Skip to content
GitLab
Menu
Projects
Groups
Snippets
Loading...
Help
Help
Support
Community forum
Keyboard shortcuts
?
Submit feedback
Contribute to GitLab
Sign in / Register
Toggle navigation
Menu
Open sidebar
gaoqiong
composable_kernel
Commits
cbf281f0
Commit
cbf281f0
authored
Aug 22, 2023
by
Bartlomiej Wroblewski
Browse files
Merge remote-tracking branch 'origin/develop' into bwroblew/contrib
parents
f3aceeab
d52ec016
Changes
77
Expand all
Show whitespace changes
Inline
Side-by-side
Showing
20 changed files
with
869 additions
and
602 deletions
+869
-602
include/ck/tensor_operation/gpu/device/gemm_dl_algorithm.hpp
include/ck/tensor_operation/gpu/device/gemm_dl_algorithm.hpp
+18
-0
include/ck/tensor_operation/gpu/device/impl/device_conv2d_backward_weight_xdl_c_shuffle_nhwc_kyxc_nhwk.hpp
...e_conv2d_backward_weight_xdl_c_shuffle_nhwc_kyxc_nhwk.hpp
+3
-2
include/ck/tensor_operation/gpu/device/impl/device_gemm_dl.hpp
...de/ck/tensor_operation/gpu/device/impl/device_gemm_dl.hpp
+24
-10
include/ck/tensor_operation/gpu/device/impl/device_gemm_dl_dpp8.hpp
.../tensor_operation/gpu/device/impl/device_gemm_dl_dpp8.hpp
+133
-0
include/ck/tensor_operation/gpu/device/impl/device_gemm_xdl_splitk_c_shuffle.hpp
...tion/gpu/device/impl/device_gemm_xdl_splitk_c_shuffle.hpp
+4
-2
include/ck/tensor_operation/gpu/device/impl/device_gemm_xdl_streamk.hpp
...sor_operation/gpu/device/impl/device_gemm_xdl_streamk.hpp
+5
-2
include/ck/tensor_operation/gpu/device/impl/device_grouped_gemm_xdl_splitk_cshuffle.hpp
...u/device/impl/device_grouped_gemm_xdl_splitk_cshuffle.hpp
+4
-2
include/ck/tensor_operation/gpu/device/impl/device_pool2d_fwd_nhwc_nhwc.hpp
...operation/gpu/device/impl/device_pool2d_fwd_nhwc_nhwc.hpp
+58
-295
include/ck/tensor_operation/gpu/device/impl/device_pool3d_fwd_ndhwc_ndhwc.hpp
...eration/gpu/device/impl/device_pool3d_fwd_ndhwc_ndhwc.hpp
+153
-99
include/ck/tensor_operation/gpu/device/impl/device_splitk_contraction_multiple_d_xdl_cshuffle.hpp
...mpl/device_splitk_contraction_multiple_d_xdl_cshuffle.hpp
+3
-2
include/ck/tensor_operation/gpu/grid/gridwise_gemm_dl_v1r3.hpp
...de/ck/tensor_operation/gpu/grid/gridwise_gemm_dl_v1r3.hpp
+58
-19
include/ck/tensor_operation/gpu/grid/normalization/gridwise_normalization_splitk_1st.hpp
.../grid/normalization/gridwise_normalization_splitk_1st.hpp
+15
-11
include/ck/tensor_operation/gpu/thread/threadwise_contraction_dl_dpp8.hpp
...r_operation/gpu/thread/threadwise_contraction_dl_dpp8.hpp
+136
-0
include/ck/utility/amd_gemm_dpp.hpp
include/ck/utility/amd_gemm_dpp.hpp
+22
-0
include/ck/utility/inner_product.hpp
include/ck/utility/inner_product.hpp
+2
-2
include/ck/utility/inner_product_dpp8.hpp
include/ck/utility/inner_product_dpp8.hpp
+142
-0
library/include/ck/library/reference_tensor_operation/cpu/reference_pool_fwd.hpp
...ary/reference_tensor_operation/cpu/reference_pool_fwd.hpp
+23
-10
library/include/ck/library/tensor_operation_instance/gpu/gemm.hpp
...include/ck/library/tensor_operation_instance/gpu/gemm.hpp
+24
-0
library/include/ck/library/tensor_operation_instance/gpu/pool2d_fwd.hpp
...e/ck/library/tensor_operation_instance/gpu/pool2d_fwd.hpp
+0
-114
library/include/ck/library/tensor_operation_instance/gpu/pool3d_fwd.hpp
...e/ck/library/tensor_operation_instance/gpu/pool3d_fwd.hpp
+42
-32
No files found.
library/src
/tensor_operation
_instance/gpu/pool_fwd/device_avg_pool2d_fwd_nhwc_f16_instance.c
pp
→
include/ck
/tensor_operation
/gpu/device/gemm_dl_algorithm.h
pp
View file @
cbf281f0
// SPDX-License-Identifier: MIT
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2023, Advanced Micro Devices, Inc. All rights reserved.
// Copyright (c) 2018-2023, Advanced Micro Devices, Inc. All rights reserved.
#
include "pool_fwd_instance_common.hpp"
#
pragma once
namespace
ck
{
namespace
ck
{
namespace
tensor_operation
{
namespace
tensor_operation
{
namespace
device
{
namespace
device
{
namespace
instance
{
static
constexpr
auto
ReduceOpId
=
ck
::
ReduceTensorOp
::
AVG
;
enum
struct
GemmDlAlgorithm
void
add_device_pool2d_fwd_nhwc_f16_instances
(
std
::
vector
<
std
::
unique_ptr
<
DevicePoolFwd
<
4
,
2
,
F16
,
F16
,
I32
,
ReduceOpId
,
false
>>>&
instances
)
{
{
add_device_operation_instances
(
Default
,
// Uses DOT vector instructions
instances
,
device_pool2d_fwd_nhwc_instances
<
F16
,
F16
,
I32
,
F32
,
ReduceOpId
,
false
>
{});
Dpp8
,
// Uses DOT vector instructions with DPP8 SEL modifier to reduce data loads from LDS
}
}
;
}
// namespace instance
}
// namespace device
}
// namespace device
}
// namespace tensor_operation
}
// namespace tensor_operation
}
// namespace ck
}
// namespace ck
include/ck/tensor_operation/gpu/device/impl/device_conv2d_backward_weight_xdl_c_shuffle_nhwc_kyxc_nhwk.hpp
View file @
cbf281f0
...
@@ -532,11 +532,12 @@ struct DeviceConv2dBwdWeightXdl_C_Shuffle_Input_N_Hi_Wi_C_Weight_K_Y_X_C_Output_
...
@@ -532,11 +532,12 @@ struct DeviceConv2dBwdWeightXdl_C_Shuffle_Input_N_Hi_Wi_C_Weight_K_Y_X_C_Output_
float
ave_time
=
0
;
float
ave_time
=
0
;
const
auto
Run
=
[
&
](
const
auto
&
kernel
)
{
const
auto
Run
=
[
&
](
const
auto
&
kernel
)
{
hipGetErrorString
(
hipMemset
(
hipGetErrorString
(
hipMemset
Async
(
arg
.
p_c_grid_
,
arg
.
p_c_grid_
,
0
,
0
,
arg
.
c_grid_desc_mblock_mperblock_nblock_nperblock_
.
GetElementSpaceSize
()
*
arg
.
c_grid_desc_mblock_mperblock_nblock_nperblock_
.
GetElementSpaceSize
()
*
sizeof
(
CDataType
)));
sizeof
(
CDataType
),
stream_config
.
stream_id_
));
ave_time
=
ave_time
=
launch_and_time_kernel
(
stream_config
,
launch_and_time_kernel
(
stream_config
,
...
...
include/ck/tensor_operation/gpu/device/impl/device_gemm_dl.hpp
View file @
cbf281f0
...
@@ -11,6 +11,7 @@
...
@@ -11,6 +11,7 @@
#include "ck/tensor_description/tensor_descriptor_helper.hpp"
#include "ck/tensor_description/tensor_descriptor_helper.hpp"
#include "ck/tensor_operation/gpu/device/tensor_layout.hpp"
#include "ck/tensor_operation/gpu/device/tensor_layout.hpp"
#include "ck/tensor_operation/gpu/device/device_gemm.hpp"
#include "ck/tensor_operation/gpu/device/device_gemm.hpp"
#include "ck/tensor_operation/gpu/device/gemm_dl_algorithm.hpp"
#include "ck/tensor_operation/gpu/device/gemm_specialization.hpp"
#include "ck/tensor_operation/gpu/device/gemm_specialization.hpp"
#include "ck/tensor_operation/gpu/grid/gridwise_gemm_dl_v1r3.hpp"
#include "ck/tensor_operation/gpu/grid/gridwise_gemm_dl_v1r3.hpp"
#include "ck/host_utility/device_prop.hpp"
#include "ck/host_utility/device_prop.hpp"
...
@@ -59,6 +60,7 @@ template <
...
@@ -59,6 +60,7 @@ template <
typename
CThreadTransferSrcDstAccessOrder
,
typename
CThreadTransferSrcDstAccessOrder
,
index_t
CThreadTransferSrcDstVectorDim
,
index_t
CThreadTransferSrcDstVectorDim
,
index_t
CThreadTransferDstScalarPerVector
,
index_t
CThreadTransferDstScalarPerVector
,
GemmDlAlgorithm
GemmDlAlg
=
GemmDlAlgorithm
::
Default
,
enable_if_t
<
enable_if_t
<
is_same_v
<
AElementwiseOperation
,
ck
::
tensor_operation
::
element_wise
::
PassThrough
>
&&
is_same_v
<
AElementwiseOperation
,
ck
::
tensor_operation
::
element_wise
::
PassThrough
>
&&
is_same_v
<
BElementwiseOperation
,
ck
::
tensor_operation
::
element_wise
::
PassThrough
>
&&
is_same_v
<
BElementwiseOperation
,
ck
::
tensor_operation
::
element_wise
::
PassThrough
>
&&
...
@@ -236,7 +238,8 @@ struct DeviceGemmDl : public DeviceGemm<ALayout,
...
@@ -236,7 +238,8 @@ struct DeviceGemmDl : public DeviceGemm<ALayout,
BBlockTransferDstVectorTensorLengths_K0_N0_N1_K1
,
BBlockTransferDstVectorTensorLengths_K0_N0_N1_K1
,
CThreadTransferSrcDstAccessOrder
,
CThreadTransferSrcDstAccessOrder
,
CThreadTransferSrcDstVectorDim
,
CThreadTransferSrcDstVectorDim
,
CThreadTransferDstScalarPerVector
>
;
CThreadTransferDstScalarPerVector
,
GemmDlAlg
>
;
using
AGridDesc_K0_M0_M1_K1
=
using
AGridDesc_K0_M0_M1_K1
=
decltype
(
GridwiseGemm
::
MakeAGridDescriptor_K0_M0_M1_K1
(
AGridDesc_K0_M_K1
{}));
decltype
(
GridwiseGemm
::
MakeAGridDescriptor_K0_M0_M1_K1
(
AGridDesc_K0_M_K1
{}));
...
@@ -372,7 +375,8 @@ struct DeviceGemmDl : public DeviceGemm<ALayout,
...
@@ -372,7 +375,8 @@ struct DeviceGemmDl : public DeviceGemm<ALayout,
remove_reference_t
<
CGridDesc_M0_M10_M11_N0_N10_N11
>
,
remove_reference_t
<
CGridDesc_M0_M10_M11_N0_N10_N11
>
,
remove_reference_t
<
DefaultBlock2CTileMap
>
,
remove_reference_t
<
DefaultBlock2CTileMap
>
,
true
,
true
,
true
>
;
true
,
GemmDlAlg
>
;
ave_time
=
launch_and_time_kernel
(
stream_config
,
ave_time
=
launch_and_time_kernel
(
stream_config
,
kernel
,
kernel
,
...
@@ -398,7 +402,8 @@ struct DeviceGemmDl : public DeviceGemm<ALayout,
...
@@ -398,7 +402,8 @@ struct DeviceGemmDl : public DeviceGemm<ALayout,
remove_reference_t
<
CGridDesc_M0_M10_M11_N0_N10_N11
>
,
remove_reference_t
<
CGridDesc_M0_M10_M11_N0_N10_N11
>
,
remove_reference_t
<
DefaultBlock2CTileMap
>
,
remove_reference_t
<
DefaultBlock2CTileMap
>
,
true
,
true
,
false
>
;
false
,
GemmDlAlg
>
;
ave_time
=
launch_and_time_kernel
(
stream_config
,
ave_time
=
launch_and_time_kernel
(
stream_config
,
kernel
,
kernel
,
...
@@ -424,7 +429,8 @@ struct DeviceGemmDl : public DeviceGemm<ALayout,
...
@@ -424,7 +429,8 @@ struct DeviceGemmDl : public DeviceGemm<ALayout,
remove_reference_t
<
CGridDesc_M0_M10_M11_N0_N10_N11
>
,
remove_reference_t
<
CGridDesc_M0_M10_M11_N0_N10_N11
>
,
remove_reference_t
<
DefaultBlock2CTileMap
>
,
remove_reference_t
<
DefaultBlock2CTileMap
>
,
false
,
false
,
true
>
;
true
,
GemmDlAlg
>
;
ave_time
=
launch_and_time_kernel
(
stream_config
,
ave_time
=
launch_and_time_kernel
(
stream_config
,
kernel
,
kernel
,
...
@@ -450,7 +456,8 @@ struct DeviceGemmDl : public DeviceGemm<ALayout,
...
@@ -450,7 +456,8 @@ struct DeviceGemmDl : public DeviceGemm<ALayout,
remove_reference_t
<
CGridDesc_M0_M10_M11_N0_N10_N11
>
,
remove_reference_t
<
CGridDesc_M0_M10_M11_N0_N10_N11
>
,
remove_reference_t
<
DefaultBlock2CTileMap
>
,
remove_reference_t
<
DefaultBlock2CTileMap
>
,
false
,
false
,
false
>
;
false
,
GemmDlAlg
>
;
ave_time
=
launch_and_time_kernel
(
stream_config
,
ave_time
=
launch_and_time_kernel
(
stream_config
,
kernel
,
kernel
,
...
@@ -485,6 +492,16 @@ struct DeviceGemmDl : public DeviceGemm<ALayout,
...
@@ -485,6 +492,16 @@ struct DeviceGemmDl : public DeviceGemm<ALayout,
static
bool
IsSupportedArgument
(
const
Argument
&
arg
)
static
bool
IsSupportedArgument
(
const
Argument
&
arg
)
{
{
if
constexpr
(
GemmDlAlg
==
GemmDlAlgorithm
::
Dpp8
)
{
if
(
ck
::
get_device_name
()
==
"gfx1030"
)
{
return
GridwiseGemm
::
CheckValidity
(
arg
.
a_grid_desc_k0_m_k1_
,
arg
.
b_grid_desc_k0_n_k1_
,
arg
.
c_grid_desc_m_n_
);
}
return
false
;
}
if
(
ck
::
get_device_name
()
==
"gfx906"
||
ck
::
get_device_name
()
==
"gfx1030"
||
if
(
ck
::
get_device_name
()
==
"gfx906"
||
ck
::
get_device_name
()
==
"gfx1030"
||
ck
::
get_device_name
()
==
"gfx1100"
||
ck
::
get_device_name
()
==
"gfx1101"
||
ck
::
get_device_name
()
==
"gfx1100"
||
ck
::
get_device_name
()
==
"gfx1101"
||
ck
::
get_device_name
()
==
"gfx1102"
)
ck
::
get_device_name
()
==
"gfx1102"
)
...
@@ -492,11 +509,8 @@ struct DeviceGemmDl : public DeviceGemm<ALayout,
...
@@ -492,11 +509,8 @@ struct DeviceGemmDl : public DeviceGemm<ALayout,
return
GridwiseGemm
::
CheckValidity
(
return
GridwiseGemm
::
CheckValidity
(
arg
.
a_grid_desc_k0_m_k1_
,
arg
.
b_grid_desc_k0_n_k1_
,
arg
.
c_grid_desc_m_n_
);
arg
.
a_grid_desc_k0_m_k1_
,
arg
.
b_grid_desc_k0_n_k1_
,
arg
.
c_grid_desc_m_n_
);
}
}
else
{
return
false
;
return
false
;
}
}
}
// polymorphic
// polymorphic
bool
IsSupportedArgument
(
const
BaseArgument
*
p_arg
)
override
bool
IsSupportedArgument
(
const
BaseArgument
*
p_arg
)
override
...
@@ -572,7 +586,7 @@ struct DeviceGemmDl : public DeviceGemm<ALayout,
...
@@ -572,7 +586,7 @@ struct DeviceGemmDl : public DeviceGemm<ALayout,
}
}
// polymorphic
// polymorphic
std
::
string
GetTypeString
()
const
override
virtual
std
::
string
GetTypeString
()
const
override
{
{
auto
str
=
std
::
stringstream
();
auto
str
=
std
::
stringstream
();
...
...
include/ck/tensor_operation/gpu/device/impl/device_gemm_dl_dpp8.hpp
0 → 100644
View file @
cbf281f0
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2023, Advanced Micro Devices, Inc. All rights reserved.
#pragma once
#include <iostream>
#include <sstream>
#include "ck/utility/common_header.hpp"
#include "ck/tensor_description/tensor_descriptor.hpp"
#include "ck/tensor_description/tensor_descriptor_helper.hpp"
#include "ck/tensor_operation/gpu/device/tensor_layout.hpp"
#include "ck/tensor_operation/gpu/device/impl/device_gemm_dl.hpp"
#include "ck/tensor_operation/gpu/device/gemm_dl_algorithm.hpp"
#include "ck/tensor_operation/gpu/device/gemm_specialization.hpp"
#include "ck/tensor_operation/gpu/grid/gridwise_gemm_dl_v1r3.hpp"
#include "ck/host_utility/device_prop.hpp"
#include "ck/host_utility/kernel_launch.hpp"
namespace
ck
{
namespace
tensor_operation
{
namespace
device
{
template
<
typename
ADataType
,
typename
BDataType
,
typename
CDataType
,
typename
AccDataType
,
typename
ALayout
,
typename
BLayout
,
typename
CLayout
,
typename
AElementwiseOperation
,
typename
BElementwiseOperation
,
typename
CElementwiseOperation
,
GemmSpecialization
GemmSpec
,
index_t
BlockSize
,
index_t
MPerBlock
,
index_t
NPerBlock
,
index_t
K0PerBlock
,
index_t
K1
,
index_t
M1PerThread
,
index_t
N1PerThread
,
index_t
KPerThread
,
typename
M1N1ThreadClusterM1Xs
,
typename
M1N1ThreadClusterN1Xs
,
typename
ABlockTransferThreadSliceLengths_K0_M0_M1_K1
,
typename
ABlockTransferThreadClusterLengths_K0_M0_M1_K1
,
typename
ABlockTransferThreadClusterArrangeOrder
,
typename
ABlockTransferSrcAccessOrder
,
typename
ABlockTransferSrcVectorTensorLengths_K0_M0_M1_K1
,
typename
ABlockTransferSrcVectorTensorContiguousDimOrder
,
typename
ABlockTransferDstVectorTensorLengths_K0_M0_M1_K1
,
typename
BBlockTransferThreadSliceLengths_K0_N0_N1_K1
,
typename
BBlockTransferThreadClusterLengths_K0_N0_N1_K1
,
typename
BBlockTransferThreadClusterArrangeOrder
,
typename
BBlockTransferSrcAccessOrder
,
typename
BBlockTransferSrcVectorTensorLengths_K0_N0_N1_K1
,
typename
BBlockTransferSrcVectorTensorContiguousDimOrder
,
typename
BBlockTransferDstVectorTensorLengths_K0_N0_N1_K1
,
typename
CThreadTransferSrcDstAccessOrder
,
index_t
CThreadTransferSrcDstVectorDim
,
index_t
CThreadTransferDstScalarPerVector
,
enable_if_t
<
is_same_v
<
AElementwiseOperation
,
ck
::
tensor_operation
::
element_wise
::
PassThrough
>
&&
is_same_v
<
BElementwiseOperation
,
ck
::
tensor_operation
::
element_wise
::
PassThrough
>
&&
is_same_v
<
CElementwiseOperation
,
ck
::
tensor_operation
::
element_wise
::
PassThrough
>
,
bool
>
=
false
>
struct
DeviceGemmDlDpp8
:
public
DeviceGemmDl
<
ADataType
,
BDataType
,
CDataType
,
AccDataType
,
ALayout
,
BLayout
,
CLayout
,
AElementwiseOperation
,
BElementwiseOperation
,
CElementwiseOperation
,
GemmSpec
,
BlockSize
,
MPerBlock
,
NPerBlock
,
K0PerBlock
,
K1
,
M1PerThread
,
N1PerThread
,
KPerThread
,
M1N1ThreadClusterM1Xs
,
M1N1ThreadClusterN1Xs
,
ABlockTransferThreadSliceLengths_K0_M0_M1_K1
,
ABlockTransferThreadClusterLengths_K0_M0_M1_K1
,
ABlockTransferThreadClusterArrangeOrder
,
ABlockTransferSrcAccessOrder
,
ABlockTransferSrcVectorTensorLengths_K0_M0_M1_K1
,
ABlockTransferSrcVectorTensorContiguousDimOrder
,
ABlockTransferDstVectorTensorLengths_K0_M0_M1_K1
,
BBlockTransferThreadSliceLengths_K0_N0_N1_K1
,
BBlockTransferThreadClusterLengths_K0_N0_N1_K1
,
BBlockTransferThreadClusterArrangeOrder
,
BBlockTransferSrcAccessOrder
,
BBlockTransferSrcVectorTensorLengths_K0_N0_N1_K1
,
BBlockTransferSrcVectorTensorContiguousDimOrder
,
BBlockTransferDstVectorTensorLengths_K0_N0_N1_K1
,
CThreadTransferSrcDstAccessOrder
,
CThreadTransferSrcDstVectorDim
,
CThreadTransferDstScalarPerVector
,
GemmDlAlgorithm
::
Dpp8
>
{
std
::
string
GetTypeString
()
const
override
{
auto
str
=
std
::
stringstream
();
// clang-format off
str
<<
"DeviceGemmDlDpp8"
<<
"<"
<<
BlockSize
<<
", "
<<
MPerBlock
<<
", "
<<
NPerBlock
<<
", "
<<
K0PerBlock
<<
", "
<<
K1
<<
", "
<<
M1PerThread
<<
", "
<<
N1PerThread
<<
", "
<<
KPerThread
<<
">"
;
// clang-format on
return
str
.
str
();
}
};
}
// namespace device
}
// namespace tensor_operation
}
// namespace ck
include/ck/tensor_operation/gpu/device/impl/device_gemm_xdl_splitk_c_shuffle.hpp
View file @
cbf281f0
...
@@ -158,8 +158,10 @@ struct DeviceGemmXdlSplitKCShuffle : public DeviceGemmSplitK<ALayout,
...
@@ -158,8 +158,10 @@ struct DeviceGemmXdlSplitKCShuffle : public DeviceGemmSplitK<ALayout,
const
auto
Run
=
[
&
](
const
auto
&
kernel
)
{
const
auto
Run
=
[
&
](
const
auto
&
kernel
)
{
if
(
kbatch
>
1
)
if
(
kbatch
>
1
)
hipGetErrorString
(
hipGetErrorString
(
hipMemsetAsync
(
karg
.
p_c_grid
,
hipMemset
(
karg
.
p_c_grid
,
0
,
karg
.
M
*
karg
.
N
*
sizeof
(
CDataType
)));
0
,
karg
.
M
*
karg
.
N
*
sizeof
(
CDataType
),
stream_config
.
stream_id_
));
ave_time
=
launch_and_time_kernel
(
ave_time
=
launch_and_time_kernel
(
stream_config
,
kernel
,
dim3
(
gdx
,
gdy
,
gdz
),
dim3
(
BlockSize
),
0
,
karg
,
b2c_map
);
stream_config
,
kernel
,
dim3
(
gdx
,
gdy
,
gdz
),
dim3
(
BlockSize
),
0
,
karg
,
b2c_map
);
...
...
include/ck/tensor_operation/gpu/device/impl/device_gemm_xdl_streamk.hpp
View file @
cbf281f0
// SPDX-License-Identifier: MIT
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-202
2
, Advanced Micro Devices, Inc. All rights reserved.
// Copyright (c) 2018-202
3
, Advanced Micro Devices, Inc. All rights reserved.
#pragma once
#pragma once
...
@@ -147,7 +147,10 @@ struct DeviceGemmXdlStreamK : public DeviceGemmStreamK<ALayout,
...
@@ -147,7 +147,10 @@ struct DeviceGemmXdlStreamK : public DeviceGemmStreamK<ALayout,
if
constexpr
(
GridwiseGemm
::
Block2CTileMap
::
ReductionStrategy
==
if
constexpr
(
GridwiseGemm
::
Block2CTileMap
::
ReductionStrategy
==
StreamKReductionStrategy
::
Atomic
)
StreamKReductionStrategy
::
Atomic
)
{
{
hipGetErrorString
(
hipMemset
(
karg
.
p_c_grid
,
0
,
karg
.
M
*
karg
.
N
*
sizeof
(
CDataType
)));
hipGetErrorString
(
hipMemsetAsync
(
karg
.
p_c_grid
,
0
,
karg
.
M
*
karg
.
N
*
sizeof
(
CDataType
),
stream_config
.
stream_id_
));
ave_time
=
launch_and_time_kernel
(
stream_config
,
ave_time
=
launch_and_time_kernel
(
stream_config
,
kernel
,
kernel
,
grid_dims
,
grid_dims
,
...
...
include/ck/tensor_operation/gpu/device/impl/device_grouped_gemm_xdl_splitk_cshuffle.hpp
View file @
cbf281f0
...
@@ -421,8 +421,10 @@ struct DeviceGroupedGemmXdlSplitKCShuffle : public DeviceGroupedGemmSplitK<ALayo
...
@@ -421,8 +421,10 @@ struct DeviceGroupedGemmXdlSplitKCShuffle : public DeviceGroupedGemmSplitK<ALayo
for
(
const
auto
&
trans_arg
:
arg
.
gemm_kernel_args_
)
for
(
const
auto
&
trans_arg
:
arg
.
gemm_kernel_args_
)
{
{
const
auto
&
karg
=
trans_arg
.
karg_
;
const
auto
&
karg
=
trans_arg
.
karg_
;
hip_check_error
(
hip_check_error
(
hipMemsetAsync
(
karg
.
p_c_grid
,
hipMemset
(
karg
.
p_c_grid
,
0
,
karg
.
M
*
karg
.
N
*
sizeof
(
EDataType
)));
0
,
karg
.
M
*
karg
.
N
*
sizeof
(
EDataType
),
stream_config
.
stream_id_
));
}
}
}
}
...
...
include/ck/tensor_operation/gpu/device/impl/device_pool2d_fwd_nhwc_nhwc.hpp
View file @
cbf281f0
...
@@ -3,16 +3,7 @@
...
@@ -3,16 +3,7 @@
#pragma once
#pragma once
#include <iostream>
#include "ck/tensor_operation/gpu/device/impl/device_pool3d_fwd_ndhwc_ndhwc.hpp"
#include <sstream>
#include "ck/tensor_description/tensor_descriptor.hpp"
#include "ck/tensor_description/tensor_descriptor_helper.hpp"
#include "ck/tensor_operation/gpu/device/reduction_operator_mapping.hpp"
#include "ck/tensor_operation/gpu/device/device_pool_fwd.hpp"
#include "ck/tensor_operation/gpu/grid/gridwise_2d_reduction_threadwise.hpp"
#include "ck/host_utility/device_prop.hpp"
#include "ck/host_utility/kernel_launch.hpp"
namespace
ck
{
namespace
ck
{
namespace
tensor_operation
{
namespace
tensor_operation
{
...
@@ -30,254 +21,31 @@ template <typename InDataType,
...
@@ -30,254 +21,31 @@ template <typename InDataType,
ck
::
index_t
ReduceMThreadSliceSize
,
ck
::
index_t
ReduceMThreadSliceSize
,
ck
::
index_t
ReduceKThreadSliceSize
,
ck
::
index_t
ReduceKThreadSliceSize
,
ck
::
index_t
InSrcOutDstVectorSize
>
ck
::
index_t
InSrcOutDstVectorSize
>
struct
DevicePool2dFwd_Input_N_Hi_Wi_C_Output_N_Ho_Wo_C
struct
DevicePool2dFwd_NHWC_NHWC
:
public
DevicePool3dFwd_NDHWC_NDHWC
<
InDataType
,
:
public
DevicePoolFwd
<
4
,
2
,
InDataType
,
OutDataType
,
IndexDataType
,
ReduceOpId
,
OutputIndex
>
{
static
constexpr
auto
I0
=
Number
<
0
>
{};
static
constexpr
auto
I1
=
Number
<
1
>
{};
static
constexpr
auto
I2
=
Number
<
2
>
{};
static
constexpr
auto
I3
=
Number
<
3
>
{};
static
constexpr
auto
I4
=
Number
<
4
>
{};
static
constexpr
auto
I5
=
Number
<
5
>
{};
static
constexpr
index_t
InOutRank
=
4
;
static
constexpr
index_t
WindowRank
=
2
;
using
ReduceOperation
=
typename
reduce_binary_operator
<
ReduceOpId
>::
opType
;
using
InElementwiseOperation
=
typename
reduce_unary_operator
<
ReduceOpId
,
true
,
true
>::
InElementwiseOperation
;
using
AccElementwiseOperation
=
typename
reduce_unary_operator
<
ReduceOpId
,
true
,
true
>::
AccElementwiseOperation
;
static
constexpr
index_t
InSrcOutDstVectorDim
=
0
;
// for NHWC, the dim C is the vector Dim for both input and output in memory, which is
// not reduced.
static
constexpr
ck
::
index_t
ReduceM_BlockTileSize
=
ReduceMThreadClusterSize
*
ReduceMThreadSliceSize
;
static
constexpr
ck
::
index_t
ReduceK_BlockTileSize
=
ReduceKThreadClusterSize
*
ReduceKThreadSliceSize
;
static
auto
MakeABGridDescriptor_A_M_K_B_M
(
ck
::
index_t
N
,
ck
::
index_t
C
,
std
::
vector
<
ck
::
index_t
>
input_spatial_lengths
,
std
::
vector
<
ck
::
index_t
>
window_spatial_lengths
,
std
::
vector
<
ck
::
index_t
>
output_spatial_lengths
,
std
::
vector
<
ck
::
index_t
>
window_strides
,
std
::
vector
<
ck
::
index_t
>
input_left_pads
,
std
::
vector
<
ck
::
index_t
>
input_right_pads
)
{
const
index_t
Hi
=
input_spatial_lengths
[
0
];
const
index_t
Wi
=
input_spatial_lengths
[
1
];
const
index_t
Ho
=
output_spatial_lengths
[
0
];
const
index_t
Wo
=
output_spatial_lengths
[
1
];
const
index_t
Y
=
window_spatial_lengths
[
0
];
const
index_t
X
=
window_spatial_lengths
[
1
];
const
index_t
ConvStrideH
=
window_strides
[
0
];
const
index_t
ConvStrideW
=
window_strides
[
1
];
const
index_t
InLeftPadH
=
input_left_pads
[
0
];
const
index_t
InLeftPadW
=
input_left_pads
[
1
];
const
index_t
InRightPadH
=
input_right_pads
[
0
];
const
index_t
InRightPadW
=
input_right_pads
[
1
];
const
index_t
ReduceMRaw
=
N
*
Ho
*
Wo
*
C
;
const
index_t
ReduceMPad
=
math
::
integer_least_multiple
(
ReduceMRaw
,
ReduceM_BlockTileSize
)
-
ReduceMRaw
;
const
index_t
ReduceKRaw
=
Y
*
X
;
const
index_t
ReduceKPad
=
math
::
integer_least_multiple
(
ReduceKRaw
,
ReduceK_BlockTileSize
)
-
ReduceKRaw
;
// A[ReduceM, ReduceK]
const
auto
in_grid_desc_n_hi_wi_c
=
make_naive_tensor_descriptor_packed
(
make_tuple
(
N
,
Hi
,
Wi
,
C
));
const
auto
in_grid_desc_n_hip_wip_c
=
transform_tensor_descriptor
(
in_grid_desc_n_hi_wi_c
,
make_tuple
(
make_pass_through_transform
(
N
),
make_pad_transform
(
Hi
,
InLeftPadH
,
InRightPadH
),
make_pad_transform
(
Wi
,
InLeftPadW
,
InRightPadW
),
make_pass_through_transform
(
C
)),
make_tuple
(
Sequence
<
0
>
{},
Sequence
<
1
>
{},
Sequence
<
2
>
{},
Sequence
<
3
>
{}),
make_tuple
(
Sequence
<
0
>
{},
Sequence
<
1
>
{},
Sequence
<
2
>
{},
Sequence
<
3
>
{}));
const
auto
in_grid_desc_n_y_ho_x_wo_c
=
transform_tensor_descriptor
(
in_grid_desc_n_hip_wip_c
,
make_tuple
(
make_pass_through_transform
(
N
),
make_embed_transform
(
make_tuple
(
Y
,
Ho
),
make_tuple
(
I1
,
ConvStrideH
)),
make_embed_transform
(
make_tuple
(
X
,
Wo
),
make_tuple
(
I1
,
ConvStrideW
)),
make_pass_through_transform
(
C
)),
make_tuple
(
Sequence
<
0
>
{},
Sequence
<
1
>
{},
Sequence
<
2
>
{},
Sequence
<
3
>
{}),
make_tuple
(
Sequence
<
0
>
{},
Sequence
<
1
,
2
>
{},
Sequence
<
3
,
4
>
{},
Sequence
<
5
>
{}));
const
auto
in_grid_desc_reducemraw_reducekraw
=
transform_tensor_descriptor
(
in_grid_desc_n_y_ho_x_wo_c
,
make_tuple
(
make_merge_transform
(
make_tuple
(
N
,
Ho
,
Wo
,
C
)),
make_merge_transform
(
make_tuple
(
Y
,
X
))),
make_tuple
(
Sequence
<
0
,
2
,
4
,
5
>
{},
Sequence
<
1
,
3
>
{}),
make_tuple
(
Sequence
<
0
>
{},
Sequence
<
1
>
{}));
const
auto
in_grid_desc_reducem_reducek
=
transform_tensor_descriptor
(
in_grid_desc_reducemraw_reducekraw
,
make_tuple
(
make_right_pad_transform
(
ReduceMRaw
,
ReduceMPad
),
make_right_pad_transform
(
ReduceKRaw
,
ReduceKPad
)),
make_tuple
(
Sequence
<
0
>
{},
Sequence
<
1
>
{}),
make_tuple
(
Sequence
<
0
>
{},
Sequence
<
1
>
{}));
// B[ReduceM]
const
auto
out_grid_desc_reducemraw
=
make_naive_tensor_descriptor_packed
(
make_tuple
(
N
*
Ho
*
Wo
*
C
));
const
auto
out_grid_desc_reducem
=
transform_tensor_descriptor
(
out_grid_desc_reducemraw
,
make_tuple
(
make_right_pad_transform
(
ReduceMRaw
,
ReduceMPad
)),
make_tuple
(
Sequence
<
0
>
{}),
make_tuple
(
Sequence
<
0
>
{}));
return
make_tuple
(
in_grid_desc_reducem_reducek
,
out_grid_desc_reducem
);
}
using
ABGridDescs
=
decltype
(
MakeABGridDescriptor_A_M_K_B_M
(
1
,
1
,
{},
{},
{},
{},
{},
{}));
using
AGridDesc_M_K
=
remove_cvref_t
<
decltype
(
ABGridDescs
{}[
I0
])
>
;
using
BGridDesc_M
=
remove_cvref_t
<
decltype
(
ABGridDescs
{}[
I1
])
>
;
// TODO
struct
Argument
:
public
BaseArgument
{
Argument
(
const
InDataType
*
p_in_dev
,
OutDataType
*
p_out_dev
,
IndexDataType
*
p_out_indices_dev
,
ck
::
index_t
N
,
ck
::
index_t
C
,
std
::
vector
<
ck
::
index_t
>&
input_spatial_lengths
,
std
::
vector
<
ck
::
index_t
>&
window_spatial_lengths
,
std
::
vector
<
ck
::
index_t
>&
output_spatial_lengths
,
std
::
vector
<
ck
::
index_t
>&
window_strides
,
std
::
vector
<
ck
::
index_t
>&
input_left_pads
,
std
::
vector
<
ck
::
index_t
>&
input_right_pads
)
:
p_in_dev_
{
p_in_dev
},
p_out_dev_
{
p_out_dev
},
p_out_indices_dev_
{
p_out_indices_dev
},
a_grid_desc_m_k_
{},
b_grid_desc_m_
{}
{
const
auto
descs
=
MakeABGridDescriptor_A_M_K_B_M
(
N
,
C
,
input_spatial_lengths
,
window_spatial_lengths
,
output_spatial_lengths
,
window_strides
,
input_left_pads
,
input_right_pads
);
a_grid_desc_m_k_
=
descs
[
I0
];
b_grid_desc_m_
=
descs
[
I1
];
invariant_lowest_length_
=
C
;
reduce_lowest_length_
=
window_spatial_lengths
[
1
];
int32_t
reduceLength
=
window_spatial_lengths
[
0
]
*
window_spatial_lengths
[
1
];
std
::
tie
(
in_element_op_
,
acc_element_op_
)
=
reduce_unary_operator
<
ReduceOpId
,
true
,
true
>::
GetElementwiseOperator
(
reduceLength
);
}
const
InDataType
*
p_in_dev_
;
OutDataType
*
p_out_dev_
;
IndexDataType
*
p_out_indices_dev_
;
AGridDesc_M_K
a_grid_desc_m_k_
;
BGridDesc_M
b_grid_desc_m_
;
InElementwiseOperation
in_element_op_
;
AccElementwiseOperation
acc_element_op_
;
// for checking vector load/store
ck
::
index_t
invariant_lowest_length_
;
ck
::
index_t
reduce_lowest_length_
;
};
struct
Invoker
:
public
BaseInvoker
{
float
Run
(
const
Argument
&
arg
,
const
StreamConfig
&
stream_config
=
StreamConfig
{})
{
using
gridwise_reduce
=
GridwiseReduction_mk_to_m_threadwise
<
InDataType
,
OutDataType
,
OutDataType
,
ComputeDataType
,
IndexDataType
,
IndexDataType
,
AGridDesc_M_K
,
ComputeDataType
,
BGridDesc_M
,
ReduceOpId
,
ReduceOperation
,
OutputIndex
,
InElementwiseOperation
,
AccElementwiseOperation
,
InMemoryDataOperationEnum
::
Set
,
false
,
// propagate_nan
BlockSize
,
BlockSize
,
ReduceMThreadClusterSize
,
ReduceKThreadClusterSize
,
ReduceMThreadSliceSize
,
ReduceMThreadSliceSize
,
ReduceKThreadSliceSize
,
ReduceKThreadSliceSize
,
InSrcOutDstVectorDim
,
InSrcOutDstVectorSize
>
InSrcOutDstVectorSize
,
{
InSrcOutDstVectorSize
>
;
using
DevicePool3D
=
DevicePool3dFwd_NDHWC_NDHWC
<
InDataType
,
const
auto
kernel
=
kernel_reduce_threadwise
<
gridwise_reduce
,
OutputIndex
,
true
,
// pooling need to return global index
false
,
// don't have index input
InDataType
,
OutDataType
,
OutDataType
,
ComputeDataType
,
IndexDataType
,
IndexDataType
,
AGridDesc_M_K
,
ComputeDataType
,
BGridDesc_M
,
ReduceOpId
,
InElementwiseOperation
,
OutputIndex
,
AccElementwiseOperation
>
;
BlockSize
,
ReduceMThreadClusterSize
,
ck
::
index_t
ReduceM
=
arg
.
a_grid_desc_m_k_
.
GetLength
(
I0
);
ReduceKThreadClusterSize
,
ReduceMThreadSliceSize
,
const
index_t
grid_size
=
(
ReduceM
/
ReduceM_BlockTileSize
);
ReduceKThreadSliceSize
,
InSrcOutDstVectorSize
>
;
return
launch_and_time_kernel
(
stream_config
,
kernel
,
dim3
(
grid_size
),
dim3
(
BlockSize
),
0
,
arg
.
a_grid_desc_m_k_
,
arg
.
b_grid_desc_m_
,
arg
.
in_element_op_
,
arg
.
acc_element_op_
,
float
(
1
),
arg
.
p_in_dev_
,
nullptr
,
float
(
0
),
arg
.
p_out_dev_
,
arg
.
p_out_indices_dev_
);
}
float
Run
(
const
BaseArgument
*
p_arg
,
const
StreamConfig
&
stream_config
=
StreamConfig
{})
override
{
return
Run
(
*
dynamic_cast
<
const
Argument
*>
(
p_arg
),
stream_config
);
}
};
bool
IsSupportedArgument
(
const
BaseArgument
*
p_arg
)
override
{
const
Argument
*
pArg
=
dynamic_cast
<
const
Argument
*>
(
p_arg
);
if
(
pArg
->
invariant_lowest_length_
%
InSrcOutDstVectorSize
!=
0
)
{
return
(
false
);
}
return
(
true
);
}
std
::
unique_ptr
<
BaseArgument
>
std
::
unique_ptr
<
BaseArgument
>
MakeArgumentPointer
(
const
void
*
p_in_dev
,
MakeArgumentPointer
(
const
void
*
p_in_dev
,
...
@@ -286,62 +54,57 @@ struct DevicePool2dFwd_Input_N_Hi_Wi_C_Output_N_Ho_Wo_C
...
@@ -286,62 +54,57 @@ struct DevicePool2dFwd_Input_N_Hi_Wi_C_Output_N_Ho_Wo_C
std
::
vector
<
ck
::
index_t
>
input_lengths
,
std
::
vector
<
ck
::
index_t
>
input_lengths
,
std
::
vector
<
ck
::
index_t
>
window_lengths
,
std
::
vector
<
ck
::
index_t
>
window_lengths
,
std
::
vector
<
ck
::
index_t
>
output_lengths
,
std
::
vector
<
ck
::
index_t
>
output_lengths
,
std
::
vector
<
ck
::
index_t
>
,
// Suppose tensor layout = NHWC
std
::
vector
<
ck
::
index_t
>
input_stride
,
std
::
vector
<
ck
::
index_t
>
,
// Suppose tensor layout = NHWC
std
::
vector
<
ck
::
index_t
>
output_stride
,
std
::
vector
<
ck
::
index_t
>
,
// Suppose tensor layout = NHWC
std
::
vector
<
ck
::
index_t
>
indices_stride
,
std
::
vector
<
ck
::
index_t
>
window_strides
,
std
::
vector
<
ck
::
index_t
>
window_strides
,
std
::
vector
<
ck
::
index_t
>
window_dilations
,
std
::
vector
<
ck
::
index_t
>
input_left_pads
,
std
::
vector
<
ck
::
index_t
>
input_left_pads
,
std
::
vector
<
ck
::
index_t
>
input_right_pads
,
std
::
vector
<
ck
::
index_t
>
input_right_pads
,
std
::
vector
<
ck
::
index_t
>
pooling_dims
)
override
std
::
vector
<
ck
::
index_t
>
pooling_dims
)
override
{
{
static
constexpr
index_t
InOutRank
=
4
;
static
constexpr
index_t
WindowRank
=
2
;
if
(
input_lengths
.
size
()
!=
InOutRank
||
window_lengths
.
size
()
!=
WindowRank
||
if
(
input_lengths
.
size
()
!=
InOutRank
||
window_lengths
.
size
()
!=
WindowRank
||
input_lengths
.
size
()
!=
InOutRank
||
window_strides
.
size
()
!=
WindowRank
||
input_lengths
.
size
()
!=
InOutRank
||
window_strides
.
size
()
!=
WindowRank
||
input_left_pads
.
size
()
!=
WindowRank
||
input_right_pads
.
size
()
!=
WindowRank
)
window_dilations
.
size
()
!=
WindowRank
||
input_left_pads
.
size
()
!=
WindowRank
||
input_right_pads
.
size
()
!=
WindowRank
)
throw
std
::
runtime_error
(
"dimension is incorrect"
);
throw
std
::
runtime_error
(
"dimension is incorrect"
);
if
(
pooling_dims
!=
std
::
vector
<
ck
::
index_t
>
{
2
,
3
})
if
(
pooling_dims
!=
std
::
vector
<
ck
::
index_t
>
{
2
,
3
})
throw
std
::
runtime_error
(
"pooling_dims only support {2, 3} in pool2d so far"
);
throw
std
::
runtime_error
(
"pooling_dims only support {2, 3} in pool2d so far"
);
index_t
N
=
input_lengths
[
0
];
// NCHW to NCDHW
index_t
C
=
input_lengths
[
1
];
input_lengths
.
insert
(
input_lengths
.
begin
()
+
2
,
1
);
index_t
Hi
=
input_lengths
[
2
];
output_lengths
.
insert
(
output_lengths
.
begin
()
+
2
,
1
);
index_t
Wi
=
input_lengths
[
3
];
input_stride
.
insert
(
input_stride
.
begin
()
+
2
,
0
);
index_t
Ho
=
output_lengths
[
2
];
output_stride
.
insert
(
output_stride
.
begin
()
+
2
,
0
);
index_t
Wo
=
output_lengths
[
3
];
indices_stride
.
insert
(
indices_stride
.
begin
()
+
2
,
0
);
std
::
vector
<
ck
::
index_t
>
input_spatial_lengths
=
{
Hi
,
Wi
};
// YX to ZYX
std
::
vector
<
ck
::
index_t
>
output_spatial_lengths
=
{
Ho
,
Wo
};
window_lengths
.
insert
(
window_lengths
.
begin
(),
1
);
window_strides
.
insert
(
window_strides
.
begin
(),
0
);
return
std
::
make_unique
<
Argument
>
(
static_cast
<
const
InDataType
*>
(
p_in_dev
),
window_dilations
.
insert
(
window_dilations
.
begin
(),
0
);
static_cast
<
OutDataType
*>
(
p_out_dev
),
input_left_pads
.
insert
(
input_left_pads
.
begin
(),
0
);
static_cast
<
IndexDataType
*>
(
p_out_indices_dev
),
input_right_pads
.
insert
(
input_right_pads
.
begin
(),
0
);
N
,
C
,
pooling_dims
=
{
2
,
3
,
4
};
input_spatial_lengths
,
return
DevicePool3D
::
MakeArgumentPointer
(
p_in_dev
,
p_out_dev
,
p_out_indices_dev
,
input_lengths
,
window_lengths
,
window_lengths
,
output_spatial_lengths
,
output_lengths
,
input_stride
,
output_stride
,
indices_stride
,
window_strides
,
window_strides
,
window_dilations
,
input_left_pads
,
input_left_pads
,
input_right_pads
);
input_right_pads
,
}
pooling_dims
);
std
::
unique_ptr
<
BaseInvoker
>
MakeInvokerPointer
()
override
{
return
std
::
make_unique
<
Invoker
>
(
Invoker
{});
}
std
::
string
GetTypeString
()
const
override
{
auto
str
=
std
::
stringstream
();
// clang-format off
str
<<
"DevicePool2dFwd_Input_N_Hi_Wi_C_Output_N_Ho_Wo_C<"
<<
BlockSize
<<
","
;
str
<<
"M_C"
<<
ReduceMThreadClusterSize
<<
"_S"
<<
ReduceMThreadSliceSize
<<
","
;
str
<<
"K_C"
<<
ReduceKThreadClusterSize
<<
"_S"
<<
ReduceKThreadSliceSize
<<
","
;
str
<<
"InSrcOutDstVectorSize_"
<<
InSrcOutDstVectorSize
<<
">"
;
// clang-format on
return
str
.
str
();
}
}
};
};
...
...
include/ck/tensor_operation/gpu/device/impl/device_pool3d_fwd_ndhwc_ndhwc.hpp
View file @
cbf281f0
This diff is collapsed.
Click to expand it.
include/ck/tensor_operation/gpu/device/impl/device_splitk_contraction_multiple_d_xdl_cshuffle.hpp
View file @
cbf281f0
...
@@ -886,11 +886,12 @@ struct DeviceSplitKContractionMultipleD_Xdl_CShuffle
...
@@ -886,11 +886,12 @@ struct DeviceSplitKContractionMultipleD_Xdl_CShuffle
typename
GridwiseGemmAtomicAdd
::
DefaultBlock2ETileMap
,
typename
GridwiseGemmAtomicAdd
::
DefaultBlock2ETileMap
,
has_main_loop
>
;
has_main_loop
>
;
hipGetErrorString
(
hipMemset
(
hipGetErrorString
(
hipMemset
Async
(
arg
.
p_e_grid_
,
arg
.
p_e_grid_
,
0
,
0
,
arg
.
e_grid_desc_mblock_mperblock_nblock_nperblock_
.
GetElementSpaceSize
()
*
arg
.
e_grid_desc_mblock_mperblock_nblock_nperblock_
.
GetElementSpaceSize
()
*
sizeof
(
EDataType
)));
sizeof
(
EDataType
),
stream_config
.
stream_id_
));
return
launch_and_time_kernel
(
stream_config
,
return
launch_and_time_kernel
(
stream_config
,
kernel
,
kernel
,
...
...
include/ck/tensor_operation/gpu/grid/gridwise_gemm_dl_v1r3.hpp
View file @
cbf281f0
...
@@ -7,9 +7,11 @@
...
@@ -7,9 +7,11 @@
#include "ck/tensor_description/multi_index_transform_helper.hpp"
#include "ck/tensor_description/multi_index_transform_helper.hpp"
#include "ck/tensor_description/tensor_descriptor.hpp"
#include "ck/tensor_description/tensor_descriptor.hpp"
#include "ck/tensor_description/tensor_descriptor_helper.hpp"
#include "ck/tensor_description/tensor_descriptor_helper.hpp"
#include "ck/tensor_operation/gpu/device/gemm_dl_algorithm.hpp"
#include "ck/tensor_operation/gpu/grid/block_to_ctile_map.hpp"
#include "ck/tensor_operation/gpu/grid/block_to_ctile_map.hpp"
#include "ck/tensor_operation/gpu/grid/gridwise_gemm_pipeline_v1.hpp"
#include "ck/tensor_operation/gpu/grid/gridwise_gemm_pipeline_v1.hpp"
#include "ck/tensor_operation/gpu/block/blockwise_gemm_dl_v2r3.hpp"
#include "ck/tensor_operation/gpu/block/blockwise_gemm_dl_v2r3.hpp"
#include "ck/tensor_operation/gpu/block/blockwise_gemm_dl_dpp8.hpp"
#include "ck/tensor_operation/gpu/block/blockwise_tensor_slice_transfer_v5r1.hpp"
#include "ck/tensor_operation/gpu/block/blockwise_tensor_slice_transfer_v5r1.hpp"
#include "ck/tensor_operation/gpu/thread/threadwise_tensor_slice_transfer.hpp"
#include "ck/tensor_operation/gpu/thread/threadwise_tensor_slice_transfer.hpp"
#include "ck/tensor_operation/gpu/thread/threadwise_tensor_slice_set.hpp"
#include "ck/tensor_operation/gpu/thread/threadwise_tensor_slice_set.hpp"
...
@@ -17,6 +19,8 @@
...
@@ -17,6 +19,8 @@
namespace
ck
{
namespace
ck
{
using
GemmDlAlgorithm
=
tensor_operation
::
device
::
GemmDlAlgorithm
;
template
<
typename
GridwiseGemm
,
template
<
typename
GridwiseGemm
,
typename
FloatAB
,
typename
FloatAB
,
typename
FloatC
,
typename
FloatC
,
...
@@ -25,7 +29,8 @@ template <typename GridwiseGemm,
...
@@ -25,7 +29,8 @@ template <typename GridwiseGemm,
typename
CGridDesc_M0_M10_M11_N0_N10_N11
,
typename
CGridDesc_M0_M10_M11_N0_N10_N11
,
typename
Block2CTileMap
,
typename
Block2CTileMap
,
bool
HasMainKBlockLoop
,
bool
HasMainKBlockLoop
,
bool
HasDoubleTailKBlockLoop
>
bool
HasDoubleTailKBlockLoop
,
GemmDlAlgorithm
GemmDlAlg
=
GemmDlAlgorithm
::
Default
>
__global__
void
__global__
void
#if CK_USE_LAUNCH_BOUNDS
#if CK_USE_LAUNCH_BOUNDS
__launch_bounds__
(
CK_MAX_THREAD_PER_BLOCK
,
CK_MIN_BLOCK_PER_CU
)
__launch_bounds__
(
CK_MAX_THREAD_PER_BLOCK
,
CK_MIN_BLOCK_PER_CU
)
...
@@ -38,6 +43,13 @@ __global__ void
...
@@ -38,6 +43,13 @@ __global__ void
const
CGridDesc_M0_M10_M11_N0_N10_N11
c_grid_desc_m0_m10_m11_n0_n10_n11
,
const
CGridDesc_M0_M10_M11_N0_N10_N11
c_grid_desc_m0_m10_m11_n0_n10_n11
,
const
Block2CTileMap
block_2_ctile_map
)
const
Block2CTileMap
block_2_ctile_map
)
{
{
// DPP8 is currently only supported on gfx1030
#if !defined(__gfx1030__)
if
(
GemmDlAlg
==
GemmDlAlgorithm
::
Dpp8
)
{
return
;
}
#endif
constexpr
index_t
shared_block_size
=
constexpr
index_t
shared_block_size
=
GridwiseGemm
::
GetSharedMemoryNumberOfByte
()
/
sizeof
(
FloatAB
);
GridwiseGemm
::
GetSharedMemoryNumberOfByte
()
/
sizeof
(
FloatAB
);
...
@@ -88,7 +100,8 @@ template <index_t BlockSize,
...
@@ -88,7 +100,8 @@ template <index_t BlockSize,
typename
BBlockTransferDstVectorTensorLengths_K0_N0_N1_K1
,
typename
BBlockTransferDstVectorTensorLengths_K0_N0_N1_K1
,
typename
CThreadTransferSrcDstAccessOrder
,
typename
CThreadTransferSrcDstAccessOrder
,
index_t
CThreadTransferSrcDstVectorDim
,
index_t
CThreadTransferSrcDstVectorDim
,
index_t
CThreadTransferDstScalarPerVector
>
index_t
CThreadTransferDstScalarPerVector
,
GemmDlAlgorithm
GemmDlAlg
=
GemmDlAlgorithm
::
Default
>
struct
GridwiseGemmDl_km_kn_mn_v1r3
struct
GridwiseGemmDl_km_kn_mn_v1r3
{
{
static
constexpr
auto
I0
=
Number
<
0
>
{};
static
constexpr
auto
I0
=
Number
<
0
>
{};
...
@@ -244,6 +257,45 @@ struct GridwiseGemmDl_km_kn_mn_v1r3
...
@@ -244,6 +257,45 @@ struct GridwiseGemmDl_km_kn_mn_v1r3
c_grid_desc_m_n
);
c_grid_desc_m_n
);
}
}
template
<
typename
ABlockDesc_BK0_BM_BK1
,
typename
BBlockDesc_BK0_BN_BK1
>
__host__
__device__
static
constexpr
auto
GetBlockwiseGemm
()
{
if
constexpr
(
GemmDlAlg
==
GemmDlAlgorithm
::
Dpp8
)
{
return
BlockwiseGemmDlDpp8_A_BK0_BM_BK1_B_BK0_BN_BK1_C_BM0_BM1_BN0_BN1_loop_BM0_BN0
<
BlockSize
,
FloatAB
,
FloatAB
,
FloatAcc
,
ABlockDesc_BK0_BM_BK1
,
BBlockDesc_BK0_BN_BK1
,
M1PerThreadM111
,
N1PerThreadN111
,
KPerThread
,
M11N11ThreadClusterM110Xs
,
M11N11ThreadClusterN110Xs
,
M1PerThreadM111
,
N1PerThreadN111
>
{};
}
else
{
return
BlockwiseGemmDl_A_BK0_BM_BK1_B_BK0_BN_BK1_C_BM0_BM1_BN0_BN1_pipeline_BM0_2_BN0_2
<
BlockSize
,
FloatAB
,
FloatAB
,
FloatAcc
,
ABlockDesc_BK0_BM_BK1
,
BBlockDesc_BK0_BN_BK1
,
M1PerThreadM111
,
N1PerThreadN111
,
KPerThread
,
M11N11ThreadClusterM110Xs
,
M11N11ThreadClusterN110Xs
,
M1PerThreadM111
,
N1PerThreadN111
>
{};
}
}
using
AGridDesc_K0_M0_M1_K1
=
decltype
(
MakeAGridDescriptor_K0_M0_M1_K1
(
AGridDesc_K0_M_K1
{}));
using
AGridDesc_K0_M0_M1_K1
=
decltype
(
MakeAGridDescriptor_K0_M0_M1_K1
(
AGridDesc_K0_M_K1
{}));
using
BGridDesc_K0_N0_N1_K1
=
decltype
(
MakeBGridDescriptor_K0_N0_N1_K1
(
BGridDesc_K0_N_K1
{}));
using
BGridDesc_K0_N0_N1_K1
=
decltype
(
MakeBGridDescriptor_K0_N0_N1_K1
(
BGridDesc_K0_N_K1
{}));
using
CGridDesc_M0_M10_M11_N0_N10_N11
=
using
CGridDesc_M0_M10_M11_N0_N10_N11
=
...
@@ -274,7 +326,7 @@ struct GridwiseGemmDl_km_kn_mn_v1r3
...
@@ -274,7 +326,7 @@ struct GridwiseGemmDl_km_kn_mn_v1r3
const
auto
c_m0_n0_block_cluster_idx
=
const
auto
c_m0_n0_block_cluster_idx
=
block_2_ctile_map
.
CalculateBottomIndex
(
make_multi_index
(
get_block_1d_id
()));
block_2_ctile_map
.
CalculateBottomIndex
(
make_multi_index
(
get_block_1d_id
()));
// HACK: this force index data into SGPR
// HACK: this force
s
index data into SGPR
const
index_t
im0
=
__builtin_amdgcn_readfirstlane
(
c_m0_n0_block_cluster_idx
[
I0
]);
const
index_t
im0
=
__builtin_amdgcn_readfirstlane
(
c_m0_n0_block_cluster_idx
[
I0
]);
const
index_t
in0
=
__builtin_amdgcn_readfirstlane
(
c_m0_n0_block_cluster_idx
[
I1
]);
const
index_t
in0
=
__builtin_amdgcn_readfirstlane
(
c_m0_n0_block_cluster_idx
[
I1
]);
...
@@ -372,20 +424,7 @@ struct GridwiseGemmDl_km_kn_mn_v1r3
...
@@ -372,20 +424,7 @@ struct GridwiseGemmDl_km_kn_mn_v1r3
// c_mtx[MPerBlock, NPerBlock] is distributed among threads, and saved in
// c_mtx[MPerBlock, NPerBlock] is distributed among threads, and saved in
// register
// register
const
auto
blockwise_gemm
=
const
auto
blockwise_gemm
=
BlockwiseGemmDl_A_BK0_BM_BK1_B_BK0_BN_BK1_C_BM0_BM1_BN0_BN1_pipeline_BM0_2_BN0_2
<
GetBlockwiseGemm
<
decltype
(
a_k0_m_k1_block_desc
),
decltype
(
b_k0_n_k1_block_desc
)
>
();
BlockSize
,
FloatAB
,
FloatAB
,
FloatAcc
,
decltype
(
a_k0_m_k1_block_desc
),
decltype
(
b_k0_n_k1_block_desc
),
M1PerThreadM111
,
N1PerThreadN111
,
KPerThread
,
M11N11ThreadClusterM110Xs
,
M11N11ThreadClusterN110Xs
,
M1PerThreadM111
,
N1PerThreadN111
>
{};
constexpr
auto
c_m10_m11_n10_n11_thread_tensor_lengths
=
constexpr
auto
c_m10_m11_n10_n11_thread_tensor_lengths
=
decltype
(
blockwise_gemm
)
::
GetCThreadTensorLengths_BM0_BM1_BN0_BN1
();
decltype
(
blockwise_gemm
)
::
GetCThreadTensorLengths_BM0_BM1_BN0_BN1
();
...
@@ -472,7 +511,7 @@ struct GridwiseGemmDl_km_kn_mn_v1r3
...
@@ -472,7 +511,7 @@ struct GridwiseGemmDl_km_kn_mn_v1r3
b_blockwise_copy
.
MoveSrcSliceWindow
(
b_grid_desc_k0_n0_n1_k1
,
b_blockwise_copy
.
MoveSrcSliceWindow
(
b_grid_desc_k0_n0_n1_k1
,
b_block_slice_copy_step
);
b_block_slice_copy_step
);
// LDS doub
e
l buffer: load next data from device mem
// LDS doubl
e
buffer: load next data from device mem
a_blockwise_copy
.
RunRead
(
a_grid_desc_k0_m0_m1_k1
,
a_global_buf
);
a_blockwise_copy
.
RunRead
(
a_grid_desc_k0_m0_m1_k1
,
a_global_buf
);
b_blockwise_copy
.
RunRead
(
b_grid_desc_k0_n0_n1_k1
,
b_global_buf
);
b_blockwise_copy
.
RunRead
(
b_grid_desc_k0_n0_n1_k1
,
b_global_buf
);
...
@@ -992,7 +1031,7 @@ struct GridwiseGemmDl_bkm_bkn_mn_v1r3
...
@@ -992,7 +1031,7 @@ struct GridwiseGemmDl_bkm_bkn_mn_v1r3
b_blockwise_copy
.
MoveSrcSliceWindow
(
b_grid_desc_b_k0_n0_n1_k1
,
b_blockwise_copy
.
MoveSrcSliceWindow
(
b_grid_desc_b_k0_n0_n1_k1
,
b_block_slice_copy_step
);
b_block_slice_copy_step
);
// LDS doub
e
l buffer: load next data from device mem
// LDS doubl
e
buffer: load next data from device mem
a_blockwise_copy
.
RunRead
(
a_grid_desc_b_k0_m0_m1_k1
,
a_global_buf
);
a_blockwise_copy
.
RunRead
(
a_grid_desc_b_k0_m0_m1_k1
,
a_global_buf
);
b_blockwise_copy
.
RunRead
(
b_grid_desc_b_k0_n0_n1_k1
,
b_global_buf
);
b_blockwise_copy
.
RunRead
(
b_grid_desc_b_k0_n0_n1_k1
,
b_global_buf
);
...
...
include/ck/tensor_operation/gpu/grid/normalization/gridwise_normalization_splitk_1st.hpp
View file @
cbf281f0
...
@@ -78,17 +78,18 @@ struct GridwiseNormalizationSplitK1st
...
@@ -78,17 +78,18 @@ struct GridwiseNormalizationSplitK1st
static
constexpr
auto
ThreadBufferNumber
=
Number
<
KThreadSliceSize
/
XSrcVectorSize
>
{};
static
constexpr
auto
ThreadBufferNumber
=
Number
<
KThreadSliceSize
/
XSrcVectorSize
>
{};
__device__
static
int
__device__
static
int
GetKPerThread
(
int
kRaw
,
int
kGridSize
,
int
block_k_cluster_id
,
int
thread_k_cluster_id
)
GetKPerThread
(
int
k
,
int
kRaw
,
int
kGridSize
,
int
block_k_cluster_id
,
int
thread_k_cluster_id
)
{
{
bool
is_rightmost_block
=
block_k_cluster_id
==
kGridSize
-
1
;
bool
is_rightmost_block
=
block_k_cluster_id
==
kGridSize
-
1
;
if
(
is_rightmost_block
)
if
(
is_rightmost_block
)
{
{
int
left_kPerBlock
=
math
::
integer_divide_ceil
(
kRaw
,
kGridSize
);
int
left_kPerBlock
=
math
::
integer_divide_ceil
(
k
,
kGridSize
);
int
kPerBlock
=
kRaw
%
kGridSize
==
0
?
left_kPerBlock
:
kRaw
%
left_kPerBlock
;
int
kRightmostBlock
=
kRaw
-
left_kPerBlock
*
(
kGridSize
-
1
);
int
kPerThread
=
int
kPerThread
=
kRightmostBlock
<
K_BlockTileSize
kPerBlock
<
K_BlockTileSize
?
0
:
KThreadSliceSize
*
(
kPerBlock
/
K_BlockTileSize
);
?
0
int
kPerBlockTail
=
kPerBlock
-
kPerThread
*
KThreadClusterSize
;
:
KThreadSliceSize
*
(
kRightmostBlock
/
K_BlockTileSize
);
int
kPerBlockTail
=
kRightmostBlock
-
kPerThread
*
KThreadClusterSize
;
if
(
kPerBlockTail
>
0
)
if
(
kPerBlockTail
>
0
)
{
{
...
@@ -105,7 +106,7 @@ struct GridwiseNormalizationSplitK1st
...
@@ -105,7 +106,7 @@ struct GridwiseNormalizationSplitK1st
}
}
else
else
{
{
int
kPerBlock
=
math
::
integer_divide_ceil
(
k
Raw
,
kGridSize
);
int
kPerBlock
=
math
::
integer_divide_ceil
(
k
,
kGridSize
);
return
KThreadSliceSize
*
(
kPerBlock
/
K_BlockTileSize
);
return
KThreadSliceSize
*
(
kPerBlock
/
K_BlockTileSize
);
}
}
}
}
...
@@ -195,8 +196,11 @@ struct GridwiseNormalizationSplitK1st
...
@@ -195,8 +196,11 @@ struct GridwiseNormalizationSplitK1st
auto
threadwise_welford
=
ThreadwiseWelford
();
auto
threadwise_welford
=
ThreadwiseWelford
();
int
kRaw
=
x_grid_desc_m_k
.
GetTransforms
()[
I2
].
GetUpperLengths
()[
I0
];
int
kRaw
=
x_grid_desc_m_k
.
GetTransforms
()[
I2
].
GetUpperLengths
()[
I0
];
threadwise_welford
.
max_count_
=
threadwise_welford
.
max_count_
=
GetKPerThread
(
x_grid_desc_m_k
.
GetLength
(
I1
),
GetKPerThread
(
kRaw
,
k_grid_size
,
block_k_cluster_id
,
thread_k_cluster_id
);
kRaw
,
k_grid_size
,
block_k_cluster_id
,
thread_k_cluster_id
);
static_for
<
0
,
MThreadSliceSize
,
1
>
{}([
&
](
auto
I
)
{
static_for
<
0
,
MThreadSliceSize
,
1
>
{}([
&
](
auto
I
)
{
mean_thread_buf
(
I
)
=
type_convert
<
ComputeDataType
>
(
0.0
f
);
mean_thread_buf
(
I
)
=
type_convert
<
ComputeDataType
>
(
0.0
f
);
...
...
include/ck/tensor_operation/gpu/thread/threadwise_contraction_dl_dpp8.hpp
0 → 100644
View file @
cbf281f0
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2023, Advanced Micro Devices, Inc. All rights reserved.
#pragma once
#include "ck/utility/amd_gemm_dpp.hpp"
#include "ck/utility/common_header.hpp"
#include "ck/utility/inner_product_dpp8.hpp"
#include "ck/utility/math.hpp"
namespace
ck
{
/**
* Threadwise contraction using dot instructions with DPP8 modifier.
*
* Assumptions:
* 1. `AThreadDesc_TK0_TM0_TM1_TK1`, `BThreadDesc_TK0_TN0_TN1_TK1`, `CThreadDesc_TM0_TM1_TN0_TN1`
* are known at compile-time;
* 2. `AOriginIdx`, `BOriginIdx`, `COriginIdx` are known at compile-time;
* 3. `TM0` is equal to 1 and `TN0` is equal to 1;
* 4. When `ShareA` is set (unset, respectively), `TM1` (`TN1`, respectively) is divisible by
* the size of the lane group (`dpp8::lane_group_size`).
*/
template
<
typename
FloatA
,
typename
FloatB
,
typename
FloatC
,
typename
AThreadDesc_TK0_TM0_TM1_TK1
,
typename
BThreadDesc_TK0_TN0_TN1_TK1
,
typename
CThreadDesc_TM0_TM1_TN0_TN1
,
typename
TKLengths
,
typename
TMLengths
,
typename
TNLengths
,
bool
ShareA
,
typename
enable_if
<
AThreadDesc_TK0_TM0_TM1_TK1
::
IsKnownAtCompileTime
()
&&
BThreadDesc_TK0_TN0_TN1_TK1
::
IsKnownAtCompileTime
()
&&
CThreadDesc_TM0_TM1_TN0_TN1
::
IsKnownAtCompileTime
(),
bool
>
::
type
=
false
>
struct
ThreadwiseContractionDlDpp8_A_TK0_TM0_TM1_TK1_B_TK0_TN0_TN1_TK1_C_TM0_TM1_TN0_TN1
{
static
constexpr
auto
I0
=
Number
<
0
>
{};
static
constexpr
auto
I1
=
Number
<
1
>
{};
static
constexpr
index_t
TK0
=
TKLengths
{}[
I0
];
static
constexpr
index_t
TK1
=
TKLengths
{}[
I1
];
static
constexpr
index_t
TM0
=
TMLengths
{}[
I0
];
static
constexpr
index_t
TM1
=
TMLengths
{}[
I1
];
static
constexpr
index_t
TN0
=
TNLengths
{}[
I0
];
static
constexpr
index_t
TN1
=
TNLengths
{}[
I1
];
static_assert
(
TM0
==
1
&&
TN0
==
1
);
static_assert
((
ShareA
&&
TM1
%
dpp8
::
lane_group_size
==
0
)
||
(
!
ShareA
&&
TN1
%
dpp8
::
lane_group_size
==
0
));
static
constexpr
index_t
shared_elems_per_lane
=
ShareA
?
TM1
/
dpp8
::
lane_group_size
:
TN1
/
dpp8
::
lane_group_size
;
__device__
constexpr
ThreadwiseContractionDlDpp8_A_TK0_TM0_TM1_TK1_B_TK0_TN0_TN1_TK1_C_TM0_TM1_TN0_TN1
()
{
static_assert
(
AThreadDesc_TK0_TM0_TM1_TK1
::
IsKnownAtCompileTime
()
&&
BThreadDesc_TK0_TN0_TN1_TK1
::
IsKnownAtCompileTime
()
&&
CThreadDesc_TM0_TM1_TN0_TN1
::
IsKnownAtCompileTime
(),
"wrong! Desc should be known at compile-time"
);
static_assert
(
TKLengths
::
Size
()
==
2
&&
TMLengths
::
Size
()
==
2
&&
TNLengths
::
Size
()
==
2
,
"wrong!"
);
}
template
<
typename
ABuffer
,
typename
AOriginIdx
,
typename
BBuffer
,
typename
BOriginIdx
,
typename
CBuffer
,
typename
COriginIdx
>
__device__
static
void
Run
(
const
ABuffer
&
a_buf
,
AOriginIdx
,
const
BBuffer
&
b_buf
,
BOriginIdx
,
CBuffer
&
c_buf
,
COriginIdx
)
{
static_assert
(
is_known_at_compile_time
<
remove_cvref_t
<
AOriginIdx
>>::
value
&&
is_known_at_compile_time
<
remove_cvref_t
<
BOriginIdx
>>::
value
&&
is_known_at_compile_time
<
remove_cvref_t
<
COriginIdx
>>::
value
,
"wrong! AOriginIdx, BOriginIdx, COringinIdx should be known at compile-time"
);
static_assert
(
is_same
<
remove_cvref_t
<
typename
ABuffer
::
type
>
,
remove_cvref_t
<
FloatA
>>::
value
&&
is_same
<
remove_cvref_t
<
typename
BBuffer
::
type
>
,
remove_cvref_t
<
FloatB
>>::
value
&&
is_same
<
remove_cvref_t
<
typename
CBuffer
::
type
>
,
remove_cvref_t
<
FloatC
>>::
value
&&
"wrong! inconsistent type"
);
constexpr
auto
a_origin_idx
=
to_multi_index
(
AOriginIdx
{});
constexpr
auto
b_origin_idx
=
to_multi_index
(
BOriginIdx
{});
constexpr
auto
c_origin_idx
=
to_multi_index
(
COriginIdx
{});
static_for
<
0
,
TK0
,
1
>
{}([
&
](
auto
tk0
)
{
static_for
<
0
,
TM1
,
1
>
{}([
&
](
auto
tm1
)
{
static_for
<
0
,
TN1
,
1
>
{}([
&
](
auto
tn1
)
{
vector_type
<
FloatA
,
TK1
>
a_vec
;
vector_type
<
FloatB
,
TK1
>
b_vec
;
static_for
<
0
,
TK1
,
1
>
{}([
&
](
auto
tk1
)
{
constexpr
index_t
local_tm1
=
ShareA
?
tm1
%
shared_elems_per_lane
:
tm1
;
constexpr
index_t
a_offset
=
AThreadDesc_TK0_TM0_TM1_TK1
{}.
CalculateOffset
(
a_origin_idx
+
make_multi_index
(
tk0
,
0
,
local_tm1
,
tk1
));
constexpr
index_t
local_tn1
=
ShareA
?
tn1
:
tn1
%
shared_elems_per_lane
;
constexpr
index_t
b_offset
=
BThreadDesc_TK0_TN0_TN1_TK1
{}.
CalculateOffset
(
b_origin_idx
+
make_multi_index
(
tk0
,
0
,
local_tn1
,
tk1
));
a_vec
.
template
AsType
<
FloatA
>()(
tk1
)
=
a_buf
[
Number
<
a_offset
>
{}];
b_vec
.
template
AsType
<
FloatB
>()(
tk1
)
=
b_buf
[
Number
<
b_offset
>
{}];
});
using
a_vector_t
=
typename
vector_type
<
FloatA
,
TK1
>::
type
;
using
b_vector_t
=
typename
vector_type
<
FloatB
,
TK1
>::
type
;
constexpr
index_t
c_offset
=
CThreadDesc_TM0_TM1_TN0_TN1
{}.
CalculateOffset
(
c_origin_idx
+
make_multi_index
(
0
,
tm1
,
0
,
tn1
));
constexpr
int
src_lane
=
ShareA
?
(
tm1
/
shared_elems_per_lane
)
%
dpp8
::
lane_group_size
:
(
tn1
/
shared_elems_per_lane
)
%
dpp8
::
lane_group_size
;
dpp8
::
inner_product_dpp
<
a_vector_t
,
b_vector_t
,
FloatC
,
src_lane
,
ShareA
>
(
a_vec
.
template
AsType
<
a_vector_t
>()[
I0
],
b_vec
.
template
AsType
<
b_vector_t
>()[
I0
],
c_buf
(
Number
<
c_offset
>
{}));
});
});
});
}
};
}
// namespace ck
include/ck/utility/amd_gemm_dpp.hpp
0 → 100644
View file @
cbf281f0
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2023, Advanced Micro Devices, Inc. All rights reserved.
#pragma once
#include "ck/utility/common_header.hpp"
#include "ck/utility/math.hpp"
#include "ck/utility/amd_gemm_dpp.hpp"
namespace
ck
{
namespace
dpp8
{
/// Number of lanes that can share data using DPP8 modifiers.
constexpr
index_t
lane_group_size
=
8
;
__device__
index_t
get_lane_group_local_idx
()
{
return
threadIdx
.
x
/
lane_group_size
;
}
__device__
index_t
get_thread_idx_in_lane_group
()
{
return
threadIdx
.
x
%
lane_group_size
;
}
}
// namespace dpp8
}
// namespace ck
include/ck/utility/inner_product.hpp
View file @
cbf281f0
...
@@ -94,8 +94,8 @@ __device__ void inner_product<half2_t, half2_t, float>(const half2_t& a, const h
...
@@ -94,8 +94,8 @@ __device__ void inner_product<half2_t, half2_t, float>(const half2_t& a, const h
const
vector_type
<
half_t
,
2
>
b_vector
{
b
};
const
vector_type
<
half_t
,
2
>
b_vector
{
b
};
static_for
<
0
,
2
,
1
>
{}([
&
](
auto
i
)
{
static_for
<
0
,
2
,
1
>
{}([
&
](
auto
i
)
{
c
+=
type_convert
<
int32_
t
>
(
a_vector
.
AsType
<
half_t
>
()[
i
])
*
c
+=
type_convert
<
floa
t
>
(
a_vector
.
AsType
<
half_t
>
()[
i
])
*
type_convert
<
int32_
t
>
(
b_vector
.
AsType
<
half_t
>
()[
i
]);
type_convert
<
floa
t
>
(
b_vector
.
AsType
<
half_t
>
()[
i
]);
});
});
#endif
#endif
}
}
...
...
include/ck/utility/inner_product_dpp8.hpp
0 → 100644
View file @
cbf281f0
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2023, Advanced Micro Devices, Inc. All rights reserved.
#pragma once
#include "amd_gemm_dpp.hpp"
#include "data_type.hpp"
#include "type_convert.hpp"
namespace
ck
{
namespace
dpp8
{
template
<
int
SrcLaneIdx
>
__device__
void
inline_v_dot2c_dpp8_instr
(
const
half2_t
&
a
,
const
half2_t
&
b
,
float
&
c
);
// clang-format off
template
<
>
__device__
void
inline_v_dot2c_dpp8_instr
<
0
>
(
const
half2_t
&
a
,
const
half2_t
&
b
,
float
&
c
){
asm
volatile
(
"
\n
v_dot2c_f32_f16_dpp %0, %1, %2 dpp8:[0, 0, 0, 0, 0, 0, 0, 0]"
:
"=v"
(
c
)
:
"v"
(
a
),
"v"
(
b
),
"0"
(
c
));
}
template
<
>
__device__
void
inline_v_dot2c_dpp8_instr
<
1
>
(
const
half2_t
&
a
,
const
half2_t
&
b
,
float
&
c
){
asm
volatile
(
"
\n
v_dot2c_f32_f16_dpp %0, %1, %2 dpp8:[1, 1, 1, 1, 1, 1, 1, 1]"
:
"=v"
(
c
)
:
"v"
(
a
),
"v"
(
b
),
"0"
(
c
));
}
template
<
>
__device__
void
inline_v_dot2c_dpp8_instr
<
2
>
(
const
half2_t
&
a
,
const
half2_t
&
b
,
float
&
c
){
asm
volatile
(
"
\n
v_dot2c_f32_f16_dpp %0, %1, %2 dpp8:[2, 2, 2, 2, 2, 2, 2, 2]"
:
"=v"
(
c
)
:
"v"
(
a
),
"v"
(
b
),
"0"
(
c
));
}
template
<
>
__device__
void
inline_v_dot2c_dpp8_instr
<
3
>
(
const
half2_t
&
a
,
const
half2_t
&
b
,
float
&
c
){
asm
volatile
(
"
\n
v_dot2c_f32_f16_dpp %0, %1, %2 dpp8:[3, 3, 3, 3, 3, 3, 3, 3]"
:
"=v"
(
c
)
:
"v"
(
a
),
"v"
(
b
),
"0"
(
c
));
}
template
<
>
__device__
void
inline_v_dot2c_dpp8_instr
<
4
>
(
const
half2_t
&
a
,
const
half2_t
&
b
,
float
&
c
){
asm
volatile
(
"
\n
v_dot2c_f32_f16_dpp %0, %1, %2 dpp8:[4, 4, 4, 4, 4, 4, 4, 4]"
:
"=v"
(
c
)
:
"v"
(
a
),
"v"
(
b
),
"0"
(
c
));
}
template
<
>
__device__
void
inline_v_dot2c_dpp8_instr
<
5
>
(
const
half2_t
&
a
,
const
half2_t
&
b
,
float
&
c
){
asm
volatile
(
"
\n
v_dot2c_f32_f16_dpp %0, %1, %2 dpp8:[5, 5, 5, 5, 5, 5, 5, 5]"
:
"=v"
(
c
)
:
"v"
(
a
),
"v"
(
b
),
"0"
(
c
));
}
template
<
>
__device__
void
inline_v_dot2c_dpp8_instr
<
6
>
(
const
half2_t
&
a
,
const
half2_t
&
b
,
float
&
c
){
asm
volatile
(
"
\n
v_dot2c_f32_f16_dpp %0, %1, %2 dpp8:[6, 6, 6, 6, 6, 6, 6, 6]"
:
"=v"
(
c
)
:
"v"
(
a
),
"v"
(
b
),
"0"
(
c
));
}
template
<
>
__device__
void
inline_v_dot2c_dpp8_instr
<
7
>
(
const
half2_t
&
a
,
const
half2_t
&
b
,
float
&
c
){
asm
volatile
(
"
\n
v_dot2c_f32_f16_dpp %0, %1, %2 dpp8:[7, 7, 7, 7, 7, 7, 7, 7]"
:
"=v"
(
c
)
:
"v"
(
a
),
"v"
(
b
),
"0"
(
c
));
}
// clang-format on
/**
* Dot product of two vectors using `v_dot` instruction with DPP8 submitted as inline assembly.
*/
template
<
int
SrcLaneIdx
,
bool
ShareA
>
__device__
void
inline_v_dot2c_dpp8
(
const
half2_t
&
a
,
const
half2_t
&
b
,
float
&
c
)
{
static_assert
(
SrcLaneIdx
>=
0
&&
SrcLaneIdx
<
dpp8
::
lane_group_size
,
"DPP8 src broadcast lane out of range <0, 7>."
);
if
constexpr
(
ShareA
)
{
inline_v_dot2c_dpp8_instr
<
SrcLaneIdx
>
(
a
,
b
,
c
);
}
else
{
inline_v_dot2c_dpp8_instr
<
SrcLaneIdx
>
(
b
,
a
,
c
);
}
}
/**
* DPP8 instrinsics expects to get an integer mask, hardcoding integers for specific broadcast
* patters.
*/
constexpr
std
::
array
<
int
,
dpp8
::
lane_group_size
>
IntrinsicMaskDpp8
=
{
0
,
// 0, 0, 0, 0, 0, 0, 0, 0
2396745
,
// 1, 1, 1, 1, 1, 1, 1, 1
4793490
,
// 2, 2, 2, 2, 2, 2, 2, 2
7190235
,
// 3, 3, 3, 3, 3, 3, 3, 3
9586980
,
// 4, 4, 4, 4, 4, 4, 4, 4
11983725
,
// 5, 5, 5, 5, 5, 5, 5, 5
14380470
,
// 6, 6, 6, 6, 6, 6, 6, 6
16777215
,
// 7, 7, 7, 7, 7, 7, 7, 7
};
/**
* Returns DPP8 sel modifier as an integer required for the intrinsic instruction.
*/
template
<
int
SrcLaneIdx
>
constexpr
int
get_dpp_sel_mask_broadcast
()
{
static_assert
(
SrcLaneIdx
>=
0
&&
SrcLaneIdx
<
dpp8
::
lane_group_size
,
"DPP8 src broadcast lane out of range <0, 7>."
);
return
IntrinsicMaskDpp8
[
SrcLaneIdx
];
}
template
<
int
SrcLaneIdx
>
__device__
void
intrinsic_fdot2_impl
(
const
half2_t
&
a
,
const
half2_t
&
b
,
float
&
c
)
{
constexpr
int
sel_mask
=
get_dpp_sel_mask_broadcast
<
SrcLaneIdx
>
();
const
half2_t
val_from_other_lane
=
bit_cast
<
half2_t
>
(
__builtin_amdgcn_mov_dpp8
(
bit_cast
<
int
>
(
a
),
sel_mask
));
c
=
__builtin_amdgcn_fdot2
(
val_from_other_lane
,
b
,
c
,
false
);
}
/**
* Dot product of two vectors using `v_dot` instruction with DPP8 submitted using intrinsics.
*/
template
<
int
SrcLaneIdx
,
bool
ShareA
>
__device__
void
intrinsic_fdot2
(
const
half2_t
&
a
,
const
half2_t
&
b
,
float
&
c
)
{
if
constexpr
(
ShareA
)
{
intrinsic_fdot2_impl
<
SrcLaneIdx
>
(
a
,
b
,
c
);
}
else
{
intrinsic_fdot2_impl
<
SrcLaneIdx
>
(
b
,
a
,
c
);
}
}
/**
* Dot product of two input vectors `a`, `b` using `v_dot` instructions with DPP modifier.
*
* DPP modifier allows us to share one of the vectors between lanes in a lane group.
* When `ShareA` is set, instruction uses vector `a` from lane `SrcLaneIdx` from the same
* lane group (8 lanes per lane group in DPP8). When `ShareA` is not set, vector `b` is shared.
* Note that all the threads in a lane group uses the same vector - broadcast pattern.
*
* `SrcLaneIdx` must be in range from 0 to 7.
*/
template
<
typename
TA
,
typename
TB
,
typename
TC
,
int
SrcLaneIdx
,
bool
ShareA
>
__device__
void
inner_product_dpp
(
const
TA
&
a
,
const
TB
&
b
,
TC
&
c
)
{
#if CK_USE_AMD_V_DOT_DPP8_INLINE_ASM
inline_v_dot2c_dpp8
<
SrcLaneIdx
,
ShareA
>
(
a
,
b
,
c
);
#else
intrinsic_fdot2
<
SrcLaneIdx
,
ShareA
>
(
a
,
b
,
c
);
#endif
}
}
// namespace dpp8
}
// namespace ck
library/include/ck/library/reference_tensor_operation/cpu/reference_pool_fwd.hpp
View file @
cbf281f0
...
@@ -39,6 +39,7 @@ struct ReferencePoolingFwd : public device::BaseOperator
...
@@ -39,6 +39,7 @@ struct ReferencePoolingFwd : public device::BaseOperator
Tensor
<
IndexDataType
>&
out_indices
,
Tensor
<
IndexDataType
>&
out_indices
,
const
std
::
vector
<
ck
::
index_t
>&
window_spatial_lengths
,
const
std
::
vector
<
ck
::
index_t
>&
window_spatial_lengths
,
const
std
::
vector
<
ck
::
index_t
>&
window_strides
,
const
std
::
vector
<
ck
::
index_t
>&
window_strides
,
const
std
::
vector
<
ck
::
index_t
>&
window_dilations
,
const
std
::
vector
<
ck
::
index_t
>&
in_left_pads
,
const
std
::
vector
<
ck
::
index_t
>&
in_left_pads
,
const
std
::
vector
<
ck
::
index_t
>&
/*in_right_pads*/
)
const
std
::
vector
<
ck
::
index_t
>&
/*in_right_pads*/
)
:
in_
(
in
),
:
in_
(
in
),
...
@@ -46,6 +47,7 @@ struct ReferencePoolingFwd : public device::BaseOperator
...
@@ -46,6 +47,7 @@ struct ReferencePoolingFwd : public device::BaseOperator
out_indices_
(
out_indices
),
out_indices_
(
out_indices
),
window_spatial_lengths_
(
window_spatial_lengths
),
window_spatial_lengths_
(
window_spatial_lengths
),
window_strides_
(
window_strides
),
window_strides_
(
window_strides
),
window_dilations_
(
window_dilations
),
in_left_pads_
(
in_left_pads
),
in_left_pads_
(
in_left_pads
),
reduceLength_
(
1
)
reduceLength_
(
1
)
{
{
...
@@ -58,6 +60,7 @@ struct ReferencePoolingFwd : public device::BaseOperator
...
@@ -58,6 +60,7 @@ struct ReferencePoolingFwd : public device::BaseOperator
Tensor
<
IndexDataType
>&
out_indices_
;
Tensor
<
IndexDataType
>&
out_indices_
;
const
std
::
vector
<
ck
::
index_t
>&
window_spatial_lengths_
;
const
std
::
vector
<
ck
::
index_t
>&
window_spatial_lengths_
;
const
std
::
vector
<
ck
::
index_t
>&
window_strides_
;
const
std
::
vector
<
ck
::
index_t
>&
window_strides_
;
const
std
::
vector
<
ck
::
index_t
>&
window_dilations_
;
const
std
::
vector
<
ck
::
index_t
>&
in_left_pads_
;
const
std
::
vector
<
ck
::
index_t
>&
in_left_pads_
;
int
reduceLength_
;
int
reduceLength_
;
};
};
...
@@ -85,14 +88,17 @@ struct ReferencePoolingFwd : public device::BaseOperator
...
@@ -85,14 +88,17 @@ struct ReferencePoolingFwd : public device::BaseOperator
for
(
ck
::
index_t
z
=
0
;
z
<
arg
.
window_spatial_lengths_
[
0
];
++
z
)
for
(
ck
::
index_t
z
=
0
;
z
<
arg
.
window_spatial_lengths_
[
0
];
++
z
)
{
{
ck
::
index_t
di
=
do_
*
arg
.
window_strides_
[
0
]
+
z
-
arg
.
in_left_pads_
[
0
];
ck
::
index_t
di
=
do_
*
arg
.
window_strides_
[
0
]
+
z
*
arg
.
window_dilations_
[
0
]
-
arg
.
in_left_pads_
[
0
];
for
(
ck
::
index_t
y
=
0
;
y
<
arg
.
window_spatial_lengths_
[
1
];
++
y
)
for
(
ck
::
index_t
y
=
0
;
y
<
arg
.
window_spatial_lengths_
[
1
];
++
y
)
{
{
ck
::
index_t
hi
=
ho
*
arg
.
window_strides_
[
1
]
+
y
-
arg
.
in_left_pads_
[
1
];
ck
::
index_t
hi
=
ho
*
arg
.
window_strides_
[
1
]
+
y
*
arg
.
window_dilations_
[
1
]
-
arg
.
in_left_pads_
[
1
];
for
(
ck
::
index_t
x
=
0
;
x
<
arg
.
window_spatial_lengths_
[
2
];
++
x
)
for
(
ck
::
index_t
x
=
0
;
x
<
arg
.
window_spatial_lengths_
[
2
];
++
x
)
{
{
ck
::
index_t
wi
=
ck
::
index_t
wi
=
wo
*
arg
.
window_strides_
[
2
]
+
wo
*
arg
.
window_strides_
[
2
]
+
x
-
arg
.
in_left_pads_
[
2
];
x
*
arg
.
window_dilations_
[
2
]
-
arg
.
in_left_pads_
[
2
];
if
(
di
>=
0
&&
if
(
di
>=
0
&&
di
<
static_cast
<
ck
::
index_t
>
(
arg
.
in_
.
mDesc
.
GetLengths
()[
2
])
&&
di
<
static_cast
<
ck
::
index_t
>
(
arg
.
in_
.
mDesc
.
GetLengths
()[
2
])
&&
hi
>=
0
&&
hi
>=
0
&&
...
@@ -136,14 +142,17 @@ struct ReferencePoolingFwd : public device::BaseOperator
...
@@ -136,14 +142,17 @@ struct ReferencePoolingFwd : public device::BaseOperator
for
(
ck
::
index_t
z
=
0
;
z
<
arg
.
window_spatial_lengths_
[
0
];
++
z
)
for
(
ck
::
index_t
z
=
0
;
z
<
arg
.
window_spatial_lengths_
[
0
];
++
z
)
{
{
ck
::
index_t
di
=
do_
*
arg
.
window_strides_
[
0
]
+
z
-
arg
.
in_left_pads_
[
0
];
ck
::
index_t
di
=
do_
*
arg
.
window_strides_
[
0
]
+
z
*
arg
.
window_dilations_
[
0
]
-
arg
.
in_left_pads_
[
0
];
for
(
ck
::
index_t
y
=
0
;
y
<
arg
.
window_spatial_lengths_
[
1
];
++
y
)
for
(
ck
::
index_t
y
=
0
;
y
<
arg
.
window_spatial_lengths_
[
1
];
++
y
)
{
{
ck
::
index_t
hi
=
ho
*
arg
.
window_strides_
[
1
]
+
y
-
arg
.
in_left_pads_
[
1
];
ck
::
index_t
hi
=
ho
*
arg
.
window_strides_
[
1
]
+
y
*
arg
.
window_dilations_
[
1
]
-
arg
.
in_left_pads_
[
1
];
for
(
ck
::
index_t
x
=
0
;
x
<
arg
.
window_spatial_lengths_
[
2
];
++
x
)
for
(
ck
::
index_t
x
=
0
;
x
<
arg
.
window_spatial_lengths_
[
2
];
++
x
)
{
{
ck
::
index_t
wi
=
ck
::
index_t
wi
=
wo
*
arg
.
window_strides_
[
2
]
+
wo
*
arg
.
window_strides_
[
2
]
+
x
-
arg
.
in_left_pads_
[
2
];
x
*
arg
.
window_dilations_
[
2
]
-
arg
.
in_left_pads_
[
2
];
if
(
di
>=
0
&&
if
(
di
>=
0
&&
di
<
static_cast
<
ck
::
index_t
>
(
arg
.
in_
.
mDesc
.
GetLengths
()[
2
])
&&
di
<
static_cast
<
ck
::
index_t
>
(
arg
.
in_
.
mDesc
.
GetLengths
()[
2
])
&&
hi
>=
0
&&
hi
>=
0
&&
...
@@ -202,10 +211,12 @@ struct ReferencePoolingFwd : public device::BaseOperator
...
@@ -202,10 +211,12 @@ struct ReferencePoolingFwd : public device::BaseOperator
for
(
ck
::
index_t
y
=
0
;
y
<
arg
.
window_spatial_lengths_
[
0
];
++
y
)
for
(
ck
::
index_t
y
=
0
;
y
<
arg
.
window_spatial_lengths_
[
0
];
++
y
)
{
{
ck
::
index_t
hi
=
ho
*
arg
.
window_strides_
[
0
]
+
y
-
arg
.
in_left_pads_
[
0
];
ck
::
index_t
hi
=
ho
*
arg
.
window_strides_
[
0
]
+
y
*
arg
.
window_dilations_
[
0
]
-
arg
.
in_left_pads_
[
0
];
for
(
ck
::
index_t
x
=
0
;
x
<
arg
.
window_spatial_lengths_
[
1
];
++
x
)
for
(
ck
::
index_t
x
=
0
;
x
<
arg
.
window_spatial_lengths_
[
1
];
++
x
)
{
{
ck
::
index_t
wi
=
wo
*
arg
.
window_strides_
[
1
]
+
x
-
arg
.
in_left_pads_
[
1
];
ck
::
index_t
wi
=
wo
*
arg
.
window_strides_
[
1
]
+
x
*
arg
.
window_dilations_
[
1
]
-
arg
.
in_left_pads_
[
1
];
if
(
hi
>=
0
&&
if
(
hi
>=
0
&&
hi
<
static_cast
<
ck
::
index_t
>
(
arg
.
in_
.
mDesc
.
GetLengths
()[
2
])
&&
hi
<
static_cast
<
ck
::
index_t
>
(
arg
.
in_
.
mDesc
.
GetLengths
()[
2
])
&&
wi
>=
0
&&
wi
>=
0
&&
...
@@ -308,6 +319,7 @@ struct ReferencePoolingFwd : public device::BaseOperator
...
@@ -308,6 +319,7 @@ struct ReferencePoolingFwd : public device::BaseOperator
Tensor
<
IndexDataType
>&
out_indices
,
Tensor
<
IndexDataType
>&
out_indices
,
const
std
::
vector
<
ck
::
index_t
>&
window_spatial_lengths
,
const
std
::
vector
<
ck
::
index_t
>&
window_spatial_lengths
,
const
std
::
vector
<
ck
::
index_t
>&
window_strides
,
const
std
::
vector
<
ck
::
index_t
>&
window_strides
,
const
std
::
vector
<
ck
::
index_t
>&
window_dilations
,
const
std
::
vector
<
ck
::
index_t
>&
in_left_pads
,
const
std
::
vector
<
ck
::
index_t
>&
in_left_pads
,
const
std
::
vector
<
ck
::
index_t
>&
in_right_pads
)
const
std
::
vector
<
ck
::
index_t
>&
in_right_pads
)
{
{
...
@@ -316,6 +328,7 @@ struct ReferencePoolingFwd : public device::BaseOperator
...
@@ -316,6 +328,7 @@ struct ReferencePoolingFwd : public device::BaseOperator
out_indices
,
out_indices
,
window_spatial_lengths
,
window_spatial_lengths
,
window_strides
,
window_strides
,
window_dilations
,
in_left_pads
,
in_left_pads
,
in_right_pads
};
in_right_pads
};
}
}
...
...
library/include/ck/library/tensor_operation_instance/gpu/gemm.hpp
View file @
cbf281f0
...
@@ -23,6 +23,11 @@ void add_device_gemm_dl_f16_f16_f16_km_kn_mn_instances(
...
@@ -23,6 +23,11 @@ void add_device_gemm_dl_f16_f16_f16_km_kn_mn_instances(
DeviceGemm
<
Col
,
Row
,
Row
,
F16
,
F16
,
F16
,
PassThrough
,
PassThrough
,
PassThrough
>>>&
DeviceGemm
<
Col
,
Row
,
Row
,
F16
,
F16
,
F16
,
PassThrough
,
PassThrough
,
PassThrough
>>>&
instances
);
instances
);
void
add_device_gemm_dl_dpp8_f16_f16_f16_km_kn_mn_instances
(
std
::
vector
<
std
::
unique_ptr
<
DeviceGemm
<
Col
,
Row
,
Row
,
F16
,
F16
,
F16
,
PassThrough
,
PassThrough
,
PassThrough
>>>&
instances
);
void
add_device_gemm_dl_f16_f16_f16_km_kn_mn_irregular_instances
(
void
add_device_gemm_dl_f16_f16_f16_km_kn_mn_irregular_instances
(
std
::
vector
<
std
::
unique_ptr
<
std
::
vector
<
std
::
unique_ptr
<
DeviceGemm
<
Col
,
Row
,
Row
,
F16
,
F16
,
F16
,
PassThrough
,
PassThrough
,
PassThrough
>>>&
DeviceGemm
<
Col
,
Row
,
Row
,
F16
,
F16
,
F16
,
PassThrough
,
PassThrough
,
PassThrough
>>>&
...
@@ -33,6 +38,11 @@ void add_device_gemm_dl_f16_f16_f16_km_nk_mn_instances(
...
@@ -33,6 +38,11 @@ void add_device_gemm_dl_f16_f16_f16_km_nk_mn_instances(
DeviceGemm
<
Col
,
Col
,
Row
,
F16
,
F16
,
F16
,
PassThrough
,
PassThrough
,
PassThrough
>>>&
DeviceGemm
<
Col
,
Col
,
Row
,
F16
,
F16
,
F16
,
PassThrough
,
PassThrough
,
PassThrough
>>>&
instances
);
instances
);
void
add_device_gemm_dl_dpp8_f16_f16_f16_km_nk_mn_instances
(
std
::
vector
<
std
::
unique_ptr
<
DeviceGemm
<
Col
,
Col
,
Row
,
F16
,
F16
,
F16
,
PassThrough
,
PassThrough
,
PassThrough
>>>&
instances
);
void
add_device_gemm_dl_f16_f16_f16_km_nk_mn_irregular_instances
(
void
add_device_gemm_dl_f16_f16_f16_km_nk_mn_irregular_instances
(
std
::
vector
<
std
::
unique_ptr
<
std
::
vector
<
std
::
unique_ptr
<
DeviceGemm
<
Col
,
Col
,
Row
,
F16
,
F16
,
F16
,
PassThrough
,
PassThrough
,
PassThrough
>>>&
DeviceGemm
<
Col
,
Col
,
Row
,
F16
,
F16
,
F16
,
PassThrough
,
PassThrough
,
PassThrough
>>>&
...
@@ -43,6 +53,11 @@ void add_device_gemm_dl_f16_f16_f16_mk_kn_mn_instances(
...
@@ -43,6 +53,11 @@ void add_device_gemm_dl_f16_f16_f16_mk_kn_mn_instances(
DeviceGemm
<
Row
,
Row
,
Row
,
F16
,
F16
,
F16
,
PassThrough
,
PassThrough
,
PassThrough
>>>&
DeviceGemm
<
Row
,
Row
,
Row
,
F16
,
F16
,
F16
,
PassThrough
,
PassThrough
,
PassThrough
>>>&
instances
);
instances
);
void
add_device_gemm_dl_dpp8_f16_f16_f16_mk_kn_mn_instances
(
std
::
vector
<
std
::
unique_ptr
<
DeviceGemm
<
Row
,
Row
,
Row
,
F16
,
F16
,
F16
,
PassThrough
,
PassThrough
,
PassThrough
>>>&
instances
);
void
add_device_gemm_dl_f16_f16_f16_mk_kn_mn_irregular_instances
(
void
add_device_gemm_dl_f16_f16_f16_mk_kn_mn_irregular_instances
(
std
::
vector
<
std
::
unique_ptr
<
std
::
vector
<
std
::
unique_ptr
<
DeviceGemm
<
Row
,
Row
,
Row
,
F16
,
F16
,
F16
,
PassThrough
,
PassThrough
,
PassThrough
>>>&
DeviceGemm
<
Row
,
Row
,
Row
,
F16
,
F16
,
F16
,
PassThrough
,
PassThrough
,
PassThrough
>>>&
...
@@ -53,6 +68,11 @@ void add_device_gemm_dl_f16_f16_f16_mk_nk_mn_instances(
...
@@ -53,6 +68,11 @@ void add_device_gemm_dl_f16_f16_f16_mk_nk_mn_instances(
DeviceGemm
<
Row
,
Col
,
Row
,
F16
,
F16
,
F16
,
PassThrough
,
PassThrough
,
PassThrough
>>>&
DeviceGemm
<
Row
,
Col
,
Row
,
F16
,
F16
,
F16
,
PassThrough
,
PassThrough
,
PassThrough
>>>&
instances
);
instances
);
void
add_device_gemm_dl_dpp8_f16_f16_f16_mk_nk_mn_instances
(
std
::
vector
<
std
::
unique_ptr
<
DeviceGemm
<
Row
,
Col
,
Row
,
F16
,
F16
,
F16
,
PassThrough
,
PassThrough
,
PassThrough
>>>&
instances
);
void
add_device_gemm_dl_f16_f16_f16_mk_nk_mn_irregular_instances
(
void
add_device_gemm_dl_f16_f16_f16_mk_nk_mn_irregular_instances
(
std
::
vector
<
std
::
unique_ptr
<
std
::
vector
<
std
::
unique_ptr
<
DeviceGemm
<
Row
,
Col
,
Row
,
F16
,
F16
,
F16
,
PassThrough
,
PassThrough
,
PassThrough
>>>&
DeviceGemm
<
Row
,
Col
,
Row
,
F16
,
F16
,
F16
,
PassThrough
,
PassThrough
,
PassThrough
>>>&
...
@@ -354,6 +374,7 @@ struct DeviceOperationInstanceFactory<
...
@@ -354,6 +374,7 @@ struct DeviceOperationInstanceFactory<
#ifdef DL_KERNELS
#ifdef DL_KERNELS
add_device_gemm_dl_f16_f16_f16_mk_kn_mn_instances
(
op_ptrs
);
add_device_gemm_dl_f16_f16_f16_mk_kn_mn_instances
(
op_ptrs
);
add_device_gemm_dl_f16_f16_f16_mk_kn_mn_irregular_instances
(
op_ptrs
);
add_device_gemm_dl_f16_f16_f16_mk_kn_mn_irregular_instances
(
op_ptrs
);
add_device_gemm_dl_dpp8_f16_f16_f16_mk_kn_mn_instances
(
op_ptrs
);
#endif
#endif
add_device_gemm_xdl_c_shuffle_f16_f16_f16_mk_kn_mn_instances
(
op_ptrs
);
add_device_gemm_xdl_c_shuffle_f16_f16_f16_mk_kn_mn_instances
(
op_ptrs
);
}
}
...
@@ -364,6 +385,7 @@ struct DeviceOperationInstanceFactory<
...
@@ -364,6 +385,7 @@ struct DeviceOperationInstanceFactory<
#ifdef DL_KERNELS
#ifdef DL_KERNELS
add_device_gemm_dl_f16_f16_f16_mk_nk_mn_instances
(
op_ptrs
);
add_device_gemm_dl_f16_f16_f16_mk_nk_mn_instances
(
op_ptrs
);
add_device_gemm_dl_f16_f16_f16_mk_nk_mn_irregular_instances
(
op_ptrs
);
add_device_gemm_dl_f16_f16_f16_mk_nk_mn_irregular_instances
(
op_ptrs
);
add_device_gemm_dl_dpp8_f16_f16_f16_mk_nk_mn_instances
(
op_ptrs
);
#endif
#endif
add_device_gemm_xdl_c_shuffle_f16_f16_f16_mk_nk_mn_instances
(
op_ptrs
);
add_device_gemm_xdl_c_shuffle_f16_f16_f16_mk_nk_mn_instances
(
op_ptrs
);
add_device_gemm_xdl_c_shuffle_2_stage_f16_f16_f16_mk_nk_mn_instances
(
op_ptrs
);
add_device_gemm_xdl_c_shuffle_2_stage_f16_f16_f16_mk_nk_mn_instances
(
op_ptrs
);
...
@@ -375,6 +397,7 @@ struct DeviceOperationInstanceFactory<
...
@@ -375,6 +397,7 @@ struct DeviceOperationInstanceFactory<
#ifdef DL_KERNELS
#ifdef DL_KERNELS
add_device_gemm_dl_f16_f16_f16_km_kn_mn_instances
(
op_ptrs
);
add_device_gemm_dl_f16_f16_f16_km_kn_mn_instances
(
op_ptrs
);
add_device_gemm_dl_f16_f16_f16_km_kn_mn_irregular_instances
(
op_ptrs
);
add_device_gemm_dl_f16_f16_f16_km_kn_mn_irregular_instances
(
op_ptrs
);
add_device_gemm_dl_dpp8_f16_f16_f16_km_kn_mn_instances
(
op_ptrs
);
#endif
#endif
add_device_gemm_xdl_c_shuffle_f16_f16_f16_km_kn_mn_instances
(
op_ptrs
);
add_device_gemm_xdl_c_shuffle_f16_f16_f16_km_kn_mn_instances
(
op_ptrs
);
}
}
...
@@ -385,6 +408,7 @@ struct DeviceOperationInstanceFactory<
...
@@ -385,6 +408,7 @@ struct DeviceOperationInstanceFactory<
#ifdef DL_KERNELS
#ifdef DL_KERNELS
add_device_gemm_dl_f16_f16_f16_km_nk_mn_instances
(
op_ptrs
);
add_device_gemm_dl_f16_f16_f16_km_nk_mn_instances
(
op_ptrs
);
add_device_gemm_dl_f16_f16_f16_km_nk_mn_irregular_instances
(
op_ptrs
);
add_device_gemm_dl_f16_f16_f16_km_nk_mn_irregular_instances
(
op_ptrs
);
add_device_gemm_dl_dpp8_f16_f16_f16_km_nk_mn_instances
(
op_ptrs
);
#endif
#endif
add_device_gemm_xdl_c_shuffle_f16_f16_f16_km_nk_mn_instances
(
op_ptrs
);
add_device_gemm_xdl_c_shuffle_f16_f16_f16_km_nk_mn_instances
(
op_ptrs
);
}
}
...
...
library/include/ck/library/tensor_operation_instance/gpu/pool2d_fwd.hpp
deleted
100644 → 0
View file @
f3aceeab
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2023, Advanced Micro Devices, Inc. All rights reserved.
#pragma once
#include <cstdlib>
#include "ck/ck.hpp"
#include "ck/tensor_operation/gpu/device/tensor_layout.hpp"
#include "ck/tensor_operation/gpu/device/device_pool_fwd.hpp"
#include "ck/tensor_operation/gpu/element/element_wise_operation.hpp"
#include "ck/library/tensor_operation_instance/device_operation_instance_factory.hpp"
namespace
ck
{
namespace
tensor_operation
{
namespace
device
{
namespace
instance
{
static
constexpr
auto
InOutRank
=
4
;
static
constexpr
auto
WindowRank
=
2
;
static
constexpr
auto
MaxOp
=
ck
::
ReduceTensorOp
::
MAX
;
static
constexpr
auto
AvgOp
=
ck
::
ReduceTensorOp
::
AVG
;
#ifdef __fp16__
// FP16
void
add_device_pool2d_fwd_nhwc_f16_instances
(
std
::
vector
<
std
::
unique_ptr
<
DevicePoolFwd
<
InOutRank
,
WindowRank
,
F16
,
F16
,
I32
,
MaxOp
,
false
>>>&
);
void
add_device_pool2d_fwd_nhwc_f16_instances
(
std
::
vector
<
std
::
unique_ptr
<
DevicePoolFwd
<
InOutRank
,
WindowRank
,
F16
,
F16
,
I32
,
AvgOp
,
false
>>>&
);
// FP16 - return index
void
add_device_pool2d_fwd_nhwc_index_f16_instances
(
std
::
vector
<
std
::
unique_ptr
<
DevicePoolFwd
<
InOutRank
,
WindowRank
,
F16
,
F16
,
I32
,
MaxOp
,
true
>>>&
);
#endif
#ifdef __fp32__
// FP32
void
add_device_pool2d_fwd_nhwc_f32_instances
(
std
::
vector
<
std
::
unique_ptr
<
DevicePoolFwd
<
InOutRank
,
WindowRank
,
F32
,
F32
,
I32
,
MaxOp
,
false
>>>&
);
void
add_device_pool2d_fwd_nhwc_f32_instances
(
std
::
vector
<
std
::
unique_ptr
<
DevicePoolFwd
<
InOutRank
,
WindowRank
,
F32
,
F32
,
I32
,
AvgOp
,
false
>>>&
);
// FP32 - return index
void
add_device_pool2d_fwd_nhwc_index_f32_instances
(
std
::
vector
<
std
::
unique_ptr
<
DevicePoolFwd
<
InOutRank
,
WindowRank
,
F32
,
F32
,
I32
,
MaxOp
,
true
>>>&
);
#endif
template
<
typename
InDataType
,
typename
OutDataType
,
typename
IndexDataType
,
ck
::
ReduceTensorOp
ReduceOpId
,
bool
OutputIndex
>
struct
DeviceOperationInstanceFactory
<
ck
::
tensor_operation
::
device
::
DevicePoolFwd
<
InOutRank
,
WindowRank
,
InDataType
,
OutDataType
,
IndexDataType
,
ReduceOpId
,
OutputIndex
>>
{
using
DeviceOp
=
DevicePoolFwd
<
InOutRank
,
WindowRank
,
InDataType
,
OutDataType
,
IndexDataType
,
ReduceOpId
,
OutputIndex
>
;
static
auto
GetInstances
()
{
std
::
vector
<
std
::
unique_ptr
<
DeviceOp
>>
op_ptrs
;
#ifdef __fp16__
if
constexpr
(
is_same_v
<
InDataType
,
F16
>
&&
is_same_v
<
OutDataType
,
F16
>
&&
is_same_v
<
IndexDataType
,
I32
>
)
{
if
constexpr
(
OutputIndex
&&
ReduceOpId
==
MaxOp
)
{
add_device_pool2d_fwd_nhwc_index_f16_instances
(
op_ptrs
);
}
else
{
add_device_pool2d_fwd_nhwc_f16_instances
(
op_ptrs
);
}
}
#endif
#ifdef __fp32__
if
constexpr
(
is_same_v
<
InDataType
,
F32
>
&&
is_same_v
<
OutDataType
,
F32
>
&&
is_same_v
<
IndexDataType
,
I32
>
)
{
if
constexpr
(
OutputIndex
&&
ReduceOpId
==
MaxOp
)
{
add_device_pool2d_fwd_nhwc_index_f32_instances
(
op_ptrs
);
}
else
{
add_device_pool2d_fwd_nhwc_f32_instances
(
op_ptrs
);
}
}
#endif
return
op_ptrs
;
}
};
}
// namespace instance
}
// namespace device
}
// namespace tensor_operation
}
// namespace ck
library/include/ck/library/tensor_operation_instance/gpu/pool3d_fwd.hpp
View file @
cbf281f0
...
@@ -25,36 +25,38 @@ static constexpr auto AvgOp = ck::ReduceTensorOp::AVG;
...
@@ -25,36 +25,38 @@ static constexpr auto AvgOp = ck::ReduceTensorOp::AVG;
#ifdef __fp16__
#ifdef __fp16__
// FP16
// FP16
void
add_device_pool3d_fwd_ndhwc_f16_instances
(
void
add_device_pool3d_fwd_ndhwc_f16_instances
(
std
::
vector
<
std
::
vector
<
std
::
unique_ptr
<
std
::
unique_ptr
<
DevicePoolFwd
<
InOutRank
,
WindowRank
,
F16
,
F16
,
I32
,
MaxOp
,
false
>>>&
);
DevicePoolFwd
<
InOutRank
,
WindowRank
,
F16
,
F16
,
I32
,
NDHWC
,
NDHWC
,
MaxOp
,
false
>>>&
);
void
add_device_pool3d_fwd_ndhwc_f16_instances
(
void
add_device_pool3d_fwd_ndhwc_f16_instances
(
std
::
vector
<
std
::
vector
<
std
::
unique_ptr
<
std
::
unique_ptr
<
DevicePoolFwd
<
InOutRank
,
WindowRank
,
F16
,
F16
,
I32
,
AvgOp
,
false
>>>&
);
DevicePoolFwd
<
InOutRank
,
WindowRank
,
F16
,
F16
,
I32
,
NDHWC
,
NDHWC
,
AvgOp
,
false
>>>&
);
// FP16 - return index
// FP16 - return index
void
add_device_pool3d_fwd_ndhwc_index_f16_instances
(
void
add_device_pool3d_fwd_ndhwc_index_f16_instances
(
std
::
vector
<
std
::
vector
<
std
::
unique_ptr
<
std
::
unique_ptr
<
DevicePoolFwd
<
InOutRank
,
WindowRank
,
F16
,
F16
,
I32
,
MaxOp
,
true
>>>&
);
DevicePoolFwd
<
InOutRank
,
WindowRank
,
F16
,
F16
,
I32
,
NDHWC
,
NDHWC
,
MaxOp
,
true
>>>&
);
#endif
#endif
#ifdef __fp32__
#ifdef __fp32__
// FP32
// FP32
void
add_device_pool3d_fwd_ndhwc_f32_instances
(
void
add_device_pool3d_fwd_ndhwc_f32_instances
(
std
::
vector
<
std
::
vector
<
std
::
unique_ptr
<
std
::
unique_ptr
<
DevicePoolFwd
<
InOutRank
,
WindowRank
,
F32
,
F32
,
I32
,
MaxOp
,
false
>>>&
);
DevicePoolFwd
<
InOutRank
,
WindowRank
,
F32
,
F32
,
I32
,
NDHWC
,
NDHWC
,
MaxOp
,
false
>>>&
);
void
add_device_pool3d_fwd_ndhwc_f32_instances
(
void
add_device_pool3d_fwd_ndhwc_f32_instances
(
std
::
vector
<
std
::
vector
<
std
::
unique_ptr
<
std
::
unique_ptr
<
DevicePoolFwd
<
InOutRank
,
WindowRank
,
F32
,
F32
,
I32
,
AvgOp
,
false
>>>&
);
DevicePoolFwd
<
InOutRank
,
WindowRank
,
F32
,
F32
,
I32
,
NDHWC
,
NDHWC
,
AvgOp
,
false
>>>&
);
// FP32 - return index
// FP32 - return index
void
add_device_pool3d_fwd_ndhwc_index_f32_instances
(
void
add_device_pool3d_fwd_ndhwc_index_f32_instances
(
std
::
vector
<
std
::
vector
<
std
::
unique_ptr
<
std
::
unique_ptr
<
DevicePoolFwd
<
InOutRank
,
WindowRank
,
F32
,
F32
,
I32
,
MaxOp
,
true
>>>&
);
DevicePoolFwd
<
InOutRank
,
WindowRank
,
F32
,
F32
,
I32
,
NDHWC
,
NDHWC
,
MaxOp
,
true
>>>&
);
#endif
#endif
template
<
typename
InDataType
,
template
<
typename
InDataType
,
typename
OutDataType
,
typename
OutDataType
,
typename
IndexDataType
,
typename
IndexDataType
,
typename
InLayout
,
typename
OutLayout
,
ck
::
ReduceTensorOp
ReduceOpId
,
ck
::
ReduceTensorOp
ReduceOpId
,
bool
OutputIndex
>
bool
OutputIndex
>
struct
DeviceOperationInstanceFactory
<
ck
::
tensor_operation
::
device
::
DevicePoolFwd
<
InOutRank
,
struct
DeviceOperationInstanceFactory
<
ck
::
tensor_operation
::
device
::
DevicePoolFwd
<
InOutRank
,
...
@@ -62,6 +64,8 @@ struct DeviceOperationInstanceFactory<ck::tensor_operation::device::DevicePoolFw
...
@@ -62,6 +64,8 @@ struct DeviceOperationInstanceFactory<ck::tensor_operation::device::DevicePoolFw
InDataType
,
InDataType
,
OutDataType
,
OutDataType
,
IndexDataType
,
IndexDataType
,
InLayout
,
OutLayout
,
ReduceOpId
,
ReduceOpId
,
OutputIndex
>>
OutputIndex
>>
{
{
...
@@ -70,12 +74,16 @@ struct DeviceOperationInstanceFactory<ck::tensor_operation::device::DevicePoolFw
...
@@ -70,12 +74,16 @@ struct DeviceOperationInstanceFactory<ck::tensor_operation::device::DevicePoolFw
InDataType
,
InDataType
,
OutDataType
,
OutDataType
,
IndexDataType
,
IndexDataType
,
InLayout
,
OutLayout
,
ReduceOpId
,
ReduceOpId
,
OutputIndex
>
;
OutputIndex
>
;
static
auto
GetInstances
()
static
auto
GetInstances
()
{
{
std
::
vector
<
std
::
unique_ptr
<
DeviceOp
>>
op_ptrs
;
std
::
vector
<
std
::
unique_ptr
<
DeviceOp
>>
op_ptrs
;
if
constexpr
(
is_same_v
<
InLayout
,
NDHWC
>
&&
is_same_v
<
OutLayout
,
NDHWC
>
)
{
#ifdef __fp16__
#ifdef __fp16__
if
constexpr
(
is_same_v
<
InDataType
,
F16
>
&&
is_same_v
<
OutDataType
,
F16
>
&&
if
constexpr
(
is_same_v
<
InDataType
,
F16
>
&&
is_same_v
<
OutDataType
,
F16
>
&&
is_same_v
<
IndexDataType
,
I32
>
)
is_same_v
<
IndexDataType
,
I32
>
)
...
@@ -104,6 +112,8 @@ struct DeviceOperationInstanceFactory<ck::tensor_operation::device::DevicePoolFw
...
@@ -104,6 +112,8 @@ struct DeviceOperationInstanceFactory<ck::tensor_operation::device::DevicePoolFw
}
}
}
}
#endif
#endif
}
return
op_ptrs
;
return
op_ptrs
;
}
}
};
};
...
...
Prev
1
2
3
4
Next
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
.
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment