Commit bd0f0686 authored by Jing Zhang's avatar Jing Zhang
Browse files

merge develop

parents e9b1000f 63914743
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2022, Advanced Micro Devices, Inc. All rights reserved.
// This (ifndef) is a hack to use customized behavior for buffer load rather than using default
// setting Don't use this hack unless absolutely necessary!
// FIXME: make the behavior of buffer load a configurable (template) parameter of each device op
#define CK_EXPERIMENTAL_USE_BUFFER_LOAD_OOB_CHECK_OFFSET_TRICK 1
#include <cstdlib>
#include "ck/ck.hpp"
#include "ck/tensor_operation/gpu/device/tensor_layout.hpp"
#include "ck/tensor_operation/gpu/device/gemm_specialization.hpp"
#include "ck/tensor_operation/gpu/device/device_contraction_multiple_d_xdl_cshuffle.hpp"
#include "ck/tensor_operation/gpu/element/element_wise_operation.hpp"
#include "ck/library/tensor_operation_instance/add_device_operation_instance.hpp"
namespace ck {
namespace tensor_operation {
namespace device {
namespace instance {
using F32 = float;
using EMPTY_TUPLE = ck::Tuple<>;
template <ck::index_t... Is>
using S = ck::Sequence<Is...>;
using PassThrough = ck::tensor_operation::element_wise::PassThrough;
using Scale = ck::tensor_operation::element_wise::Scale;
static constexpr auto GemmMNKPadding = ck::tensor_operation::device::GemmSpecialization::MNKPadding;
// A[m0, m1, k0, k1] * B[n0, n1, k0, k1] = E[m0, m1, n0, n1]
// k/n/n are the fast changing dimension for A/B/E
using device_contraction_scale_m2_n2_k2_xdl_c_shuffle_f32_f32_f32_knn_instance = std::tuple<
// clang-format off
//#####################################| NumDimM| NumDimN| NumDimK| AData| BData| AccData| CShuffle| DsData| EData| A| B| CDE| GEMM| NumGemmK| Block| MPer| NPer| KPer| AK1| BK1| MPer| NPer| MXdl| NXdl| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockLds| BBlockTransfer| BBlockTransfer| BBlockTransfer| BlockTransfer| BBlockTransfer| BBlockTransfer| BBlockLds| CShuffle| CShuffle| CBlockTransferClusterLengths| CBlockTransfer|
//#####################################| | | | Type| Type| Type| DataType| Type| Type| Elementwise| Elementwise| Elementwise| Specialization| Prefetch| Size| Block| Block| Block| | | XDL| XDL| Per| Per| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| AddExtraM| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| AddExtraN| MXdlPerWave| NXdlPerWave| _MBlock_MWaveMPerXdl| ScalarPerVector|
//#####################################| | | | | | | | | | Operation| Operation| Operation| | Stage| | | | | | | | | Wave| Wave| Lengths_K0_M_K1| ArrangeOrder| | | PerVector| PerVector_K1| | Lengths_K0_N_K1| ArrangeOrder| | | PerVector| PerVector_K1| | PerShuffle| PerShuffle| _NBlock_NWaveNPerXdl| _NWaveNPerXdl|
//#####################################| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
DeviceContractionMultipleD_Xdl_CShuffle< 2, 2, 2, F32, F32, F32, F32, EMPTY_TUPLE, F32, PassThrough, PassThrough, Scale, GemmMNKPadding, 1, 256, 256, 128, 16, 4, 1, 32, 32, 4, 2, S<4, 64, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 4, 4, 1, S<8, 32, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 4, 1, 0, 1, 1, S<1, 16, 1, 16>, 4>,
DeviceContractionMultipleD_Xdl_CShuffle< 2, 2, 2, F32, F32, F32, F32, EMPTY_TUPLE, F32, PassThrough, PassThrough, Scale, GemmMNKPadding, 1, 256, 256, 128, 16, 4, 4, 32, 32, 4, 2, S<4, 64, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 4, 4, 1, S<4, 64, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 2, 4, 1, 1, 1, S<1, 16, 1, 16>, 4>,
DeviceContractionMultipleD_Xdl_CShuffle< 2, 2, 2, F32, F32, F32, F32, EMPTY_TUPLE, F32, PassThrough, PassThrough, Scale, GemmMNKPadding, 1, 256, 128, 256, 16, 4, 1, 32, 32, 2, 4, S<4, 64, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 4, 4, 1, S<4, 64, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 4, 1, 0, 1, 1, S<1, 16, 1, 16>, 4>,
DeviceContractionMultipleD_Xdl_CShuffle< 2, 2, 2, F32, F32, F32, F32, EMPTY_TUPLE, F32, PassThrough, PassThrough, Scale, GemmMNKPadding, 1, 256, 128, 256, 16, 4, 4, 32, 32, 2, 4, S<4, 64, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 4, 4, 1, S<4, 64, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 4, 4, 1, 1, 1, S<1, 16, 1, 16>, 4>,
DeviceContractionMultipleD_Xdl_CShuffle< 2, 2, 2, F32, F32, F32, F32, EMPTY_TUPLE, F32, PassThrough, PassThrough, Scale, GemmMNKPadding, 1, 128, 128, 128, 16, 4, 1, 32, 32, 4, 2, S<4, 32, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 4, 4, 1, S<4, 32, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 4, 1, 0, 1, 1, S<1, 8, 1, 16>, 4>,
DeviceContractionMultipleD_Xdl_CShuffle< 2, 2, 2, F32, F32, F32, F32, EMPTY_TUPLE, F32, PassThrough, PassThrough, Scale, GemmMNKPadding, 1, 128, 128, 128, 16, 4, 4, 32, 32, 4, 2, S<4, 32, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 4, 4, 1, S<4, 32, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 4, 4, 1, 1, 1, S<1, 8, 1, 16>, 4>,
DeviceContractionMultipleD_Xdl_CShuffle< 2, 2, 2, F32, F32, F32, F32, EMPTY_TUPLE, F32, PassThrough, PassThrough, Scale, GemmMNKPadding, 1, 256, 128, 128, 16, 4, 1, 32, 32, 2, 2, S<4, 64, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 4, 4, 1, S<8, 32, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 4, 1, 0, 1, 1, S<1, 16, 1, 16>, 4>,
DeviceContractionMultipleD_Xdl_CShuffle< 2, 2, 2, F32, F32, F32, F32, EMPTY_TUPLE, F32, PassThrough, PassThrough, Scale, GemmMNKPadding, 1, 256, 128, 128, 16, 4, 4, 32, 32, 2, 2, S<4, 64, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 4, 4, 1, S<4, 64, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 2, 4, 1, 1, 1, S<1, 16, 1, 16>, 4>,
DeviceContractionMultipleD_Xdl_CShuffle< 2, 2, 2, F32, F32, F32, F32, EMPTY_TUPLE, F32, PassThrough, PassThrough, Scale, GemmMNKPadding, 1, 128, 128, 64, 16, 4, 1, 32, 32, 2, 2, S<4, 32, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 4, 4, 1, S<8, 16, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 4, 1, 0, 1, 1, S<1, 16, 1, 8>, 4>,
DeviceContractionMultipleD_Xdl_CShuffle< 2, 2, 2, F32, F32, F32, F32, EMPTY_TUPLE, F32, PassThrough, PassThrough, Scale, GemmMNKPadding, 1, 128, 128, 64, 16, 4, 4, 32, 32, 2, 2, S<4, 32, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 4, 4, 1, S<4, 32, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 2, 4, 1, 1, 1, S<1, 16, 1, 8>, 4>,
DeviceContractionMultipleD_Xdl_CShuffle< 2, 2, 2, F32, F32, F32, F32, EMPTY_TUPLE, F32, PassThrough, PassThrough, Scale, GemmMNKPadding, 1, 128, 64, 128, 16, 4, 1, 32, 32, 2, 2, S<4, 32, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 4, 4, 1, S<4, 32, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 4, 1, 0, 1, 1, S<1, 8, 1, 16>, 4>,
DeviceContractionMultipleD_Xdl_CShuffle< 2, 2, 2, F32, F32, F32, F32, EMPTY_TUPLE, F32, PassThrough, PassThrough, Scale, GemmMNKPadding, 1, 128, 64, 128, 16, 4, 4, 32, 32, 2, 2, S<4, 32, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 4, 4, 1, S<4, 32, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 4, 4, 1, 1, 1, S<1, 8, 1, 16>, 4>,
DeviceContractionMultipleD_Xdl_CShuffle< 2, 2, 2, F32, F32, F32, F32, EMPTY_TUPLE, F32, PassThrough, PassThrough, Scale, GemmMNKPadding, 1, 256, 128, 64, 16, 4, 1, 32, 32, 2, 1, S<4, 64, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 4, 4, 1, S<16,16, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 4, 1, 0, 1, 1, S<1, 16, 1, 16>, 4>,
DeviceContractionMultipleD_Xdl_CShuffle< 2, 2, 2, F32, F32, F32, F32, EMPTY_TUPLE, F32, PassThrough, PassThrough, Scale, GemmMNKPadding, 1, 256, 128, 64, 16, 4, 4, 32, 32, 2, 1, S<4, 64, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 4, 4, 1, S<4, 64, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 1, 4, 1, 1, 1, S<1, 16, 1, 16>, 4>,
DeviceContractionMultipleD_Xdl_CShuffle< 2, 2, 2, F32, F32, F32, F32, EMPTY_TUPLE, F32, PassThrough, PassThrough, Scale, GemmMNKPadding, 1, 256, 64, 128, 16, 4, 1, 32, 32, 1, 2, S<4, 64, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 4, 4, 1, S<8, 32, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 4, 1, 0, 1, 1, S<1, 16, 1, 16>, 4>,
DeviceContractionMultipleD_Xdl_CShuffle< 2, 2, 2, F32, F32, F32, F32, EMPTY_TUPLE, F32, PassThrough, PassThrough, Scale, GemmMNKPadding, 1, 256, 64, 128, 16, 4, 4, 32, 32, 1, 2, S<4, 64, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 4, 4, 1, S<4, 64, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 2, 4, 1, 1, 1, S<1, 16, 1, 16>, 4>
// clang-format on
>;
void add_device_contraction_scale_m2_n2_k2_xdl_c_shuffle_f32_f32_f32_knn_instance(
std::vector<std::unique_ptr<DeviceContractionMultipleD<2,
2,
2,
F32,
F32,
EMPTY_TUPLE,
F32,
PassThrough,
PassThrough,
Scale>>>& instances)
{
add_device_operation_instances(
instances, device_contraction_scale_m2_n2_k2_xdl_c_shuffle_f32_f32_f32_knn_instance{});
}
} // namespace instance
} // namespace device
} // namespace tensor_operation
} // namespace ck
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2022, Advanced Micro Devices, Inc. All rights reserved.
// This (ifndef) is a hack to use customized behavior for buffer load rather than using default
// setting Don't use this hack unless absolutely necessary!
// FIXME: make the behavior of buffer load a configurable (template) parameter of each device op
#define CK_EXPERIMENTAL_USE_BUFFER_LOAD_OOB_CHECK_OFFSET_TRICK 1
#include <cstdlib>
#include "ck/ck.hpp"
#include "ck/tensor_operation/gpu/device/tensor_layout.hpp"
#include "ck/tensor_operation/gpu/device/gemm_specialization.hpp"
#include "ck/tensor_operation/gpu/device/device_contraction_multiple_d_xdl_cshuffle.hpp"
#include "ck/tensor_operation/gpu/element/element_wise_operation.hpp"
#include "ck/library/tensor_operation_instance/add_device_operation_instance.hpp"
namespace ck {
namespace tensor_operation {
namespace device {
namespace instance {
using F32 = float;
using EMPTY_TUPLE = ck::Tuple<>;
template <ck::index_t... Is>
using S = ck::Sequence<Is...>;
using PassThrough = ck::tensor_operation::element_wise::PassThrough;
using Scale = ck::tensor_operation::element_wise::Scale;
static constexpr auto GemmMNKPadding = ck::tensor_operation::device::GemmSpecialization::MNKPadding;
// A[m0, m1, k0, k1] * B[n0, n1, k0, k1] = E[m0, m1, n0, n1]
// m/k/n are the fast changing dimension for A/B/E
using device_contraction_scale_m2_n2_k2_xdl_c_shuffle_f32_f32_f32_mkn_instance = std::tuple<
// clang-format off
//#####################################| NumDimM| NumDimN| NumDimK| AData| BData| AccData| CShuffle| DsData| EData| A| B| CDE| GEMM| NumGemmK| Block| MPer| NPer| KPer| AK1| BK1| MPer| NPer| MXdl| NXdl| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockLds| BBlockTransfer| BBlockTransfer| BBlockTransfer| BlockTransfer| BBlockTransfer| BBlockTransfer| BBlockLds| CShuffle| CShuffle| CBlockTransferClusterLengths| CBlockTransfer|
//#####################################| | | | Type| Type| Type| DataType| Type| Type| Elementwise| Elementwise| Elementwise| Specialization| Prefetch| Size| Block| Block| Block| | | XDL| XDL| Per| Per| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| AddExtraM| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| AddExtraN| MXdlPerWave| NXdlPerWave| _MBlock_MWaveMPerXdl| ScalarPerVector|
//#####################################| | | | | | | | | | Operation| Operation| Operation| | Stage| | | | | | | | | Wave| Wave| Lengths_K0_M_K1| ArrangeOrder| | | PerVector| PerVector_K1| | Lengths_K0_N_K1| ArrangeOrder| | | PerVector| PerVector_K1| | PerShuffle| PerShuffle| _NBlock_NWaveNPerXdl| _NWaveNPerXdl|
//#####################################| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
DeviceContractionMultipleD_Xdl_CShuffle< 2, 2, 2, F32, F32, F32, F32, EMPTY_TUPLE, F32, PassThrough, PassThrough, Scale, GemmMNKPadding, 1, 256, 256, 128, 16, 1, 4, 32, 32, 4, 2, S<4, 64, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 4, 1, 0, S<4, 64, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 4, 4, 1, 1, 1, S<1, 16, 1, 16>, 4>,
DeviceContractionMultipleD_Xdl_CShuffle< 2, 2, 2, F32, F32, F32, F32, EMPTY_TUPLE, F32, PassThrough, PassThrough, Scale, GemmMNKPadding, 1, 256, 256, 128, 16, 4, 4, 32, 32, 4, 2, S<4, 64, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 4, 4, 1, S<4, 64, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 4, 4, 1, 1, 1, S<1, 16, 1, 16>, 4>,
DeviceContractionMultipleD_Xdl_CShuffle< 2, 2, 2, F32, F32, F32, F32, EMPTY_TUPLE, F32, PassThrough, PassThrough, Scale, GemmMNKPadding, 1, 256, 128, 256, 16, 1, 4, 32, 32, 2, 4, S<8, 32, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 4, 1, 0, S<4, 64, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 4, 4, 1, 1, 1, S<1, 16, 1, 16>, 4>,
DeviceContractionMultipleD_Xdl_CShuffle< 2, 2, 2, F32, F32, F32, F32, EMPTY_TUPLE, F32, PassThrough, PassThrough, Scale, GemmMNKPadding, 1, 256, 128, 256, 16, 4, 4, 32, 32, 2, 4, S<4, 64, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 2, 4, 1, S<4, 64, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 4, 4, 1, 1, 1, S<1, 16, 1, 16>, 4>,
DeviceContractionMultipleD_Xdl_CShuffle< 2, 2, 2, F32, F32, F32, F32, EMPTY_TUPLE, F32, PassThrough, PassThrough, Scale, GemmMNKPadding, 1, 128, 128, 128, 16, 1, 4, 32, 32, 4, 2, S<4, 32, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 4, 1, 0, S<4, 32, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 4, 4, 1, 1, 1, S<1, 8, 1, 16>, 4>,
DeviceContractionMultipleD_Xdl_CShuffle< 2, 2, 2, F32, F32, F32, F32, EMPTY_TUPLE, F32, PassThrough, PassThrough, Scale, GemmMNKPadding, 1, 128, 128, 128, 16, 4, 4, 32, 32, 4, 2, S<4, 32, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 4, 4, 1, S<4, 32, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 4, 4, 1, 1, 1, S<1, 8, 1, 16>, 4>,
DeviceContractionMultipleD_Xdl_CShuffle< 2, 2, 2, F32, F32, F32, F32, EMPTY_TUPLE, F32, PassThrough, PassThrough, Scale, GemmMNKPadding, 1, 256, 128, 128, 16, 1, 4, 32, 32, 2, 2, S<8, 32, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 4, 1, 0, S<4, 64, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 4, 4, 1, 1, 1, S<1, 16, 1, 16>, 4>,
DeviceContractionMultipleD_Xdl_CShuffle< 2, 2, 2, F32, F32, F32, F32, EMPTY_TUPLE, F32, PassThrough, PassThrough, Scale, GemmMNKPadding, 1, 256, 128, 128, 16, 4, 4, 32, 32, 2, 2, S<4, 64, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 2, 4, 1, S<4, 64, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 4, 4, 1, 1, 1, S<1, 16, 1, 16>, 4>,
DeviceContractionMultipleD_Xdl_CShuffle< 2, 2, 2, F32, F32, F32, F32, EMPTY_TUPLE, F32, PassThrough, PassThrough, Scale, GemmMNKPadding, 1, 128, 128, 64, 16, 1, 4, 32, 32, 2, 2, S<4, 32, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 4, 1, 0, S<4, 32, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 4, 4, 1, 1, 1, S<1, 16, 1, 8>, 4>,
DeviceContractionMultipleD_Xdl_CShuffle< 2, 2, 2, F32, F32, F32, F32, EMPTY_TUPLE, F32, PassThrough, PassThrough, Scale, GemmMNKPadding, 1, 128, 128, 64, 16, 4, 4, 32, 32, 2, 2, S<4, 32, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 4, 4, 1, S<4, 32, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 4, 4, 1, 1, 1, S<1, 16, 1, 8>, 4>,
DeviceContractionMultipleD_Xdl_CShuffle< 2, 2, 2, F32, F32, F32, F32, EMPTY_TUPLE, F32, PassThrough, PassThrough, Scale, GemmMNKPadding, 1, 128, 64, 128, 16, 1, 4, 32, 32, 2, 2, S<8, 16, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 4, 1, 0, S<4, 32, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 4, 4, 1, 1, 1, S<1, 8, 1, 16>, 4>,
DeviceContractionMultipleD_Xdl_CShuffle< 2, 2, 2, F32, F32, F32, F32, EMPTY_TUPLE, F32, PassThrough, PassThrough, Scale, GemmMNKPadding, 1, 128, 64, 128, 16, 4, 4, 32, 32, 2, 2, S<4, 32, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 2, 4, 1, S<4, 32, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 4, 4, 1, 1, 1, S<1, 8, 1, 16>, 4>,
DeviceContractionMultipleD_Xdl_CShuffle< 2, 2, 2, F32, F32, F32, F32, EMPTY_TUPLE, F32, PassThrough, PassThrough, Scale, GemmMNKPadding, 1, 256, 128, 64, 16, 1, 4, 32, 32, 2, 1, S<8, 32, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 4, 1, 0, S<4, 64, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 4, 4, 1, 1, 1, S<1, 16, 1, 16>, 4>,
DeviceContractionMultipleD_Xdl_CShuffle< 2, 2, 2, F32, F32, F32, F32, EMPTY_TUPLE, F32, PassThrough, PassThrough, Scale, GemmMNKPadding, 1, 256, 128, 64, 16, 4, 4, 32, 32, 2, 1, S<4, 64, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 2, 4, 1, S<4, 64, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 4, 4, 1, 1, 1, S<1, 16, 1, 16>, 4>,
DeviceContractionMultipleD_Xdl_CShuffle< 2, 2, 2, F32, F32, F32, F32, EMPTY_TUPLE, F32, PassThrough, PassThrough, Scale, GemmMNKPadding, 1, 256, 64, 128, 16, 1, 4, 32, 32, 1, 2, S<16,16, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 4, 1, 0, S<4, 64, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 4, 4, 1, 1, 1, S<1, 16, 1, 16>, 4>,
DeviceContractionMultipleD_Xdl_CShuffle< 2, 2, 2, F32, F32, F32, F32, EMPTY_TUPLE, F32, PassThrough, PassThrough, Scale, GemmMNKPadding, 1, 256, 64, 128, 16, 4, 4, 32, 32, 1, 2, S<4, 64, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 1, 4, 1, S<4, 64, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 4, 4, 1, 1, 1, S<1, 16, 1, 16>, 4>
// clang-format on
>;
void add_device_contraction_scale_m2_n2_k2_xdl_c_shuffle_f32_f32_f32_mkn_instance(
std::vector<std::unique_ptr<DeviceContractionMultipleD<2,
2,
2,
F32,
F32,
EMPTY_TUPLE,
F32,
PassThrough,
PassThrough,
Scale>>>& instances)
{
add_device_operation_instances(
instances, device_contraction_scale_m2_n2_k2_xdl_c_shuffle_f32_f32_f32_mkn_instance{});
}
} // namespace instance
} // namespace device
} // namespace tensor_operation
} // namespace ck
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2022, Advanced Micro Devices, Inc. All rights reserved.
// This (ifndef) is a hack to use customized behavior for buffer load rather than using default
// setting Don't use this hack unless absolutely necessary!
// FIXME: make the behavior of buffer load a configurable (template) parameter of each device op
#define CK_EXPERIMENTAL_USE_BUFFER_LOAD_OOB_CHECK_OFFSET_TRICK 1
#include <cstdlib>
#include "ck/ck.hpp"
#include "ck/tensor_operation/gpu/device/tensor_layout.hpp"
#include "ck/tensor_operation/gpu/device/gemm_specialization.hpp"
#include "ck/tensor_operation/gpu/device/device_contraction_multiple_d_xdl_cshuffle.hpp"
#include "ck/tensor_operation/gpu/element/element_wise_operation.hpp"
#include "ck/library/tensor_operation_instance/add_device_operation_instance.hpp"
namespace ck {
namespace tensor_operation {
namespace device {
namespace instance {
using F32 = float;
using EMPTY_TUPLE = ck::Tuple<>;
template <ck::index_t... Is>
using S = ck::Sequence<Is...>;
using PassThrough = ck::tensor_operation::element_wise::PassThrough;
using Scale = ck::tensor_operation::element_wise::Scale;
static constexpr auto GemmMNKPadding = ck::tensor_operation::device::GemmSpecialization::MNKPadding;
// A[m0, m1, k0, k1] * B[n0, n1, k0, k1] = E[m0, m1, n0, n1]
// m/n/n are the fast changing dimension for A/B/E
using device_contraction_scale_m2_n2_k2_xdl_c_shuffle_f32_f32_f32_mnn_instance = std::tuple<
// clang-format off
//#####################################| NumDimM| NumDimN| NumDimK| AData| BData| AccData| CShuffle| DsData| EData| A| B| CDE| GEMM| NumGemmK| Block| MPer| NPer| KPer| AK1| BK1| MPer| NPer| MXdl| NXdl| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockLds| BBlockTransfer| BBlockTransfer| BBlockTransfer| BlockTransfer| BBlockTransfer| BBlockTransfer| BBlockLds| CShuffle| CShuffle| CBlockTransferClusterLengths| CBlockTransfer|
//#####################################| | | | Type| Type| Type| DataType| Type| Type| Elementwise| Elementwise| Elementwise| Specialization| Prefetch| Size| Block| Block| Block| | | XDL| XDL| Per| Per| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| AddExtraM| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| AddExtraN| MXdlPerWave| NXdlPerWave| _MBlock_MWaveMPerXdl| ScalarPerVector|
//#####################################| | | | | | | | | | Operation| Operation| Operation| | Stage| | | | | | | | | Wave| Wave| Lengths_K0_M_K1| ArrangeOrder| | | PerVector| PerVector_K1| | Lengths_K0_N_K1| ArrangeOrder| | | PerVector| PerVector_K1| | PerShuffle| PerShuffle| _NBlock_NWaveNPerXdl| _NWaveNPerXdl|
//#####################################| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
DeviceContractionMultipleD_Xdl_CShuffle< 2, 2, 2, F32, F32, F32, F32, EMPTY_TUPLE, F32, PassThrough, PassThrough, Scale, GemmMNKPadding, 1, 256, 256, 128, 16, 1, 1, 32, 32, 4, 2, S<4, 64, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 4, 1, 0, S<8, 32, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 4, 1, 0, 1, 1, S<1, 16, 1, 16>, 4>,
DeviceContractionMultipleD_Xdl_CShuffle< 2, 2, 2, F32, F32, F32, F32, EMPTY_TUPLE, F32, PassThrough, PassThrough, Scale, GemmMNKPadding, 1, 256, 256, 128, 16, 4, 4, 32, 32, 4, 2, S<4, 64, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 4, 4, 1, S<4, 64, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 2, 4, 1, 1, 1, S<1, 16, 1, 16>, 4>,
DeviceContractionMultipleD_Xdl_CShuffle< 2, 2, 2, F32, F32, F32, F32, EMPTY_TUPLE, F32, PassThrough, PassThrough, Scale, GemmMNKPadding, 1, 256, 128, 256, 16, 1, 1, 32, 32, 2, 4, S<8, 32, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 4, 1, 0, S<4, 64, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 4, 1, 0, 1, 1, S<1, 16, 1, 16>, 4>,
DeviceContractionMultipleD_Xdl_CShuffle< 2, 2, 2, F32, F32, F32, F32, EMPTY_TUPLE, F32, PassThrough, PassThrough, Scale, GemmMNKPadding, 1, 256, 128, 256, 16, 4, 4, 32, 32, 2, 4, S<4, 64, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 2, 4, 1, S<4, 64, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 4, 4, 1, 1, 1, S<1, 16, 1, 16>, 4>,
DeviceContractionMultipleD_Xdl_CShuffle< 2, 2, 2, F32, F32, F32, F32, EMPTY_TUPLE, F32, PassThrough, PassThrough, Scale, GemmMNKPadding, 1, 128, 128, 128, 16, 1, 1, 32, 32, 4, 2, S<4, 32, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 4, 1, 0, S<4, 32, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 4, 1, 0, 1, 1, S<1, 8, 1, 16>, 4>,
DeviceContractionMultipleD_Xdl_CShuffle< 2, 2, 2, F32, F32, F32, F32, EMPTY_TUPLE, F32, PassThrough, PassThrough, Scale, GemmMNKPadding, 1, 128, 128, 128, 16, 4, 4, 32, 32, 4, 2, S<4, 32, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 4, 4, 1, S<4, 32, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 4, 4, 1, 1, 1, S<1, 8, 1, 16>, 4>,
DeviceContractionMultipleD_Xdl_CShuffle< 2, 2, 2, F32, F32, F32, F32, EMPTY_TUPLE, F32, PassThrough, PassThrough, Scale, GemmMNKPadding, 1, 256, 128, 128, 16, 1, 1, 32, 32, 2, 2, S<8, 32, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 4, 1, 0, S<8, 32, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 4, 1, 0, 1, 1, S<1, 16, 1, 16>, 4>,
DeviceContractionMultipleD_Xdl_CShuffle< 2, 2, 2, F32, F32, F32, F32, EMPTY_TUPLE, F32, PassThrough, PassThrough, Scale, GemmMNKPadding, 1, 256, 128, 128, 16, 4, 4, 32, 32, 2, 2, S<4, 64, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 2, 4, 1, S<4, 64, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 2, 4, 1, 1, 1, S<1, 16, 1, 16>, 4>,
DeviceContractionMultipleD_Xdl_CShuffle< 2, 2, 2, F32, F32, F32, F32, EMPTY_TUPLE, F32, PassThrough, PassThrough, Scale, GemmMNKPadding, 1, 128, 128, 64, 16, 1, 1, 32, 32, 2, 2, S<4, 32, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 4, 1, 0, S<4, 16, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 4, 1, 0, 1, 1, S<1, 16, 1, 8>, 4>,
DeviceContractionMultipleD_Xdl_CShuffle< 2, 2, 2, F32, F32, F32, F32, EMPTY_TUPLE, F32, PassThrough, PassThrough, Scale, GemmMNKPadding, 1, 128, 128, 64, 16, 4, 4, 32, 32, 2, 2, S<4, 32, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 4, 4, 1, S<4, 32, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 2, 4, 1, 1, 1, S<1, 16, 1, 8>, 4>,
DeviceContractionMultipleD_Xdl_CShuffle< 2, 2, 2, F32, F32, F32, F32, EMPTY_TUPLE, F32, PassThrough, PassThrough, Scale, GemmMNKPadding, 1, 128, 64, 128, 16, 1, 1, 32, 32, 2, 2, S<8, 16, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 4, 1, 0, S<4, 32, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 4, 1, 0, 1, 1, S<1, 8, 1, 16>, 4>,
DeviceContractionMultipleD_Xdl_CShuffle< 2, 2, 2, F32, F32, F32, F32, EMPTY_TUPLE, F32, PassThrough, PassThrough, Scale, GemmMNKPadding, 1, 128, 64, 128, 16, 4, 4, 32, 32, 2, 2, S<4, 32, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 2, 4, 1, S<4, 32, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 4, 4, 1, 1, 1, S<1, 8, 1, 16>, 4>,
DeviceContractionMultipleD_Xdl_CShuffle< 2, 2, 2, F32, F32, F32, F32, EMPTY_TUPLE, F32, PassThrough, PassThrough, Scale, GemmMNKPadding, 1, 256, 128, 64, 16, 1, 1, 32, 32, 2, 1, S<8, 32, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 4, 1, 0, S<16,16, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 4, 1, 0, 1, 1, S<1, 16, 1, 16>, 4>,
DeviceContractionMultipleD_Xdl_CShuffle< 2, 2, 2, F32, F32, F32, F32, EMPTY_TUPLE, F32, PassThrough, PassThrough, Scale, GemmMNKPadding, 1, 256, 128, 64, 16, 4, 4, 32, 32, 2, 1, S<4, 64, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 2, 4, 1, S<4, 64, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 1, 4, 1, 1, 1, S<1, 16, 1, 16>, 4>,
DeviceContractionMultipleD_Xdl_CShuffle< 2, 2, 2, F32, F32, F32, F32, EMPTY_TUPLE, F32, PassThrough, PassThrough, Scale, GemmMNKPadding, 1, 256, 64, 128, 16, 1, 1, 32, 32, 1, 2, S<16,16, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 4, 1, 0, S<8, 32, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 4, 1, 0, 1, 1, S<1, 16, 1, 16>, 4>,
DeviceContractionMultipleD_Xdl_CShuffle< 2, 2, 2, F32, F32, F32, F32, EMPTY_TUPLE, F32, PassThrough, PassThrough, Scale, GemmMNKPadding, 1, 256, 64, 128, 16, 4, 4, 32, 32, 1, 2, S<4, 64, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 1, 4, 1, S<4, 64, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 2, 4, 1, 1, 1, S<1, 16, 1, 16>, 4>
// clang-format on
>;
void add_device_contraction_scale_m2_n2_k2_xdl_c_shuffle_f32_f32_f32_mnn_instance(
std::vector<std::unique_ptr<DeviceContractionMultipleD<2,
2,
2,
F32,
F32,
EMPTY_TUPLE,
F32,
PassThrough,
PassThrough,
Scale>>>& instances)
{
add_device_operation_instances(
instances, device_contraction_scale_m2_n2_k2_xdl_c_shuffle_f32_f32_f32_mnn_instance{});
}
} // namespace instance
} // namespace device
} // namespace tensor_operation
} // namespace ck
...@@ -8,12 +8,12 @@ ...@@ -8,12 +8,12 @@
#include "ck/tensor_operation/gpu/device/gemm_specialization.hpp" #include "ck/tensor_operation/gpu/device/gemm_specialization.hpp"
#include "ck/tensor_operation/gpu/device/device_convnd_fwd_xdl_nhwc_kyxc_nhwk.hpp" #include "ck/tensor_operation/gpu/device/device_convnd_fwd_xdl_nhwc_kyxc_nhwk.hpp"
#include "ck/tensor_operation/gpu/element/element_wise_operation.hpp" #include "ck/tensor_operation/gpu/element/element_wise_operation.hpp"
#include "ck/library/tensor_operation_instance/device_operation_instance.hpp" #include "ck/library/tensor_operation_instance/add_device_operation_instance.hpp"
namespace ck { namespace ck {
namespace tensor_operation { namespace tensor_operation {
namespace device { namespace device {
namespace device_conv1d_fwd_instance { namespace instance {
using F32 = float; using F32 = float;
using BF16 = bhalf_t; using BF16 = bhalf_t;
...@@ -109,7 +109,7 @@ void add_device_conv1d_fwd_xdl_nwc_kxc_nwk_bf16_instances( ...@@ -109,7 +109,7 @@ void add_device_conv1d_fwd_xdl_nwc_kxc_nwk_bf16_instances(
device_conv1d_fwd_xdl_nwc_kxc_nwk_1x1_s1_p0_bf16_instances{}); device_conv1d_fwd_xdl_nwc_kxc_nwk_1x1_s1_p0_bf16_instances{});
} }
} // namespace device_conv1d_fwd_instance } // namespace instance
} // namespace device } // namespace device
} // namespace tensor_operation } // namespace tensor_operation
} // namespace ck } // namespace ck
...@@ -8,12 +8,12 @@ ...@@ -8,12 +8,12 @@
#include "ck/tensor_operation/gpu/device/gemm_specialization.hpp" #include "ck/tensor_operation/gpu/device/gemm_specialization.hpp"
#include "ck/tensor_operation/gpu/device/device_convnd_fwd_xdl_nhwc_kyxc_nhwk.hpp" #include "ck/tensor_operation/gpu/device/device_convnd_fwd_xdl_nhwc_kyxc_nhwk.hpp"
#include "ck/tensor_operation/gpu/element/element_wise_operation.hpp" #include "ck/tensor_operation/gpu/element/element_wise_operation.hpp"
#include "ck/library/tensor_operation_instance/device_operation_instance.hpp" #include "ck/library/tensor_operation_instance/add_device_operation_instance.hpp"
namespace ck { namespace ck {
namespace tensor_operation { namespace tensor_operation {
namespace device { namespace device {
namespace device_conv1d_fwd_instance { namespace instance {
using F16 = ck::half_t; using F16 = ck::half_t;
using F32 = float; using F32 = float;
...@@ -109,7 +109,7 @@ void add_device_conv1d_fwd_xdl_nwc_kxc_nwk_f16_instances( ...@@ -109,7 +109,7 @@ void add_device_conv1d_fwd_xdl_nwc_kxc_nwk_f16_instances(
device_conv1d_fwd_xdl_nwc_kxc_nwk_1x1_s1_p0_f16_instances{}); device_conv1d_fwd_xdl_nwc_kxc_nwk_1x1_s1_p0_f16_instances{});
} }
} // namespace device_conv1d_fwd_instance } // namespace instance
} // namespace device } // namespace device
} // namespace tensor_operation } // namespace tensor_operation
} // namespace ck } // namespace ck
...@@ -8,12 +8,12 @@ ...@@ -8,12 +8,12 @@
#include "ck/tensor_operation/gpu/device/gemm_specialization.hpp" #include "ck/tensor_operation/gpu/device/gemm_specialization.hpp"
#include "ck/tensor_operation/gpu/device/device_convnd_fwd_xdl_nhwc_kyxc_nhwk.hpp" #include "ck/tensor_operation/gpu/device/device_convnd_fwd_xdl_nhwc_kyxc_nhwk.hpp"
#include "ck/tensor_operation/gpu/element/element_wise_operation.hpp" #include "ck/tensor_operation/gpu/element/element_wise_operation.hpp"
#include "ck/library/tensor_operation_instance/device_operation_instance.hpp" #include "ck/library/tensor_operation_instance/add_device_operation_instance.hpp"
namespace ck { namespace ck {
namespace tensor_operation { namespace tensor_operation {
namespace device { namespace device {
namespace device_conv1d_fwd_instance { namespace instance {
using F32 = float; using F32 = float;
...@@ -112,7 +112,7 @@ void add_device_conv1d_fwd_xdl_nwc_kxc_nwk_f32_instances( ...@@ -112,7 +112,7 @@ void add_device_conv1d_fwd_xdl_nwc_kxc_nwk_f32_instances(
device_conv1d_fwd_xdl_nwc_kxc_nwk_1x1_s1_p0_f32_instances{}); device_conv1d_fwd_xdl_nwc_kxc_nwk_1x1_s1_p0_f32_instances{});
} }
} // namespace device_conv1d_fwd_instance } // namespace instance
} // namespace device } // namespace device
} // namespace tensor_operation } // namespace tensor_operation
} // namespace ck } // namespace ck
...@@ -8,12 +8,12 @@ ...@@ -8,12 +8,12 @@
#include "ck/tensor_operation/gpu/device/gemm_specialization.hpp" #include "ck/tensor_operation/gpu/device/gemm_specialization.hpp"
#include "ck/tensor_operation/gpu/device/device_convnd_fwd_xdl_nhwc_kyxc_nhwk.hpp" #include "ck/tensor_operation/gpu/device/device_convnd_fwd_xdl_nhwc_kyxc_nhwk.hpp"
#include "ck/tensor_operation/gpu/element/element_wise_operation.hpp" #include "ck/tensor_operation/gpu/element/element_wise_operation.hpp"
#include "ck/library/tensor_operation_instance/device_operation_instance.hpp" #include "ck/library/tensor_operation_instance/add_device_operation_instance.hpp"
namespace ck { namespace ck {
namespace tensor_operation { namespace tensor_operation {
namespace device { namespace device {
namespace device_conv1d_fwd_instance { namespace instance {
using F32 = float; using F32 = float;
...@@ -111,7 +111,7 @@ void add_device_conv1d_fwd_xdl_nwc_kxc_nwk_int8_instances( ...@@ -111,7 +111,7 @@ void add_device_conv1d_fwd_xdl_nwc_kxc_nwk_int8_instances(
device_conv1d_fwd_xdl_nwc_kxc_nwk_1x1_s1_p0_int8_instances{}); device_conv1d_fwd_xdl_nwc_kxc_nwk_1x1_s1_p0_int8_instances{});
} }
} // namespace device_conv1d_fwd_instance } // namespace instance
} // namespace device } // namespace device
} // namespace tensor_operation } // namespace tensor_operation
} // namespace ck } // namespace ck
...@@ -7,12 +7,12 @@ ...@@ -7,12 +7,12 @@
#include "ck/tensor_operation/gpu/device/tensor_layout.hpp" #include "ck/tensor_operation/gpu/device/tensor_layout.hpp"
#include "ck/tensor_operation/gpu/device/device_conv2d_bwd_data_xdl_nhwc_kyxc_nhwk.hpp" #include "ck/tensor_operation/gpu/device/device_conv2d_bwd_data_xdl_nhwc_kyxc_nhwk.hpp"
#include "ck/tensor_operation/gpu/element/element_wise_operation.hpp" #include "ck/tensor_operation/gpu/element/element_wise_operation.hpp"
#include "ck/library/tensor_operation_instance/device_operation_instance.hpp" #include "ck/library/tensor_operation_instance/add_device_operation_instance.hpp"
namespace ck { namespace ck {
namespace tensor_operation { namespace tensor_operation {
namespace device { namespace device {
namespace device_conv2d_bwd_data_instance { namespace instance {
using BF16 = ck::bhalf_t; using BF16 = ck::bhalf_t;
using F32 = float; using F32 = float;
...@@ -82,7 +82,7 @@ void add_device_conv2d_bwd_data_xdl_nhwc_kyxc_nhwk_bf16_instances( ...@@ -82,7 +82,7 @@ void add_device_conv2d_bwd_data_xdl_nhwc_kyxc_nhwk_bf16_instances(
instances, device_conv2d_bwd_data_xdl_nhwc_kyxc_nhwk_1x1_s1_p0_bf16_instances{}); instances, device_conv2d_bwd_data_xdl_nhwc_kyxc_nhwk_1x1_s1_p0_bf16_instances{});
} }
} // namespace device_conv2d_bwd_data_instance } // namespace instance
} // namespace device } // namespace device
} // namespace tensor_operation } // namespace tensor_operation
} // namespace ck } // namespace ck
...@@ -7,12 +7,12 @@ ...@@ -7,12 +7,12 @@
#include "ck/tensor_operation/gpu/device/tensor_layout.hpp" #include "ck/tensor_operation/gpu/device/tensor_layout.hpp"
#include "ck/tensor_operation/gpu/device/device_conv2d_bwd_data_xdl_nhwc_kyxc_nhwk.hpp" #include "ck/tensor_operation/gpu/device/device_conv2d_bwd_data_xdl_nhwc_kyxc_nhwk.hpp"
#include "ck/tensor_operation/gpu/element/element_wise_operation.hpp" #include "ck/tensor_operation/gpu/element/element_wise_operation.hpp"
#include "ck/library/tensor_operation_instance/device_operation_instance.hpp" #include "ck/library/tensor_operation_instance/add_device_operation_instance.hpp"
namespace ck { namespace ck {
namespace tensor_operation { namespace tensor_operation {
namespace device { namespace device {
namespace device_conv2d_bwd_data_instance { namespace instance {
using F16 = ck::half_t; using F16 = ck::half_t;
using F32 = float; using F32 = float;
...@@ -84,7 +84,7 @@ void add_device_conv2d_bwd_data_xdl_nhwc_kyxc_nhwk_f16_instances( ...@@ -84,7 +84,7 @@ void add_device_conv2d_bwd_data_xdl_nhwc_kyxc_nhwk_f16_instances(
instances, device_conv2d_bwd_data_xdl_nhwc_kyxc_nhwk_1x1_s1_p0_f16_instances{}); instances, device_conv2d_bwd_data_xdl_nhwc_kyxc_nhwk_1x1_s1_p0_f16_instances{});
} }
} // namespace device_conv2d_bwd_data_instance } // namespace instance
} // namespace device } // namespace device
} // namespace tensor_operation } // namespace tensor_operation
} // namespace ck } // namespace ck
...@@ -7,12 +7,12 @@ ...@@ -7,12 +7,12 @@
#include "ck/tensor_operation/gpu/device/tensor_layout.hpp" #include "ck/tensor_operation/gpu/device/tensor_layout.hpp"
#include "ck/tensor_operation/gpu/device/device_conv2d_bwd_data_xdl_nhwc_kyxc_nhwk.hpp" #include "ck/tensor_operation/gpu/device/device_conv2d_bwd_data_xdl_nhwc_kyxc_nhwk.hpp"
#include "ck/tensor_operation/gpu/element/element_wise_operation.hpp" #include "ck/tensor_operation/gpu/element/element_wise_operation.hpp"
#include "ck/library/tensor_operation_instance/device_operation_instance.hpp" #include "ck/library/tensor_operation_instance/add_device_operation_instance.hpp"
namespace ck { namespace ck {
namespace tensor_operation { namespace tensor_operation {
namespace device { namespace device {
namespace device_conv2d_bwd_data_instance { namespace instance {
using F32 = float; using F32 = float;
...@@ -81,7 +81,7 @@ void add_device_conv2d_bwd_data_xdl_nhwc_kyxc_nhwk_f32_instances( ...@@ -81,7 +81,7 @@ void add_device_conv2d_bwd_data_xdl_nhwc_kyxc_nhwk_f32_instances(
instances, device_conv2d_bwd_data_xdl_nhwc_kyxc_nhwk_1x1_s1_p0_f32_instances{}); instances, device_conv2d_bwd_data_xdl_nhwc_kyxc_nhwk_1x1_s1_p0_f32_instances{});
} }
} // namespace device_conv2d_bwd_data_instance } // namespace instance
} // namespace device } // namespace device
} // namespace tensor_operation } // namespace tensor_operation
} // namespace ck } // namespace ck
...@@ -7,12 +7,12 @@ ...@@ -7,12 +7,12 @@
#include "ck/tensor_operation/gpu/device/tensor_layout.hpp" #include "ck/tensor_operation/gpu/device/tensor_layout.hpp"
#include "ck/tensor_operation/gpu/device/device_conv2d_bwd_data_xdl_nhwc_kyxc_nhwk.hpp" #include "ck/tensor_operation/gpu/device/device_conv2d_bwd_data_xdl_nhwc_kyxc_nhwk.hpp"
#include "ck/tensor_operation/gpu/element/element_wise_operation.hpp" #include "ck/tensor_operation/gpu/element/element_wise_operation.hpp"
#include "ck/library/tensor_operation_instance/device_operation_instance.hpp" #include "ck/library/tensor_operation_instance/add_device_operation_instance.hpp"
namespace ck { namespace ck {
namespace tensor_operation { namespace tensor_operation {
namespace device { namespace device {
namespace device_conv2d_bwd_data_instance { namespace instance {
using DataType = int8_t; using DataType = int8_t;
using AccType = int32_t; using AccType = int32_t;
...@@ -82,7 +82,7 @@ void add_device_conv2d_bwd_data_xdl_nhwc_kyxc_nhwk_int8_instances( ...@@ -82,7 +82,7 @@ void add_device_conv2d_bwd_data_xdl_nhwc_kyxc_nhwk_int8_instances(
instances, device_conv2d_bwd_data_xdl_nhwc_kyxc_nhwk_1x1_s1_p0_int8_instances{}); instances, device_conv2d_bwd_data_xdl_nhwc_kyxc_nhwk_1x1_s1_p0_int8_instances{});
} }
} // namespace device_conv2d_bwd_data_instance } // namespace instance
} // namespace device } // namespace device
} // namespace tensor_operation } // namespace tensor_operation
} // namespace ck } // namespace ck
...@@ -7,12 +7,12 @@ ...@@ -7,12 +7,12 @@
#include "ck/tensor_operation/gpu/device/tensor_layout.hpp" #include "ck/tensor_operation/gpu/device/tensor_layout.hpp"
#include "ck/tensor_operation/gpu/device/device_conv2d_backward_weight_xdl_c_shuffle_nhwc_kyxc_nhwk.hpp" #include "ck/tensor_operation/gpu/device/device_conv2d_backward_weight_xdl_c_shuffle_nhwc_kyxc_nhwk.hpp"
#include "ck/tensor_operation/gpu/element/element_wise_operation.hpp" #include "ck/tensor_operation/gpu/element/element_wise_operation.hpp"
#include "ck/library/tensor_operation_instance/device_operation_instance.hpp" #include "ck/library/tensor_operation_instance/add_device_operation_instance.hpp"
namespace ck { namespace ck {
namespace tensor_operation { namespace tensor_operation {
namespace device { namespace device {
namespace device_conv2d_bwd_weight_instance { namespace instance {
using F16 = ck::half_t; using F16 = ck::half_t;
using F32 = float; using F32 = float;
...@@ -52,7 +52,7 @@ void add_device_conv2d_bwd_weight_xdl_nhwc_kyxc_nhwk_f16_instances( ...@@ -52,7 +52,7 @@ void add_device_conv2d_bwd_weight_xdl_nhwc_kyxc_nhwk_f16_instances(
device_conv2d_bwd_weight_xdl_nhwc_kyxc_nhwk_f16_instances{}); device_conv2d_bwd_weight_xdl_nhwc_kyxc_nhwk_f16_instances{});
} }
} // namespace device_conv2d_bwd_weight_instance } // namespace instance
} // namespace device } // namespace device
} // namespace tensor_operation } // namespace tensor_operation
} // namespace ck } // namespace ck
...@@ -7,12 +7,12 @@ ...@@ -7,12 +7,12 @@
#include "ck/tensor_operation/gpu/device/tensor_layout.hpp" #include "ck/tensor_operation/gpu/device/tensor_layout.hpp"
#include "ck/tensor_operation/gpu/device/device_conv2d_backward_weight_xdl_c_shuffle_nhwc_kyxc_nhwk.hpp" #include "ck/tensor_operation/gpu/device/device_conv2d_backward_weight_xdl_c_shuffle_nhwc_kyxc_nhwk.hpp"
#include "ck/tensor_operation/gpu/element/element_wise_operation.hpp" #include "ck/tensor_operation/gpu/element/element_wise_operation.hpp"
#include "ck/library/tensor_operation_instance/device_operation_instance.hpp" #include "ck/library/tensor_operation_instance/add_device_operation_instance.hpp"
namespace ck { namespace ck {
namespace tensor_operation { namespace tensor_operation {
namespace device { namespace device {
namespace device_conv2d_bwd_weight_instance { namespace instance {
using F32 = float; using F32 = float;
...@@ -51,7 +51,7 @@ void add_device_conv2d_bwd_weight_xdl_nhwc_kyxc_nhwk_f32_instances( ...@@ -51,7 +51,7 @@ void add_device_conv2d_bwd_weight_xdl_nhwc_kyxc_nhwk_f32_instances(
device_conv2d_bwd_weight_xdl_nhwc_kyxc_nhwk_f32_instances{}); device_conv2d_bwd_weight_xdl_nhwc_kyxc_nhwk_f32_instances{});
} }
} // namespace device_conv2d_bwd_weight_instance } // namespace instance
} // namespace device } // namespace device
} // namespace tensor_operation } // namespace tensor_operation
} // namespace ck } // namespace ck
...@@ -7,12 +7,12 @@ ...@@ -7,12 +7,12 @@
#include "ck/tensor_operation/gpu/device/tensor_layout.hpp" #include "ck/tensor_operation/gpu/device/tensor_layout.hpp"
#include "ck/tensor_operation/gpu/device/device_conv2d_fwd_xdl_c_shuffle_nhwc_kyxc_nhwk.hpp" #include "ck/tensor_operation/gpu/device/device_conv2d_fwd_xdl_c_shuffle_nhwc_kyxc_nhwk.hpp"
#include "ck/tensor_operation/gpu/element/element_wise_operation.hpp" #include "ck/tensor_operation/gpu/element/element_wise_operation.hpp"
#include "ck/library/tensor_operation_instance/device_operation_instance.hpp" #include "ck/library/tensor_operation_instance/add_device_operation_instance.hpp"
namespace ck { namespace ck {
namespace tensor_operation { namespace tensor_operation {
namespace device { namespace device {
namespace device_conv2d_fwd_instance { namespace instance {
using F16 = ck::half_t; using F16 = ck::half_t;
using F32 = float; using F32 = float;
...@@ -143,7 +143,7 @@ void add_device_conv2d_fwd_xdl_c_shuffle_nhwc_kyxc_nhwk_f16_instances( ...@@ -143,7 +143,7 @@ void add_device_conv2d_fwd_xdl_c_shuffle_nhwc_kyxc_nhwk_f16_instances(
instances, device_conv2d_fwd_xdl_c_shuffle_nhwc_kyxc_nhwk_odd_c_f16_instances{}); instances, device_conv2d_fwd_xdl_c_shuffle_nhwc_kyxc_nhwk_odd_c_f16_instances{});
} }
} // namespace device_conv2d_fwd_instance } // namespace instance
} // namespace device } // namespace device
} // namespace tensor_operation } // namespace tensor_operation
} // namespace ck } // namespace ck
...@@ -7,12 +7,12 @@ ...@@ -7,12 +7,12 @@
#include "ck/tensor_operation/gpu/device/tensor_layout.hpp" #include "ck/tensor_operation/gpu/device/tensor_layout.hpp"
#include "ck/tensor_operation/gpu/device/device_conv2d_fwd_xdl_nhwc_kyxc_nhwk.hpp" #include "ck/tensor_operation/gpu/device/device_conv2d_fwd_xdl_nhwc_kyxc_nhwk.hpp"
#include "ck/tensor_operation/gpu/element/element_wise_operation.hpp" #include "ck/tensor_operation/gpu/element/element_wise_operation.hpp"
#include "ck/library/tensor_operation_instance/device_operation_instance.hpp" #include "ck/library/tensor_operation_instance/add_device_operation_instance.hpp"
namespace ck { namespace ck {
namespace tensor_operation { namespace tensor_operation {
namespace device { namespace device {
namespace device_conv2d_fwd_instance { namespace instance {
using BF16 = ck::bhalf_t; using BF16 = ck::bhalf_t;
using F32 = float; using F32 = float;
...@@ -109,7 +109,7 @@ void add_device_conv2d_fwd_xdl_nhwc_kyxc_nhwk_bf16_instances( ...@@ -109,7 +109,7 @@ void add_device_conv2d_fwd_xdl_nhwc_kyxc_nhwk_bf16_instances(
device_conv2d_fwd_xdl_nhwc_kyxc_nhwk_1x1_s1_p0_bf16_instances{}); device_conv2d_fwd_xdl_nhwc_kyxc_nhwk_1x1_s1_p0_bf16_instances{});
} }
} // namespace device_conv2d_fwd_instance } // namespace instance
} // namespace device } // namespace device
} // namespace tensor_operation } // namespace tensor_operation
} // namespace ck } // namespace ck
...@@ -7,12 +7,12 @@ ...@@ -7,12 +7,12 @@
#include "ck/tensor_operation/gpu/device/tensor_layout.hpp" #include "ck/tensor_operation/gpu/device/tensor_layout.hpp"
#include "ck/tensor_operation/gpu/device/device_conv2d_fwd_xdl_nhwc_kyxc_nhwk.hpp" #include "ck/tensor_operation/gpu/device/device_conv2d_fwd_xdl_nhwc_kyxc_nhwk.hpp"
#include "ck/tensor_operation/gpu/element/element_wise_operation.hpp" #include "ck/tensor_operation/gpu/element/element_wise_operation.hpp"
#include "ck/library/tensor_operation_instance/device_operation_instance.hpp" #include "ck/library/tensor_operation_instance/add_device_operation_instance.hpp"
namespace ck { namespace ck {
namespace tensor_operation { namespace tensor_operation {
namespace device { namespace device {
namespace device_conv2d_fwd_instance { namespace instance {
using F16 = ck::half_t; using F16 = ck::half_t;
using F32 = float; using F32 = float;
...@@ -108,7 +108,7 @@ void add_device_conv2d_fwd_xdl_nhwc_kyxc_nhwk_f16_instances( ...@@ -108,7 +108,7 @@ void add_device_conv2d_fwd_xdl_nhwc_kyxc_nhwk_f16_instances(
device_conv2d_fwd_xdl_nhwc_kyxc_nhwk_1x1_s1_p0_f16_instances{}); device_conv2d_fwd_xdl_nhwc_kyxc_nhwk_1x1_s1_p0_f16_instances{});
} }
} // namespace device_conv2d_fwd_instance } // namespace instance
} // namespace device } // namespace device
} // namespace tensor_operation } // namespace tensor_operation
} // namespace ck } // namespace ck
...@@ -7,12 +7,12 @@ ...@@ -7,12 +7,12 @@
#include "ck/tensor_operation/gpu/device/tensor_layout.hpp" #include "ck/tensor_operation/gpu/device/tensor_layout.hpp"
#include "ck/tensor_operation/gpu/device/device_conv2d_fwd_xdl_nhwc_kyxc_nhwk.hpp" #include "ck/tensor_operation/gpu/device/device_conv2d_fwd_xdl_nhwc_kyxc_nhwk.hpp"
#include "ck/tensor_operation/gpu/element/element_wise_operation.hpp" #include "ck/tensor_operation/gpu/element/element_wise_operation.hpp"
#include "ck/library/tensor_operation_instance/device_operation_instance.hpp" #include "ck/library/tensor_operation_instance/add_device_operation_instance.hpp"
namespace ck { namespace ck {
namespace tensor_operation { namespace tensor_operation {
namespace device { namespace device {
namespace device_conv2d_fwd_instance { namespace instance {
using F32 = float; using F32 = float;
...@@ -107,7 +107,7 @@ void add_device_conv2d_fwd_xdl_nhwc_kyxc_nhwk_f32_instances( ...@@ -107,7 +107,7 @@ void add_device_conv2d_fwd_xdl_nhwc_kyxc_nhwk_f32_instances(
device_conv2d_fwd_xdl_nhwc_kyxc_nhwk_1x1_s1_p0_f32_instances{}); device_conv2d_fwd_xdl_nhwc_kyxc_nhwk_1x1_s1_p0_f32_instances{});
} }
} // namespace device_conv2d_fwd_instance } // namespace instance
} // namespace device } // namespace device
} // namespace tensor_operation } // namespace tensor_operation
} // namespace ck } // namespace ck
...@@ -7,12 +7,12 @@ ...@@ -7,12 +7,12 @@
#include "ck/tensor_operation/gpu/device/tensor_layout.hpp" #include "ck/tensor_operation/gpu/device/tensor_layout.hpp"
#include "ck/tensor_operation/gpu/device/device_conv2d_fwd_xdl_nhwc_kyxc_nhwk.hpp" #include "ck/tensor_operation/gpu/device/device_conv2d_fwd_xdl_nhwc_kyxc_nhwk.hpp"
#include "ck/tensor_operation/gpu/element/element_wise_operation.hpp" #include "ck/tensor_operation/gpu/element/element_wise_operation.hpp"
#include "ck/library/tensor_operation_instance/device_operation_instance.hpp" #include "ck/library/tensor_operation_instance/add_device_operation_instance.hpp"
namespace ck { namespace ck {
namespace tensor_operation { namespace tensor_operation {
namespace device { namespace device {
namespace device_conv2d_fwd_instance { namespace instance {
using F32 = float; using F32 = float;
...@@ -108,7 +108,7 @@ void add_device_conv2d_fwd_xdl_nhwc_kyxc_nhwk_int8_instances( ...@@ -108,7 +108,7 @@ void add_device_conv2d_fwd_xdl_nhwc_kyxc_nhwk_int8_instances(
device_conv2d_fwd_xdl_nhwc_kyxc_nhwk_1x1_s1_p0_int8_instances{}); device_conv2d_fwd_xdl_nhwc_kyxc_nhwk_1x1_s1_p0_int8_instances{});
} }
} // namespace device_conv2d_fwd_instance } // namespace instance
} // namespace device } // namespace device
} // namespace tensor_operation } // namespace tensor_operation
} // namespace ck } // namespace ck
...@@ -7,12 +7,12 @@ ...@@ -7,12 +7,12 @@
#include "ck/tensor_operation/gpu/device/tensor_layout.hpp" #include "ck/tensor_operation/gpu/device/tensor_layout.hpp"
#include "ck/tensor_operation/gpu/device/device_convnd_fwd_xdl_nhwc_kyxc_nhwk.hpp" #include "ck/tensor_operation/gpu/device/device_convnd_fwd_xdl_nhwc_kyxc_nhwk.hpp"
#include "ck/tensor_operation/gpu/element/element_wise_operation.hpp" #include "ck/tensor_operation/gpu/element/element_wise_operation.hpp"
#include "ck/library/tensor_operation_instance/device_operation_instance.hpp" #include "ck/library/tensor_operation_instance/add_device_operation_instance.hpp"
namespace ck { namespace ck {
namespace tensor_operation { namespace tensor_operation {
namespace device { namespace device {
namespace device_conv2d_fwd_instance { namespace instance {
using BF16 = ck::bhalf_t; using BF16 = ck::bhalf_t;
using F32 = float; using F32 = float;
...@@ -112,7 +112,7 @@ void add_device_convnd_2d_fwd_xdl_nhwc_kyxc_nhwk_bf16_instances( ...@@ -112,7 +112,7 @@ void add_device_convnd_2d_fwd_xdl_nhwc_kyxc_nhwk_bf16_instances(
device_conv2d_fwd_xdl_nhwc_kyxc_nhwk_1x1_s1_p0_bf16_instances{}); device_conv2d_fwd_xdl_nhwc_kyxc_nhwk_1x1_s1_p0_bf16_instances{});
} }
} // namespace device_conv2d_fwd_instance } // namespace instance
} // namespace device } // namespace device
} // namespace tensor_operation } // namespace tensor_operation
} // namespace ck } // namespace ck
...@@ -7,12 +7,12 @@ ...@@ -7,12 +7,12 @@
#include "ck/tensor_operation/gpu/device/tensor_layout.hpp" #include "ck/tensor_operation/gpu/device/tensor_layout.hpp"
#include "ck/tensor_operation/gpu/device/device_convnd_fwd_xdl_nhwc_kyxc_nhwk.hpp" #include "ck/tensor_operation/gpu/device/device_convnd_fwd_xdl_nhwc_kyxc_nhwk.hpp"
#include "ck/tensor_operation/gpu/element/element_wise_operation.hpp" #include "ck/tensor_operation/gpu/element/element_wise_operation.hpp"
#include "ck/library/tensor_operation_instance/device_operation_instance.hpp" #include "ck/library/tensor_operation_instance/add_device_operation_instance.hpp"
namespace ck { namespace ck {
namespace tensor_operation { namespace tensor_operation {
namespace device { namespace device {
namespace device_conv2d_fwd_instance { namespace instance {
using F16 = ck::half_t; using F16 = ck::half_t;
using F32 = float; using F32 = float;
...@@ -111,7 +111,7 @@ void add_device_convnd_2d_fwd_xdl_nhwc_kyxc_nhwk_f16_instances( ...@@ -111,7 +111,7 @@ void add_device_convnd_2d_fwd_xdl_nhwc_kyxc_nhwk_f16_instances(
device_conv2d_fwd_xdl_nhwc_kyxc_nhwk_1x1_s1_p0_f16_instances{}); device_conv2d_fwd_xdl_nhwc_kyxc_nhwk_1x1_s1_p0_f16_instances{});
} }
} // namespace device_conv2d_fwd_instance } // namespace instance
} // namespace device } // namespace device
} // namespace tensor_operation } // namespace tensor_operation
} // namespace ck } // namespace ck
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment