Unverified Commit bd1ae40f authored by rocking5566's avatar rocking5566 Committed by GitHub
Browse files

Merge branch 'develop' into gemm_layernorm_welford

parents 78ff5f81 d1567094
......@@ -12,7 +12,6 @@
#include "ck/tensor_operation/gpu/element/element_wise_operation.hpp"
#include "ck/library/tensor_operation_instance/gpu/grouped_convolution_forward.hpp"
#include "ck/library/tensor_operation_instance/gpu/grouped_convolution_forward_dl.hpp"
#include "ck/library/utility/algorithm.hpp"
#include "ck/library/utility/check_err.hpp"
......@@ -199,93 +198,48 @@ bool profile_grouped_conv_fwd_impl(int do_verification,
}
};
// xdl
using DeviceOp = ck::tensor_operation::device::DeviceGroupedConvFwdMultipleD<NDimSpatial,
InLayout,
WeiLayout,
ck::Tuple<>,
OutLayout,
InDataType,
WeiDataType,
ck::Tuple<>,
OutDataType,
InElementOp,
WeiElementOp,
OutElementOp>;
// get device op instances
const auto op_ptrs = ck::tensor_operation::device::instance::DeviceOperationInstanceFactory<
DeviceOp>::GetInstances();
std::cout << "xdl found " << op_ptrs.size() << " instances" << std::endl;
for(auto& op_ptr : op_ptrs)
{
using DeviceOp = ck::tensor_operation::device::DeviceGroupedConvFwdMultipleD<NDimSpatial,
InLayout,
WeiLayout,
ck::Tuple<>,
OutLayout,
InDataType,
WeiDataType,
ck::Tuple<>,
OutDataType,
InElementOp,
WeiElementOp,
OutElementOp>;
// get device op instances
const auto op_ptrs = ck::tensor_operation::device::instance::DeviceOperationInstanceFactory<
DeviceOp>::GetInstances();
std::cout << "xdl found " << op_ptrs.size() << " instances" << std::endl;
for(auto& op_ptr : op_ptrs)
{
auto argument_ptr = op_ptr->MakeArgumentPointer(in_device_buf.GetDeviceBuffer(),
wei_device_buf.GetDeviceBuffer(),
{},
out_device_buf.GetDeviceBuffer(),
a_g_n_c_wis_lengths,
a_g_n_c_wis_strides,
b_g_k_c_xs_lengths,
b_g_k_c_xs_strides,
{},
{},
e_g_n_k_wos_lengths,
e_g_n_k_wos_strides,
conv_filter_strides,
conv_filter_dilations,
input_left_pads,
input_right_pads,
in_element_op,
wei_element_op,
out_element_op);
run_impl(op_ptr, argument_ptr);
}
}
// dl
{
using DeviceOp = ck::tensor_operation::device::DeviceGroupedConvFwd<NDimSpatial,
InLayout,
WeiLayout,
OutLayout,
InDataType,
WeiDataType,
OutDataType,
InElementOp,
WeiElementOp,
OutElementOp>;
// get device op instances
const auto op_ptrs = ck::tensor_operation::device::instance::DeviceOperationInstanceFactory<
DeviceOp>::GetInstances();
std::cout << "dl found " << op_ptrs.size() << " instances" << std::endl;
for(auto& op_ptr : op_ptrs)
{
auto argument_ptr = op_ptr->MakeArgumentPointer(in_device_buf.GetDeviceBuffer(),
wei_device_buf.GetDeviceBuffer(),
out_device_buf.GetDeviceBuffer(),
a_g_n_c_wis_lengths,
a_g_n_c_wis_strides,
b_g_k_c_xs_lengths,
b_g_k_c_xs_strides,
e_g_n_k_wos_lengths,
e_g_n_k_wos_strides,
conv_filter_strides,
conv_filter_dilations,
input_left_pads,
input_right_pads,
in_element_op,
wei_element_op,
out_element_op);
run_impl(op_ptr, argument_ptr);
}
auto argument_ptr = op_ptr->MakeArgumentPointer(in_device_buf.GetDeviceBuffer(),
wei_device_buf.GetDeviceBuffer(),
{},
out_device_buf.GetDeviceBuffer(),
a_g_n_c_wis_lengths,
a_g_n_c_wis_strides,
b_g_k_c_xs_lengths,
b_g_k_c_xs_strides,
{},
{},
e_g_n_k_wos_lengths,
e_g_n_k_wos_strides,
conv_filter_strides,
conv_filter_dilations,
input_left_pads,
input_right_pads,
in_element_op,
wei_element_op,
out_element_op);
run_impl(op_ptr, argument_ptr);
}
std::cout << "Best configuration parameters:"
......
# ckProfiler
set(PROFILER_SOURCES
profiler.cpp
profile_gemm.cpp
profile_gemm_splitk.cpp
profile_gemm_bilinear.cpp
profile_gemm_bias_add_reduce.cpp
profile_gemm_add_add_fastgelu.cpp
profile_gemm_reduce.cpp
profile_batched_gemm.cpp
profile_batched_gemm_gemm.cpp
profile_batched_gemm_add_relu_gemm_add.cpp
profile_batched_gemm_reduce.cpp
profile_grouped_gemm.cpp
profile_conv_fwd.cpp
profile_conv_fwd_bias_relu.cpp
profile_conv_fwd_bias_relu_add.cpp
profile_conv_bwd_data.cpp
profile_grouped_conv_fwd.cpp
profile_grouped_conv_bwd_weight.cpp
profile_reduce.cpp
profile_groupnorm.cpp
profile_layernorm.cpp
profile_softmax.cpp
profile_batchnorm_fwd.cpp
profile_batchnorm_bwd.cpp
)
set(PROFILER_EXECUTABLE ckProfiler)
add_executable(${PROFILER_EXECUTABLE} ${PROFILER_SOURCES})
target_compile_options(${PROFILER_EXECUTABLE} PRIVATE -Wno-global-constructors)
target_link_libraries(${PROFILER_EXECUTABLE} PRIVATE utility)
target_link_libraries(${PROFILER_EXECUTABLE} PRIVATE device_gemm_instance)
target_link_libraries(${PROFILER_EXECUTABLE} PRIVATE device_gemm_splitk_instance)
target_link_libraries(${PROFILER_EXECUTABLE} PRIVATE device_gemm_bilinear_instance)
target_link_libraries(${PROFILER_EXECUTABLE} PRIVATE device_gemm_add_add_fastgelu_instance)
target_link_libraries(${PROFILER_EXECUTABLE} PRIVATE device_gemm_reduce_instance)
target_link_libraries(${PROFILER_EXECUTABLE} PRIVATE device_gemm_bias_add_reduce_instance)
target_link_libraries(${PROFILER_EXECUTABLE} PRIVATE device_batched_gemm_instance)
target_link_libraries(${PROFILER_EXECUTABLE} PRIVATE device_batched_gemm_gemm_instance)
target_link_libraries(${PROFILER_EXECUTABLE} PRIVATE device_batched_gemm_add_relu_gemm_add_instance)
target_link_libraries(${PROFILER_EXECUTABLE} PRIVATE device_batched_gemm_reduce_instance)
target_link_libraries(${PROFILER_EXECUTABLE} PRIVATE device_grouped_gemm_instance)
target_link_libraries(${PROFILER_EXECUTABLE} PRIVATE device_conv2d_fwd_instance)
target_link_libraries(${PROFILER_EXECUTABLE} PRIVATE device_grouped_conv1d_fwd_instance)
target_link_libraries(${PROFILER_EXECUTABLE} PRIVATE device_grouped_conv2d_fwd_instance)
target_link_libraries(${PROFILER_EXECUTABLE} PRIVATE device_grouped_conv3d_fwd_instance)
target_link_libraries(${PROFILER_EXECUTABLE} PRIVATE device_conv1d_bwd_data_instance)
target_link_libraries(${PROFILER_EXECUTABLE} PRIVATE device_conv2d_bwd_data_instance)
target_link_libraries(${PROFILER_EXECUTABLE} PRIVATE device_conv3d_bwd_data_instance)
target_link_libraries(${PROFILER_EXECUTABLE} PRIVATE device_grouped_conv1d_bwd_weight_instance)
target_link_libraries(${PROFILER_EXECUTABLE} PRIVATE device_grouped_conv2d_bwd_weight_instance)
target_link_libraries(${PROFILER_EXECUTABLE} PRIVATE device_grouped_conv3d_bwd_weight_instance)
target_link_libraries(${PROFILER_EXECUTABLE} PRIVATE device_conv2d_fwd_bias_relu_instance)
target_link_libraries(${PROFILER_EXECUTABLE} PRIVATE device_conv2d_fwd_bias_relu_add_instance)
target_link_libraries(${PROFILER_EXECUTABLE} PRIVATE device_normalization_instance)
target_link_libraries(${PROFILER_EXECUTABLE} PRIVATE device_softmax_instance)
target_link_libraries(${PROFILER_EXECUTABLE} PRIVATE device_reduce_instance)
target_link_libraries(${PROFILER_EXECUTABLE} PRIVATE device_batchnorm_instance)
rocm_install(TARGETS ${PROFILER_EXECUTABLE} COMPONENT profiler)
......@@ -7,7 +7,8 @@
#include <initializer_list>
#include <cstdlib>
#include "profiler/include/profile_batched_gemm_impl.hpp"
#include "profiler/profile_batched_gemm_impl.hpp"
#include "profiler_operation_registry.hpp"
enum struct GemmMatrixLayout
{
......@@ -25,12 +26,15 @@ enum struct GemmDataType
INT8_INT8_INT8, // 3
};
#define OP_NAME "batched_gemm"
#define OP_DESC "Batched GEMM"
int profile_batched_gemm(int argc, char* argv[])
{
if(argc != 18)
{
// clang-format off
printf("arg1: tensor operation (batched_gemm: Batched GEMM)\n");
printf("arg1: tensor operation (" OP_NAME ": " OP_DESC ")\n");
printf("arg2: data type (0: fp32; 1: fp16, 2: bf16, 3: int8)\n");
printf("arg3: matrix layout (0: A[g, m, k] * B[g, k, n] = C[g, m, n];\n");
printf(" 1: A[g, m, k] * B[g, n, k] = C[g, m, n];\n");
......@@ -195,3 +199,5 @@ int profile_batched_gemm(int argc, char* argv[])
return 1;
}
}
REGISTER_PROFILER_OPERATION(OP_NAME, OP_DESC, profile_batched_gemm);
......@@ -6,7 +6,8 @@
#include <initializer_list>
#include <cstdlib>
#include "profiler/include/profile_batched_gemm_add_relu_gemm_add_impl.hpp"
#include "profiler/profile_batched_gemm_add_relu_gemm_add_impl.hpp"
#include "profiler_operation_registry.hpp"
using F16 = ck::half_t;
using F32 = float;
......@@ -14,6 +15,9 @@ using F32 = float;
using Row = ck::tensor_layout::gemm::RowMajor;
using Col = ck::tensor_layout::gemm::ColumnMajor;
#define OP_NAME "batched_gemm_add_relu_gemm_add"
#define OP_DESC "Batched GEMM+Add+Relu+GEMM+Add"
int profile_batched_gemm_add_relu_gemm_add(int argc, char* argv[])
{
enum struct GemmMatrixLayout
......@@ -109,8 +113,7 @@ int profile_batched_gemm_add_relu_gemm_add(int argc, char* argv[])
}
else
{
printf("arg1: tensor operation (batched_gemm_add_relu_gemm_add: "
"Batched_GEMM+Add+Relu+Gemm+Add)\n");
printf("arg1: tensor operation (" OP_NAME ": " OP_DESC ")\n");
printf("arg2: data type (1: fp16)\n");
printf("arg3: matrix layout (0: Relu(A0[m, k] * B0[n, k] + D0[m, n]) * B1[n, o] + D1[m, o] "
"= E1[m, o]; 1: Relu(A0[m, k] * B0[n, k] + D0[m, n]) * B1[o, n] + D1[m, o] = "
......@@ -207,3 +210,5 @@ int profile_batched_gemm_add_relu_gemm_add(int argc, char* argv[])
return 0;
}
REGISTER_PROFILER_OPERATION(OP_NAME, OP_DESC, profile_batched_gemm_add_relu_gemm_add);
......@@ -6,7 +6,8 @@
#include <initializer_list>
#include <cstdlib>
#include "profiler/include/profile_batched_gemm_gemm_impl.hpp"
#include "profiler/profile_batched_gemm_gemm_impl.hpp"
#include "profiler_operation_registry.hpp"
using F16 = ck::half_t;
using F32 = float;
......@@ -14,6 +15,9 @@ using F32 = float;
using Row = ck::tensor_layout::gemm::RowMajor;
using Col = ck::tensor_layout::gemm::ColumnMajor;
#define OP_NAME "batched_gemm_gemm"
#define OP_DESC "Batched GEMM+GEMM"
int profile_batched_gemm_gemm(int argc, char* argv[])
{
enum struct GemmMatrixLayout
......@@ -101,7 +105,7 @@ int profile_batched_gemm_gemm(int argc, char* argv[])
}
else
{
printf("arg1: tensor operation (batched_gemm_gemm: Batched_GEMM+Gemm)\n");
printf("arg1: tensor operation (" OP_NAME ": " OP_DESC ")\n");
printf("arg2: data type (1: fp16)\n");
printf("arg3: matrix layout (0: Relu(A0[m, k] * B0[n, k] + D0[m, n]) * B1[n, o] + D1[m, o] "
"= E1[m, o]; 1: Relu(A0[m, k] * B0[n, k] + D0[m, n]) * B1[o, n] + D1[m, o] = E1[m, "
......@@ -179,3 +183,5 @@ int profile_batched_gemm_gemm(int argc, char* argv[])
return 0;
}
REGISTER_PROFILER_OPERATION(OP_NAME, OP_DESC, profile_batched_gemm_gemm);
......@@ -6,7 +6,11 @@
#include <initializer_list>
#include <cstdlib>
#include "profiler/include/profile_batched_gemm_reduce_impl.hpp"
#include "profiler/profile_batched_gemm_reduce_impl.hpp"
#include "profiler_operation_registry.hpp"
#define OP_NAME "batched_gemm_reduce"
#define OP_DESC "Batched GEMM+Reduce"
int profile_batched_gemm_reduce(int argc, char* argv[])
{
......@@ -26,7 +30,7 @@ int profile_batched_gemm_reduce(int argc, char* argv[])
if(argc != 15)
{
printf("arg1: tensor operation (batched_gemm_reduce: BatchedGEMM+Reduce)\n");
printf("arg1: tensor operation (" OP_NAME ": " OP_DESC ")\n");
printf("arg2: data type (0: fp32; 1: fp16)\n");
printf("arg3: matrix layout (0: A[m, k] * B[k, n] = C[m, n];\n");
printf(" 1: A[m, k] * B[n, k] = C[m, n];\n");
......@@ -151,3 +155,5 @@ int profile_batched_gemm_reduce(int argc, char* argv[])
return 0;
}
REGISTER_PROFILER_OPERATION(OP_NAME, OP_DESC, profile_batched_gemm_reduce);
......@@ -6,7 +6,8 @@
#include <getopt.h>
#include "ck/library/utility/host_common_util.hpp"
#include "profiler/include/profile_batchnorm_backward_impl.hpp"
#include "profiler/profile_batchnorm_backward_impl.hpp"
#include "profiler_operation_registry.hpp"
using ck::index_t;
......@@ -202,3 +203,5 @@ int profile_batchnorm_backward(int argc, char* argv[])
return 0;
}
REGISTER_PROFILER_OPERATION("bnorm_bwd", "Batchnorm backward", profile_batchnorm_backward);
......@@ -6,7 +6,8 @@
#include <getopt.h>
#include "ck/library/utility/host_common_util.hpp"
#include "profiler/include/profile_batchnorm_forward_impl.hpp"
#include "profiler/profile_batchnorm_forward_impl.hpp"
#include "profiler_operation_registry.hpp"
using ck::index_t;
......@@ -214,3 +215,5 @@ int profile_batchnorm_forward(int argc, char* argv[])
return 0;
}
REGISTER_PROFILER_OPERATION("bnorm_fwd", "Batchnorm forward", profile_batchnorm_forward);
......@@ -6,7 +6,8 @@
#include <initializer_list>
#include <cstdlib>
#include "profiler/include/profile_conv_bwd_data_impl.hpp"
#include "profiler/profile_conv_bwd_data_impl.hpp"
#include "profiler_operation_registry.hpp"
namespace {
......@@ -24,10 +25,13 @@ enum struct ConvDataType
INT8_INT8_INT8, // 3
};
#define OP_NAME "conv_bwd_data"
#define OP_DESC "Convolution Backward Data"
static void print_helper_msg()
{
std::cout
<< "arg1: tensor operation (conv_bwd_data: Convolution Backward Data)\n"
<< "arg1: tensor operation (" OP_NAME ": " OP_DESC ")\n"
<< "arg2: data type (0: Input fp32, Weight fp32, Output fp32\n"
<< " 1: Input fp16, Weight fp16, Output fp16\n"
<< " 2: Input bf16, Weight bf16, Output bf16\n"
......@@ -182,3 +186,5 @@ int profile_conv_bwd_data(int argc, char* argv[])
return 1;
}
REGISTER_PROFILER_OPERATION(OP_NAME, OP_DESC, profile_conv_bwd_data);
......@@ -6,7 +6,8 @@
#include <initializer_list>
#include <cstdlib>
#include "profiler/include/profile_conv_fwd_impl.hpp"
#include "profiler/profile_conv_fwd_impl.hpp"
#include "profiler_operation_registry.hpp"
namespace {
......@@ -24,11 +25,14 @@ enum struct ConvDataType
INT8_INT8_INT8, // 3
};
#define OP_NAME "conv_fwd"
#define OP_DESC "Convolution Forward"
static void print_helper_msg()
{
std::cout
// clang-format-off
<< "arg1: tensor operation (conv_fwd: Convolution Forward)\n"
<< "arg1: tensor operation (" OP_NAME ": " OP_DESC ")\n"
<< "arg2: data type (0: Input fp32, Weight fp32, Output fp32\n"
<< " 1: Input fp16, Weight fp16, Output fp16\n"
<< " 2: Input bf16, Weight bf16, Output bf16\n"
......@@ -184,3 +188,5 @@ int profile_conv_fwd(int argc, char* argv[])
return 1;
}
REGISTER_PROFILER_OPERATION(OP_NAME, OP_DESC, profile_conv_fwd);
......@@ -6,7 +6,8 @@
#include <initializer_list>
#include <cstdlib>
#include "profiler/include/profile_conv_fwd_bias_relu_impl.hpp"
#include "profiler/profile_conv_fwd_bias_relu_impl.hpp"
#include "profiler_operation_registry.hpp"
enum struct ConvDataType
{
......@@ -32,11 +33,14 @@ enum struct ConvOutputLayout
NHWK, // 1
};
#define OP_NAME "conv_fwd_bias_relu"
#define OP_DESC "Convolution Forward+Bias+ReLU"
int profile_conv_fwd_bias_relu(int argc, char* argv[])
{
if(argc != 25)
{
printf("arg1: tensor operation (conv_fwd_bias_relu: ForwardConvolution+Bias+ReLu)\n");
printf("arg1: tensor operation (" OP_NAME ": " OP_DESC ")\n");
printf("arg2: data type (0: fp32; 1: fp16)\n");
printf("arg3: input tensor layout (0: NCHW; 1: NHWC)\n");
printf("arg4: weight tensor layout (0: KCYX; 1: KYXC)\n");
......@@ -114,3 +118,5 @@ int profile_conv_fwd_bias_relu(int argc, char* argv[])
return 0;
}
REGISTER_PROFILER_OPERATION(OP_NAME, OP_DESC, profile_conv_fwd_bias_relu);
......@@ -6,7 +6,8 @@
#include <initializer_list>
#include <cstdlib>
#include "profiler/include/profile_conv_fwd_bias_relu_add_impl.hpp"
#include "profiler/profile_conv_fwd_bias_relu_add_impl.hpp"
#include "profiler_operation_registry.hpp"
enum struct ConvDataType
{
......@@ -32,12 +33,14 @@ enum struct ConvOutputLayout
NHWK, // 1
};
#define OP_NAME "conv_fwd_bias_relu_add"
#define OP_DESC "Convolution Forward+Bias+ReLU+Add"
int profile_conv_fwd_bias_relu_add(int argc, char* argv[])
{
if(argc != 25)
{
printf(
"arg1: tensor operation (conv_fwd_bias_relu_add: ForwardConvolution+Bias+ReLu+Add)\n");
printf("arg1: tensor operation (" OP_NAME ": " OP_DESC ")\n");
printf("arg2: data type (0: fp32; 1: fp16)\n");
printf("arg3: input tensor layout (0: NCHW; 1: NHWC)\n");
printf("arg4: weight tensor layout (0: KCYX; 1: KYXC)\n");
......@@ -115,3 +118,5 @@ int profile_conv_fwd_bias_relu_add(int argc, char* argv[])
return 0;
}
REGISTER_PROFILER_OPERATION(OP_NAME, OP_DESC, profile_conv_fwd_bias_relu_add);
......@@ -6,7 +6,8 @@
#include <initializer_list>
#include <cstdlib>
#include "profiler/include/profile_gemm_impl.hpp"
#include "profiler/profile_gemm_impl.hpp"
#include "profiler_operation_registry.hpp"
enum struct GemmMatrixLayout
{
......@@ -24,9 +25,12 @@ enum struct GemmDataType
INT8_INT8_INT8, // 3
};
#define OP_NAME "gemm"
#define OP_DESC "GEMM"
static void print_helper_msg()
{
std::cout << "arg1: tensor operation (gemm: GEMM)\n"
std::cout << "arg1: tensor operation (" OP_NAME ": " OP_DESC ")\n"
<< "arg2: data type (0: fp32; 1: fp16; 2: bf16; 3: int8)\n"
<< "arg3: matrix layout (0: A[m, k] * B[k, n] = C[m, n];\n"
<< " 1: A[m, k] * B[n, k] = C[m, n];\n"
......@@ -184,3 +188,5 @@ int profile_gemm(int argc, char* argv[])
return 1;
}
}
REGISTER_PROFILER_OPERATION(OP_NAME, OP_DESC, profile_gemm);
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment