,
typename AccDataType,
typename CShuffleDataType,
typename DsDataType,
typename EMeanVarDataType,
typename GammaDataType,
typename BetaDataType,
typename HDataType,
typename AElementwiseOperation,
typename BElementwiseOperation,
typename CDEElementwiseOperation,
typename HElementwiseOperation,
GemmSpecialization GemmSpec,
index_t NumGemmKPrefetchStage,
index_t BlockSize,
index_t GemmMPerBlock,
index_t GemmNPerBlock,
index_t GemmKPerBlock,
index_t AK1,
index_t BK1,
index_t MPerXDL,
index_t NPerXDL,
index_t MXdlPerWave,
index_t NXdlPerWave,
typename ABlockTransferThreadClusterLengths_AK0_M_AK1,
typename ABlockTransferThreadClusterArrangeOrder,
typename ABlockTransferSrcAccessOrder,
index_t ABlockTransferSrcVectorDim,
index_t ABlockTransferSrcScalarPerVector,
index_t ABlockTransferDstScalarPerVector_AK1,
bool ABlockLdsExtraM,
typename BBlockTransferThreadClusterLengths_BK0_N_BK1,
typename BBlockTransferThreadClusterArrangeOrder,
typename BBlockTransferSrcAccessOrder,
index_t BBlockTransferSrcVectorDim,
index_t BBlockTransferSrcScalarPerVector,
index_t BBlockTransferDstScalarPerVector_BK1,
bool BBlockLdsExtraN,
index_t CShuffleMXdlPerWavePerShuffle,
index_t CShuffleNXdlPerWavePerShuffle,
typename PostShuffleThreadClusterSize_M_N,
index_t PostShuffleScalarPerVector,
typename LayernormThreadClusterSize_M_N,
index_t LayernormThreadSliceSize_M,
LoopScheduler LoopSched = make_default_loop_scheduler(),
PipelineVersion PipelineVer = PipelineVersion::v1>
struct DeviceGemmMultipleDLayernorm_Xdl_CShuffle
: public DeviceGemmMultipleDLayernorm<ALayout,
BLayout,
DsLayout,
HLayout,
ADataType,
BDataType,
DsDataType,
GammaDataType,
BetaDataType,
HDataType,
AElementwiseOperation,
BElementwiseOperation,
CDEElementwiseOperation,
HElementwiseOperation>
{
// EDataType, MeanDataType and VarDataType must be the same.
// eg. M, N, K = [1, 1, 1],
// in case of layernorm, divisor = 1 / sqrt(var + 1e-5) = 316.227783
// if (x - mean) != 0, (x - mean) * divisor * gamma might be too large
// However, (x - mean) * divisor * gamma should be 0 in this case
using DeviceOp = DeviceGemmMultipleDLayernorm_Xdl_CShuffle;
using ELayout = HLayout;
static constexpr index_t NumDTensor = DsDataType::Size();
static constexpr index_t LayernormHDstVectorSize = PostShuffleScalarPerVector;
static constexpr index_t LayernormGammaSrcVectorSize = PostShuffleScalarPerVector;
static constexpr index_t LayernormBetaSrcVectorSize = PostShuffleScalarPerVector;
static constexpr index_t LayernormESrcVectorSize = PostShuffleScalarPerVector;
static constexpr index_t LayernormThreadSliceSize_N = PostShuffleScalarPerVector;
using LayernormBlockTileSize_M_N =
Sequence<LayernormThreadClusterSize_M_N::At(0) * LayernormThreadSliceSize_M,
LayernormThreadClusterSize_M_N::At(1) * LayernormThreadSliceSize_N>;
static constexpr auto I0 = Number<0>{};
static constexpr auto I1 = Number<1>{};
static constexpr auto I2 = Number<2>{};
static constexpr auto matrix_padder = MatrixPadder<GemmSpec, index_t, index_t, index_t>{
GemmMPerBlock, GemmNPerBlock, GemmKPerBlock};
static auto MakeAGridDescriptor_M_K(index_t MRaw, index_t KRaw, index_t StrideA)
{
const auto a_grid_desc_mraw_kraw = [&]() {
if constexpr(is_same_v<tensor_layout::gemm::RowMajor, ALayout>)
{
return make_naive_tensor_descriptor(make_tuple(MRaw, KRaw),
make_tuple(StrideA, I1));
}
else if constexpr(is_same_v<tensor_layout::gemm::ColumnMajor, ALayout>)
{
return make_naive_tensor_descriptor(make_tuple(MRaw, KRaw),
make_tuple(I1, StrideA));
}
}();
return matrix_padder.PadADescriptor_M_K(a_grid_desc_mraw_kraw);
}
static auto MakeBGridDescriptor_N_K(index_t KRaw, index_t NRaw, index_t StrideB)
{
const auto b_grid_desc_nraw_kraw = [&]() {
if constexpr(is_same<tensor_layout::gemm::RowMajor, BLayout>::value)
{
return make_naive_tensor_descriptor(make_tuple(NRaw, KRaw),
make_tuple(I1, StrideB));
}
else if constexpr(is_same<tensor_layout::gemm::ColumnMajor, BLayout>::value)
{
return make_naive_tensor_descriptor(make_tuple(NRaw, KRaw),
make_tuple(StrideB, I1));
}
}();
return matrix_padder.PadBDescriptor_N_K(b_grid_desc_nraw_kraw);
}
template <typename DoPads, index_t MPerTile, index_t NPerTile>
static auto MakeEHGridDescriptor_M_N(index_t M, index_t N, index_t Stride)
{
// Only support row major for E and H
const auto grid_desc_m_n =
make_naive_tensor_descriptor(make_tuple(M, N), make_tuple(Stride, I1));
return PadTensorDescriptor(grid_desc_m_n, make_tuple(MPerTile, NPerTile), DoPads{});
}
static auto MakeDsGridDescriptor_M_N(const std::array<index_t, NumDTensor>& MRaws,
const std::array<index_t, NumDTensor>& NRaws,
const std::array<index_t, NumDTensor>& DsStride)
{
return generate_tuple(
[&](auto i) {
using DLayout = remove_cvref_t<tuple_element_t<i.value, DsLayout>>;
static_assert(is_same<tensor_layout::gemm::RowMajor, DLayout>::value);
return DeviceOp::
MakeEHGridDescriptor_M_N<Sequence<true, true>, GemmMPerBlock, GemmNPerBlock>(
MRaws[i], NRaws[i], DsStride[i]);
},
Number<NumDTensor>{});
}
template <typename DoPads, index_t MPerTile, index_t NPerTile>
static auto MakeMeanVarDescriptor_M_N(index_t M, index_t N)
{
const auto grid_desc_m_n =
make_naive_tensor_descriptor(make_tuple(M, N), make_tuple(N, I1));
return PadTensorDescriptor(grid_desc_m_n, make_tuple(MPerTile, NPerTile), DoPads{});
}
template <typename DoPads, index_t MPerTile, index_t NPerTile>
static auto MakeCountDescriptor_M_N(index_t M, index_t N)
{
// We will broadcast [N] to [M, N] in this descriptor
// Hence, 1st stride is 0
const auto grid_desc_m_n =
make_naive_tensor_descriptor(make_tuple(M, N), make_tuple(I0, I1));
return PadTensorDescriptor(grid_desc_m_n, make_tuple(MPerTile, NPerTile), DoPads{});
}
template <index_t XPerTile>
static auto MakeDescriptor_X(index_t X)
{
const auto grid_desc_x = make_naive_tensor_descriptor_packed(make_tuple(X));
return PadTensorDescriptor(grid_desc_x, make_tuple(XPerTile), Sequence<true>{});
}
using AGridDesc_M_K = decltype(MakeAGridDescriptor_M_K(1, 1, 1));
using BGridDesc_N_K = decltype(MakeBGridDescriptor_N_K(1, 1, 1));
using DsGridDesc_M_N = remove_cvref_t<decltype(MakeDsGridDescriptor_M_N({}, {}, {}))>;
// We have to separate mean var descriptor for gemm and layernorm bacause of different grid
// layout(different padding)
using GemmMeanVarGridDesc_M_NBlock = decltype(
MakeMeanVarDescriptor_M_N<Sequence<true, false>, GemmMPerBlock, GemmNPerBlock>(1, 1));
using GemmCountGridDesc_M_NBlock = decltype(
MakeCountDescriptor_M_N<Sequence<true, false>, GemmMPerBlock, GemmNPerBlock>(1, 1));
using LayernormMeanVarGridDesc_M_NBlock =
decltype(MakeMeanVarDescriptor_M_N<Sequence<true, true>,
LayernormBlockTileSize_M_N::At(0),
LayernormBlockTileSize_M_N::At(1)>(1, 1));
using LayernormCountGridDesc_M_NBlock =
decltype(MakeCountDescriptor_M_N<Sequence<true, true>,
LayernormBlockTileSize_M_N::At(0),
LayernormBlockTileSize_M_N::At(1)>(1, 1));
using GammaBetaGridDesc_N = decltype(MakeDescriptor_X<LayernormBlockTileSize_M_N::At(1)>(1));
using EHGridDesc_M_N = decltype(MakeEHGridDescriptor_M_N<Sequence<true, true>, 1, 1>(1, 1, 1));
using GridwiseGemmWelford = GridwiseGemmMultipleDWelfordFirstHalf_xdl_cshuffle<
ADataType, // TODO: distinguish A/B datatype
AccDataType,
CShuffleDataType,
DsDataType,
EMeanVarDataType,
AElementwiseOperation,
BElementwiseOperation,
CDEElementwiseOperation,
InMemoryDataOperationEnum::Set,
AGridDesc_M_K,
BGridDesc_N_K,
DsGridDesc_M_N,
EHGridDesc_M_N,
GemmMeanVarGridDesc_M_NBlock,
GemmCountGridDesc_M_NBlock,
NumGemmKPrefetchStage,
BlockSize,
GemmMPerBlock,
GemmNPerBlock,
GemmKPerBlock,
AK1,
BK1,
MPerXDL,
NPerXDL,
MXdlPerWave,
NXdlPerWave,
ABlockTransferThreadClusterLengths_AK0_M_AK1,
ABlockTransferThreadClusterArrangeOrder,
ABlockTransferSrcAccessOrder,
ABlockTransferSrcVectorDim,
ABlockTransferSrcScalarPerVector,
ABlockTransferDstScalarPerVector_AK1,
false,
ABlockLdsExtraM,
BBlockTransferThreadClusterLengths_BK0_N_BK1,
BBlockTransferThreadClusterArrangeOrder,
BBlockTransferSrcAccessOrder,
BBlockTransferSrcVectorDim,
BBlockTransferSrcScalarPerVector,
BBlockTransferDstScalarPerVector_BK1,
false,
BBlockLdsExtraN,
CShuffleMXdlPerWavePerShuffle,
CShuffleNXdlPerWavePerShuffle,
PostShuffleThreadClusterSize_M_N,
PostShuffleScalarPerVector,
LoopSched,
PipelineVer>;
using Block2ETileMap = typename GridwiseGemmWelford::DefaultBlock2ETileMap;
using GridwiseWelfordLayernorm =
GridwiseWelfordSecondHalfLayernorm2d<EMeanVarDataType,
HDataType,
GammaDataType,
BetaDataType,
AccDataType,
EHGridDesc_M_N,
LayernormMeanVarGridDesc_M_NBlock,
LayernormCountGridDesc_M_NBlock,
GammaBetaGridDesc_N,
HElementwiseOperation,
BlockSize,
LayernormThreadClusterSize_M_N::At(I0),
LayernormThreadClusterSize_M_N::At(I1),
LayernormThreadSliceSize_M,
LayernormThreadSliceSize_N,
LayernormESrcVectorSize,
LayernormHDstVectorSize,
LayernormGammaSrcVectorSize,
LayernormBetaSrcVectorSize>;
// Argument
struct Argument : public BaseArgument
{
Argument(const void* p_a_grid,
const void* p_b_grid,
std::array<const void*, NumDTensor> p_ds_grid,
const void* p_gamma_grid,
const void* p_beta_grid,
void* p_h_grid,
index_t MRaw,
index_t NRaw,
index_t KRaw,
index_t StrideA,
index_t StrideB,
std::array<index_t, NumDTensor> StrideDs,
index_t StrideH,
double epsilon,
AElementwiseOperation a_element_op,
BElementwiseOperation b_element_op,
CDEElementwiseOperation cde_element_op,
HElementwiseOperation h_element_op)
: p_a_grid_{static_cast<const ADataType*>(p_a_grid)},
p_b_grid_{static_cast<const BDataType*>(p_b_grid)},
p_ds_grid_{},
p_workspace_e_grid_{nullptr},
p_workspace_mean_{nullptr},
p_workspace_var_{nullptr},
p_workspace_count_{nullptr},
p_gamma_grid_{static_cast<const GammaDataType*>(p_gamma_grid)},
p_beta_grid_{static_cast<const BetaDataType*>(p_beta_grid)},
p_h_grid_{static_cast<HDataType*>(p_h_grid)},
a_grid_desc_m_k_{DeviceOp::MakeAGridDescriptor_M_K(MRaw, KRaw, StrideA)},
b_grid_desc_n_k_{DeviceOp::MakeBGridDescriptor_N_K(KRaw, NRaw, StrideB)},
ds_grid_desc_m_n_{},
gemm_e_grid_desc_m_n_{
DeviceOp::MakeEHGridDescriptor_M_N<Sequence<true, true>,
GemmMPerBlock,
GemmNPerBlock>(MRaw, NRaw, StrideH)},
layernorm_e_grid_desc_m_n_{
DeviceOp::MakeEHGridDescriptor_M_N<Sequence<true, true>,
LayernormBlockTileSize_M_N::At(0),
LayernormBlockTileSize_M_N::At(1)>(
MRaw, NRaw, StrideH)},
gemm_mean_var_grid_desc_m_nblock_{},
gemm_count_grid_desc_m_nblock_{},
layernorm_mean_var_grid_desc_m_nblock_{},
layernorm_count_grid_desc_m_nblock_{},
gamma_grid_desc_n_{
DeviceOp::MakeDescriptor_X<LayernormBlockTileSize_M_N::At(1)>(NRaw)},
beta_grid_desc_n_{
DeviceOp::MakeDescriptor_X<LayernormBlockTileSize_M_N::At(1)>(NRaw)},
h_grid_desc_m_n_{
DeviceOp::MakeEHGridDescriptor_M_N<Sequence<true, true>,
LayernormBlockTileSize_M_N::At(0),
LayernormBlockTileSize_M_N::At(1)>(
MRaw, NRaw, StrideH)},
a_grid_desc_ak0_m_ak1_{
GridwiseGemmWelford::MakeDefaultAGridDescriptor_AK0_M_AK1(a_grid_desc_m_k_)},
b_grid_desc_bk0_n_bk1_{
GridwiseGemmWelford::MakeDefaultBGridDescriptor_BK0_N_BK1(b_grid_desc_n_k_)},
block_2_etile_map_{
GridwiseGemmWelford::MakeDefaultBlock2ETileMap(gemm_e_grid_desc_m_n_)},
a_element_op_{a_element_op},
b_element_op_{b_element_op},
cde_element_op_{cde_element_op},
h_element_op_{h_element_op},
MRaw_{MRaw},
NRaw_{NRaw},
KRaw_{KRaw},
gemm_nblock_{math::integer_divide_ceil(NRaw, GemmNPerBlock)},
epsilon_{static_cast<AccDataType>(epsilon)}
{
// We don't need to pad in N dimension in gemm for mean/var/count. Set NPerTile 1.
gemm_mean_var_grid_desc_m_nblock_ =
DeviceOp::MakeMeanVarDescriptor_M_N<Sequence<true, false>, GemmMPerBlock, 1>(
MRaw, gemm_nblock_);
gemm_count_grid_desc_m_nblock_ =
DeviceOp::MakeCountDescriptor_M_N<Sequence<true, false>, GemmMPerBlock, 1>(
MRaw, gemm_nblock_);
layernorm_mean_var_grid_desc_m_nblock_ =
DeviceOp::MakeMeanVarDescriptor_M_N<Sequence<true, true>,
LayernormBlockTileSize_M_N::At(0),
LayernormBlockTileSize_M_N::At(1)>(
MRaw, gemm_nblock_);
layernorm_count_grid_desc_m_nblock_ =
DeviceOp::MakeCountDescriptor_M_N<Sequence<true, true>,
LayernormBlockTileSize_M_N::At(0),
LayernormBlockTileSize_M_N::At(1)>(MRaw,
gemm_nblock_);
// populate pointer, desc for Ds
static_for<0, NumDTensor, 1>{}([&](auto i) {
using DDataType = remove_cvref_t<tuple_element_t<i.value, DsDataType>>;
// D pointer
p_ds_grid_(i) = static_cast<const DDataType*>(p_ds_grid[i]);
// D desc
ds_grid_desc_m_n_(i) =
DeviceOp::MakeEHGridDescriptor_M_N<Sequence<true, true>,
GemmMPerBlock,
GemmNPerBlock>(MRaw, NRaw, StrideDs[i]);
});
// populate desc for Ds/E/mean/var/count
if(GridwiseGemmWelford::CheckValidity(a_grid_desc_m_k_,
b_grid_desc_n_k_,
ds_grid_desc_m_n_,
gemm_e_grid_desc_m_n_,
block_2_etile_map_))
{
ds_grid_desc_mblock_mperblock_nblock_nperblock_ =
GridwiseGemmWelford::MakeDsGridDescriptor_MBlock_MPerBlock_NBlock_NPerBlock(
ds_grid_desc_m_n_);
e_grid_desc_mblock_mperblock_nblock_nperblock_ =
GridwiseGemmWelford::MakeEGridDescriptor_MBlock_MPerBlock_NBlock_NPerBlock(
gemm_e_grid_desc_m_n_);
gemm_mean_var_grid_desc_mblock_mperblock_nblock_ =
GridwiseGemmWelford::MakeMeanVarCountGridDescriptor_MBlock_MPerBlock_NBlock(
gemm_mean_var_grid_desc_m_nblock_);
gemm_count_grid_desc_mblock_mperblock_nblock_ =
GridwiseGemmWelford::MakeMeanVarCountGridDescriptor_MBlock_MPerBlock_NBlock(
gemm_count_grid_desc_m_nblock_);
}
}
void Print() const
{
std::cout << "A[M, K]: " << a_grid_desc_m_k_ << std::endl;
std::cout << "B[N, K]: " << b_grid_desc_n_k_ << std::endl;
static_for<0, NumDTensor, 1>{}(
[&](auto i) { std::cout << "Ds[M, N]: " << ds_grid_desc_m_n_[i] << std::endl; });
std::cout << "E[M, N]: " << gemm_e_grid_desc_m_n_ << std::endl;
std::cout << "H[M, N]: " << h_grid_desc_m_n_ << std::endl;
}
// private:
// pointers
const ADataType* p_a_grid_;
const BDataType* p_b_grid_;
typename GridwiseGemmWelford::DsGridPointer p_ds_grid_;
void* p_workspace_e_grid_;
void* p_workspace_mean_;
void* p_workspace_var_;
void* p_workspace_count_;
const GammaDataType* p_gamma_grid_;
const BetaDataType* p_beta_grid_;
HDataType* p_h_grid_;
// tensor descriptors for problem definiton
AGridDesc_M_K a_grid_desc_m_k_;
BGridDesc_N_K b_grid_desc_n_k_;
DsGridDesc_M_N ds_grid_desc_m_n_;
EHGridDesc_M_N gemm_e_grid_desc_m_n_;
EHGridDesc_M_N layernorm_e_grid_desc_m_n_;
GemmMeanVarGridDesc_M_NBlock gemm_mean_var_grid_desc_m_nblock_;
GemmCountGridDesc_M_NBlock gemm_count_grid_desc_m_nblock_;
LayernormMeanVarGridDesc_M_NBlock layernorm_mean_var_grid_desc_m_nblock_;
LayernormCountGridDesc_M_NBlock layernorm_count_grid_desc_m_nblock_;
GammaBetaGridDesc_N gamma_grid_desc_n_;
GammaBetaGridDesc_N beta_grid_desc_n_;
EHGridDesc_M_N h_grid_desc_m_n_;
// tensor descriptors for block/thread-wise copy
typename GridwiseGemmWelford::DefaultAGridDesc_AK0_M_AK1 a_grid_desc_ak0_m_ak1_;
typename GridwiseGemmWelford::DefaultBGridDesc_BK0_N_BK1 b_grid_desc_bk0_n_bk1_;
typename GridwiseGemmWelford::DsGridDescriptor_MBlock_MPerBlock_NBlock_NPerBlock
ds_grid_desc_mblock_mperblock_nblock_nperblock_;
typename GridwiseGemmWelford::EGridDescriptor_MBlock_MPerBlock_NBlock_NPerBlock
e_grid_desc_mblock_mperblock_nblock_nperblock_;
typename GridwiseGemmWelford::MeanVarGridDescriptor_MBlock_MPerBlock_NBlock
gemm_mean_var_grid_desc_mblock_mperblock_nblock_;
typename GridwiseGemmWelford::CountGridDescriptor_MBlock_MPerBlock_NBlock
gemm_count_grid_desc_mblock_mperblock_nblock_;
// block-to-e-tile map
Block2ETileMap block_2_etile_map_;
// element-wise op
AElementwiseOperation a_element_op_;
BElementwiseOperation b_element_op_;
CDEElementwiseOperation cde_element_op_;
HElementwiseOperation h_element_op_;
index_t MRaw_;
index_t NRaw_;
index_t KRaw_;
index_t gemm_nblock_;
AccDataType epsilon_;
};
// Invoker
struct Invoker : public BaseInvoker
{
using Argument = DeviceOp::Argument;
float Run(const Argument& arg, const StreamConfig& stream_config = StreamConfig{})
{
float avg_time = 0;
if(!GridwiseGemmWelford::CheckValidity(arg.a_grid_desc_m_k_,
arg.b_grid_desc_n_k_,
arg.ds_grid_desc_m_n_,
arg.gemm_e_grid_desc_m_n_,
arg.block_2_etile_map_))
{
throw std::runtime_error("wrong! GridwiseGemmWelford has invalid setting");
}
if(arg.p_workspace_e_grid_ == nullptr || arg.p_workspace_mean_ == nullptr ||
arg.p_workspace_var_ == nullptr || arg.p_workspace_count_ == nullptr)
throw std::runtime_error("wrong! WorkSpace pointer has not been set");
index_t grid_size = arg.block_2_etile_map_.CalculateGridSize(arg.gemm_e_grid_desc_m_n_);
const auto M = arg.h_grid_desc_m_n_.GetLength(I0);
const auto N = arg.h_grid_desc_m_n_.GetLength(I1);
const auto K =
arg.a_grid_desc_ak0_m_ak1_.GetLength(I0) * arg.a_grid_desc_ak0_m_ak1_.GetLength(I2);
auto launch_kernel = [&](auto has_main_k_block_loop) {
constexpr bool has_main_loop = has_main_k_block_loop.value;
const auto kernel_gemm_welford =
kernel_gemm_multiple_d_welford_first_half_xdl_cshuffle<
GridwiseGemmWelford,
ADataType, // TODO: distiguish A/B datatype
typename GridwiseGemmWelford::DsGridPointer,
EMeanVarDataType,
AElementwiseOperation,
BElementwiseOperation,
CDEElementwiseOperation,
typename GridwiseGemmWelford::DefaultAGridDesc_AK0_M_AK1,
typename GridwiseGemmWelford::DefaultBGridDesc_BK0_N_BK1,
typename GridwiseGemmWelford::
DsGridDescriptor_MBlock_MPerBlock_NBlock_NPerBlock,
typename GridwiseGemmWelford::
EGridDescriptor_MBlock_MPerBlock_NBlock_NPerBlock,
typename GridwiseGemmWelford::MeanVarGridDescriptor_MBlock_MPerBlock_NBlock,
typename GridwiseGemmWelford::CountGridDescriptor_MBlock_MPerBlock_NBlock,
typename GridwiseGemmWelford::DefaultBlock2ETileMap,
has_main_loop>;
const auto kernel_welford_layernorm =
kernel_welford_layernorm2d_second_half<GridwiseWelfordLayernorm,
EMeanVarDataType,
HDataType,
GammaDataType,
BetaDataType,
AccDataType,
EHGridDesc_M_N,
LayernormMeanVarGridDesc_M_NBlock,
LayernormCountGridDesc_M_NBlock,
GammaBetaGridDesc_N,
HElementwiseOperation>;
avg_time +=
launch_and_time_kernel(stream_config,
kernel_gemm_welford,
dim3(grid_size),
dim3(BlockSize),
0,
arg.p_a_grid_,
arg.p_b_grid_,
arg.p_ds_grid_,
static_cast<EMeanVarDataType*>(arg.p_workspace_e_grid_),
static_cast<EMeanVarDataType*>(arg.p_workspace_mean_),
static_cast<EMeanVarDataType*>(arg.p_workspace_var_),
static_cast<int32_t*>(arg.p_workspace_count_),
arg.a_element_op_,
arg.b_element_op_,
arg.cde_element_op_,
arg.a_grid_desc_ak0_m_ak1_,
arg.b_grid_desc_bk0_n_bk1_,
arg.ds_grid_desc_mblock_mperblock_nblock_nperblock_,
arg.e_grid_desc_mblock_mperblock_nblock_nperblock_,
arg.gemm_mean_var_grid_desc_mblock_mperblock_nblock_,
arg.gemm_count_grid_desc_mblock_mperblock_nblock_,
arg.block_2_etile_map_,
arg.NRaw_);
index_t MBlockClusterLength =
math::integer_divide_ceil(M, LayernormBlockTileSize_M_N::At(0));
index_t NBlockClusterLength =
math::integer_divide_ceil(N, LayernormBlockTileSize_M_N::At(1));
grid_size = MBlockClusterLength * NBlockClusterLength;
index_t numMeanVarCountBlockTileIteration_N = math::integer_divide_ceil(
arg.gemm_nblock_, LayernormThreadClusterSize_M_N::At(I1));
avg_time += launch_and_time_kernel(
stream_config,
kernel_welford_layernorm,
dim3(grid_size),
dim3(BlockSize),
0,
static_cast<EMeanVarDataType*>(arg.p_workspace_e_grid_),
static_cast<const EMeanVarDataType*>(arg.p_workspace_mean_),
static_cast<const EMeanVarDataType*>(arg.p_workspace_var_),
static_cast<const int32_t*>(arg.p_workspace_count_),
arg.p_gamma_grid_,
arg.p_beta_grid_,
arg.p_h_grid_,
arg.layernorm_e_grid_desc_m_n_,
arg.h_grid_desc_m_n_,
arg.layernorm_mean_var_grid_desc_m_nblock_,
arg.layernorm_count_grid_desc_m_nblock_,
arg.gamma_grid_desc_n_,
arg.beta_grid_desc_n_,
numMeanVarCountBlockTileIteration_N,
NBlockClusterLength,
arg.epsilon_,
arg.h_element_op_);
return avg_time;
};
if(GridwiseGemmWelford::CalculateHasMainKBlockLoop(K))
{
return launch_kernel(integral_constant<bool, true>{});
}
else
{
return launch_kernel(integral_constant<bool, false>{});
}
}
// polymorphic
float Run(const BaseArgument* p_arg,
const StreamConfig& stream_config = StreamConfig{}) override
{
return Run(*dynamic_cast<const Argument*>(p_arg), stream_config);
}
};
size_t GetWorkSpaceSize(const BaseArgument* pArg) const override
{
const Argument* pArg_ = dynamic_cast<const Argument*>(pArg);
size_t workspace_size = 0;
int gemm_welford_size = pArg_->MRaw_ * pArg_->gemm_nblock_;
// workspace for welford intermediate mean
workspace_size += gemm_welford_size * sizeof(EMeanVarDataType) + 64;
// workspace for welford intermediate mean
workspace_size += gemm_welford_size * sizeof(EMeanVarDataType) + 64;
// workspace for welford intermediate count
workspace_size += pArg_->gemm_nblock_ * sizeof(int32_t) + 64;
if constexpr(!is_same_v<EMeanVarDataType, HDataType>)
workspace_size += pArg_->MRaw_ * pArg_->NRaw_ * sizeof(EMeanVarDataType);
return (workspace_size);
};
void SetWorkSpacePointer(BaseArgument* pArg, void* p_workspace) const override
{
Argument* pArg_ = dynamic_cast<Argument*>(pArg);
pArg_->p_workspace_ = p_workspace;
int gemm_welford_size = pArg_->MRaw_ * pArg_->gemm_nblock_;
// setup buffer used for intermediate welford mean
pArg_->p_workspace_mean_ = static_cast<char*>(pArg_->p_workspace_);
index_t mean_space_sz = gemm_welford_size * sizeof(EMeanVarDataType);
mean_space_sz = math::integer_least_multiple(mean_space_sz, 64);
// setup buffer used for intermediate welford varirance
pArg_->p_workspace_var_ = reinterpret_cast<char*>(pArg_->p_workspace_mean_) + mean_space_sz;
index_t variance_space_sz = gemm_welford_size * sizeof(EMeanVarDataType);
variance_space_sz = math::integer_least_multiple(variance_space_sz, 64);
// setup buffer used for intermediate welford count
pArg_->p_workspace_count_ =
reinterpret_cast<char*>(pArg_->p_workspace_var_) + variance_space_sz;
index_t count_space_sz = gemm_welford_size * sizeof(int32_t);
count_space_sz = math::integer_least_multiple(count_space_sz, 64);
if constexpr(!is_same_v<EMeanVarDataType, HDataType>)
pArg_->p_workspace_e_grid_ =
reinterpret_cast<char*>(pArg_->p_workspace_count_) + count_space_sz;
else
pArg_->p_workspace_e_grid_ = static_cast<void*>(pArg_->p_h_grid_);
};
static bool IsSupportedArgument(const Argument& arg)
{
if(!(ck::get_device_name() == "gfx908" || ck::get_device_name() == "gfx90a"))
{
return false;
}
// check vector load/store
{
using Row = ck::tensor_layout::gemm::RowMajor;
using Col = ck::tensor_layout::gemm::ColumnMajor;
// check vector load of A
if constexpr(is_same_v<ALayout, Row> && ABlockTransferSrcVectorDim == 2)
{
if(arg.KRaw_ % ABlockTransferSrcScalarPerVector != 0)
{
return false;
}
}
else if constexpr(is_same_v<ALayout, Col> && ABlockTransferSrcVectorDim == 1)
{
// FIXME: not rigorous
if(arg.MRaw_ % ABlockTransferSrcScalarPerVector != 0)
{
return false;
}
}
else
{
return false;
}
// check vector laod of B
if constexpr(is_same_v<BLayout, Col> && BBlockTransferSrcVectorDim == 2)
{
if(arg.KRaw_ % BBlockTransferSrcScalarPerVector != 0)
{
return false;
}
}
else if constexpr(is_same_v<BLayout, Row> && BBlockTransferSrcVectorDim == 1)
{
// FIXME: not rigorous
if(arg.NRaw_ % BBlockTransferSrcScalarPerVector != 0)
{
return false;
}
}
else
{
return false;
}
// check vector load of Ds
// only support RowMajor for now
bool all_valid = true;
static_for<0, NumDTensor, 1>{}([&](auto i) {
using DLayout = remove_cvref_t<tuple_element_t<i.value, DsLayout>>;
if constexpr(!is_same_v<DLayout, Row>)
{
all_valid = false;
}
});
if(!all_valid)
{
return false;
}
// check vector store of E
// E and H only support RowMajor for now
if constexpr(is_same_v<ELayout, Row> && is_same_v<HLayout, Row>)
{
if(arg.NRaw_ % PostShuffleScalarPerVector != 0 ||
arg.NRaw_ % LayernormGammaSrcVectorSize != 0 ||
arg.NRaw_ % LayernormBetaSrcVectorSize != 0 ||
arg.NRaw_ % LayernormHDstVectorSize != 0)
{
return false;
}
}
else
{
return false;
}
}
return GridwiseGemmWelford::CheckValidity(arg.a_grid_desc_m_k_,
arg.b_grid_desc_n_k_,
arg.ds_grid_desc_m_n_,
arg.gemm_e_grid_desc_m_n_,
arg.block_2_etile_map_);
}
// polymorphic
bool IsSupportedArgument(const BaseArgument* p_arg) override
{
return IsSupportedArgument(*dynamic_cast<const Argument*>(p_arg));
}
static auto MakeArgument(const void* p_a,
const void* p_b,
std::array<const void*, NumDTensor> p_ds,
const void* p_gamma,
const void* p_beta,
void* p_h,
index_t MRaw,
index_t NRaw,
index_t KRaw,
index_t StrideA,
index_t StrideB,
std::array<index_t, NumDTensor> StrideDs,
index_t StrideH,
double epsilon,
AElementwiseOperation a_element_op,
BElementwiseOperation b_element_op,
CDEElementwiseOperation cde_element_op,
HElementwiseOperation h_element_op)
{
return Argument{p_a,
p_b,
p_ds,
p_gamma,
p_beta,
p_h,
MRaw,
NRaw,
KRaw,
StrideA,
StrideB,
StrideDs,
StrideH,
epsilon,
a_element_op,
b_element_op,
cde_element_op,
h_element_op};
}
static auto MakeInvoker() { return Invoker{}; }
// polymorphic
std::unique_ptr<BaseArgument> MakeArgumentPointer(const void* p_a,
const void* p_b,
std::array<const void*, NumDTensor> p_ds,
const void* p_gamma,
const void* p_beta,
void* p_h,
index_t MRaw,
index_t NRaw,
index_t KRaw,
index_t StrideA,
index_t StrideB,
std::array<index_t, NumDTensor> StrideDs,
index_t StrideH,
double epsilon,
AElementwiseOperation a_element_op,
BElementwiseOperation b_element_op,
CDEElementwiseOperation cde_element_op,
HElementwiseOperation h_element_op) override
{
return std::make_unique<Argument>(p_a,
p_b,
p_ds,
p_gamma,
p_beta,
p_h,
MRaw,
NRaw,
KRaw,
StrideA,
StrideB,
StrideDs,
StrideH,
epsilon,
a_element_op,
b_element_op,
cde_element_op,
h_element_op);
}
// polymorphic
std::unique_ptr<BaseInvoker> MakeInvokerPointer() override
{
return std::make_unique<Invoker>(Invoker{});
}
// polymorphic
std::string GetTypeString() const override
{
auto str = std::stringstream();
std::map<LoopScheduler, std::string> LoopSchedToString{
{LoopScheduler::Default, "Default"}, {LoopScheduler::Interwave, "Interwave"}};
std::map<PipelineVersion, std::string> PipelineVersionToString{{PipelineVersion::v1, "v1"},
{PipelineVersion::v2, "v2"}};
// clang-format off
str << "DeviceGemmMultipleDLayernorm_Xdl_CShuffle"
<< "<"
<< BlockSize << ", "
<< GemmMPerBlock << ", "
<< GemmNPerBlock << ", "
<< GemmKPerBlock << ", "
<< AK1 << ", "
<< BK1 << ", "
<< getGemmSpecializationString(GemmSpec) << ", "
<< PostShuffleThreadClusterSize_M_N::At(I0) << ", "
<< PostShuffleThreadClusterSize_M_N::At(I1) << ", "
<< LayernormThreadClusterSize_M_N::At(I0) << ", "
<< LayernormThreadClusterSize_M_N::At(I1) << ", "
<< LayernormThreadSliceSize_M
<< ">"
<< " LoopScheduler: "
<< LoopSchedToString[LoopSched] << ", "
<< "PipelineVersion: "
<< PipelineVersionToString[PipelineVer];
// clang-format on
return str.str();
}
}; // namespace device
} // namespace device
} // namespace tensor_operation
} // namespace ck
......@@ -431,9 +431,6 @@ struct DeviceGemmMultipleD_Xdl_CShuffle : public DeviceGemmMultipleD<ALayout,
const index_t grid_size =
arg.block_2_etile_map_.CalculateGridSize(arg.e_grid_desc_m_n_);
const auto K =
arg.a_grid_desc_ak0_m_ak1_.GetLength(I0) * arg.a_grid_desc_ak0_m_ak1_.GetLength(I2);
auto launch_kernel = [&](auto has_main_k_block_loop) {
constexpr bool has_main_loop = has_main_k_block_loop.value;
......@@ -471,6 +468,8 @@ struct DeviceGemmMultipleD_Xdl_CShuffle : public DeviceGemmMultipleD<ALayout,
arg.block_2_etile_map_);
};
const auto K = arg.a_grid_desc_m_k_.GetLength(I1);
if(GridwiseGemm::CalculateHasMainKBlockLoop(K))
{
return launch_kernel(integral_constant<bool, true>{});
......
......@@ -486,7 +486,6 @@ struct DeviceGemm_Xdl_CShuffle : public DeviceGemm<ALayout,
const index_t grid_size =
arg.block_2_ctile_map_.CalculateGridSize(arg.c_grid_desc_m_n_);
const auto K =
arg.a_grid_desc_ak0_m_ak1_.GetLength(I0) * arg.a_grid_desc_ak0_m_ak1_.GetLength(I2);
......
......@@ -136,8 +136,8 @@ template <index_t NDimSpatial,
index_t CShuffleNRepeatPerShuffle,
typename CDEShuffleBlockTransferClusterLengths_MBlock_MPerBlock_NBlock_NPerBlock,
index_t CDEShuffleBlockTransferScalarPerVector_NPerBlock,
index_t NumGemmKPrefetchStage = 1,
LoopScheduler LoopSched = make_default_loop_scheduler(),
index_t NumGemmKPrefetchStage = 1,
LoopScheduler LoopSched = make_default_loop_scheduler(),
ck::PipelineVersion PipelineVer = ck::PipelineVersion::v1>
struct DeviceGroupedConvFwdMultipleD_Wmma_CShuffle
: public DeviceGroupedConvFwdMultipleD<NDimSpatial,
......@@ -157,10 +157,10 @@ struct DeviceGroupedConvFwdMultipleD_Wmma_CShuffle
static constexpr index_t NumDTensor = DsDataType::Size();
static constexpr auto I0 = Number<0>{};
static constexpr auto I1 = Number<1>{};
static constexpr auto I2 = Number<2>{};
static constexpr auto I3 = Number<3>{};
static constexpr auto I0 = Number<0>{};
static constexpr auto I1 = Number<1>{};
static constexpr auto I2 = Number<2>{};
static constexpr auto I3 = Number<3>{};
static constexpr index_t KPerBlock = K0PerBlock * K1;
static constexpr auto conv_to_gemm_transformer =
......@@ -262,11 +262,11 @@ struct DeviceGroupedConvFwdMultipleD_Wmma_CShuffle
const auto AK1 = K1;
const auto AK0 = K / AK1;
return transform_tensor_descriptor(
a_grid_desc_m_k,
make_tuple(make_unmerge_transform(make_tuple(AK0, AK1)), make_pass_through_transform(M)),
make_tuple(Sequence<1>{}, Sequence<0>{}),
make_tuple(Sequence<0, 2>{}, Sequence<1>{}));
return transform_tensor_descriptor(a_grid_desc_m_k,
make_tuple(make_unmerge_transform(make_tuple(AK0, AK1)),
make_pass_through_transform(M)),
make_tuple(Sequence<1>{}, Sequence<0>{}),
make_tuple(Sequence<0, 2>{}, Sequence<1>{}));
}
// B desc for source in blockwise copy
......@@ -280,11 +280,11 @@ struct DeviceGroupedConvFwdMultipleD_Wmma_CShuffle
const auto BK1 = K1;
const auto BK0 = K / BK1;
return transform_tensor_descriptor(
b_grid_desc_n_k,
make_tuple(make_unmerge_transform(make_tuple(BK0, BK1)), make_pass_through_transform(N)),
make_tuple(Sequence<1>{}, Sequence<0>{}),
make_tuple(Sequence<0, 2>{}, Sequence<1>{}));
return transform_tensor_descriptor(b_grid_desc_n_k,
make_tuple(make_unmerge_transform(make_tuple(BK0, BK1)),
make_pass_through_transform(N)),
make_tuple(Sequence<1>{}, Sequence<0>{}),
make_tuple(Sequence<0, 2>{}, Sequence<1>{}));
}
using AGridDesc_AK0_M_AK1 = decltype(DeviceOp::MakeAGridDescriptor_AK0_M_AK1(AGridDesc_M_K{}));
......@@ -390,10 +390,8 @@ struct DeviceGroupedConvFwdMultipleD_Wmma_CShuffle
ds_grid_desc_m_n_{},
e_grid_desc_m_n_{DeviceOp::MakeEGridDescriptor_M_N<ELayout>(e_g_n_k_wos_lengths,
e_g_n_k_wos_strides)},
a_grid_desc_ak0_m_ak1_{
DeviceOp::MakeAGridDescriptor_AK0_M_AK1(a_grid_desc_m_k_)},
b_grid_desc_bk0_n_bk1_{
DeviceOp::MakeBGridDescriptor_BK0_N_BK1(b_grid_desc_n_k_)},
a_grid_desc_ak0_m_ak1_{DeviceOp::MakeAGridDescriptor_AK0_M_AK1(a_grid_desc_m_k_)},
b_grid_desc_bk0_n_bk1_{DeviceOp::MakeBGridDescriptor_BK0_N_BK1(b_grid_desc_n_k_)},
ds_grid_desc_mblock_mperblock_nblock_nperblock_{},
e_grid_desc_mblock_mperblock_nblock_nperblock_{},
block_2_etile_map_{GridwiseOp::MakeDefaultBlock2CTileMap(e_grid_desc_m_n_, M01, N01)},
......@@ -432,12 +430,12 @@ struct DeviceGroupedConvFwdMultipleD_Wmma_CShuffle
});
// D desc
ds_grid_desc_m_n_ = DeviceOp::MakeDsGridDescriptor_M_N(ds_g_n_k_wos_lengths, ds_g_n_k_wos_strides);
ds_grid_desc_m_n_ =
DeviceOp::MakeDsGridDescriptor_M_N(ds_g_n_k_wos_lengths, ds_g_n_k_wos_strides);
// populate desc for Ds/E
e_grid_desc_mblock_mperblock_nblock_nperblock_ =
GridwiseOp::MakeEGridDescriptor_MBlock_MPerBlock_NBlock_NPerBlock(
e_grid_desc_m_n_);
GridwiseOp::MakeEGridDescriptor_MBlock_MPerBlock_NBlock_NPerBlock(e_grid_desc_m_n_);
ds_grid_desc_mblock_mperblock_nblock_nperblock_ =
GridwiseOp::MakeDsGridDescriptor_MBlock_MPerBlock_NBlock_NPerBlock(
ds_grid_desc_m_n_);
......@@ -471,7 +469,7 @@ struct DeviceGroupedConvFwdMultipleD_Wmma_CShuffle
BGridDesc_BK0_N_BK1 b_grid_desc_bk0_n_bk1_;
typename GridwiseOp::DsGridDescriptor_MBlock_MPerBlock_NBlock_NPerBlock
ds_grid_desc_mblock_mperblock_nblock_nperblock_;
typename GridwiseOp::EGridDescriptor_MBlock_MPerBlock_NBlock_NPerBlock
typename GridwiseOp::EGridDescriptor_MBlock_MPerBlock_NBlock_NPerBlock
e_grid_desc_mblock_mperblock_nblock_nperblock_;
// block-to-e-tile map
......@@ -722,10 +720,10 @@ struct DeviceGroupedConvFwdMultipleD_Wmma_CShuffle
// check Gridwise GEMM
return GridwiseOp::CheckValidity(arg.a_grid_desc_ak0_m_ak1_,
arg.b_grid_desc_bk0_n_bk1_,
arg.ds_grid_desc_m_n_,
arg.e_grid_desc_m_n_,
arg.block_2_etile_map_);
arg.b_grid_desc_bk0_n_bk1_,
arg.ds_grid_desc_m_n_,
arg.e_grid_desc_m_n_,
arg.block_2_etile_map_);
}
bool IsSupportedArgument(const BaseArgument* p_arg) override
......
......@@ -73,8 +73,8 @@ struct DeviceMultipleReduceMultiBlock : public DeviceMultipleReduce<Rank,
static_for<0, NumReduction, 1>{}([&](auto I) {
using OutDataType = remove_cvref_t<decltype(OutDataTypeTuple{}[I])>;
flag =
flag && ck::reduce::InMemoryDataOperatonSupportedOnDataType<OutMemoryDataOperation,
OutDataType>::value;
flag && ck::reduce::InMemoryDataOperationSupportedOnDataType<OutMemoryDataOperation,
OutDataType>::value;
});
return flag;
......@@ -270,8 +270,8 @@ struct DeviceMultipleReduceMultiBlock : public DeviceMultipleReduce<Rank,
const std::array<index_t, NumOutputDim>& outLengths,
const std::array<std::array<index_t, NumOutputDim>, NumReduction>& outStridesArray,
const std::array<int, NumReduceDim>& reduceDims,
const std::array<const void*, NumReduction>& alphas,
const std::array<const void*, NumReduction>& betas,
const std::array<double, NumReduction>& alphas,
const std::array<double, NumReduction>& betas,
const void* in_dev,
const std::array<void*, NumReduction>& out_dev_buffers,
const InElementwiseOperationTuple in_elementwise_op_tuple,
......@@ -286,8 +286,8 @@ struct DeviceMultipleReduceMultiBlock : public DeviceMultipleReduce<Rank,
for(size_t i = 0; i < NumReduction; i++)
{
alpha_values_(i) = *static_cast<const AccDataType*>(alphas[i]);
beta_values_(i) = *static_cast<const AccDataType*>(betas[i]);
alpha_values_(i) = static_cast<AccDataType>(alphas[i]);
beta_values_(i) = static_cast<AccDataType>(betas[i]);
};
in_dev_ = static_cast<const InDataType*>(in_dev);
......@@ -547,8 +547,8 @@ struct DeviceMultipleReduceMultiBlock : public DeviceMultipleReduce<Rank,
const std::array<index_t, NumOutputDim> outLengths,
const std::array<std::array<index_t, NumOutputDim>, NumReduction> outStridesArray,
const std::array<int, NumReduceDim> reduceDims,
const std::array<const void*, NumReduction> alphas,
const std::array<const void*, NumReduction> betas,
const std::array<double, NumReduction> alphas,
const std::array<double, NumReduction> betas,
const void* in_dev,
const std::array<void*, NumReduction> out_dev_buffers,
const InElementwiseOperationTuple in_elementwise_op_tuple,
......
......@@ -195,8 +195,8 @@ struct DeviceMultipleReduceThreadWise : public DeviceMultipleReduce<Rank,
const std::array<index_t, NumOutputDim>& outLengths,
const std::array<std::array<index_t, NumOutputDim>, NumReduction>& outStridesArray,
const std::array<int, NumReduceDim>& reduceDims,
const std::array<const void*, NumReduction>& alphas,
const std::array<const void*, NumReduction>& betas,
const std::array<double, NumReduction>& alphas,
const std::array<double, NumReduction>& betas,
const void* in_dev,
const std::array<void*, NumReduction>& out_dev_buffers,
const InElementwiseOperationTuple in_elementwise_op_tuple,
......@@ -211,8 +211,8 @@ struct DeviceMultipleReduceThreadWise : public DeviceMultipleReduce<Rank,
for(size_t i = 0; i < NumReduction; i++)
{
alpha_values_(i) = *static_cast<const AccDataType*>(alphas[i]);
beta_values_(i) = *static_cast<const AccDataType*>(betas[i]);
alpha_values_(i) = static_cast<AccDataType>(alphas[i]);
beta_values_(i) = static_cast<AccDataType>(betas[i]);
};
in_dev_ = static_cast<const InDataType*>(in_dev);
......@@ -374,8 +374,8 @@ struct DeviceMultipleReduceThreadWise : public DeviceMultipleReduce<Rank,
const std::array<index_t, NumOutputDim> outLengths,
const std::array<std::array<index_t, NumOutputDim>, NumReduction> outStridesArray,
const std::array<int, NumReduceDim> reduceDims,
const std::array<const void*, NumReduction> alphas,
const std::array<const void*, NumReduction> betas,
const std::array<double, NumReduction> alphas,
const std::array<double, NumReduction> betas,
const void* in_dev,
const std::array<void*, NumReduction> out_dev_buffers,
const InElementwiseOperationTuple in_elementwise_op_tuple,
......
......@@ -10,46 +10,11 @@
#include "ck/tensor_operation/gpu/device/device_normalization.hpp"
#include "ck/tensor_operation/gpu/device/device_reduce.hpp"
#include "ck/tensor_operation/gpu/device/impl/device_reduce_common.hpp"
#include "ck/tensor_operation/gpu/grid/gridwise_normalization_welford_variance.hpp"
#include "ck/tensor_operation/gpu/grid/gridwise_normalization_selector.hpp"
#include "ck/tensor_operation/gpu/grid/gridwise_set_buffer_value.hpp"
#include "ck/host_utility/device_prop.hpp"
#include "ck/host_utility/kernel_launch.hpp"
namespace ck {
template <typename GridwiseReduction,
typename XDataType,
typename GammaDataType,
typename BetaDataType,
typename YDataType,
typename AccDataType,
typename AccElementwiseOperation,
typename GridDesc_M_K>
__global__ void kernel_normalization(const GridDesc_M_K x_grid_desc_m_k,
const GridDesc_M_K gamma_grid_desc_m_k,
const GridDesc_M_K beta_grid_desc_m_k,
const GridDesc_M_K y_grid_desc_m_k,
index_t num_k_block_tile_iteration,
AccDataType epsilon,
const XDataType* const __restrict__ p_x_global,
const GammaDataType* const __restrict__ p_gamma_global,
const BetaDataType* const __restrict__ p_beta_global,
YDataType* const __restrict__ p_y_global,
const AccElementwiseOperation acc_elementwise_op)
{
GridwiseReduction::Run(x_grid_desc_m_k,
gamma_grid_desc_m_k,
beta_grid_desc_m_k,
y_grid_desc_m_k,
num_k_block_tile_iteration,
epsilon,
p_x_global,
p_gamma_global,
p_beta_global,
p_y_global,
acc_elementwise_op);
};
} // namespace ck
namespace ck {
namespace tensor_operation {
namespace device {
......@@ -58,9 +23,9 @@ namespace device {
template <typename XDataType,
typename GammaDataType,
typename BetaDataType,
typename AccDataType,
typename ComputeDataType,
typename YDataType,
typename AccElementwiseOperation,
typename YElementwiseOperation,
index_t Rank,
index_t NumReduceDim,
index_t BlockSize,
......@@ -74,16 +39,18 @@ template <typename XDataType,
index_t GammaSrcVectorSize,
index_t BetaSrcVectorDim,
index_t BetaSrcVectorSize,
index_t YDstVectorSize>
index_t YDstVectorSize,
bool UseWelford = true>
struct DeviceNormalizationImpl : public DeviceNormalization<XDataType,
GammaDataType,
BetaDataType,
AccDataType,
ComputeDataType,
YDataType,
AccElementwiseOperation,
YElementwiseOperation,
Rank,
NumReduceDim>
{
static_assert(BlockSize == MThreadClusterSize * KThreadClusterSize);
static_assert(
((GammaSrcVectorDim == 0 && MThreadSliceSize % GammaSrcVectorSize == 0) ||
(GammaSrcVectorDim == 1 && KThreadSliceSize % GammaSrcVectorSize == 0)),
......@@ -167,51 +134,6 @@ struct DeviceNormalizationImpl : public DeviceNormalization<XDataType,
using GridDesc_M_K = decltype(MakeSrc2dDescriptor({1}, {1}, 1, 1));
using GridwiseReduceLayernormGeneric =
GridwiseNormalizationWelfordVariance_mk_to_mk<XDataType,
GammaDataType,
BetaDataType,
YDataType,
AccDataType,
AccElementwiseOperation,
GridDesc_M_K,
BlockSize,
MThreadClusterSize,
KThreadClusterSize,
MThreadSliceSize,
KThreadSliceSize,
XYSrcVectorDim,
XSrcVectorSize,
GammaSrcVectorDim,
GammaSrcVectorSize,
BetaSrcVectorDim,
BetaSrcVectorSize,
XYSrcVectorDim,
YDstVectorSize,
false>;
using GridwiseNormalizationSweepOnce =
GridwiseNormalizationWelfordVariance_mk_to_mk<XDataType,
GammaDataType,
BetaDataType,
YDataType,
AccDataType,
AccElementwiseOperation,
GridDesc_M_K,
BlockSize,
MThreadClusterSize,
KThreadClusterSize,
MThreadSliceSize,
KThreadSliceSize,
XYSrcVectorDim,
XSrcVectorSize,
GammaSrcVectorDim,
GammaSrcVectorSize,
BetaSrcVectorDim,
BetaSrcVectorSize,
XYSrcVectorDim,
YDstVectorSize,
true>;
struct Argument : public BaseArgument
{
Argument(const std::vector<index_t> lengths,
......@@ -220,19 +142,20 @@ struct DeviceNormalizationImpl : public DeviceNormalization<XDataType,
const std::vector<index_t> betaStrides,
const std::vector<index_t> yStrides,
const std::vector<index_t> reduceDims,
AccElementwiseOperation acc_elementwise_op,
AccDataType epsilon,
YElementwiseOperation y_elementwise_op,
double epsilon,
const XDataType* p_x,
const GammaDataType* p_gamma,
const BetaDataType* p_beta,
YDataType* p_y)
: epsilon_(epsilon),
p_x_(p_x),
: p_x_(p_x),
p_gamma_(p_gamma),
p_beta_(p_beta),
p_y_(p_y),
acc_elementwise_op_(acc_elementwise_op)
y_elementwise_op_(y_elementwise_op)
{
epsilon_ = static_cast<ComputeDataType>(epsilon);
Lengths_ = shuffle_tensor_dimensions<Rank, NumReduceDim>(lengths, reduceDims);
xStrides_ = shuffle_tensor_dimensions<Rank, NumReduceDim>(xStrides, reduceDims);
yStrides_ = shuffle_tensor_dimensions<Rank, NumReduceDim>(yStrides, reduceDims);
......@@ -264,7 +187,7 @@ struct DeviceNormalizationImpl : public DeviceNormalization<XDataType,
x_grid_desc_m_k_.GetLength(Number<1>{}) <= KThreadClusterSize * KThreadSliceSize;
}
AccDataType epsilon_;
ComputeDataType epsilon_;
const XDataType* p_x_;
const GammaDataType* p_gamma_;
......@@ -277,7 +200,7 @@ struct DeviceNormalizationImpl : public DeviceNormalization<XDataType,
std::vector<index_t> betaStrides_;
std::vector<index_t> yStrides_;
AccElementwiseOperation acc_elementwise_op_;
YElementwiseOperation y_elementwise_op_;
int blkGroupSize_;
int numBlockTileIteration_;
......@@ -294,23 +217,27 @@ struct DeviceNormalizationImpl : public DeviceNormalization<XDataType,
{
float Run(const Argument& arg, const StreamConfig& stream_config = StreamConfig{})
{
const auto kernel_main = arg.isSweeponce_
? kernel_normalization<GridwiseNormalizationSweepOnce,
XDataType,
GammaDataType,
BetaDataType,
YDataType,
AccDataType,
AccElementwiseOperation,
GridDesc_M_K>
: kernel_normalization<GridwiseReduceLayernormGeneric,
XDataType,
GammaDataType,
BetaDataType,
YDataType,
AccDataType,
AccElementwiseOperation,
GridDesc_M_K>;
auto kernel_main = NormalizationKernelSelector<XDataType,
GammaDataType,
BetaDataType,
YDataType,
ComputeDataType,
YElementwiseOperation,
GridDesc_M_K,
BlockSize,
MThreadClusterSize,
KThreadClusterSize,
MThreadSliceSize,
KThreadSliceSize,
XYSrcVectorDim,
XSrcVectorSize,
GammaSrcVectorDim,
GammaSrcVectorSize,
BetaSrcVectorDim,
BetaSrcVectorSize,
XYSrcVectorDim,
YDstVectorSize,
UseWelford>(arg.isSweeponce_);
float avg_time = 0;
avg_time += launch_and_time_kernel(stream_config,
......@@ -328,7 +255,7 @@ struct DeviceNormalizationImpl : public DeviceNormalization<XDataType,
arg.p_gamma_,
arg.p_beta_,
arg.p_y_,
arg.acc_elementwise_op_);
arg.y_elementwise_op_);
return (avg_time);
};
......@@ -421,14 +348,14 @@ struct DeviceNormalizationImpl : public DeviceNormalization<XDataType,
const std::vector<index_t> betaStrides,
const std::vector<index_t> yStrides,
const std::vector<index_t> reduceDims,
AccDataType epsilon,
double epsilon,
const void* p_x,
const void* p_gamma,
const void* p_beta,
void* p_y,
void* p_saveMean,
void* p_saveInvVar,
AccElementwiseOperation acc_elementwise_op) override
YElementwiseOperation y_elementwise_op) override
{
// TODO
// Optional cache of the intermediate results (mean and InvVariance) during the
......@@ -442,7 +369,7 @@ struct DeviceNormalizationImpl : public DeviceNormalization<XDataType,
betaStrides,
yStrides,
reduceDims,
acc_elementwise_op,
y_elementwise_op,
epsilon,
static_cast<const XDataType*>(p_x),
static_cast<const GammaDataType*>(p_gamma),
......@@ -461,8 +388,8 @@ struct DeviceNormalizationImpl : public DeviceNormalization<XDataType,
// clang-format off
str << "DeviceNormalizationImpl<" << BlockSize << ",";
str << "M_C" << MThreadClusterSize << "_S" << MThreadSliceSize << ",";
str << "K_C" << KThreadClusterSize << "_S" << KThreadSliceSize << ",";
str << "Cluster_MK_" << MThreadClusterSize << "_" << KThreadClusterSize << ",";
str << "Slice_MK_" << MThreadSliceSize << "_" << KThreadSliceSize << ",";
str << "XYSrcVectorDim_" << XYSrcVectorDim << ",";
str << "VectorSize_X" << XSrcVectorSize << "_Gamma" << GammaSrcVectorSize << "_Beta" << BetaSrcVectorSize << "_Y" << YDstVectorSize << ">";
// clang-format on
......
......@@ -40,8 +40,16 @@ template <typename InDataType,
index_t InSrcVectorDim,
index_t InSrcVectorSize,
index_t OutDstVectorSize>
struct DeviceReduceMultiBlock
: public DeviceReduce<Rank, NumReduceDim, InElementwiseOperation, AccElementwiseOperation>
struct DeviceReduceMultiBlock : public DeviceReduce<InDataType,
AccDataType,
OutDataType,
Rank,
NumReduceDim,
ReduceOperation,
InElementwiseOperation,
AccElementwiseOperation,
PropagateNan,
OutputIndex>
{
static_assert(Rank <= 6, "Bigger Rank size is not supported!");
static_assert(BlockSize == MThreadClusterSize * KThreadClusterSize,
......@@ -67,8 +75,8 @@ struct DeviceReduceMultiBlock
static constexpr bool use_multiblock =
(OutMemoryDataOperation == InMemoryDataOperationEnum::AtomicAdd);
static_assert(ck::reduce::InMemoryDataOperatonSupportedOnDataType<OutMemoryDataOperation,
OutDataType>::value,
static_assert(ck::reduce::InMemoryDataOperationSupportedOnDataType<OutMemoryDataOperation,
OutDataType>::value,
"The OutDataType must support the specified OutMemoryDataOperation!");
static_assert(!use_multiblock || (use_multiblock && !OutputIndex),
......@@ -209,8 +217,8 @@ struct DeviceReduceMultiBlock
const std::array<index_t, NumDstDim> outLengths,
const std::array<index_t, NumDstDim> outStrides,
const std::array<int, NumReduceDim> reduceDims,
float alpha,
float beta,
double alpha,
double beta,
const InDataType* in_dev,
const IndexDataType* in_index_dev,
OutDataType* out_dev,
......@@ -494,8 +502,8 @@ struct DeviceReduceMultiBlock
const std::array<index_t, NumDstDim> outLengths,
const std::array<index_t, NumDstDim> outStrides,
const std::array<int, NumReduceDim> reduceDims,
float alpha,
float beta,
double alpha,
double beta,
const void* in_dev,
const void* in_index_dev,
void* out_dev,
......
......@@ -35,8 +35,17 @@ template <typename InDataType,
index_t InSrcVectorDim,
index_t InSrcVectorSize,
index_t OutDstVectorSize>
struct DeviceReduceThreadWise
: public DeviceReduce<Rank, NumReduceDim, InElementwiseOperation, AccElementwiseOperation>
struct DeviceReduceThreadWise : public DeviceReduce<InDataType,
AccDataType,
OutDataType,
Rank,
NumReduceDim,
ReduceOperation,
InElementwiseOperation,
AccElementwiseOperation,
PropagateNan,
OutputIndex>
{
static_assert(Rank <= 6, "Bigger Rank size is not supported!");
......@@ -156,8 +165,8 @@ struct DeviceReduceThreadWise
const std::array<index_t, NumDstDim> outLengths,
const std::array<index_t, NumDstDim> outStrides,
const std::array<int, NumReduceDim> reduceDims,
float alpha,
float beta,
double alpha,
double beta,
const InDataType* in_dev,
OutDataType* out_dev,
IndexDataType* out_index_dev,
......@@ -332,8 +341,8 @@ struct DeviceReduceThreadWise
const std::array<index_t, NumDstDim> outLengths,
const std::array<index_t, NumDstDim> outStrides,
const std::array<int, NumReduceDim> reduceDims,
float alpha,
float beta,
double alpha,
double beta,
const void* in_dev,
const void* in_index_dev,
void* out_dev,
......
......@@ -156,19 +156,20 @@ struct DeviceSoftmaxImpl : public DeviceSoftmax<InDataType,
Argument(const std::vector<index_t> inLengths,
const std::vector<index_t> inStrides,
const std::vector<index_t> reduceDims,
AccDataType alpha,
AccDataType beta,
double alpha,
double beta,
const InDataType* in_dev,
OutDataType* out_dev,
InElementwiseOp in_elementwise_op,
AccElementwiseOp acc_elementwise_op)
: alpha_{alpha},
beta_{beta},
in_dev_{in_dev},
: in_dev_{in_dev},
out_dev_{out_dev},
in_elementwise_op_{in_elementwise_op},
acc_elementwise_op_{acc_elementwise_op}
{
alpha_ = static_cast<AccDataType>(alpha);
beta_ = static_cast<AccDataType>(beta);
if(Rank != inLengths.size() || Rank != inStrides.size() ||
NumReduceDim != reduceDims.size())
{
......@@ -336,8 +337,8 @@ struct DeviceSoftmaxImpl : public DeviceSoftmax<InDataType,
static auto MakeArgument(const std::vector<index_t> inLengths,
const std::vector<index_t> inStrides,
const std::vector<int> reduceDims,
const AccDataType alpha,
const AccDataType beta,
double alpha,
double beta,
const InDataType* in_dev,
OutDataType* out_dev,
InElementwiseOp in_elementwise_op,
......@@ -375,8 +376,8 @@ struct DeviceSoftmaxImpl : public DeviceSoftmax<InDataType,
std::unique_ptr<BaseArgument> MakeArgumentPointer(const std::vector<index_t> inLengths,
const std::vector<index_t> inStrides,
const std::vector<int> reduceDims,
const void* alpha,
const void* beta,
double alpha,
double beta,
const void* in_dev,
void* out_dev,
InElementwiseOp in_elementwise_op,
......@@ -385,8 +386,8 @@ struct DeviceSoftmaxImpl : public DeviceSoftmax<InDataType,
return std::make_unique<Argument>(inLengths,
inStrides,
reduceDims,
*static_cast<const AccDataType*>(alpha),
*static_cast<const AccDataType*>(beta),
alpha,
beta,
static_cast<const InDataType*>(in_dev),
static_cast<OutDataType*>(out_dev),
in_elementwise_op,
......
......@@ -12,7 +12,7 @@
#include "ck/utility/common_header.hpp"
#include "ck/tensor_description/tensor_descriptor.hpp"
#include "ck/tensor_description/tensor_descriptor_helper.hpp"
#include "ck/tensor_operation/gpu/grid/gridwise_sparse_embedding3_forward_layernorm.hpp"
#include "ck/tensor_operation/gpu/grid/gridwise_sparse_embeddings_forward_layernorm.hpp"
namespace ck {
namespace tensor_operation {
......@@ -24,16 +24,17 @@ template <typename EmbType,
typename BetaDataType,
typename AccDataType,
typename OutType,
typename EmbElementwiseOperation,
ck::index_t BlockSize,
ck::index_t DimClusterSize,
ck::index_t RowClusterSize,
ck::index_t DimPerBlock,
ck::index_t RowPerBlock,
ck::index_t DimThreadSize,
ck::index_t RowVectorSize>
struct DeviceSparseEmbedding3ForwardLayernorm : public BaseOperator
ck::index_t RowVectorSize,
ck::index_t NumEmbeddings>
struct DeviceSparseEmbeddingsForwardLayernorm : public BaseOperator
{
static auto MakeOutputDescriptor(const index_t index_length, const index_t rows)
{
return make_naive_tensor_descriptor_packed(make_tuple(index_length, rows));
......@@ -42,96 +43,79 @@ struct DeviceSparseEmbedding3ForwardLayernorm : public BaseOperator
struct Argument : public BaseArgument
{
Argument(OutType* p_out,
const EmbType* p_emb_a,
const EmbType* p_emb_b,
const EmbType* p_emb_c,
const IndexType* p_index_a,
const IndexType* p_index_b,
const IndexType* p_index_c,
const ck::Array<EmbType*, NumEmbeddings>& p_embs,
const ck::Array<IndexType*, NumEmbeddings>& p_indexs,
const GammaDataType* p_gamma,
const BetaDataType* p_beta,
const ck::index_t NumRows,
const ck::index_t EmbeddingDim,
const ck::index_t IndexLength,
const AccDataType epsilon)
const AccDataType epsilon,
const EmbElementwiseOperation emb_elementwise_op)
: p_out_(p_out),
p_emb_a_(p_emb_a),
p_emb_b_(p_emb_b),
p_emb_c_(p_emb_c),
p_index_a_(p_index_a),
p_index_b_(p_index_b),
p_index_c_(p_index_c),
p_embs_(p_embs),
p_indexs_(p_indexs),
p_gamma_(p_gamma),
p_beta_(p_beta),
NumRows_(NumRows),
EmbeddingDim_(EmbeddingDim),
IndexLength_(IndexLength),
epsilon_(epsilon)
epsilon_(epsilon),
emb_elementwise_op_(emb_elementwise_op)
{
grid_size_ = (IndexLength + DimClusterSize - 1) / DimClusterSize;
}
OutType* p_out_;
const EmbType* p_emb_a_;
const EmbType* p_emb_b_;
const EmbType* p_emb_c_;
const IndexType* p_index_a_;
const IndexType* p_index_b_;
const IndexType* p_index_c_;
ck::Array<EmbType*, NumEmbeddings> p_embs_;
ck::Array<IndexType*, NumEmbeddings> p_indexs_;
const GammaDataType* p_gamma_;
const BetaDataType* p_beta_;
ck::index_t NumRows_;
ck::index_t EmbeddingDim_;
ck::index_t IndexLength_;
AccDataType epsilon_;
EmbElementwiseOperation emb_elementwise_op_;
size_t grid_size_;
};
virtual std::unique_ptr<BaseArgument> MakeArgumentPointer(void* p_out,
const void* p_emb_a,
const void* p_emb_b,
const void* p_emb_c,
const void* p_index_a,
const void* p_index_b,
const void* p_index_c,
const void* p_gamma,
const void* p_beta,
ck::index_t NumRows,
ck::index_t EmbeddingDim,
ck::index_t IndexLength,
const AccDataType epsilon)
std::unique_ptr<BaseArgument>
MakeArgumentPointer(void* p_out,
const ck::Array<EmbType*, NumEmbeddings>& p_embs,
const ck::Array<IndexType*, NumEmbeddings>& p_indexs,
const void* p_gamma,
const void* p_beta,
ck::index_t EmbeddingDim,
ck::index_t IndexLength,
const AccDataType epsilon,
const EmbElementwiseOperation emb_elementwise_op)
{
return std::make_unique<Argument>(reinterpret_cast<OutType*>(p_out),
reinterpret_cast<const EmbType*>(p_emb_a),
reinterpret_cast<const EmbType*>(p_emb_b),
reinterpret_cast<const EmbType*>(p_emb_c),
reinterpret_cast<const IndexType*>(p_index_a),
reinterpret_cast<const IndexType*>(p_index_b),
reinterpret_cast<const IndexType*>(p_index_c),
p_embs,
p_indexs,
reinterpret_cast<const GammaDataType*>(p_gamma),
reinterpret_cast<const BetaDataType*>(p_beta),
NumRows,
EmbeddingDim,
IndexLength,
epsilon);
epsilon,
emb_elementwise_op);
}
using GridwiseSparseEmbedding =
GridwiseSparseEmbedding3ForwardLayernorm<EmbType,
GridwiseSparseEmbeddingsForwardLayernorm<EmbType,
IndexType,
GammaDataType,
BetaDataType,
AccDataType,
OutType,
decltype(MakeOutputDescriptor(1, 1)),
EmbElementwiseOperation,
BlockSize,
DimClusterSize,
RowClusterSize,
DimPerBlock,
RowPerBlock,
DimThreadSize,
RowVectorSize>;
RowVectorSize,
NumEmbeddings>;
struct Invoker : public BaseInvoker
{
......@@ -139,14 +123,16 @@ struct DeviceSparseEmbedding3ForwardLayernorm : public BaseOperator
{
auto out_desc = MakeOutputDescriptor(arg.IndexLength_, arg.EmbeddingDim_);
const auto kernel_main =
kernel_sparse_embedding3_forward_layernorm<GridwiseSparseEmbedding,
kernel_sparse_embeddings_forward_layernorm<GridwiseSparseEmbedding,
EmbType,
IndexType,
GammaDataType,
BetaDataType,
AccDataType,
OutType,
decltype(out_desc)>;
decltype(out_desc),
EmbElementwiseOperation,
NumEmbeddings>;
float avg_time = 0;
avg_time += launch_and_time_kernel(stream_config,
kernel_main,
......@@ -154,16 +140,13 @@ struct DeviceSparseEmbedding3ForwardLayernorm : public BaseOperator
dim3(BlockSize),
0,
arg.p_out_,
arg.p_emb_a_,
arg.p_emb_b_,
arg.p_emb_c_,
arg.p_index_a_,
arg.p_index_b_,
arg.p_index_c_,
arg.p_embs_,
arg.p_indexs_,
arg.p_gamma_,
arg.p_beta_,
out_desc,
arg.epsilon_);
arg.epsilon_,
arg.emb_elementwise_op_);
return (avg_time);
}
......@@ -177,7 +160,7 @@ struct DeviceSparseEmbedding3ForwardLayernorm : public BaseOperator
static bool IsSupportedArgument(const Argument* p_arg)
{
return (RowPerBlock == p_arg->EmbeddingDim_) && (p_arg->NumRows_ % DimPerBlock == 0);
return (RowPerBlock == p_arg->EmbeddingDim_);
}
bool IsSupportedArgument(const BaseArgument* p_arg) override
......@@ -195,7 +178,7 @@ struct DeviceSparseEmbedding3ForwardLayernorm : public BaseOperator
auto str = std::stringstream();
// clang-format off
str << "DeviceSparseEmbedding3ForwardLayernorm_"<< BlockSize << "_" <<
str << "DeviceSparseEmbeddingsForwardLayernorm_"<< BlockSize << "_" <<
DimClusterSize << "x" << RowClusterSize << "_" <<
DimPerBlock << "x" << RowPerBlock << "_" <<
DimThreadSize << "x" << RowVectorSize;
......
......@@ -49,6 +49,14 @@ struct Add
y = x0 + x1;
};
template <>
__host__ __device__ constexpr void
operator()<float>(float& y, const float& x0, const bhalf_t& x1) const
{
const float x1_tmp = ck::type_convert<float>(x1);
y = x0 + x1_tmp;
}
template <>
__host__ __device__ constexpr void
operator()<bhalf_t>(bhalf_t& y, const bhalf_t& x0, const bhalf_t& x1) const
......@@ -67,6 +75,30 @@ struct Add
};
};
struct ScaleAdd
{
__host__ __device__ ScaleAdd(float scale) : scale_(scale) {}
template <typename Y, typename X0, typename X1>
__host__ __device__ constexpr void operator()(Y& y, const X0& x0, const X1& x1) const;
template <>
__host__ __device__ void
operator()<float, float, half_t>(float& y, const float& x0, const half_t& x1) const
{
y = scale_ * x0 + ck::type_convert<float>(x1);
};
template <>
__host__ __device__ void
operator()<float, float, bhalf_t>(float& y, const float& x0, const bhalf_t& x1) const
{
y = scale_ * x0 + ck::type_convert<float>(x1);
};
float scale_;
};
struct Subtract
{
template <typename T>
......@@ -118,6 +150,13 @@ struct Bilinear
template <typename Y, typename X0, typename X1>
__host__ __device__ constexpr void operator()(Y&, const X0&, const X1&) const;
template <>
__host__ __device__ constexpr void
operator()<double, double, double>(double& y, const double& x0, const double& x1) const
{
y = alpha_ * x0 + beta_ * x1;
};
template <>
__host__ __device__ constexpr void
operator()<float, float, float>(float& y, const float& x0, const float& x1) const
......
......@@ -172,6 +172,42 @@ struct AddAdd
}
};
// C = A * B
// E = (C + D0) x D1
struct AddMultiply
{
template <typename E, typename C, typename D0, typename D1>
__host__ __device__ void operator()(E& e, const C& c, const D0& d0, const D1& d1) const;
template <>
__host__ __device__ void operator()<half_t, half_t, half_t, half_t>(half_t& e,
const half_t& c,
const half_t& d0,
const half_t& d1) const
{
const half_t y = (c + d0) * d1;
e = y;
}
template <>
__host__ __device__ void operator()<half_t, float, half_t, half_t>(half_t& e,
const float& c,
const half_t& d0,
const half_t& d1) const
{
const half_t y = (type_convert<half_t>(c) + d0) * d1;
e = y;
}
template <>
__host__ __device__ void operator()<float, float, half_t, half_t>(float& e,
const float& c,
const half_t& d0,
const half_t& d1) const
{
const float y = (c + d0) * d1;
e = y;
}
};
// C = A * B
// E = FastGelu(C + D0 + D1)
struct AddAddFastGelu
......@@ -278,6 +314,40 @@ struct Normalize
double epsilon_;
};
// used by BatchNorm inference
// y = gamma * (x-mean) / sqrt(epsilon+variance) + beta
// The data type of mean and variance is used as AccDataType
struct NormalizeInInfer
{
NormalizeInInfer(double epsilon = 1e-4) : epsilon_(epsilon) {}
template <typename T1, typename T2, typename T3, typename T4>
__host__ __device__ constexpr void operator()(T1& y,
const T1& x,
const T2& mean,
const T2& variance,
const T3& gamma,
const T4& beta) const
{
static_assert(std::is_same<T2, float>::value || std::is_same<T2, double>::value,
"Data type is not supported by this operation!");
using ck::type_convert;
using ck::math::sqrt;
T2 tmp_x, tmp_y;
tmp_x = type_convert<T2>(x);
tmp_y = ((tmp_x - mean) / sqrt(variance + type_convert<T2>(epsilon_))) *
type_convert<T2>(gamma) +
type_convert<T2>(beta);
y = type_convert<T1>(tmp_y);
};
double epsilon_;
};
template <typename Y, typename X>
struct UnaryTypeConvert;
......
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment