"...composable_kernel.git" did not exist on "67fcb0bd6bf150483a3bded80328d27181763c4d"
Commit c2b3bede authored by Chao Liu's avatar Chao Liu
Browse files

Merge remote-tracking branch 'origin/develop' into bf16_int8_ckprofiler

parents ef2defdc 0619ebf7
# Instructions for ```conv2d_bwd_data_xdl``` Example
## Docker script
```bash
docker run \
-it \
--rm \
--privileged \
--group-add sudo \
-w /root/workspace \
-v ${PATH_TO_LOCAL_WORKSPACE}:/root/workspace \
rocm/tensorflow:rocm4.3.1-tf2.6-dev \
/bin/bash
```
## Build ```conv2d_bwd_data_xdl```
```bash
mkdir build && cd build
```
```bash
# Need to specify target ID, example below is gfx908
cmake \
-D BUILD_DEV=OFF \
-D CMAKE_BUILD_TYPE=Release \
-D CMAKE_CXX_FLAGS="-DCK_AMD_GPU_GFX908 --amdgpu-target=gfx908 -O3 " \
-D CMAKE_CXX_COMPILER=/opt/rocm/bin/hipcc \
-D CMAKE_PREFIX_PATH=/opt/rocm \
..
```
```bash
make -j conv2d_bwd_data_xdl
```
## Run ```conv2d_bwd_data_xdl```
```bash
#arg1: verification (0=no, 1=yes)
#arg2: initialization (0=no init, 1=integer value, 2=decimal value)
#arg3: run kernel # of times (>1)
#arg4 to 18: N, K, C, Y, X, Hi, Wi, Sy, Sx, Dy, Dx, LeftPy, LeftPx, RightPy, RightPx
./bin/conv2d_bwd_data_xdl 0 1 5
```
Result
```
in_n_c_hi_wi: dim 4, lengths {128, 256, 71, 71}, strides {1290496, 1, 18176, 256}
wei_k_c_y_x: dim 4, lengths {256, 256, 3, 3}, strides {2304, 1, 768, 256}
out_n_k_ho_wo: dim 4, lengths {128, 256, 36, 36}, strides {331776, 1, 9216, 256}
arg.a_grid_desc_k0_m_k1_container_{128, 175232, 8}
arg.b_grid_desc_k0_n_k1_container_{128, 256, 8}
arg.c_grid_desc_m_n_container_{ 175232, 256}
arg.c_grid_desc_m0_n0_m1_n1_m2_m3_m4_n2_container_( 2738, 4, 2, 2, 4, 2 )
launch_and_time_kernel: grid_dim {2738, 1, 1}, block_dim {256, 1, 1}
Warm up
Start running 1 times...
arg.a_grid_desc_k0_m_k1_container_{64, 175232, 8}
arg.b_grid_desc_k0_n_k1_container_{64, 256, 8}
arg.c_grid_desc_m_n_container_{ 175232, 256}
arg.c_grid_desc_m0_n0_m1_n1_m2_m3_m4_n2_container_( 2738, 4, 2, 2, 4, 2 )
launch_and_time_kernel: grid_dim {2738, 1, 1}, block_dim {256, 1, 1}
Warm up
Start running 1 times...
arg.a_grid_desc_k0_m_k1_container_{64, 175232, 8}
arg.b_grid_desc_k0_n_k1_container_{64, 256, 8}
arg.c_grid_desc_m_n_container_{ 175232, 256}
arg.c_grid_desc_m0_n0_m1_n1_m2_m3_m4_n2_container_( 2738, 4, 2, 2, 4, 2 )
launch_and_time_kernel: grid_dim {2738, 1, 1}, block_dim {256, 1, 1}
Warm up
Start running 1 times...
arg.a_grid_desc_k0_m_k1_container_{32, 175232, 8}
arg.b_grid_desc_k0_n_k1_container_{32, 256, 8}
arg.c_grid_desc_m_n_container_{ 175232, 256}
arg.c_grid_desc_m0_n0_m1_n1_m2_m3_m4_n2_container_( 2738, 4, 2, 2, 4, 2 )
launch_and_time_kernel: grid_dim {2738, 1, 1}, block_dim {256, 1, 1}
Warm up
Start running 1 times...
Perf: 2.45966 ms, 79.5597 TFlops, 169.325 GB/s
```
#include <iostream>
#include <numeric>
#include <initializer_list>
#include <cstdlib>
#include <stdlib.h>
#include <half.hpp>
#include "config.hpp"
#include "print.hpp"
#include "device.hpp"
#include "host_tensor.hpp"
#include "host_tensor_generator.hpp"
#include "device_tensor.hpp"
#include "tensor_layout.hpp"
#include "element_wise_operation.hpp"
#include "device_conv2d_bwd_data_xdl_nhwc_kyxc_nhwk.hpp"
#include "reference_conv_bwd_data.hpp"
using InDataType = ck::half_t;
using WeiDataType = ck::half_t;
using OutDataType = ck::half_t;
using AccDataType = float;
template <ck::index_t... Is>
using S = ck::Sequence<Is...>;
using InElementOp = ck::tensor_operation::element_wise::PassThrough;
using WeiElementOp = ck::tensor_operation::element_wise::PassThrough;
using OutElementOp = ck::tensor_operation::element_wise::PassThrough;
static constexpr auto ConvBwdDefault =
ck::tensor_operation::device::ConvolutionBackwardDataSpecialization_t::Default;
using DeviceConvBwdDataInstance = ck::tensor_operation::device::
DeviceConv2dBwdDataXdl_Input_N_Hi_Wi_C_Weight_K_Y_X_C_Output_N_Ho_Wo_K<
InDataType, // InDataType
WeiDataType, // WeiDataType
OutDataType, // OutDataType
AccDataType, // AccDataType
InElementOp, // InElementwiseOperation
WeiElementOp, // WeiElementwiseOperation
OutElementOp, // OutElementwiseOperation
ConvBwdDefault, // ConvolutionBackwardDataSpecialization_t
256, // BlockSize
128, // MPerBlock
128, // NPerBlock
4, // K0PerBlock
8, // K1
32, // MPerXdl
32, // NPerXdl
2, // MXdlPerWave
2, // NXdlPerWave
S<4, 64, 1>, // ABlockTransferThreadClusterLengths_K0_M_K1
S<1, 0, 2>, // ABlockTransferThreadClusterArrangeOrder
S<1, 0, 2>, // ABlockTransferSrcAccessOrder
2, // ABlockTransferSrcVectorDim
8, // ABlockTransferSrcScalarPerVector
8, // ABlockTransferDstScalarPerVector_K1
true, // ABlockLdsAddExtraM
S<4, 64, 1>, // BBlockTransferThreadClusterLengths_K0_N_K1
S<2, 0, 1>, // BBlockTransferThreadClusterArrangeOrder
S<0, 2, 1>, // BBlockTransferSrcAccessOrder
1, // BBlockTransferSrcVectorDim
2, // BBlockTransferSrcScalarPerVector
8, // BBlockTransferDstScalarPerVector_K1
true, // BBlockLdsAddExtraN
7,
1>; // GemmCThreadTransferDstScalarPerVector
using ReferenceConvBwdInstance = ck::tensor_operation::host::ReferenceConvBwdData<InDataType,
WeiDataType,
OutDataType,
InElementOp,
WeiElementOp,
OutElementOp>;
int main(int argc, char* argv[])
{
bool do_verification = 0;
int init_method = 0;
int nrepeat = 5;
// Conv shape
ck::index_t N = 128;
ck::index_t K = 256;
ck::index_t C = 256;
ck::index_t Y = 3;
ck::index_t X = 3;
ck::index_t Hi = 71;
ck::index_t Wi = 71;
ck::index_t conv_stride_h = 2;
ck::index_t conv_stride_w = 2;
ck::index_t conv_dilation_h = 1;
ck::index_t conv_dilation_w = 1;
ck::index_t in_left_pad_h = 1;
ck::index_t in_left_pad_w = 1;
ck::index_t in_right_pad_h = 1;
ck::index_t in_right_pad_w = 1;
if(argc == 4)
{
do_verification = std::stoi(argv[1]);
init_method = std::stoi(argv[2]);
nrepeat = std::stoi(argv[3]);
}
else if(argc == 19)
{
do_verification = std::stoi(argv[1]);
init_method = std::stoi(argv[2]);
nrepeat = std::stoi(argv[3]);
N = std::stoi(argv[4]);
K = std::stoi(argv[5]);
C = std::stoi(argv[6]);
Y = std::stoi(argv[7]);
X = std::stoi(argv[8]);
Hi = std::stoi(argv[9]);
Wi = std::stoi(argv[10]);
conv_stride_h = std::stoi(argv[11]);
conv_stride_w = std::stoi(argv[12]);
conv_dilation_h = std::stoi(argv[13]);
conv_dilation_w = std::stoi(argv[14]);
in_left_pad_h = std::stoi(argv[15]);
in_left_pad_w = std::stoi(argv[16]);
in_right_pad_h = std::stoi(argv[17]);
in_right_pad_w = std::stoi(argv[18]);
}
else
{
printf("arg1: verification (0=no, 1=yes)\n");
printf("arg2: initialization (0=no init, 1=integer value, 2=decimal value)\n");
printf("arg3: run kernel # of times (>1)\n");
printf("arg4 to 18: N, K, C, Y, X, Hi, Wi, Sy, Sx, Dy, Dx, LeftPy, LeftPx, RightPy, "
"RightPx\n");
exit(0);
}
const ck::index_t YEff = (Y - 1) * conv_dilation_h + 1;
const ck::index_t XEff = (X - 1) * conv_dilation_w + 1;
const ck::index_t Ho = (Hi + in_left_pad_h + in_right_pad_h - YEff) / conv_stride_h + 1;
const ck::index_t Wo = (Wi + in_left_pad_w + in_right_pad_w - XEff) / conv_stride_w + 1;
const std::vector<ck::index_t> conv_filter_strides{{conv_stride_h, conv_stride_w}};
const std::vector<ck::index_t> conv_filter_dilations{{conv_dilation_h, conv_dilation_w}};
const std::vector<ck::index_t> input_left_pads{{in_left_pad_h, in_left_pad_w}};
const std::vector<ck::index_t> input_right_pads{{in_right_pad_h, in_right_pad_w}};
// tensor layout
auto f_host_tensor_descriptor =
[](std::size_t N_, std::size_t C_, std::size_t H, std::size_t W) {
return HostTensorDescriptor(std::vector<std::size_t>({N_, C_, H, W}),
std::vector<std::size_t>({C_ * H * W, 1, W * C_, C_}));
};
Tensor<OutDataType> out_n_k_ho_wo(f_host_tensor_descriptor(N, K, Ho, Wo));
Tensor<WeiDataType> wei_k_c_y_x(f_host_tensor_descriptor(K, C, Y, X));
Tensor<InDataType> in_n_c_hi_wi_host_result(f_host_tensor_descriptor(N, C, Hi, Wi));
Tensor<InDataType> in_n_c_hi_wi_device_result(f_host_tensor_descriptor(N, C, Hi, Wi));
std::cout << "in_n_c_hi_wi: " << in_n_c_hi_wi_host_result.mDesc << std::endl;
std::cout << "wei_k_c_y_x: " << wei_k_c_y_x.mDesc << std::endl;
std::cout << "out_n_k_ho_wo: " << out_n_k_ho_wo.mDesc << std::endl;
switch(init_method)
{
case 0: break;
case 1:
out_n_k_ho_wo.GenerateTensorValue(GeneratorTensor_2<OutDataType>{-5, 5});
wei_k_c_y_x.GenerateTensorValue(GeneratorTensor_2<WeiDataType>{-5, 5});
break;
default:
out_n_k_ho_wo.GenerateTensorValue(GeneratorTensor_1<OutDataType>{1});
wei_k_c_y_x.GenerateTensorValue(GeneratorTensor_1<WeiDataType>{1});
}
DeviceMem in_device_buf(sizeof(InDataType) *
in_n_c_hi_wi_device_result.mDesc.GetElementSpace());
DeviceMem wei_device_buf(sizeof(WeiDataType) * wei_k_c_y_x.mDesc.GetElementSpace());
DeviceMem out_device_buf(sizeof(OutDataType) * out_n_k_ho_wo.mDesc.GetElementSpace());
out_device_buf.ToDevice(out_n_k_ho_wo.mData.data());
wei_device_buf.ToDevice(wei_k_c_y_x.mData.data());
// do GEMM
auto conv = DeviceConvBwdDataInstance{};
auto invoker = conv.MakeInvoker();
auto argument = conv.MakeArgument(static_cast<InDataType*>(in_device_buf.GetDeviceBuffer()),
static_cast<WeiDataType*>(wei_device_buf.GetDeviceBuffer()),
static_cast<OutDataType*>(out_device_buf.GetDeviceBuffer()),
N,
K,
C,
std::vector<ck::index_t>{{Hi, Wi}},
std::vector<ck::index_t>{{Y, X}},
std::vector<ck::index_t>{{Ho, Wo}},
conv_filter_strides,
conv_filter_dilations,
input_left_pads,
input_right_pads,
InElementOp{},
WeiElementOp{},
OutElementOp{});
if(!conv.IsSupportedArgument(argument))
{
throw std::runtime_error(
"wrong! device_conv with the specified compilation parameters does "
"not support this Conv problem");
}
float ave_time = invoker.Run(argument, nrepeat);
std::size_t flop = std::size_t(2) * N * K * Ho * Wo * C * Y * X;
std::size_t num_btype = sizeof(InDataType) * (N * C * Hi * Wi) +
sizeof(WeiDataType) * (K * C * Y * X) +
sizeof(OutDataType) * (N * K * Ho * Wo);
float tflops = static_cast<float>(flop) / 1.E9 / ave_time;
float gb_per_sec = num_btype / 1.E6 / ave_time;
std::cout << "Perf: " << ave_time << " ms, " << tflops << " TFlops, " << gb_per_sec << " GB/s"
<< std::endl;
if(do_verification)
{
auto ref_conv = ReferenceConvBwdInstance{};
auto ref_invoker = ref_conv.MakeInvoker();
auto ref_argument = ref_conv.MakeArgument(in_n_c_hi_wi_host_result,
wei_k_c_y_x,
out_n_k_ho_wo,
conv_filter_strides,
conv_filter_dilations,
input_left_pads,
input_right_pads,
InElementOp{},
WeiElementOp{},
OutElementOp{});
ref_invoker.Run(ref_argument);
in_device_buf.FromDevice(in_n_c_hi_wi_device_result.mData.data());
check_error(in_n_c_hi_wi_host_result, in_n_c_hi_wi_device_result);
}
}
...@@ -41,8 +41,7 @@ using AElementOp = ck::tensor_operation::element_wise::PassThrough; ...@@ -41,8 +41,7 @@ using AElementOp = ck::tensor_operation::element_wise::PassThrough;
using BElementOp = ck::tensor_operation::element_wise::PassThrough; using BElementOp = ck::tensor_operation::element_wise::PassThrough;
using CElementOp = ck::tensor_operation::element_wise::PassThrough; using CElementOp = ck::tensor_operation::element_wise::PassThrough;
static constexpr auto GemmDefault = ck::tensor_operation::device::GemmSpecialization_t::Default; static constexpr auto GemmDefault = ck::tensor_operation::device::GemmSpecialization_t::Default;
static constexpr auto GemmMNPadding = ck::tensor_operation::device::GemmSpecialization_t::MNPadding;
// clang-format off // clang-format off
#if 0 #if 0
......
...@@ -26,6 +26,7 @@ set(GEMM_XDL_ALPHA_BETA_SOURCE 8_gemm_xdl_alpha_beta/gemm_xdl_alpha_beta.cpp) ...@@ -26,6 +26,7 @@ set(GEMM_XDL_ALPHA_BETA_SOURCE 8_gemm_xdl_alpha_beta/gemm_xdl_alpha_beta.cpp)
set(CONV2D_FWD_XDL_INT8_SOURCE 9_conv2d_fwd_xdl_int8/conv2d_fwd_xdl_int8.cpp) set(CONV2D_FWD_XDL_INT8_SOURCE 9_conv2d_fwd_xdl_int8/conv2d_fwd_xdl_int8.cpp)
set(CONV3D_FWD_XDL_SOURCE 10_conv3d_fwd_xdl/conv3d_fwd_xdl.cpp) set(CONV3D_FWD_XDL_SOURCE 10_conv3d_fwd_xdl/conv3d_fwd_xdl.cpp)
set(CONVND_FWD_XDL_SOURCE 11_convnd_fwd_xdl/convnd_fwd_xdl.cpp) set(CONVND_FWD_XDL_SOURCE 11_convnd_fwd_xdl/convnd_fwd_xdl.cpp)
set(CONV2D_BWD_DATA_XDL_SOURCE 12_conv2d_bwd_data_xdl/conv2d_bwd_data_xdl.cpp)
add_executable(gemm_xdl ${GEMM_XDL_SOURCE}) add_executable(gemm_xdl ${GEMM_XDL_SOURCE})
add_executable(gemm_xdl_int8 ${GEMM_XDL_INT8_SOURCE}) add_executable(gemm_xdl_int8 ${GEMM_XDL_INT8_SOURCE})
...@@ -40,6 +41,7 @@ add_executable(gemm_xdl_alpha_beta ${GEMM_XDL_ALPHA_BETA_SOURCE}) ...@@ -40,6 +41,7 @@ add_executable(gemm_xdl_alpha_beta ${GEMM_XDL_ALPHA_BETA_SOURCE})
add_executable(conv2d_fwd_xdl_int8 ${CONV2D_FWD_XDL_INT8_SOURCE}) add_executable(conv2d_fwd_xdl_int8 ${CONV2D_FWD_XDL_INT8_SOURCE})
add_executable(conv3d_fwd_xdl ${CONV3D_FWD_XDL_SOURCE}) add_executable(conv3d_fwd_xdl ${CONV3D_FWD_XDL_SOURCE})
add_executable(convnd_fwd_xdl ${CONVND_FWD_XDL_SOURCE}) add_executable(convnd_fwd_xdl ${CONVND_FWD_XDL_SOURCE})
add_executable(conv2d_bwd_data_xdl ${CONV2D_BWD_DATA_XDL_SOURCE})
target_link_libraries(gemm_xdl PRIVATE host_tensor) target_link_libraries(gemm_xdl PRIVATE host_tensor)
target_link_libraries(gemm_xdl_int8 PRIVATE host_tensor) target_link_libraries(gemm_xdl_int8 PRIVATE host_tensor)
...@@ -54,3 +56,5 @@ target_link_libraries(gemm_xdl_alpha_beta PRIVATE host_tensor) ...@@ -54,3 +56,5 @@ target_link_libraries(gemm_xdl_alpha_beta PRIVATE host_tensor)
target_link_libraries(conv2d_fwd_xdl_int8 PRIVATE host_tensor) target_link_libraries(conv2d_fwd_xdl_int8 PRIVATE host_tensor)
target_link_libraries(conv3d_fwd_xdl PRIVATE host_tensor) target_link_libraries(conv3d_fwd_xdl PRIVATE host_tensor)
target_link_libraries(convnd_fwd_xdl PRIVATE host_tensor) target_link_libraries(convnd_fwd_xdl PRIVATE host_tensor)
target_link_libraries(conv2d_bwd_data_xdl PRIVATE host_tensor)
...@@ -25,6 +25,7 @@ set(PROFILER_SOURCE ...@@ -25,6 +25,7 @@ set(PROFILER_SOURCE
src/profile_conv_fwd_bias_relu_add.cpp src/profile_conv_fwd_bias_relu_add.cpp
src/profile_conv_fwd_bias_relu_atomic_add.cpp src/profile_conv_fwd_bias_relu_atomic_add.cpp
src/profile_batched_gemm.cpp src/profile_batched_gemm.cpp
src/profile_conv_bwd_data.cpp
) )
add_executable(ckProfiler ${PROFILER_SOURCE}) add_executable(ckProfiler ${PROFILER_SOURCE})
...@@ -39,3 +40,4 @@ target_link_libraries(ckProfiler PRIVATE device_conv2d_fwd_bias_relu_instance) ...@@ -39,3 +40,4 @@ target_link_libraries(ckProfiler PRIVATE device_conv2d_fwd_bias_relu_instance)
target_link_libraries(ckProfiler PRIVATE device_conv2d_fwd_bias_relu_add_instance) target_link_libraries(ckProfiler PRIVATE device_conv2d_fwd_bias_relu_add_instance)
target_link_libraries(ckProfiler PRIVATE device_conv2d_fwd_bias_relu_atomic_add_instance) target_link_libraries(ckProfiler PRIVATE device_conv2d_fwd_bias_relu_atomic_add_instance)
target_link_libraries(ckProfiler PRIVATE device_batched_gemm_instance) target_link_libraries(ckProfiler PRIVATE device_batched_gemm_instance)
target_link_libraries(ckProfiler PRIVATE device_conv2d_bwd_data_instance)
#pragma once
#include "config.hpp"
#include "device.hpp"
#include "host_tensor.hpp"
#include "host_tensor_generator.hpp"
#include "tensor_layout.hpp"
#include "device_tensor.hpp"
#include "device_conv_bwd_data.hpp"
#include "element_wise_operation.hpp"
#include "reference_conv_bwd_data.hpp"
using F16 = ck::half_t;
using F32 = float;
using BF16 = ushort;
using INT8 = int8_t;
namespace ck {
namespace tensor_operation {
namespace device {
namespace device_conv2d_bwd_data_instance {
using DeviceConvBwdDataNoOpPtr =
DeviceConvBwdDataPtr<ck::tensor_operation::element_wise::PassThrough,
ck::tensor_operation::element_wise::PassThrough,
ck::tensor_operation::element_wise::PassThrough>;
void add_device_conv2d_bwd_data_xdl_nhwc_kyxc_nhwk_f32_instances(
std::vector<DeviceConvBwdDataNoOpPtr>&);
void add_device_conv2d_bwd_data_xdl_nhwc_kyxc_nhwk_f16_instances(
std::vector<DeviceConvBwdDataNoOpPtr>&);
void add_device_conv2d_bwd_data_xdl_nhwc_kyxc_nhwk_bf16_instances(
std::vector<DeviceConvBwdDataNoOpPtr>&);
void add_device_conv2d_bwd_data_xdl_nhwc_kyxc_nhwk_int8_instances(
std::vector<DeviceConvBwdDataNoOpPtr>&);
} // namespace device_conv2d_bwd_data_instance
} // namespace device
} // namespace tensor_operation
} // namespace ck
namespace ck {
namespace profiler {
template <int NDimSpatial,
typename InDataType,
typename WeiDataType,
typename OutDataType,
typename InLayout,
typename WeiLayout,
typename OutLayout>
void profile_conv_bwd_data_impl(int do_verification,
int init_method,
bool do_log,
int nrepeat,
ck::index_t N,
ck::index_t K,
ck::index_t C,
std::vector<ck::index_t> input_spatial_lengths,
std::vector<ck::index_t> filter_spatial_lengths,
std::vector<ck::index_t> output_spatial_lengths,
std::vector<ck::index_t> conv_filter_strides,
std::vector<ck::index_t> conv_filter_dilations,
std::vector<ck::index_t> input_left_pads,
std::vector<ck::index_t> input_right_pads)
{
const ck::index_t Y = filter_spatial_lengths[0];
const ck::index_t X = filter_spatial_lengths[1];
const ck::index_t Hi = input_spatial_lengths[0];
const ck::index_t Wi = input_spatial_lengths[1];
const ck::index_t Ho = output_spatial_lengths[0];
const ck::index_t Wo = output_spatial_lengths[1];
auto f_host_tensor_descriptor =
[](std::size_t N_, std::size_t C_, std::size_t H, std::size_t W, auto layout) {
if constexpr(is_same<decltype(layout), ck::tensor_layout::convolution::NCHW>::value ||
is_same<decltype(layout), ck::tensor_layout::convolution::KCYX>::value ||
is_same<decltype(layout), ck::tensor_layout::convolution::NKHW>::value)
{
return HostTensorDescriptor(std::vector<std::size_t>({N_, C_, H, W}),
std::vector<std::size_t>({C_ * H * W, H * W, W, 1}));
}
else if constexpr(is_same<decltype(layout), tensor_layout::convolution::NHWC>::value ||
is_same<decltype(layout), tensor_layout::convolution::KYXC>::value ||
is_same<decltype(layout), tensor_layout::convolution::NHWK>::value)
{
return HostTensorDescriptor(std::vector<std::size_t>({N_, C_, H, W}),
std::vector<std::size_t>({C_ * H * W, 1, W * C_, C_}));
}
};
Tensor<InDataType> in_n_c_hi_wi_host_result(f_host_tensor_descriptor(N, C, Hi, Wi, InLayout{}));
Tensor<InDataType> in_n_c_hi_wi_device_result(
f_host_tensor_descriptor(N, C, Hi, Wi, InLayout{}));
Tensor<WeiDataType> wei_k_c_y_x(f_host_tensor_descriptor(K, C, Y, X, WeiLayout{}));
Tensor<OutDataType> out_n_k_ho_wo(f_host_tensor_descriptor(N, K, Ho, Wo, OutLayout{}));
std::cout << "in_n_c_hi_wi: " << in_n_c_hi_wi_host_result.mDesc << std::endl;
std::cout << "wei_k_c_y_x: " << wei_k_c_y_x.mDesc << std::endl;
std::cout << "out_n_k_ho_wo: " << out_n_k_ho_wo.mDesc << std::endl;
switch(init_method)
{
case 0: break;
case 1:
out_n_k_ho_wo.GenerateTensorValue(GeneratorTensor_2<InDataType>{-5, 5});
wei_k_c_y_x.GenerateTensorValue(GeneratorTensor_2<WeiDataType>{-5, 5});
break;
default:
out_n_k_ho_wo.GenerateTensorValue(GeneratorTensor_3<InDataType>{0.0, 1.0});
wei_k_c_y_x.GenerateTensorValue(GeneratorTensor_3<WeiDataType>{-0.5, 0.5});
}
using InElementOp = ck::tensor_operation::element_wise::PassThrough;
using WeiElementOp = ck::tensor_operation::element_wise::PassThrough;
using OutElementOp = ck::tensor_operation::element_wise::PassThrough;
const auto in_element_op = InElementOp{};
const auto wei_element_op = WeiElementOp{};
const auto out_element_op = OutElementOp{};
if(do_verification)
{
using ReferenceConvBwdDataInstance =
ck::tensor_operation::host::ReferenceConvBwdData<InDataType,
WeiDataType,
OutDataType,
InElementOp,
WeiElementOp,
OutElementOp>;
auto ref_conv = ReferenceConvBwdDataInstance{};
auto ref_invoker = ref_conv.MakeInvoker();
auto ref_argument = ref_conv.MakeArgument(in_n_c_hi_wi_host_result,
wei_k_c_y_x,
out_n_k_ho_wo,
conv_filter_strides,
conv_filter_dilations,
input_left_pads,
input_right_pads,
in_element_op,
wei_element_op,
out_element_op);
ref_invoker.Run(ref_argument);
}
DeviceMem in_device_buf(sizeof(InDataType) *
in_n_c_hi_wi_device_result.mDesc.GetElementSpace());
DeviceMem wei_device_buf(sizeof(WeiDataType) * wei_k_c_y_x.mDesc.GetElementSpace());
DeviceMem out_device_buf(sizeof(OutDataType) * out_n_k_ho_wo.mDesc.GetElementSpace());
out_device_buf.ToDevice(out_n_k_ho_wo.mData.data());
wei_device_buf.ToDevice(wei_k_c_y_x.mData.data());
using PassThrough = ck::tensor_operation::element_wise::PassThrough;
using DeviceConvBwdDataNoOpPtr =
ck::tensor_operation::device::DeviceConvBwdDataPtr<PassThrough, PassThrough, PassThrough>;
// add device Conv instances
std::vector<DeviceConvBwdDataNoOpPtr> conv_ptrs;
if constexpr(ck::is_same_v<ck::remove_cv_t<InDataType>, float> &&
ck::is_same_v<ck::remove_cv_t<WeiDataType>, float> &&
ck::is_same_v<ck::remove_cv_t<OutDataType>, float>)
{
ck::tensor_operation::device::device_conv2d_bwd_data_instance::
add_device_conv2d_bwd_data_xdl_nhwc_kyxc_nhwk_f32_instances(conv_ptrs);
}
else if constexpr(ck::is_same_v<ck::remove_cv_t<InDataType>, ck::half_t> &&
ck::is_same_v<ck::remove_cv_t<WeiDataType>, ck::half_t> &&
ck::is_same_v<ck::remove_cv_t<OutDataType>, ck::half_t>)
{
ck::tensor_operation::device::device_conv2d_bwd_data_instance::
add_device_conv2d_bwd_data_xdl_nhwc_kyxc_nhwk_f16_instances(conv_ptrs);
}
else if constexpr(ck::is_same_v<ck::remove_cv_t<InDataType>, ushort> &&
ck::is_same_v<ck::remove_cv_t<WeiDataType>, ushort> &&
ck::is_same_v<ck::remove_cv_t<OutDataType>, ushort>)
{
ck::tensor_operation::device::device_conv2d_bwd_data_instance::
add_device_conv2d_bwd_data_xdl_nhwc_kyxc_nhwk_bf16_instances(conv_ptrs);
}
else if constexpr(ck::is_same_v<ck::remove_cv_t<InDataType>, int8_t> &&
ck::is_same_v<ck::remove_cv_t<WeiDataType>, int8_t> &&
ck::is_same_v<ck::remove_cv_t<OutDataType>, int8_t>)
{
ck::tensor_operation::device::device_conv2d_bwd_data_instance::
add_device_conv2d_bwd_data_xdl_nhwc_kyxc_nhwk_int8_instances(conv_ptrs);
}
if(conv_ptrs.size() <= 0)
{
throw std::runtime_error("wrong! no device Conv instance found");
}
std::string best_conv_name;
float best_ave_time = 0;
float best_tflops = 0;
float best_gb_per_sec = 0;
// profile device Conv instances
for(auto& conv_ptr : conv_ptrs)
{
auto argument_ptr = conv_ptr->MakeArgumentPointer(
static_cast<InDataType*>(in_device_buf.GetDeviceBuffer()),
static_cast<WeiDataType*>(wei_device_buf.GetDeviceBuffer()),
static_cast<OutDataType*>(out_device_buf.GetDeviceBuffer()),
N,
K,
C,
input_spatial_lengths,
filter_spatial_lengths,
output_spatial_lengths,
conv_filter_strides,
conv_filter_dilations,
input_left_pads,
input_right_pads,
in_element_op,
wei_element_op,
out_element_op);
auto invoker_ptr = conv_ptr->MakeInvokerPointer();
if(conv_ptr->IsSupportedArgument(argument_ptr.get()))
{
std::string conv_name = conv_ptr->GetTypeString();
float ave_time = invoker_ptr->Run(argument_ptr.get(), nrepeat);
std::size_t flop = std::size_t(2) * N * K * Ho * Wo * C * Y * X;
std::size_t num_btype = sizeof(InDataType) * (N * C * Hi * Wi) +
sizeof(WeiDataType) * (K * C * Y * X) +
sizeof(OutDataType) * (N * K * Ho * Wo);
float tflops = static_cast<float>(flop) / 1.E9 / ave_time;
float gb_per_sec = num_btype / 1.E6 / ave_time;
std::cout << "Perf: " << ave_time << " ms, " << tflops << " TFlops, " << gb_per_sec
<< " GB/s, " << conv_name << std::endl;
if(tflops > best_tflops)
{
best_conv_name = conv_name;
best_tflops = tflops;
best_ave_time = ave_time;
best_gb_per_sec = gb_per_sec;
}
if(do_verification)
{
in_device_buf.FromDevice(in_n_c_hi_wi_device_result.mData.data());
check_error(in_n_c_hi_wi_host_result, in_n_c_hi_wi_device_result);
if(do_log)
{
LogRangeAsType<float>(std::cout << "in : ", out_n_k_ho_wo.mData, ",")
<< std::endl;
LogRangeAsType<float>(std::cout << "wei: ", wei_k_c_y_x.mData, ",")
<< std::endl;
LogRangeAsType<float>(
std::cout << "out_host : ", in_n_c_hi_wi_host_result.mData, ",")
<< std::endl;
LogRangeAsType<float>(
std::cout << "out_device: ", in_n_c_hi_wi_device_result.mData, ",")
<< std::endl;
}
}
}
}
std::cout << "Best Perf: " << best_ave_time << " ms, " << best_tflops << " TFlops, "
<< best_gb_per_sec << " GB/s, " << best_conv_name << std::endl;
}
} // namespace profiler
} // namespace ck
#include <iostream>
#include <numeric>
#include <initializer_list>
#include <cstdlib>
#include <stdlib.h>
#include <half.hpp>
#include "profile_conv_bwd_data_impl.hpp"
enum ConvDataType
{
F32_F32_F32, // 0
F16_F16_F16, // 1
BF16_BF16_BF16, // 2
INT8_INT8_INT8, // 3
};
enum ConvInputLayout
{
NCHW, // 0
NHWC, // 1
};
enum ConvWeightLayout
{
KCYX, // 0
KYXC, // 1
};
enum ConvOutputLayout
{
NKHW, // 0
NHWK, // 1
};
int profile_conv_bwd_data(int argc, char* argv[])
{
if(argc != 25)
{
printf("arg1: tensor operation (conv_bwd: BackwardConvolution)\n");
printf("arg2: data type (0: fp32; 1: fp16)\n");
printf("arg3: input tensor layout (0: NCHW; 1: NHWC)\n");
printf("arg4: weight tensor layout (0: KCYX; 1: KYXC)\n");
printf("arg5: output tensor layout (0: NKHW; 1: NHWK)\n");
printf("arg6: verification (0: no; 1: yes)\n");
printf("arg7: initialization (0: no init; 1: integer value; 2: decimal value)\n");
printf("arg8: print tensor value (0: no; 1: yes)\n");
printf("arg9: run kernel # of times (>1)\n");
printf("arg10 to 24: N, K, C, Y, X, Hi, Wi, Sy, Sx, Dy, Dx, LeftPy, LeftPx, RightPy, "
"RightPx\n");
exit(1);
}
const int data_type = static_cast<ConvDataType>(std::stoi(argv[2]));
const int in_layout = static_cast<ConvInputLayout>(std::stoi(argv[3]));
const int wei_layout = static_cast<ConvWeightLayout>(std::stoi(argv[4]));
const int out_layout = static_cast<ConvOutputLayout>(std::stoi(argv[5]));
const bool do_verification = std::stoi(argv[6]);
const int init_method = std::stoi(argv[7]);
const bool do_log = std::stoi(argv[8]);
const int nrepeat = std::stoi(argv[9]);
const ck::index_t N = std::stoi(argv[10]);
const ck::index_t K = std::stoi(argv[11]);
const ck::index_t C = std::stoi(argv[12]);
const ck::index_t Y = std::stoi(argv[13]);
const ck::index_t X = std::stoi(argv[14]);
const ck::index_t Hi = std::stoi(argv[15]);
const ck::index_t Wi = std::stoi(argv[16]);
const ck::index_t conv_stride_h = std::stoi(argv[17]);
const ck::index_t conv_stride_w = std::stoi(argv[18]);
const ck::index_t conv_dilation_h = std::stoi(argv[19]);
const ck::index_t conv_dilation_w = std::stoi(argv[20]);
const ck::index_t in_left_pad_h = std::stoi(argv[21]);
const ck::index_t in_left_pad_w = std::stoi(argv[22]);
const ck::index_t in_right_pad_h = std::stoi(argv[23]);
const ck::index_t in_right_pad_w = std::stoi(argv[24]);
const ck::index_t YEff = (Y - 1) * conv_dilation_h + 1;
const ck::index_t XEff = (X - 1) * conv_dilation_w + 1;
const ck::index_t Ho = (Hi + in_left_pad_h + in_right_pad_h - YEff) / conv_stride_h + 1;
const ck::index_t Wo = (Wi + in_left_pad_w + in_right_pad_w - XEff) / conv_stride_w + 1;
if(data_type == ConvDataType::F32_F32_F32 && in_layout == ConvInputLayout::NHWC &&
wei_layout == ConvWeightLayout::KYXC && out_layout == ConvOutputLayout::NHWK)
{
ck::profiler::profile_conv_bwd_data_impl<2,
float,
float,
float,
ck::tensor_layout::convolution::NHWC,
ck::tensor_layout::convolution::KYXC,
ck::tensor_layout::convolution::NHWK>(
do_verification,
init_method,
do_log,
nrepeat,
N,
K,
C,
std::vector<ck::index_t>{Hi, Wi},
std::vector<ck::index_t>{Y, X},
std::vector<ck::index_t>{Ho, Wo},
std::vector<ck::index_t>{conv_stride_h, conv_stride_w},
std::vector<ck::index_t>{conv_dilation_h, conv_dilation_w},
std::vector<ck::index_t>{in_left_pad_h, in_left_pad_w},
std::vector<ck::index_t>{in_right_pad_h, in_right_pad_w});
}
else if(data_type == ConvDataType::F16_F16_F16 && in_layout == ConvInputLayout::NHWC &&
wei_layout == ConvWeightLayout::KYXC && out_layout == ConvOutputLayout::NHWK)
{
ck::profiler::profile_conv_bwd_data_impl<2,
ck::half_t,
ck::half_t,
ck::half_t,
ck::tensor_layout::convolution::NHWC,
ck::tensor_layout::convolution::KYXC,
ck::tensor_layout::convolution::NHWK>(
do_verification,
init_method,
do_log,
nrepeat,
N,
K,
C,
std::vector<ck::index_t>{Hi, Wi},
std::vector<ck::index_t>{Y, X},
std::vector<ck::index_t>{Ho, Wo},
std::vector<ck::index_t>{conv_stride_h, conv_stride_w},
std::vector<ck::index_t>{conv_dilation_h, conv_dilation_w},
std::vector<ck::index_t>{in_left_pad_h, in_left_pad_w},
std::vector<ck::index_t>{in_right_pad_h, in_right_pad_w});
}
else if(data_type == ConvDataType::BF16_BF16_BF16 && in_layout == ConvInputLayout::NHWC &&
wei_layout == ConvWeightLayout::KYXC && out_layout == ConvOutputLayout::NHWK)
{
ck::profiler::profile_conv_bwd_data_impl<2,
uint16_t,
uint16_t,
uint16_t,
ck::tensor_layout::convolution::NHWC,
ck::tensor_layout::convolution::KYXC,
ck::tensor_layout::convolution::NHWK>(
do_verification,
init_method,
do_log,
nrepeat,
N,
K,
C,
std::vector<ck::index_t>{Hi, Wi},
std::vector<ck::index_t>{Y, X},
std::vector<ck::index_t>{Ho, Wo},
std::vector<ck::index_t>{conv_stride_h, conv_stride_w},
std::vector<ck::index_t>{conv_dilation_h, conv_dilation_w},
std::vector<ck::index_t>{in_left_pad_h, in_left_pad_w},
std::vector<ck::index_t>{in_right_pad_h, in_right_pad_w});
}
else if(data_type == ConvDataType::INT8_INT8_INT8 && in_layout == ConvInputLayout::NHWC &&
wei_layout == ConvWeightLayout::KYXC && out_layout == ConvOutputLayout::NHWK)
{
ck::profiler::profile_conv_bwd_data_impl<2,
int8_t,
int8_t,
int8_t,
ck::tensor_layout::convolution::NHWC,
ck::tensor_layout::convolution::KYXC,
ck::tensor_layout::convolution::NHWK>(
do_verification,
init_method,
do_log,
nrepeat,
N,
K,
C,
std::vector<ck::index_t>{Hi, Wi},
std::vector<ck::index_t>{Y, X},
std::vector<ck::index_t>{Ho, Wo},
std::vector<ck::index_t>{conv_stride_h, conv_stride_w},
std::vector<ck::index_t>{conv_dilation_h, conv_dilation_w},
std::vector<ck::index_t>{in_left_pad_h, in_left_pad_w},
std::vector<ck::index_t>{in_right_pad_h, in_right_pad_w});
}
else
{
throw std::runtime_error("wrong! this Conv data_type & layout is not implemented");
}
return 1;
}
...@@ -14,6 +14,7 @@ int profile_conv_fwd(int, char*[]); ...@@ -14,6 +14,7 @@ int profile_conv_fwd(int, char*[]);
int profile_conv_fwd_bias_relu(int, char*[]); int profile_conv_fwd_bias_relu(int, char*[]);
int profile_conv_fwd_bias_relu_add(int, char*[]); int profile_conv_fwd_bias_relu_add(int, char*[]);
int profile_conv_fwd_bias_relu_atomic_add(int, char*[]); int profile_conv_fwd_bias_relu_atomic_add(int, char*[]);
int profile_conv_bwd_data(int, char*[]);
int main(int argc, char* argv[]) int main(int argc, char* argv[])
{ {
...@@ -53,6 +54,10 @@ int main(int argc, char* argv[]) ...@@ -53,6 +54,10 @@ int main(int argc, char* argv[])
{ {
return profile_conv_fwd_bias_relu_atomic_add(argc, argv); return profile_conv_fwd_bias_relu_atomic_add(argc, argv);
} }
else if(strcmp(argv[1], "conv_bwd") == 0)
{
return profile_conv_bwd_data(argc, argv);
}
else else
{ {
// clang-format off // clang-format off
...@@ -63,7 +68,8 @@ int main(int argc, char* argv[]) ...@@ -63,7 +68,8 @@ int main(int argc, char* argv[])
" conv_fwd: ForwardConvolution\n" " conv_fwd: ForwardConvolution\n"
" conv_fwd_bias_relu: ForwardConvolution+Bias+ReLU\n" " conv_fwd_bias_relu: ForwardConvolution+Bias+ReLU\n"
" conv_fwd_bias_relu_add: ForwardConvolution+Bias+ReLU+Add\n" " conv_fwd_bias_relu_add: ForwardConvolution+Bias+ReLU+Add\n"
" conv_fwd_bias_relu_atomic_add: ForwardConvolution+Bias+ReLU+AtomicAdd\n"); " conv_fwd_bias_relu_atomic_add: ForwardConvolution+Bias+ReLU+AtomicAdd\n"
" conv_bwd: BackwardConvolution\n");
// clang-format on // clang-format on
return 0; return 0;
......
#ifndef REFERENCE_CONV_BWD_DATA_HPP
#define REFERENCE_CONV_BWD_DATA_HPP
#include <iostream>
#include <sstream>
#include "device_base.hpp"
#include "host_tensor.hpp"
namespace ck {
namespace tensor_operation {
namespace host {
// out[N, K, Ho, Wo] = in[N, C, Hi, Wi] * wei[K, C, Y, X]
template <typename InDataType,
typename WeiDataType,
typename OutDataType,
typename InElementwiseOperation,
typename WeiElementwiseOperation,
typename OutElementwiseOperation>
struct ReferenceConvBwdData : public device::BaseOperator
{
// Argument
struct Argument : public device::BaseArgument
{
Argument(Tensor<InDataType>& in_n_c_hi_wi,
const Tensor<WeiDataType>& wei_k_c_y_x,
const Tensor<OutDataType>& out_n_k_ho_wo,
std::vector<ck::index_t> conv_filter_strides,
std::vector<ck::index_t> conv_filter_dilations,
std::vector<ck::index_t> input_left_pads,
std::vector<ck::index_t> input_right_pads,
InElementwiseOperation in_element_op,
WeiElementwiseOperation wei_element_op,
OutElementwiseOperation out_element_op)
: in_n_c_hi_wi_{in_n_c_hi_wi},
wei_k_c_y_x_{wei_k_c_y_x},
out_n_k_ho_wo_{out_n_k_ho_wo},
conv_strides_{conv_filter_strides},
conv_dilations_{conv_filter_dilations},
in_left_pads_{input_left_pads},
in_right_pads_{input_right_pads},
in_element_op_{in_element_op},
wei_element_op_{wei_element_op},
out_element_op_{out_element_op}
{
}
Tensor<InDataType>& in_n_c_hi_wi_;
const Tensor<WeiDataType>& wei_k_c_y_x_;
const Tensor<OutDataType>& out_n_k_ho_wo_;
std::vector<index_t> conv_strides_;
std::vector<index_t> conv_dilations_;
std::vector<index_t> in_left_pads_;
std::vector<index_t> in_right_pads_;
InElementwiseOperation in_element_op_;
WeiElementwiseOperation wei_element_op_;
OutElementwiseOperation out_element_op_;
};
// Invoker
struct Invoker : public device::BaseInvoker
{
using Argument = ReferenceConvBwdData::Argument;
float Run(const Argument& arg)
{
auto f_nchw = [&](auto n, auto c, auto hi, auto wi) {
std::size_t K = arg.wei_k_c_y_x_.mDesc.GetLengths()[0];
std::size_t Y = arg.wei_k_c_y_x_.mDesc.GetLengths()[2];
std::size_t X = arg.wei_k_c_y_x_.mDesc.GetLengths()[3];
std::size_t Ho = arg.out_n_k_ho_wo_.mDesc.GetLengths()[2];
std::size_t Wo = arg.out_n_k_ho_wo_.mDesc.GetLengths()[3];
float v_acc = 0;
for(int y = 0; y < Y; ++y)
{
int h_tmp = hi + arg.in_left_pads_[0] - y * arg.conv_dilations_[0];
if(h_tmp % arg.conv_strides_[0] == 0)
{
int ho = h_tmp / arg.conv_strides_[0];
if(ho >= 0 && ho < Ho)
{
for(int x = 0; x < X; ++x)
{
int w_tmp = wi + arg.in_left_pads_[1] - x * arg.conv_dilations_[1];
if(w_tmp % arg.conv_strides_[1] == 0)
{
int wo = w_tmp / arg.conv_strides_[1];
if(wo >= 0 && wo < Wo)
{
for(int k = 0; k < K; ++k)
{
float v_out = 0;
float v_wei = 0;
arg.out_element_op_(
v_out,
ck::type_convert<float>(
arg.out_n_k_ho_wo_(n, k, ho, wo)));
arg.wei_element_op_(v_wei,
ck::type_convert<float>(
arg.wei_k_c_y_x_(k, c, y, x)));
v_acc += v_out * v_wei;
}
}
}
}
}
}
}
float v_in;
arg.in_element_op_(v_in, v_acc);
arg.in_n_c_hi_wi_(n, c, hi, wi) = ck::type_convert<InDataType>(v_in);
};
make_ParallelTensorFunctor(f_nchw,
arg.in_n_c_hi_wi_.mDesc.GetLengths()[0],
arg.in_n_c_hi_wi_.mDesc.GetLengths()[1],
arg.in_n_c_hi_wi_.mDesc.GetLengths()[2],
arg.in_n_c_hi_wi_.mDesc.GetLengths()[3])(
std::thread::hardware_concurrency());
return 0;
}
float Run(const device::BaseArgument* p_arg, int) override
{
return Run(*dynamic_cast<const Argument*>(p_arg));
}
};
static constexpr bool IsValidCompilationParameter()
{
// TODO: properly implement this check
return true;
}
bool IsSupportedArgument(const device::BaseArgument*) override { return true; }
static auto MakeArgument(Tensor<InDataType>& in_n_c_hi_wi,
const Tensor<WeiDataType>& wei_k_c_y_x,
const Tensor<OutDataType>& out_n_k_ho_wo,
std::vector<ck::index_t> conv_filter_strides,
std::vector<ck::index_t> conv_filter_dilations,
std::vector<ck::index_t> input_left_pads,
std::vector<ck::index_t> input_right_pads,
InElementwiseOperation in_element_op,
WeiElementwiseOperation wei_element_op,
OutElementwiseOperation out_element_op)
{
return Argument{in_n_c_hi_wi,
wei_k_c_y_x,
out_n_k_ho_wo,
conv_filter_strides,
conv_filter_dilations,
input_left_pads,
input_right_pads,
in_element_op,
wei_element_op,
out_element_op};
}
static auto MakeInvoker() { return Invoker{}; }
virtual std::unique_ptr<device::BaseInvoker> MakeInvokerPointer()
{
return std::make_unique<Invoker>(Invoker{});
}
std::string GetTypeString() const override
{
auto str = std::stringstream();
// clang-format off
str << "ReferenceConvBwdData"
<< std::endl;
// clang-format on
return str.str();
}
};
} // namespace host
} // namespace tensor_operation
} // namespace ck
#endif
#include "config.hpp"
#include "device.hpp"
#include "host_tensor.hpp"
#include "host_tensor_generator.hpp"
#include "host_conv.hpp"
#include "tensor_layout.hpp"
#include "device_tensor.hpp"
#include "device_conv_bwd_data.hpp"
#include "element_wise_operation.hpp"
#include "reference_conv_bwd_data.hpp"
using F16 = ck::half_t;
using F32 = float;
using BF16 = ushort;
using INT8 = int8_t;
namespace ck {
namespace tensor_operation {
namespace device {
namespace device_conv2d_bwd_data_instance {
using DeviceConvBwdDataNoOpPtr =
DeviceConvBwdDataPtr<ck::tensor_operation::element_wise::PassThrough,
ck::tensor_operation::element_wise::PassThrough,
ck::tensor_operation::element_wise::PassThrough>;
void add_device_conv2d_bwd_data_xdl_nhwc_kyxc_nhwk_f32_instances(
std::vector<DeviceConvBwdDataNoOpPtr>&);
void add_device_conv2d_bwd_data_xdl_nhwc_kyxc_nhwk_f16_instances(
std::vector<DeviceConvBwdDataNoOpPtr>&);
void add_device_conv2d_bwd_data_xdl_nhwc_kyxc_nhwk_bf16_instances(
std::vector<DeviceConvBwdDataNoOpPtr>&);
void add_device_conv2d_bwd_data_xdl_nhwc_kyxc_nhwk_int8_instances(
std::vector<DeviceConvBwdDataNoOpPtr>&);
} // namespace device_conv2d_bwd_data_instance
} // namespace device
} // namespace tensor_operation
} // namespace ck
using InElementOp = ck::tensor_operation::element_wise::PassThrough;
using WeiElementOp = ck::tensor_operation::element_wise::PassThrough;
using OutElementOp = ck::tensor_operation::element_wise::PassThrough;
template <typename T>
static bool check_out(const Tensor<T>& ref, const Tensor<T>& result)
{
float max_diff = 1e-6;
for(int i = 0; i < ref.mData.size(); ++i)
{
float diff = std::abs(double(ref.mData[i]) - double(result.mData[i]));
if(max_diff < diff)
{
return false;
}
}
return true;
}
int main(int argc, char* argv[])
{
int data_type = 0;
int init_method = 0;
// Conv shape
ck::index_t N = 128;
ck::index_t K = 256;
ck::index_t C = 192;
ck::index_t Y = 3;
ck::index_t X = 3;
ck::index_t Hi = 71;
ck::index_t Wi = 71;
ck::index_t conv_stride_h = 2;
ck::index_t conv_stride_w = 2;
ck::index_t conv_dilation_h = 1;
ck::index_t conv_dilation_w = 1;
ck::index_t in_left_pad_h = 1;
ck::index_t in_left_pad_w = 1;
ck::index_t in_right_pad_h = 1;
ck::index_t in_right_pad_w = 1;
if(argc == 3)
{
data_type = std::stoi(argv[1]);
init_method = std::stoi(argv[2]);
}
else if(argc == 18)
{
data_type = std::stoi(argv[1]);
init_method = std::stoi(argv[2]);
N = std::stoi(argv[3]);
K = std::stoi(argv[4]);
C = std::stoi(argv[5]);
Y = std::stoi(argv[6]);
X = std::stoi(argv[7]);
Hi = std::stoi(argv[8]);
Wi = std::stoi(argv[9]);
conv_stride_h = std::stoi(argv[10]);
conv_stride_w = std::stoi(argv[11]);
conv_dilation_h = std::stoi(argv[12]);
conv_dilation_w = std::stoi(argv[13]);
in_left_pad_h = std::stoi(argv[14]);
in_left_pad_w = std::stoi(argv[15]);
in_right_pad_h = std::stoi(argv[16]);
in_right_pad_w = std::stoi(argv[17]);
}
else
{
printf("arg1: data type (0=fp32 )\n");
printf("arg2: verification (0=no, 1=yes)\n");
printf("arg3: initialization (0=no init, 1=integer value, 2=decimal value)\n");
printf("arg4: run kernel # of times (>1)\n");
printf("arg5 to 19: N, K, C, Y, X, Hi, Wi, Sy, Sx, Dy, Dx, LeftPy, LeftPx, RightPy, "
"RightPx\n");
exit(1);
}
auto Run = [&](auto input_type, auto wei_type, auto out_type) {
using InDataType = decltype(input_type);
using WeiDataType = decltype(wei_type);
using OutDataType = decltype(out_type);
using ReferenceConvBwdInstance =
ck::tensor_operation::host::ReferenceConvBwdData<InDataType,
WeiDataType,
OutDataType,
InElementOp,
WeiElementOp,
OutElementOp>;
const ck::index_t YEff = (Y - 1) * conv_dilation_h + 1;
const ck::index_t XEff = (X - 1) * conv_dilation_w + 1;
const ck::index_t Ho = (Hi + in_left_pad_h + in_right_pad_h - YEff) / conv_stride_h + 1;
const ck::index_t Wo = (Wi + in_left_pad_w + in_right_pad_w - XEff) / conv_stride_w + 1;
const std::vector<ck::index_t> input_spatial_lengths{{Hi, Wi}};
const std::vector<ck::index_t> filter_spatial_lengths{{Y, X}};
const std::vector<ck::index_t> output_spatial_lengths{{Ho, Wo}};
const std::vector<ck::index_t> conv_filter_strides{{conv_stride_h, conv_stride_w}};
const std::vector<ck::index_t> conv_filter_dilations{{conv_dilation_h, conv_dilation_w}};
const std::vector<ck::index_t> input_left_pads{{in_left_pad_h, in_left_pad_w}};
const std::vector<ck::index_t> input_right_pads{{in_right_pad_h, in_right_pad_w}};
auto f_host_tensor_descriptor =
[](std::size_t N_, std::size_t C_, std::size_t H, std::size_t W) {
return HostTensorDescriptor(std::vector<std::size_t>({N_, C_, H, W}),
std::vector<std::size_t>({C_ * H * W, 1, W * C_, C_}));
};
Tensor<OutDataType> out_n_k_ho_wo(f_host_tensor_descriptor(N, K, Ho, Wo));
Tensor<WeiDataType> wei_k_c_y_x(f_host_tensor_descriptor(K, C, Y, X));
Tensor<InDataType> in_n_c_hi_wi_host_result(f_host_tensor_descriptor(N, C, Hi, Wi));
Tensor<InDataType> in_n_c_hi_wi_device_result(f_host_tensor_descriptor(N, C, Hi, Wi));
std::cout << "in_n_c_hi_wi: " << in_n_c_hi_wi_host_result.mDesc << std::endl;
std::cout << "wei_k_c_y_x: " << wei_k_c_y_x.mDesc << std::endl;
std::cout << "out_n_k_ho_wo: " << out_n_k_ho_wo.mDesc << std::endl;
switch(init_method)
{
case 0: break;
case 1:
out_n_k_ho_wo.GenerateTensorValue(GeneratorTensor_2<OutDataType>{-5, 5});
wei_k_c_y_x.GenerateTensorValue(GeneratorTensor_2<WeiDataType>{-5, 5});
break;
default:
out_n_k_ho_wo.GenerateTensorValue(GeneratorTensor_1<OutDataType>{1});
wei_k_c_y_x.GenerateTensorValue(GeneratorTensor_1<WeiDataType>{1});
}
DeviceMem in_device_buf(sizeof(InDataType) *
in_n_c_hi_wi_device_result.mDesc.GetElementSpace());
DeviceMem wei_device_buf(sizeof(WeiDataType) * wei_k_c_y_x.mDesc.GetElementSpace());
DeviceMem out_device_buf(sizeof(OutDataType) * out_n_k_ho_wo.mDesc.GetElementSpace());
out_device_buf.ToDevice(out_n_k_ho_wo.mData.data());
wei_device_buf.ToDevice(wei_k_c_y_x.mData.data());
in_n_c_hi_wi_device_result.GenerateTensorValue(GeneratorTensor_1<InDataType>{5});
in_device_buf.ToDevice(in_n_c_hi_wi_device_result.mData.data());
// get host result
{
auto ref_conv = ReferenceConvBwdInstance{};
auto ref_invoker = ref_conv.MakeInvoker();
auto ref_argument = ref_conv.MakeArgument(in_n_c_hi_wi_host_result,
wei_k_c_y_x,
out_n_k_ho_wo,
conv_filter_strides,
conv_filter_dilations,
input_left_pads,
input_right_pads,
InElementOp{},
WeiElementOp{},
OutElementOp{});
ref_invoker.Run(ref_argument);
}
using PassThrough = ck::tensor_operation::element_wise::PassThrough;
using DeviceConvBwdDataNoOpPtr = ck::tensor_operation::device::
DeviceConvBwdDataPtr<PassThrough, PassThrough, PassThrough>;
// add device Conv instances
std::vector<DeviceConvBwdDataNoOpPtr> conv_ptrs;
if constexpr(ck::is_same_v<ck::remove_cv_t<InDataType>, float> &&
ck::is_same_v<ck::remove_cv_t<WeiDataType>, float> &&
ck::is_same_v<ck::remove_cv_t<OutDataType>, float>)
{
ck::tensor_operation::device::device_conv2d_bwd_data_instance::
add_device_conv2d_bwd_data_xdl_nhwc_kyxc_nhwk_f32_instances(conv_ptrs);
}
else if constexpr(ck::is_same_v<ck::remove_cv_t<InDataType>, ck::half_t> &&
ck::is_same_v<ck::remove_cv_t<WeiDataType>, ck::half_t> &&
ck::is_same_v<ck::remove_cv_t<OutDataType>, ck::half_t>)
{
ck::tensor_operation::device::device_conv2d_bwd_data_instance::
add_device_conv2d_bwd_data_xdl_nhwc_kyxc_nhwk_f16_instances(conv_ptrs);
}
else if constexpr(ck::is_same_v<ck::remove_cv_t<InDataType>, ushort> &&
ck::is_same_v<ck::remove_cv_t<WeiDataType>, ushort> &&
ck::is_same_v<ck::remove_cv_t<OutDataType>, ushort>)
{
ck::tensor_operation::device::device_conv2d_bwd_data_instance::
add_device_conv2d_bwd_data_xdl_nhwc_kyxc_nhwk_bf16_instances(conv_ptrs);
}
else if constexpr(ck::is_same_v<ck::remove_cv_t<InDataType>, int8_t> &&
ck::is_same_v<ck::remove_cv_t<WeiDataType>, int8_t> &&
ck::is_same_v<ck::remove_cv_t<OutDataType>, int8_t>)
{
ck::tensor_operation::device::device_conv2d_bwd_data_instance::
add_device_conv2d_bwd_data_xdl_nhwc_kyxc_nhwk_int8_instances(conv_ptrs);
}
if(conv_ptrs.size() <= 0)
{
throw std::runtime_error("wrong! no device Conv instance found");
}
// profile device Conv instances
bool success = true;
for(auto& conv_ptr : conv_ptrs)
{
auto argument_ptr = conv_ptr->MakeArgumentPointer(
static_cast<InDataType*>(in_device_buf.GetDeviceBuffer()),
static_cast<WeiDataType*>(wei_device_buf.GetDeviceBuffer()),
static_cast<OutDataType*>(out_device_buf.GetDeviceBuffer()),
N,
K,
C,
input_spatial_lengths,
filter_spatial_lengths,
output_spatial_lengths,
conv_filter_strides,
conv_filter_dilations,
input_left_pads,
input_right_pads,
InElementOp{},
WeiElementOp{},
OutElementOp{});
if(conv_ptr->IsSupportedArgument(argument_ptr.get()))
{
auto invoker_ptr = conv_ptr->MakeInvokerPointer();
invoker_ptr->Run(argument_ptr.get(), 1);
in_device_buf.FromDevice(in_n_c_hi_wi_device_result.mData.data());
if(!check_out(in_n_c_hi_wi_host_result, in_n_c_hi_wi_device_result))
{
std::cout << "Fail Info: " << conv_ptr->GetTypeString() << std::endl;
success = false;
}
else
{
std::cout << "Pass Info: " << conv_ptr->GetTypeString() << std::endl;
}
}
else
{
std::cout << "Not support Info: " << conv_ptr->GetTypeString() << std::endl;
}
}
if(success)
{
std::cout << "test conv2d bwd : Pass" << std::endl;
}
else
{
std::cout << "test conv2d bwd: Fail " << std::endl;
}
};
if(data_type == 0)
{
Run(float(), float(), F32());
}
else if(data_type == 1)
{
Run(F16(), F16(), F16());
}
else if(data_type == 2)
{
Run(BF16(), BF16(), BF16());
}
else if(data_type == 3)
{
Run(INT8(), INT8(), INT8());
}
else
{
return 1;
}
return 0;
}
...@@ -29,9 +29,9 @@ void traverse_using_space_filling_curve() ...@@ -29,9 +29,9 @@ void traverse_using_space_filling_curve()
constexpr auto I1 = Number<1>{}; constexpr auto I1 = Number<1>{};
constexpr auto I2 = Number<2>{}; constexpr auto I2 = Number<2>{};
using TensorLengths = Sequence<4, 10, 9>; using TensorLengths = Sequence<16, 10, 9>;
using DimAccessOrder = Sequence<2, 0, 1>; using DimAccessOrder = Sequence<2, 0, 1>;
using ScalarsPerAccess = Sequence<1, 2, 3>; using ScalarsPerAccess = Sequence<4, 2, 3>;
using SpaceFillingCurve = SpaceFillingCurve<TensorLengths, DimAccessOrder, ScalarsPerAccess>; using SpaceFillingCurve = SpaceFillingCurve<TensorLengths, DimAccessOrder, ScalarsPerAccess>;
constexpr auto expected = make_tuple(make_tuple(0, 0, 0), constexpr auto expected = make_tuple(make_tuple(0, 0, 0),
...@@ -39,36 +39,36 @@ void traverse_using_space_filling_curve() ...@@ -39,36 +39,36 @@ void traverse_using_space_filling_curve()
make_tuple(0, 4, 0), make_tuple(0, 4, 0),
make_tuple(0, 6, 0), make_tuple(0, 6, 0),
make_tuple(0, 8, 0), make_tuple(0, 8, 0),
make_tuple(1, 8, 0), make_tuple(4, 8, 0),
make_tuple(1, 6, 0), make_tuple(4, 6, 0),
make_tuple(1, 4, 0), make_tuple(4, 4, 0),
make_tuple(1, 2, 0), make_tuple(4, 2, 0),
make_tuple(1, 0, 0), make_tuple(4, 0, 0),
make_tuple(2, 0, 0), make_tuple(8, 0, 0),
make_tuple(2, 2, 0), make_tuple(8, 2, 0),
make_tuple(2, 4, 0), make_tuple(8, 4, 0),
make_tuple(2, 6, 0), make_tuple(8, 6, 0),
make_tuple(2, 8, 0), make_tuple(8, 8, 0),
make_tuple(3, 8, 0), make_tuple(12, 8, 0),
make_tuple(3, 6, 0), make_tuple(12, 6, 0),
make_tuple(3, 4, 0), make_tuple(12, 4, 0),
make_tuple(3, 2, 0), make_tuple(12, 2, 0),
make_tuple(3, 0, 0), make_tuple(12, 0, 0),
make_tuple(3, 0, 3), make_tuple(12, 0, 3),
make_tuple(3, 2, 3), make_tuple(12, 2, 3),
make_tuple(3, 4, 3), make_tuple(12, 4, 3),
make_tuple(3, 6, 3), make_tuple(12, 6, 3),
make_tuple(3, 8, 3), make_tuple(12, 8, 3),
make_tuple(2, 8, 3), make_tuple(8, 8, 3),
make_tuple(2, 6, 3), make_tuple(8, 6, 3),
make_tuple(2, 4, 3), make_tuple(8, 4, 3),
make_tuple(2, 2, 3), make_tuple(8, 2, 3),
make_tuple(2, 0, 3), make_tuple(8, 0, 3),
make_tuple(1, 0, 3), make_tuple(4, 0, 3),
make_tuple(1, 2, 3), make_tuple(4, 2, 3),
make_tuple(1, 4, 3), make_tuple(4, 4, 3),
make_tuple(1, 6, 3), make_tuple(4, 6, 3),
make_tuple(1, 8, 3), make_tuple(4, 8, 3),
make_tuple(0, 8, 3), make_tuple(0, 8, 3),
make_tuple(0, 6, 3), make_tuple(0, 6, 3),
make_tuple(0, 4, 3), make_tuple(0, 4, 3),
...@@ -79,21 +79,21 @@ void traverse_using_space_filling_curve() ...@@ -79,21 +79,21 @@ void traverse_using_space_filling_curve()
make_tuple(0, 4, 6), make_tuple(0, 4, 6),
make_tuple(0, 6, 6), make_tuple(0, 6, 6),
make_tuple(0, 8, 6), make_tuple(0, 8, 6),
make_tuple(1, 8, 6), make_tuple(4, 8, 6),
make_tuple(1, 6, 6), make_tuple(4, 6, 6),
make_tuple(1, 4, 6), make_tuple(4, 4, 6),
make_tuple(1, 2, 6), make_tuple(4, 2, 6),
make_tuple(1, 0, 6), make_tuple(4, 0, 6),
make_tuple(2, 0, 6), make_tuple(8, 0, 6),
make_tuple(2, 2, 6), make_tuple(8, 2, 6),
make_tuple(2, 4, 6), make_tuple(8, 4, 6),
make_tuple(2, 6, 6), make_tuple(8, 6, 6),
make_tuple(2, 8, 6), make_tuple(8, 8, 6),
make_tuple(3, 8, 6), make_tuple(12, 8, 6),
make_tuple(3, 6, 6), make_tuple(12, 6, 6),
make_tuple(3, 4, 6), make_tuple(12, 4, 6),
make_tuple(3, 2, 6), make_tuple(12, 2, 6),
make_tuple(3, 0, 6)); make_tuple(12, 0, 6));
constexpr index_t num_accesses = SpaceFillingCurve::GetNumOfAccess(); constexpr index_t num_accesses = SpaceFillingCurve::GetNumOfAccess();
......
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment