Commit c6891e12 authored by rocking's avatar rocking
Browse files

Merge branch 'develop' into standalone-layernorm

parents f591ad27 8e374781
...@@ -71,13 +71,6 @@ if( DEFINED CK_OVERRIDE_HIP_VERSION_PATCH ) ...@@ -71,13 +71,6 @@ if( DEFINED CK_OVERRIDE_HIP_VERSION_PATCH )
endif() endif()
message(STATUS "Build with HIP ${HIP_VERSION}") message(STATUS "Build with HIP ${HIP_VERSION}")
rocm_create_package(
NAME composablekernel
DESCRIPTION "High Performance Composable Kernel for AMD GPUs"
MAINTAINER "MIOpen Kernels Dev Team <dl.MIOpen@amd.com>"
LDCONFIG
)
## tidy ## tidy
include(EnableCompilerWarnings) include(EnableCompilerWarnings)
set(CK_TIDY_ERRORS ERRORS * -readability-inconsistent-declaration-parameter-name) set(CK_TIDY_ERRORS ERRORS * -readability-inconsistent-declaration-parameter-name)
......
...@@ -26,6 +26,7 @@ cmake \ ...@@ -26,6 +26,7 @@ cmake \
-D CMAKE_CXX_FLAGS=" --offload-arch=gfx908 --offload-arch=gfx90a -O3" \ -D CMAKE_CXX_FLAGS=" --offload-arch=gfx908 --offload-arch=gfx90a -O3" \
-D CMAKE_CXX_COMPILER=/opt/rocm/bin/hipcc \ -D CMAKE_CXX_COMPILER=/opt/rocm/bin/hipcc \
-D CMAKE_PREFIX_PATH=/opt/rocm \ -D CMAKE_PREFIX_PATH=/opt/rocm \
-D CMAKE_INSTALL_PREFIX=${PATH_TO_CK_INSTALL_DIRECTORY} \
.. ..
``` ```
...@@ -47,6 +48,12 @@ Instructions for running each individual examples are under ```example/``` ...@@ -47,6 +48,12 @@ Instructions for running each individual examples are under ```example/```
``` ```
Instructions for running ckProfiler are under ```profiler/``` Instructions for running ckProfiler are under ```profiler/```
## Install CK
```bash
make install
```
## Using CK as pre-built kernel library
## Caveat ## Caveat
### Kernel Timing and Verification ### Kernel Timing and Verification
......
add_executable(client_gemm gemm.cpp)
target_link_libraries(client_gemm PRIVATE composable_kernel::device_operations)
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2022, Advanced Micro Devices, Inc. All rights reserved.
#include <iomanip>
#include <vector>
#include <iostream>
#include "ck/ck.hpp"
#include "ck/tensor_operation/gpu/device/tensor_layout.hpp"
#include "ck/tensor_operation/gpu/device/device_gemm.hpp"
#include "ck/tensor_operation/gpu/element/element_wise_operation.hpp"
#include "ck/library/tensor_operation_instance/gpu/gemm.hpp"
using F16 = ck::half_t;
using F32 = float;
using Row = ck::tensor_layout::gemm::RowMajor;
using Col = ck::tensor_layout::gemm::ColumnMajor;
using PassThrough = ck::tensor_operation::element_wise::PassThrough;
using AElementOp = PassThrough;
using BElementOp = PassThrough;
using CElementOp = PassThrough;
using ADataType = F16;
using BDataType = F16;
using CDataType = F16;
using ALayout = Row;
using BLayout = Col;
using CLayout = Row;
struct SimpleDeviceMem
{
SimpleDeviceMem() = delete;
SimpleDeviceMem(std::size_t mem_size) : p_mem_{}
{
(void)hipMalloc(static_cast<void**>(&p_mem_), mem_size);
}
void* GetDeviceBuffer() { return p_mem_; }
~SimpleDeviceMem() { (void)hipFree(p_mem_); }
void* p_mem_;
};
int main(int argc, char* argv[])
{
// GEMM shape
ck::index_t M = 3840;
ck::index_t N = 4096;
ck::index_t K = 4096;
ck::index_t StrideA = 4096;
ck::index_t StrideB = 4096;
ck::index_t StrideC = 4096;
if(argc == 1)
{
// use default case
}
else if(argc == 5)
{
M = std::stoi(argv[1]);
N = std::stoi(argv[2]);
K = std::stoi(argv[3]);
StrideA = std::stoi(argv[4]);
StrideB = std::stoi(argv[5]);
StrideC = std::stoi(argv[6]);
}
else
{
printf("arg1 to 6: M, N, K, StrideA, StrideB, StrideC\n");
exit(0);
}
auto f_matrix_space_size =
[](std::size_t nRow, std::size_t nCol, std::size_t stride, auto layout) {
using Layout = decltype(layout);
if(std::is_same<Layout, ck::tensor_layout::gemm::RowMajor>::value)
{
return (nRow - 1) * stride + nCol;
}
else
{
return (nCol - 1) * stride + nRow;
}
};
SimpleDeviceMem a_device_buf(sizeof(ADataType) * f_matrix_space_size(M, K, StrideA, ALayout{}));
SimpleDeviceMem b_device_buf(sizeof(BDataType) * f_matrix_space_size(K, N, StrideB, BLayout{}));
SimpleDeviceMem c_device_buf(sizeof(CDataType) * f_matrix_space_size(M, N, StrideC, CLayout{}));
using DeviceOp =
ck::tensor_operation::device::DeviceGemm<ALayout,
BLayout,
CLayout,
ADataType,
BDataType,
CDataType,
ck::tensor_operation::element_wise::PassThrough,
ck::tensor_operation::element_wise::PassThrough,
ck::tensor_operation::element_wise::PassThrough>;
// get device op instances
const auto op_ptrs = ck::tensor_operation::device::instance::DeviceOperationInstanceFactory<
DeviceOp>::GetInstances();
std::cout << "found " << op_ptrs.size() << " instances" << std::endl;
const auto a_element_op = AElementOp{};
const auto b_element_op = BElementOp{};
const auto c_element_op = CElementOp{};
std::string best_op_name;
bool found = false;
int best_op_id = -1;
float best_ave_time = 0;
float best_tflops = 0;
float best_gb_per_sec = 0;
// profile device operation instances
std::cout << "Run all instances and do timing" << std::endl;
for(int i = 0; i < op_ptrs.size(); ++i)
{
auto& op_ptr = op_ptrs[i];
auto argument_ptr = op_ptr->MakeArgumentPointer(a_device_buf.GetDeviceBuffer(),
b_device_buf.GetDeviceBuffer(),
c_device_buf.GetDeviceBuffer(),
M,
N,
K,
StrideA,
StrideB,
StrideC,
a_element_op,
b_element_op,
c_element_op);
auto invoker_ptr = op_ptr->MakeInvokerPointer();
std::string op_name = op_ptr->GetTypeString();
if(op_ptr->IsSupportedArgument(argument_ptr.get()))
{
float ave_time = invoker_ptr->Run(argument_ptr.get(), StreamConfig{nullptr, true});
std::size_t flop = std::size_t(2) * M * N * K;
std::size_t num_btype =
sizeof(ADataType) * M * K + sizeof(BDataType) * K * N + sizeof(CDataType) * M * N;
float tflops = static_cast<float>(flop) / 1.E9 / ave_time;
float gb_per_sec = num_btype / 1.E6 / ave_time;
std::cout << "Perf: " << std::setw(10) << ave_time << " ms, " << tflops << " TFlops, "
<< gb_per_sec << " GB/s, " << op_name << std::endl;
if(tflops > best_tflops)
{
found = true;
best_op_id = i;
best_op_name = op_name;
best_tflops = tflops;
best_ave_time = ave_time;
best_gb_per_sec = gb_per_sec;
}
}
else
{
std::cout << op_name << " does not support this problem" << std::endl;
}
}
std::cout << "Best Perf: " << best_ave_time << " ms, " << best_tflops << " TFlops, "
<< best_gb_per_sec << " GB/s, " << best_op_name << std::endl;
// run the best intance
{
auto& op_ptr = op_ptrs[best_op_id];
std::cout << "Run the best instance without timing: " << op_ptr->GetTypeString()
<< std::endl;
auto argument_ptr = op_ptr->MakeArgumentPointer(a_device_buf.GetDeviceBuffer(),
b_device_buf.GetDeviceBuffer(),
c_device_buf.GetDeviceBuffer(),
M,
N,
K,
StrideA,
StrideB,
StrideC,
a_element_op,
b_element_op,
c_element_op);
auto invoker_ptr = op_ptr->MakeInvokerPointer();
if(op_ptr->IsSupportedArgument(argument_ptr.get()))
{
invoker_ptr->Run(argument_ptr.get(), StreamConfig{nullptr, false});
}
std::cout << "Done" << std::endl;
}
return 0;
}
...@@ -10,7 +10,7 @@ ...@@ -10,7 +10,7 @@
#include "ck/tensor_operation/gpu/device/device_gemm_multiple_d.hpp" #include "ck/tensor_operation/gpu/device/device_gemm_multiple_d.hpp"
#include "ck/tensor_operation/gpu/element/element_wise_operation.hpp" #include "ck/tensor_operation/gpu/element/element_wise_operation.hpp"
#include "ck/library/tensor_operation_instance/gpu/device_gemm_add_add_fastgelu_instance.hpp" #include "ck/library/tensor_operation_instance/gpu/gemm_add_add_fastgelu.hpp"
using F16 = ck::half_t; using F16 = ck::half_t;
using F32 = float; using F32 = float;
...@@ -27,16 +27,15 @@ using CDEElementOp = AddAddFastGelu; ...@@ -27,16 +27,15 @@ using CDEElementOp = AddAddFastGelu;
using ADataType = F16; using ADataType = F16;
using BDataType = F16; using BDataType = F16;
using AccDataType = F32;
using D0DataType = F16; using D0DataType = F16;
using D1DataType = F16; using D1DataType = F16;
using EDataType = F16; using EDataType = F16;
using ALayout = Row; using ALayout = Row;
using BLayout = Col; using BLayout = Col;
using D0Layout = Row; using DDELayout = Row;
using D1Layout = Row; using DDELayout = Row;
using ELayout = Row; using DELayout = Row;
struct SimpleDeviceMem struct SimpleDeviceMem
{ {
...@@ -106,24 +105,27 @@ int main(int argc, char* argv[]) ...@@ -106,24 +105,27 @@ int main(int argc, char* argv[])
SimpleDeviceMem a_device_buf(sizeof(ADataType) * f_matrix_space_size(M, K, StrideA, ALayout{})); SimpleDeviceMem a_device_buf(sizeof(ADataType) * f_matrix_space_size(M, K, StrideA, ALayout{}));
SimpleDeviceMem b_device_buf(sizeof(BDataType) * f_matrix_space_size(K, N, StrideB, BLayout{})); SimpleDeviceMem b_device_buf(sizeof(BDataType) * f_matrix_space_size(K, N, StrideB, BLayout{}));
SimpleDeviceMem d0_m_n_device_buf(sizeof(D0DataType) * SimpleDeviceMem d0_m_n_device_buf(sizeof(D0DataType) *
f_matrix_space_size(M, N, StrideD0, D0Layout{})); f_matrix_space_size(M, N, StrideD0, DDELayout{}));
SimpleDeviceMem d1_m_n_device_buf(sizeof(D1DataType) * SimpleDeviceMem d1_m_n_device_buf(sizeof(D1DataType) *
f_matrix_space_size(M, N, StrideD1, D1Layout{})); f_matrix_space_size(M, N, StrideD1, DDELayout{}));
SimpleDeviceMem e_device_buf(sizeof(EDataType) * f_matrix_space_size(M, N, StrideE, ELayout{})); SimpleDeviceMem e_device_buf(sizeof(EDataType) *
f_matrix_space_size(M, N, StrideE, DELayout{}));
// add device op instances using DeviceOp = ck::tensor_operation::device::DeviceGemmMultipleD<
const auto op_ptrs = ck::tensor_operation::device::device_gemm_instance::
get_device_gemm_add_add_fastgelu_instances<ADataType,
BDataType,
AccDataType,
D0DataType,
D1DataType,
EDataType,
ALayout, ALayout,
BLayout, BLayout,
D0Layout, DDELayout,
D1Layout, ADataType,
ELayout>(); BDataType,
ck::Tuple<D0DataType, D1DataType>,
EDataType,
ck::tensor_operation::element_wise::PassThrough,
ck::tensor_operation::element_wise::PassThrough,
ck::tensor_operation::element_wise::AddAddFastGelu>;
// get device op instances
const auto op_ptrs = ck::tensor_operation::device::instance::DeviceOperationInstanceFactory<
DeviceOp>::GetInstances();
std::cout << "found " << op_ptrs.size() << " instances" << std::endl; std::cout << "found " << op_ptrs.size() << " instances" << std::endl;
...@@ -231,6 +233,8 @@ int main(int argc, char* argv[]) ...@@ -231,6 +233,8 @@ int main(int argc, char* argv[])
{ {
invoker_ptr->Run(argument_ptr.get(), StreamConfig{nullptr, false}); invoker_ptr->Run(argument_ptr.get(), StreamConfig{nullptr, false});
} }
std::cout << "Done" << std::endl;
} }
return 0; return 0;
......
add_executable(gemm_add_add_reduce_normalize gemm_add_add_layernorm.cpp) add_executable(client_gemm_add_add_reduce_normalize gemm_add_add_layernorm.cpp)
target_link_libraries(gemm_add_add_reduce_normalize PRIVATE composable_kernel::device_operations) target_link_libraries(client_gemm_add_add_reduce_normalize PRIVATE composable_kernel::device_operations)
...@@ -160,8 +160,9 @@ int main() ...@@ -160,8 +160,9 @@ int main()
ck::index_t StrideC = 1024; ck::index_t StrideC = 1024;
ck::index_t StrideD0 = 1024; ck::index_t StrideD0 = 1024;
const auto gemm_reduce_ptrs = ck::tensor_operation::device::device_gemm_instance:: const auto gemm_reduce_ptrs =
get_device_gemm_add_add_mean_squaremean_instances<ADataType, ck::tensor_operation::device::instance::get_device_gemm_add_add_mean_squaremean_instances<
ADataType,
BDataType, BDataType,
CDataType, CDataType,
ALayout, ALayout,
...@@ -169,7 +170,7 @@ int main() ...@@ -169,7 +170,7 @@ int main()
CLayout>(); CLayout>();
const auto normalize_ptrs = const auto normalize_ptrs =
ck::tensor_operation::device::get_device_normalize_from_mean_meansquare_instances< ck::tensor_operation::device::instance::get_device_normalize_from_mean_meansquare_instances<
CDataType, CDataType,
ReduceDataType, ReduceDataType,
ReduceDataType, ReduceDataType,
......
...@@ -6,5 +6,6 @@ find_package(composable_kernel 1.0.0 COMPONENTS device_operations) ...@@ -6,5 +6,6 @@ find_package(composable_kernel 1.0.0 COMPONENTS device_operations)
find_package(hip REQUIRED PATHS /opt/rocm) find_package(hip REQUIRED PATHS /opt/rocm)
message(STATUS "Build with HIP ${hip_VERSION}") message(STATUS "Build with HIP ${hip_VERSION}")
add_subdirectory(01_gemm)
add_subdirectory(02_gemm_add_add_fastgelu) add_subdirectory(02_gemm_add_add_fastgelu)
add_subdirectory(03_gemm_layernorm) add_subdirectory(03_gemm_layernorm)
## ##
Client application links to CK library, and therefore CK library needs to be installed before building client applications. Client application links to CK library, and therefore CK library needs to be installed before building client applications.
## Docker script
```bash
docker run \
-it \
--privileged \
--group-add sudo \
-w /root/workspace \
-v ${PATH_TO_LOCAL_WORKSPACE}:/root/workspace \
rocm/tensorflow:rocm5.1-tf2.6-dev \
/bin/bash
```
## Build ## Build
```bash ```bash
...@@ -22,7 +11,7 @@ cd client_example/build ...@@ -22,7 +11,7 @@ cd client_example/build
```bash ```bash
cmake \ cmake \
-D CMAKE_CXX_COMPILER=/opt/rocm/bin/hipcc \ -D CMAKE_CXX_COMPILER=/opt/rocm/bin/hipcc \
-D CMAKE_PREFIX_PATH=/opt/rocm \ -D CMAKE_PREFIX_PATH="/opt/rocm;${PATH_TO_CK_INSTALL_DIRECTORY}" \
.. ..
``` ```
......
add_example_executable(example_gemm_bias_relu_add_layernorm_xdl_fp16 gemm_bias_relu_add_layernorm_xdl_fp16.cpp) add_example_executable(example_gemm_bias_relu_add_layernorm_xdl_fp16 gemm_bias_relu_add_layernorm_xdl_fp16.cpp)
add_example_executable(example_gemm_layernorm_xdl_fp16 gemm_layernorm_xdl_fp16.cpp) add_example_executable(example_gemm_layernorm_xdl_fp16 gemm_layernorm_xdl_fp16.cpp)
add_example_executable(example_gemm_xdl_layernorm_single_kernel_fp16 gemm_xdl_layernorm_single_kernel_fp16.cpp)
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2022, Advanced Micro Devices, Inc. All rights reserved.
#include <iostream>
#include <numeric>
#include <initializer_list>
#include "ck/ck.hpp"
#include "ck/library/utility/check_err.hpp"
#include "ck/library/host_tensor/device_memory.hpp"
#include "ck/library/host_tensor/host_tensor.hpp"
#include "ck/library/host_tensor/host_tensor_generator.hpp"
#include "ck/tensor_operation/gpu/device/tensor_layout.hpp"
#include "ck/tensor_operation/gpu/device/device_gemm_xdl_layernorm_cshuffle.hpp"
#include "ck/tensor_operation/gpu/element/element_wise_operation.hpp"
#include "ck/utility/reduction_operator.hpp"
#include "ck/library/reference_tensor_operation/cpu/reference_gemm_layernorm.hpp"
#include "ck/tensor_operation/gpu/device/gemm_specialization.hpp"
// This example demonstrate a single kernel that runs GEMM layer and laynorm in one fused kernel
//
// The GEMM + Layernorm implementation is a specialized kernel which allows fusing both layers
// together given the condition GEMM extents N of MNK is spanned by a single workgroup. For example,
// a kernel configured with NPerBlock = 128 allows to operate on all GEMM sizes if N <= 128
//
// D = Layernorm(acc_element_op(A * B + broadcast(bias)) + add) * broadcast(gamma) + broadcast(beta)
template <ck::index_t... Is>
using S = ck::Sequence<Is...>;
using F16 = ck::half_t;
using F32 = float;
using Row = ck::tensor_layout::gemm::RowMajor;
using Col = ck::tensor_layout::gemm::ColumnMajor;
using ADataType = F16;
using BDataType = F16;
using CDataType = F16;
using C0DataType = F16;
using AccDataType = F32;
using CShuffleDataType = F16;
using ALayout = ck::tensor_layout::gemm::RowMajor;
using BLayout = ck::tensor_layout::gemm::ColumnMajor;
using CLayout = ck::tensor_layout::gemm::RowMajor;
struct Relu
{
template <typename OutT, typename InT>
__host__ __device__ void operator()(OutT& y, const InT& x) const
{
y = x > 0 ? x : 0;
}
};
using AElementOp = ck::tensor_operation::element_wise::PassThrough;
using BElementOp = ck::tensor_operation::element_wise::PassThrough;
// Elementwise operation that operates on the output of matrix multiplication
// i.e., AccElementOp(A * B + bias)
using AccElementOp = Relu;
// Elementwise operation that operates on the output of layer normalization
using CElementOp = Relu;
static constexpr auto GemmDefault = ck::tensor_operation::device::GemmSpecialization::Default;
// clang-format off
using DeviceGemmInstance = ck::tensor_operation::device::DeviceGemmLayerNorm_Xdl_CShuffle
//######| ALayout| BLayout| CLayout| AData| BData| CData| C0Data| GemmAcc| CShuffle| ReduceAcc| A| B| Acc| C| GEMM| NumGemmK| Block| MPer| NPer| KPer| AK1| BK1| MPer| NPer| MXdl| NXdl| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockLds| BBlockTransfer| BBlockTransfer| BBlockTransfer| BlockTransfer| BBlockTransfer| BBlockTransfer| BBlockLds| CShuffle| CShuffle| CBlockTransferClusterLengths| CBlockTransfer| CReduce| CReduceThreadCopy|
//######| | | | Type| Type| Type| Type| DataType| DataType| DataType| Elementwise| Elementwise| Elementwise| Elementwise| Spacialization| Prefetch| Size| Block| Block| Block| | | XDL| XDL| Per| Per| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| ExtraM| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| ExtraN| MXdlPerWave| NXdlPerWave| _MBlock_MPerBlock| ScalarPerVector| ThreadClusterLengths| SrcDstScalarPerVector|
//######| | | | | | | | | | | Operation| Operation| Operation| Operation| | Stage| | | | | | | | | Wave| Wave| Lengths_K0_M_K1| ArrangeOrder| | | PerVector| PerVector_K1| | Lengths_K0_N_K1| ArrangeOrder| | | PerVector| PerVector_K1| | PerShuffle| PerShuffle| _NBlock_NPerBlock| _NPerBlock| _MPerBlock_NPerBlock| _NPerBlock|
//######| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
< Row, Col, Row, ADataType, BDataType, CDataType, C0DataType, AccDataType, CShuffleDataType, AccDataType, AElementOp, BElementOp, AccElementOp, CElementOp, GemmDefault, 1, 256, 256, 128, 32, 8, 8, 32, 32, 4, 2, S<4, 64, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, 1, S<4, 64, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, 1, 1, 2, S<1, 32, 1, 8>, 8, S<64, 4>, 4>;
// clang-format on
using ReferenceInstance = ck::tensor_operation::host::ReferenceGemmLayernorm<ADataType,
BDataType,
CDataType,
C0DataType,
AccDataType,
AElementOp,
BElementOp,
AccElementOp,
CElementOp>;
int main(int argc, char* argv[])
{
bool do_verification = true;
int init_method = 1;
bool time_kernel = false;
// GEMM shape
ck::index_t M = 3840;
ck::index_t N = 128;
ck::index_t K = 4096;
ck::index_t StrideA = 4096;
ck::index_t StrideB = 4096;
ck::index_t StrideC = 128;
if(argc == 1)
{
// do nothing
}
else if(argc == 4)
{
do_verification = std::stoi(argv[1]);
init_method = std::stoi(argv[2]);
time_kernel = std::stoi(argv[3]);
}
else if(argc == 10)
{
do_verification = std::stoi(argv[1]);
init_method = std::stoi(argv[2]);
time_kernel = std::stoi(argv[3]);
M = std::stoi(argv[4]);
N = std::stoi(argv[5]);
K = std::stoi(argv[6]);
StrideA = std::stoi(argv[7]);
StrideB = std::stoi(argv[8]);
StrideC = std::stoi(argv[9]);
}
else
{
printf("arg1: verification (0=no, 1=yes)\n");
printf("arg2: initialization (0=no init, 1=integer value, 2=decimal value)\n");
printf("arg3: time kernel (0=n0, 1=yes)\n");
printf("arg4 to 9: M (256x), N(128x), K(32x), StrideA, StrideB, StrideC\n");
exit(0);
}
auto f_host_tensor_descriptor =
[](std::size_t row, std::size_t col, std::size_t stride, auto layout) {
if(std::is_same<decltype(layout), ck::tensor_layout::gemm::RowMajor>::value)
{
return HostTensorDescriptor(std::vector<std::size_t>({row, col}),
std::vector<std::size_t>({stride, 1}));
}
else
{
return HostTensorDescriptor(std::vector<std::size_t>({row, col}),
std::vector<std::size_t>({1, stride}));
}
};
Tensor<ADataType> a_m_k(f_host_tensor_descriptor(M, K, StrideA, ALayout{}));
Tensor<BDataType> b_k_n(f_host_tensor_descriptor(K, N, StrideB, BLayout{}));
Tensor<CDataType> c_m_n_host_result(f_host_tensor_descriptor(M, N, StrideC, CLayout{}));
Tensor<CDataType> c_m_n_device_result(f_host_tensor_descriptor(M, N, StrideC, CLayout{}));
Tensor<AccDataType> acc_m_n_host_result(f_host_tensor_descriptor(M, N, StrideC, CLayout{}));
Tensor<C0DataType> c0_n_bias(HostTensorDescriptor(std::vector<size_t>({size_t(N)})));
Tensor<C0DataType> c0_m_n_add(f_host_tensor_descriptor(M, N, StrideC, CLayout{}));
Tensor<C0DataType> c0_n_gamma(HostTensorDescriptor(std::vector<size_t>({size_t(N)})));
Tensor<C0DataType> c0_n_beta(HostTensorDescriptor(std::vector<size_t>({size_t(N)})));
std::cout << "a_m_k: " << a_m_k.mDesc << std::endl;
std::cout << "b_k_n: " << b_k_n.mDesc << std::endl;
std::cout << "c_m_n: " << c_m_n_host_result.mDesc << std::endl;
std::cout << "c0_n_bias: " << c0_n_bias.mDesc << std::endl;
std::cout << "c0_m_n_add: " << c0_m_n_add.mDesc << std::endl;
std::cout << "c0_n_gamma: " << c0_n_gamma.mDesc << std::endl;
std::cout << "c0_n_beta: " << c0_n_beta.mDesc << std::endl;
switch(init_method)
{
case 0: break;
case 1:
a_m_k.GenerateTensorValue(GeneratorTensor_2<ADataType>{-5, 5});
b_k_n.GenerateTensorValue(GeneratorTensor_2<BDataType>{-5, 5});
break;
case 2:
a_m_k.GenerateTensorValue(GeneratorTensor_3<ADataType>{0.0, 1.0});
b_k_n.GenerateTensorValue(GeneratorTensor_3<BDataType>{-0.5, 0.5});
break;
default:
a_m_k.GenerateTensorValue(GeneratorTensor_Sequential<0>{});
b_k_n.GenerateTensorValue(GeneratorTensor_Sequential<1>{});
}
c0_n_bias.GenerateTensorValue(GeneratorTensor_2<C0DataType>{-5, 5});
c0_m_n_add.GenerateTensorValue(GeneratorTensor_2<C0DataType>{-5, 5});
c0_n_gamma.GenerateTensorValue(GeneratorTensor_2<C0DataType>{0, 2});
c0_n_beta.GenerateTensorValue(GeneratorTensor_2<C0DataType>{0, 5});
c_m_n_host_result.GenerateTensorValue(GeneratorTensor_1<CDataType>{0});
acc_m_n_host_result.GenerateTensorValue(GeneratorTensor_1<AccDataType>{0});
DeviceMem a_device_buf(sizeof(ADataType) * a_m_k.mDesc.GetElementSpace());
DeviceMem b_device_buf(sizeof(BDataType) * b_k_n.mDesc.GetElementSpace());
DeviceMem c_device_buf(sizeof(CDataType) * c_m_n_device_result.mDesc.GetElementSpace());
DeviceMem c0_bias_buf(sizeof(C0DataType) * c0_n_bias.mDesc.GetElementSpace());
DeviceMem c0_add_buf(sizeof(C0DataType) * c0_m_n_add.mDesc.GetElementSpace());
DeviceMem c0_gamma_buf(sizeof(C0DataType) * c0_n_gamma.mDesc.GetElementSpace());
DeviceMem c0_beta_buf(sizeof(C0DataType) * c0_n_beta.mDesc.GetElementSpace());
a_device_buf.ToDevice(a_m_k.mData.data());
b_device_buf.ToDevice(b_k_n.mData.data());
c0_bias_buf.ToDevice(c0_n_bias.mData.data());
c0_add_buf.ToDevice(c0_m_n_add.mData.data());
c0_gamma_buf.ToDevice(c0_n_gamma.mData.data());
c0_beta_buf.ToDevice(c0_n_beta.mData.data());
auto a_element_op = AElementOp{};
auto b_element_op = BElementOp{};
auto acc_element_op = AccElementOp{};
auto c_element_op = CElementOp{};
// do GEMM
auto gemm = DeviceGemmInstance{};
auto invoker = gemm.MakeInvoker();
auto argument = gemm.MakeArgument(static_cast<ADataType*>(a_device_buf.GetDeviceBuffer()),
static_cast<BDataType*>(b_device_buf.GetDeviceBuffer()),
static_cast<CDataType*>(c_device_buf.GetDeviceBuffer()),
static_cast<C0DataType*>(c0_add_buf.GetDeviceBuffer()),
static_cast<C0DataType*>(c0_bias_buf.GetDeviceBuffer()),
static_cast<C0DataType*>(c0_gamma_buf.GetDeviceBuffer()),
static_cast<C0DataType*>(c0_beta_buf.GetDeviceBuffer()),
M,
N,
K,
StrideA,
StrideB,
StrideC,
a_element_op,
b_element_op,
acc_element_op,
c_element_op);
if(!gemm.IsSupportedArgument(argument))
{
throw std::runtime_error(
"wrong! device_gemm with the specified compilation parameters does "
"not support this GEMM problem");
}
float ave_time = invoker.Run(argument, StreamConfig{nullptr, time_kernel});
// extra 6MN flops due to: bias + add + gamma + beta + norm_sub + norm_div,
// excluding reduction steps
std::size_t flop = std::size_t(2) * M * N * K + std::size_t(6) * M * N;
// extra MN and 3N due to c0_add (MxN), bias (1xN), gamma (1xN), beta (1xN)
std::size_t bytes = sizeof(ADataType) * M * K + sizeof(BDataType) * K * N +
sizeof(CDataType) * 2 * M * N + sizeof(C0DataType) * 3 * N;
float tflops = static_cast<float>(flop) / 1.E9 / ave_time;
float gb_per_sec = bytes / 1.E6 / ave_time;
std::cout << "Perf: " << ave_time << " ms, " << tflops << " TFlops, " << gb_per_sec << " GB/s, "
<< gemm.GetTypeString() << std::endl;
bool pass = true;
if(do_verification)
{
c_device_buf.FromDevice(c_m_n_device_result.mData.data());
auto ref_gemm = ReferenceInstance{};
auto ref_invoker = ref_gemm.MakeInvoker();
auto ref_argument = ref_gemm.MakeArgument(a_m_k,
b_k_n,
c_m_n_host_result,
c0_n_bias,
c0_m_n_add,
c0_n_gamma,
c0_n_beta,
a_element_op,
b_element_op,
acc_element_op,
c_element_op);
ref_invoker.Run(ref_argument);
if constexpr(std::is_same<CShuffleDataType, F32>::value)
{
pass &= ck::utils::check_err(
c_m_n_device_result.mData, c_m_n_host_result.mData, "Error: Incorrect results c");
}
else if constexpr(std::is_same<CShuffleDataType, F16>::value)
{
pass &= ck::utils::check_err(c_m_n_device_result.mData,
c_m_n_host_result.mData,
"Error: Incorrect results c",
1e-2,
1e-2);
}
}
return pass ? 0 : 1;
}
...@@ -150,6 +150,9 @@ int main(int argc, char* argv[]) ...@@ -150,6 +150,9 @@ int main(int argc, char* argv[])
AccDataType alpha = args.scales[0]; AccDataType alpha = args.scales[0];
AccDataType beta = args.scales[1]; AccDataType beta = args.scales[1];
std::cout << "in: " << in.mDesc << std::endl;
std::cout << "out: " << out.mDesc << std::endl;
std::size_t num_thread = 1; std::size_t num_thread = 1;
if(args.do_verification) if(args.do_verification)
...@@ -195,7 +198,7 @@ int main(int argc, char* argv[]) ...@@ -195,7 +198,7 @@ int main(int argc, char* argv[])
using ReferenceInstance = using ReferenceInstance =
tensor_operation::host::ReferenceSoftmax<InDataType, OutDataType, AccDataType>; tensor_operation::host::ReferenceSoftmax<InDataType, OutDataType, AccDataType>;
ReferenceInstance ref; ReferenceInstance ref;
auto ref_arg = ref.MakeArgument(in, out_ref, alpha, beta, Rank, reduceDims); auto ref_arg = ref.MakeArgument(in, out_ref, alpha, beta, reduceDims);
auto invoker = ref.MakeInvoker(); auto invoker = ref.MakeInvoker();
invoker.Run(ref_arg); invoker.Run(ref_arg);
// LogRangeAsType<float>(std::cout << "tensor out_ref: ", out_ref.mData, ",") << std::endl; // LogRangeAsType<float>(std::cout << "tensor out_ref: ", out_ref.mData, ",") << std::endl;
...@@ -214,8 +217,8 @@ int main(int argc, char* argv[]) ...@@ -214,8 +217,8 @@ int main(int argc, char* argv[])
auto argument_ptr = device_instance.MakeArgumentPointer(i_inLengths, auto argument_ptr = device_instance.MakeArgumentPointer(i_inLengths,
i_inStrides, i_inStrides,
reduceDims, reduceDims,
alpha, &alpha,
beta, &beta,
in_dev.GetDeviceBuffer(), in_dev.GetDeviceBuffer(),
out_dev.GetDeviceBuffer()); out_dev.GetDeviceBuffer());
......
add_example_executable(example_gemm_bias_c_permute_xdl_fp16 gemm_bias_c_permute_xdl_fp16.cpp)
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2022, Advanced Micro Devices, Inc. All rights reserved.
#include <iostream>
#include <numeric>
#include <initializer_list>
#include <cstdlib>
#include "ck/ck.hpp"
#include "ck/tensor_operation/gpu/device/tensor_layout.hpp"
#include "ck/tensor_operation/gpu/device/gemm_specialization.hpp"
#include "ck/tensor_operation/gpu/device/device_gemm_bias_c_permute_xdl.hpp"
#include "ck/tensor_operation/gpu/element/binary_element_wise_operation.hpp"
#include "ck/library/host_tensor/device_memory.hpp"
#include "ck/library/host_tensor/host_tensor.hpp"
#include "ck/library/host_tensor/host_tensor_generator.hpp"
#include "ck/library/reference_tensor_operation/cpu/reference_gemm.hpp"
#include "ck/library/utility/check_err.hpp"
template <ck::index_t... Is>
using S = ck::Sequence<Is...>;
using F16 = ck::half_t;
using F32 = float;
using Row = ck::tensor_layout::gemm::RowMajor;
using Col = ck::tensor_layout::gemm::ColumnMajor;
using PassThrough = ck::tensor_operation::element_wise::PassThrough;
using Add = ck::tensor_operation::element_wise::Add;
using ADataType = F16;
using BDataType = F16;
using AccDataType = F32;
using CShuffleDataType = F32;
using DDataType = F16;
using EDataType = F16;
using ALayout = Row;
using BLayout = Col;
using DLayout = Row;
using ELayout = Row;
using AElementOp = PassThrough;
using BElementOp = PassThrough;
using CDEElementOp = Add;
static constexpr auto GemmDefault = ck::tensor_operation::device::GemmSpecialization::Default;
// clang-format off
using DeviceOpInstance = ck::tensor_operation::device::DeviceGemmBiasCPermute_Xdl
//######| ALayout| BLayout| ELayout| AData| BData| AccData| CShuffle| DsData| EData| A| B| CDE| GEMM| NumGemmK| Block| MPer| NPer| KPer| AK1| BK1| MPer| NPer| MXdl| NXdl| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockLds| BBlockTransfer| BBlockTransfer| BBlockTransfer| BlockTransfer| BBlockTransfer| BBlockTransfer| BBlockLds| CShuffle| CShuffle| CBlockTransferClusterLengths| CBlockTransfer|
//######| | | | Type| Type| Type| DataType| Type| Type| Elementwise| Elementwise| Elementwise| Spacialization| Prefetch| Size| Block| Block| Block| | | XDL| XDL| Per| Per| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| AddExtraM| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| AddExtraN| MXdlPerWave| NXdlPerWave| _MBlock_MWaveMPerXdl| ScalarPerVector|
//######| | | | | | | | | | Operation| Operation| Operation| | Stage| | | | | | | | | Wave| Wave| Lengths_K0_M_K1| ArrangeOrder| | | PerVector| PerVector_K1| | Lengths_K0_N_K1| ArrangeOrder| | | PerVector| PerVector_K1| | PerShuffle| PerShuffle| _NBlock_NWaveNPerXdl| _NWaveNPerXdl|
//######| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
< ALayout, BLayout, ELayout, ADataType, BDataType, AccDataType, CShuffleDataType, DDataType, EDataType, AElementOp, BElementOp, CDEElementOp, GemmDefault, 1, 256, 256, 128, 32, 8, 8, 32, 32, 4, 2, S<4, 64, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, 1, S<4, 64, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, 1, 1, 1, S<1, 32, 1, 8>, 1>;
// clang-format on
int main(int argc, char* argv[])
{
bool do_verification = true;
int init_method = 1;
bool time_kernel = false;
ck::index_t M0 = 4;
ck::index_t M1 = 32;
ck::index_t M2 = 128;
ck::index_t N0 = 16;
ck::index_t N1 = 256;
// GEMM shape
ck::index_t M = M0 * M1 * M2;
ck::index_t N = N0 * N1;
ck::index_t K = 128;
ck::index_t stride_A = K;
ck::index_t stride_B = K;
#if 1
// E = [M0, N0, M1, N1, M2]
ck::index_t stride_E_M0 = N0 * M1 * N1 * M2;
ck::index_t stride_E_M1 = N1 * M2;
ck::index_t stride_E_M2 = 1;
ck::index_t stride_E_N0 = M1 * N1 * M2;
ck::index_t stride_E_N1 = M2;
// D = [0, N0, 0, N1, 0]
ck::index_t stride_D_M0 = 0;
ck::index_t stride_D_M1 = 0;
ck::index_t stride_D_M2 = 0;
ck::index_t stride_D_N0 = N1;
ck::index_t stride_D_N1 = 1;
#else
// D = [0, 0, 0, N0, N1]
ck::index_t stride_D_M0 = 0;
ck::index_t stride_D_M1 = 0;
ck::index_t stride_D_M2 = 0;
ck::index_t stride_D_N0 = N1;
ck::index_t stride_D_N1 = 1;
// E = [M0, M1, M2, N0, N1]
ck::index_t stride_E_M0 = M1 * M2 * N0 * N1;
ck::index_t stride_E_M1 = M2 * N0 * N1;
ck::index_t stride_E_M2 = N0 * N1;
ck::index_t stride_E_N0 = N1;
ck::index_t stride_E_N1 = 1;
#endif
const ck::tensor_operation::device::DEGridDesc_M0_M1_M2_N0_N1 d_grid_desc{
M0, M1, M2, N0, N1, stride_D_M0, stride_D_M1, stride_D_M2, stride_D_N0, stride_D_N1};
const ck::tensor_operation::device::DEGridDesc_M0_M1_M2_N0_N1 e_grid_desc{
M0, M1, M2, N0, N1, stride_E_M0, stride_E_M1, stride_E_M2, stride_E_N0, stride_E_N1};
if(argc == 1)
{
// use default case
}
else if(argc == 4)
{
do_verification = std::stoi(argv[1]);
init_method = std::stoi(argv[2]);
time_kernel = std::stoi(argv[3]);
}
else
{
printf("arg1: verification (0=no, 1=yes)\n");
printf("arg2: initialization (0=no init, 1=integer value, 2=decimal value)\n");
printf("arg3: time kernel (0=no, 1=yes)\n");
exit(0);
}
auto f_host_tensor_descriptor =
[](std::size_t row, std::size_t col, std::size_t stride, auto layout) {
if(std::is_same<decltype(layout), ck::tensor_layout::gemm::RowMajor>::value)
{
return HostTensorDescriptor(std::vector<std::size_t>({row, col}),
std::vector<std::size_t>({stride, 1}));
}
else
{
return HostTensorDescriptor(std::vector<std::size_t>({row, col}),
std::vector<std::size_t>({1, stride}));
}
};
auto f_host_de_tensor_descriptor =
[](ck::tensor_operation::device::DEGridDesc_M0_M1_M2_N0_N1 de_grid_desc) {
std::size_t m0 = de_grid_desc.M0_;
std::size_t m1 = de_grid_desc.M1_;
std::size_t m2 = de_grid_desc.M2_;
std::size_t n0 = de_grid_desc.N0_;
std::size_t n1 = de_grid_desc.N1_;
std::size_t stride_m0 = de_grid_desc.stride_M0_;
std::size_t stride_m1 = de_grid_desc.stride_M1_;
std::size_t stride_m2 = de_grid_desc.stride_M2_;
std::size_t stride_n0 = de_grid_desc.stride_N0_;
std::size_t stride_n1 = de_grid_desc.stride_N1_;
return HostTensorDescriptor(
std::vector<std::size_t>({m0, m1, m2, n0, n1}),
std::vector<std::size_t>({stride_m0, stride_m1, stride_m2, stride_n0, stride_n1}));
};
Tensor<ADataType> a_m_k(f_host_tensor_descriptor(M, K, stride_A, ALayout{}));
Tensor<BDataType> b_k_n(f_host_tensor_descriptor(K, N, stride_B, BLayout{}));
Tensor<DDataType> d_m0_m1_m2_n0_n1(f_host_de_tensor_descriptor(d_grid_desc));
Tensor<EDataType> e_m0_m1_m2_n0_n1_host_result(f_host_de_tensor_descriptor(e_grid_desc));
Tensor<EDataType> e_m0_m1_m2_n0_n1_device_result(f_host_de_tensor_descriptor(e_grid_desc));
std::cout << "a_m_k: " << a_m_k.mDesc << std::endl;
std::cout << "b_k_n: " << b_k_n.mDesc << std::endl;
std::cout << "d_m0_m1_m2_n0_n1: " << d_m0_m1_m2_n0_n1.mDesc << std::endl;
std::cout << "e_m0_m1_m2_n0_n1: " << e_m0_m1_m2_n0_n1_host_result.mDesc << std::endl;
switch(init_method)
{
case 0: break;
case 1:
a_m_k.GenerateTensorValue(GeneratorTensor_2<ADataType>{-5, 5});
b_k_n.GenerateTensorValue(GeneratorTensor_2<BDataType>{-5, 5});
d_m0_m1_m2_n0_n1.GenerateTensorValue(GeneratorTensor_2<DDataType>{-5, 5});
break;
default:
a_m_k.GenerateTensorValue(GeneratorTensor_3<ADataType>{0.0, 1.0});
b_k_n.GenerateTensorValue(GeneratorTensor_3<BDataType>{-0.5, 0.5});
d_m0_m1_m2_n0_n1.GenerateTensorValue(GeneratorTensor_3<DDataType>{0.0, 1.0});
}
DeviceMem a_m_k_device_buf(sizeof(ADataType) * a_m_k.mDesc.GetElementSpace());
DeviceMem b_k_n_device_buf(sizeof(BDataType) * b_k_n.mDesc.GetElementSpace());
DeviceMem d_m0_m1_m2_n0_n1_device_buf(sizeof(DDataType) *
d_m0_m1_m2_n0_n1.mDesc.GetElementSpace());
DeviceMem e_m0_m1_m2_n0_n1_device_buf(sizeof(EDataType) *
e_m0_m1_m2_n0_n1_device_result.mDesc.GetElementSpace());
a_m_k_device_buf.ToDevice(a_m_k.mData.data());
b_k_n_device_buf.ToDevice(b_k_n.mData.data());
d_m0_m1_m2_n0_n1_device_buf.ToDevice(d_m0_m1_m2_n0_n1.mData.data());
auto a_element_op = AElementOp{};
auto b_element_op = BElementOp{};
auto cde_element_op = CDEElementOp{};
// do GEMM
auto device_op = DeviceOpInstance{};
auto invoker = device_op.MakeInvoker();
auto argument = device_op.MakeArgument(a_m_k_device_buf.GetDeviceBuffer(),
b_k_n_device_buf.GetDeviceBuffer(),
d_m0_m1_m2_n0_n1_device_buf.GetDeviceBuffer(),
e_m0_m1_m2_n0_n1_device_buf.GetDeviceBuffer(),
M,
N,
K,
stride_A,
stride_B,
d_grid_desc,
e_grid_desc,
a_element_op,
b_element_op,
cde_element_op);
if(!device_op.IsSupportedArgument(argument))
{
throw std::runtime_error("wrong! this device_op instance does not support this problem");
}
float ave_time = invoker.Run(argument, StreamConfig{nullptr, time_kernel});
std::size_t flop = std::size_t(2) * M * N * K;
std::size_t num_btype = sizeof(ADataType) * M * K + sizeof(BDataType) * K * N +
sizeof(DDataType) * N + sizeof(EDataType) * M * N;
float tflops = static_cast<float>(flop) / 1.E9 / ave_time;
float gb_per_sec = num_btype / 1.E6 / ave_time;
std::cout << "Perf: " << ave_time << " ms, " << tflops << " TFlops, " << gb_per_sec << " GB/s, "
<< device_op.GetTypeString() << std::endl;
if(do_verification)
{
Tensor<AccDataType> c_m_n(HostTensorDescriptor(
std::vector<std::size_t>{static_cast<std::size_t>(M), static_cast<std::size_t>(N)}));
using ReferenceGemmInstance = ck::tensor_operation::host::ReferenceGemm<ADataType,
BDataType,
AccDataType,
AccDataType,
AElementOp,
BElementOp,
PassThrough>;
auto ref_gemm = ReferenceGemmInstance{};
auto ref_invoker = ref_gemm.MakeInvoker();
auto ref_argument =
ref_gemm.MakeArgument(a_m_k, b_k_n, c_m_n, a_element_op, b_element_op, PassThrough{});
ref_invoker.Run(ref_argument);
for(int m0 = 0; m0 < M0; ++m0)
for(int m1 = 0; m1 < M1; ++m1)
for(int m2 = 0; m2 < M2; ++m2)
for(int n0 = 0; n0 < N0; ++n0)
for(int n1 = 0; n1 < N1; ++n1)
{
int m = m0 * M1 * M2 + m1 * M2 + m2;
int n = n0 * N1 + n1;
cde_element_op(e_m0_m1_m2_n0_n1_host_result(m0, m1, m2, n0, n1),
ck::type_convert<EDataType>(c_m_n(m, n)),
d_m0_m1_m2_n0_n1(m0, m1, m2, n0, n1));
}
e_m0_m1_m2_n0_n1_device_buf.FromDevice(e_m0_m1_m2_n0_n1_device_result.mData.data());
return ck::utils::check_err(e_m0_m1_m2_n0_n1_device_result.mData,
e_m0_m1_m2_n0_n1_host_result.mData)
? 0
: 1;
}
return 0;
}
...@@ -43,3 +43,4 @@ add_subdirectory(21_gemm_layernorm) ...@@ -43,3 +43,4 @@ add_subdirectory(21_gemm_layernorm)
add_subdirectory(22_cgemm) add_subdirectory(22_cgemm)
add_subdirectory(23_softmax) add_subdirectory(23_softmax)
add_subdirectory(24_layernorm) add_subdirectory(24_layernorm)
add_subdirectory(25_gemm_bias_c_permute)
...@@ -12,7 +12,13 @@ namespace ck { ...@@ -12,7 +12,13 @@ namespace ck {
namespace tensor_operation { namespace tensor_operation {
namespace device { namespace device {
template <typename AElementwiseOperation, template <typename ALayout,
typename BLayout,
typename CLayout,
typename ADataType,
typename BDataType,
typename CDataType,
typename AElementwiseOperation,
typename BElementwiseOperation, typename BElementwiseOperation,
typename CElementwiseOperation> typename CElementwiseOperation>
struct DeviceBatchedGemm : public BaseOperator struct DeviceBatchedGemm : public BaseOperator
...@@ -26,6 +32,9 @@ struct DeviceBatchedGemm : public BaseOperator ...@@ -26,6 +32,9 @@ struct DeviceBatchedGemm : public BaseOperator
ck::index_t StrideA, ck::index_t StrideA,
ck::index_t StrideB, ck::index_t StrideB,
ck::index_t StrideC, ck::index_t StrideC,
ck::index_t BatchStrideA,
ck::index_t BatchStrideB,
ck::index_t BatchStrideC,
AElementwiseOperation a_element_op, AElementwiseOperation a_element_op,
BElementwiseOperation b_element_op, BElementwiseOperation b_element_op,
CElementwiseOperation c_element_op, CElementwiseOperation c_element_op,
...@@ -34,11 +43,24 @@ struct DeviceBatchedGemm : public BaseOperator ...@@ -34,11 +43,24 @@ struct DeviceBatchedGemm : public BaseOperator
virtual std::unique_ptr<BaseInvoker> MakeInvokerPointer() = 0; virtual std::unique_ptr<BaseInvoker> MakeInvokerPointer() = 0;
}; };
template <typename AElementwiseOperation, template <typename ALayout,
typename BLayout,
typename CLayout,
typename ADataType,
typename BDataType,
typename CDataType,
typename AElementwiseOperation,
typename BElementwiseOperation, typename BElementwiseOperation,
typename CElementwiseOperation> typename CElementwiseOperation>
using DeviceBatchedGemmPtr = std::unique_ptr< using DeviceBatchedGemmPtr = std::unique_ptr<DeviceBatchedGemm<ALayout,
DeviceBatchedGemm<AElementwiseOperation, BElementwiseOperation, CElementwiseOperation>>; BLayout,
CLayout,
ADataType,
BDataType,
CDataType,
AElementwiseOperation,
BElementwiseOperation,
CElementwiseOperation>>;
} // namespace device } // namespace device
} // namespace tensor_operation } // namespace tensor_operation
......
...@@ -113,7 +113,7 @@ __global__ void ...@@ -113,7 +113,7 @@ __global__ void
ignore = c_element_op; ignore = c_element_op;
ignore = compute_ptr_offset_of_batch; ignore = compute_ptr_offset_of_batch;
ignore = block_2_ctile_map; ignore = block_2_ctile_map;
#endif // end of if (defined(__gfx908__) || defined(__gfx90a__)) #endif
} }
template <typename ADataType, template <typename ADataType,
...@@ -151,8 +151,15 @@ template <typename ADataType, ...@@ -151,8 +151,15 @@ template <typename ADataType,
bool BBlockLdsAddExtraN, bool BBlockLdsAddExtraN,
ck::index_t CThreadTransferSrcDstVectorDim, ck::index_t CThreadTransferSrcDstVectorDim,
ck::index_t CThreadTransferDstScalarPerVector> ck::index_t CThreadTransferDstScalarPerVector>
struct DeviceBatchedGemmXdl struct DeviceBatchedGemmXdl : public DeviceBatchedGemm<ALayout,
: public DeviceBatchedGemm<AElementwiseOperation, BElementwiseOperation, CElementwiseOperation> BLayout,
CLayout,
ADataType,
BDataType,
CDataType,
AElementwiseOperation,
BElementwiseOperation,
CElementwiseOperation>
{ {
static constexpr auto I0 = Number<0>{}; static constexpr auto I0 = Number<0>{};
static constexpr auto I1 = Number<1>{}; static constexpr auto I1 = Number<1>{};
...@@ -334,6 +341,9 @@ struct DeviceBatchedGemmXdl ...@@ -334,6 +341,9 @@ struct DeviceBatchedGemmXdl
index_t StrideA, index_t StrideA,
index_t StrideB, index_t StrideB,
index_t StrideC, index_t StrideC,
index_t BatchStrideA,
index_t BatchStrideB,
index_t BatchStrideC,
index_t M01, index_t M01,
index_t N01, index_t N01,
AElementwiseOperation a_element_op, AElementwiseOperation a_element_op,
...@@ -350,10 +360,7 @@ struct DeviceBatchedGemmXdl ...@@ -350,10 +360,7 @@ struct DeviceBatchedGemmXdl
DeviceBatchedGemmXdl::MakeBGridDescriptor_K0_N_K1(K, N, StrideB)}, DeviceBatchedGemmXdl::MakeBGridDescriptor_K0_N_K1(K, N, StrideB)},
c_grid_desc_m_n_{DeviceBatchedGemmXdl::MakeCGridDescriptor_M_N(M, N, StrideC)}, c_grid_desc_m_n_{DeviceBatchedGemmXdl::MakeCGridDescriptor_M_N(M, N, StrideC)},
c_grid_desc_m0_n0_m1_n1_m2_m3_m4_n2_{}, c_grid_desc_m0_n0_m1_n1_m2_m3_m4_n2_{},
compute_ptr_offset_of_batch_{ compute_ptr_offset_of_batch_{BatchStrideA, BatchStrideB, BatchStrideC},
type_convert<index_t>(a_grid_desc_k0_m_k1_.GetElementSpaceSize()),
type_convert<index_t>(b_grid_desc_k0_n_k1_.GetElementSpaceSize()),
type_convert<index_t>(c_grid_desc_m_n_.GetElementSpaceSize())},
block_2_ctile_map_{ block_2_ctile_map_{
GridwiseGemm::MakeDefaultBlock2CTileMap(c_grid_desc_m_n_, M01, N01)}, GridwiseGemm::MakeDefaultBlock2CTileMap(c_grid_desc_m_n_, M01, N01)},
M01_{M01}, M01_{M01},
...@@ -536,6 +543,9 @@ struct DeviceBatchedGemmXdl ...@@ -536,6 +543,9 @@ struct DeviceBatchedGemmXdl
index_t StrideA, index_t StrideA,
index_t StrideB, index_t StrideB,
index_t StrideC, index_t StrideC,
index_t BatchStrideA,
index_t BatchStrideB,
index_t BatchStrideC,
AElementwiseOperation a_element_op, AElementwiseOperation a_element_op,
BElementwiseOperation b_element_op, BElementwiseOperation b_element_op,
CElementwiseOperation c_element_op, CElementwiseOperation c_element_op,
...@@ -550,6 +560,9 @@ struct DeviceBatchedGemmXdl ...@@ -550,6 +560,9 @@ struct DeviceBatchedGemmXdl
StrideA, StrideA,
StrideB, StrideB,
StrideC, StrideC,
BatchStrideA,
BatchStrideB,
BatchStrideC,
1, 1,
1, 1,
a_element_op, a_element_op,
...@@ -570,6 +583,9 @@ struct DeviceBatchedGemmXdl ...@@ -570,6 +583,9 @@ struct DeviceBatchedGemmXdl
index_t StrideA, index_t StrideA,
index_t StrideB, index_t StrideB,
index_t StrideC, index_t StrideC,
index_t BatchStrideA,
index_t BatchStrideB,
index_t BatchStrideC,
AElementwiseOperation a_element_op, AElementwiseOperation a_element_op,
BElementwiseOperation b_element_op, BElementwiseOperation b_element_op,
CElementwiseOperation c_element_op, CElementwiseOperation c_element_op,
...@@ -584,6 +600,9 @@ struct DeviceBatchedGemmXdl ...@@ -584,6 +600,9 @@ struct DeviceBatchedGemmXdl
StrideA, StrideA,
StrideB, StrideB,
StrideC, StrideC,
BatchStrideA,
BatchStrideB,
BatchStrideC,
1, 1,
1, 1,
a_element_op, a_element_op,
......
...@@ -17,12 +17,19 @@ struct GemmShape ...@@ -17,12 +17,19 @@ struct GemmShape
ck::index_t StrideA, StrideB, StrideC; ck::index_t StrideA, StrideB, StrideC;
}; };
template <typename AElementwiseOperation, template <typename ALayout,
typename BLayout,
typename CLayout,
typename ADataType,
typename BDataType,
typename CDataType,
typename AElementwiseOperation,
typename BElementwiseOperation, typename BElementwiseOperation,
typename CElementwiseOperation> typename CElementwiseOperation>
struct DeviceGemm : public BaseOperator struct DeviceGemm : public BaseOperator
{ {
virtual std::unique_ptr<BaseArgument> MakeArgumentPointer(const void* p_a, virtual std::unique_ptr<BaseArgument>
MakeArgumentPointer(const void* p_a,
const void* p_b, const void* p_b,
void* p_c, void* p_c,
ck::index_t M, ck::index_t M,
...@@ -33,17 +40,29 @@ struct DeviceGemm : public BaseOperator ...@@ -33,17 +40,29 @@ struct DeviceGemm : public BaseOperator
ck::index_t StrideC, ck::index_t StrideC,
AElementwiseOperation a_element_op, AElementwiseOperation a_element_op,
BElementwiseOperation b_element_op, BElementwiseOperation b_element_op,
CElementwiseOperation c_element_op, CElementwiseOperation c_element_op) = 0;
ck::index_t KBatch = 1) = 0;
virtual std::unique_ptr<BaseInvoker> MakeInvokerPointer() = 0; virtual std::unique_ptr<BaseInvoker> MakeInvokerPointer() = 0;
}; };
template <typename AElementwiseOperation, template <typename ALayout,
typename BLayout,
typename CLayout,
typename ADataType,
typename BDataType,
typename CDataType,
typename AElementwiseOperation,
typename BElementwiseOperation, typename BElementwiseOperation,
typename CElementwiseOperation> typename CElementwiseOperation>
using DeviceGemmPtr = std::unique_ptr< using DeviceGemmPtr = std::unique_ptr<DeviceGemm<ALayout,
DeviceGemm<AElementwiseOperation, BElementwiseOperation, CElementwiseOperation>>; BLayout,
CLayout,
ADataType,
BDataType,
CDataType,
AElementwiseOperation,
BElementwiseOperation,
CElementwiseOperation>>;
template <typename AElementwiseOperation, template <typename AElementwiseOperation,
typename BElementwiseOperation, typename BElementwiseOperation,
......
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2022, Advanced Micro Devices, Inc. All rights reserved.
#pragma once
#include <array>
#include "device_base.hpp"
namespace ck {
namespace tensor_operation {
namespace device {
struct DEGridDesc_M0_M1_M2_N0_N1
{
ck::index_t M0_, M1_, M2_, N0_, N1_;
ck::index_t stride_M0_, stride_M1_, stride_M2_, stride_N0_, stride_N1_;
};
// input : A[M, K], B[K, N],
// input : D[M, N], ...
// output : E[M, N]
// C = a_op(A) * b_op(B)
// E = cde_op(C, D)
template <typename AElementwiseOperation,
typename BElementwiseOperation,
typename CDEElementwiseOperation>
struct DeviceGemmBiasCPermute : public BaseOperator
{
virtual std::unique_ptr<BaseArgument>
MakeArgumentPointer(const void* p_a,
const void* p_b,
const void* p_d,
void* p_e,
ck::index_t M,
ck::index_t N,
ck::index_t K,
ck::index_t StrideA,
ck::index_t StrideB,
DEGridDesc_M0_M1_M2_N0_N1 d_gride_desc,
DEGridDesc_M0_M1_M2_N0_N1 e_gride_desc,
AElementwiseOperation a_element_op,
BElementwiseOperation b_element_op,
CDEElementwiseOperation cde_element_op) = 0;
virtual std::unique_ptr<BaseInvoker> MakeInvokerPointer() = 0;
};
template <typename AElementwiseOperation,
typename BElementwiseOperation,
typename CElementwiseOperation>
using DeviceGemmBiasCPermutePtr = std::unique_ptr<
DeviceGemmBiasCPermute<AElementwiseOperation, BElementwiseOperation, CElementwiseOperation>>;
} // namespace device
} // namespace tensor_operation
} // namespace ck
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2022, Advanced Micro Devices, Inc. All rights reserved.
#pragma once
#include <iostream>
#include <sstream>
#include "ck/utility/common_header.hpp"
#include "ck/tensor_description/tensor_descriptor.hpp"
#include "ck/tensor_description/tensor_descriptor_helper.hpp"
#include "ck/tensor_operation/gpu/device/tensor_layout.hpp"
#include "ck/tensor_operation/gpu/device/device_gemm_bias_c_permute.hpp"
#include "ck/tensor_operation/gpu/device/gemm_specialization.hpp"
#include "ck/tensor_operation/gpu/grid/gridwise_gemm_multiple_d_xdl_cshuffle.hpp"
#include "ck/device_utility/device_prop.hpp"
#include "ck/device_utility/kernel_launch.hpp"
namespace ck {
template <typename GridwiseGemm,
typename FloatAB,
typename FloatDsPointer,
typename FloatE,
typename AElementwiseOperation,
typename BElementwiseOperation,
typename CDEElementwiseOperation,
typename AGridDesc_AK0_M_AK1,
typename BGridDesc_BK0_N_BK1,
typename DsGridDescriptor_MBlock_MPerBlock_NBlock_NPerBlock,
typename EGridDescriptor_MBlock_MPerBlock_NBlock_NPerBlock,
typename Block2ETileMap,
bool HasMainKBlockLoop>
__global__ void
#if CK_USE_LAUNCH_BOUNDS
__launch_bounds__(CK_MAX_THREAD_PER_BLOCK, CK_MIN_BLOCK_PER_CU)
#endif
kernel_gemm_bias_c_permute(const FloatAB* __restrict__ p_a_grid,
const FloatAB* __restrict__ p_b_grid,
FloatDsPointer p_ds_grid,
FloatE* __restrict__ p_e_grid,
const AElementwiseOperation a_element_op,
const BElementwiseOperation b_element_op,
const CDEElementwiseOperation cde_element_op,
const AGridDesc_AK0_M_AK1 a_grid_desc_ak0_m_ak1,
const BGridDesc_BK0_N_BK1 b_grid_desc_bk0_n_bk1,
const DsGridDescriptor_MBlock_MPerBlock_NBlock_NPerBlock
ds_grid_desc_mblock_mperblock_nblock_nperblock,
const EGridDescriptor_MBlock_MPerBlock_NBlock_NPerBlock
e_grid_desc_mblock_mperblock_nblock_nperblock,
const Block2ETileMap block_2_etile_map)
{
#if(!defined(__HIP_DEVICE_COMPILE__) || defined(__gfx908__) || defined(__gfx90a__))
__shared__ char p_shared[GridwiseGemm::GetSharedMemoryNumberOfByte()];
GridwiseGemm::template Run<HasMainKBlockLoop>(p_a_grid,
p_b_grid,
p_ds_grid,
p_e_grid,
p_shared,
a_element_op,
b_element_op,
cde_element_op,
a_grid_desc_ak0_m_ak1,
b_grid_desc_bk0_n_bk1,
ds_grid_desc_mblock_mperblock_nblock_nperblock,
e_grid_desc_mblock_mperblock_nblock_nperblock,
block_2_etile_map);
#else
ignore = p_a_grid;
ignore = p_b_grid;
ignore = p_ds_grid;
ignore = p_e_grid;
ignore = a_element_op;
ignore = b_element_op;
ignore = cde_element_op;
ignore = a_grid_desc_ak0_m_ak1;
ignore = b_grid_desc_bk0_n_bk1;
ignore = ds_grid_desc_mblock_mperblock_nblock_nperblock;
ignore = e_grid_desc_mblock_mperblock_nblock_nperblock;
ignore = block_2_etile_map;
#endif
}
} // namespace ck
namespace ck {
namespace tensor_operation {
namespace device {
// input : A[M, K], or A[K, N]
// input : B[K, N], or A[N, K]
// input : D0[M, N], D1[M, N], ...
// output : E[M, N]
// C = a_op(A) * b_op(B)
// E = cde_op(C, D0, D1, ...)
template <typename ALayout,
typename BLayout,
typename CDELayout,
typename ADataType,
typename BDataType,
typename GemmAccDataType,
typename CShuffleDataType,
typename DDataType,
typename EDataType,
typename AElementwiseOperation,
typename BElementwiseOperation,
typename CDEElementwiseOperation,
GemmSpecialization GemmSpec,
index_t NumGemmKPrefetchStage,
index_t BlockSize,
index_t MPerBlock,
index_t NPerBlock,
index_t KPerBlock,
index_t AK1,
index_t BK1,
index_t MPerXDL,
index_t NPerXDL,
index_t MXdlPerWave,
index_t NXdlPerWave,
typename ABlockTransferThreadClusterLengths_AK0_M_AK1,
typename ABlockTransferThreadClusterArrangeOrder,
typename ABlockTransferSrcAccessOrder,
index_t ABlockTransferSrcVectorDim,
index_t ABlockTransferSrcScalarPerVector,
index_t ABlockTransferDstScalarPerVector_AK1,
bool ABlockLdsExtraM,
typename BBlockTransferThreadClusterLengths_BK0_N_BK1,
typename BBlockTransferThreadClusterArrangeOrder,
typename BBlockTransferSrcAccessOrder,
index_t BBlockTransferSrcVectorDim,
index_t BBlockTransferSrcScalarPerVector,
index_t BBlockTransferDstScalarPerVector_BK1,
bool BBlockLdsExtraN,
index_t CShuffleMXdlPerWavePerShuffle,
index_t CShuffleNXdlPerWavePerShuffle,
typename CDEBlockTransferClusterLengths_MBlock_MPerBlock_NBlock_NPerBlock,
index_t CDEBlockTransferScalarPerVector_NPerBlock,
LoopScheduler LoopSched = make_default_loop_scheduler()>
struct DeviceGemmBiasCPermute_Xdl : public DeviceGemmBiasCPermute<AElementwiseOperation,
BElementwiseOperation,
CDEElementwiseOperation>
{
using DeviceOp = DeviceGemmBiasCPermute_Xdl;
static constexpr auto I0 = Number<0>{};
static constexpr auto I1 = Number<1>{};
static constexpr auto I2 = Number<2>{};
static constexpr auto I3 = Number<3>{};
static constexpr index_t NumDTensor = I1;
static auto MakeAGridDescriptor_AK0_M_AK1(index_t MRaw, index_t KRaw, index_t StrideA)
{
const auto a_grid_desc_mraw_kraw = [&]() {
if constexpr(is_same_v<tensor_layout::gemm::RowMajor, ALayout>)
{
return make_naive_tensor_descriptor(make_tuple(MRaw, KRaw),
make_tuple(StrideA, I1));
}
else if constexpr(is_same_v<tensor_layout::gemm::ColumnMajor, ALayout>)
{
return make_naive_tensor_descriptor(make_tuple(MRaw, KRaw),
make_tuple(I1, StrideA));
}
}();
const auto M = math::integer_divide_ceil(MRaw, MPerBlock) * MPerBlock;
const auto K = math::integer_divide_ceil(KRaw, KPerBlock) * KPerBlock;
const auto MPad = M - MRaw;
const auto KPad = K - KRaw;
if constexpr(GemmSpec == GemmSpecialization::MKPadding ||
GemmSpec == GemmSpecialization::MNKPadding)
{
// pad both M and K
assert(K % AK1 == 0);
const auto AK0 = K / AK1;
const auto a_grid_desc_m_k =
transform_tensor_descriptor(a_grid_desc_mraw_kraw,
make_tuple(make_right_pad_transform(MRaw, MPad),
make_right_pad_transform(KRaw, KPad)),
make_tuple(Sequence<0>{}, Sequence<1>{}),
make_tuple(Sequence<0>{}, Sequence<1>{}));
const auto a_grid_desc_ak0_m_ak1 =
transform_tensor_descriptor(a_grid_desc_m_k,
make_tuple(make_unmerge_transform(make_tuple(AK0, AK1)),
make_pass_through_transform(M)),
make_tuple(Sequence<1>{}, Sequence<0>{}),
make_tuple(Sequence<0, 2>{}, Sequence<1>{}));
return a_grid_desc_ak0_m_ak1;
}
else if constexpr(GemmSpec == GemmSpecialization::MPadding ||
GemmSpec == GemmSpecialization::MNPadding)
{
// pad M, but not K
assert(KRaw % AK1 == 0);
const auto AK0 = KRaw / AK1;
const auto a_grid_desc_ak0_m_ak1 =
transform_tensor_descriptor(a_grid_desc_mraw_kraw,
make_tuple(make_unmerge_transform(make_tuple(AK0, AK1)),
make_right_pad_transform(MRaw, MPad)),
make_tuple(Sequence<1>{}, Sequence<0>{}),
make_tuple(Sequence<0, 2>{}, Sequence<1>{}));
return a_grid_desc_ak0_m_ak1;
}
else if constexpr(GemmSpec == GemmSpecialization::KPadding ||
GemmSpec == GemmSpecialization::NKPadding)
{
// pad K, but not M
assert(K % AK1 == 0);
const auto AK0 = K / AK1;
const auto a_grid_desc_m_k = transform_tensor_descriptor(
a_grid_desc_mraw_kraw,
make_tuple(make_pass_through_transform(MRaw), make_right_pad_transform(KRaw, KPad)),
make_tuple(Sequence<0>{}, Sequence<1>{}),
make_tuple(Sequence<0>{}, Sequence<1>{}));
const auto a_grid_desc_ak0_m_ak1 =
transform_tensor_descriptor(a_grid_desc_m_k,
make_tuple(make_unmerge_transform(make_tuple(AK0, AK1)),
make_pass_through_transform(MRaw)),
make_tuple(Sequence<1>{}, Sequence<0>{}),
make_tuple(Sequence<0, 2>{}, Sequence<1>{}));
return a_grid_desc_ak0_m_ak1;
}
else
{
// not pad M or K
assert(KRaw % AK1 == 0);
const auto AK0 = KRaw / AK1;
const auto a_grid_desc_ak0_m_ak1 =
transform_tensor_descriptor(a_grid_desc_mraw_kraw,
make_tuple(make_unmerge_transform(make_tuple(AK0, AK1)),
make_pass_through_transform(MRaw)),
make_tuple(Sequence<1>{}, Sequence<0>{}),
make_tuple(Sequence<0, 2>{}, Sequence<1>{}));
return a_grid_desc_ak0_m_ak1;
}
}
static auto MakeBGridDescriptor_BK0_N_BK1(index_t KRaw, index_t NRaw, index_t StrideB)
{
const auto b_grid_desc_nraw_kraw = [&]() {
if constexpr(is_same<tensor_layout::gemm::RowMajor, BLayout>::value)
{
return make_naive_tensor_descriptor(make_tuple(NRaw, KRaw),
make_tuple(I1, StrideB));
}
else if constexpr(is_same<tensor_layout::gemm::ColumnMajor, BLayout>::value)
{
return make_naive_tensor_descriptor(make_tuple(NRaw, KRaw),
make_tuple(StrideB, I1));
}
}();
const auto N = math::integer_divide_ceil(NRaw, NPerBlock) * NPerBlock;
const auto K = math::integer_divide_ceil(KRaw, KPerBlock) * KPerBlock;
const auto NPad = N - NRaw;
const auto KPad = K - KRaw;
if constexpr(GemmSpec == GemmSpecialization::NKPadding ||
GemmSpec == GemmSpecialization::MNKPadding)
{
// pad both N and K
assert(K % BK1 == 0);
const auto BK0 = K / BK1;
const auto b_grid_desc_n_k =
transform_tensor_descriptor(b_grid_desc_nraw_kraw,
make_tuple(make_right_pad_transform(NRaw, NPad),
make_right_pad_transform(KRaw, KPad)),
make_tuple(Sequence<0>{}, Sequence<1>{}),
make_tuple(Sequence<0>{}, Sequence<1>{}));
const auto b_grid_desc_bk0_n_bk1 =
transform_tensor_descriptor(b_grid_desc_n_k,
make_tuple(make_unmerge_transform(make_tuple(BK0, BK1)),
make_pass_through_transform(N)),
make_tuple(Sequence<1>{}, Sequence<0>{}),
make_tuple(Sequence<0, 2>{}, Sequence<1>{}));
return b_grid_desc_bk0_n_bk1;
}
else if constexpr(GemmSpec == GemmSpecialization::NPadding ||
GemmSpec == GemmSpecialization::MNPadding)
{
// pad N, but not K
assert(KRaw % BK1 == 0);
const auto BK0 = KRaw / BK1;
const auto b_grid_desc_bk0_n_bk1 =
transform_tensor_descriptor(b_grid_desc_nraw_kraw,
make_tuple(make_unmerge_transform(make_tuple(BK0, BK1)),
make_right_pad_transform(NRaw, NPad)),
make_tuple(Sequence<1>{}, Sequence<0>{}),
make_tuple(Sequence<0, 2>{}, Sequence<1>{}));
return b_grid_desc_bk0_n_bk1;
}
else if constexpr(GemmSpec == GemmSpecialization::KPadding ||
GemmSpec == GemmSpecialization::MKPadding)
{
// pad K, but not N
assert(K % BK1 == 0);
const auto BK0 = K / BK1;
const auto b_grid_desc_n_k = transform_tensor_descriptor(
b_grid_desc_nraw_kraw,
make_tuple(make_pass_through_transform(NRaw), make_right_pad_transform(KRaw, KPad)),
make_tuple(Sequence<0>{}, Sequence<1>{}),
make_tuple(Sequence<0>{}, Sequence<1>{}));
const auto b_grid_desc_bk0_n_bk1 =
transform_tensor_descriptor(b_grid_desc_n_k,
make_tuple(make_unmerge_transform(make_tuple(BK0, BK1)),
make_pass_through_transform(NRaw)),
make_tuple(Sequence<1>{}, Sequence<0>{}),
make_tuple(Sequence<0, 2>{}, Sequence<1>{}));
return b_grid_desc_bk0_n_bk1;
}
else
{
// not pad N or K
assert(KRaw % BK1 == 0);
const auto BK0 = KRaw / BK1;
const auto b_grid_desc_bk0_n_bk1 =
transform_tensor_descriptor(b_grid_desc_nraw_kraw,
make_tuple(make_unmerge_transform(make_tuple(BK0, BK1)),
make_pass_through_transform(NRaw)),
make_tuple(Sequence<1>{}, Sequence<0>{}),
make_tuple(Sequence<0, 2>{}, Sequence<1>{}));
return b_grid_desc_bk0_n_bk1;
}
}
static auto MakeEGridDescriptor_M_N(DEGridDesc_M0_M1_M2_N0_N1 d_e_grid_desc)
{
index_t M0 = d_e_grid_desc.M0_;
index_t M1 = d_e_grid_desc.M1_;
index_t M2 = d_e_grid_desc.M2_;
index_t N0 = d_e_grid_desc.N0_;
index_t N1 = d_e_grid_desc.N1_;
index_t stride_M0 = d_e_grid_desc.stride_M0_;
index_t stride_M1 = d_e_grid_desc.stride_M1_;
index_t stride_M2 = d_e_grid_desc.stride_M2_;
index_t stride_N0 = d_e_grid_desc.stride_N0_;
index_t stride_N1 = d_e_grid_desc.stride_N1_;
const auto MRaw = M0 * M1 * M2;
const auto NRaw = N0 * N1;
const auto c_grid_desc_mraw_nraw = [&]() {
const auto c_grid_desc_m0_m1_m2_n0_n1 = make_naive_tensor_descriptor(
make_tuple(M0, M1, M2, N0, N1),
make_tuple(stride_M0, stride_M1, stride_M2, stride_N0, stride_N1));
return transform_tensor_descriptor(
c_grid_desc_m0_m1_m2_n0_n1,
make_tuple(make_merge_transform(make_tuple(M0, M1, M2)),
make_merge_transform(make_tuple(N0, N1))),
make_tuple(Sequence<0, 1, 2>{}, Sequence<3, 4>{}),
make_tuple(Sequence<0>{}, Sequence<1>{}));
}();
const auto M = math::integer_divide_ceil(MRaw, MPerBlock) * MPerBlock;
const auto N = math::integer_divide_ceil(NRaw, NPerBlock) * NPerBlock;
const auto MPad = M - MRaw;
const auto NPad = N - NRaw;
if constexpr(GemmSpec == GemmSpecialization::MNPadding ||
GemmSpec == GemmSpecialization::MNKPadding)
{
// pad M and N
return transform_tensor_descriptor(c_grid_desc_mraw_nraw,
make_tuple(make_right_pad_transform(MRaw, MPad),
make_right_pad_transform(NRaw, NPad)),
make_tuple(Sequence<0>{}, Sequence<1>{}),
make_tuple(Sequence<0>{}, Sequence<1>{}));
}
else if constexpr(GemmSpec == GemmSpecialization::MPadding ||
GemmSpec == GemmSpecialization::MKPadding)
{
// pad M, but not N
return transform_tensor_descriptor(
c_grid_desc_mraw_nraw,
make_tuple(make_right_pad_transform(MRaw, MPad), make_pass_through_transform(NRaw)),
make_tuple(Sequence<0>{}, Sequence<1>{}),
make_tuple(Sequence<0>{}, Sequence<1>{}));
}
else if constexpr(GemmSpec == GemmSpecialization::NPadding ||
GemmSpec == GemmSpecialization::NKPadding)
{
// pad N, but not M
return transform_tensor_descriptor(
c_grid_desc_mraw_nraw,
make_tuple(make_pass_through_transform(MRaw), make_right_pad_transform(NRaw, NPad)),
make_tuple(Sequence<0>{}, Sequence<1>{}),
make_tuple(Sequence<0>{}, Sequence<1>{}));
}
else
{
// not pad M or N
return c_grid_desc_mraw_nraw;
}
}
using AGridDesc_AK0_M_AK1 = decltype(MakeAGridDescriptor_AK0_M_AK1(1, 1, 1));
using BGridDesc_BK0_N_BK1 = decltype(MakeBGridDescriptor_BK0_N_BK1(1, 1, 1));
using EGridDesc_M_N = decltype(MakeEGridDescriptor_M_N(DEGridDesc_M0_M1_M2_N0_N1{}));
// GridwiseGemm
using GridwiseGemm = GridwiseGemmMultipleD_k0mk1_k0nk1_mn_xdl_cshuffle<
ADataType, // TODO: distinguish A/B datatype
GemmAccDataType,
CShuffleDataType,
ck::Tuple<DDataType>,
EDataType,
AElementwiseOperation,
BElementwiseOperation,
CDEElementwiseOperation,
InMemoryDataOperationEnum::Set,
AGridDesc_AK0_M_AK1,
BGridDesc_BK0_N_BK1,
EGridDesc_M_N,
NumGemmKPrefetchStage,
BlockSize,
MPerBlock,
NPerBlock,
KPerBlock,
AK1,
BK1,
MPerXDL,
NPerXDL,
MXdlPerWave,
NXdlPerWave,
ABlockTransferThreadClusterLengths_AK0_M_AK1,
ABlockTransferThreadClusterArrangeOrder,
ABlockTransferSrcAccessOrder,
ABlockTransferSrcVectorDim,
ABlockTransferSrcScalarPerVector,
ABlockTransferDstScalarPerVector_AK1,
false,
ABlockLdsExtraM,
BBlockTransferThreadClusterLengths_BK0_N_BK1,
BBlockTransferThreadClusterArrangeOrder,
BBlockTransferSrcAccessOrder,
BBlockTransferSrcVectorDim,
BBlockTransferSrcScalarPerVector,
BBlockTransferDstScalarPerVector_BK1,
false,
BBlockLdsExtraN,
CShuffleMXdlPerWavePerShuffle,
CShuffleNXdlPerWavePerShuffle,
CDEBlockTransferClusterLengths_MBlock_MPerBlock_NBlock_NPerBlock,
CDEBlockTransferScalarPerVector_NPerBlock,
LoopSched>;
// Argument
struct Argument : public BaseArgument
{
Argument(const void* p_a_grid,
const void* p_b_grid,
const void* p_d_grid,
void* p_e_grid,
index_t MRaw,
index_t NRaw,
index_t KRaw,
index_t StrideA,
index_t StrideB,
DEGridDesc_M0_M1_M2_N0_N1 d_grid_desc,
DEGridDesc_M0_M1_M2_N0_N1 e_grid_desc,
AElementwiseOperation a_element_op,
BElementwiseOperation b_element_op,
CDEElementwiseOperation cde_element_op)
: p_a_grid_{static_cast<const ADataType*>(p_a_grid)},
p_b_grid_{static_cast<const BDataType*>(p_b_grid)},
p_ds_grid_{}, // FIXME
p_e_grid_{static_cast<EDataType*>(p_e_grid)},
a_grid_desc_ak0_m_ak1_{DeviceOp::MakeAGridDescriptor_AK0_M_AK1(MRaw, KRaw, StrideA)},
b_grid_desc_bk0_n_bk1_{DeviceOp::MakeBGridDescriptor_BK0_N_BK1(KRaw, NRaw, StrideB)},
ds_grid_desc_mblock_mperblock_nblock_nperblock_{},
e_grid_desc_m_n_{DeviceOp::MakeEGridDescriptor_M_N(e_grid_desc)},
e_grid_desc_mblock_mperblock_nblock_nperblock_{},
block_2_etile_map_{GridwiseGemm::MakeDefaultBlock2ETileMap(e_grid_desc_m_n_)},
a_element_op_{a_element_op},
b_element_op_{b_element_op},
cde_element_op_{cde_element_op}
{
if(MRaw != d_grid_desc.M0_ * d_grid_desc.M1_ * d_grid_desc.M2_)
{
throw std::runtime_error("wrong! GridwiseGemm has invalid setting");
}
if(NRaw != d_grid_desc.N0_ * d_grid_desc.N1_)
{
throw std::runtime_error("wrong! GridwiseGemm has invalid setting");
}
if(GridwiseGemm::CheckValidity(a_grid_desc_ak0_m_ak1_,
b_grid_desc_bk0_n_bk1_,
e_grid_desc_m_n_,
block_2_etile_map_))
{
e_grid_desc_mblock_mperblock_nblock_nperblock_ =
GridwiseGemm::MakeEGridDescriptor_MBlock_MPerBlock_NBlock_NPerBlock(
e_grid_desc_m_n_);
p_ds_grid_(I0) = static_cast<const DDataType*>(p_d_grid);
const auto d_grid_desc_m_n = DeviceOp::MakeEGridDescriptor_M_N(d_grid_desc);
ds_grid_desc_mblock_mperblock_nblock_nperblock_(I0) =
GridwiseGemm::MakeEGridDescriptor_MBlock_MPerBlock_NBlock_NPerBlock(
d_grid_desc_m_n);
}
}
// private:
const ADataType* p_a_grid_;
const BDataType* p_b_grid_;
typename GridwiseGemm::DsGridPointer p_ds_grid_;
EDataType* p_e_grid_;
AGridDesc_AK0_M_AK1 a_grid_desc_ak0_m_ak1_;
BGridDesc_BK0_N_BK1 b_grid_desc_bk0_n_bk1_;
StaticallyIndexedArray<
typename GridwiseGemm::EGridDescriptor_MBlock_MPerBlock_NBlock_NPerBlock,
NumDTensor>
ds_grid_desc_mblock_mperblock_nblock_nperblock_; // FIXME: Ds desc may be of different
// type from E
EGridDesc_M_N e_grid_desc_m_n_;
typename GridwiseGemm::EGridDescriptor_MBlock_MPerBlock_NBlock_NPerBlock
e_grid_desc_mblock_mperblock_nblock_nperblock_;
typename GridwiseGemm::DefaultBlock2ETileMap block_2_etile_map_;
AElementwiseOperation a_element_op_;
BElementwiseOperation b_element_op_;
CDEElementwiseOperation cde_element_op_;
};
// Invoker
struct Invoker : public BaseInvoker
{
using Argument = DeviceOp::Argument;
float Run(const Argument& arg, const StreamConfig& stream_config = StreamConfig{})
{
if(!GridwiseGemm::CheckValidity(arg.a_grid_desc_ak0_m_ak1_,
arg.b_grid_desc_bk0_n_bk1_,
arg.e_grid_desc_m_n_,
arg.block_2_etile_map_))
{
throw std::runtime_error("wrong! GridwiseGemm has invalid setting");
}
const index_t grid_size =
arg.block_2_etile_map_.CalculateGridSize(arg.e_grid_desc_m_n_);
const auto K =
arg.a_grid_desc_ak0_m_ak1_.GetLength(I0) * arg.a_grid_desc_ak0_m_ak1_.GetLength(I2);
auto launch_kernel = [&](auto has_main_k_block_loop) {
constexpr bool has_main_loop = has_main_k_block_loop.value;
const auto kernel = kernel_gemm_bias_c_permute<
GridwiseGemm,
ADataType, // TODO: distiguish A/B datatype
typename GridwiseGemm::DsGridPointer,
EDataType,
AElementwiseOperation,
BElementwiseOperation,
CDEElementwiseOperation,
DeviceOp::AGridDesc_AK0_M_AK1,
DeviceOp::BGridDesc_BK0_N_BK1,
ck::StaticallyIndexedArray<
typename GridwiseGemm::EGridDescriptor_MBlock_MPerBlock_NBlock_NPerBlock,
NumDTensor>,
typename GridwiseGemm::EGridDescriptor_MBlock_MPerBlock_NBlock_NPerBlock,
typename GridwiseGemm::DefaultBlock2ETileMap,
has_main_loop>;
return launch_and_time_kernel(stream_config,
kernel,
dim3(grid_size),
dim3(BlockSize),
0,
arg.p_a_grid_,
arg.p_b_grid_,
arg.p_ds_grid_,
arg.p_e_grid_,
arg.a_element_op_,
arg.b_element_op_,
arg.cde_element_op_,
arg.a_grid_desc_ak0_m_ak1_,
arg.b_grid_desc_bk0_n_bk1_,
arg.ds_grid_desc_mblock_mperblock_nblock_nperblock_,
arg.e_grid_desc_mblock_mperblock_nblock_nperblock_,
arg.block_2_etile_map_);
};
float ave_time = 0;
if(GridwiseGemm::CalculateHasMainKBlockLoop(K))
{
ave_time = launch_kernel(integral_constant<bool, true>{});
}
else
{
ave_time = launch_kernel(integral_constant<bool, false>{});
}
return ave_time;
}
// polymorphic
float Run(const BaseArgument* p_arg,
const StreamConfig& stream_config = StreamConfig{}) override
{
return Run(*dynamic_cast<const Argument*>(p_arg), stream_config);
}
};
static bool IsSupportedArgument(const Argument& arg)
{
if(!(ck::get_device_name() == "gfx908" || ck::get_device_name() == "gfx90a"))
{
return false;
}
return GridwiseGemm::CheckValidity(arg.a_grid_desc_ak0_m_ak1_,
arg.b_grid_desc_bk0_n_bk1_,
arg.e_grid_desc_m_n_,
arg.block_2_etile_map_);
}
// polymorphic
bool IsSupportedArgument(const BaseArgument* p_arg) override
{
return IsSupportedArgument(*dynamic_cast<const Argument*>(p_arg));
}
static auto MakeArgument(const void* p_a,
const void* p_b,
const void* p_d,
void* p_e,
index_t MRaw,
index_t NRaw,
index_t KRaw,
index_t StrideA,
index_t StrideB,
DEGridDesc_M0_M1_M2_N0_N1 d_grid_desc,
DEGridDesc_M0_M1_M2_N0_N1 e_grid_desc,
AElementwiseOperation a_element_op,
BElementwiseOperation b_element_op,
CDEElementwiseOperation cde_element_op)
{
return Argument{p_a,
p_b,
p_d,
p_e,
MRaw,
NRaw,
KRaw,
StrideA,
StrideB,
d_grid_desc,
e_grid_desc,
a_element_op,
b_element_op,
cde_element_op};
}
static auto MakeInvoker() { return Invoker{}; }
// polymorphic
std::unique_ptr<BaseArgument>
MakeArgumentPointer(const void* p_a,
const void* p_b,
const void* p_d,
void* p_e,
index_t MRaw,
index_t NRaw,
index_t KRaw,
index_t StrideA,
index_t StrideB,
DEGridDesc_M0_M1_M2_N0_N1 d_grid_desc,
DEGridDesc_M0_M1_M2_N0_N1 e_grid_desc,
AElementwiseOperation a_element_op,
BElementwiseOperation b_element_op,
CDEElementwiseOperation cde_element_op) override
{
return std::make_unique<Argument>(p_a,
p_b,
p_d,
p_e,
MRaw,
NRaw,
KRaw,
StrideA,
StrideB,
d_grid_desc,
e_grid_desc,
a_element_op,
b_element_op,
cde_element_op);
}
// polymorphic
std::unique_ptr<BaseInvoker> MakeInvokerPointer() override
{
return std::make_unique<Invoker>(Invoker{});
}
// polymorphic
std::string GetTypeString() const override
{
auto str = std::stringstream();
// clang-format off
str << "DeviceGemmBiasCPermute_Xdl"
<< "<"
<< BlockSize << ", "
<< MPerBlock << ", "
<< NPerBlock << ", "
<< KPerBlock << ", "
<< AK1 << ", "
<< BK1
<< ">";
// clang-format on
return str.str();
}
};
} // namespace device
} // namespace tensor_operation
} // namespace ck
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment