Skip to content
GitLab
Menu
Projects
Groups
Snippets
Loading...
Help
Help
Support
Community forum
Keyboard shortcuts
?
Submit feedback
Contribute to GitLab
Sign in / Register
Toggle navigation
Menu
Open sidebar
gaoqiong
composable_kernel
Commits
bd0f0686
Commit
bd0f0686
authored
Jul 09, 2022
by
Jing Zhang
Browse files
merge develop
parents
e9b1000f
63914743
Changes
382
Show whitespace changes
Inline
Side-by-side
Showing
20 changed files
with
1094 additions
and
103 deletions
+1094
-103
CMakeLists.txt
CMakeLists.txt
+0
-7
README.md
README.md
+7
-0
client_example/01_gemm/CMakeLists.txt
client_example/01_gemm/CMakeLists.txt
+2
-0
client_example/01_gemm/gemm.cpp
client_example/01_gemm/gemm.cpp
+218
-0
client_example/02_gemm_add_add_fastgelu/gemm_add_add_fastgelu.cpp
...xample/02_gemm_add_add_fastgelu/gemm_add_add_fastgelu.cpp
+33
-29
client_example/03_gemm_layernorm/CMakeLists.txt
client_example/03_gemm_layernorm/CMakeLists.txt
+2
-2
client_example/03_gemm_layernorm/gemm_add_add_layernorm.cpp
client_example/03_gemm_layernorm/gemm_add_add_layernorm.cpp
+10
-9
client_example/04_contraction/CMakeLists.txt
client_example/04_contraction/CMakeLists.txt
+6
-0
client_example/04_contraction/contraction_bilinear.cpp
client_example/04_contraction/contraction_bilinear.cpp
+241
-0
client_example/04_contraction/contraction_scale.cpp
client_example/04_contraction/contraction_scale.cpp
+227
-0
client_example/CMakeLists.txt
client_example/CMakeLists.txt
+2
-0
client_example/README.md
client_example/README.md
+1
-12
example/01_gemm/gemm_xdl_fp16.cpp
example/01_gemm/gemm_xdl_fp16.cpp
+14
-2
example/02_gemm_alpha_beta/CMakeLists.txt
example/02_gemm_alpha_beta/CMakeLists.txt
+0
-1
example/02_gemm_bilinear/CMakeLists.txt
example/02_gemm_bilinear/CMakeLists.txt
+1
-0
example/02_gemm_bilinear/README.md
example/02_gemm_bilinear/README.md
+6
-4
example/02_gemm_bilinear/gemm_bilinear_xdl_fp16.cpp
example/02_gemm_bilinear/gemm_bilinear_xdl_fp16.cpp
+305
-0
example/03_gemm_bias_relu/CMakeLists.txt
example/03_gemm_bias_relu/CMakeLists.txt
+1
-1
example/03_gemm_bias_relu/README.md
example/03_gemm_bias_relu/README.md
+5
-23
example/03_gemm_bias_relu/gemm_bias_relu_xdl_fp16.cpp
example/03_gemm_bias_relu/gemm_bias_relu_xdl_fp16.cpp
+13
-13
No files found.
CMakeLists.txt
View file @
bd0f0686
...
...
@@ -71,13 +71,6 @@ if( DEFINED CK_OVERRIDE_HIP_VERSION_PATCH )
endif
()
message
(
STATUS
"Build with HIP
${
HIP_VERSION
}
"
)
rocm_create_package
(
NAME composablekernel
DESCRIPTION
"High Performance Composable Kernel for AMD GPUs"
MAINTAINER
"MIOpen Kernels Dev Team <dl.MIOpen@amd.com>"
LDCONFIG
)
## tidy
include
(
EnableCompilerWarnings
)
set
(
CK_TIDY_ERRORS ERRORS * -readability-inconsistent-declaration-parameter-name
)
...
...
README.md
View file @
bd0f0686
...
...
@@ -26,6 +26,7 @@ cmake \
-D
CMAKE_CXX_FLAGS
=
" --offload-arch=gfx908 --offload-arch=gfx90a -O3"
\
-D
CMAKE_CXX_COMPILER
=
/opt/rocm/bin/hipcc
\
-D
CMAKE_PREFIX_PATH
=
/opt/rocm
\
-D
CMAKE_INSTALL_PREFIX
=
${
PATH_TO_CK_INSTALL_DIRECTORY
}
\
..
```
...
...
@@ -47,6 +48,12 @@ Instructions for running each individual examples are under ```example/```
```
Instructions for running ckProfiler are under
```profiler/```
## Install CK
```
bash
make
install
```
## Using CK as pre-built kernel library
## Caveat
### Kernel Timing and Verification
...
...
client_example/01_gemm/CMakeLists.txt
0 → 100644
View file @
bd0f0686
add_executable
(
client_gemm gemm.cpp
)
target_link_libraries
(
client_gemm PRIVATE composable_kernel::device_operations
)
client_example/01_gemm/gemm.cpp
0 → 100644
View file @
bd0f0686
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2022, Advanced Micro Devices, Inc. All rights reserved.
#include <iomanip>
#include <vector>
#include <iostream>
#include "ck/ck.hpp"
#include "ck/tensor_operation/gpu/device/tensor_layout.hpp"
#include "ck/tensor_operation/gpu/device/device_gemm.hpp"
#include "ck/tensor_operation/gpu/element/element_wise_operation.hpp"
#include "ck/library/tensor_operation_instance/gpu/gemm.hpp"
using
F16
=
ck
::
half_t
;
using
F32
=
float
;
using
Row
=
ck
::
tensor_layout
::
gemm
::
RowMajor
;
using
Col
=
ck
::
tensor_layout
::
gemm
::
ColumnMajor
;
using
PassThrough
=
ck
::
tensor_operation
::
element_wise
::
PassThrough
;
using
AElementOp
=
PassThrough
;
using
BElementOp
=
PassThrough
;
using
CElementOp
=
PassThrough
;
using
ADataType
=
F16
;
using
BDataType
=
F16
;
using
CDataType
=
F16
;
using
ALayout
=
Row
;
using
BLayout
=
Col
;
using
CLayout
=
Row
;
struct
SimpleDeviceMem
{
SimpleDeviceMem
()
=
delete
;
SimpleDeviceMem
(
std
::
size_t
mem_size
)
:
p_mem_
{}
{
(
void
)
hipMalloc
(
static_cast
<
void
**>
(
&
p_mem_
),
mem_size
);
}
void
*
GetDeviceBuffer
()
{
return
p_mem_
;
}
~
SimpleDeviceMem
()
{
(
void
)
hipFree
(
p_mem_
);
}
void
*
p_mem_
;
};
int
main
(
int
argc
,
char
*
argv
[])
{
// GEMM shape
ck
::
index_t
M
=
3840
;
ck
::
index_t
N
=
4096
;
ck
::
index_t
K
=
4096
;
ck
::
index_t
StrideA
=
4096
;
ck
::
index_t
StrideB
=
4096
;
ck
::
index_t
StrideC
=
4096
;
if
(
argc
==
1
)
{
// use default case
}
else
if
(
argc
==
5
)
{
M
=
std
::
stoi
(
argv
[
1
]);
N
=
std
::
stoi
(
argv
[
2
]);
K
=
std
::
stoi
(
argv
[
3
]);
StrideA
=
std
::
stoi
(
argv
[
4
]);
StrideB
=
std
::
stoi
(
argv
[
5
]);
StrideC
=
std
::
stoi
(
argv
[
6
]);
}
else
{
printf
(
"arg1 to 6: M, N, K, StrideA, StrideB, StrideC
\n
"
);
exit
(
0
);
}
auto
f_matrix_space_size
=
[](
std
::
size_t
nRow
,
std
::
size_t
nCol
,
std
::
size_t
stride
,
auto
layout
)
{
using
Layout
=
decltype
(
layout
);
if
(
std
::
is_same
<
Layout
,
ck
::
tensor_layout
::
gemm
::
RowMajor
>::
value
)
{
return
(
nRow
-
1
)
*
stride
+
nCol
;
}
else
{
return
(
nCol
-
1
)
*
stride
+
nRow
;
}
};
SimpleDeviceMem
a_device_buf
(
sizeof
(
ADataType
)
*
f_matrix_space_size
(
M
,
K
,
StrideA
,
ALayout
{}));
SimpleDeviceMem
b_device_buf
(
sizeof
(
BDataType
)
*
f_matrix_space_size
(
K
,
N
,
StrideB
,
BLayout
{}));
SimpleDeviceMem
c_device_buf
(
sizeof
(
CDataType
)
*
f_matrix_space_size
(
M
,
N
,
StrideC
,
CLayout
{}));
using
DeviceOp
=
ck
::
tensor_operation
::
device
::
DeviceGemm
<
ALayout
,
BLayout
,
CLayout
,
ADataType
,
BDataType
,
CDataType
,
ck
::
tensor_operation
::
element_wise
::
PassThrough
,
ck
::
tensor_operation
::
element_wise
::
PassThrough
,
ck
::
tensor_operation
::
element_wise
::
PassThrough
>
;
// get device op instances
const
auto
op_ptrs
=
ck
::
tensor_operation
::
device
::
instance
::
DeviceOperationInstanceFactory
<
DeviceOp
>::
GetInstances
();
std
::
cout
<<
"found "
<<
op_ptrs
.
size
()
<<
" instances"
<<
std
::
endl
;
const
auto
a_element_op
=
AElementOp
{};
const
auto
b_element_op
=
BElementOp
{};
const
auto
c_element_op
=
CElementOp
{};
std
::
string
best_op_name
;
bool
found
=
false
;
int
best_op_id
=
-
1
;
float
best_ave_time
=
0
;
float
best_tflops
=
0
;
float
best_gb_per_sec
=
0
;
// profile device operation instances
std
::
cout
<<
"Run all instances and do timing"
<<
std
::
endl
;
for
(
int
i
=
0
;
i
<
op_ptrs
.
size
();
++
i
)
{
auto
&
op_ptr
=
op_ptrs
[
i
];
auto
argument_ptr
=
op_ptr
->
MakeArgumentPointer
(
a_device_buf
.
GetDeviceBuffer
(),
b_device_buf
.
GetDeviceBuffer
(),
c_device_buf
.
GetDeviceBuffer
(),
M
,
N
,
K
,
StrideA
,
StrideB
,
StrideC
,
a_element_op
,
b_element_op
,
c_element_op
);
auto
invoker_ptr
=
op_ptr
->
MakeInvokerPointer
();
std
::
string
op_name
=
op_ptr
->
GetTypeString
();
if
(
op_ptr
->
IsSupportedArgument
(
argument_ptr
.
get
()))
{
float
ave_time
=
invoker_ptr
->
Run
(
argument_ptr
.
get
(),
StreamConfig
{
nullptr
,
true
});
std
::
size_t
flop
=
std
::
size_t
(
2
)
*
M
*
N
*
K
;
std
::
size_t
num_btype
=
sizeof
(
ADataType
)
*
M
*
K
+
sizeof
(
BDataType
)
*
K
*
N
+
sizeof
(
CDataType
)
*
M
*
N
;
float
tflops
=
static_cast
<
float
>
(
flop
)
/
1.E9
/
ave_time
;
float
gb_per_sec
=
num_btype
/
1.E6
/
ave_time
;
std
::
cout
<<
"Perf: "
<<
std
::
setw
(
10
)
<<
ave_time
<<
" ms, "
<<
tflops
<<
" TFlops, "
<<
gb_per_sec
<<
" GB/s, "
<<
op_name
<<
std
::
endl
;
if
(
tflops
>
best_tflops
)
{
found
=
true
;
best_op_id
=
i
;
best_op_name
=
op_name
;
best_tflops
=
tflops
;
best_ave_time
=
ave_time
;
best_gb_per_sec
=
gb_per_sec
;
}
}
else
{
std
::
cout
<<
op_name
<<
" does not support this problem"
<<
std
::
endl
;
}
}
std
::
cout
<<
"Best Perf: "
<<
best_ave_time
<<
" ms, "
<<
best_tflops
<<
" TFlops, "
<<
best_gb_per_sec
<<
" GB/s, "
<<
best_op_name
<<
std
::
endl
;
// run the best intance
{
auto
&
op_ptr
=
op_ptrs
[
best_op_id
];
std
::
cout
<<
"Run the best instance without timing: "
<<
op_ptr
->
GetTypeString
()
<<
std
::
endl
;
auto
argument_ptr
=
op_ptr
->
MakeArgumentPointer
(
a_device_buf
.
GetDeviceBuffer
(),
b_device_buf
.
GetDeviceBuffer
(),
c_device_buf
.
GetDeviceBuffer
(),
M
,
N
,
K
,
StrideA
,
StrideB
,
StrideC
,
a_element_op
,
b_element_op
,
c_element_op
);
auto
invoker_ptr
=
op_ptr
->
MakeInvokerPointer
();
if
(
op_ptr
->
IsSupportedArgument
(
argument_ptr
.
get
()))
{
invoker_ptr
->
Run
(
argument_ptr
.
get
(),
StreamConfig
{
nullptr
,
false
});
}
std
::
cout
<<
"Done"
<<
std
::
endl
;
}
return
0
;
}
client_example/02_gemm_add_add_fastgelu/gemm_add_add_fastgelu.cpp
View file @
bd0f0686
...
...
@@ -10,7 +10,7 @@
#include "ck/tensor_operation/gpu/device/device_gemm_multiple_d.hpp"
#include "ck/tensor_operation/gpu/element/element_wise_operation.hpp"
#include "ck/library/tensor_operation_instance/gpu/
device_
gemm_add_add_fastgelu
_instance
.hpp"
#include "ck/library/tensor_operation_instance/gpu/gemm_add_add_fastgelu.hpp"
using
F16
=
ck
::
half_t
;
using
F32
=
float
;
...
...
@@ -27,16 +27,15 @@ using CDEElementOp = AddAddFastGelu;
using
ADataType
=
F16
;
using
BDataType
=
F16
;
using
AccDataType
=
F32
;
using
D0DataType
=
F16
;
using
D1DataType
=
F16
;
using
EDataType
=
F16
;
using
ALayout
=
Row
;
using
BLayout
=
Col
;
using
D
0
Layout
=
Row
;
using
D
1
Layout
=
Row
;
using
ELayout
=
Row
;
using
D
DE
Layout
=
Row
;
using
D
DE
Layout
=
Row
;
using
D
ELayout
=
Row
;
struct
SimpleDeviceMem
{
...
...
@@ -106,24 +105,27 @@ int main(int argc, char* argv[])
SimpleDeviceMem
a_device_buf
(
sizeof
(
ADataType
)
*
f_matrix_space_size
(
M
,
K
,
StrideA
,
ALayout
{}));
SimpleDeviceMem
b_device_buf
(
sizeof
(
BDataType
)
*
f_matrix_space_size
(
K
,
N
,
StrideB
,
BLayout
{}));
SimpleDeviceMem
d0_m_n_device_buf
(
sizeof
(
D0DataType
)
*
f_matrix_space_size
(
M
,
N
,
StrideD0
,
D
0
Layout
{}));
f_matrix_space_size
(
M
,
N
,
StrideD0
,
D
DE
Layout
{}));
SimpleDeviceMem
d1_m_n_device_buf
(
sizeof
(
D1DataType
)
*
f_matrix_space_size
(
M
,
N
,
StrideD1
,
D1Layout
{}));
SimpleDeviceMem
e_device_buf
(
sizeof
(
EDataType
)
*
f_matrix_space_size
(
M
,
N
,
StrideE
,
ELayout
{}));
f_matrix_space_size
(
M
,
N
,
StrideD1
,
DDELayout
{}));
SimpleDeviceMem
e_device_buf
(
sizeof
(
EDataType
)
*
f_matrix_space_size
(
M
,
N
,
StrideE
,
DELayout
{}));
// add device op instances
const
auto
op_ptrs
=
ck
::
tensor_operation
::
device
::
device_gemm_instance
::
get_device_gemm_add_add_fastgelu_instances
<
ADataType
,
BDataType
,
AccDataType
,
D0DataType
,
D1DataType
,
EDataType
,
using
DeviceOp
=
ck
::
tensor_operation
::
device
::
DeviceGemmMultipleD
<
ALayout
,
BLayout
,
D0Layout
,
D1Layout
,
ELayout
>
();
DDELayout
,
ADataType
,
BDataType
,
ck
::
Tuple
<
D0DataType
,
D1DataType
>
,
EDataType
,
ck
::
tensor_operation
::
element_wise
::
PassThrough
,
ck
::
tensor_operation
::
element_wise
::
PassThrough
,
ck
::
tensor_operation
::
element_wise
::
AddAddFastGelu
>
;
// get device op instances
const
auto
op_ptrs
=
ck
::
tensor_operation
::
device
::
instance
::
DeviceOperationInstanceFactory
<
DeviceOp
>::
GetInstances
();
std
::
cout
<<
"found "
<<
op_ptrs
.
size
()
<<
" instances"
<<
std
::
endl
;
...
...
@@ -231,6 +233,8 @@ int main(int argc, char* argv[])
{
invoker_ptr
->
Run
(
argument_ptr
.
get
(),
StreamConfig
{
nullptr
,
false
});
}
std
::
cout
<<
"Done"
<<
std
::
endl
;
}
return
0
;
...
...
client_example/03_gemm_layernorm/CMakeLists.txt
View file @
bd0f0686
add_executable
(
gemm_add_add_reduce_normalize gemm_add_add_layernorm.cpp
)
target_link_libraries
(
gemm_add_add_reduce_normalize PRIVATE composable_kernel::device_operations
)
add_executable
(
client_
gemm_add_add_reduce_normalize gemm_add_add_layernorm.cpp
)
target_link_libraries
(
client_
gemm_add_add_reduce_normalize PRIVATE composable_kernel::device_operations
)
client_example/03_gemm_layernorm/gemm_add_add_layernorm.cpp
View file @
bd0f0686
...
...
@@ -160,8 +160,9 @@ int main()
ck
::
index_t
StrideC
=
1024
;
ck
::
index_t
StrideD0
=
1024
;
const
auto
gemm_reduce_ptrs
=
ck
::
tensor_operation
::
device
::
device_gemm_instance
::
get_device_gemm_add_add_mean_squaremean_instances
<
ADataType
,
const
auto
gemm_reduce_ptrs
=
ck
::
tensor_operation
::
device
::
instance
::
get_device_gemm_add_add_mean_squaremean_instances
<
ADataType
,
BDataType
,
CDataType
,
ALayout
,
...
...
@@ -169,7 +170,7 @@ int main()
CLayout
>
();
const
auto
normalize_ptrs
=
ck
::
tensor_operation
::
device
::
get_device_normalize_from_mean_meansquare_instances
<
ck
::
tensor_operation
::
device
::
instance
::
get_device_normalize_from_mean_meansquare_instances
<
CDataType
,
ReduceDataType
,
ReduceDataType
,
...
...
client_example/04_contraction/CMakeLists.txt
0 → 100644
View file @
bd0f0686
add_executable
(
client_contraction_scale contraction_scale.cpp
)
target_link_libraries
(
client_contraction_scale PRIVATE composable_kernel::device_operations
)
add_executable
(
client_contraction_bilinear contraction_bilinear.cpp
)
target_link_libraries
(
client_contraction_bilinear PRIVATE composable_kernel::device_operations
)
client_example/04_contraction/contraction_bilinear.cpp
0 → 100644
View file @
bd0f0686
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2022, Advanced Micro Devices, Inc. All rights reserved.
#include <iomanip>
#include <numeric>
#include <vector>
#include <iostream>
#include "ck/ck.hpp"
#include "ck/tensor_operation/gpu/device/tensor_layout.hpp"
#include "ck/tensor_operation/gpu/device/device_contraction_multiple_d.hpp"
#include "ck/tensor_operation/gpu/element/element_wise_operation.hpp"
#include "ck/library/tensor_operation_instance/gpu/contraction_bilinear.hpp"
using
F32
=
float
;
using
PassThrough
=
ck
::
tensor_operation
::
element_wise
::
PassThrough
;
using
Bilinear
=
ck
::
tensor_operation
::
element_wise
::
Bilinear
;
using
AElementOp
=
PassThrough
;
using
BElementOp
=
PassThrough
;
using
CDEElementOp
=
Bilinear
;
using
ADataType
=
F32
;
using
BDataType
=
F32
;
using
AccDataType
=
F32
;
using
CShuffleDataType
=
F32
;
using
DDataType
=
F32
;
using
DsDataType
=
ck
::
Tuple
<
DDataType
>
;
using
EDataType
=
F32
;
static
constexpr
ck
::
index_t
NumDimM
=
2
;
static
constexpr
ck
::
index_t
NumDimN
=
2
;
static
constexpr
ck
::
index_t
NumDimK
=
2
;
struct
SimpleDeviceMem
{
SimpleDeviceMem
()
=
delete
;
SimpleDeviceMem
(
std
::
size_t
mem_size
)
:
p_mem_
{}
{
(
void
)
hipMalloc
(
static_cast
<
void
**>
(
&
p_mem_
),
mem_size
);
}
void
*
GetDeviceBuffer
()
{
return
p_mem_
;
}
~
SimpleDeviceMem
()
{
(
void
)
hipFree
(
p_mem_
);
}
void
*
p_mem_
;
};
int
main
(
int
argc
,
char
*
argv
[])
{
// A[M0, M1, K0, K1]
std
::
vector
<
ck
::
index_t
>
a_ms_ks_lengths
{
30
,
128
,
32
,
64
};
std
::
vector
<
ck
::
index_t
>
a_ms_ks_strides
{
524288
,
4096
,
128
,
1
};
// B[N0, N1, K0, K1]
std
::
vector
<
ck
::
index_t
>
b_ns_ks_lengths
{
32
,
64
,
32
,
64
};
std
::
vector
<
ck
::
index_t
>
b_ns_ks_strides
{
524288
,
4096
,
128
,
1
};
// D[M0, M1, N0, N1]
std
::
vector
<
ck
::
index_t
>
d_ms_ns_lengths
{
30
,
128
,
32
,
64
};
std
::
vector
<
ck
::
index_t
>
d_ms_ns_strides
{
524288
,
4096
,
128
,
1
};
// E[M0, M1, N0, N1]
std
::
vector
<
ck
::
index_t
>
e_ms_ns_lengths
{
30
,
128
,
32
,
64
};
std
::
vector
<
ck
::
index_t
>
e_ms_ns_strides
{
524288
,
4096
,
128
,
1
};
float
alpha
=
1.
f
;
float
beta
=
1.
f
;
if
(
argc
==
1
)
{
// use default case
}
else
if
(
argc
==
25
)
{
const
ck
::
index_t
M0
=
std
::
stoi
(
argv
[
1
]);
const
ck
::
index_t
M1
=
std
::
stoi
(
argv
[
2
]);
const
ck
::
index_t
N0
=
std
::
stoi
(
argv
[
3
]);
const
ck
::
index_t
N1
=
std
::
stoi
(
argv
[
4
]);
const
ck
::
index_t
K0
=
std
::
stoi
(
argv
[
5
]);
const
ck
::
index_t
K1
=
std
::
stoi
(
argv
[
6
]);
a_ms_ks_lengths
=
{
M0
,
M1
,
K0
,
K1
};
a_ms_ks_strides
=
{
std
::
stoi
(
argv
[
7
]),
std
::
stoi
(
argv
[
8
]),
std
::
stoi
(
argv
[
9
]),
std
::
stoi
(
argv
[
10
])};
b_ns_ks_lengths
=
{
N0
,
N1
,
K0
,
K1
};
b_ns_ks_strides
=
{
std
::
stoi
(
argv
[
11
]),
std
::
stoi
(
argv
[
12
]),
std
::
stoi
(
argv
[
13
]),
std
::
stoi
(
argv
[
14
])};
d_ms_ns_lengths
=
{
M0
,
M1
,
N0
,
N1
};
d_ms_ns_strides
=
{
std
::
stoi
(
argv
[
15
]),
std
::
stoi
(
argv
[
16
]),
std
::
stoi
(
argv
[
17
]),
std
::
stoi
(
argv
[
18
])};
e_ms_ns_lengths
=
{
M0
,
M1
,
N0
,
N1
};
e_ms_ns_strides
=
{
std
::
stoi
(
argv
[
19
]),
std
::
stoi
(
argv
[
20
]),
std
::
stoi
(
argv
[
21
]),
std
::
stoi
(
argv
[
22
])};
alpha
=
std
::
stof
(
argv
[
23
]);
beta
=
std
::
stof
(
argv
[
24
]);
}
else
{
printf
(
"arg1 to 6: M0, M1, N0, N1, K0, K1
\n
"
);
printf
(
"arg7 to 10: Stride_A_M0, Stride_A_M1, Stride_A_K0, Stride_A_K1
\n
"
);
printf
(
"arg11 to 14: Stride_B_N0, Stride_B_N1, Stride_B_K0, Stride_B_K1
\n
"
);
printf
(
"arg15 to 18: Stride_D_M0, Stride_D_M1, Stride_D_N0, Stride_D_N1
\n
"
);
printf
(
"arg19 to 22: Stride_E_M0, Stride_E_M1, Stride_E_N0, Stride_E_N1
\n
"
);
printf
(
"arg23 to 24: alpha, beta
\n
"
);
exit
(
0
);
}
auto
f_tensor_space_size
=
[](
auto
lengths
,
auto
strides
)
{
std
::
size_t
space_size
=
1
;
for
(
std
::
size_t
i
=
0
;
i
<
lengths
.
size
();
++
i
)
{
space_size
+=
(
lengths
[
i
]
-
1
)
*
strides
[
i
];
}
return
space_size
;
};
SimpleDeviceMem
a_device_buf
(
sizeof
(
ADataType
)
*
f_tensor_space_size
(
a_ms_ks_lengths
,
a_ms_ks_strides
));
SimpleDeviceMem
b_device_buf
(
sizeof
(
BDataType
)
*
f_tensor_space_size
(
b_ns_ks_lengths
,
b_ns_ks_strides
));
SimpleDeviceMem
d_device_buf
(
sizeof
(
DDataType
)
*
f_tensor_space_size
(
d_ms_ns_lengths
,
d_ms_ns_strides
));
SimpleDeviceMem
e_device_buf
(
sizeof
(
EDataType
)
*
f_tensor_space_size
(
e_ms_ns_lengths
,
e_ms_ns_strides
));
using
DeviceOp
=
ck
::
tensor_operation
::
device
::
DeviceContractionMultipleD
<
NumDimM
,
NumDimN
,
NumDimK
,
ADataType
,
BDataType
,
ck
::
Tuple
<
DDataType
>
,
EDataType
,
ck
::
tensor_operation
::
element_wise
::
PassThrough
,
ck
::
tensor_operation
::
element_wise
::
PassThrough
,
ck
::
tensor_operation
::
element_wise
::
Bilinear
>
;
// get device op instances
const
auto
op_ptrs
=
ck
::
tensor_operation
::
device
::
instance
::
DeviceOperationInstanceFactory
<
DeviceOp
>::
GetInstances
();
std
::
cout
<<
"found "
<<
op_ptrs
.
size
()
<<
" instances"
<<
std
::
endl
;
const
auto
a_element_op
=
AElementOp
{};
const
auto
b_element_op
=
BElementOp
{};
const
auto
cde_element_op
=
CDEElementOp
{
alpha
,
beta
};
std
::
string
best_op_name
;
bool
found
=
false
;
int
best_op_id
=
-
1
;
float
best_ave_time
=
0
;
float
best_tflops
=
0
;
float
best_gb_per_sec
=
0
;
// profile device operation instances
std
::
cout
<<
"Run all instances and do timing"
<<
std
::
endl
;
for
(
int
i
=
0
;
i
<
op_ptrs
.
size
();
++
i
)
{
auto
&
op_ptr
=
op_ptrs
[
i
];
auto
argument_ptr
=
op_ptr
->
MakeArgumentPointer
(
a_device_buf
.
GetDeviceBuffer
(),
b_device_buf
.
GetDeviceBuffer
(),
std
::
array
<
const
void
*
,
1
>
{
d_device_buf
.
GetDeviceBuffer
()},
e_device_buf
.
GetDeviceBuffer
(),
a_ms_ks_lengths
,
a_ms_ks_strides
,
b_ns_ks_lengths
,
b_ns_ks_strides
,
std
::
array
<
std
::
vector
<
ck
::
index_t
>
,
1
>
{
d_ms_ns_lengths
},
std
::
array
<
std
::
vector
<
ck
::
index_t
>
,
1
>
{
d_ms_ns_strides
},
e_ms_ns_lengths
,
e_ms_ns_strides
,
a_element_op
,
b_element_op
,
cde_element_op
);
auto
invoker_ptr
=
op_ptr
->
MakeInvokerPointer
();
std
::
string
op_name
=
op_ptr
->
GetTypeString
();
if
(
op_ptr
->
IsSupportedArgument
(
argument_ptr
.
get
()))
{
float
ave_time
=
invoker_ptr
->
Run
(
argument_ptr
.
get
(),
StreamConfig
{
nullptr
,
true
});
ck
::
index_t
M
=
std
::
accumulate
(
e_ms_ns_lengths
.
begin
(),
e_ms_ns_lengths
.
begin
()
+
NumDimM
,
ck
::
index_t
{
1
},
std
::
multiplies
<
ck
::
index_t
>
{});
ck
::
index_t
N
=
std
::
accumulate
(
e_ms_ns_lengths
.
begin
()
+
NumDimM
,
e_ms_ns_lengths
.
begin
()
+
NumDimM
+
NumDimN
,
ck
::
index_t
{
1
},
std
::
multiplies
<
ck
::
index_t
>
{});
ck
::
index_t
K
=
std
::
accumulate
(
a_ms_ks_lengths
.
begin
()
+
NumDimM
,
a_ms_ks_lengths
.
begin
()
+
NumDimM
+
NumDimK
,
ck
::
index_t
{
1
},
std
::
multiplies
<
ck
::
index_t
>
{});
std
::
size_t
flop
=
std
::
size_t
(
2
)
*
M
*
N
*
K
;
std
::
size_t
num_btype
=
sizeof
(
ADataType
)
*
M
*
K
+
sizeof
(
BDataType
)
*
K
*
N
+
sizeof
(
DDataType
)
*
M
*
N
+
sizeof
(
EDataType
)
*
M
*
N
;
float
tflops
=
static_cast
<
float
>
(
flop
)
/
1.E9
/
ave_time
;
float
gb_per_sec
=
num_btype
/
1.E6
/
ave_time
;
std
::
cout
<<
"Perf: "
<<
std
::
setw
(
10
)
<<
ave_time
<<
" ms, "
<<
tflops
<<
" TFlops, "
<<
gb_per_sec
<<
" GB/s, "
<<
op_name
<<
std
::
endl
;
if
(
tflops
>
best_tflops
)
{
found
=
true
;
best_op_id
=
i
;
best_op_name
=
op_name
;
best_tflops
=
tflops
;
best_ave_time
=
ave_time
;
best_gb_per_sec
=
gb_per_sec
;
}
}
else
{
std
::
cout
<<
op_name
<<
" does not support this problem"
<<
std
::
endl
;
}
}
std
::
cout
<<
"Best Perf: "
<<
best_ave_time
<<
" ms, "
<<
best_tflops
<<
" TFlops, "
<<
best_gb_per_sec
<<
" GB/s, "
<<
best_op_name
<<
std
::
endl
;
return
0
;
}
client_example/04_contraction/contraction_scale.cpp
0 → 100644
View file @
bd0f0686
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2022, Advanced Micro Devices, Inc. All rights reserved.
#include <iomanip>
#include <numeric>
#include <vector>
#include <iostream>
#include "ck/ck.hpp"
#include "ck/tensor_operation/gpu/device/tensor_layout.hpp"
#include "ck/tensor_operation/gpu/device/device_contraction_multiple_d.hpp"
#include "ck/tensor_operation/gpu/element/element_wise_operation.hpp"
#include "ck/library/tensor_operation_instance/gpu/contraction_scale.hpp"
using
F32
=
float
;
using
PassThrough
=
ck
::
tensor_operation
::
element_wise
::
PassThrough
;
using
Scale
=
ck
::
tensor_operation
::
element_wise
::
Scale
;
using
AElementOp
=
PassThrough
;
using
BElementOp
=
PassThrough
;
using
CDEElementOp
=
Scale
;
using
ADataType
=
F32
;
using
BDataType
=
F32
;
using
AccDataType
=
F32
;
using
CShuffleDataType
=
F32
;
using
DsDataType
=
ck
::
Tuple
<>
;
using
EDataType
=
F32
;
static
constexpr
ck
::
index_t
NumDimM
=
2
;
static
constexpr
ck
::
index_t
NumDimN
=
2
;
static
constexpr
ck
::
index_t
NumDimK
=
2
;
struct
SimpleDeviceMem
{
SimpleDeviceMem
()
=
delete
;
SimpleDeviceMem
(
std
::
size_t
mem_size
)
:
p_mem_
{}
{
(
void
)
hipMalloc
(
static_cast
<
void
**>
(
&
p_mem_
),
mem_size
);
}
void
*
GetDeviceBuffer
()
{
return
p_mem_
;
}
~
SimpleDeviceMem
()
{
(
void
)
hipFree
(
p_mem_
);
}
void
*
p_mem_
;
};
int
main
(
int
argc
,
char
*
argv
[])
{
// A[M0, M1, K0, K1]
std
::
vector
<
ck
::
index_t
>
a_ms_ks_lengths
{
30
,
128
,
32
,
64
};
std
::
vector
<
ck
::
index_t
>
a_ms_ks_strides
{
524288
,
4096
,
128
,
1
};
// B[N0, N1, K0, K1]
std
::
vector
<
ck
::
index_t
>
b_ns_ks_lengths
{
32
,
64
,
32
,
64
};
std
::
vector
<
ck
::
index_t
>
b_ns_ks_strides
{
524288
,
4096
,
128
,
1
};
// E[M0, M1, N0, N1]
std
::
vector
<
ck
::
index_t
>
e_ms_ns_lengths
{
30
,
128
,
32
,
64
};
std
::
vector
<
ck
::
index_t
>
e_ms_ns_strides
{
524288
,
4096
,
128
,
1
};
float
scale
=
1.
f
;
if
(
argc
==
1
)
{
// use default case
}
else
if
(
argc
==
20
)
{
const
ck
::
index_t
M0
=
std
::
stoi
(
argv
[
1
]);
const
ck
::
index_t
M1
=
std
::
stoi
(
argv
[
2
]);
const
ck
::
index_t
N0
=
std
::
stoi
(
argv
[
3
]);
const
ck
::
index_t
N1
=
std
::
stoi
(
argv
[
4
]);
const
ck
::
index_t
K0
=
std
::
stoi
(
argv
[
5
]);
const
ck
::
index_t
K1
=
std
::
stoi
(
argv
[
6
]);
a_ms_ks_lengths
=
{
M0
,
M1
,
K0
,
K1
};
a_ms_ks_strides
=
{
std
::
stoi
(
argv
[
7
]),
std
::
stoi
(
argv
[
8
]),
std
::
stoi
(
argv
[
9
]),
std
::
stoi
(
argv
[
10
])};
b_ns_ks_lengths
=
{
N0
,
N1
,
K0
,
K1
};
b_ns_ks_strides
=
{
std
::
stoi
(
argv
[
11
]),
std
::
stoi
(
argv
[
12
]),
std
::
stoi
(
argv
[
13
]),
std
::
stoi
(
argv
[
14
])};
e_ms_ns_lengths
=
{
M0
,
M1
,
N0
,
N1
};
e_ms_ns_strides
=
{
std
::
stoi
(
argv
[
15
]),
std
::
stoi
(
argv
[
16
]),
std
::
stoi
(
argv
[
17
]),
std
::
stoi
(
argv
[
18
])};
scale
=
std
::
stof
(
argv
[
19
]);
}
else
{
printf
(
"arg1 to 6: M0, M1, N0, N1, K0, K1
\n
"
);
printf
(
"arg7 to 10: Stride_A_M0, Stride_A_M1, Stride_A_K0, Stride_A_K1
\n
"
);
printf
(
"arg11 to 14: Stride_B_N0, Stride_B_N1, Stride_B_K0, Stride_B_K1
\n
"
);
printf
(
"arg15 to 18: Stride_E_M0, Stride_E_M1, Stride_E_N0, Stride_E_N1
\n
"
);
printf
(
"arg19: scale
\n
"
);
exit
(
0
);
}
auto
f_tensor_space_size
=
[](
auto
lengths
,
auto
strides
)
{
std
::
size_t
space_size
=
1
;
for
(
std
::
size_t
i
=
0
;
i
<
lengths
.
size
();
++
i
)
{
space_size
+=
(
lengths
[
i
]
-
1
)
*
strides
[
i
];
}
return
space_size
;
};
SimpleDeviceMem
a_device_buf
(
sizeof
(
ADataType
)
*
f_tensor_space_size
(
a_ms_ks_lengths
,
a_ms_ks_strides
));
SimpleDeviceMem
b_device_buf
(
sizeof
(
BDataType
)
*
f_tensor_space_size
(
b_ns_ks_lengths
,
b_ns_ks_strides
));
SimpleDeviceMem
e_device_buf
(
sizeof
(
EDataType
)
*
f_tensor_space_size
(
e_ms_ns_lengths
,
e_ms_ns_strides
));
using
DeviceOp
=
ck
::
tensor_operation
::
device
::
DeviceContractionMultipleD
<
NumDimM
,
NumDimN
,
NumDimK
,
ADataType
,
BDataType
,
ck
::
Tuple
<>
,
EDataType
,
ck
::
tensor_operation
::
element_wise
::
PassThrough
,
ck
::
tensor_operation
::
element_wise
::
PassThrough
,
ck
::
tensor_operation
::
element_wise
::
Scale
>
;
// get device op instances
const
auto
op_ptrs
=
ck
::
tensor_operation
::
device
::
instance
::
DeviceOperationInstanceFactory
<
DeviceOp
>::
GetInstances
();
std
::
cout
<<
"found "
<<
op_ptrs
.
size
()
<<
" instances"
<<
std
::
endl
;
const
auto
a_element_op
=
AElementOp
{};
const
auto
b_element_op
=
BElementOp
{};
const
auto
cde_element_op
=
CDEElementOp
{
scale
};
std
::
string
best_op_name
;
bool
found
=
false
;
int
best_op_id
=
-
1
;
float
best_ave_time
=
0
;
float
best_tflops
=
0
;
float
best_gb_per_sec
=
0
;
// profile device operation instances
std
::
cout
<<
"Run all instances and do timing"
<<
std
::
endl
;
for
(
int
i
=
0
;
i
<
op_ptrs
.
size
();
++
i
)
{
auto
&
op_ptr
=
op_ptrs
[
i
];
auto
argument_ptr
=
op_ptr
->
MakeArgumentPointer
(
a_device_buf
.
GetDeviceBuffer
(),
b_device_buf
.
GetDeviceBuffer
(),
std
::
array
<
const
void
*
,
0
>
{},
e_device_buf
.
GetDeviceBuffer
(),
a_ms_ks_lengths
,
a_ms_ks_strides
,
b_ns_ks_lengths
,
b_ns_ks_strides
,
std
::
array
<
std
::
vector
<
ck
::
index_t
>
,
0
>
{},
std
::
array
<
std
::
vector
<
ck
::
index_t
>
,
0
>
{},
e_ms_ns_lengths
,
e_ms_ns_strides
,
a_element_op
,
b_element_op
,
cde_element_op
);
auto
invoker_ptr
=
op_ptr
->
MakeInvokerPointer
();
std
::
string
op_name
=
op_ptr
->
GetTypeString
();
if
(
op_ptr
->
IsSupportedArgument
(
argument_ptr
.
get
()))
{
float
ave_time
=
invoker_ptr
->
Run
(
argument_ptr
.
get
(),
StreamConfig
{
nullptr
,
true
});
ck
::
index_t
M
=
std
::
accumulate
(
e_ms_ns_lengths
.
begin
(),
e_ms_ns_lengths
.
begin
()
+
NumDimM
,
ck
::
index_t
{
1
},
std
::
multiplies
<
ck
::
index_t
>
{});
ck
::
index_t
N
=
std
::
accumulate
(
e_ms_ns_lengths
.
begin
()
+
NumDimM
,
e_ms_ns_lengths
.
begin
()
+
NumDimM
+
NumDimN
,
ck
::
index_t
{
1
},
std
::
multiplies
<
ck
::
index_t
>
{});
ck
::
index_t
K
=
std
::
accumulate
(
a_ms_ks_lengths
.
begin
()
+
NumDimM
,
a_ms_ks_lengths
.
begin
()
+
NumDimM
+
NumDimK
,
ck
::
index_t
{
1
},
std
::
multiplies
<
ck
::
index_t
>
{});
std
::
size_t
flop
=
std
::
size_t
(
2
)
*
M
*
N
*
K
;
std
::
size_t
num_btype
=
sizeof
(
ADataType
)
*
M
*
K
+
sizeof
(
BDataType
)
*
K
*
N
+
sizeof
(
EDataType
)
*
M
*
N
;
float
tflops
=
static_cast
<
float
>
(
flop
)
/
1.E9
/
ave_time
;
float
gb_per_sec
=
num_btype
/
1.E6
/
ave_time
;
std
::
cout
<<
"Perf: "
<<
std
::
setw
(
10
)
<<
ave_time
<<
" ms, "
<<
tflops
<<
" TFlops, "
<<
gb_per_sec
<<
" GB/s, "
<<
op_name
<<
std
::
endl
;
if
(
tflops
>
best_tflops
)
{
found
=
true
;
best_op_id
=
i
;
best_op_name
=
op_name
;
best_tflops
=
tflops
;
best_ave_time
=
ave_time
;
best_gb_per_sec
=
gb_per_sec
;
}
}
else
{
std
::
cout
<<
op_name
<<
" does not support this problem"
<<
std
::
endl
;
}
}
std
::
cout
<<
"Best Perf: "
<<
best_ave_time
<<
" ms, "
<<
best_tflops
<<
" TFlops, "
<<
best_gb_per_sec
<<
" GB/s, "
<<
best_op_name
<<
std
::
endl
;
return
0
;
}
client_example/CMakeLists.txt
View file @
bd0f0686
...
...
@@ -6,5 +6,7 @@ find_package(composable_kernel 1.0.0 COMPONENTS device_operations)
find_package
(
hip REQUIRED PATHS /opt/rocm
)
message
(
STATUS
"Build with HIP
${
hip_VERSION
}
"
)
add_subdirectory
(
01_gemm
)
add_subdirectory
(
02_gemm_add_add_fastgelu
)
add_subdirectory
(
03_gemm_layernorm
)
add_subdirectory
(
04_contraction
)
client_example/README.md
View file @
bd0f0686
##
Client application links to CK library, and therefore CK library needs to be installed before building client applications.
## Docker script
```
bash
docker run
\
-it
\
--privileged
\
--group-add
sudo
\
-w
/root/workspace
\
-v
${
PATH_TO_LOCAL_WORKSPACE
}
:/root/workspace
\
rocm/tensorflow:rocm5.1-tf2.6-dev
\
/bin/bash
```
## Build
```
bash
...
...
@@ -22,7 +11,7 @@ cd client_example/build
```
bash
cmake
\
-D
CMAKE_CXX_COMPILER
=
/opt/rocm/bin/hipcc
\
-D
CMAKE_PREFIX_PATH
=
/opt/rocm
\
-D
CMAKE_PREFIX_PATH
=
"
/opt/rocm
;
${
PATH_TO_CK_INSTALL_DIRECTORY
}
"
\
..
```
...
...
example/01_gemm/gemm_xdl_fp16.cpp
View file @
bd0f0686
...
...
@@ -8,6 +8,7 @@
#include "ck/ck.hpp"
#include "ck/tensor_operation/gpu/device/gemm_specialization.hpp"
#include "ck/tensor_operation/gpu/device/device_gemm_xdl.hpp"
#include "ck/tensor_operation/gpu/device/device_gemm_xdl_cshuffle.hpp"
#include "ck/tensor_operation/gpu/element/element_wise_operation.hpp"
...
...
@@ -44,8 +45,17 @@ using CElementOp = PassThrough;
static
constexpr
auto
GemmDefault
=
ck
::
tensor_operation
::
device
::
GemmSpecialization
::
Default
;
// clang-format off
using
DeviceGemmInstance
=
ck
::
tensor_operation
::
device
::
DeviceGemm_Xdl_CShuffle
using
DeviceGemmInstance0
=
ck
::
tensor_operation
::
device
::
DeviceGemmXdl
// clang-format off
//######| AData| BData| CData| AccData| ALayout| BLayout| CLayout| A| B| C| GEMM| Block| MPer| NPer| K0Per| K1| MPer| NPer| MXdl| NXdl| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockLds| BBlockTransfer| BBlockTransfer| BBlockTransfer| BlockTransfer| BBlockTransfer| BBlockTransfer| BBlockLds| CThreadTransfer| CThreadTransfer|
//######| Type| Type| Type| Type| | | | Elementwise| Elementwise| Elementwise|Spacialization| Size| Block| Block| Block| | XDL| XDL| Per| Per| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| AddExtraM| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| AddExtraN| SrcDstVectorDim| DstScalar|
//######| | | | | | | | Operation| Operation| Operation| | | | | | | | | Wave| Wave| Lengths_K0_M_K1| ArrangeOrder| | | PerVector| PerVector_K1| | Lengths_K0_N_K1| ArrangeOrder| | | PerVector| PerVector_K1| | | PerVector|
//######| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
<
ADataType
,
BDataType
,
CDataType
,
AccDataType
,
ALayout
,
BLayout
,
CLayout
,
AElementOp
,
BElementOp
,
CElementOp
,
GemmDefault
,
256
,
256
,
128
,
4
,
8
,
32
,
32
,
4
,
2
,
S
<
4
,
64
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
8
,
8
,
true
,
S
<
4
,
64
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
8
,
8
,
true
,
7
,
1
>
;
// clang-format on
using
DeviceGemmInstance1
=
ck
::
tensor_operation
::
device
::
DeviceGemm_Xdl_CShuffle
// clang-format off
//######| ALayout| BLayout| CLayout| AData| BData| CData| AccData| CShuffle| A| B| C| GEMM| NumGemmK| Block| MPer| NPer| KPer| AK1| BK1| MPer| NPer| MXdl| NXdl| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockLds| BBlockTransfer| BBlockTransfer| BBlockTransfer| BlockTransfer| BBlockTransfer| BBlockTransfer| BBlockLds| CShuffle| CShuffle| CBlockTransferClusterLengths| CBlockTransfer|
//######| | | | Type| Type| Type| Type| DataType| Elementwise| Elementwise| Elementwise| Spacialization| Prefetch| Size| Block| Block| Block| | | XDL| XDL| Per| Per| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| AddExtraM| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| AddExtraN| MXdlPerWave| NXdlPerWave| _MBlock_MWaveMPerXdl| ScalarPerVector|
//######| | | | | | | | | Operation| Operation| Operation| | Stage| | | | | | | | | Wave| Wave| Lengths_K0_M_K1| ArrangeOrder| | | PerVector| PerVector_K1| | Lengths_K0_N_K1| ArrangeOrder| | | PerVector| PerVector_K1| | PerShuffle| PerShuffle| _NBlock_NWaveNPerXdl| _NWaveNPerXdl|
...
...
@@ -53,6 +63,8 @@ using DeviceGemmInstance = ck::tensor_operation::device::DeviceGemm_Xdl_CShuffle
<
ALayout
,
BLayout
,
CLayout
,
ADataType
,
BDataType
,
CDataType
,
AccDataType
,
CShuffleDataType
,
AElementOp
,
BElementOp
,
CElementOp
,
GemmDefault
,
1
,
256
,
256
,
128
,
32
,
8
,
8
,
32
,
32
,
4
,
2
,
S
<
4
,
64
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
8
,
8
,
1
,
S
<
4
,
64
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
8
,
8
,
1
,
1
,
1
,
S
<
1
,
32
,
1
,
8
>
,
8
>
;
// clang-format on
using
DeviceGemmInstance
=
DeviceGemmInstance0
;
using
ReferenceGemmInstance
=
ck
::
tensor_operation
::
host
::
ReferenceGemm
<
ADataType
,
BDataType
,
CDataType
,
AccDataType
,
AElementOp
,
BElementOp
,
CElementOp
>
;
...
...
example/02_gemm_alpha_beta/CMakeLists.txt
deleted
100644 → 0
View file @
e9b1000f
add_example_executable
(
example_gemm_xdl_alpha_beta gemm_xdl_alpha_beta.cpp
)
example/02_gemm_bilinear/CMakeLists.txt
0 → 100644
View file @
bd0f0686
add_example_executable
(
example_gemm_bilinear_xdl_fp16 gemm_bilinear_xdl_fp16.cpp
)
example/02_gemm_
alpha_beta
/README.md
→
example/02_gemm_
bilinear
/README.md
View file @
bd0f0686
# Instructions for ```example_gemm_
xdl_alpha_beta
```
# Instructions for ```example_gemm_
bilinear_xdl_fp16
```
## Run ```example_gemm_
xdl_alpha_beta
```
## Run ```example_gemm_
bilinear_xdl_fp16
```
```
bash
#arg1: verification (0=no, 1=yes)
#arg2: initialization (0=no init, 1=integer value, 2=decimal value)
#arg3: run kernel # of times (>1)
./bin/example_gemm_xdl_alpha_beta 1 1 1 0.5 0.5
#arg3: time kernel (0=no, 1=yes)
#arg4 to 10: M (256x), N(128x), K(32x), StrideA, StrideB, StrideD, StrideE
#arg11 to 12: alpha, beta
./bin/example_gemm_bilinear_xdl_fp16 1 1 1 3840 4096 4096 4096 4096 4096 4096 0.5 0.5
```
Result (MI100 @ 1502Mhz, 184.6TFlops peak FP16)
```
...
...
example/02_gemm_
alpha_beta/gemm_xdl_alpha_beta
.cpp
→
example/02_gemm_
bilinear/gemm_bilinear_xdl_fp16
.cpp
View file @
bd0f0686
...
...
@@ -8,80 +8,105 @@
#include "ck/ck.hpp"
#include "ck/tensor_operation/gpu/device/gemm_specialization.hpp"
#include "ck/tensor_operation/gpu/device/device_gemm_xdl_c
_
shuffle
_bias_2d
.hpp"
#include "ck/tensor_operation/gpu/device/device_gemm_
multiple_d_
xdl_cshuffle.hpp"
#include "ck/tensor_operation/gpu/element/element_wise_operation.hpp"
#include "ck/library/utility/check_err.hpp"
#include "ck/library/host_tensor/device_memory.hpp"
#include "ck/library/host_tensor/host_tensor.hpp"
#include "ck/library/host_tensor/host_tensor_generator.hpp"
#include "ck/library/reference_tensor_operation/cpu/reference_gemm_bias_2d.hpp"
#include "ck/library/reference_tensor_operation/cpu/reference_gemm.hpp"
#include "ck/library/utility/check_err.hpp"
struct
AlphaBetaAdd
{
AlphaBetaAdd
(
float
alpha
,
float
beta
)
:
alpha_
(
alpha
),
beta_
(
beta
){};
template
<
typename
E
,
typename
C
,
typename
D
>
__host__
__device__
constexpr
void
operator
()(
E
&
e
,
const
C
&
c
,
const
D
&
d
)
const
;
template
<
>
__host__
__device__
constexpr
void
operator
()
<
ck
::
half_t
,
float
,
ck
::
half_t
>
(
ck
::
half_t
&
e
,
const
float
&
c
,
const
ck
::
half_t
&
d
)
const
{
e
=
ck
::
type_convert
<
ck
::
half_t
>
(
alpha_
*
c
+
beta_
*
ck
::
type_convert
<
float
>
(
d
));
};
float
alpha_
;
float
beta_
;
};
template
<
ck
::
index_t
...
Is
>
using
S
=
ck
::
Sequence
<
Is
...
>
;
using
ADataType
=
ck
::
half_t
;
using
BDataType
=
ck
::
half_t
;
using
CDataType
=
ck
::
half_t
;
using
AccDataType
=
float
;
using
ALayout
=
ck
::
tensor_layout
::
gemm
::
RowMajor
;
using
BLayout
=
ck
::
tensor_layout
::
gemm
::
ColumnMajor
;
using
CLayout
=
ck
::
tensor_layout
::
gemm
::
RowMajor
;
using
AElementOp
=
ck
::
tensor_operation
::
element_wise
::
PassThrough
;
using
BElementOp
=
ck
::
tensor_operation
::
element_wise
::
PassThrough
;
using
CElementOp
=
ck
::
tensor_operation
::
element_wise
::
AlphaBetaAdd
;
// clang-format off
using
DeviceGemmInstance
=
ck
::
tensor_operation
::
device
::
DeviceGemmXdl_C_Shuffle_Bias_2d
<
ADataType
,
// ADataType
BDataType
,
// BDataType
CDataType
,
// CDataType
AccDataType
,
// AccDataType
ALayout
,
// ALayout
BLayout
,
// BLayout
CLayout
,
// CLayout
AElementOp
,
// AElementwiseOperation
BElementOp
,
// BElementwiseOperation
CElementOp
,
// CElementwiseOperation
256
,
// BlockSize
256
,
// MPerBlock
128
,
// NPerBlock
4
,
// K0PerBlock
8
,
// K1
32
,
// MPerXDL
32
,
// NPerXDL
4
,
// MXdlPerWave
2
,
// NXdlPerWave
S
<
4
,
64
,
1
>
,
// ABlockTransferThreadClusterLengths_K0_M_K1
S
<
1
,
0
,
2
>
,
// ABlockTransferThreadClusterArrangeOrder
S
<
1
,
0
,
2
>
,
// ABlockTransferSrcAccessOrder
2
,
// ABlockTransferSrcVectorDim
8
,
// ABlockTransferSrcScalarPerVector
8
,
// ABlockTransferDstScalarPerVector_K1
true
,
// ABlockLdsAddExtraM
S
<
4
,
64
,
1
>
,
// BBlockTransferThreadClusterLengths_K0_N_K1
S
<
1
,
0
,
2
>
,
// BBlockTransferThreadClusterArrangeOrder
S
<
1
,
0
,
2
>
,
// BBlockTransferSrcAccessOrder
2
,
// BBlockTransferSrcVectorDim
8
,
// BBlockTransferSrcScalarPerVector
8
,
// BBlockTransferDstScalarPerVector_K1
true
,
// BBlockLdsAddExtraN
1
,
// CShuffleMXdlPerWavePerShuffle
1
,
// CShuffleNXdlPerWavePerShuffle
S
<
1
,
1
,
32
,
1
,
1
,
8
>
,
// CBlockTransferClusterLengths_MBlock_MXdlPerWave_MWaveMPerXdl_NBlock_NXdlPerWave_NWaveNPerXdl
8
>
;
// CBlockTransferScalarPerVector_NWaveNPerXdl
// clang-format on
using
ReferenceGemmInstance
=
ck
::
tensor_operation
::
host
::
ReferenceGemmBias2D
<
ADataType
,
using
F16
=
ck
::
half_t
;
using
F32
=
float
;
using
Row
=
ck
::
tensor_layout
::
gemm
::
RowMajor
;
using
Col
=
ck
::
tensor_layout
::
gemm
::
ColumnMajor
;
using
PassThrough
=
ck
::
tensor_operation
::
element_wise
::
PassThrough
;
using
ADataType
=
F16
;
using
BDataType
=
F16
;
using
AccDataType
=
F32
;
using
CShuffleDataType
=
F32
;
using
DDataType
=
F16
;
using
DsDataType
=
ck
::
Tuple
<
DDataType
>
;
using
EDataType
=
F16
;
using
ALayout
=
Row
;
using
BLayout
=
Col
;
using
DELayout
=
Row
;
using
AElementOp
=
PassThrough
;
using
BElementOp
=
PassThrough
;
using
CDEElementOp
=
AlphaBetaAdd
;
static
constexpr
auto
GemmDefault
=
ck
::
tensor_operation
::
device
::
GemmSpecialization
::
MNKPadding
;
using
DeviceOpInstance
=
ck
::
tensor_operation
::
device
::
DeviceGemmMultipleD_Xdl_CShuffle
<
ALayout
,
BLayout
,
DELayout
,
ADataType
,
BDataType
,
CDataType
,
CDataType
,
AccDataType
,
CShuffleDataType
,
DsDataType
,
EDataType
,
AElementOp
,
BElementOp
,
CElementOp
>
;
CDEElementOp
,
GemmDefault
,
1
,
256
,
256
,
128
,
32
,
8
,
8
,
32
,
32
,
4
,
2
,
S
<
4
,
64
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
8
,
8
,
1
,
S
<
4
,
64
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
8
,
8
,
1
,
1
,
1
,
S
<
1
,
32
,
1
,
8
>
,
8
>
;
int
main
(
int
argc
,
char
*
argv
[])
{
...
...
@@ -96,12 +121,17 @@ int main(int argc, char* argv[])
ck
::
index_t
StrideA
=
4096
;
ck
::
index_t
StrideB
=
4096
;
ck
::
index_t
StrideC
=
4096
;
ck
::
index_t
StrideD
=
4096
;
ck
::
index_t
StrideE
=
4096
;
float
alpha
=
1.0
f
;
float
beta
=
1.0
f
;
if
(
argc
==
4
)
if
(
argc
==
1
)
{
// use default case
}
else
if
(
argc
==
4
)
{
do_verification
=
std
::
stoi
(
argv
[
1
]);
init_method
=
std
::
stoi
(
argv
[
2
]);
...
...
@@ -116,7 +146,7 @@ int main(int argc, char* argv[])
alpha
=
std
::
stof
(
argv
[
4
]);
beta
=
std
::
stof
(
argv
[
5
]);
}
else
if
(
argc
==
1
2
)
else
if
(
argc
==
1
3
)
{
do_verification
=
std
::
stoi
(
argv
[
1
]);
init_method
=
std
::
stoi
(
argv
[
2
]);
...
...
@@ -128,17 +158,19 @@ int main(int argc, char* argv[])
StrideA
=
std
::
stoi
(
argv
[
7
]);
StrideB
=
std
::
stoi
(
argv
[
8
]);
StrideC
=
std
::
stoi
(
argv
[
9
]);
StrideD
=
std
::
stoi
(
argv
[
9
]);
StrideE
=
std
::
stoi
(
argv
[
10
]);
alpha
=
std
::
stof
(
argv
[
1
0
]);
beta
=
std
::
stof
(
argv
[
1
1
]);
alpha
=
std
::
stof
(
argv
[
1
1
]);
beta
=
std
::
stof
(
argv
[
1
2
]);
}
else
{
printf
(
"arg1: verification (0=no, 1=yes)
\n
"
);
printf
(
"arg2: initialization (0=no init, 1=integer value, 2=decimal value)
\n
"
);
printf
(
"arg3: time kernel (0=n0, 1=yes)
\n
"
);
printf
(
"arg4 to 9: M (256x), N(128x), K(32x), StrideA, StrideB, StrideC, alpha, beta
\n
"
);
printf
(
"arg3: time kernel (0=no, 1=yes)
\n
"
);
printf
(
"arg4 to 9: M (256x), N(128x), K(32x), StrideA, StrideB, StrideD, StrideE, alpha, "
"beta
\n
"
);
exit
(
0
);
}
...
...
@@ -158,14 +190,14 @@ int main(int argc, char* argv[])
Tensor
<
ADataType
>
a_m_k
(
f_host_tensor_descriptor
(
M
,
K
,
StrideA
,
ALayout
{}));
Tensor
<
BDataType
>
b_k_n
(
f_host_tensor_descriptor
(
K
,
N
,
StrideB
,
BLayout
{}));
Tensor
<
C
DataType
>
c0
_m_n
(
f_host_tensor_descriptor
(
M
,
N
,
Stride
C
,
C
Layout
{}));
Tensor
<
C
DataType
>
c
_m_n_host_result
(
f_host_tensor_descriptor
(
M
,
N
,
Stride
C
,
C
Layout
{}));
Tensor
<
C
DataType
>
c
_m_n_device_result
(
f_host_tensor_descriptor
(
M
,
N
,
Stride
C
,
C
Layout
{}));
Tensor
<
D
DataType
>
d
_m_n
(
f_host_tensor_descriptor
(
M
,
N
,
Stride
D
,
DE
Layout
{}));
Tensor
<
E
DataType
>
e
_m_n_host_result
(
f_host_tensor_descriptor
(
M
,
N
,
Stride
E
,
DE
Layout
{}));
Tensor
<
E
DataType
>
e
_m_n_device_result
(
f_host_tensor_descriptor
(
M
,
N
,
Stride
E
,
DE
Layout
{}));
std
::
cout
<<
"a_m_k: "
<<
a_m_k
.
mDesc
<<
std
::
endl
;
std
::
cout
<<
"b_k_n: "
<<
b_k_n
.
mDesc
<<
std
::
endl
;
std
::
cout
<<
"
c0
_m_n: "
<<
c0
_m_n
.
mDesc
<<
std
::
endl
;
std
::
cout
<<
"
c
_m_n: "
<<
c
_m_n_host_result
.
mDesc
<<
std
::
endl
;
std
::
cout
<<
"
d
_m_n: "
<<
d
_m_n
.
mDesc
<<
std
::
endl
;
std
::
cout
<<
"
e
_m_n: "
<<
e
_m_n_host_result
.
mDesc
<<
std
::
endl
;
switch
(
init_method
)
{
...
...
@@ -173,42 +205,48 @@ int main(int argc, char* argv[])
case
1
:
a_m_k
.
GenerateTensorValue
(
GeneratorTensor_2
<
ADataType
>
{
-
5
,
5
});
b_k_n
.
GenerateTensorValue
(
GeneratorTensor_2
<
BDataType
>
{
-
5
,
5
});
c0
_m_n
.
GenerateTensorValue
(
GeneratorTensor_2
<
C
DataType
>
{
-
5
,
5
});
d
_m_n
.
GenerateTensorValue
(
GeneratorTensor_2
<
D
DataType
>
{
-
5
,
5
});
break
;
default:
a_m_k
.
GenerateTensorValue
(
GeneratorTensor_3
<
ADataType
>
{
0.0
,
1.0
});
b_k_n
.
GenerateTensorValue
(
GeneratorTensor_3
<
BDataType
>
{
-
0.5
,
0.5
});
c0
_m_n
.
GenerateTensorValue
(
GeneratorTensor_3
<
C
DataType
>
{
-
0.5
,
0.5
});
d
_m_n
.
GenerateTensorValue
(
GeneratorTensor_3
<
D
DataType
>
{
-
0.5
,
0.5
});
}
DeviceMem
a_m_k_device_buf
(
sizeof
(
ADataType
)
*
a_m_k
.
mDesc
.
GetElementSpace
());
DeviceMem
b_k_n_device_buf
(
sizeof
(
BDataType
)
*
b_k_n
.
mDesc
.
GetElementSpace
());
DeviceMem
c0_m_n_device_buf
(
sizeof
(
CDataType
)
*
c0_m_n
.
mDesc
.
GetElementSpace
());
DeviceMem
c_m_n_device_buf
(
sizeof
(
CDataType
)
*
c_m_n_device_result
.
mDesc
.
GetElementSpace
());
DeviceMem
a_device_buf
(
sizeof
(
ADataType
)
*
a_m_k
.
mDesc
.
GetElementSpace
());
DeviceMem
b_device_buf
(
sizeof
(
BDataType
)
*
b_k_n
.
mDesc
.
GetElementSpace
());
DeviceMem
d_device_buf
(
sizeof
(
DDataType
)
*
d_m_n
.
mDesc
.
GetElementSpace
());
DeviceMem
e_device_buf
(
sizeof
(
EDataType
)
*
e_m_n_device_result
.
mDesc
.
GetElementSpace
());
a_device_buf
.
ToDevice
(
a_m_k
.
mData
.
data
());
b_device_buf
.
ToDevice
(
b_k_n
.
mData
.
data
());
d_device_buf
.
ToDevice
(
d_m_n
.
mData
.
data
());
e_device_buf
.
ToDevice
(
e_m_n_device_result
.
mData
.
data
());
a_m_k_device_buf
.
ToDevice
(
a_m_k
.
mData
.
data
());
b_k_n_device_buf
.
ToDevice
(
b_k_n
.
mData
.
data
());
c0_m_n_device_buf
.
ToDevice
(
c0_m_n
.
mData
.
data
());
c_m_n_device_buf
.
ToDevice
(
c_m_n_device_result
.
mData
.
data
());
auto
a_element_op
=
AElementOp
{};
auto
b_element_op
=
BElementOp
{};
auto
cde_element_op
=
CDEElementOp
{
alpha
,
beta
};
// do GEMM
auto
gemm
=
DeviceGemmInstance
{};
auto
invoker
=
gemm
.
MakeInvoker
();
auto
argument
=
gemm
.
MakeArgument
(
static_cast
<
ADataType
*>
(
a_m_k_device_buf
.
GetDeviceBuffer
()),
static_cast
<
BDataType
*>
(
b_k_n_device_buf
.
GetDeviceBuffer
()),
static_cast
<
CDataType
*>
(
c0_m_n_device_buf
.
GetDeviceBuffer
()),
static_cast
<
CDataType
*>
(
c_m_n_device_buf
.
GetDeviceBuffer
()),
auto
device_op
=
DeviceOpInstance
{};
auto
invoker
=
device_op
.
MakeInvoker
();
auto
argument
=
device_op
.
MakeArgument
(
a_device_buf
.
GetDeviceBuffer
(),
b_device_buf
.
GetDeviceBuffer
(),
std
::
array
<
const
void
*
,
1
>
{
d_device_buf
.
GetDeviceBuffer
()},
e_device_buf
.
GetDeviceBuffer
(),
M
,
N
,
K
,
StrideA
,
StrideB
,
StrideC
,
AElementOp
{},
BElementOp
{},
CElementOp
{
alpha
,
beta
});
std
::
array
<
ck
::
index_t
,
1
>
{
StrideD
},
StrideE
,
a_element_op
,
b_element_op
,
cde_element_op
);
if
(
!
gemm
.
IsSupportedArgument
(
argument
))
if
(
!
device_op
.
IsSupportedArgument
(
argument
))
{
throw
std
::
runtime_error
(
"wrong! device_gemm with the specified compilation parameters does "
...
...
@@ -219,7 +257,7 @@ int main(int argc, char* argv[])
std
::
size_t
flop
=
std
::
size_t
(
2
)
*
M
*
N
*
K
;
std
::
size_t
num_btype
=
sizeof
(
ADataType
)
*
M
*
K
+
sizeof
(
BDataType
)
*
K
*
N
+
sizeof
(
C
DataType
)
*
M
*
N
;
sizeof
(
ADataType
)
*
M
*
K
+
sizeof
(
BDataType
)
*
K
*
N
+
sizeof
(
E
DataType
)
*
M
*
N
;
float
tflops
=
static_cast
<
float
>
(
flop
)
/
1.E9
/
ave_time
;
...
...
@@ -228,24 +266,39 @@ int main(int argc, char* argv[])
std
::
cout
<<
"Perf: "
<<
ave_time
<<
" ms, "
<<
tflops
<<
" TFlops, "
<<
gb_per_sec
<<
" GB/s"
<<
std
::
endl
;
c_m_n
_device_buf
.
FromDevice
(
c
_m_n_device_result
.
mData
.
data
());
e
_device_buf
.
FromDevice
(
e
_m_n_device_result
.
mData
.
data
());
if
(
do_verification
)
{
Tensor
<
CShuffleDataType
>
c_m_n
(
HostTensorDescriptor
(
std
::
vector
<
std
::
size_t
>
{
static_cast
<
std
::
size_t
>
(
M
),
static_cast
<
std
::
size_t
>
(
N
)}));
using
ReferenceGemmInstance
=
ck
::
tensor_operation
::
host
::
ReferenceGemm
<
ADataType
,
BDataType
,
CShuffleDataType
,
AccDataType
,
AElementOp
,
BElementOp
,
PassThrough
>
;
auto
ref_gemm
=
ReferenceGemmInstance
{};
auto
ref_invoker
=
ref_gemm
.
MakeInvoker
();
auto
ref_argument
=
ref_gemm
.
MakeArgument
(
a_m_k
,
b_k_n
,
c0_m_n
,
c_m_n_host_result
,
AElementOp
{},
BElementOp
{},
CElementOp
{
alpha
,
beta
});
auto
ref_argument
=
ref_gemm
.
MakeArgument
(
a_m_k
,
b_k_n
,
c_m_n
,
a_element_op
,
b_element_op
,
PassThrough
{});
ref_invoker
.
Run
(
ref_argument
);
return
ck
::
utils
::
check_err
(
c_m_n_device_result
.
mData
,
c_m_n_host_result
.
mData
)
?
0
:
1
;
for
(
int
m
=
0
;
m
<
M
;
++
m
)
{
for
(
int
n
=
0
;
n
<
N
;
++
n
)
{
cde_element_op
(
e_m_n_host_result
(
m
,
n
),
c_m_n
(
m
,
n
),
d_m_n
(
m
,
n
));
}
}
e_device_buf
.
FromDevice
(
e_m_n_device_result
.
mData
.
data
());
return
ck
::
utils
::
check_err
(
e_m_n_device_result
.
mData
,
e_m_n_host_result
.
mData
)
?
0
:
1
;
}
return
0
;
...
...
example/03_gemm_bias_relu/CMakeLists.txt
View file @
bd0f0686
add_example_executable
(
example_gemm_
xdl_
bias_relu gemm_
xdl_
bias_relu.cpp
)
add_example_executable
(
example_gemm_bias_relu
_xdl_fp16
gemm_bias_relu
_xdl_fp16
.cpp
)
example/03_gemm_bias_relu/README.md
View file @
bd0f0686
# Instructions for ```example_gemm_
xdl_
bias_relu_
add
```
# Instructions for ```example_gemm_bias_relu_
xdl_fp16
```
## Run ```example_gemm_
xdl_
bias_relu_
add
```
## Run ```example_gemm_bias_relu_
xdl_fp16
```
```
bash
#arg1: verification (0=no, 1=yes)
#arg2: initialization (0=no init, 1=integer value, 2=decimal value)
#arg3: run kernel # of times (>1)
#arg4 to 9: M (256x), N(128x), K(32x), StrideA, StrideB, StrideC
./bin/example_gemm_xdl_bias_relu_add 0 1 5 3840 4096 4096 4096 4096 4096
```
Result (MI100 @ 1087Mhz, 133.5TFlops peak FP16)
```
a_m_k: dim 2, lengths {3840, 4096}, strides {4096, 1}
b_k_n: dim 2, lengths {4096, 4096}, strides {1, 4096}
c_m_n: dim 2, lengths {3840, 4096}, strides {4096, 1}
c0_m_n: dim 2, lengths {3840, 4096}, strides {4096, 1}
c1_m_n: dim 2, lengths {3840, 4096}, strides {1, 0}
arg.a_grid_desc_k0_m_k1_{512, 3840, 8}
arg.b_grid_desc_k0_n_k1_{512, 4096, 8}
arg.c_grid_desc_m_n_{ 3840, 4096}
arg.c0_grid_desc_m_n_{ 3840, 4096}
arg.c1_grid_desc_m_n_{ 3840, 4096}
launch_and_time_kernel: grid_dim {480, 1, 1}, block_dim {256, 1, 1}
Warm up
Start running 5 times...
Perf: 1.27583 ms, 100.992 TFlops, 73.9688 GB/s
#arg3: time kernel (0=no, 1=yes)
#arg4 to 9: M (256x), N(128x), K(32x), StrideA, StrideB, StrideE
./bin/example_gemm_bias_relu_xdl_fp16 1 1 1 3840 4096 4096 4096 4096 4096
```
example/03_gemm_bias_relu/gemm_
xdl_
bias_relu.cpp
→
example/03_gemm_bias_relu/gemm_bias_relu
_xdl_fp16
.cpp
View file @
bd0f0686
...
...
@@ -58,7 +58,7 @@ using AElementOp = PassThrough;
using
BElementOp
=
PassThrough
;
using
CDEElementOp
=
AddRelu
;
static
constexpr
auto
GemmDefault
=
ck
::
tensor_operation
::
device
::
GemmSpecialization
::
Default
;
static
constexpr
auto
GemmDefault
=
ck
::
tensor_operation
::
device
::
GemmSpecialization
::
MNKPadding
;
using
DeviceOpInstance
=
ck
::
tensor_operation
::
device
::
DeviceGemmMultipleD_Xdl_CShuffle
<
ALayout
,
...
...
@@ -191,14 +191,14 @@ int main(int argc, char* argv[])
d_m_n
.
GenerateTensorValue
(
GeneratorTensor_3
<
DDataType
>
{
0.0
,
1.0
});
}
DeviceMem
a_
m_k_
device_buf
(
sizeof
(
ADataType
)
*
a_m_k
.
mDesc
.
GetElementSpace
());
DeviceMem
b_
k_n_
device_buf
(
sizeof
(
BDataType
)
*
b_k_n
.
mDesc
.
GetElementSpace
());
DeviceMem
d_
m_n_
device_buf
(
sizeof
(
DDataType
)
*
d_m_n
.
mDesc
.
GetElementSpace
());
DeviceMem
e_
m_n_
device_buf
(
sizeof
(
EDataType
)
*
e_m_n_device_result
.
mDesc
.
GetElementSpace
());
DeviceMem
a_device_buf
(
sizeof
(
ADataType
)
*
a_m_k
.
mDesc
.
GetElementSpace
());
DeviceMem
b_device_buf
(
sizeof
(
BDataType
)
*
b_k_n
.
mDesc
.
GetElementSpace
());
DeviceMem
d_device_buf
(
sizeof
(
DDataType
)
*
d_m_n
.
mDesc
.
GetElementSpace
());
DeviceMem
e_device_buf
(
sizeof
(
EDataType
)
*
e_m_n_device_result
.
mDesc
.
GetElementSpace
());
a_
m_k_
device_buf
.
ToDevice
(
a_m_k
.
mData
.
data
());
b_
k_n_
device_buf
.
ToDevice
(
b_k_n
.
mData
.
data
());
d_
m_n_
device_buf
.
ToDevice
(
d_m_n
.
mData
.
data
());
a_device_buf
.
ToDevice
(
a_m_k
.
mData
.
data
());
b_device_buf
.
ToDevice
(
b_k_n
.
mData
.
data
());
d_device_buf
.
ToDevice
(
d_m_n
.
mData
.
data
());
auto
a_element_op
=
AElementOp
{};
auto
b_element_op
=
BElementOp
{};
...
...
@@ -210,10 +210,10 @@ int main(int argc, char* argv[])
auto
invoker
=
device_op
.
MakeInvoker
();
auto
argument
=
device_op
.
MakeArgument
(
a_
m_k_
device_buf
.
GetDeviceBuffer
(),
b_
k_n_
device_buf
.
GetDeviceBuffer
(),
std
::
array
<
const
void
*
,
1
>
{
d_
m_n_
device_buf
.
GetDeviceBuffer
()},
e_
m_n_
device_buf
.
GetDeviceBuffer
(),
device_op
.
MakeArgument
(
a_device_buf
.
GetDeviceBuffer
(),
b_device_buf
.
GetDeviceBuffer
(),
std
::
array
<
const
void
*
,
1
>
{
d_device_buf
.
GetDeviceBuffer
()},
e_device_buf
.
GetDeviceBuffer
(),
M
,
N
,
K
,
...
...
@@ -246,7 +246,7 @@ int main(int argc, char* argv[])
if
(
do_verification
)
{
e_
m_n_
device_buf
.
FromDevice
(
e_m_n_device_result
.
mData
.
data
());
e_device_buf
.
FromDevice
(
e_m_n_device_result
.
mData
.
data
());
Tensor
<
AccDataType
>
c_m_n
(
f_host_tensor_descriptor
(
M
,
N
,
StrideE
,
ELayout
{}));
...
...
Prev
1
2
3
4
5
…
20
Next
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
.
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment