Skip to content
GitLab
Menu
Projects
Groups
Snippets
Loading...
Help
Help
Support
Community forum
Keyboard shortcuts
?
Submit feedback
Contribute to GitLab
Sign in / Register
Toggle navigation
Menu
Open sidebar
gaoqiong
composable_kernel
Commits
bd0f0686
Commit
bd0f0686
authored
Jul 09, 2022
by
Jing Zhang
Browse files
merge develop
parents
e9b1000f
63914743
Changes
382
Show whitespace changes
Inline
Side-by-side
Showing
20 changed files
with
1094 additions
and
103 deletions
+1094
-103
CMakeLists.txt
CMakeLists.txt
+0
-7
README.md
README.md
+7
-0
client_example/01_gemm/CMakeLists.txt
client_example/01_gemm/CMakeLists.txt
+2
-0
client_example/01_gemm/gemm.cpp
client_example/01_gemm/gemm.cpp
+218
-0
client_example/02_gemm_add_add_fastgelu/gemm_add_add_fastgelu.cpp
...xample/02_gemm_add_add_fastgelu/gemm_add_add_fastgelu.cpp
+33
-29
client_example/03_gemm_layernorm/CMakeLists.txt
client_example/03_gemm_layernorm/CMakeLists.txt
+2
-2
client_example/03_gemm_layernorm/gemm_add_add_layernorm.cpp
client_example/03_gemm_layernorm/gemm_add_add_layernorm.cpp
+10
-9
client_example/04_contraction/CMakeLists.txt
client_example/04_contraction/CMakeLists.txt
+6
-0
client_example/04_contraction/contraction_bilinear.cpp
client_example/04_contraction/contraction_bilinear.cpp
+241
-0
client_example/04_contraction/contraction_scale.cpp
client_example/04_contraction/contraction_scale.cpp
+227
-0
client_example/CMakeLists.txt
client_example/CMakeLists.txt
+2
-0
client_example/README.md
client_example/README.md
+1
-12
example/01_gemm/gemm_xdl_fp16.cpp
example/01_gemm/gemm_xdl_fp16.cpp
+14
-2
example/02_gemm_alpha_beta/CMakeLists.txt
example/02_gemm_alpha_beta/CMakeLists.txt
+0
-1
example/02_gemm_bilinear/CMakeLists.txt
example/02_gemm_bilinear/CMakeLists.txt
+1
-0
example/02_gemm_bilinear/README.md
example/02_gemm_bilinear/README.md
+6
-4
example/02_gemm_bilinear/gemm_bilinear_xdl_fp16.cpp
example/02_gemm_bilinear/gemm_bilinear_xdl_fp16.cpp
+305
-0
example/03_gemm_bias_relu/CMakeLists.txt
example/03_gemm_bias_relu/CMakeLists.txt
+1
-1
example/03_gemm_bias_relu/README.md
example/03_gemm_bias_relu/README.md
+5
-23
example/03_gemm_bias_relu/gemm_bias_relu_xdl_fp16.cpp
example/03_gemm_bias_relu/gemm_bias_relu_xdl_fp16.cpp
+13
-13
No files found.
CMakeLists.txt
View file @
bd0f0686
...
@@ -71,13 +71,6 @@ if( DEFINED CK_OVERRIDE_HIP_VERSION_PATCH )
...
@@ -71,13 +71,6 @@ if( DEFINED CK_OVERRIDE_HIP_VERSION_PATCH )
endif
()
endif
()
message
(
STATUS
"Build with HIP
${
HIP_VERSION
}
"
)
message
(
STATUS
"Build with HIP
${
HIP_VERSION
}
"
)
rocm_create_package
(
NAME composablekernel
DESCRIPTION
"High Performance Composable Kernel for AMD GPUs"
MAINTAINER
"MIOpen Kernels Dev Team <dl.MIOpen@amd.com>"
LDCONFIG
)
## tidy
## tidy
include
(
EnableCompilerWarnings
)
include
(
EnableCompilerWarnings
)
set
(
CK_TIDY_ERRORS ERRORS * -readability-inconsistent-declaration-parameter-name
)
set
(
CK_TIDY_ERRORS ERRORS * -readability-inconsistent-declaration-parameter-name
)
...
...
README.md
View file @
bd0f0686
...
@@ -26,6 +26,7 @@ cmake \
...
@@ -26,6 +26,7 @@ cmake \
-D
CMAKE_CXX_FLAGS
=
" --offload-arch=gfx908 --offload-arch=gfx90a -O3"
\
-D
CMAKE_CXX_FLAGS
=
" --offload-arch=gfx908 --offload-arch=gfx90a -O3"
\
-D
CMAKE_CXX_COMPILER
=
/opt/rocm/bin/hipcc
\
-D
CMAKE_CXX_COMPILER
=
/opt/rocm/bin/hipcc
\
-D
CMAKE_PREFIX_PATH
=
/opt/rocm
\
-D
CMAKE_PREFIX_PATH
=
/opt/rocm
\
-D
CMAKE_INSTALL_PREFIX
=
${
PATH_TO_CK_INSTALL_DIRECTORY
}
\
..
..
```
```
...
@@ -47,6 +48,12 @@ Instructions for running each individual examples are under ```example/```
...
@@ -47,6 +48,12 @@ Instructions for running each individual examples are under ```example/```
```
```
Instructions for running ckProfiler are under
```profiler/```
Instructions for running ckProfiler are under
```profiler/```
## Install CK
```
bash
make
install
```
## Using CK as pre-built kernel library
## Caveat
## Caveat
### Kernel Timing and Verification
### Kernel Timing and Verification
...
...
client_example/01_gemm/CMakeLists.txt
0 → 100644
View file @
bd0f0686
add_executable
(
client_gemm gemm.cpp
)
target_link_libraries
(
client_gemm PRIVATE composable_kernel::device_operations
)
client_example/01_gemm/gemm.cpp
0 → 100644
View file @
bd0f0686
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2022, Advanced Micro Devices, Inc. All rights reserved.
#include <iomanip>
#include <vector>
#include <iostream>
#include "ck/ck.hpp"
#include "ck/tensor_operation/gpu/device/tensor_layout.hpp"
#include "ck/tensor_operation/gpu/device/device_gemm.hpp"
#include "ck/tensor_operation/gpu/element/element_wise_operation.hpp"
#include "ck/library/tensor_operation_instance/gpu/gemm.hpp"
using
F16
=
ck
::
half_t
;
using
F32
=
float
;
using
Row
=
ck
::
tensor_layout
::
gemm
::
RowMajor
;
using
Col
=
ck
::
tensor_layout
::
gemm
::
ColumnMajor
;
using
PassThrough
=
ck
::
tensor_operation
::
element_wise
::
PassThrough
;
using
AElementOp
=
PassThrough
;
using
BElementOp
=
PassThrough
;
using
CElementOp
=
PassThrough
;
using
ADataType
=
F16
;
using
BDataType
=
F16
;
using
CDataType
=
F16
;
using
ALayout
=
Row
;
using
BLayout
=
Col
;
using
CLayout
=
Row
;
struct
SimpleDeviceMem
{
SimpleDeviceMem
()
=
delete
;
SimpleDeviceMem
(
std
::
size_t
mem_size
)
:
p_mem_
{}
{
(
void
)
hipMalloc
(
static_cast
<
void
**>
(
&
p_mem_
),
mem_size
);
}
void
*
GetDeviceBuffer
()
{
return
p_mem_
;
}
~
SimpleDeviceMem
()
{
(
void
)
hipFree
(
p_mem_
);
}
void
*
p_mem_
;
};
int
main
(
int
argc
,
char
*
argv
[])
{
// GEMM shape
ck
::
index_t
M
=
3840
;
ck
::
index_t
N
=
4096
;
ck
::
index_t
K
=
4096
;
ck
::
index_t
StrideA
=
4096
;
ck
::
index_t
StrideB
=
4096
;
ck
::
index_t
StrideC
=
4096
;
if
(
argc
==
1
)
{
// use default case
}
else
if
(
argc
==
5
)
{
M
=
std
::
stoi
(
argv
[
1
]);
N
=
std
::
stoi
(
argv
[
2
]);
K
=
std
::
stoi
(
argv
[
3
]);
StrideA
=
std
::
stoi
(
argv
[
4
]);
StrideB
=
std
::
stoi
(
argv
[
5
]);
StrideC
=
std
::
stoi
(
argv
[
6
]);
}
else
{
printf
(
"arg1 to 6: M, N, K, StrideA, StrideB, StrideC
\n
"
);
exit
(
0
);
}
auto
f_matrix_space_size
=
[](
std
::
size_t
nRow
,
std
::
size_t
nCol
,
std
::
size_t
stride
,
auto
layout
)
{
using
Layout
=
decltype
(
layout
);
if
(
std
::
is_same
<
Layout
,
ck
::
tensor_layout
::
gemm
::
RowMajor
>::
value
)
{
return
(
nRow
-
1
)
*
stride
+
nCol
;
}
else
{
return
(
nCol
-
1
)
*
stride
+
nRow
;
}
};
SimpleDeviceMem
a_device_buf
(
sizeof
(
ADataType
)
*
f_matrix_space_size
(
M
,
K
,
StrideA
,
ALayout
{}));
SimpleDeviceMem
b_device_buf
(
sizeof
(
BDataType
)
*
f_matrix_space_size
(
K
,
N
,
StrideB
,
BLayout
{}));
SimpleDeviceMem
c_device_buf
(
sizeof
(
CDataType
)
*
f_matrix_space_size
(
M
,
N
,
StrideC
,
CLayout
{}));
using
DeviceOp
=
ck
::
tensor_operation
::
device
::
DeviceGemm
<
ALayout
,
BLayout
,
CLayout
,
ADataType
,
BDataType
,
CDataType
,
ck
::
tensor_operation
::
element_wise
::
PassThrough
,
ck
::
tensor_operation
::
element_wise
::
PassThrough
,
ck
::
tensor_operation
::
element_wise
::
PassThrough
>
;
// get device op instances
const
auto
op_ptrs
=
ck
::
tensor_operation
::
device
::
instance
::
DeviceOperationInstanceFactory
<
DeviceOp
>::
GetInstances
();
std
::
cout
<<
"found "
<<
op_ptrs
.
size
()
<<
" instances"
<<
std
::
endl
;
const
auto
a_element_op
=
AElementOp
{};
const
auto
b_element_op
=
BElementOp
{};
const
auto
c_element_op
=
CElementOp
{};
std
::
string
best_op_name
;
bool
found
=
false
;
int
best_op_id
=
-
1
;
float
best_ave_time
=
0
;
float
best_tflops
=
0
;
float
best_gb_per_sec
=
0
;
// profile device operation instances
std
::
cout
<<
"Run all instances and do timing"
<<
std
::
endl
;
for
(
int
i
=
0
;
i
<
op_ptrs
.
size
();
++
i
)
{
auto
&
op_ptr
=
op_ptrs
[
i
];
auto
argument_ptr
=
op_ptr
->
MakeArgumentPointer
(
a_device_buf
.
GetDeviceBuffer
(),
b_device_buf
.
GetDeviceBuffer
(),
c_device_buf
.
GetDeviceBuffer
(),
M
,
N
,
K
,
StrideA
,
StrideB
,
StrideC
,
a_element_op
,
b_element_op
,
c_element_op
);
auto
invoker_ptr
=
op_ptr
->
MakeInvokerPointer
();
std
::
string
op_name
=
op_ptr
->
GetTypeString
();
if
(
op_ptr
->
IsSupportedArgument
(
argument_ptr
.
get
()))
{
float
ave_time
=
invoker_ptr
->
Run
(
argument_ptr
.
get
(),
StreamConfig
{
nullptr
,
true
});
std
::
size_t
flop
=
std
::
size_t
(
2
)
*
M
*
N
*
K
;
std
::
size_t
num_btype
=
sizeof
(
ADataType
)
*
M
*
K
+
sizeof
(
BDataType
)
*
K
*
N
+
sizeof
(
CDataType
)
*
M
*
N
;
float
tflops
=
static_cast
<
float
>
(
flop
)
/
1.E9
/
ave_time
;
float
gb_per_sec
=
num_btype
/
1.E6
/
ave_time
;
std
::
cout
<<
"Perf: "
<<
std
::
setw
(
10
)
<<
ave_time
<<
" ms, "
<<
tflops
<<
" TFlops, "
<<
gb_per_sec
<<
" GB/s, "
<<
op_name
<<
std
::
endl
;
if
(
tflops
>
best_tflops
)
{
found
=
true
;
best_op_id
=
i
;
best_op_name
=
op_name
;
best_tflops
=
tflops
;
best_ave_time
=
ave_time
;
best_gb_per_sec
=
gb_per_sec
;
}
}
else
{
std
::
cout
<<
op_name
<<
" does not support this problem"
<<
std
::
endl
;
}
}
std
::
cout
<<
"Best Perf: "
<<
best_ave_time
<<
" ms, "
<<
best_tflops
<<
" TFlops, "
<<
best_gb_per_sec
<<
" GB/s, "
<<
best_op_name
<<
std
::
endl
;
// run the best intance
{
auto
&
op_ptr
=
op_ptrs
[
best_op_id
];
std
::
cout
<<
"Run the best instance without timing: "
<<
op_ptr
->
GetTypeString
()
<<
std
::
endl
;
auto
argument_ptr
=
op_ptr
->
MakeArgumentPointer
(
a_device_buf
.
GetDeviceBuffer
(),
b_device_buf
.
GetDeviceBuffer
(),
c_device_buf
.
GetDeviceBuffer
(),
M
,
N
,
K
,
StrideA
,
StrideB
,
StrideC
,
a_element_op
,
b_element_op
,
c_element_op
);
auto
invoker_ptr
=
op_ptr
->
MakeInvokerPointer
();
if
(
op_ptr
->
IsSupportedArgument
(
argument_ptr
.
get
()))
{
invoker_ptr
->
Run
(
argument_ptr
.
get
(),
StreamConfig
{
nullptr
,
false
});
}
std
::
cout
<<
"Done"
<<
std
::
endl
;
}
return
0
;
}
client_example/02_gemm_add_add_fastgelu/gemm_add_add_fastgelu.cpp
View file @
bd0f0686
...
@@ -10,7 +10,7 @@
...
@@ -10,7 +10,7 @@
#include "ck/tensor_operation/gpu/device/device_gemm_multiple_d.hpp"
#include "ck/tensor_operation/gpu/device/device_gemm_multiple_d.hpp"
#include "ck/tensor_operation/gpu/element/element_wise_operation.hpp"
#include "ck/tensor_operation/gpu/element/element_wise_operation.hpp"
#include "ck/library/tensor_operation_instance/gpu/
device_
gemm_add_add_fastgelu
_instance
.hpp"
#include "ck/library/tensor_operation_instance/gpu/gemm_add_add_fastgelu.hpp"
using
F16
=
ck
::
half_t
;
using
F16
=
ck
::
half_t
;
using
F32
=
float
;
using
F32
=
float
;
...
@@ -27,16 +27,15 @@ using CDEElementOp = AddAddFastGelu;
...
@@ -27,16 +27,15 @@ using CDEElementOp = AddAddFastGelu;
using
ADataType
=
F16
;
using
ADataType
=
F16
;
using
BDataType
=
F16
;
using
BDataType
=
F16
;
using
AccDataType
=
F32
;
using
D0DataType
=
F16
;
using
D0DataType
=
F16
;
using
D1DataType
=
F16
;
using
D1DataType
=
F16
;
using
EDataType
=
F16
;
using
EDataType
=
F16
;
using
ALayout
=
Row
;
using
ALayout
=
Row
;
using
BLayout
=
Col
;
using
BLayout
=
Col
;
using
D
0
Layout
=
Row
;
using
D
DE
Layout
=
Row
;
using
D
1
Layout
=
Row
;
using
D
DE
Layout
=
Row
;
using
ELayout
=
Row
;
using
D
ELayout
=
Row
;
struct
SimpleDeviceMem
struct
SimpleDeviceMem
{
{
...
@@ -106,24 +105,27 @@ int main(int argc, char* argv[])
...
@@ -106,24 +105,27 @@ int main(int argc, char* argv[])
SimpleDeviceMem
a_device_buf
(
sizeof
(
ADataType
)
*
f_matrix_space_size
(
M
,
K
,
StrideA
,
ALayout
{}));
SimpleDeviceMem
a_device_buf
(
sizeof
(
ADataType
)
*
f_matrix_space_size
(
M
,
K
,
StrideA
,
ALayout
{}));
SimpleDeviceMem
b_device_buf
(
sizeof
(
BDataType
)
*
f_matrix_space_size
(
K
,
N
,
StrideB
,
BLayout
{}));
SimpleDeviceMem
b_device_buf
(
sizeof
(
BDataType
)
*
f_matrix_space_size
(
K
,
N
,
StrideB
,
BLayout
{}));
SimpleDeviceMem
d0_m_n_device_buf
(
sizeof
(
D0DataType
)
*
SimpleDeviceMem
d0_m_n_device_buf
(
sizeof
(
D0DataType
)
*
f_matrix_space_size
(
M
,
N
,
StrideD0
,
D
0
Layout
{}));
f_matrix_space_size
(
M
,
N
,
StrideD0
,
D
DE
Layout
{}));
SimpleDeviceMem
d1_m_n_device_buf
(
sizeof
(
D1DataType
)
*
SimpleDeviceMem
d1_m_n_device_buf
(
sizeof
(
D1DataType
)
*
f_matrix_space_size
(
M
,
N
,
StrideD1
,
D1Layout
{}));
f_matrix_space_size
(
M
,
N
,
StrideD1
,
DDELayout
{}));
SimpleDeviceMem
e_device_buf
(
sizeof
(
EDataType
)
*
f_matrix_space_size
(
M
,
N
,
StrideE
,
ELayout
{}));
SimpleDeviceMem
e_device_buf
(
sizeof
(
EDataType
)
*
f_matrix_space_size
(
M
,
N
,
StrideE
,
DELayout
{}));
// add device op instances
using
DeviceOp
=
ck
::
tensor_operation
::
device
::
DeviceGemmMultipleD
<
const
auto
op_ptrs
=
ck
::
tensor_operation
::
device
::
device_gemm_instance
::
get_device_gemm_add_add_fastgelu_instances
<
ADataType
,
BDataType
,
AccDataType
,
D0DataType
,
D1DataType
,
EDataType
,
ALayout
,
ALayout
,
BLayout
,
BLayout
,
D0Layout
,
DDELayout
,
D1Layout
,
ADataType
,
ELayout
>
();
BDataType
,
ck
::
Tuple
<
D0DataType
,
D1DataType
>
,
EDataType
,
ck
::
tensor_operation
::
element_wise
::
PassThrough
,
ck
::
tensor_operation
::
element_wise
::
PassThrough
,
ck
::
tensor_operation
::
element_wise
::
AddAddFastGelu
>
;
// get device op instances
const
auto
op_ptrs
=
ck
::
tensor_operation
::
device
::
instance
::
DeviceOperationInstanceFactory
<
DeviceOp
>::
GetInstances
();
std
::
cout
<<
"found "
<<
op_ptrs
.
size
()
<<
" instances"
<<
std
::
endl
;
std
::
cout
<<
"found "
<<
op_ptrs
.
size
()
<<
" instances"
<<
std
::
endl
;
...
@@ -231,6 +233,8 @@ int main(int argc, char* argv[])
...
@@ -231,6 +233,8 @@ int main(int argc, char* argv[])
{
{
invoker_ptr
->
Run
(
argument_ptr
.
get
(),
StreamConfig
{
nullptr
,
false
});
invoker_ptr
->
Run
(
argument_ptr
.
get
(),
StreamConfig
{
nullptr
,
false
});
}
}
std
::
cout
<<
"Done"
<<
std
::
endl
;
}
}
return
0
;
return
0
;
...
...
client_example/03_gemm_layernorm/CMakeLists.txt
View file @
bd0f0686
add_executable
(
gemm_add_add_reduce_normalize gemm_add_add_layernorm.cpp
)
add_executable
(
client_
gemm_add_add_reduce_normalize gemm_add_add_layernorm.cpp
)
target_link_libraries
(
gemm_add_add_reduce_normalize PRIVATE composable_kernel::device_operations
)
target_link_libraries
(
client_
gemm_add_add_reduce_normalize PRIVATE composable_kernel::device_operations
)
client_example/03_gemm_layernorm/gemm_add_add_layernorm.cpp
View file @
bd0f0686
...
@@ -160,8 +160,9 @@ int main()
...
@@ -160,8 +160,9 @@ int main()
ck
::
index_t
StrideC
=
1024
;
ck
::
index_t
StrideC
=
1024
;
ck
::
index_t
StrideD0
=
1024
;
ck
::
index_t
StrideD0
=
1024
;
const
auto
gemm_reduce_ptrs
=
ck
::
tensor_operation
::
device
::
device_gemm_instance
::
const
auto
gemm_reduce_ptrs
=
get_device_gemm_add_add_mean_squaremean_instances
<
ADataType
,
ck
::
tensor_operation
::
device
::
instance
::
get_device_gemm_add_add_mean_squaremean_instances
<
ADataType
,
BDataType
,
BDataType
,
CDataType
,
CDataType
,
ALayout
,
ALayout
,
...
@@ -169,7 +170,7 @@ int main()
...
@@ -169,7 +170,7 @@ int main()
CLayout
>
();
CLayout
>
();
const
auto
normalize_ptrs
=
const
auto
normalize_ptrs
=
ck
::
tensor_operation
::
device
::
get_device_normalize_from_mean_meansquare_instances
<
ck
::
tensor_operation
::
device
::
instance
::
get_device_normalize_from_mean_meansquare_instances
<
CDataType
,
CDataType
,
ReduceDataType
,
ReduceDataType
,
ReduceDataType
,
ReduceDataType
,
...
...
client_example/04_contraction/CMakeLists.txt
0 → 100644
View file @
bd0f0686
add_executable
(
client_contraction_scale contraction_scale.cpp
)
target_link_libraries
(
client_contraction_scale PRIVATE composable_kernel::device_operations
)
add_executable
(
client_contraction_bilinear contraction_bilinear.cpp
)
target_link_libraries
(
client_contraction_bilinear PRIVATE composable_kernel::device_operations
)
client_example/04_contraction/contraction_bilinear.cpp
0 → 100644
View file @
bd0f0686
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2022, Advanced Micro Devices, Inc. All rights reserved.
#include <iomanip>
#include <numeric>
#include <vector>
#include <iostream>
#include "ck/ck.hpp"
#include "ck/tensor_operation/gpu/device/tensor_layout.hpp"
#include "ck/tensor_operation/gpu/device/device_contraction_multiple_d.hpp"
#include "ck/tensor_operation/gpu/element/element_wise_operation.hpp"
#include "ck/library/tensor_operation_instance/gpu/contraction_bilinear.hpp"
using
F32
=
float
;
using
PassThrough
=
ck
::
tensor_operation
::
element_wise
::
PassThrough
;
using
Bilinear
=
ck
::
tensor_operation
::
element_wise
::
Bilinear
;
using
AElementOp
=
PassThrough
;
using
BElementOp
=
PassThrough
;
using
CDEElementOp
=
Bilinear
;
using
ADataType
=
F32
;
using
BDataType
=
F32
;
using
AccDataType
=
F32
;
using
CShuffleDataType
=
F32
;
using
DDataType
=
F32
;
using
DsDataType
=
ck
::
Tuple
<
DDataType
>
;
using
EDataType
=
F32
;
static
constexpr
ck
::
index_t
NumDimM
=
2
;
static
constexpr
ck
::
index_t
NumDimN
=
2
;
static
constexpr
ck
::
index_t
NumDimK
=
2
;
struct
SimpleDeviceMem
{
SimpleDeviceMem
()
=
delete
;
SimpleDeviceMem
(
std
::
size_t
mem_size
)
:
p_mem_
{}
{
(
void
)
hipMalloc
(
static_cast
<
void
**>
(
&
p_mem_
),
mem_size
);
}
void
*
GetDeviceBuffer
()
{
return
p_mem_
;
}
~
SimpleDeviceMem
()
{
(
void
)
hipFree
(
p_mem_
);
}
void
*
p_mem_
;
};
int
main
(
int
argc
,
char
*
argv
[])
{
// A[M0, M1, K0, K1]
std
::
vector
<
ck
::
index_t
>
a_ms_ks_lengths
{
30
,
128
,
32
,
64
};
std
::
vector
<
ck
::
index_t
>
a_ms_ks_strides
{
524288
,
4096
,
128
,
1
};
// B[N0, N1, K0, K1]
std
::
vector
<
ck
::
index_t
>
b_ns_ks_lengths
{
32
,
64
,
32
,
64
};
std
::
vector
<
ck
::
index_t
>
b_ns_ks_strides
{
524288
,
4096
,
128
,
1
};
// D[M0, M1, N0, N1]
std
::
vector
<
ck
::
index_t
>
d_ms_ns_lengths
{
30
,
128
,
32
,
64
};
std
::
vector
<
ck
::
index_t
>
d_ms_ns_strides
{
524288
,
4096
,
128
,
1
};
// E[M0, M1, N0, N1]
std
::
vector
<
ck
::
index_t
>
e_ms_ns_lengths
{
30
,
128
,
32
,
64
};
std
::
vector
<
ck
::
index_t
>
e_ms_ns_strides
{
524288
,
4096
,
128
,
1
};
float
alpha
=
1.
f
;
float
beta
=
1.
f
;
if
(
argc
==
1
)
{
// use default case
}
else
if
(
argc
==
25
)
{
const
ck
::
index_t
M0
=
std
::
stoi
(
argv
[
1
]);
const
ck
::
index_t
M1
=
std
::
stoi
(
argv
[
2
]);
const
ck
::
index_t
N0
=
std
::
stoi
(
argv
[
3
]);
const
ck
::
index_t
N1
=
std
::
stoi
(
argv
[
4
]);
const
ck
::
index_t
K0
=
std
::
stoi
(
argv
[
5
]);
const
ck
::
index_t
K1
=
std
::
stoi
(
argv
[
6
]);
a_ms_ks_lengths
=
{
M0
,
M1
,
K0
,
K1
};
a_ms_ks_strides
=
{
std
::
stoi
(
argv
[
7
]),
std
::
stoi
(
argv
[
8
]),
std
::
stoi
(
argv
[
9
]),
std
::
stoi
(
argv
[
10
])};
b_ns_ks_lengths
=
{
N0
,
N1
,
K0
,
K1
};
b_ns_ks_strides
=
{
std
::
stoi
(
argv
[
11
]),
std
::
stoi
(
argv
[
12
]),
std
::
stoi
(
argv
[
13
]),
std
::
stoi
(
argv
[
14
])};
d_ms_ns_lengths
=
{
M0
,
M1
,
N0
,
N1
};
d_ms_ns_strides
=
{
std
::
stoi
(
argv
[
15
]),
std
::
stoi
(
argv
[
16
]),
std
::
stoi
(
argv
[
17
]),
std
::
stoi
(
argv
[
18
])};
e_ms_ns_lengths
=
{
M0
,
M1
,
N0
,
N1
};
e_ms_ns_strides
=
{
std
::
stoi
(
argv
[
19
]),
std
::
stoi
(
argv
[
20
]),
std
::
stoi
(
argv
[
21
]),
std
::
stoi
(
argv
[
22
])};
alpha
=
std
::
stof
(
argv
[
23
]);
beta
=
std
::
stof
(
argv
[
24
]);
}
else
{
printf
(
"arg1 to 6: M0, M1, N0, N1, K0, K1
\n
"
);
printf
(
"arg7 to 10: Stride_A_M0, Stride_A_M1, Stride_A_K0, Stride_A_K1
\n
"
);
printf
(
"arg11 to 14: Stride_B_N0, Stride_B_N1, Stride_B_K0, Stride_B_K1
\n
"
);
printf
(
"arg15 to 18: Stride_D_M0, Stride_D_M1, Stride_D_N0, Stride_D_N1
\n
"
);
printf
(
"arg19 to 22: Stride_E_M0, Stride_E_M1, Stride_E_N0, Stride_E_N1
\n
"
);
printf
(
"arg23 to 24: alpha, beta
\n
"
);
exit
(
0
);
}
auto
f_tensor_space_size
=
[](
auto
lengths
,
auto
strides
)
{
std
::
size_t
space_size
=
1
;
for
(
std
::
size_t
i
=
0
;
i
<
lengths
.
size
();
++
i
)
{
space_size
+=
(
lengths
[
i
]
-
1
)
*
strides
[
i
];
}
return
space_size
;
};
SimpleDeviceMem
a_device_buf
(
sizeof
(
ADataType
)
*
f_tensor_space_size
(
a_ms_ks_lengths
,
a_ms_ks_strides
));
SimpleDeviceMem
b_device_buf
(
sizeof
(
BDataType
)
*
f_tensor_space_size
(
b_ns_ks_lengths
,
b_ns_ks_strides
));
SimpleDeviceMem
d_device_buf
(
sizeof
(
DDataType
)
*
f_tensor_space_size
(
d_ms_ns_lengths
,
d_ms_ns_strides
));
SimpleDeviceMem
e_device_buf
(
sizeof
(
EDataType
)
*
f_tensor_space_size
(
e_ms_ns_lengths
,
e_ms_ns_strides
));
using
DeviceOp
=
ck
::
tensor_operation
::
device
::
DeviceContractionMultipleD
<
NumDimM
,
NumDimN
,
NumDimK
,
ADataType
,
BDataType
,
ck
::
Tuple
<
DDataType
>
,
EDataType
,
ck
::
tensor_operation
::
element_wise
::
PassThrough
,
ck
::
tensor_operation
::
element_wise
::
PassThrough
,
ck
::
tensor_operation
::
element_wise
::
Bilinear
>
;
// get device op instances
const
auto
op_ptrs
=
ck
::
tensor_operation
::
device
::
instance
::
DeviceOperationInstanceFactory
<
DeviceOp
>::
GetInstances
();
std
::
cout
<<
"found "
<<
op_ptrs
.
size
()
<<
" instances"
<<
std
::
endl
;
const
auto
a_element_op
=
AElementOp
{};
const
auto
b_element_op
=
BElementOp
{};
const
auto
cde_element_op
=
CDEElementOp
{
alpha
,
beta
};
std
::
string
best_op_name
;
bool
found
=
false
;
int
best_op_id
=
-
1
;
float
best_ave_time
=
0
;
float
best_tflops
=
0
;
float
best_gb_per_sec
=
0
;
// profile device operation instances
std
::
cout
<<
"Run all instances and do timing"
<<
std
::
endl
;
for
(
int
i
=
0
;
i
<
op_ptrs
.
size
();
++
i
)
{
auto
&
op_ptr
=
op_ptrs
[
i
];
auto
argument_ptr
=
op_ptr
->
MakeArgumentPointer
(
a_device_buf
.
GetDeviceBuffer
(),
b_device_buf
.
GetDeviceBuffer
(),
std
::
array
<
const
void
*
,
1
>
{
d_device_buf
.
GetDeviceBuffer
()},
e_device_buf
.
GetDeviceBuffer
(),
a_ms_ks_lengths
,
a_ms_ks_strides
,
b_ns_ks_lengths
,
b_ns_ks_strides
,
std
::
array
<
std
::
vector
<
ck
::
index_t
>
,
1
>
{
d_ms_ns_lengths
},
std
::
array
<
std
::
vector
<
ck
::
index_t
>
,
1
>
{
d_ms_ns_strides
},
e_ms_ns_lengths
,
e_ms_ns_strides
,
a_element_op
,
b_element_op
,
cde_element_op
);
auto
invoker_ptr
=
op_ptr
->
MakeInvokerPointer
();
std
::
string
op_name
=
op_ptr
->
GetTypeString
();
if
(
op_ptr
->
IsSupportedArgument
(
argument_ptr
.
get
()))
{
float
ave_time
=
invoker_ptr
->
Run
(
argument_ptr
.
get
(),
StreamConfig
{
nullptr
,
true
});
ck
::
index_t
M
=
std
::
accumulate
(
e_ms_ns_lengths
.
begin
(),
e_ms_ns_lengths
.
begin
()
+
NumDimM
,
ck
::
index_t
{
1
},
std
::
multiplies
<
ck
::
index_t
>
{});
ck
::
index_t
N
=
std
::
accumulate
(
e_ms_ns_lengths
.
begin
()
+
NumDimM
,
e_ms_ns_lengths
.
begin
()
+
NumDimM
+
NumDimN
,
ck
::
index_t
{
1
},
std
::
multiplies
<
ck
::
index_t
>
{});
ck
::
index_t
K
=
std
::
accumulate
(
a_ms_ks_lengths
.
begin
()
+
NumDimM
,
a_ms_ks_lengths
.
begin
()
+
NumDimM
+
NumDimK
,
ck
::
index_t
{
1
},
std
::
multiplies
<
ck
::
index_t
>
{});
std
::
size_t
flop
=
std
::
size_t
(
2
)
*
M
*
N
*
K
;
std
::
size_t
num_btype
=
sizeof
(
ADataType
)
*
M
*
K
+
sizeof
(
BDataType
)
*
K
*
N
+
sizeof
(
DDataType
)
*
M
*
N
+
sizeof
(
EDataType
)
*
M
*
N
;
float
tflops
=
static_cast
<
float
>
(
flop
)
/
1.E9
/
ave_time
;
float
gb_per_sec
=
num_btype
/
1.E6
/
ave_time
;
std
::
cout
<<
"Perf: "
<<
std
::
setw
(
10
)
<<
ave_time
<<
" ms, "
<<
tflops
<<
" TFlops, "
<<
gb_per_sec
<<
" GB/s, "
<<
op_name
<<
std
::
endl
;
if
(
tflops
>
best_tflops
)
{
found
=
true
;
best_op_id
=
i
;
best_op_name
=
op_name
;
best_tflops
=
tflops
;
best_ave_time
=
ave_time
;
best_gb_per_sec
=
gb_per_sec
;
}
}
else
{
std
::
cout
<<
op_name
<<
" does not support this problem"
<<
std
::
endl
;
}
}
std
::
cout
<<
"Best Perf: "
<<
best_ave_time
<<
" ms, "
<<
best_tflops
<<
" TFlops, "
<<
best_gb_per_sec
<<
" GB/s, "
<<
best_op_name
<<
std
::
endl
;
return
0
;
}
client_example/04_contraction/contraction_scale.cpp
0 → 100644
View file @
bd0f0686
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2022, Advanced Micro Devices, Inc. All rights reserved.
#include <iomanip>
#include <numeric>
#include <vector>
#include <iostream>
#include "ck/ck.hpp"
#include "ck/tensor_operation/gpu/device/tensor_layout.hpp"
#include "ck/tensor_operation/gpu/device/device_contraction_multiple_d.hpp"
#include "ck/tensor_operation/gpu/element/element_wise_operation.hpp"
#include "ck/library/tensor_operation_instance/gpu/contraction_scale.hpp"
using
F32
=
float
;
using
PassThrough
=
ck
::
tensor_operation
::
element_wise
::
PassThrough
;
using
Scale
=
ck
::
tensor_operation
::
element_wise
::
Scale
;
using
AElementOp
=
PassThrough
;
using
BElementOp
=
PassThrough
;
using
CDEElementOp
=
Scale
;
using
ADataType
=
F32
;
using
BDataType
=
F32
;
using
AccDataType
=
F32
;
using
CShuffleDataType
=
F32
;
using
DsDataType
=
ck
::
Tuple
<>
;
using
EDataType
=
F32
;
static
constexpr
ck
::
index_t
NumDimM
=
2
;
static
constexpr
ck
::
index_t
NumDimN
=
2
;
static
constexpr
ck
::
index_t
NumDimK
=
2
;
struct
SimpleDeviceMem
{
SimpleDeviceMem
()
=
delete
;
SimpleDeviceMem
(
std
::
size_t
mem_size
)
:
p_mem_
{}
{
(
void
)
hipMalloc
(
static_cast
<
void
**>
(
&
p_mem_
),
mem_size
);
}
void
*
GetDeviceBuffer
()
{
return
p_mem_
;
}
~
SimpleDeviceMem
()
{
(
void
)
hipFree
(
p_mem_
);
}
void
*
p_mem_
;
};
int
main
(
int
argc
,
char
*
argv
[])
{
// A[M0, M1, K0, K1]
std
::
vector
<
ck
::
index_t
>
a_ms_ks_lengths
{
30
,
128
,
32
,
64
};
std
::
vector
<
ck
::
index_t
>
a_ms_ks_strides
{
524288
,
4096
,
128
,
1
};
// B[N0, N1, K0, K1]
std
::
vector
<
ck
::
index_t
>
b_ns_ks_lengths
{
32
,
64
,
32
,
64
};
std
::
vector
<
ck
::
index_t
>
b_ns_ks_strides
{
524288
,
4096
,
128
,
1
};
// E[M0, M1, N0, N1]
std
::
vector
<
ck
::
index_t
>
e_ms_ns_lengths
{
30
,
128
,
32
,
64
};
std
::
vector
<
ck
::
index_t
>
e_ms_ns_strides
{
524288
,
4096
,
128
,
1
};
float
scale
=
1.
f
;
if
(
argc
==
1
)
{
// use default case
}
else
if
(
argc
==
20
)
{
const
ck
::
index_t
M0
=
std
::
stoi
(
argv
[
1
]);
const
ck
::
index_t
M1
=
std
::
stoi
(
argv
[
2
]);
const
ck
::
index_t
N0
=
std
::
stoi
(
argv
[
3
]);
const
ck
::
index_t
N1
=
std
::
stoi
(
argv
[
4
]);
const
ck
::
index_t
K0
=
std
::
stoi
(
argv
[
5
]);
const
ck
::
index_t
K1
=
std
::
stoi
(
argv
[
6
]);
a_ms_ks_lengths
=
{
M0
,
M1
,
K0
,
K1
};
a_ms_ks_strides
=
{
std
::
stoi
(
argv
[
7
]),
std
::
stoi
(
argv
[
8
]),
std
::
stoi
(
argv
[
9
]),
std
::
stoi
(
argv
[
10
])};
b_ns_ks_lengths
=
{
N0
,
N1
,
K0
,
K1
};
b_ns_ks_strides
=
{
std
::
stoi
(
argv
[
11
]),
std
::
stoi
(
argv
[
12
]),
std
::
stoi
(
argv
[
13
]),
std
::
stoi
(
argv
[
14
])};
e_ms_ns_lengths
=
{
M0
,
M1
,
N0
,
N1
};
e_ms_ns_strides
=
{
std
::
stoi
(
argv
[
15
]),
std
::
stoi
(
argv
[
16
]),
std
::
stoi
(
argv
[
17
]),
std
::
stoi
(
argv
[
18
])};
scale
=
std
::
stof
(
argv
[
19
]);
}
else
{
printf
(
"arg1 to 6: M0, M1, N0, N1, K0, K1
\n
"
);
printf
(
"arg7 to 10: Stride_A_M0, Stride_A_M1, Stride_A_K0, Stride_A_K1
\n
"
);
printf
(
"arg11 to 14: Stride_B_N0, Stride_B_N1, Stride_B_K0, Stride_B_K1
\n
"
);
printf
(
"arg15 to 18: Stride_E_M0, Stride_E_M1, Stride_E_N0, Stride_E_N1
\n
"
);
printf
(
"arg19: scale
\n
"
);
exit
(
0
);
}
auto
f_tensor_space_size
=
[](
auto
lengths
,
auto
strides
)
{
std
::
size_t
space_size
=
1
;
for
(
std
::
size_t
i
=
0
;
i
<
lengths
.
size
();
++
i
)
{
space_size
+=
(
lengths
[
i
]
-
1
)
*
strides
[
i
];
}
return
space_size
;
};
SimpleDeviceMem
a_device_buf
(
sizeof
(
ADataType
)
*
f_tensor_space_size
(
a_ms_ks_lengths
,
a_ms_ks_strides
));
SimpleDeviceMem
b_device_buf
(
sizeof
(
BDataType
)
*
f_tensor_space_size
(
b_ns_ks_lengths
,
b_ns_ks_strides
));
SimpleDeviceMem
e_device_buf
(
sizeof
(
EDataType
)
*
f_tensor_space_size
(
e_ms_ns_lengths
,
e_ms_ns_strides
));
using
DeviceOp
=
ck
::
tensor_operation
::
device
::
DeviceContractionMultipleD
<
NumDimM
,
NumDimN
,
NumDimK
,
ADataType
,
BDataType
,
ck
::
Tuple
<>
,
EDataType
,
ck
::
tensor_operation
::
element_wise
::
PassThrough
,
ck
::
tensor_operation
::
element_wise
::
PassThrough
,
ck
::
tensor_operation
::
element_wise
::
Scale
>
;
// get device op instances
const
auto
op_ptrs
=
ck
::
tensor_operation
::
device
::
instance
::
DeviceOperationInstanceFactory
<
DeviceOp
>::
GetInstances
();
std
::
cout
<<
"found "
<<
op_ptrs
.
size
()
<<
" instances"
<<
std
::
endl
;
const
auto
a_element_op
=
AElementOp
{};
const
auto
b_element_op
=
BElementOp
{};
const
auto
cde_element_op
=
CDEElementOp
{
scale
};
std
::
string
best_op_name
;
bool
found
=
false
;
int
best_op_id
=
-
1
;
float
best_ave_time
=
0
;
float
best_tflops
=
0
;
float
best_gb_per_sec
=
0
;
// profile device operation instances
std
::
cout
<<
"Run all instances and do timing"
<<
std
::
endl
;
for
(
int
i
=
0
;
i
<
op_ptrs
.
size
();
++
i
)
{
auto
&
op_ptr
=
op_ptrs
[
i
];
auto
argument_ptr
=
op_ptr
->
MakeArgumentPointer
(
a_device_buf
.
GetDeviceBuffer
(),
b_device_buf
.
GetDeviceBuffer
(),
std
::
array
<
const
void
*
,
0
>
{},
e_device_buf
.
GetDeviceBuffer
(),
a_ms_ks_lengths
,
a_ms_ks_strides
,
b_ns_ks_lengths
,
b_ns_ks_strides
,
std
::
array
<
std
::
vector
<
ck
::
index_t
>
,
0
>
{},
std
::
array
<
std
::
vector
<
ck
::
index_t
>
,
0
>
{},
e_ms_ns_lengths
,
e_ms_ns_strides
,
a_element_op
,
b_element_op
,
cde_element_op
);
auto
invoker_ptr
=
op_ptr
->
MakeInvokerPointer
();
std
::
string
op_name
=
op_ptr
->
GetTypeString
();
if
(
op_ptr
->
IsSupportedArgument
(
argument_ptr
.
get
()))
{
float
ave_time
=
invoker_ptr
->
Run
(
argument_ptr
.
get
(),
StreamConfig
{
nullptr
,
true
});
ck
::
index_t
M
=
std
::
accumulate
(
e_ms_ns_lengths
.
begin
(),
e_ms_ns_lengths
.
begin
()
+
NumDimM
,
ck
::
index_t
{
1
},
std
::
multiplies
<
ck
::
index_t
>
{});
ck
::
index_t
N
=
std
::
accumulate
(
e_ms_ns_lengths
.
begin
()
+
NumDimM
,
e_ms_ns_lengths
.
begin
()
+
NumDimM
+
NumDimN
,
ck
::
index_t
{
1
},
std
::
multiplies
<
ck
::
index_t
>
{});
ck
::
index_t
K
=
std
::
accumulate
(
a_ms_ks_lengths
.
begin
()
+
NumDimM
,
a_ms_ks_lengths
.
begin
()
+
NumDimM
+
NumDimK
,
ck
::
index_t
{
1
},
std
::
multiplies
<
ck
::
index_t
>
{});
std
::
size_t
flop
=
std
::
size_t
(
2
)
*
M
*
N
*
K
;
std
::
size_t
num_btype
=
sizeof
(
ADataType
)
*
M
*
K
+
sizeof
(
BDataType
)
*
K
*
N
+
sizeof
(
EDataType
)
*
M
*
N
;
float
tflops
=
static_cast
<
float
>
(
flop
)
/
1.E9
/
ave_time
;
float
gb_per_sec
=
num_btype
/
1.E6
/
ave_time
;
std
::
cout
<<
"Perf: "
<<
std
::
setw
(
10
)
<<
ave_time
<<
" ms, "
<<
tflops
<<
" TFlops, "
<<
gb_per_sec
<<
" GB/s, "
<<
op_name
<<
std
::
endl
;
if
(
tflops
>
best_tflops
)
{
found
=
true
;
best_op_id
=
i
;
best_op_name
=
op_name
;
best_tflops
=
tflops
;
best_ave_time
=
ave_time
;
best_gb_per_sec
=
gb_per_sec
;
}
}
else
{
std
::
cout
<<
op_name
<<
" does not support this problem"
<<
std
::
endl
;
}
}
std
::
cout
<<
"Best Perf: "
<<
best_ave_time
<<
" ms, "
<<
best_tflops
<<
" TFlops, "
<<
best_gb_per_sec
<<
" GB/s, "
<<
best_op_name
<<
std
::
endl
;
return
0
;
}
client_example/CMakeLists.txt
View file @
bd0f0686
...
@@ -6,5 +6,7 @@ find_package(composable_kernel 1.0.0 COMPONENTS device_operations)
...
@@ -6,5 +6,7 @@ find_package(composable_kernel 1.0.0 COMPONENTS device_operations)
find_package
(
hip REQUIRED PATHS /opt/rocm
)
find_package
(
hip REQUIRED PATHS /opt/rocm
)
message
(
STATUS
"Build with HIP
${
hip_VERSION
}
"
)
message
(
STATUS
"Build with HIP
${
hip_VERSION
}
"
)
add_subdirectory
(
01_gemm
)
add_subdirectory
(
02_gemm_add_add_fastgelu
)
add_subdirectory
(
02_gemm_add_add_fastgelu
)
add_subdirectory
(
03_gemm_layernorm
)
add_subdirectory
(
03_gemm_layernorm
)
add_subdirectory
(
04_contraction
)
client_example/README.md
View file @
bd0f0686
##
##
Client application links to CK library, and therefore CK library needs to be installed before building client applications.
Client application links to CK library, and therefore CK library needs to be installed before building client applications.
## Docker script
```
bash
docker run
\
-it
\
--privileged
\
--group-add
sudo
\
-w
/root/workspace
\
-v
${
PATH_TO_LOCAL_WORKSPACE
}
:/root/workspace
\
rocm/tensorflow:rocm5.1-tf2.6-dev
\
/bin/bash
```
## Build
## Build
```
bash
```
bash
...
@@ -22,7 +11,7 @@ cd client_example/build
...
@@ -22,7 +11,7 @@ cd client_example/build
```
bash
```
bash
cmake
\
cmake
\
-D
CMAKE_CXX_COMPILER
=
/opt/rocm/bin/hipcc
\
-D
CMAKE_CXX_COMPILER
=
/opt/rocm/bin/hipcc
\
-D
CMAKE_PREFIX_PATH
=
/opt/rocm
\
-D
CMAKE_PREFIX_PATH
=
"
/opt/rocm
;
${
PATH_TO_CK_INSTALL_DIRECTORY
}
"
\
..
..
```
```
...
...
example/01_gemm/gemm_xdl_fp16.cpp
View file @
bd0f0686
...
@@ -8,6 +8,7 @@
...
@@ -8,6 +8,7 @@
#include "ck/ck.hpp"
#include "ck/ck.hpp"
#include "ck/tensor_operation/gpu/device/gemm_specialization.hpp"
#include "ck/tensor_operation/gpu/device/gemm_specialization.hpp"
#include "ck/tensor_operation/gpu/device/device_gemm_xdl.hpp"
#include "ck/tensor_operation/gpu/device/device_gemm_xdl_cshuffle.hpp"
#include "ck/tensor_operation/gpu/device/device_gemm_xdl_cshuffle.hpp"
#include "ck/tensor_operation/gpu/element/element_wise_operation.hpp"
#include "ck/tensor_operation/gpu/element/element_wise_operation.hpp"
...
@@ -44,8 +45,17 @@ using CElementOp = PassThrough;
...
@@ -44,8 +45,17 @@ using CElementOp = PassThrough;
static
constexpr
auto
GemmDefault
=
ck
::
tensor_operation
::
device
::
GemmSpecialization
::
Default
;
static
constexpr
auto
GemmDefault
=
ck
::
tensor_operation
::
device
::
GemmSpecialization
::
Default
;
// clang-format off
using
DeviceGemmInstance0
=
ck
::
tensor_operation
::
device
::
DeviceGemmXdl
using
DeviceGemmInstance
=
ck
::
tensor_operation
::
device
::
DeviceGemm_Xdl_CShuffle
// clang-format off
//######| AData| BData| CData| AccData| ALayout| BLayout| CLayout| A| B| C| GEMM| Block| MPer| NPer| K0Per| K1| MPer| NPer| MXdl| NXdl| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockLds| BBlockTransfer| BBlockTransfer| BBlockTransfer| BlockTransfer| BBlockTransfer| BBlockTransfer| BBlockLds| CThreadTransfer| CThreadTransfer|
//######| Type| Type| Type| Type| | | | Elementwise| Elementwise| Elementwise|Spacialization| Size| Block| Block| Block| | XDL| XDL| Per| Per| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| AddExtraM| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| AddExtraN| SrcDstVectorDim| DstScalar|
//######| | | | | | | | Operation| Operation| Operation| | | | | | | | | Wave| Wave| Lengths_K0_M_K1| ArrangeOrder| | | PerVector| PerVector_K1| | Lengths_K0_N_K1| ArrangeOrder| | | PerVector| PerVector_K1| | | PerVector|
//######| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
<
ADataType
,
BDataType
,
CDataType
,
AccDataType
,
ALayout
,
BLayout
,
CLayout
,
AElementOp
,
BElementOp
,
CElementOp
,
GemmDefault
,
256
,
256
,
128
,
4
,
8
,
32
,
32
,
4
,
2
,
S
<
4
,
64
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
8
,
8
,
true
,
S
<
4
,
64
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
8
,
8
,
true
,
7
,
1
>
;
// clang-format on
using
DeviceGemmInstance1
=
ck
::
tensor_operation
::
device
::
DeviceGemm_Xdl_CShuffle
// clang-format off
//######| ALayout| BLayout| CLayout| AData| BData| CData| AccData| CShuffle| A| B| C| GEMM| NumGemmK| Block| MPer| NPer| KPer| AK1| BK1| MPer| NPer| MXdl| NXdl| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockLds| BBlockTransfer| BBlockTransfer| BBlockTransfer| BlockTransfer| BBlockTransfer| BBlockTransfer| BBlockLds| CShuffle| CShuffle| CBlockTransferClusterLengths| CBlockTransfer|
//######| ALayout| BLayout| CLayout| AData| BData| CData| AccData| CShuffle| A| B| C| GEMM| NumGemmK| Block| MPer| NPer| KPer| AK1| BK1| MPer| NPer| MXdl| NXdl| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockLds| BBlockTransfer| BBlockTransfer| BBlockTransfer| BlockTransfer| BBlockTransfer| BBlockTransfer| BBlockLds| CShuffle| CShuffle| CBlockTransferClusterLengths| CBlockTransfer|
//######| | | | Type| Type| Type| Type| DataType| Elementwise| Elementwise| Elementwise| Spacialization| Prefetch| Size| Block| Block| Block| | | XDL| XDL| Per| Per| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| AddExtraM| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| AddExtraN| MXdlPerWave| NXdlPerWave| _MBlock_MWaveMPerXdl| ScalarPerVector|
//######| | | | Type| Type| Type| Type| DataType| Elementwise| Elementwise| Elementwise| Spacialization| Prefetch| Size| Block| Block| Block| | | XDL| XDL| Per| Per| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| AddExtraM| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| AddExtraN| MXdlPerWave| NXdlPerWave| _MBlock_MWaveMPerXdl| ScalarPerVector|
//######| | | | | | | | | Operation| Operation| Operation| | Stage| | | | | | | | | Wave| Wave| Lengths_K0_M_K1| ArrangeOrder| | | PerVector| PerVector_K1| | Lengths_K0_N_K1| ArrangeOrder| | | PerVector| PerVector_K1| | PerShuffle| PerShuffle| _NBlock_NWaveNPerXdl| _NWaveNPerXdl|
//######| | | | | | | | | Operation| Operation| Operation| | Stage| | | | | | | | | Wave| Wave| Lengths_K0_M_K1| ArrangeOrder| | | PerVector| PerVector_K1| | Lengths_K0_N_K1| ArrangeOrder| | | PerVector| PerVector_K1| | PerShuffle| PerShuffle| _NBlock_NWaveNPerXdl| _NWaveNPerXdl|
...
@@ -53,6 +63,8 @@ using DeviceGemmInstance = ck::tensor_operation::device::DeviceGemm_Xdl_CShuffle
...
@@ -53,6 +63,8 @@ using DeviceGemmInstance = ck::tensor_operation::device::DeviceGemm_Xdl_CShuffle
<
ALayout
,
BLayout
,
CLayout
,
ADataType
,
BDataType
,
CDataType
,
AccDataType
,
CShuffleDataType
,
AElementOp
,
BElementOp
,
CElementOp
,
GemmDefault
,
1
,
256
,
256
,
128
,
32
,
8
,
8
,
32
,
32
,
4
,
2
,
S
<
4
,
64
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
8
,
8
,
1
,
S
<
4
,
64
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
8
,
8
,
1
,
1
,
1
,
S
<
1
,
32
,
1
,
8
>
,
8
>
;
<
ALayout
,
BLayout
,
CLayout
,
ADataType
,
BDataType
,
CDataType
,
AccDataType
,
CShuffleDataType
,
AElementOp
,
BElementOp
,
CElementOp
,
GemmDefault
,
1
,
256
,
256
,
128
,
32
,
8
,
8
,
32
,
32
,
4
,
2
,
S
<
4
,
64
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
8
,
8
,
1
,
S
<
4
,
64
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
8
,
8
,
1
,
1
,
1
,
S
<
1
,
32
,
1
,
8
>
,
8
>
;
// clang-format on
// clang-format on
using
DeviceGemmInstance
=
DeviceGemmInstance0
;
using
ReferenceGemmInstance
=
ck
::
tensor_operation
::
host
::
using
ReferenceGemmInstance
=
ck
::
tensor_operation
::
host
::
ReferenceGemm
<
ADataType
,
BDataType
,
CDataType
,
AccDataType
,
AElementOp
,
BElementOp
,
CElementOp
>
;
ReferenceGemm
<
ADataType
,
BDataType
,
CDataType
,
AccDataType
,
AElementOp
,
BElementOp
,
CElementOp
>
;
...
...
example/02_gemm_alpha_beta/CMakeLists.txt
deleted
100644 → 0
View file @
e9b1000f
add_example_executable
(
example_gemm_xdl_alpha_beta gemm_xdl_alpha_beta.cpp
)
example/02_gemm_bilinear/CMakeLists.txt
0 → 100644
View file @
bd0f0686
add_example_executable
(
example_gemm_bilinear_xdl_fp16 gemm_bilinear_xdl_fp16.cpp
)
example/02_gemm_
alpha_beta
/README.md
→
example/02_gemm_
bilinear
/README.md
View file @
bd0f0686
# Instructions for ```example_gemm_
xdl_alpha_beta
```
# Instructions for ```example_gemm_
bilinear_xdl_fp16
```
## Run ```example_gemm_
xdl_alpha_beta
```
## Run ```example_gemm_
bilinear_xdl_fp16
```
```
bash
```
bash
#arg1: verification (0=no, 1=yes)
#arg1: verification (0=no, 1=yes)
#arg2: initialization (0=no init, 1=integer value, 2=decimal value)
#arg2: initialization (0=no init, 1=integer value, 2=decimal value)
#arg3: run kernel # of times (>1)
#arg3: time kernel (0=no, 1=yes)
./bin/example_gemm_xdl_alpha_beta 1 1 1 0.5 0.5
#arg4 to 10: M (256x), N(128x), K(32x), StrideA, StrideB, StrideD, StrideE
#arg11 to 12: alpha, beta
./bin/example_gemm_bilinear_xdl_fp16 1 1 1 3840 4096 4096 4096 4096 4096 4096 0.5 0.5
```
```
Result (MI100 @ 1502Mhz, 184.6TFlops peak FP16)
Result (MI100 @ 1502Mhz, 184.6TFlops peak FP16)
```
```
...
...
example/02_gemm_
alpha_beta/gemm_xdl_alpha_beta
.cpp
→
example/02_gemm_
bilinear/gemm_bilinear_xdl_fp16
.cpp
View file @
bd0f0686
...
@@ -8,80 +8,105 @@
...
@@ -8,80 +8,105 @@
#include "ck/ck.hpp"
#include "ck/ck.hpp"
#include "ck/tensor_operation/gpu/device/gemm_specialization.hpp"
#include "ck/tensor_operation/gpu/device/gemm_specialization.hpp"
#include "ck/tensor_operation/gpu/device/device_gemm_xdl_c
_
shuffle
_bias_2d
.hpp"
#include "ck/tensor_operation/gpu/device/device_gemm_
multiple_d_
xdl_cshuffle.hpp"
#include "ck/tensor_operation/gpu/element/element_wise_operation.hpp"
#include "ck/tensor_operation/gpu/element/element_wise_operation.hpp"
#include "ck/library/utility/check_err.hpp"
#include "ck/library/host_tensor/device_memory.hpp"
#include "ck/library/host_tensor/device_memory.hpp"
#include "ck/library/host_tensor/host_tensor.hpp"
#include "ck/library/host_tensor/host_tensor.hpp"
#include "ck/library/host_tensor/host_tensor_generator.hpp"
#include "ck/library/host_tensor/host_tensor_generator.hpp"
#include "ck/library/reference_tensor_operation/cpu/reference_gemm_bias_2d.hpp"
#include "ck/library/reference_tensor_operation/cpu/reference_gemm.hpp"
#include "ck/library/utility/check_err.hpp"
struct
AlphaBetaAdd
{
AlphaBetaAdd
(
float
alpha
,
float
beta
)
:
alpha_
(
alpha
),
beta_
(
beta
){};
template
<
typename
E
,
typename
C
,
typename
D
>
__host__
__device__
constexpr
void
operator
()(
E
&
e
,
const
C
&
c
,
const
D
&
d
)
const
;
template
<
>
__host__
__device__
constexpr
void
operator
()
<
ck
::
half_t
,
float
,
ck
::
half_t
>
(
ck
::
half_t
&
e
,
const
float
&
c
,
const
ck
::
half_t
&
d
)
const
{
e
=
ck
::
type_convert
<
ck
::
half_t
>
(
alpha_
*
c
+
beta_
*
ck
::
type_convert
<
float
>
(
d
));
};
float
alpha_
;
float
beta_
;
};
template
<
ck
::
index_t
...
Is
>
template
<
ck
::
index_t
...
Is
>
using
S
=
ck
::
Sequence
<
Is
...
>
;
using
S
=
ck
::
Sequence
<
Is
...
>
;
using
ADataType
=
ck
::
half_t
;
using
F16
=
ck
::
half_t
;
using
BDataType
=
ck
::
half_t
;
using
F32
=
float
;
using
CDataType
=
ck
::
half_t
;
using
AccDataType
=
float
;
using
Row
=
ck
::
tensor_layout
::
gemm
::
RowMajor
;
using
Col
=
ck
::
tensor_layout
::
gemm
::
ColumnMajor
;
using
ALayout
=
ck
::
tensor_layout
::
gemm
::
RowMajor
;
using
BLayout
=
ck
::
tensor_layout
::
gemm
::
ColumnMajor
;
using
PassThrough
=
ck
::
tensor_operation
::
element_wise
::
PassThrough
;
using
CLayout
=
ck
::
tensor_layout
::
gemm
::
RowMajor
;
using
ADataType
=
F16
;
using
AElementOp
=
ck
::
tensor_operation
::
element_wise
::
PassThrough
;
using
BDataType
=
F16
;
using
BElementOp
=
ck
::
tensor_operation
::
element_wise
::
PassThrough
;
using
AccDataType
=
F32
;
using
CElementOp
=
ck
::
tensor_operation
::
element_wise
::
AlphaBetaAdd
;
using
CShuffleDataType
=
F32
;
using
DDataType
=
F16
;
// clang-format off
using
DsDataType
=
ck
::
Tuple
<
DDataType
>
;
using
DeviceGemmInstance
=
ck
::
tensor_operation
::
device
::
DeviceGemmXdl_C_Shuffle_Bias_2d
<
using
EDataType
=
F16
;
ADataType
,
// ADataType
BDataType
,
// BDataType
using
ALayout
=
Row
;
CDataType
,
// CDataType
using
BLayout
=
Col
;
AccDataType
,
// AccDataType
using
DELayout
=
Row
;
ALayout
,
// ALayout
BLayout
,
// BLayout
using
AElementOp
=
PassThrough
;
CLayout
,
// CLayout
using
BElementOp
=
PassThrough
;
AElementOp
,
// AElementwiseOperation
using
CDEElementOp
=
AlphaBetaAdd
;
BElementOp
,
// BElementwiseOperation
CElementOp
,
// CElementwiseOperation
static
constexpr
auto
GemmDefault
=
ck
::
tensor_operation
::
device
::
GemmSpecialization
::
MNKPadding
;
256
,
// BlockSize
256
,
// MPerBlock
using
DeviceOpInstance
=
128
,
// NPerBlock
ck
::
tensor_operation
::
device
::
DeviceGemmMultipleD_Xdl_CShuffle
<
ALayout
,
4
,
// K0PerBlock
BLayout
,
8
,
// K1
DELayout
,
32
,
// MPerXDL
ADataType
,
32
,
// NPerXDL
4
,
// MXdlPerWave
2
,
// NXdlPerWave
S
<
4
,
64
,
1
>
,
// ABlockTransferThreadClusterLengths_K0_M_K1
S
<
1
,
0
,
2
>
,
// ABlockTransferThreadClusterArrangeOrder
S
<
1
,
0
,
2
>
,
// ABlockTransferSrcAccessOrder
2
,
// ABlockTransferSrcVectorDim
8
,
// ABlockTransferSrcScalarPerVector
8
,
// ABlockTransferDstScalarPerVector_K1
true
,
// ABlockLdsAddExtraM
S
<
4
,
64
,
1
>
,
// BBlockTransferThreadClusterLengths_K0_N_K1
S
<
1
,
0
,
2
>
,
// BBlockTransferThreadClusterArrangeOrder
S
<
1
,
0
,
2
>
,
// BBlockTransferSrcAccessOrder
2
,
// BBlockTransferSrcVectorDim
8
,
// BBlockTransferSrcScalarPerVector
8
,
// BBlockTransferDstScalarPerVector_K1
true
,
// BBlockLdsAddExtraN
1
,
// CShuffleMXdlPerWavePerShuffle
1
,
// CShuffleNXdlPerWavePerShuffle
S
<
1
,
1
,
32
,
1
,
1
,
8
>
,
// CBlockTransferClusterLengths_MBlock_MXdlPerWave_MWaveMPerXdl_NBlock_NXdlPerWave_NWaveNPerXdl
8
>
;
// CBlockTransferScalarPerVector_NWaveNPerXdl
// clang-format on
using
ReferenceGemmInstance
=
ck
::
tensor_operation
::
host
::
ReferenceGemmBias2D
<
ADataType
,
BDataType
,
BDataType
,
CDataType
,
CDataType
,
AccDataType
,
AccDataType
,
CShuffleDataType
,
DsDataType
,
EDataType
,
AElementOp
,
AElementOp
,
BElementOp
,
BElementOp
,
CElementOp
>
;
CDEElementOp
,
GemmDefault
,
1
,
256
,
256
,
128
,
32
,
8
,
8
,
32
,
32
,
4
,
2
,
S
<
4
,
64
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
8
,
8
,
1
,
S
<
4
,
64
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
8
,
8
,
1
,
1
,
1
,
S
<
1
,
32
,
1
,
8
>
,
8
>
;
int
main
(
int
argc
,
char
*
argv
[])
int
main
(
int
argc
,
char
*
argv
[])
{
{
...
@@ -96,12 +121,17 @@ int main(int argc, char* argv[])
...
@@ -96,12 +121,17 @@ int main(int argc, char* argv[])
ck
::
index_t
StrideA
=
4096
;
ck
::
index_t
StrideA
=
4096
;
ck
::
index_t
StrideB
=
4096
;
ck
::
index_t
StrideB
=
4096
;
ck
::
index_t
StrideC
=
4096
;
ck
::
index_t
StrideD
=
4096
;
ck
::
index_t
StrideE
=
4096
;
float
alpha
=
1.0
f
;
float
alpha
=
1.0
f
;
float
beta
=
1.0
f
;
float
beta
=
1.0
f
;
if
(
argc
==
4
)
if
(
argc
==
1
)
{
// use default case
}
else
if
(
argc
==
4
)
{
{
do_verification
=
std
::
stoi
(
argv
[
1
]);
do_verification
=
std
::
stoi
(
argv
[
1
]);
init_method
=
std
::
stoi
(
argv
[
2
]);
init_method
=
std
::
stoi
(
argv
[
2
]);
...
@@ -116,7 +146,7 @@ int main(int argc, char* argv[])
...
@@ -116,7 +146,7 @@ int main(int argc, char* argv[])
alpha
=
std
::
stof
(
argv
[
4
]);
alpha
=
std
::
stof
(
argv
[
4
]);
beta
=
std
::
stof
(
argv
[
5
]);
beta
=
std
::
stof
(
argv
[
5
]);
}
}
else
if
(
argc
==
1
2
)
else
if
(
argc
==
1
3
)
{
{
do_verification
=
std
::
stoi
(
argv
[
1
]);
do_verification
=
std
::
stoi
(
argv
[
1
]);
init_method
=
std
::
stoi
(
argv
[
2
]);
init_method
=
std
::
stoi
(
argv
[
2
]);
...
@@ -128,17 +158,19 @@ int main(int argc, char* argv[])
...
@@ -128,17 +158,19 @@ int main(int argc, char* argv[])
StrideA
=
std
::
stoi
(
argv
[
7
]);
StrideA
=
std
::
stoi
(
argv
[
7
]);
StrideB
=
std
::
stoi
(
argv
[
8
]);
StrideB
=
std
::
stoi
(
argv
[
8
]);
StrideC
=
std
::
stoi
(
argv
[
9
]);
StrideD
=
std
::
stoi
(
argv
[
9
]);
StrideE
=
std
::
stoi
(
argv
[
10
]);
alpha
=
std
::
stof
(
argv
[
1
0
]);
alpha
=
std
::
stof
(
argv
[
1
1
]);
beta
=
std
::
stof
(
argv
[
1
1
]);
beta
=
std
::
stof
(
argv
[
1
2
]);
}
}
else
else
{
{
printf
(
"arg1: verification (0=no, 1=yes)
\n
"
);
printf
(
"arg1: verification (0=no, 1=yes)
\n
"
);
printf
(
"arg2: initialization (0=no init, 1=integer value, 2=decimal value)
\n
"
);
printf
(
"arg2: initialization (0=no init, 1=integer value, 2=decimal value)
\n
"
);
printf
(
"arg3: time kernel (0=n0, 1=yes)
\n
"
);
printf
(
"arg3: time kernel (0=no, 1=yes)
\n
"
);
printf
(
"arg4 to 9: M (256x), N(128x), K(32x), StrideA, StrideB, StrideC, alpha, beta
\n
"
);
printf
(
"arg4 to 9: M (256x), N(128x), K(32x), StrideA, StrideB, StrideD, StrideE, alpha, "
"beta
\n
"
);
exit
(
0
);
exit
(
0
);
}
}
...
@@ -158,14 +190,14 @@ int main(int argc, char* argv[])
...
@@ -158,14 +190,14 @@ int main(int argc, char* argv[])
Tensor
<
ADataType
>
a_m_k
(
f_host_tensor_descriptor
(
M
,
K
,
StrideA
,
ALayout
{}));
Tensor
<
ADataType
>
a_m_k
(
f_host_tensor_descriptor
(
M
,
K
,
StrideA
,
ALayout
{}));
Tensor
<
BDataType
>
b_k_n
(
f_host_tensor_descriptor
(
K
,
N
,
StrideB
,
BLayout
{}));
Tensor
<
BDataType
>
b_k_n
(
f_host_tensor_descriptor
(
K
,
N
,
StrideB
,
BLayout
{}));
Tensor
<
C
DataType
>
c0
_m_n
(
f_host_tensor_descriptor
(
M
,
N
,
Stride
C
,
C
Layout
{}));
Tensor
<
D
DataType
>
d
_m_n
(
f_host_tensor_descriptor
(
M
,
N
,
Stride
D
,
DE
Layout
{}));
Tensor
<
C
DataType
>
c
_m_n_host_result
(
f_host_tensor_descriptor
(
M
,
N
,
Stride
C
,
C
Layout
{}));
Tensor
<
E
DataType
>
e
_m_n_host_result
(
f_host_tensor_descriptor
(
M
,
N
,
Stride
E
,
DE
Layout
{}));
Tensor
<
C
DataType
>
c
_m_n_device_result
(
f_host_tensor_descriptor
(
M
,
N
,
Stride
C
,
C
Layout
{}));
Tensor
<
E
DataType
>
e
_m_n_device_result
(
f_host_tensor_descriptor
(
M
,
N
,
Stride
E
,
DE
Layout
{}));
std
::
cout
<<
"a_m_k: "
<<
a_m_k
.
mDesc
<<
std
::
endl
;
std
::
cout
<<
"a_m_k: "
<<
a_m_k
.
mDesc
<<
std
::
endl
;
std
::
cout
<<
"b_k_n: "
<<
b_k_n
.
mDesc
<<
std
::
endl
;
std
::
cout
<<
"b_k_n: "
<<
b_k_n
.
mDesc
<<
std
::
endl
;
std
::
cout
<<
"
c0
_m_n: "
<<
c0
_m_n
.
mDesc
<<
std
::
endl
;
std
::
cout
<<
"
d
_m_n: "
<<
d
_m_n
.
mDesc
<<
std
::
endl
;
std
::
cout
<<
"
c
_m_n: "
<<
c
_m_n_host_result
.
mDesc
<<
std
::
endl
;
std
::
cout
<<
"
e
_m_n: "
<<
e
_m_n_host_result
.
mDesc
<<
std
::
endl
;
switch
(
init_method
)
switch
(
init_method
)
{
{
...
@@ -173,42 +205,48 @@ int main(int argc, char* argv[])
...
@@ -173,42 +205,48 @@ int main(int argc, char* argv[])
case
1
:
case
1
:
a_m_k
.
GenerateTensorValue
(
GeneratorTensor_2
<
ADataType
>
{
-
5
,
5
});
a_m_k
.
GenerateTensorValue
(
GeneratorTensor_2
<
ADataType
>
{
-
5
,
5
});
b_k_n
.
GenerateTensorValue
(
GeneratorTensor_2
<
BDataType
>
{
-
5
,
5
});
b_k_n
.
GenerateTensorValue
(
GeneratorTensor_2
<
BDataType
>
{
-
5
,
5
});
c0
_m_n
.
GenerateTensorValue
(
GeneratorTensor_2
<
C
DataType
>
{
-
5
,
5
});
d
_m_n
.
GenerateTensorValue
(
GeneratorTensor_2
<
D
DataType
>
{
-
5
,
5
});
break
;
break
;
default:
default:
a_m_k
.
GenerateTensorValue
(
GeneratorTensor_3
<
ADataType
>
{
0.0
,
1.0
});
a_m_k
.
GenerateTensorValue
(
GeneratorTensor_3
<
ADataType
>
{
0.0
,
1.0
});
b_k_n
.
GenerateTensorValue
(
GeneratorTensor_3
<
BDataType
>
{
-
0.5
,
0.5
});
b_k_n
.
GenerateTensorValue
(
GeneratorTensor_3
<
BDataType
>
{
-
0.5
,
0.5
});
c0
_m_n
.
GenerateTensorValue
(
GeneratorTensor_3
<
C
DataType
>
{
-
0.5
,
0.5
});
d
_m_n
.
GenerateTensorValue
(
GeneratorTensor_3
<
D
DataType
>
{
-
0.5
,
0.5
});
}
}
DeviceMem
a_m_k_device_buf
(
sizeof
(
ADataType
)
*
a_m_k
.
mDesc
.
GetElementSpace
());
DeviceMem
a_device_buf
(
sizeof
(
ADataType
)
*
a_m_k
.
mDesc
.
GetElementSpace
());
DeviceMem
b_k_n_device_buf
(
sizeof
(
BDataType
)
*
b_k_n
.
mDesc
.
GetElementSpace
());
DeviceMem
b_device_buf
(
sizeof
(
BDataType
)
*
b_k_n
.
mDesc
.
GetElementSpace
());
DeviceMem
c0_m_n_device_buf
(
sizeof
(
CDataType
)
*
c0_m_n
.
mDesc
.
GetElementSpace
());
DeviceMem
d_device_buf
(
sizeof
(
DDataType
)
*
d_m_n
.
mDesc
.
GetElementSpace
());
DeviceMem
c_m_n_device_buf
(
sizeof
(
CDataType
)
*
c_m_n_device_result
.
mDesc
.
GetElementSpace
());
DeviceMem
e_device_buf
(
sizeof
(
EDataType
)
*
e_m_n_device_result
.
mDesc
.
GetElementSpace
());
a_device_buf
.
ToDevice
(
a_m_k
.
mData
.
data
());
b_device_buf
.
ToDevice
(
b_k_n
.
mData
.
data
());
d_device_buf
.
ToDevice
(
d_m_n
.
mData
.
data
());
e_device_buf
.
ToDevice
(
e_m_n_device_result
.
mData
.
data
());
a_m_k_device_buf
.
ToDevice
(
a_m_k
.
mData
.
data
());
auto
a_element_op
=
AElementOp
{};
b_k_n_device_buf
.
ToDevice
(
b_k_n
.
mData
.
data
());
auto
b_element_op
=
BElementOp
{};
c0_m_n_device_buf
.
ToDevice
(
c0_m_n
.
mData
.
data
());
auto
cde_element_op
=
CDEElementOp
{
alpha
,
beta
};
c_m_n_device_buf
.
ToDevice
(
c_m_n_device_result
.
mData
.
data
());
// do GEMM
// do GEMM
auto
gemm
=
DeviceGemmInstance
{};
auto
device_op
=
DeviceOpInstance
{};
auto
invoker
=
gemm
.
MakeInvoker
();
auto
invoker
=
device_op
.
MakeInvoker
();
auto
argument
=
gemm
.
MakeArgument
(
static_cast
<
ADataType
*>
(
a_m_k_device_buf
.
GetDeviceBuffer
()),
auto
argument
=
static_cast
<
BDataType
*>
(
b_k_n_device_buf
.
GetDeviceBuffer
()),
device_op
.
MakeArgument
(
a_device_buf
.
GetDeviceBuffer
(),
static_cast
<
CDataType
*>
(
c0_m_n_device_buf
.
GetDeviceBuffer
()),
b_device_buf
.
GetDeviceBuffer
(),
static_cast
<
CDataType
*>
(
c_m_n_device_buf
.
GetDeviceBuffer
()),
std
::
array
<
const
void
*
,
1
>
{
d_device_buf
.
GetDeviceBuffer
()},
e_device_buf
.
GetDeviceBuffer
(),
M
,
M
,
N
,
N
,
K
,
K
,
StrideA
,
StrideA
,
StrideB
,
StrideB
,
StrideC
,
std
::
array
<
ck
::
index_t
,
1
>
{
StrideD
},
AElementOp
{},
StrideE
,
BElementOp
{},
a_element_op
,
CElementOp
{
alpha
,
beta
});
b_element_op
,
cde_element_op
);
if
(
!
gemm
.
IsSupportedArgument
(
argument
))
if
(
!
device_op
.
IsSupportedArgument
(
argument
))
{
{
throw
std
::
runtime_error
(
throw
std
::
runtime_error
(
"wrong! device_gemm with the specified compilation parameters does "
"wrong! device_gemm with the specified compilation parameters does "
...
@@ -219,7 +257,7 @@ int main(int argc, char* argv[])
...
@@ -219,7 +257,7 @@ int main(int argc, char* argv[])
std
::
size_t
flop
=
std
::
size_t
(
2
)
*
M
*
N
*
K
;
std
::
size_t
flop
=
std
::
size_t
(
2
)
*
M
*
N
*
K
;
std
::
size_t
num_btype
=
std
::
size_t
num_btype
=
sizeof
(
ADataType
)
*
M
*
K
+
sizeof
(
BDataType
)
*
K
*
N
+
sizeof
(
C
DataType
)
*
M
*
N
;
sizeof
(
ADataType
)
*
M
*
K
+
sizeof
(
BDataType
)
*
K
*
N
+
sizeof
(
E
DataType
)
*
M
*
N
;
float
tflops
=
static_cast
<
float
>
(
flop
)
/
1.E9
/
ave_time
;
float
tflops
=
static_cast
<
float
>
(
flop
)
/
1.E9
/
ave_time
;
...
@@ -228,24 +266,39 @@ int main(int argc, char* argv[])
...
@@ -228,24 +266,39 @@ int main(int argc, char* argv[])
std
::
cout
<<
"Perf: "
<<
ave_time
<<
" ms, "
<<
tflops
<<
" TFlops, "
<<
gb_per_sec
<<
" GB/s"
std
::
cout
<<
"Perf: "
<<
ave_time
<<
" ms, "
<<
tflops
<<
" TFlops, "
<<
gb_per_sec
<<
" GB/s"
<<
std
::
endl
;
<<
std
::
endl
;
c_m_n
_device_buf
.
FromDevice
(
c
_m_n_device_result
.
mData
.
data
());
e
_device_buf
.
FromDevice
(
e
_m_n_device_result
.
mData
.
data
());
if
(
do_verification
)
if
(
do_verification
)
{
{
Tensor
<
CShuffleDataType
>
c_m_n
(
HostTensorDescriptor
(
std
::
vector
<
std
::
size_t
>
{
static_cast
<
std
::
size_t
>
(
M
),
static_cast
<
std
::
size_t
>
(
N
)}));
using
ReferenceGemmInstance
=
ck
::
tensor_operation
::
host
::
ReferenceGemm
<
ADataType
,
BDataType
,
CShuffleDataType
,
AccDataType
,
AElementOp
,
BElementOp
,
PassThrough
>
;
auto
ref_gemm
=
ReferenceGemmInstance
{};
auto
ref_gemm
=
ReferenceGemmInstance
{};
auto
ref_invoker
=
ref_gemm
.
MakeInvoker
();
auto
ref_invoker
=
ref_gemm
.
MakeInvoker
();
auto
ref_argument
=
ref_gemm
.
MakeArgument
(
a_m_k
,
auto
ref_argument
=
b_k_n
,
ref_gemm
.
MakeArgument
(
a_m_k
,
b_k_n
,
c_m_n
,
a_element_op
,
b_element_op
,
PassThrough
{});
c0_m_n
,
c_m_n_host_result
,
AElementOp
{},
BElementOp
{},
CElementOp
{
alpha
,
beta
});
ref_invoker
.
Run
(
ref_argument
);
ref_invoker
.
Run
(
ref_argument
);
return
ck
::
utils
::
check_err
(
c_m_n_device_result
.
mData
,
c_m_n_host_result
.
mData
)
?
0
:
1
;
for
(
int
m
=
0
;
m
<
M
;
++
m
)
{
for
(
int
n
=
0
;
n
<
N
;
++
n
)
{
cde_element_op
(
e_m_n_host_result
(
m
,
n
),
c_m_n
(
m
,
n
),
d_m_n
(
m
,
n
));
}
}
e_device_buf
.
FromDevice
(
e_m_n_device_result
.
mData
.
data
());
return
ck
::
utils
::
check_err
(
e_m_n_device_result
.
mData
,
e_m_n_host_result
.
mData
)
?
0
:
1
;
}
}
return
0
;
return
0
;
...
...
example/03_gemm_bias_relu/CMakeLists.txt
View file @
bd0f0686
add_example_executable
(
example_gemm_
xdl_
bias_relu gemm_
xdl_
bias_relu.cpp
)
add_example_executable
(
example_gemm_bias_relu
_xdl_fp16
gemm_bias_relu
_xdl_fp16
.cpp
)
example/03_gemm_bias_relu/README.md
View file @
bd0f0686
# Instructions for ```example_gemm_
xdl_
bias_relu_
add
```
# Instructions for ```example_gemm_bias_relu_
xdl_fp16
```
## Run ```example_gemm_
xdl_
bias_relu_
add
```
## Run ```example_gemm_bias_relu_
xdl_fp16
```
```
bash
```
bash
#arg1: verification (0=no, 1=yes)
#arg1: verification (0=no, 1=yes)
#arg2: initialization (0=no init, 1=integer value, 2=decimal value)
#arg2: initialization (0=no init, 1=integer value, 2=decimal value)
#arg3: run kernel # of times (>1)
#arg3: time kernel (0=no, 1=yes)
#arg4 to 9: M (256x), N(128x), K(32x), StrideA, StrideB, StrideC
#arg4 to 9: M (256x), N(128x), K(32x), StrideA, StrideB, StrideE
./bin/example_gemm_xdl_bias_relu_add 0 1 5 3840 4096 4096 4096 4096 4096
./bin/example_gemm_bias_relu_xdl_fp16 1 1 1 3840 4096 4096 4096 4096 4096
```
Result (MI100 @ 1087Mhz, 133.5TFlops peak FP16)
```
a_m_k: dim 2, lengths {3840, 4096}, strides {4096, 1}
b_k_n: dim 2, lengths {4096, 4096}, strides {1, 4096}
c_m_n: dim 2, lengths {3840, 4096}, strides {4096, 1}
c0_m_n: dim 2, lengths {3840, 4096}, strides {4096, 1}
c1_m_n: dim 2, lengths {3840, 4096}, strides {1, 0}
arg.a_grid_desc_k0_m_k1_{512, 3840, 8}
arg.b_grid_desc_k0_n_k1_{512, 4096, 8}
arg.c_grid_desc_m_n_{ 3840, 4096}
arg.c0_grid_desc_m_n_{ 3840, 4096}
arg.c1_grid_desc_m_n_{ 3840, 4096}
launch_and_time_kernel: grid_dim {480, 1, 1}, block_dim {256, 1, 1}
Warm up
Start running 5 times...
Perf: 1.27583 ms, 100.992 TFlops, 73.9688 GB/s
```
```
example/03_gemm_bias_relu/gemm_
xdl_
bias_relu.cpp
→
example/03_gemm_bias_relu/gemm_bias_relu
_xdl_fp16
.cpp
View file @
bd0f0686
...
@@ -58,7 +58,7 @@ using AElementOp = PassThrough;
...
@@ -58,7 +58,7 @@ using AElementOp = PassThrough;
using
BElementOp
=
PassThrough
;
using
BElementOp
=
PassThrough
;
using
CDEElementOp
=
AddRelu
;
using
CDEElementOp
=
AddRelu
;
static
constexpr
auto
GemmDefault
=
ck
::
tensor_operation
::
device
::
GemmSpecialization
::
Default
;
static
constexpr
auto
GemmDefault
=
ck
::
tensor_operation
::
device
::
GemmSpecialization
::
MNKPadding
;
using
DeviceOpInstance
=
using
DeviceOpInstance
=
ck
::
tensor_operation
::
device
::
DeviceGemmMultipleD_Xdl_CShuffle
<
ALayout
,
ck
::
tensor_operation
::
device
::
DeviceGemmMultipleD_Xdl_CShuffle
<
ALayout
,
...
@@ -191,14 +191,14 @@ int main(int argc, char* argv[])
...
@@ -191,14 +191,14 @@ int main(int argc, char* argv[])
d_m_n
.
GenerateTensorValue
(
GeneratorTensor_3
<
DDataType
>
{
0.0
,
1.0
});
d_m_n
.
GenerateTensorValue
(
GeneratorTensor_3
<
DDataType
>
{
0.0
,
1.0
});
}
}
DeviceMem
a_
m_k_
device_buf
(
sizeof
(
ADataType
)
*
a_m_k
.
mDesc
.
GetElementSpace
());
DeviceMem
a_device_buf
(
sizeof
(
ADataType
)
*
a_m_k
.
mDesc
.
GetElementSpace
());
DeviceMem
b_
k_n_
device_buf
(
sizeof
(
BDataType
)
*
b_k_n
.
mDesc
.
GetElementSpace
());
DeviceMem
b_device_buf
(
sizeof
(
BDataType
)
*
b_k_n
.
mDesc
.
GetElementSpace
());
DeviceMem
d_
m_n_
device_buf
(
sizeof
(
DDataType
)
*
d_m_n
.
mDesc
.
GetElementSpace
());
DeviceMem
d_device_buf
(
sizeof
(
DDataType
)
*
d_m_n
.
mDesc
.
GetElementSpace
());
DeviceMem
e_
m_n_
device_buf
(
sizeof
(
EDataType
)
*
e_m_n_device_result
.
mDesc
.
GetElementSpace
());
DeviceMem
e_device_buf
(
sizeof
(
EDataType
)
*
e_m_n_device_result
.
mDesc
.
GetElementSpace
());
a_
m_k_
device_buf
.
ToDevice
(
a_m_k
.
mData
.
data
());
a_device_buf
.
ToDevice
(
a_m_k
.
mData
.
data
());
b_
k_n_
device_buf
.
ToDevice
(
b_k_n
.
mData
.
data
());
b_device_buf
.
ToDevice
(
b_k_n
.
mData
.
data
());
d_
m_n_
device_buf
.
ToDevice
(
d_m_n
.
mData
.
data
());
d_device_buf
.
ToDevice
(
d_m_n
.
mData
.
data
());
auto
a_element_op
=
AElementOp
{};
auto
a_element_op
=
AElementOp
{};
auto
b_element_op
=
BElementOp
{};
auto
b_element_op
=
BElementOp
{};
...
@@ -210,10 +210,10 @@ int main(int argc, char* argv[])
...
@@ -210,10 +210,10 @@ int main(int argc, char* argv[])
auto
invoker
=
device_op
.
MakeInvoker
();
auto
invoker
=
device_op
.
MakeInvoker
();
auto
argument
=
auto
argument
=
device_op
.
MakeArgument
(
a_
m_k_
device_buf
.
GetDeviceBuffer
(),
device_op
.
MakeArgument
(
a_device_buf
.
GetDeviceBuffer
(),
b_
k_n_
device_buf
.
GetDeviceBuffer
(),
b_device_buf
.
GetDeviceBuffer
(),
std
::
array
<
const
void
*
,
1
>
{
d_
m_n_
device_buf
.
GetDeviceBuffer
()},
std
::
array
<
const
void
*
,
1
>
{
d_device_buf
.
GetDeviceBuffer
()},
e_
m_n_
device_buf
.
GetDeviceBuffer
(),
e_device_buf
.
GetDeviceBuffer
(),
M
,
M
,
N
,
N
,
K
,
K
,
...
@@ -246,7 +246,7 @@ int main(int argc, char* argv[])
...
@@ -246,7 +246,7 @@ int main(int argc, char* argv[])
if
(
do_verification
)
if
(
do_verification
)
{
{
e_
m_n_
device_buf
.
FromDevice
(
e_m_n_device_result
.
mData
.
data
());
e_device_buf
.
FromDevice
(
e_m_n_device_result
.
mData
.
data
());
Tensor
<
AccDataType
>
c_m_n
(
f_host_tensor_descriptor
(
M
,
N
,
StrideE
,
ELayout
{}));
Tensor
<
AccDataType
>
c_m_n
(
f_host_tensor_descriptor
(
M
,
N
,
StrideE
,
ELayout
{}));
...
...
Prev
1
2
3
4
5
…
20
Next
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
.
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment