"mmdet3d/vscode:/vscode.git/clone" did not exist on "53e0622977f437167cbbf5ab531782f40a3382ff"
Commit cc0fa73a authored by Chao Liu's avatar Chao Liu
Browse files

added implicit_gemm_v1 lds double_buffer

parent c075d3f7
......@@ -3,6 +3,7 @@
#include "device.hpp"
#include "gridwise_convolution_wrapper.hip.hpp"
#include "gridwise_convolution_implicit_gemm_v1_chwn_cyxk_khwn.hip.hpp"
#include "gridwise_convolution_implicit_gemm_v1_chwn_cyxk_khwn_lds_double_buffer.hip.hpp"
template <class T, class InDesc, class WeiDesc, class OutDesc>
void device_implicit_gemm_convolution_1_chwn_cyxk_khwn(InDesc,
......@@ -289,7 +290,12 @@ void device_implicit_gemm_convolution_1_chwn_cyxk_khwn(InDesc,
for(index_t i = 0; i < nrepeat; ++i)
{
constexpr auto gridwise_conv =
GridwiseConvolutionImplicitGemm_v1_chwn_cyxk_khwn<GridSize,
#if 0
GridwiseConvolutionImplicitGemm_v1_chwn_cyxk_khwn
#else
GridwiseConvolutionImplicitGemm_v1_chwn_cyxk_khwn_lds_double_buffer
#endif
<GridSize,
BlockSize,
T,
decltype(in_chwn_desc),
......
......@@ -189,7 +189,7 @@ void device_implicit_gemm_convolution_2_chwn_cyxk_khwn(InDesc,
constexpr index_t WeiBlockCopyDataPerRead = 4;
constexpr index_t BlockSize = 256;
#elif 0
#elif 1
// 1x1, 14x14, Pascal, enable lds_double_buffer, disable register double buffer
constexpr index_t BPerBlock = 64;
constexpr index_t KPerBlock = 128;
......@@ -217,7 +217,7 @@ void device_implicit_gemm_convolution_2_chwn_cyxk_khwn(InDesc,
constexpr index_t OutThreadCopyDataPerWrite = 4;
constexpr index_t BlockSize = 128;
#elif 1
#elif 0
// 1x1, 14x14, Vega 20, enable lds_double_buffer, disable register_double_buffer
constexpr index_t BPerBlock = 128;
constexpr index_t KPerBlock = 128;
......
......@@ -663,7 +663,7 @@ int main(int argc, char* argv[])
device_direct_convolution_2_vectorized_nchw_kcyx_nkhw
#elif 1
device_implicit_gemm_convolution_1_chwn_cyxk_khwn
#elif 0
#elif 1
device_implicit_gemm_convolution_2_chwn_cyxk_khwn
#endif
(in_nchw_desc, in_nchw, wei_kcyx_desc, wei_kcyx, out_nkhw_desc, out_nkhw_device, nrepeat);
......
......@@ -491,7 +491,7 @@ struct Blockwise2dTensorCopy3
}
__device__ void RunLoadRegisterClipboard(const Float* __restrict__ p_src,
Float* p_clipboard) const
Float* __restrict__ p_clipboard) const
{
constexpr auto I0 = Number<0>{};
constexpr auto I1 = Number<1>{};
......
......@@ -576,9 +576,168 @@ struct Blockwise4dTensorCopy3
iloop_d2 * thread_per_d2,
iloop_d3 * thread_per_d3 * DataPerRead);
*(reinterpret_cast<vector_t*>(p_dst + dst_offset + mDstMyThreadOffset)) =
*(reinterpret_cast<const vector_t*>(p_src + src_offset +
mSrcMyThreadOffset));
*(reinterpret_cast<vector_t*>(&p_dst[dst_offset + mDstMyThreadOffset])) =
*(reinterpret_cast<const vector_t*>(&p_src[src_offset +
mSrcMyThreadOffset]));
}
}
}
}
}
__device__ constexpr index_t GetRegisterClipboardSize() const
{
static_assert(is_same<Float, float>::value, "wrong! only support float!\n");
constexpr auto I0 = Number<0>{};
constexpr auto I1 = Number<1>{};
constexpr auto I2 = Number<2>{};
constexpr auto I3 = Number<3>{};
constexpr index_t L0 = CopyLengths{}.Get(I0);
constexpr index_t L1 = CopyLengths{}.Get(I1);
constexpr index_t L2 = CopyLengths{}.Get(I2);
constexpr index_t L3 = CopyLengths{}.Get(I3);
constexpr index_t thread_per_d0 = ThreadPerDims{}.Get(I0);
constexpr index_t thread_per_d1 = ThreadPerDims{}.Get(I1);
constexpr index_t thread_per_d2 = ThreadPerDims{}.Get(I2);
constexpr index_t thread_per_d3 = ThreadPerDims{}.Get(I3);
constexpr index_t nloop_d0 = L0 / thread_per_d0;
constexpr index_t nloop_d1 = L1 / thread_per_d1;
constexpr index_t nloop_d2 = L2 / thread_per_d2;
constexpr index_t nloop_d3 = integer_divide_ceil(L3, thread_per_d3 * DataPerRead);
return DataPerRead * nloop_d0 * nloop_d1 * nloop_d2 * nloop_d3;
}
__device__ void RunLoadRegisterClipboard(const Float* __restrict__ p_src, Float* __restrict__ p_clipboard) const
{
constexpr auto I0 = Number<0>{};
constexpr auto I1 = Number<1>{};
constexpr auto I2 = Number<2>{};
constexpr auto I3 = Number<3>{};
constexpr index_t L0 = CopyLengths{}.Get(I0);
constexpr index_t L1 = CopyLengths{}.Get(I1);
constexpr index_t L2 = CopyLengths{}.Get(I2);
constexpr index_t L3 = CopyLengths{}.Get(I3);
constexpr index_t thread_per_d0 = ThreadPerDims{}.Get(I0);
constexpr index_t thread_per_d1 = ThreadPerDims{}.Get(I1);
constexpr index_t thread_per_d2 = ThreadPerDims{}.Get(I2);
constexpr index_t thread_per_d3 = ThreadPerDims{}.Get(I3);
constexpr index_t num_active_thread =
thread_per_d0 * thread_per_d1 * thread_per_d2 * thread_per_d3;
if(BlockSize > num_active_thread)
{
if(get_thread_local_1d_id() >= num_active_thread)
{
return;
}
}
constexpr index_t nloop_d0 = L0 / thread_per_d0;
constexpr index_t nloop_d1 = L1 / thread_per_d1;
constexpr index_t nloop_d2 = L2 / thread_per_d2;
constexpr index_t nloop_d3 = integer_divide_ceil(L3, thread_per_d3 * DataPerRead);
#pragma unroll
for(index_t iloop_d0 = 0; iloop_d0 < nloop_d0; ++iloop_d0)
{
#pragma unroll
for(index_t iloop_d1 = 0; iloop_d1 < nloop_d1; ++iloop_d1)
{
#pragma unroll
for(index_t iloop_d2 = 0; iloop_d2 < nloop_d2; ++iloop_d2)
{
#pragma unroll
for(index_t iloop_d3 = 0; iloop_d3 < nloop_d3; ++iloop_d3)
{
const index_t src_offset =
SrcDesc{}.Get1dIndex(iloop_d0 * thread_per_d0,
iloop_d1 * thread_per_d1,
iloop_d2 * thread_per_d2,
iloop_d3 * thread_per_d3 * DataPerRead);
const index_t dst_offset =
DstDesc{}.Get1dIndex(iloop_d0 * thread_per_d0,
iloop_d1 * thread_per_d1,
iloop_d2 * thread_per_d2,
iloop_d3 * thread_per_d3 * DataPerRead);
*(reinterpret_cast<vector_t*>(&p_clipboard[dst_offset])) =
*(reinterpret_cast<const vector_t*>(&p_src[src_offset +
mSrcMyThreadOffset]));
}
}
}
}
}
__device__ void RunStoreRegisterClipboard(const Float* __restrict__ p_clipboard,
Float* __restrict__ p_dst) const
{
constexpr auto I0 = Number<0>{};
constexpr auto I1 = Number<1>{};
constexpr auto I2 = Number<2>{};
constexpr auto I3 = Number<3>{};
constexpr index_t L0 = CopyLengths{}.Get(I0);
constexpr index_t L1 = CopyLengths{}.Get(I1);
constexpr index_t L2 = CopyLengths{}.Get(I2);
constexpr index_t L3 = CopyLengths{}.Get(I3);
constexpr index_t thread_per_d0 = ThreadPerDims{}.Get(I0);
constexpr index_t thread_per_d1 = ThreadPerDims{}.Get(I1);
constexpr index_t thread_per_d2 = ThreadPerDims{}.Get(I2);
constexpr index_t thread_per_d3 = ThreadPerDims{}.Get(I3);
constexpr index_t num_active_thread =
thread_per_d0 * thread_per_d1 * thread_per_d2 * thread_per_d3;
if(BlockSize > num_active_thread)
{
if(get_thread_local_1d_id() >= num_active_thread)
{
return;
}
}
constexpr index_t nloop_d0 = L0 / thread_per_d0;
constexpr index_t nloop_d1 = L1 / thread_per_d1;
constexpr index_t nloop_d2 = L2 / thread_per_d2;
constexpr index_t nloop_d3 = integer_divide_ceil(L3, thread_per_d3 * DataPerRead);
#pragma unroll
for(index_t iloop_d0 = 0; iloop_d0 < nloop_d0; ++iloop_d0)
{
#pragma unroll
for(index_t iloop_d1 = 0; iloop_d1 < nloop_d1; ++iloop_d1)
{
#pragma unroll
for(index_t iloop_d2 = 0; iloop_d2 < nloop_d2; ++iloop_d2)
{
#pragma unroll
for(index_t iloop_d3 = 0; iloop_d3 < nloop_d3; ++iloop_d3)
{
const index_t src_offset =
SrcDesc{}.Get1dIndex(iloop_d0 * thread_per_d0,
iloop_d1 * thread_per_d1,
iloop_d2 * thread_per_d2,
iloop_d3 * thread_per_d3 * DataPerRead);
const index_t dst_offset =
DstDesc{}.Get1dIndex(iloop_d0 * thread_per_d0,
iloop_d1 * thread_per_d1,
iloop_d2 * thread_per_d2,
iloop_d3 * thread_per_d3 * DataPerRead);
*(reinterpret_cast<vector_t*>(&p_dst[dst_offset + mDstMyThreadOffset])) =
*(reinterpret_cast<const vector_t*>(&p_clipboard[src_offset]));
}
}
}
......
......@@ -186,24 +186,24 @@ struct GridwiseConvolutionImplicitGemm_v1_chwn_cyxk_khwn
// set threadwise output tensor to 0
threadwise_4d_tensor_set_zero(out_khwn_thread_desc, p_out_thread);
const Float* p_in_global_block_begin =
const Float* p_in_global_block_offset =
p_in_global +
in_chwn_global_desc.Get1dIndex(
0, hi_block_data_begin, wi_block_data_begin, n_block_data_begin);
const Float* p_wei_global_block_begin =
const Float* p_wei_global_block_offset =
p_wei_global + wei_cyxk_global_desc.Get1dIndex(0, 0, 0, k_block_data_begin);
for(index_t c_block_data_begin = 0; c_block_data_begin < C; c_block_data_begin += CPerBlock,
p_in_global_block_begin += CPerBlock * in_chwn_global_desc.GetStride(I0),
p_wei_global_block_begin += CPerBlock * wei_cyxk_global_desc.GetStride(I0),
p_in_global_block_offset += CPerBlock * in_chwn_global_desc.GetStride(I0),
p_wei_global_block_offset += CPerBlock * wei_cyxk_global_desc.GetStride(I0),
__syncthreads())
{
// input: global mem to LDS
blockwise_in_copy.Run(p_in_global_block_begin, p_in_block);
blockwise_in_copy.Run(p_in_global_block_offset, p_in_block);
// weight: global mem to LDS
blockwise_wei_copy.Run(p_wei_global_block_begin, p_wei_block);
blockwise_wei_copy.Run(p_wei_global_block_offset, p_wei_block);
__syncthreads();
......
#pragma once
#include "common.hip.hpp"
#include "ConstantTensorDescriptor.hip.hpp"
#include "ConstantMatrixDescriptor.hip.hpp"
#include "blockwise_4d_tensor_op.hip.hpp"
#include "blockwise_2d_tensor_op.hip.hpp"
#include "threadwise_nd_tensor_op.hip.hpp"
#include "threadwise_4d_tensor_op.hip.hpp"
#include "blockwise_batched_gemm.hip.hpp"
template <index_t GridSize,
index_t BlockSize,
class Float,
class InGlobalDesc,
class WeiGlobalDesc,
class OutGlobalDesc,
index_t NPerBlock,
index_t KPerBlock,
index_t CPerBlock,
index_t HoPerBlock,
index_t WoPerBlock,
index_t NPerThread,
index_t KPerThread,
index_t HoPerThread,
index_t WoPerThread,
index_t GemmMPerThreadSubC,
index_t GemmNPerThreadSubC,
index_t GemmMLevel0Cluster,
index_t GemmNLevel0Cluster,
index_t GemmMLevel1Cluster,
index_t GemmNLevel1Cluster,
index_t GemmKPerThreadLoop,
class InBlockCopyThreadPerDims,
index_t InBlockCopyDataPerRead,
index_t WeiBlockCopyDataPerRead,
index_t OutThreadCopyDataPerWrite>
struct GridwiseConvolutionImplicitGemm_v1_chwn_cyxk_khwn_lds_double_buffer
{
__device__ void Run(const Float* const __restrict__ p_in_global,
const Float* const __restrict__ p_wei_global,
Float* const __restrict__ p_out_global) const
{
// be careful of this assertion
static_assert(NPerThread <= NPerBlock && NPerBlock % NPerThread == 0,
"wrong! should satisfy: NPerThread <= NPerBlock && NPerBlock % NPerThread == 0");
constexpr auto I0 = Number<0>{};
constexpr auto I1 = Number<1>{};
constexpr auto I2 = Number<2>{};
constexpr auto I3 = Number<3>{};
constexpr auto in_chwn_global_desc = InGlobalDesc{};
constexpr auto wei_cyxk_global_desc = WeiGlobalDesc{};
constexpr auto out_khwn_global_desc = OutGlobalDesc{};
constexpr index_t C = in_chwn_global_desc.GetLength(I0);
constexpr index_t K = out_khwn_global_desc.GetLength(I0);
constexpr index_t Ho = out_khwn_global_desc.GetLength(I1);
constexpr index_t Wo = out_khwn_global_desc.GetLength(I2);
constexpr index_t N = out_khwn_global_desc.GetLength(I3);
constexpr index_t Y = wei_cyxk_global_desc.GetLength(I1);
constexpr index_t X = wei_cyxk_global_desc.GetLength(I2);
constexpr index_t HiPerBlock = HoPerBlock + Y - 1;
constexpr index_t WiPerBlock = WoPerBlock + X - 1;
// assert for LDS double buffer
static_assert(C % (2 * CPerBlock) == 0, "C cannot be evenly divided");
// divide block work: [K, Ho, Wo, N]
static_assert(N % NPerBlock == 0 && K % KPerBlock == 0 && C % CPerBlock == 0 && Ho % HoPerBlock == 0 && Wo % WoPerBlock == 0,
"wrong! cannot evenly divide work for workgroup ");
constexpr index_t KBlockWork = (K + KPerBlock - 1) / KPerBlock;
constexpr index_t HBlockWork = (Ho + HoPerBlock - 1) / HoPerBlock;
constexpr index_t WBlockWork = (Wo + WoPerBlock - 1) / WoPerBlock;
constexpr index_t NBlockWork = (N + NPerBlock - 1) / NPerBlock;
const index_t k_block_work_id = get_block_1d_id() / (HBlockWork * WBlockWork * NBlockWork);
index_t itmp = get_block_1d_id() - k_block_work_id * (HBlockWork * WBlockWork * NBlockWork);
const index_t h_block_work_id = itmp / (WBlockWork * NBlockWork);
itmp -= h_block_work_id * (WBlockWork * NBlockWork);
const index_t w_block_work_id = itmp / NBlockWork;
const index_t n_block_work_id = itmp - w_block_work_id * NBlockWork;
const index_t k_block_data_begin = k_block_work_id * KPerBlock;
const index_t ho_block_data_begin = h_block_work_id * HoPerBlock;
const index_t wo_block_data_begin = w_block_work_id * WoPerBlock;
const index_t n_block_data_begin = n_block_work_id * NPerBlock;
const index_t hi_block_data_begin = ho_block_data_begin;
const index_t wi_block_data_begin = wo_block_data_begin;
// flattend (2d) tensor view of gridwise weight
constexpr auto wei_ek_global_desc = make_ConstantTensorDescriptor(Sequence<C * Y * X, K>{});
// tensor view of blockwise input and weight in LDS
// be careful of alignment
constexpr auto in_chwn_block_desc = make_ConstantTensorDescriptor_aligned(
Sequence<CPerBlock, HiPerBlock, WiPerBlock, NPerBlock>{},
Number<InBlockCopyDataPerRead>{});
constexpr auto wei_ek_block_desc = make_ConstantTensorDescriptor_aligned(
Sequence<CPerBlock * Y * X, KPerBlock>{}, Number<WeiBlockCopyDataPerRead>{});
constexpr auto wei_cyxk_block_desc = make_ConstantTensorDescriptor_aligned(
Sequence<CPerBlock, Y, X, KPerBlock>{}, Number<WeiBlockCopyDataPerRead>{});
// tensor view of threadwise output in register
constexpr auto out_khwn_thread_desc = make_ConstantTensorDescriptor(
Sequence<KPerThread, HoPerThread, WoPerThread, NPerThread>{});
// blockwise copy
// input: format is [C, Hi, Wi, N]
const auto blockwise_in_copy =
Blockwise4dTensorCopy3<BlockSize,
Float,
decltype(in_chwn_global_desc),
decltype(in_chwn_block_desc),
decltype(in_chwn_block_desc.GetLengths()),
InBlockCopyThreadPerDims,
InBlockCopyDataPerRead>{};
// blockwise wei copy
// format is [CPerBlock*Y*X,KPerBlock]
const auto blockwise_wei_copy =
Blockwise2dTensorCopy3<BlockSize,
Float,
decltype(wei_ek_global_desc),
decltype(wei_ek_block_desc),
decltype(wei_ek_block_desc.GetLengths()),
WeiBlockCopyDataPerRead>{};
// a series of blockwise batched GEMM
// C_matrix += transpose(A_matrix) * B_matrix
// A_matrix and B_matrix saved in LDS, C_matrix saved in register
// A_matrix[C,K] is a sub-matrix of wei_block[C,Y,X,K]
// B_matrix[C,Wo*N] is a sub-matrix of in_block[C,Hi,Wi,N]
// C_matrix[K,Wo*N] is a sub-matrix of out_block[K,Ho,Wo,N]
constexpr auto a_cxk_block_mtx_desc = make_ConstantMatrixDescriptor(
Number<CPerBlock>{}, Number<KPerBlock>{}, Number<wei_cyxk_block_desc.GetStride(I0)>{});
constexpr auto b_cxwn_block_mtx_desc =
make_ConstantMatrixDescriptor(Number<CPerBlock>{},
Number<WoPerBlock * NPerBlock>{},
Number<in_chwn_block_desc.GetStride(I0)>{});
constexpr auto c_kxwn_thread_mtx_desc =
make_ConstantMatrixDescriptor(Number<KPerThread>{},
Number<WoPerThread * NPerThread>{},
Number<out_khwn_thread_desc.GetStride(I1)>{});
const auto blockwise_batch_gemm =
BlockwiseBatchGemmBlockABlockBThreadCTransANormalBNormalC_V2<
BlockSize,
decltype(a_cxk_block_mtx_desc),
decltype(b_cxwn_block_mtx_desc),
decltype(c_kxwn_thread_mtx_desc),
0,
in_chwn_block_desc.GetStride(I1),
out_khwn_thread_desc.GetStride(I1),
HoPerBlock,
GemmMPerThreadSubC,
GemmNPerThreadSubC,
GemmMLevel0Cluster,
GemmNLevel0Cluster,
GemmMLevel1Cluster,
GemmNLevel1Cluster,
GemmKPerThreadLoop,
HoPerThread>{};
// LDS: be careful of alignment
constexpr index_t max_align =
mod_conv::max(index_t(4), InBlockCopyDataPerRead, WeiBlockCopyDataPerRead);
constexpr index_t in_block_space = in_chwn_block_desc.GetElementSpace(Number<max_align>{});
constexpr index_t wei_block_space =
wei_cyxk_block_desc.GetElementSpace(Number<max_align>{});
// LDS double buffer
__shared__ Float p_in_block_double[2 * in_block_space];
__shared__ Float p_wei_block_double[2 * wei_block_space];
const Float* p_in_global_block_offset =
p_in_global +
in_chwn_global_desc.Get1dIndex(
0, hi_block_data_begin, wi_block_data_begin, n_block_data_begin);
const Float* p_wei_global_block_offset =
p_wei_global + wei_cyxk_global_desc.Get1dIndex(0, 0, 0, k_block_data_begin);
// preload data into LDS
{
Float p_in_register_clipboard[blockwise_in_copy.GetRegisterClipboardSize()];
Float p_wei_register_clipboard[blockwise_wei_copy.GetRegisterClipboardSize()];
blockwise_in_copy.RunLoadRegisterClipboard(p_in_global_block_offset,
p_in_register_clipboard);
blockwise_wei_copy.RunLoadRegisterClipboard(p_wei_global_block_offset,
p_wei_register_clipboard);
blockwise_in_copy.RunStoreRegisterClipboard(p_in_register_clipboard, p_in_block_double);
blockwise_wei_copy.RunStoreRegisterClipboard(p_wei_register_clipboard,
p_wei_block_double);
}
// register
Float p_out_thread[out_khwn_thread_desc.GetElementSpace()];
// set threadwise output tensor to 0
threadwise_4d_tensor_set_zero(out_khwn_thread_desc, p_out_thread);
for(index_t c_block_data_begin = 0; c_block_data_begin + 2 * CPerBlock < C;
c_block_data_begin += 2 * CPerBlock)
{
#pragma unroll
for(index_t iloop = 0; iloop < 2; ++iloop)
{
const bool even_loop = (iloop % 2 == 0);
Float* p_in_block_now =
even_loop ? p_in_block_double : p_in_block_double + in_block_space;
Float* p_wei_block_now =
even_loop ? p_wei_block_double : p_wei_block_double + wei_block_space;
Float* p_in_block_next =
even_loop ? p_in_block_double + in_block_space : p_in_block_double;
Float* p_wei_block_next =
even_loop ? p_wei_block_double + wei_block_space : p_wei_block_double;
// load next data
Float p_in_register_clipboard[blockwise_in_copy.GetRegisterClipboardSize()];
Float p_wei_register_clipboard[blockwise_wei_copy.GetRegisterClipboardSize()];
p_in_global_block_offset += CPerBlock * in_chwn_global_desc.GetStride(I0);
p_wei_global_block_offset += CPerBlock * wei_cyxk_global_desc.GetStride(I0);
__syncthreads();
blockwise_in_copy.RunLoadRegisterClipboard(p_in_global_block_offset,
p_in_register_clipboard);
blockwise_wei_copy.RunLoadRegisterClipboard(p_wei_global_block_offset,
p_wei_register_clipboard);
// a series of batched GEMM
for(index_t y = 0; y < Y; ++y)
{
for(index_t x = 0; x < X; ++x)
{
blockwise_batch_gemm.Run(p_wei_block_now +
wei_cyxk_block_desc.Get1dIndex(0, y, x, 0),
p_in_block_now + in_chwn_block_desc.Get1dIndex(0, y, x, 0),
p_out_thread);
}
}
blockwise_in_copy.RunStoreRegisterClipboard(p_in_register_clipboard,
p_in_block_next);
blockwise_wei_copy.RunStoreRegisterClipboard(p_wei_register_clipboard,
p_wei_block_next);
}
}
// tail
{
// even
p_in_global_block_offset += CPerBlock * in_chwn_global_desc.GetStride(I0);
p_wei_global_block_offset += CPerBlock * wei_cyxk_global_desc.GetStride(I0);
__syncthreads();
Float p_in_register_clipboard[blockwise_in_copy.GetRegisterClipboardSize()];
Float p_wei_register_clipboard[blockwise_wei_copy.GetRegisterClipboardSize()];
blockwise_in_copy.RunLoadRegisterClipboard(p_in_global_block_offset,
p_in_register_clipboard);
blockwise_wei_copy.RunLoadRegisterClipboard(p_wei_global_block_offset,
p_wei_register_clipboard);
for(index_t y = 0; y < Y; ++y)
{
for(index_t x = 0; x < X; ++x)
{
blockwise_batch_gemm.Run(p_wei_block_double +
wei_cyxk_block_desc.Get1dIndex(0, y, x, 0),
p_in_block_double + in_chwn_block_desc.Get1dIndex(0, y, x, 0),
p_out_thread);
}
}
blockwise_in_copy.RunStoreRegisterClipboard(p_in_register_clipboard,
p_in_block_double + in_block_space);
blockwise_wei_copy.RunStoreRegisterClipboard(p_wei_register_clipboard,
p_wei_block_double + wei_block_space);
// odd
__syncthreads();
for(index_t y = 0; y < Y; ++y)
{
for(index_t x = 0; x < X; ++x)
{
blockwise_batch_gemm.Run(p_wei_block_double + wei_block_space +
wei_cyxk_block_desc.Get1dIndex(0, y, x, 0),
p_in_block_double + in_block_space +
in_chwn_block_desc.Get1dIndex(0, y, x, 0),
p_out_thread);
}
}
}
// output: register to global mem,
#if 0
const auto c_thread_mtx_begin =
blockwise_batch_gemm.GetBeginOfThreadMatrixC(get_thread_local_1d_id());
for(index_t k = 0; k < out_khwn_thread_desc.GetLength(I0); ++k)
{
for(index_t ho = 0; ho < out_khwn_thread_desc.GetLength(I1); ++ho)
{
for(index_t wo = 0; wo < out_khwn_thread_desc.GetLength(I2); ++wo)
{
for(index_t n = 0; n < out_khwn_thread_desc.GetLength(I3); ++n)
{
const index_t b = out_khwn_thread_desc.Get1dIndex(0, 0, wo, n);
const auto c_thread_mtx_distance =
blockwise_batch_gemm.GetDistanceFromBeginOfThreadMatrixC(ho, k, b);
const index_t ho_thread =
c_thread_mtx_begin.batch + c_thread_mtx_distance.batch;
const index_t k_thread = c_thread_mtx_begin.row + c_thread_mtx_distance.row;
const index_t b_thread = c_thread_mtx_begin.col + c_thread_mtx_distance.col;
const index_t wo_thread = b_thread / NPerBlock;
const index_t n_thread = b_thread % NPerBlock;
p_out_global[out_khwn_global_desc.Get1dIndex(k_block_data_begin + k_thread,
ho_block_data_begin + ho_thread,
wo_block_data_begin + wo_thread,
n_block_data_begin + n_thread)] =
p_out_thread[out_khwn_thread_desc.Get1dIndex(k, ho, wo, n)];
}
}
}
}
#elif 1
const auto c_thread_mtx_begin =
blockwise_batch_gemm.GetBeginOfThreadMatrixC(get_thread_local_1d_id());
const index_t k_thread_data_begin = c_thread_mtx_begin.row;
const index_t ho_thread_data_begin = c_thread_mtx_begin.batch;
const index_t wo_thread_data_begin = c_thread_mtx_begin.col / NPerBlock;
const index_t n_thread_data_begin =
c_thread_mtx_begin.col - NPerBlock * wo_thread_data_begin;
// output is a 10d tensor
constexpr index_t N2 = GemmNPerThreadSubC;
constexpr index_t N1 = NPerBlock / N2;
constexpr index_t W2 =
(GemmNLevel0Cluster * GemmNLevel1Cluster) / (NPerBlock / GemmNPerThreadSubC);
constexpr index_t W1 = WoPerBlock / W2;
constexpr index_t K2 = GemmMPerThreadSubC;
constexpr index_t K1 = KPerBlock / KPerThread;
constexpr auto out_10d_global_desc =
make_ConstantTensorDescriptor(Sequence<K / (K1 * K2),
K1,
K2,
Ho,
Wo / (W1 * W2),
W1,
W2,
N / (N1 * N2),
N1,
N2>{});
constexpr auto out_10d_thread_desc = make_ConstantTensorDescriptor(
Sequence<KPerThread / K2, 1, K2, HoPerThread, 1, W1, 1, 1, 1, N2>{});
#if 0
if(get_thread_local_1d_id() == 0 && get_block_1d_id() == 0)
{
print_ConstantTensorDescriptor(out_khwn_thread_desc, "out_khwn_thread_desc");
print_ConstantTensorDescriptor(out_10d_thread_desc, "out_10d_thread_desc");
print_ConstantTensorDescriptor(out_khwn_global_desc, "out_khwn_global_desc");
print_ConstantTensorDescriptor(out_10d_global_desc, "out_10d_global_desc");
}
#endif
threadwise_10d_tensor_copy(
out_10d_thread_desc,
p_out_thread,
out_10d_global_desc,
p_out_global +
out_khwn_global_desc.Get1dIndex(k_block_data_begin + k_thread_data_begin,
ho_block_data_begin + ho_thread_data_begin,
wo_block_data_begin + wo_thread_data_begin,
n_block_data_begin + n_thread_data_begin),
out_10d_thread_desc.GetLengths(),
Number<OutThreadCopyDataPerWrite>{});
#endif
}
};
......@@ -64,6 +64,7 @@ struct GridwiseConvolutionImplicitGemm_v2_chwn_cyxk_khwn_lds_double_buffer
constexpr index_t B = N * Hi * Wi;
constexpr index_t BGhostRead = (Y - 1) * Wi + (X - 1);
// assert for LDS double buffer
static_assert(C % (2 * CPerBlock) == 0, "C cannot be evenly divided");
// divide block work by 2d: [K, B]
......
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment