Unverified Commit cad3212d authored by Haocong WANG's avatar Haocong WANG Committed by GitHub
Browse files

Merge origin dev (#2)



* [Navi3x] Fix Gridwise_multiple_d operation (#649)

* Add CMake Option "USE_OPT_NAVI3X"

* fix bug

* standardize docs (#655)

* Separate bibtex requirement from rocm-docs-core (#656)

* separate bibtex requirement from rocm-docs-core

* point requirements to source rocm-docs-core repo

* Add CMake Option "USE_OPT_NAVI3X" (#647)

* Add CMake Option "USE_OPT_NAVI3X"

* remove navi3x opt compile option from cmake script

* Conv + quantization + tanh  (#645)

* Rename file. Prepare to support another activation

* Add comment for quantization

* Extract out_elementop

* Add tanh example

* Add conv + bias + tanh quantization instance

* Add missing parameter

* Refine cmake

* Add external api and client example

* Extract variable in example

* Fix the comment

---------
Co-authored-by: default avatarzjing14 <zhangjing14@gmail.com>

* Add a denorm test fix (#603)

* Add type_convert implementations for bf16

* Add the fix for conv_fwd

* Add the fix for conv_bwd_data

* Add the fix for conv_bwd_weight

* Format

* Format

* Another format

* Add a macro to use workaround on MI200 only

* Format

---------
Co-authored-by: default avatarRosty Geyyer <rosty.geyyer@amd.com>
Co-authored-by: default avatarzjing14 <zhangjing14@gmail.com>

* simplify karg in device/grid of split-k op (#644)

* simplify karg in device/grid split-k op

* fix mk_kn_mn instances

* add more instances

* use name from tensor layout

* fix 3rd dword of buffer source descriptor (#659)

* add fp64 instances (#658)
Co-authored-by: default avatarroot <root@ctr-ubbsmc15.amd.com>

* Issue #666: Revert "simplify karg in device/grid of split-k op (#644)" (#665)

This reverts commit bb5530af

.

* Groupnorm + swish external api (#668)

* Rename to proper naming

* Add example of groupnorm + swish

* Extract duplicate code in example

* Add groupnorm + swish instances

* Ractor instance generation, split into multiple cpp file

* Add external api and client example

* Refine profiler message

* Use ck math version of exp

* Refine problem size in example

* Add host version of exp

* add a marco to turn on/off denorm fix (off by default) (#673)

* add a marco to turn off denorm fix by default

* expose the marco

---------
Co-authored-by: default avatarroot <root@ctr-ubbsmc15.amd.com>

* fixed quant example (#672)
Co-authored-by: default avatarroot <root@ctr-ubbsmc15.amd.com>

* Add dependabot config and pin rocm-docs-core (#663)

* [gtest] suppress unsafe buffer warn (#670)

ref: https://github.com/ROCmSoftwarePlatform/MIOpen/pull/1912



* Add memory index guard in wmma device ops (#667)

* Add more macros to turn on/off denorm fix (#678)
Co-authored-by: default avatarRosty Geyyer <rosty.geyyer@amd.com>

* Fix a typo (#676)

* Add (#677)

* Allow using ROCm release candidate compilers. (#679)

* enable use of rocm5.5 release candidate 4

* upgrade to ROCM5.5 RC5

* try fix the PUB_KEY error, remove the cmake-data package

* upgrade to latest cmake version

* use private dockerhub repo for rocm5.5 rc5

* add missing bracket

* add vector load check

* solve conflicts

---------
Co-authored-by: default avatarSam Wu <sjwu@ualberta.ca>
Co-authored-by: default avatarSam Wu <sam.wu2@amd.com>
Co-authored-by: default avatarrocking5566 <ChunYu.Lai@amd.com>
Co-authored-by: default avatarzjing14 <zhangjing14@gmail.com>
Co-authored-by: default avatarRostyslav Geyyer <46627076+geyyer@users.noreply.github.com>
Co-authored-by: default avatarRosty Geyyer <rosty.geyyer@amd.com>
Co-authored-by: default avatarcarlushuang <carlus.huang@amd.com>
Co-authored-by: default avatarroot <root@ctr-ubbsmc15.amd.com>
Co-authored-by: default avatarJun Liu <Liu.Jun@amd.com>
Co-authored-by: default avatarIllia Silin <98187287+illsilin@users.noreply.github.com>
parent a29d2b76
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2022, Advanced Micro Devices, Inc. All rights reserved.
// This (ifndef) is a hack to use customized behavior for buffer load rather than using default
// setting Don't use this hack unless absolutely necessary!
// FIXME: make the behavior of buffer load a configurable (template) parameter of each device op
#define CK_EXPERIMENTAL_USE_BUFFER_LOAD_OOB_CHECK_OFFSET_TRICK 1
#include <cstdlib>
#include "ck/ck.hpp"
#include "ck/tensor_operation/gpu/device/tensor_layout.hpp"
#include "ck/tensor_operation/gpu/device/gemm_specialization.hpp"
#include "ck/tensor_operation/gpu/device/impl/device_contraction_multiple_d_xdl_cshuffle.hpp"
#include "ck/tensor_operation/gpu/element/element_wise_operation.hpp"
#include "ck/library/tensor_operation_instance/add_device_operation_instance.hpp"
namespace ck {
namespace tensor_operation {
namespace device {
namespace instance {
using F64 = double;
using Empty_Tuple = ck::Tuple<>;
template <ck::index_t... Is>
using S = ck::Sequence<Is...>;
using PassThrough = ck::tensor_operation::element_wise::PassThrough;
using Scale = ck::tensor_operation::element_wise::Scale;
static constexpr auto GemmMNKPadding = ck::tensor_operation::device::GemmSpecialization::MNKPadding;
// A[m0, m1, k0, k1] * B[n0, n1, k0, k1] + D[m0, m1, n0, n1] = E[m0, m1, n0, n1]
// k/n/n/n are the fast changing dimension for A/B/D/E
using device_contraction_scale_m2_n2_k2_xdl_c_shuffle_f64_f64_f64_knn_instance = std::tuple<
// clang-format off
//#####################################| NumDimM| NumDimN| NumDimK| AData| BData| AccData| CShuffle| DsData| EData| A| B| CDE| GEMM| NumGemmK| Block| MPer| NPer| KPer| AK1| BK1| MPer| NPer| MXdl| NXdl| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockLds| BBlockTransfer| BBlockTransfer| BBlockTransfer| BlockTransfer| BBlockTransfer| BBlockTransfer| BBlockLds| CShuffle| CShuffle| CBlockTransferClusterLengths| CBlockTransfer|
//#####################################| | | | Type| Type| Type| DataType| Type| Type| Elementwise| Elementwise| Elementwise| Specialization| Prefetch| Size| Block| Block| Block| | | XDL| XDL| Per| Per| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| AddExtraM| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| AddExtraN| MXdlPerWave| NXdlPerWave| _MBlock_MWaveMPerXdl| ScalarPerVector|
//#####################################| | | | | | | | | | Operation| Operation| Operation| | Stage| | | | | | | | | Wave| Wave| Lengths_K0_M_K1| ArrangeOrder| | | PerVector| PerVector_K1| | Lengths_K0_N_K1| ArrangeOrder| | | PerVector| PerVector_K1| | PerShuffle| PerShuffle| _NBlock_NWaveNPerXdl| _NWaveNPerXdl|
//#####################################| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
DeviceContractionMultipleD_Xdl_CShuffle< 2, 2, 2, F64, F64, F64, F64, Empty_Tuple, F64, PassThrough, PassThrough, Scale, GemmMNKPadding, 1, 256, 128, 128, 16, 2, 1, 16, 16, 4, 4, S<4, 64, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 1, 1, 1, S<8, 32, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 1, 1, 0, 1, 1, S<1, 16, 1, 16>, 1>,
DeviceContractionMultipleD_Xdl_CShuffle< 2, 2, 2, F64, F64, F64, F64, Empty_Tuple, F64, PassThrough, PassThrough, Scale, GemmMNKPadding, 1, 256, 128, 128, 16, 2, 2, 16, 16, 4, 4, S<4, 64, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 1, 1, 1, S<4, 64, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 1, 1, 1, 1, 1, S<1, 16, 1, 16>, 1>,
DeviceContractionMultipleD_Xdl_CShuffle< 2, 2, 2, F64, F64, F64, F64, Empty_Tuple, F64, PassThrough, PassThrough, Scale, GemmMNKPadding, 1, 128, 128, 64, 16, 2, 1, 16, 16, 4, 4, S<4, 32, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 1, 1, 1, S<8, 16, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 1, 1, 0, 1, 1, S<1, 16, 1, 8>, 1>,
DeviceContractionMultipleD_Xdl_CShuffle< 2, 2, 2, F64, F64, F64, F64, Empty_Tuple, F64, PassThrough, PassThrough, Scale, GemmMNKPadding, 1, 128, 128, 64, 16, 2, 2, 16, 16, 4, 4, S<4, 32, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 1, 1, 1, S<4, 32, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 1, 1, 1, 1, 1, S<1, 16, 1, 8>, 1>,
DeviceContractionMultipleD_Xdl_CShuffle< 2, 2, 2, F64, F64, F64, F64, Empty_Tuple, F64, PassThrough, PassThrough, Scale, GemmMNKPadding, 1, 128, 64, 128, 16, 2, 1, 16, 16, 4, 4, S<4, 32, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 1, 1, 1, S<4, 32, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 1, 1, 0, 1, 1, S<1, 8, 1, 16>, 1>,
DeviceContractionMultipleD_Xdl_CShuffle< 2, 2, 2, F64, F64, F64, F64, Empty_Tuple, F64, PassThrough, PassThrough, Scale, GemmMNKPadding, 1, 128, 64, 128, 16, 2, 2, 16, 16, 4, 4, S<4, 32, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 1, 1, 1, S<4, 32, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 1, 1, 1, 1, 1, S<1, 8, 1, 16>, 1>,
DeviceContractionMultipleD_Xdl_CShuffle< 2, 2, 2, F64, F64, F64, F64, Empty_Tuple, F64, PassThrough, PassThrough, Scale, GemmMNKPadding, 1, 256, 128, 64, 16, 2, 1, 16, 16, 4, 2, S<4, 64, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 1, 1, 1, S<16,16, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 1, 1, 0, 1, 1, S<1, 16, 1, 16>, 1>,
DeviceContractionMultipleD_Xdl_CShuffle< 2, 2, 2, F64, F64, F64, F64, Empty_Tuple, F64, PassThrough, PassThrough, Scale, GemmMNKPadding, 1, 256, 128, 64, 16, 2, 2, 16, 16, 4, 2, S<4, 64, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 1, 1, 1, S<4, 64, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 1, 1, 1, 1, 1, S<1, 16, 1, 16>, 1>,
DeviceContractionMultipleD_Xdl_CShuffle< 2, 2, 2, F64, F64, F64, F64, Empty_Tuple, F64, PassThrough, PassThrough, Scale, GemmMNKPadding, 1, 256, 64, 128, 16, 2, 1, 16, 16, 2, 4, S<4, 64, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 1, 1, 1, S<8, 32, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 1, 1, 0, 1, 1, S<1, 16, 1, 16>, 1>,
DeviceContractionMultipleD_Xdl_CShuffle< 2, 2, 2, F64, F64, F64, F64, Empty_Tuple, F64, PassThrough, PassThrough, Scale, GemmMNKPadding, 1, 256, 64, 128, 16, 2, 2, 16, 16, 2, 4, S<4, 64, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 1, 1, 1, S<4, 64, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 1, 1, 1, 1, 1, S<1, 16, 1, 16>, 1>
// clang-format on
>;
void add_device_contraction_scale_m2_n2_k2_xdl_c_shuffle_f64_f64_f64_knn_instance(
std::vector<std::unique_ptr<DeviceContractionMultipleD<2,
2,
2,
F64,
F64,
Empty_Tuple,
F64,
PassThrough,
PassThrough,
Scale>>>& instances)
{
add_device_operation_instances(
instances, device_contraction_scale_m2_n2_k2_xdl_c_shuffle_f64_f64_f64_knn_instance{});
}
} // namespace instance
} // namespace device
} // namespace tensor_operation
} // namespace ck
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2022, Advanced Micro Devices, Inc. All rights reserved.
// This (ifndef) is a hack to use customized behavior for buffer load rather than using default
// setting Don't use this hack unless absolutely necessary!
// FIXME: make the behavior of buffer load a configurable (template) parameter of each device op
#define CK_EXPERIMENTAL_USE_BUFFER_LOAD_OOB_CHECK_OFFSET_TRICK 1
#include <cstdlib>
#include "ck/ck.hpp"
#include "ck/tensor_operation/gpu/device/tensor_layout.hpp"
#include "ck/tensor_operation/gpu/device/gemm_specialization.hpp"
#include "ck/tensor_operation/gpu/device/impl/device_contraction_multiple_d_xdl_cshuffle.hpp"
#include "ck/tensor_operation/gpu/element/element_wise_operation.hpp"
#include "ck/library/tensor_operation_instance/add_device_operation_instance.hpp"
namespace ck {
namespace tensor_operation {
namespace device {
namespace instance {
using F64 = double;
using Empty_Tuple = ck::Tuple<>;
template <ck::index_t... Is>
using S = ck::Sequence<Is...>;
using PassThrough = ck::tensor_operation::element_wise::PassThrough;
using Scale = ck::tensor_operation::element_wise::Scale;
static constexpr auto GemmMNKPadding = ck::tensor_operation::device::GemmSpecialization::MNKPadding;
// A[m0, m1, k0, k1] * B[n0, n1, k0, k1] + D[m0, m1, n0, n1] = E[m0, m1, n0, n1]
// m/k/n/n are the fast changing dimension for A/B/D/E
using device_contraction_scale_m2_n2_k2_xdl_c_shuffle_f64_f64_f64_mkn_instance = std::tuple<
// clang-format off
//#####################################| NumDimM| NumDimN| NumDimK| AData| BData| AccData| CShuffle| DsData| EData| A| B| CDE| GEMM| NumGemmK| Block| MPer| NPer| KPer| AK1| BK1| MPer| NPer| MXdl| NXdl| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockLds| BBlockTransfer| BBlockTransfer| BBlockTransfer| BlockTransfer| BBlockTransfer| BBlockTransfer| BBlockLds| CShuffle| CShuffle| CBlockTransferClusterLengths| CBlockTransfer|
//#####################################| | | | Type| Type| Type| DataType| Type| Type| Elementwise| Elementwise| Elementwise| Specialization| Prefetch| Size| Block| Block| Block| | | XDL| XDL| Per| Per| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| AddExtraM| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| AddExtraN| MXdlPerWave| NXdlPerWave| _MBlock_MWaveMPerXdl| ScalarPerVector|
//#####################################| | | | | | | | | | Operation| Operation| Operation| | Stage| | | | | | | | | Wave| Wave| Lengths_K0_M_K1| ArrangeOrder| | | PerVector| PerVector_K1| | Lengths_K0_N_K1| ArrangeOrder| | | PerVector| PerVector_K1| | PerShuffle| PerShuffle| _NBlock_NWaveNPerXdl| _NWaveNPerXdl|
//#####################################| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
DeviceContractionMultipleD_Xdl_CShuffle< 2, 2, 2, F64, F64, F64, F64, Empty_Tuple, F64, PassThrough, PassThrough, Scale, GemmMNKPadding, 1, 256, 128, 128, 16, 1, 2, 16, 16, 4, 4, S<8, 32, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 1, 1, 0, S<4, 64, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 1, 1, 1, 1, 1, S<1, 16, 1, 16>, 1>,
DeviceContractionMultipleD_Xdl_CShuffle< 2, 2, 2, F64, F64, F64, F64, Empty_Tuple, F64, PassThrough, PassThrough, Scale, GemmMNKPadding, 1, 256, 128, 128, 16, 2, 2, 16, 16, 4, 4, S<4, 64, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 1, 1, 1, S<4, 64, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 1, 1, 1, 1, 1, S<1, 16, 1, 16>, 1>,
DeviceContractionMultipleD_Xdl_CShuffle< 2, 2, 2, F64, F64, F64, F64, Empty_Tuple, F64, PassThrough, PassThrough, Scale, GemmMNKPadding, 1, 128, 128, 64, 16, 1, 2, 16, 16, 4, 4, S<4, 32, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 1, 1, 0, S<4, 32, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 1, 1, 1, 1, 1, S<1, 16, 1, 8>, 1>,
DeviceContractionMultipleD_Xdl_CShuffle< 2, 2, 2, F64, F64, F64, F64, Empty_Tuple, F64, PassThrough, PassThrough, Scale, GemmMNKPadding, 1, 128, 128, 64, 16, 2, 2, 16, 16, 4, 4, S<4, 32, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 1, 1, 1, S<4, 32, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 1, 1, 1, 1, 1, S<1, 16, 1, 8>, 1>,
DeviceContractionMultipleD_Xdl_CShuffle< 2, 2, 2, F64, F64, F64, F64, Empty_Tuple, F64, PassThrough, PassThrough, Scale, GemmMNKPadding, 1, 128, 64, 128, 16, 1, 2, 16, 16, 4, 4, S<8, 16, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 1, 1, 0, S<4, 32, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 1, 1, 1, 1, 1, S<1, 8, 1, 16>, 1>,
DeviceContractionMultipleD_Xdl_CShuffle< 2, 2, 2, F64, F64, F64, F64, Empty_Tuple, F64, PassThrough, PassThrough, Scale, GemmMNKPadding, 1, 128, 64, 128, 16, 2, 2, 16, 16, 4, 4, S<4, 32, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 1, 1, 1, S<4, 32, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 1, 1, 1, 1, 1, S<1, 8, 1, 16>, 1>,
DeviceContractionMultipleD_Xdl_CShuffle< 2, 2, 2, F64, F64, F64, F64, Empty_Tuple, F64, PassThrough, PassThrough, Scale, GemmMNKPadding, 1, 256, 128, 64, 16, 1, 2, 16, 16, 4, 2, S<8, 32, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 1, 1, 0, S<4, 64, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 1, 1, 1, 1, 1, S<1, 16, 1, 16>, 1>,
DeviceContractionMultipleD_Xdl_CShuffle< 2, 2, 2, F64, F64, F64, F64, Empty_Tuple, F64, PassThrough, PassThrough, Scale, GemmMNKPadding, 1, 256, 128, 64, 16, 2, 2, 16, 16, 4, 2, S<4, 64, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 1, 1, 1, S<4, 64, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 1, 1, 1, 1, 1, S<1, 16, 1, 16>, 1>,
DeviceContractionMultipleD_Xdl_CShuffle< 2, 2, 2, F64, F64, F64, F64, Empty_Tuple, F64, PassThrough, PassThrough, Scale, GemmMNKPadding, 1, 256, 64, 128, 16, 1, 2, 16, 16, 2, 4, S<16,16, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 1, 1, 0, S<4, 64, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 1, 1, 1, 1, 1, S<1, 16, 1, 16>, 1>,
DeviceContractionMultipleD_Xdl_CShuffle< 2, 2, 2, F64, F64, F64, F64, Empty_Tuple, F64, PassThrough, PassThrough, Scale, GemmMNKPadding, 1, 256, 64, 128, 16, 2, 2, 16, 16, 2, 4, S<4, 64, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 1, 1, 1, S<4, 64, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 1, 1, 1, 1, 1, S<1, 16, 1, 16>, 1>
// clang-format on
>;
void add_device_contraction_scale_m2_n2_k2_xdl_c_shuffle_f64_f64_f64_mkn_instance(
std::vector<std::unique_ptr<DeviceContractionMultipleD<2,
2,
2,
F64,
F64,
Empty_Tuple,
F64,
PassThrough,
PassThrough,
Scale>>>& instances)
{
add_device_operation_instances(
instances, device_contraction_scale_m2_n2_k2_xdl_c_shuffle_f64_f64_f64_mkn_instance{});
}
} // namespace instance
} // namespace device
} // namespace tensor_operation
} // namespace ck
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2022, Advanced Micro Devices, Inc. All rights reserved.
// This (ifndef) is a hack to use customized behavior for buffer load rather than using default
// setting Don't use this hack unless absolutely necessary!
// FIXME: make the behavior of buffer load a configurable (template) parameter of each device op
#define CK_EXPERIMENTAL_USE_BUFFER_LOAD_OOB_CHECK_OFFSET_TRICK 1
#include <cstdlib>
#include "ck/ck.hpp"
#include "ck/tensor_operation/gpu/device/tensor_layout.hpp"
#include "ck/tensor_operation/gpu/device/gemm_specialization.hpp"
#include "ck/tensor_operation/gpu/device/impl/device_contraction_multiple_d_xdl_cshuffle.hpp"
#include "ck/tensor_operation/gpu/element/element_wise_operation.hpp"
#include "ck/library/tensor_operation_instance/add_device_operation_instance.hpp"
namespace ck {
namespace tensor_operation {
namespace device {
namespace instance {
using F64 = double;
using Empty_Tuple = ck::Tuple<>;
template <ck::index_t... Is>
using S = ck::Sequence<Is...>;
using PassThrough = ck::tensor_operation::element_wise::PassThrough;
using Scale = ck::tensor_operation::element_wise::Scale;
static constexpr auto GemmMNKPadding = ck::tensor_operation::device::GemmSpecialization::MNKPadding;
// A[m0, m1, k0, k1] * B[n0, n1, k0, k1] + D[m0, m1, n0, n1] = E[m0, m1, n0, n1]
// m/n/n/n are the fast changing dimension for A/B/D/E
using device_contraction_scale_m2_n2_k2_xdl_c_shuffle_f64_f64_f64_mnn_instance = std::tuple<
// clang-format off
//#####################################| NumDimM| NumDimN| NumDimK| AData| BData| AccData| CShuffle| DsData| EData| A| B| CDE| GEMM| NumGemmK| Block| MPer| NPer| KPer| AK1| BK1| MPer| NPer| MXdl| NXdl| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockLds| BBlockTransfer| BBlockTransfer| BBlockTransfer| BlockTransfer| BBlockTransfer| BBlockTransfer| BBlockLds| CShuffle| CShuffle| CBlockTransferClusterLengths| CBlockTransfer|
//#####################################| | | | Type| Type| Type| DataType| Type| Type| Elementwise| Elementwise| Elementwise| Specialization| Prefetch| Size| Block| Block| Block| | | XDL| XDL| Per| Per| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| AddExtraM| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| AddExtraN| MXdlPerWave| NXdlPerWave| _MBlock_MWaveMPerXdl| ScalarPerVector|
//#####################################| | | | | | | | | | Operation| Operation| Operation| | Stage| | | | | | | | | Wave| Wave| Lengths_K0_M_K1| ArrangeOrder| | | PerVector| PerVector_K1| | Lengths_K0_N_K1| ArrangeOrder| | | PerVector| PerVector_K1| | PerShuffle| PerShuffle| _NBlock_NWaveNPerXdl| _NWaveNPerXdl|
//#####################################| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
DeviceContractionMultipleD_Xdl_CShuffle< 2, 2, 2, F64, F64, F64, F64, Empty_Tuple, F64, PassThrough, PassThrough, Scale, GemmMNKPadding, 1, 256, 128, 128, 16, 1, 1, 16, 16, 4, 4, S<8, 32, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 1, 1, 0, S<8, 32, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 1, 1, 0, 1, 1, S<1, 16, 1, 16>, 1>,
DeviceContractionMultipleD_Xdl_CShuffle< 2, 2, 2, F64, F64, F64, F64, Empty_Tuple, F64, PassThrough, PassThrough, Scale, GemmMNKPadding, 1, 256, 128, 128, 16, 2, 2, 16, 16, 4, 4, S<4, 64, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 1, 1, 1, S<4, 64, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 1, 1, 1, 1, 1, S<1, 16, 1, 16>, 1>,
DeviceContractionMultipleD_Xdl_CShuffle< 2, 2, 2, F64, F64, F64, F64, Empty_Tuple, F64, PassThrough, PassThrough, Scale, GemmMNKPadding, 1, 128, 128, 64, 16, 1, 1, 16, 16, 4, 4, S<4, 32, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 1, 1, 0, S<4, 16, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 1, 1, 0, 1, 1, S<1, 16, 1, 8>, 1>,
DeviceContractionMultipleD_Xdl_CShuffle< 2, 2, 2, F64, F64, F64, F64, Empty_Tuple, F64, PassThrough, PassThrough, Scale, GemmMNKPadding, 1, 128, 128, 64, 16, 2, 2, 16, 16, 4, 4, S<4, 32, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 1, 1, 1, S<4, 32, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 1, 1, 1, 1, 1, S<1, 16, 1, 8>, 1>,
DeviceContractionMultipleD_Xdl_CShuffle< 2, 2, 2, F64, F64, F64, F64, Empty_Tuple, F64, PassThrough, PassThrough, Scale, GemmMNKPadding, 1, 128, 64, 128, 16, 1, 1, 16, 16, 4, 4, S<8, 16, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 1, 1, 0, S<4, 32, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 1, 1, 0, 1, 1, S<1, 8, 1, 16>, 1>,
DeviceContractionMultipleD_Xdl_CShuffle< 2, 2, 2, F64, F64, F64, F64, Empty_Tuple, F64, PassThrough, PassThrough, Scale, GemmMNKPadding, 1, 128, 64, 128, 16, 2, 2, 16, 16, 4, 4, S<4, 32, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 1, 1, 1, S<4, 32, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 1, 1, 1, 1, 1, S<1, 8, 1, 16>, 1>,
DeviceContractionMultipleD_Xdl_CShuffle< 2, 2, 2, F64, F64, F64, F64, Empty_Tuple, F64, PassThrough, PassThrough, Scale, GemmMNKPadding, 1, 256, 128, 64, 16, 1, 1, 16, 16, 4, 2, S<8, 32, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 1, 1, 0, S<16,16, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 1, 1, 0, 1, 1, S<1, 16, 1, 16>, 1>,
DeviceContractionMultipleD_Xdl_CShuffle< 2, 2, 2, F64, F64, F64, F64, Empty_Tuple, F64, PassThrough, PassThrough, Scale, GemmMNKPadding, 1, 256, 128, 64, 16, 2, 2, 16, 16, 4, 2, S<4, 64, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 1, 1, 1, S<4, 64, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 1, 1, 1, 1, 1, S<1, 16, 1, 16>, 1>,
DeviceContractionMultipleD_Xdl_CShuffle< 2, 2, 2, F64, F64, F64, F64, Empty_Tuple, F64, PassThrough, PassThrough, Scale, GemmMNKPadding, 1, 256, 64, 128, 16, 1, 1, 16, 16, 2, 4, S<16,16, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 1, 1, 0, S<8, 32, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 1, 1, 0, 1, 1, S<1, 16, 1, 16>, 1>,
DeviceContractionMultipleD_Xdl_CShuffle< 2, 2, 2, F64, F64, F64, F64, Empty_Tuple, F64, PassThrough, PassThrough, Scale, GemmMNKPadding, 1, 256, 64, 128, 16, 2, 2, 16, 16, 2, 4, S<4, 64, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 1, 1, 1, S<4, 64, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 1, 1, 1, 1, 1, S<1, 16, 1, 16>, 1>
// clang-format on
>;
void add_device_contraction_scale_m2_n2_k2_xdl_c_shuffle_f64_f64_f64_mnn_instance(
std::vector<std::unique_ptr<DeviceContractionMultipleD<2,
2,
2,
F64,
F64,
Empty_Tuple,
F64,
PassThrough,
PassThrough,
Scale>>>& instances)
{
add_device_operation_instances(
instances, device_contraction_scale_m2_n2_k2_xdl_c_shuffle_f64_f64_f64_mnn_instance{});
}
} // namespace instance
} // namespace device
} // namespace tensor_operation
} // namespace ck
add_instance_library(device_normalization_instance add_instance_library(device_normalization_instance
device_normalization_f16_instance.cpp device_layernorm2d_f16_instance.cpp
device_normalization_f32_instance.cpp device_layernorm2d_f32_instance.cpp
device_layernorm4d_f16_instance.cpp
device_layernorm4d_f32_instance.cpp
device_groupnorm_f16_instance.cpp
device_groupnorm_f32_instance.cpp
device_groupnorm_swish_f16_instance.cpp
device_groupnorm_swish_f32_instance.cpp
device_groupnorm_swish_f16_f32_f32_f16_instance.cpp
) )
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2022, Advanced Micro Devices, Inc. All rights reserved.
#include "normalization_instance_common.hpp"
namespace ck {
namespace tensor_operation {
namespace device {
namespace instance {
using Pass = ck::tensor_operation::element_wise::PassThrough;
void add_device_normalization_rank_5_3_f16_instances(
std::vector<std::unique_ptr<DeviceNormalization<F16, F16, F16, F32, F16, Pass, 5, 3>>>&
instances)
{
add_device_operation_instances(instances, device_normalization_f16_instances<Pass, 5, 3>{});
}
} // namespace instance
} // namespace device
} // namespace tensor_operation
} // namespace ck
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2022, Advanced Micro Devices, Inc. All rights reserved.
#include "normalization_instance_common.hpp"
namespace ck {
namespace tensor_operation {
namespace device {
namespace instance {
using Pass = ck::tensor_operation::element_wise::PassThrough;
void add_device_normalization_rank_5_3_f32_instances(
std::vector<std::unique_ptr<DeviceNormalization<F32, F32, F32, F32, F32, Pass, 5, 3>>>&
instances)
{
add_device_operation_instances(instances, device_normalization_f32_instances<Pass, 5, 3>{});
}
} // namespace instance
} // namespace device
} // namespace tensor_operation
} // namespace ck
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2022, Advanced Micro Devices, Inc. All rights reserved.
#include "normalization_instance_common.hpp"
namespace ck {
namespace tensor_operation {
namespace device {
namespace instance {
using Swish = ck::tensor_operation::element_wise::Swish;
void add_device_normalization_rank_5_3_swish_f16_f32_f32_f16_instances(
std::vector<std::unique_ptr<DeviceNormalization<F16, F32, F32, F32, F16, Swish, 5, 3>>>&
instances)
{
add_device_operation_instances(instances,
device_normalization_f16_f32_f32_f16_instances<Swish, 5, 3>{});
}
} // namespace instance
} // namespace device
} // namespace tensor_operation
} // namespace ck
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2022, Advanced Micro Devices, Inc. All rights reserved.
#include "normalization_instance_common.hpp"
namespace ck {
namespace tensor_operation {
namespace device {
namespace instance {
using Swish = ck::tensor_operation::element_wise::Swish;
void add_device_normalization_rank_5_3_swish_f16_instances(
std::vector<std::unique_ptr<DeviceNormalization<F16, F16, F16, F32, F16, Swish, 5, 3>>>&
instances)
{
add_device_operation_instances(instances, device_normalization_f16_instances<Swish, 5, 3>{});
}
} // namespace instance
} // namespace device
} // namespace tensor_operation
} // namespace ck
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2022, Advanced Micro Devices, Inc. All rights reserved.
#include "normalization_instance_common.hpp"
namespace ck {
namespace tensor_operation {
namespace device {
namespace instance {
using Swish = ck::tensor_operation::element_wise::Swish;
void add_device_normalization_rank_5_3_swish_f32_instances(
std::vector<std::unique_ptr<DeviceNormalization<F32, F32, F32, F32, F32, Swish, 5, 3>>>&
instances)
{
add_device_operation_instances(instances, device_normalization_f32_instances<Swish, 5, 3>{});
}
} // namespace instance
} // namespace device
} // namespace tensor_operation
} // namespace ck
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2022, Advanced Micro Devices, Inc. All rights reserved.
#include "normalization_instance_common.hpp"
namespace ck {
namespace tensor_operation {
namespace device {
namespace instance {
using Pass = ck::tensor_operation::element_wise::PassThrough;
void add_device_normalization_rank_2_1_f16_instances(
std::vector<std::unique_ptr<DeviceNormalization<F16, F16, F16, F32, F16, Pass, 2, 1>>>&
instances)
{
add_device_operation_instances(instances, device_normalization_f16_instances<Pass, 2, 1>{});
}
} // namespace instance
} // namespace device
} // namespace tensor_operation
} // namespace ck
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2022, Advanced Micro Devices, Inc. All rights reserved.
#include "normalization_instance_common.hpp"
namespace ck {
namespace tensor_operation {
namespace device {
namespace instance {
using Pass = ck::tensor_operation::element_wise::PassThrough;
void add_device_normalization_rank_2_1_f32_instances(
std::vector<std::unique_ptr<DeviceNormalization<F32, F32, F32, F32, F32, Pass, 2, 1>>>&
instances)
{
add_device_operation_instances(instances, device_normalization_f32_instances<Pass, 2, 1>{});
}
} // namespace instance
} // namespace device
} // namespace tensor_operation
} // namespace ck
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2022, Advanced Micro Devices, Inc. All rights reserved.
#include "normalization_instance_common.hpp"
namespace ck {
namespace tensor_operation {
namespace device {
namespace instance {
using Pass = ck::tensor_operation::element_wise::PassThrough;
void add_device_normalization_rank_4_3_f16_instances(
std::vector<std::unique_ptr<DeviceNormalization<F16, F16, F16, F32, F16, Pass, 4, 3>>>&
instances)
{
add_device_operation_instances(instances, device_normalization_f16_instances<Pass, 4, 3>{});
}
} // namespace instance
} // namespace device
} // namespace tensor_operation
} // namespace ck
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2022, Advanced Micro Devices, Inc. All rights reserved.
#include "normalization_instance_common.hpp"
namespace ck {
namespace tensor_operation {
namespace device {
namespace instance {
using Pass = ck::tensor_operation::element_wise::PassThrough;
void add_device_normalization_rank_4_3_f32_instances(
std::vector<std::unique_ptr<DeviceNormalization<F32, F32, F32, F32, F32, Pass, 4, 3>>>&
instances)
{
add_device_operation_instances(instances, device_normalization_f32_instances<Pass, 4, 3>{});
}
} // namespace instance
} // namespace device
} // namespace tensor_operation
} // namespace ck
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2022, Advanced Micro Devices, Inc. All rights reserved.
#include "ck/ck.hpp"
#include "ck/tensor_operation/gpu/device/impl/device_normalization_impl.hpp"
#include "ck/utility/data_type.hpp"
#include "ck/library/tensor_operation_instance/add_device_operation_instance.hpp"
namespace ck {
namespace tensor_operation {
namespace device {
namespace instance {
using F16 = ck::half_t;
using F32 = float;
using Pass = ck::tensor_operation::element_wise::PassThrough;
template <typename OutElementwise, index_t Rank, index_t Reduce>
// clang-format off
using device_normalization_f16_instances =
std::tuple <
// XDataType, GammaDataType, BetaDataType, ComputeDataType, YDataType, Rank, NumReduceDim, BlockSize, MThreadClusterSize, KThreadClusterSize, MThreadSliceSize, KThreadSliceSize, XYSrcVectorDim, XSrcVectorSize, GammaSrcVectorDim, GammaSrcVectorSize, BetaSrcVectorDim, BetaSrcVectorSize, YDstVectorSize>
DeviceNormalizationImpl<F16, F16, F16, F32, F16, OutElementwise, Rank, Reduce, 128, 1, 128, 1, 1, 1, 1, 1, 1, 1, 1, 1>, // irregular size
DeviceNormalizationImpl<F16, F16, F16, F32, F16, OutElementwise, Rank, Reduce, 256, 1, 256, 1, 1, 1, 1, 1, 1, 1, 1, 1>, // irregular size
DeviceNormalizationImpl<F16, F16, F16, F32, F16, OutElementwise, Rank, Reduce, 512, 1, 512, 1, 1, 1, 1, 1, 1, 1, 1, 1>, // irregular size
DeviceNormalizationImpl<F16, F16, F16, F32, F16, OutElementwise, Rank, Reduce, 1024, 1, 1024, 1, 1, 1, 1, 1, 1, 1, 1, 1>, // irregular size
DeviceNormalizationImpl<F16, F16, F16, F32, F16, OutElementwise, Rank, Reduce, 256, 1, 256, 1, 2, 1, 2, 1, 2, 1, 2, 2>, // irregular size
DeviceNormalizationImpl<F16, F16, F16, F32, F16, OutElementwise, Rank, Reduce, 256, 1, 256, 1, 4, 1, 4, 1, 4, 1, 4, 4>, // irregular size
DeviceNormalizationImpl<F16, F16, F16, F32, F16, OutElementwise, Rank, Reduce, 64, 1, 64, 1, 8, 1, 8, 1, 8, 1, 8, 8>,
DeviceNormalizationImpl<F16, F16, F16, F32, F16, OutElementwise, Rank, Reduce, 128, 1, 128, 1, 8, 1, 8, 1, 8, 1, 8, 8>,
DeviceNormalizationImpl<F16, F16, F16, F32, F16, OutElementwise, Rank, Reduce, 128, 1, 128, 1, 16, 1, 8, 1, 8, 1, 8, 8>,
DeviceNormalizationImpl<F16, F16, F16, F32, F16, OutElementwise, Rank, Reduce, 128, 1, 128, 1, 32, 1, 8, 1, 8, 1, 8, 8>,
DeviceNormalizationImpl<F16, F16, F16, F32, F16, OutElementwise, Rank, Reduce, 256, 1, 256, 1, 8, 1, 8, 1, 8, 1, 8, 8>,
DeviceNormalizationImpl<F16, F16, F16, F32, F16, OutElementwise, Rank, Reduce, 256, 1, 256, 1, 16, 1, 8, 1, 8, 1, 8, 8>,
DeviceNormalizationImpl<F16, F16, F16, F32, F16, OutElementwise, Rank, Reduce, 256, 1, 256, 2, 16, 1, 8, 1, 8, 1, 8, 8>,
DeviceNormalizationImpl<F16, F16, F16, F32, F16, OutElementwise, Rank, Reduce, 256, 1, 256, 1, 32, 1, 8, 1, 8, 1, 8, 8>,
DeviceNormalizationImpl<F16, F16, F16, F32, F16, OutElementwise, Rank, Reduce, 512, 1, 512, 1, 8, 1, 8, 1, 8, 1, 8, 8>,
DeviceNormalizationImpl<F16, F16, F16, F32, F16, OutElementwise, Rank, Reduce, 512, 1, 512, 1, 16, 1, 8, 1, 8, 1, 8, 8>,
DeviceNormalizationImpl<F16, F16, F16, F32, F16, OutElementwise, Rank, Reduce, 1024, 1, 1024, 1, 8, 1, 8, 1, 8, 1, 8, 8>,
DeviceNormalizationImpl<F16, F16, F16, F32, F16, OutElementwise, Rank, Reduce, 1024, 1, 1024, 1, 16, 1, 8, 1, 8, 1, 8, 8>
>;
// clang-format on
void add_device_normalization_rank_2_1_f16_instances(
std::vector<std::unique_ptr<DeviceNormalization<F16, F16, F16, F32, F16, Pass, 2, 1>>>&
instances)
{
add_device_operation_instances(instances, device_normalization_f16_instances<Pass, 2, 1>{});
}
void add_device_normalization_rank_4_3_f16_instances(
std::vector<std::unique_ptr<DeviceNormalization<F16, F16, F16, F32, F16, Pass, 4, 3>>>&
instances)
{
add_device_operation_instances(instances, device_normalization_f16_instances<Pass, 4, 3>{});
}
void add_device_normalization_rank_5_3_f16_instances(
std::vector<std::unique_ptr<DeviceNormalization<F16, F16, F16, F32, F16, Pass, 5, 3>>>&
instances)
{
add_device_operation_instances(instances, device_normalization_f16_instances<Pass, 5, 3>{});
}
} // namespace instance
} // namespace device
} // namespace tensor_operation
} // namespace ck
// SPDX-License-Identifier: MIT // SPDX-License-Identifier: MIT
// Copyright (c) 2018-2022, Advanced Micro Devices, Inc. All rights reserved. // Copyright (c) 2018-2022, Advanced Micro Devices, Inc. All rights reserved.
#pragma once
#include "ck/ck.hpp" #include "ck/ck.hpp"
#include "ck/tensor_operation/gpu/device/impl/device_normalization_impl.hpp" #include "ck/tensor_operation/gpu/device/impl/device_normalization_impl.hpp"
#include "ck/utility/data_type.hpp" #include "ck/utility/data_type.hpp"
...@@ -12,12 +14,37 @@ namespace tensor_operation { ...@@ -12,12 +14,37 @@ namespace tensor_operation {
namespace device { namespace device {
namespace instance { namespace instance {
using F16 = ck::half_t;
using F32 = float; using F32 = float;
using Pass = ck::tensor_operation::element_wise::PassThrough; template <typename OutElementwise, index_t Rank, index_t Reduce>
using device_normalization_f16_instances =
// clang-format off
std::tuple <
// XDataType, GammaDataType, BetaDataType, ComputeDataType, YDataType, Rank, NumReduceDim, BlockSize, MThreadClusterSize, KThreadClusterSize, MThreadSliceSize, KThreadSliceSize, XYSrcVectorDim, XSrcVectorSize, GammaSrcVectorDim, GammaSrcVectorSize, BetaSrcVectorDim, BetaSrcVectorSize, YDstVectorSize>
DeviceNormalizationImpl<F16, F16, F16, F32, F16, OutElementwise, Rank, Reduce, 128, 1, 128, 1, 1, 1, 1, 1, 1, 1, 1, 1>, // irregular size
DeviceNormalizationImpl<F16, F16, F16, F32, F16, OutElementwise, Rank, Reduce, 256, 1, 256, 1, 1, 1, 1, 1, 1, 1, 1, 1>, // irregular size
DeviceNormalizationImpl<F16, F16, F16, F32, F16, OutElementwise, Rank, Reduce, 512, 1, 512, 1, 1, 1, 1, 1, 1, 1, 1, 1>, // irregular size
DeviceNormalizationImpl<F16, F16, F16, F32, F16, OutElementwise, Rank, Reduce, 1024, 1, 1024, 1, 1, 1, 1, 1, 1, 1, 1, 1>, // irregular size
DeviceNormalizationImpl<F16, F16, F16, F32, F16, OutElementwise, Rank, Reduce, 256, 1, 256, 1, 2, 1, 2, 1, 2, 1, 2, 2>, // irregular size
DeviceNormalizationImpl<F16, F16, F16, F32, F16, OutElementwise, Rank, Reduce, 256, 1, 256, 1, 4, 1, 4, 1, 4, 1, 4, 4>, // irregular size
DeviceNormalizationImpl<F16, F16, F16, F32, F16, OutElementwise, Rank, Reduce, 64, 1, 64, 1, 8, 1, 8, 1, 8, 1, 8, 8>,
DeviceNormalizationImpl<F16, F16, F16, F32, F16, OutElementwise, Rank, Reduce, 128, 1, 128, 1, 8, 1, 8, 1, 8, 1, 8, 8>,
DeviceNormalizationImpl<F16, F16, F16, F32, F16, OutElementwise, Rank, Reduce, 128, 1, 128, 1, 16, 1, 8, 1, 8, 1, 8, 8>,
DeviceNormalizationImpl<F16, F16, F16, F32, F16, OutElementwise, Rank, Reduce, 128, 1, 128, 1, 32, 1, 8, 1, 8, 1, 8, 8>,
DeviceNormalizationImpl<F16, F16, F16, F32, F16, OutElementwise, Rank, Reduce, 256, 1, 256, 1, 8, 1, 8, 1, 8, 1, 8, 8>,
DeviceNormalizationImpl<F16, F16, F16, F32, F16, OutElementwise, Rank, Reduce, 256, 1, 256, 1, 16, 1, 8, 1, 8, 1, 8, 8>,
DeviceNormalizationImpl<F16, F16, F16, F32, F16, OutElementwise, Rank, Reduce, 256, 1, 256, 2, 16, 1, 8, 1, 8, 1, 8, 8>,
DeviceNormalizationImpl<F16, F16, F16, F32, F16, OutElementwise, Rank, Reduce, 256, 1, 256, 1, 32, 1, 8, 1, 8, 1, 8, 8>,
DeviceNormalizationImpl<F16, F16, F16, F32, F16, OutElementwise, Rank, Reduce, 512, 1, 512, 1, 8, 1, 8, 1, 8, 1, 8, 8>,
DeviceNormalizationImpl<F16, F16, F16, F32, F16, OutElementwise, Rank, Reduce, 512, 1, 512, 1, 16, 1, 8, 1, 8, 1, 8, 8>,
DeviceNormalizationImpl<F16, F16, F16, F32, F16, OutElementwise, Rank, Reduce, 1024, 1, 1024, 1, 8, 1, 8, 1, 8, 1, 8, 8>,
DeviceNormalizationImpl<F16, F16, F16, F32, F16, OutElementwise, Rank, Reduce, 1024, 1, 1024, 1, 16, 1, 8, 1, 8, 1, 8, 8>
// clang-format on
>;
template <typename OutElementwise, index_t Rank, index_t Reduce> template <typename OutElementwise, index_t Rank, index_t Reduce>
using device_layernorm_f32_instances = std::tuple< using device_normalization_f32_instances = std::tuple<
// clang-format off // clang-format off
// XDataType, GammaDataType, BetaDataType, ComputeDataType, YDataType, Rank, NumReduceDim, BlockSize, MThreadClusterSize, KThreadClusterSize, MThreadSliceSize, KThreadSliceSize, XYSrcVectorDim, XSrcVectorSize, GammaSrcVectorSize, BetaSrcVectorSize, YDstVectorSize> // XDataType, GammaDataType, BetaDataType, ComputeDataType, YDataType, Rank, NumReduceDim, BlockSize, MThreadClusterSize, KThreadClusterSize, MThreadSliceSize, KThreadSliceSize, XYSrcVectorDim, XSrcVectorSize, GammaSrcVectorSize, BetaSrcVectorSize, YDstVectorSize>
DeviceNormalizationImpl<F32, F32, F32, F32, F32, OutElementwise, Rank, Reduce, 128, 1, 128, 1, 1, 1, 1, 1, 1, 1, 1, 1>, // irregular size DeviceNormalizationImpl<F32, F32, F32, F32, F32, OutElementwise, Rank, Reduce, 128, 1, 128, 1, 1, 1, 1, 1, 1, 1, 1, 1>, // irregular size
...@@ -42,26 +69,31 @@ using device_layernorm_f32_instances = std::tuple< ...@@ -42,26 +69,31 @@ using device_layernorm_f32_instances = std::tuple<
// clang-format on // clang-format on
>; >;
void add_device_normalization_rank_2_1_f32_instances( template <typename OutElementwise, index_t Rank, index_t Reduce>
std::vector<std::unique_ptr<DeviceNormalization<F32, F32, F32, F32, F32, Pass, 2, 1>>>& using device_normalization_f16_f32_f32_f16_instances = std::tuple<
instances) // clang-format off
{ // XDataType, GammaDataType, BetaDataType, ComputeDataType, YDataType, Rank, NumReduceDim, BlockSize, MThreadClusterSize, KThreadClusterSize, MThreadSliceSize, KThreadSliceSize, XYSrcVectorDim, XSrcVectorSize, GammaSrcVectorSize, BetaSrcVectorSize, YDstVectorSize>
add_device_operation_instances(instances, device_layernorm_f32_instances<Pass, 2, 1>{}); DeviceNormalizationImpl<F16, F32, F32, F32, F16, OutElementwise, Rank, Reduce, 128, 1, 128, 1, 1, 1, 1, 1, 1, 1, 1, 1>, // irregular size
} DeviceNormalizationImpl<F16, F32, F32, F32, F16, OutElementwise, Rank, Reduce, 256, 1, 256, 1, 1, 1, 1, 1, 1, 1, 1, 1>, // irregular size
DeviceNormalizationImpl<F16, F32, F32, F32, F16, OutElementwise, Rank, Reduce, 512, 1, 512, 1, 1, 1, 1, 1, 1, 1, 1, 1>, // irregular size
void add_device_normalization_rank_4_3_f32_instances( DeviceNormalizationImpl<F16, F32, F32, F32, F16, OutElementwise, Rank, Reduce, 1024, 1, 1024, 1, 1, 1, 1, 1, 1, 1, 1, 1>, // irregular size
std::vector<std::unique_ptr<DeviceNormalization<F32, F32, F32, F32, F32, Pass, 4, 3>>>& DeviceNormalizationImpl<F16, F32, F32, F32, F16, OutElementwise, Rank, Reduce, 256, 1, 256, 1, 2, 1, 2, 1, 2, 1, 2, 2>, // irregular size
instances) DeviceNormalizationImpl<F16, F32, F32, F32, F16, OutElementwise, Rank, Reduce, 128, 1, 128, 1, 4, 1, 4, 1, 4, 1, 4, 4>,
{ DeviceNormalizationImpl<F16, F32, F32, F32, F16, OutElementwise, Rank, Reduce, 128, 1, 128, 1, 8, 1, 4, 1, 4, 1, 4, 4>,
add_device_operation_instances(instances, device_layernorm_f32_instances<Pass, 4, 3>{}); DeviceNormalizationImpl<F16, F32, F32, F32, F16, OutElementwise, Rank, Reduce, 128, 1, 128, 1, 16, 1, 4, 1, 4, 1, 4, 4>,
} DeviceNormalizationImpl<F16, F32, F32, F32, F16, OutElementwise, Rank, Reduce, 128, 1, 128, 1, 32, 1, 4, 1, 4, 1, 4, 4>,
DeviceNormalizationImpl<F16, F32, F32, F32, F16, OutElementwise, Rank, Reduce, 256, 1, 256, 1, 4, 1, 4, 1, 4, 1, 4, 4>,
void add_device_normalization_rank_5_3_f32_instances( DeviceNormalizationImpl<F16, F32, F32, F32, F16, OutElementwise, Rank, Reduce, 256, 1, 256, 1, 8, 1, 4, 1, 4, 1, 4, 4>,
std::vector<std::unique_ptr<DeviceNormalization<F32, F32, F32, F32, F32, Pass, 5, 3>>>& DeviceNormalizationImpl<F16, F32, F32, F32, F16, OutElementwise, Rank, Reduce, 256, 1, 256, 1, 16, 1, 4, 1, 4, 1, 4, 4>,
instances) DeviceNormalizationImpl<F16, F32, F32, F32, F16, OutElementwise, Rank, Reduce, 256, 1, 256, 2, 16, 1, 4, 1, 4, 1, 4, 4>,
{ DeviceNormalizationImpl<F16, F32, F32, F32, F16, OutElementwise, Rank, Reduce, 256, 1, 256, 1, 32, 1, 4, 1, 4, 1, 4, 4>,
add_device_operation_instances(instances, device_layernorm_f32_instances<Pass, 5, 3>{}); DeviceNormalizationImpl<F16, F32, F32, F32, F16, OutElementwise, Rank, Reduce, 512, 1, 512, 1, 4, 1, 4, 1, 4, 1, 4, 4>,
} DeviceNormalizationImpl<F16, F32, F32, F32, F16, OutElementwise, Rank, Reduce, 512, 1, 512, 1, 8, 1, 4, 1, 4, 1, 4, 4>,
DeviceNormalizationImpl<F16, F32, F32, F32, F16, OutElementwise, Rank, Reduce, 512, 1, 512, 2, 8, 1, 4, 1, 4, 1, 4, 4>,
DeviceNormalizationImpl<F16, F32, F32, F32, F16, OutElementwise, Rank, Reduce, 1024, 1, 1024, 1, 4, 1, 4, 1, 4, 1, 4, 4>,
DeviceNormalizationImpl<F16, F32, F32, F32, F16, OutElementwise, Rank, Reduce, 1024, 1, 1024, 1, 8, 1, 4, 1, 4, 1, 4, 4>
// clang-format on
>;
} // namespace instance } // namespace instance
} // namespace device } // namespace device
......
...@@ -25,6 +25,7 @@ using GNHWK = ck::tensor_layout::convolution::GNHWK; ...@@ -25,6 +25,7 @@ using GNHWK = ck::tensor_layout::convolution::GNHWK;
using GK = ck::tensor_layout::convolution::G_K; using GK = ck::tensor_layout::convolution::G_K;
using PassThrough = ck::tensor_operation::element_wise::PassThrough; using PassThrough = ck::tensor_operation::element_wise::PassThrough;
using Relu = ck::tensor_operation::element_wise::Relu; using Relu = ck::tensor_operation::element_wise::Relu;
using TanH = ck::tensor_operation::element_wise::TanH;
using GK_Tuple = ck::Tuple<GK>; using GK_Tuple = ck::Tuple<GK>;
using GK_GK_Tuple = ck::Tuple<GK, GK>; using GK_GK_Tuple = ck::Tuple<GK, GK>;
...@@ -32,17 +33,25 @@ using I32_Tuple = ck::Tuple<int32_t>; ...@@ -32,17 +33,25 @@ using I32_Tuple = ck::Tuple<int32_t>;
using F32_Tuple = ck::Tuple<float>; using F32_Tuple = ck::Tuple<float>;
using I32_F32_Tuple = ck::Tuple<int32_t, float>; using I32_F32_Tuple = ck::Tuple<int32_t, float>;
// perlayer
using Mul_Clamp = ck::tensor_operation::element_wise::Activation_Mul_Clamp<PassThrough>; using Mul_Clamp = ck::tensor_operation::element_wise::Activation_Mul_Clamp<PassThrough>;
using Relu_Mul_Clamp = ck::tensor_operation::element_wise::Activation_Mul_Clamp<Relu>; using Relu_Mul_Clamp = ck::tensor_operation::element_wise::Activation_Mul_Clamp<Relu>;
// bias + perlayer
using Add_Mul_Clamp = ck::tensor_operation::element_wise::Add_Activation_Mul_Clamp<PassThrough>; using Add_Mul_Clamp = ck::tensor_operation::element_wise::Add_Activation_Mul_Clamp<PassThrough>;
using Add_Relu_Mul_Clamp = ck::tensor_operation::element_wise::Add_Activation_Mul_Clamp<Relu>; using Add_Relu_Mul_Clamp = ck::tensor_operation::element_wise::Add_Activation_Mul_Clamp<Relu>;
using Add_Mul_TanH_Mul_Clamp =
ck::tensor_operation::element_wise::Add_Mul_Activation_Mul_Clamp<TanH>;
// perchannel
using Mul2_Clamp = ck::tensor_operation::element_wise::Activation_Mul2_Clamp<PassThrough>; using Mul2_Clamp = ck::tensor_operation::element_wise::Activation_Mul2_Clamp<PassThrough>;
using Relu_Mul2_Clamp = ck::tensor_operation::element_wise::Activation_Mul2_Clamp<Relu>; using Relu_Mul2_Clamp = ck::tensor_operation::element_wise::Activation_Mul2_Clamp<Relu>;
// bias + perchannel
using Add_Mul2_Clamp = ck::tensor_operation::element_wise::Add_Activation_Mul2_Clamp<PassThrough>; using Add_Mul2_Clamp = ck::tensor_operation::element_wise::Add_Activation_Mul2_Clamp<PassThrough>;
using Add_Relu_Mul2_Clamp = ck::tensor_operation::element_wise::Add_Activation_Mul2_Clamp<Relu>; using Add_Relu_Mul2_Clamp = ck::tensor_operation::element_wise::Add_Activation_Mul2_Clamp<Relu>;
using Add_Mul2_TanH_Mul_Clamp =
ck::tensor_operation::element_wise::Add_Mul2_Activation_Mul_Clamp<TanH>;
static constexpr ck::index_t NDimSpatial = 2; static constexpr ck::index_t NDimSpatial = 2;
static constexpr auto GemmSpec = ck::tensor_operation::device::GemmSpecialization::MNKPadding; static constexpr auto GemmSpec = ck::tensor_operation::device::GemmSpecialization::MNKPadding;
......
...@@ -76,6 +76,42 @@ void add_device_conv2d_dl_bias_relu_perchannel_quantization_int8_instances( ...@@ -76,6 +76,42 @@ void add_device_conv2d_dl_bias_relu_perchannel_quantization_int8_instances(
ConvFwd1x1S1P0, ConvFwd1x1S1P0,
4>{}); 4>{});
} }
void add_device_conv2d_dl_bias_tanh_perchannel_quantization_int8_instances(
std::vector<std::unique_ptr<DeviceGroupedConvFwdMultipleD<NDimSpatial,
GNHWC,
GKYXC,
GK_GK_Tuple,
GNHWK,
int8_t,
int8_t,
I32_F32_Tuple,
int8_t,
PassThrough,
PassThrough,
Add_Mul2_TanH_Mul_Clamp>>>& instances)
{
// dl
add_device_operation_instances(instances,
device_grouped_conv2d_dl_int8_instances<GK_GK_Tuple,
I32_F32_Tuple,
Add_Mul2_TanH_Mul_Clamp,
ConvFwdDefault,
4>{});
add_device_operation_instances(instances,
device_grouped_conv2d_dl_int8_instances<GK_GK_Tuple,
I32_F32_Tuple,
Add_Mul2_TanH_Mul_Clamp,
ConvFwd1x1P0,
4>{});
add_device_operation_instances(instances,
device_grouped_conv2d_dl_int8_instances<GK_GK_Tuple,
I32_F32_Tuple,
Add_Mul2_TanH_Mul_Clamp,
ConvFwd1x1S1P0,
4>{});
}
} // namespace instance } // namespace instance
} // namespace device } // namespace device
} // namespace tensor_operation } // namespace tensor_operation
......
...@@ -76,6 +76,43 @@ void add_device_conv2d_dl_bias_relu_perlayer_quantization_int8_instances( ...@@ -76,6 +76,43 @@ void add_device_conv2d_dl_bias_relu_perlayer_quantization_int8_instances(
ConvFwd1x1S1P0, ConvFwd1x1S1P0,
4>{}); 4>{});
} }
void add_device_conv2d_dl_bias_tanh_perlayer_quantization_int8_instances(
std::vector<std::unique_ptr<DeviceGroupedConvFwdMultipleD<NDimSpatial,
GNHWC,
GKYXC,
GK_Tuple,
GNHWK,
int8_t,
int8_t,
I32_Tuple,
int8_t,
PassThrough,
PassThrough,
Add_Mul_TanH_Mul_Clamp>>>& instances)
{
add_device_operation_instances(instances,
device_grouped_conv2d_dl_int8_instances<GK_Tuple,
I32_Tuple,
Add_Mul_TanH_Mul_Clamp,
ConvFwdDefault,
4>{});
add_device_operation_instances(instances,
device_grouped_conv2d_dl_int8_instances<GK_Tuple,
I32_Tuple,
Add_Mul_TanH_Mul_Clamp,
ConvFwd1x1P0,
4>{});
add_device_operation_instances(instances,
device_grouped_conv2d_dl_int8_instances<GK_Tuple,
I32_Tuple,
Add_Mul_TanH_Mul_Clamp,
ConvFwd1x1S1P0,
4>{});
}
} // namespace instance } // namespace instance
} // namespace device } // namespace device
} // namespace tensor_operation } // namespace tensor_operation
......
...@@ -74,6 +74,41 @@ void add_device_conv2d_xdl_bias_relu_perchannel_quantization_int8_instances( ...@@ -74,6 +74,41 @@ void add_device_conv2d_xdl_bias_relu_perchannel_quantization_int8_instances(
ConvFwd1x1S1P0, ConvFwd1x1S1P0,
8>{}); 8>{});
} }
void add_device_conv2d_xdl_bias_tanh_perchannel_quantization_int8_instances(
std::vector<std::unique_ptr<DeviceGroupedConvFwdMultipleD<NDimSpatial,
GNHWC,
GKYXC,
GK_GK_Tuple,
GNHWK,
int8_t,
int8_t,
I32_F32_Tuple,
int8_t,
PassThrough,
PassThrough,
Add_Mul2_TanH_Mul_Clamp>>>& instances)
{
add_device_operation_instances(instances,
device_grouped_conv2d_xdl_int8_instances<GK_GK_Tuple,
I32_F32_Tuple,
Add_Mul2_TanH_Mul_Clamp,
ConvFwdDefault,
8>{});
add_device_operation_instances(instances,
device_grouped_conv2d_xdl_int8_instances<GK_GK_Tuple,
I32_F32_Tuple,
Add_Mul2_TanH_Mul_Clamp,
ConvFwd1x1P0,
8>{});
add_device_operation_instances(instances,
device_grouped_conv2d_xdl_int8_instances<GK_GK_Tuple,
I32_F32_Tuple,
Add_Mul2_TanH_Mul_Clamp,
ConvFwd1x1S1P0,
8>{});
}
} // namespace instance } // namespace instance
} // namespace device } // namespace device
} // namespace tensor_operation } // namespace tensor_operation
......
...@@ -76,6 +76,43 @@ void add_device_conv2d_xdl_bias_relu_perlayer_quantization_int8_instances( ...@@ -76,6 +76,43 @@ void add_device_conv2d_xdl_bias_relu_perlayer_quantization_int8_instances(
ConvFwd1x1S1P0, ConvFwd1x1S1P0,
8>{}); 8>{});
} }
void add_device_conv2d_xdl_bias_tanh_perlayer_quantization_int8_instances(
std::vector<std::unique_ptr<DeviceGroupedConvFwdMultipleD<NDimSpatial,
GNHWC,
GKYXC,
GK_Tuple,
GNHWK,
int8_t,
int8_t,
I32_Tuple,
int8_t,
PassThrough,
PassThrough,
Add_Mul_TanH_Mul_Clamp>>>& instances)
{
add_device_operation_instances(instances,
device_grouped_conv2d_xdl_int8_instances<GK_Tuple,
I32_Tuple,
Add_Mul_TanH_Mul_Clamp,
ConvFwdDefault,
8>{});
add_device_operation_instances(instances,
device_grouped_conv2d_xdl_int8_instances<GK_Tuple,
I32_Tuple,
Add_Mul_TanH_Mul_Clamp,
ConvFwd1x1P0,
8>{});
add_device_operation_instances(instances,
device_grouped_conv2d_xdl_int8_instances<GK_Tuple,
I32_Tuple,
Add_Mul_TanH_Mul_Clamp,
ConvFwd1x1S1P0,
8>{});
}
} // namespace instance } // namespace instance
} // namespace device } // namespace device
} // namespace tensor_operation } // namespace tensor_operation
......
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment