Commit bd0f0686 authored by Jing Zhang's avatar Jing Zhang
Browse files

merge develop

parents e9b1000f 63914743
......@@ -6,7 +6,7 @@
namespace ck {
namespace tensor_operation {
namespace device {
namespace device_reduce_instance {
namespace instance {
// clang-format off
// InDataType | AccDataType | OutDataType | ReduceOpId | NanPropaOpt | IndicesOpt | Rank | NumReduceDim
......@@ -24,7 +24,7 @@ ADD_THREADWISE_INST_BY_ID(float, double, float, 7, 0, 0, 4, 1);
ADD_THREADWISE_INST_BY_ID(float, double, float, 7, 0, 0, 2, 1);
// clang-format on
} // namespace device_reduce_instance
} // namespace instance
} // namespace device
} // namespace tensor_operation
......
......@@ -6,7 +6,7 @@
namespace ck {
namespace tensor_operation {
namespace device {
namespace device_reduce_instance {
namespace instance {
// clang-format off
// InDataType | AccDataType | OutDataType | ReduceOpId | NanPropaOpt | IndicesOpt | Rank | NumReduceDim
......@@ -48,7 +48,7 @@ ADD_THREADWISE_INST_BY_ID(double, double, double, 4, 0, 1, 4, 1);
ADD_THREADWISE_INST_BY_ID(double, double, double, 4, 0, 1, 2, 1);
// clang-format on
} // namespace device_reduce_instance
} // namespace instance
} // namespace device
} // namespace tensor_operation
} // namespace ck
......@@ -6,7 +6,7 @@
namespace ck {
namespace tensor_operation {
namespace device {
namespace device_reduce_instance {
namespace instance {
// clang-format off
// InDataType | AccDataType | OutDataType | ReduceOpId | NanPropaOpt | IndicesOpt | Rank | NumReduceDim
......@@ -21,7 +21,7 @@ ADD_THREADWISE_INST_BY_ID(int8_t, int32_t, int8_t, 5, 0, 0, 2, 1);
// clang-format on
// clang-format on
} // namespace device_reduce_instance
} // namespace instance
} // namespace device
} // namespace tensor_operation
......
......@@ -6,7 +6,7 @@
namespace ck {
namespace tensor_operation {
namespace device {
namespace device_reduce_instance {
namespace instance {
// clang-format off
// InDataType | AccDataType | OutDataType | ReduceOpId | NanPropaOpt | IndicesOpt | Rank | NumReduceDim
......@@ -36,7 +36,7 @@ ADD_THREADWISE_INST_BY_ID(int8_t, int8_t, int8_t, 4, 0, 1, 4, 1);
ADD_THREADWISE_INST_BY_ID(int8_t, int8_t, int8_t, 4, 0, 1, 2, 1);
// clang-format on
} // namespace device_reduce_instance
} // namespace instance
} // namespace device
} // namespace tensor_operation
......
......@@ -7,21 +7,21 @@ set(PROFILER_SOURCE
src/profiler.cpp
src/profile_gemm.cpp
src/profile_gemm_splitk.cpp
src/profile_gemm_bias_2d.cpp
src/profile_gemm_bias_relu.cpp
src/profile_gemm_bias_relu_add.cpp
src/profile_gemm_reduce.cpp
src/profile_gemm_bilinear.cpp
src/profile_gemm_bias_add_reduce.cpp
src/profile_gemm_add_add_fastgelu.cpp
src/profile_gemm_reduce.cpp
src/profile_batched_gemm.cpp
src/profile_batched_gemm_reduce.cpp
src/profile_grouped_gemm.cpp
src/profile_conv_fwd_bias_relu.cpp
src/profile_conv_fwd_bias_relu_add.cpp
src/profile_convnd_fwd.cpp
src/profile_convnd_bwd_data.cpp
src/profile_reduce.cpp
src/profile_grouped_gemm.cpp
src/profile_conv_bwd_weight.cpp
src/profile_batched_gemm_reduce.cpp
src/profile_gemm_add_add_fastgelu.cpp
src/profile_convnd_bwd_weight.cpp
src/profile_reduce.cpp
src/profile_normalization.cpp
)
add_executable(ckProfiler ${PROFILER_SOURCE})
......@@ -30,12 +30,10 @@ target_link_libraries(ckProfiler PRIVATE host_tensor)
target_link_libraries(ckProfiler PRIVATE conv_util)
target_link_libraries(ckProfiler PRIVATE device_gemm_instance)
target_link_libraries(ckProfiler PRIVATE device_gemm_splitk_instance)
target_link_libraries(ckProfiler PRIVATE device_gemm_bias2d_instance)
target_link_libraries(ckProfiler PRIVATE device_gemm_bias_relu_instance)
target_link_libraries(ckProfiler PRIVATE device_gemm_bias_relu_add_instance)
target_link_libraries(ckProfiler PRIVATE device_gemm_bilinear_instance)
target_link_libraries(ckProfiler PRIVATE device_gemm_add_add_fastgelu_instance)
target_link_libraries(ckProfiler PRIVATE device_gemm_reduce_instance)
target_link_libraries(ckProfiler PRIVATE device_gemm_bias_add_reduce_instance)
target_link_libraries(ckProfiler PRIVATE device_gemm_add_add_fastgelu_instance)
target_link_libraries(ckProfiler PRIVATE device_batched_gemm_instance)
target_link_libraries(ckProfiler PRIVATE device_batched_gemm_reduce_instance)
target_link_libraries(ckProfiler PRIVATE device_grouped_gemm_instance)
......@@ -46,4 +44,6 @@ target_link_libraries(ckProfiler PRIVATE device_conv2d_fwd_bias_relu_instance)
target_link_libraries(ckProfiler PRIVATE device_conv2d_fwd_bias_relu_add_instance)
target_link_libraries(ckProfiler PRIVATE device_convnd_bwd_data_instance)
target_link_libraries(ckProfiler PRIVATE device_conv2d_bwd_weight_instance)
target_link_libraries(ckProfiler PRIVATE device_convnd_bwd_weight_instance)
target_link_libraries(ckProfiler PRIVATE device_normalization_instance)
target_link_libraries(ckProfiler PRIVATE device_reduce_instance)
......@@ -10,7 +10,7 @@
#include "ck/tensor_operation/gpu/device/device_batched_gemm.hpp"
#include "ck/tensor_operation/gpu/element/element_wise_operation.hpp"
#include "ck/library/tensor_operation_instance/gpu/device_batched_gemm_instance.hpp"
#include "ck/library/tensor_operation_instance/gpu/batched_gemm.hpp"
#include "ck/library/utility/check_err.hpp"
#include "ck/library/host_tensor/device_memory.hpp"
......@@ -34,6 +34,9 @@ bool profile_batched_gemm_impl(int do_verification,
int M,
int N,
int K,
int BatchStrideA,
int BatchStrideB,
int BatchStrideC,
int StrideA,
int StrideB,
int StrideC,
......@@ -45,25 +48,28 @@ bool profile_batched_gemm_impl(int do_verification,
std::size_t row,
std::size_t col,
std::size_t stride,
std::size_t batch_stride,
auto layout) {
if(is_same<decltype(layout), tensor_layout::gemm::RowMajor>::value)
{
return HostTensorDescriptor(std::vector<std::size_t>({batch_count, row, col}),
std::vector<std::size_t>({row * stride, stride, 1}));
std::vector<std::size_t>({batch_stride, stride, 1}));
}
else
{
return HostTensorDescriptor(std::vector<std::size_t>({batch_count, row, col}),
std::vector<std::size_t>({col * stride, 1, stride}));
std::vector<std::size_t>({batch_stride, 1, stride}));
}
};
Tensor<ADataType> a_g_m_k(f_host_tensor_descriptor(BatchCount, M, K, StrideA, ALayout{}));
Tensor<BDataType> b_g_k_n(f_host_tensor_descriptor(BatchCount, K, N, StrideB, BLayout{}));
Tensor<ADataType> a_g_m_k(
f_host_tensor_descriptor(BatchCount, M, K, StrideA, BatchStrideA, ALayout{}));
Tensor<BDataType> b_g_k_n(
f_host_tensor_descriptor(BatchCount, K, N, StrideB, BatchStrideB, BLayout{}));
Tensor<CDataType> c_g_m_n_host_result(
f_host_tensor_descriptor(BatchCount, M, N, StrideC, CLayout{}));
f_host_tensor_descriptor(BatchCount, M, N, StrideC, BatchStrideC, CLayout{}));
Tensor<CDataType> c_g_m_n_device_result(
f_host_tensor_descriptor(BatchCount, M, N, StrideC, CLayout{}));
f_host_tensor_descriptor(BatchCount, M, N, StrideC, BatchStrideC, CLayout{}));
std::cout << "a_g_m_k: " << a_g_m_k.mDesc << std::endl;
std::cout << "b_g_k_n: " << b_g_k_n.mDesc << std::endl;
......@@ -116,19 +122,21 @@ bool profile_batched_gemm_impl(int do_verification,
b_device_buf.ToDevice(b_g_k_n.mData.data());
c_device_buf.ToDevice(c_g_m_n_device_result.mData.data());
// add device op instances
const auto op_ptrs = ck::tensor_operation::device::device_batched_gemm_instance::
get_device_batched_gemm_instances<ADataType,
BDataType,
CDataType,
ALayout,
BLayout,
CLayout>();
using DeviceOp = ck::tensor_operation::device::DeviceBatchedGemm<ALayout,
BLayout,
CLayout,
ADataType,
BDataType,
CDataType,
AElementOp,
BElementOp,
CElementOp>;
if(op_ptrs.size() <= 0)
{
throw std::runtime_error("wrong! no device GEMM instance found");
}
// get device op instances
const auto op_ptrs = ck::tensor_operation::device::instance::DeviceOperationInstanceFactory<
DeviceOp>::GetInstances();
std::cout << "found " << op_ptrs.size() << " instances" << std::endl;
std::string best_op_name;
float best_ave_time = 0;
......@@ -148,10 +156,13 @@ bool profile_batched_gemm_impl(int do_verification,
StrideA,
StrideB,
StrideC,
BatchStrideA,
BatchStrideB,
BatchStrideC,
BatchCount,
ck::tensor_operation::element_wise::PassThrough{},
ck::tensor_operation::element_wise::PassThrough{},
ck::tensor_operation::element_wise::PassThrough{},
BatchCount);
ck::tensor_operation::element_wise::PassThrough{});
auto invoker_ptr = op_ptr->MakeInvokerPointer();
......
......@@ -19,7 +19,7 @@
namespace ck {
namespace tensor_operation {
namespace device {
namespace device_gemm_instance {
namespace instance {
using F32 = float;
using F16 = ck::half_t;
......@@ -44,7 +44,7 @@ void add_device_batched_gemm_reduce_xdl_cshuffle_f16_f16_f16_f32_f32_gkm_gkn_gmn
void add_device_batched_gemm_reduce_xdl_cshuffle_f16_f16_f16_f32_f32_gkm_gnk_gmn_instances(
std::vector<DeviceGemmReduceNoOpPtr>&);
} // namespace device_gemm_instance
} // namespace instance
} // namespace device
} // namespace tensor_operation
} // namespace ck
......@@ -208,8 +208,7 @@ bool profile_batched_gemm_reduce_impl(int do_verification,
b_device_buf.ToDevice(b_g_k_n.mData.data());
// add device GEMM instances
std::vector<ck::tensor_operation::device::device_gemm_instance::DeviceGemmReduceNoOpPtr>
gemm_ptrs;
std::vector<ck::tensor_operation::device::instance::DeviceGemmReduceNoOpPtr> gemm_ptrs;
if constexpr(is_same<ADataType, half_t>::value && is_same<BDataType, half_t>::value &&
is_same<CDataType, half_t>::value)
......@@ -218,7 +217,7 @@ bool profile_batched_gemm_reduce_impl(int do_verification,
is_same<BLayout, tensor_layout::gemm::RowMajor>::value &&
is_same<CLayout, tensor_layout::gemm::RowMajor>::value)
{
ck::tensor_operation::device::device_gemm_instance::
ck::tensor_operation::device::instance::
add_device_batched_gemm_reduce_xdl_cshuffle_f16_f16_f16_f32_f32_gmk_gkn_gmn_instances(
gemm_ptrs);
}
......@@ -226,7 +225,7 @@ bool profile_batched_gemm_reduce_impl(int do_verification,
is_same<BLayout, tensor_layout::gemm::ColumnMajor>::value &&
is_same<CLayout, tensor_layout::gemm::RowMajor>::value)
{
ck::tensor_operation::device::device_gemm_instance::
ck::tensor_operation::device::instance::
add_device_batched_gemm_reduce_xdl_cshuffle_f16_f16_f16_f32_f32_gmk_gnk_gmn_instances(
gemm_ptrs);
}
......@@ -234,7 +233,7 @@ bool profile_batched_gemm_reduce_impl(int do_verification,
is_same<BLayout, tensor_layout::gemm::RowMajor>::value &&
is_same<CLayout, tensor_layout::gemm::RowMajor>::value)
{
ck::tensor_operation::device::device_gemm_instance::
ck::tensor_operation::device::instance::
add_device_batched_gemm_reduce_xdl_cshuffle_f16_f16_f16_f32_f32_gkm_gkn_gmn_instances(
gemm_ptrs);
}
......@@ -242,7 +241,7 @@ bool profile_batched_gemm_reduce_impl(int do_verification,
is_same<BLayout, tensor_layout::gemm::ColumnMajor>::value &&
is_same<CLayout, tensor_layout::gemm::RowMajor>::value)
{
ck::tensor_operation::device::device_gemm_instance::
ck::tensor_operation::device::instance::
add_device_batched_gemm_reduce_xdl_cshuffle_f16_f16_f16_f32_f32_gkm_gnk_gmn_instances(
gemm_ptrs);
}
......
......@@ -18,7 +18,7 @@
namespace ck {
namespace tensor_operation {
namespace device {
namespace device_conv2d_bwd_weight_instance {
namespace instance {
using DeviceConvBwdWeightNoOpPtr =
DeviceConvBwdWeightPtr<ck::tensor_operation::element_wise::PassThrough,
......@@ -31,7 +31,7 @@ void add_device_conv2d_bwd_weight_xdl_nhwc_kyxc_nhwk_f16_instances(
void add_device_conv2d_bwd_weight_xdl_nhwc_kyxc_nhwk_f32_instances(
std::vector<DeviceConvBwdWeightNoOpPtr>&);
} // namespace device_conv2d_bwd_weight_instance
} // namespace instance
} // namespace device
} // namespace tensor_operation
} // namespace ck
......@@ -165,14 +165,14 @@ bool profile_conv_bwd_weight_impl(int do_verification,
ck::is_same_v<ck::remove_cv_t<WeiDataType>, float> &&
ck::is_same_v<ck::remove_cv_t<OutDataType>, float>)
{
ck::tensor_operation::device::device_conv2d_bwd_weight_instance::
ck::tensor_operation::device::instance::
add_device_conv2d_bwd_weight_xdl_nhwc_kyxc_nhwk_f32_instances(conv_ptrs);
}
else if constexpr(ck::is_same_v<ck::remove_cv_t<InDataType>, ck::half_t> &&
ck::is_same_v<ck::remove_cv_t<WeiDataType>, ck::half_t> &&
ck::is_same_v<ck::remove_cv_t<OutDataType>, ck::half_t>)
{
ck::tensor_operation::device::device_conv2d_bwd_weight_instance::
ck::tensor_operation::device::instance::
add_device_conv2d_bwd_weight_xdl_nhwc_kyxc_nhwk_f16_instances(conv_ptrs);
}
......
......@@ -17,7 +17,7 @@
namespace ck {
namespace tensor_operation {
namespace device {
namespace device_conv2d_fwd_bias_activation_add_instance {
namespace instance {
using DeviceConvFwdBiasReluAddPtr =
DeviceConvFwdBiasActivationAddPtr<ck::tensor_operation::element_wise::PassThrough,
......@@ -27,7 +27,7 @@ using DeviceConvFwdBiasReluAddPtr =
void add_device_conv2d_fwd_xdl_c_shuffle_bias_relu_add_nhwc_kyxc_nhwk_f16_instances(
std::vector<DeviceConvFwdBiasReluAddPtr>&);
} // namespace device_conv2d_fwd_bias_activation_add_instance
} // namespace instance
} // namespace device
} // namespace tensor_operation
} // namespace ck
......@@ -179,7 +179,7 @@ void profile_conv_fwd_bias_relu_add_impl(int do_verification,
ck::is_same_v<ck::remove_cv_t<WeiDataType>, ck::half_t> &&
ck::is_same_v<ck::remove_cv_t<OutDataType>, ck::half_t>)
{
ck::tensor_operation::device::device_conv2d_fwd_bias_activation_add_instance::
ck::tensor_operation::device::instance::
add_device_conv2d_fwd_xdl_c_shuffle_bias_relu_add_nhwc_kyxc_nhwk_f16_instances(op_ptrs);
}
......
......@@ -17,7 +17,7 @@
namespace ck {
namespace tensor_operation {
namespace device {
namespace device_conv2d_fwd_bias_activation_instance {
namespace instance {
using DeviceConvFwdBiasReluPtr =
DeviceConvFwdBiasActivationPtr<ck::tensor_operation::element_wise::PassThrough,
......@@ -27,7 +27,7 @@ using DeviceConvFwdBiasReluPtr =
void add_device_conv2d_fwd_xdl_c_shuffle_bias_relu_nhwc_kyxc_nhwk_f16_instances(
std::vector<DeviceConvFwdBiasReluPtr>&);
} // namespace device_conv2d_fwd_bias_activation_instance
} // namespace instance
} // namespace device
} // namespace tensor_operation
} // namespace ck
......@@ -169,7 +169,7 @@ void profile_conv_fwd_bias_relu_impl(int do_verification,
ck::is_same_v<ck::remove_cv_t<WeiDataType>, ck::half_t> &&
ck::is_same_v<ck::remove_cv_t<OutDataType>, ck::half_t>)
{
ck::tensor_operation::device::device_conv2d_fwd_bias_activation_instance::
ck::tensor_operation::device::instance::
add_device_conv2d_fwd_xdl_c_shuffle_bias_relu_nhwc_kyxc_nhwk_f16_instances(op_ptrs);
}
......
......@@ -22,7 +22,7 @@ using INT8 = int8_t;
namespace ck {
namespace tensor_operation {
namespace device {
namespace device_conv2d_bwd_data_instance {
namespace instance {
using DeviceConvBwdDataNoOpPtr =
DeviceConvBwdDataPtr<ck::tensor_operation::element_wise::PassThrough,
......@@ -54,15 +54,14 @@ void add_device_conv3d_bwd_data_xdl_ndhwc_kzyxc_ndhwk_bf16_instances(
std::vector<DeviceConvBwdDataNoOpPtr>&);
void add_device_conv3d_bwd_data_xdl_ndhwc_kzyxc_ndhwk_int8_instances(
std::vector<DeviceConvBwdDataNoOpPtr>&);
} // namespace device_conv2d_bwd_data_instance
} // namespace instance
} // namespace device
} // namespace tensor_operation
} // namespace ck
namespace ck {
namespace profiler {
using DeviceConvBwdDataNoOpPtr =
ck::tensor_operation::device::device_conv2d_bwd_data_instance::DeviceConvBwdDataNoOpPtr;
using DeviceConvBwdDataNoOpPtr = ck::tensor_operation::device::instance::DeviceConvBwdDataNoOpPtr;
template <typename InLayout>
HostTensorDescriptor get_input_host_tensor_descriptor(const std::vector<std::size_t>& dims,
......@@ -144,15 +143,15 @@ void get_device_conv_bwd_data_op_ptr(
switch(num_dim_spatial)
{
case 1:
ck::tensor_operation::device::device_conv2d_bwd_data_instance::
ck::tensor_operation::device::instance::
add_device_conv1d_bwd_data_xdl_nwc_kxc_nwk_f32_instances(conv_ptrs);
break;
case 2:
ck::tensor_operation::device::device_conv2d_bwd_data_instance::
ck::tensor_operation::device::instance::
add_device_conv2d_bwd_data_xdl_nhwc_kyxc_nhwk_f32_instances(conv_ptrs);
break;
case 3:
ck::tensor_operation::device::device_conv2d_bwd_data_instance::
ck::tensor_operation::device::instance::
add_device_conv3d_bwd_data_xdl_ndhwc_kzyxc_ndhwk_f32_instances(conv_ptrs);
break;
default: break;
......@@ -165,15 +164,15 @@ void get_device_conv_bwd_data_op_ptr(
switch(num_dim_spatial)
{
case 1:
ck::tensor_operation::device::device_conv2d_bwd_data_instance::
ck::tensor_operation::device::instance::
add_device_conv1d_bwd_data_xdl_nwc_kxc_nwk_f16_instances(conv_ptrs);
break;
case 2:
ck::tensor_operation::device::device_conv2d_bwd_data_instance::
ck::tensor_operation::device::instance::
add_device_conv2d_bwd_data_xdl_nhwc_kyxc_nhwk_f16_instances(conv_ptrs);
break;
case 3:
ck::tensor_operation::device::device_conv2d_bwd_data_instance::
ck::tensor_operation::device::instance::
add_device_conv3d_bwd_data_xdl_ndhwc_kzyxc_ndhwk_f16_instances(conv_ptrs);
break;
default: break;
......@@ -186,15 +185,15 @@ void get_device_conv_bwd_data_op_ptr(
switch(num_dim_spatial)
{
case 1:
ck::tensor_operation::device::device_conv2d_bwd_data_instance::
ck::tensor_operation::device::instance::
add_device_conv1d_bwd_data_xdl_nwc_kxc_nwk_bf16_instances(conv_ptrs);
break;
case 2:
ck::tensor_operation::device::device_conv2d_bwd_data_instance::
ck::tensor_operation::device::instance::
add_device_conv2d_bwd_data_xdl_nhwc_kyxc_nhwk_bf16_instances(conv_ptrs);
break;
case 3:
ck::tensor_operation::device::device_conv2d_bwd_data_instance::
ck::tensor_operation::device::instance::
add_device_conv3d_bwd_data_xdl_ndhwc_kzyxc_ndhwk_bf16_instances(conv_ptrs);
break;
default: break;
......@@ -207,15 +206,15 @@ void get_device_conv_bwd_data_op_ptr(
switch(num_dim_spatial)
{
case 1:
ck::tensor_operation::device::device_conv2d_bwd_data_instance::
ck::tensor_operation::device::instance::
add_device_conv1d_bwd_data_xdl_nwc_kxc_nwk_int8_instances(conv_ptrs);
break;
case 2:
ck::tensor_operation::device::device_conv2d_bwd_data_instance::
ck::tensor_operation::device::instance::
add_device_conv2d_bwd_data_xdl_nhwc_kyxc_nhwk_int8_instances(conv_ptrs);
break;
case 3:
ck::tensor_operation::device::device_conv2d_bwd_data_instance::
ck::tensor_operation::device::instance::
add_device_conv3d_bwd_data_xdl_ndhwc_kzyxc_ndhwk_int8_instances(conv_ptrs);
break;
default: break;
......
#pragma once
#include "ck/ck.hpp"
#include "ck/tensor_operation/gpu/device/tensor_layout.hpp"
#include "ck/tensor_operation/gpu/device/device_conv_backward_weight.hpp"
#include "ck/tensor_operation/gpu/element/element_wise_operation.hpp"
#include "ck/library/utility/check_err.hpp"
#include "ck/library/utility/conv_util.hpp"
#include "ck/library/host_tensor/device_memory.hpp"
#include "ck/library/host_tensor/host_tensor.hpp"
#include "ck/library/host_tensor/host_tensor_generator.hpp"
#include "ck/library/reference_tensor_operation/cpu/reference_conv_backward_weight.hpp"
using F16 = ck::half_t;
using F32 = float;
using BF16 = ck::bhalf_t;
namespace ck {
namespace tensor_operation {
namespace device {
namespace instance {
using DeviceConvndBwdWeightNoOpPtr =
DeviceConvBwdWeightPtr<ck::tensor_operation::element_wise::PassThrough,
ck::tensor_operation::element_wise::PassThrough,
ck::tensor_operation::element_wise::PassThrough>;
void add_device_conv1d_bwd_weight_xdl_nwc_kxc_nwk_f32_instances(
std::vector<DeviceConvndBwdWeightNoOpPtr>&);
void add_device_convnd_bwd_weight_xdl_nhwc_kyxc_nhwk_f32_instances(
std::vector<DeviceConvndBwdWeightNoOpPtr>&);
void add_device_conv3d_bwd_weight_xdl_ndhwc_kzyxc_ndhwk_f32_instances(
std::vector<DeviceConvndBwdWeightNoOpPtr>&);
void add_device_conv1d_bwd_weight_xdl_nwc_kxc_nwk_f16_instances(
std::vector<DeviceConvndBwdWeightNoOpPtr>&);
void add_device_convnd_bwd_weight_xdl_nhwc_kyxc_nhwk_f16_instances(
std::vector<DeviceConvndBwdWeightNoOpPtr>&);
void add_device_conv3d_bwd_weight_xdl_ndhwc_kzyxc_ndhwk_f16_instances(
std::vector<DeviceConvndBwdWeightNoOpPtr>&);
void add_device_conv1d_bwd_weight_xdl_nwc_kxc_nwk_bf16_instances(
std::vector<DeviceConvndBwdWeightNoOpPtr>&);
void add_device_conv2d_bwd_weight_xdl_nhwc_kyxc_nhwk_bf16_instances(
std::vector<DeviceConvndBwdWeightNoOpPtr>&);
void add_device_conv3d_bwd_weight_xdl_ndhwc_kzyxc_ndhwk_bf16_instances(
std::vector<DeviceConvndBwdWeightNoOpPtr>&);
} // namespace instance
} // namespace device
} // namespace tensor_operation
} // namespace ck
namespace ck {
namespace profiler {
using DeviceConvndBwdWeightNoOpPtr =
ck::tensor_operation::device::instance::DeviceConvndBwdWeightNoOpPtr;
template <typename InLayout>
HostTensorDescriptor get_input_host_tensor_descriptor(const std::vector<std::size_t>& dims,
int num_dim_spatial = 2)
{
namespace tl = ck::tensor_layout::convolution;
switch(num_dim_spatial)
{
case 3: {
return ck::utils::conv::get_host_tensor_descriptor(dims, InLayout{});
}
case 2: {
return ck::utils::conv::get_host_tensor_descriptor(dims, InLayout{});
}
case 1: {
return ck::utils::conv::get_host_tensor_descriptor(dims, InLayout{});
}
default: {
throw std::runtime_error("Unsupported number of spatial dimensions provided!");
}
}
}
template <typename WeiLayout>
HostTensorDescriptor get_filters_host_tensor_descriptor(const std::vector<std::size_t>& dims,
int num_dim_spatial = 2)
{
namespace tl = ck::tensor_layout::convolution;
switch(num_dim_spatial)
{
case 3: {
return ck::utils::conv::get_host_tensor_descriptor(dims, WeiLayout{});
}
case 2: {
return ck::utils::conv::get_host_tensor_descriptor(dims, WeiLayout{});
}
case 1: {
return ck::utils::conv::get_host_tensor_descriptor(dims, WeiLayout{});
}
default: {
throw std::runtime_error("Unsupported number of spatial dimensions provided!");
}
}
}
template <typename OutLayout>
HostTensorDescriptor get_output_host_ensor_descriptor(const std::vector<std::size_t>& dims,
int num_dim_spatial = 2)
{
namespace tl = ck::tensor_layout::convolution;
switch(num_dim_spatial)
{
case 3: {
return ck::utils::conv::get_host_tensor_descriptor(dims, OutLayout{});
}
case 2: {
return ck::utils::conv::get_host_tensor_descriptor(dims, OutLayout{});
}
case 1: {
return ck::utils::conv::get_host_tensor_descriptor(dims, OutLayout{});
}
default: {
throw std::runtime_error("Unsupported number of spatial dimensions provided!");
}
}
}
template <typename InDataType, typename WeiDataType, typename OutDataType>
void get_device_conv_bwd_weight_op_ptr(
InDataType, WeiDataType, OutDataType, std::vector<DeviceConvndBwdWeightNoOpPtr>&, int)
{
std::cout << "can not find device conv bwd weight" << std::endl;
exit(1);
}
template <>
void get_device_conv_bwd_weight_op_ptr(
F32, F32, F32, std::vector<DeviceConvndBwdWeightNoOpPtr>& conv_ptrs, int num_dim_spatial)
{
switch(num_dim_spatial)
{
case 1:
ck::tensor_operation::device::instance::
add_device_conv1d_bwd_weight_xdl_nwc_kxc_nwk_f32_instances(conv_ptrs);
break;
case 2:
ck::tensor_operation::device::instance::
add_device_convnd_bwd_weight_xdl_nhwc_kyxc_nhwk_f32_instances(conv_ptrs);
break;
case 3:
ck::tensor_operation::device::instance::
add_device_conv3d_bwd_weight_xdl_ndhwc_kzyxc_ndhwk_f32_instances(conv_ptrs);
break;
default: break;
}
}
template <>
void get_device_conv_bwd_weight_op_ptr(
F16, F16, F16, std::vector<DeviceConvndBwdWeightNoOpPtr>& conv_ptrs, int num_dim_spatial)
{
switch(num_dim_spatial)
{
case 1:
ck::tensor_operation::device::instance::
add_device_conv1d_bwd_weight_xdl_nwc_kxc_nwk_f16_instances(conv_ptrs);
break;
case 2:
ck::tensor_operation::device::instance::
add_device_convnd_bwd_weight_xdl_nhwc_kyxc_nhwk_f16_instances(conv_ptrs);
break;
case 3:
ck::tensor_operation::device::instance::
add_device_conv3d_bwd_weight_xdl_ndhwc_kzyxc_ndhwk_f16_instances(conv_ptrs);
break;
default: break;
}
}
template <>
void get_device_conv_bwd_weight_op_ptr(
BF16, BF16, BF16, std::vector<DeviceConvndBwdWeightNoOpPtr>& conv_ptrs, int num_dim_spatial)
{
switch(num_dim_spatial)
{
case 1:
ck::tensor_operation::device::instance::
add_device_conv1d_bwd_weight_xdl_nwc_kxc_nwk_bf16_instances(conv_ptrs);
break;
case 2:
ck::tensor_operation::device::instance::
add_device_conv2d_bwd_weight_xdl_nhwc_kyxc_nhwk_bf16_instances(conv_ptrs);
break;
case 3:
ck::tensor_operation::device::instance::
add_device_conv3d_bwd_weight_xdl_ndhwc_kzyxc_ndhwk_bf16_instances(conv_ptrs);
break;
default: break;
}
}
template <typename DataType>
void show_data_nhwc_layout(Tensor<DataType>& nhwc)
{
std::cout << "[";
for(int n = 0; n < ck::type_convert<int>(nhwc.mDesc.GetLengths()[0]); n++)
{
std::cout << "[";
for(int hi = 0; hi < ck::type_convert<int>(nhwc.mDesc.GetLengths()[2]); hi++)
{
std::cout << "[";
for(int wi = 0; wi < ck::type_convert<int>(nhwc.mDesc.GetLengths()[3]); wi++)
{
std::cout << "[";
for(int c = 0; c < ck::type_convert<int>(nhwc.mDesc.GetLengths()[1]); c++)
{
std::cout << static_cast<float>(nhwc(n, c, hi, wi)) << " ";
}
std::cout << "]";
}
std::cout << "]";
}
std::cout << "]";
}
std::cout << "]";
}
template <int NDimSpatial,
typename InDataType,
typename WeiDataType,
typename OutDataType,
typename InLayout,
typename WeiLayout,
typename OutLayout>
bool profile_convnd_bwd_weight_impl(int do_verification,
int init_method,
bool do_log,
bool time_kernel,
ck::index_t N,
ck::index_t K,
ck::index_t C,
std::vector<ck::index_t> input_spatial_lengths,
std::vector<ck::index_t> filter_spatial_lengths,
std::vector<ck::index_t> output_spatial_lengths,
std::vector<ck::index_t> conv_filter_strides,
std::vector<ck::index_t> conv_filter_dilations,
std::vector<ck::index_t> input_left_pads,
std::vector<ck::index_t> input_right_pads,
ck::index_t split_k)
{
using InElementOp = ck::tensor_operation::element_wise::PassThrough;
using WeiElementOp = ck::tensor_operation::element_wise::PassThrough;
using OutElementOp = ck::tensor_operation::element_wise::PassThrough;
const auto in_element_op = InElementOp{};
const auto wei_element_op = WeiElementOp{};
const auto out_element_op = OutElementOp{};
std::vector<std::size_t> input_dims{static_cast<std::size_t>(N), static_cast<std::size_t>(C)};
input_dims.insert(
std::end(input_dims), std::begin(input_spatial_lengths), std::end(input_spatial_lengths));
std::vector<std::size_t> filter_dims{static_cast<std::size_t>(K), static_cast<std::size_t>(C)};
filter_dims.insert(std::end(filter_dims),
std::begin(filter_spatial_lengths),
std::end(filter_spatial_lengths));
std::vector<std::size_t> output_dims{static_cast<std::size_t>(N), static_cast<std::size_t>(K)};
output_dims.insert(std::end(output_dims),
std::begin(output_spatial_lengths),
std::end(output_spatial_lengths));
Tensor<InDataType> input(get_input_host_tensor_descriptor<InLayout>(input_dims, NDimSpatial));
Tensor<WeiDataType> weights_host_result(
get_filters_host_tensor_descriptor<WeiLayout>(filter_dims, NDimSpatial));
Tensor<WeiDataType> weights_device_result(
get_filters_host_tensor_descriptor<WeiLayout>(filter_dims, NDimSpatial));
Tensor<OutDataType> output(
get_output_host_ensor_descriptor<OutLayout>(output_dims, NDimSpatial));
std::cout << "input: " << input.mDesc << std::endl;
std::cout << "weights: " << weights_host_result.mDesc << std::endl;
std::cout << "output: " << output.mDesc << std::endl;
switch(init_method)
{
case 0: break;
case 1:
input.GenerateTensorValue(GeneratorTensor_2<OutDataType>{-2, 2});
output.GenerateTensorValue(GeneratorTensor_2<WeiDataType>{-2, 2});
break;
default:
input.GenerateTensorValue(GeneratorTensor_1<OutDataType>{1});
output.GenerateTensorValue(GeneratorTensor_1<WeiDataType>{1});
}
DeviceMem in_device_buf(sizeof(InDataType) * input.mDesc.GetElementSpace());
DeviceMem wei_device_buf(sizeof(WeiDataType) * weights_device_result.mDesc.GetElementSpace());
DeviceMem out_device_buf(sizeof(OutDataType) * output.mDesc.GetElementSpace());
in_device_buf.ToDevice(input.mData.data());
out_device_buf.ToDevice(output.mData.data());
// reset input to zero
wei_device_buf.SetZero();
if(do_verification)
{
auto RunReference = [&](auto& ref_conv) {
auto ref_invoker = ref_conv.MakeInvoker();
auto ref_argument = ref_conv.MakeArgument(input,
weights_host_result,
output,
conv_filter_strides,
conv_filter_dilations,
input_left_pads,
input_right_pads,
InElementOp{},
WeiElementOp{},
OutElementOp{});
ref_invoker.Run(ref_argument);
};
auto ref_conv = ck::tensor_operation::host::ReferenceConvBwdWeight<InDataType,
WeiDataType,
OutDataType,
InElementOp,
WeiElementOp,
OutElementOp,
NDimSpatial>();
RunReference(ref_conv);
}
// add device Conv instances
std::vector<DeviceConvndBwdWeightNoOpPtr> conv_ptrs;
get_device_conv_bwd_weight_op_ptr(
InDataType{}, WeiDataType{}, OutDataType{}, conv_ptrs, NDimSpatial);
if(conv_ptrs.size() <= 0)
{
throw std::runtime_error("wrong! no device Conv instance found");
}
std::string best_conv_name;
float best_ave_time = 0;
float best_tflops = 0;
float best_gb_per_sec = 0;
// profile device Conv instances
bool success = true;
for(auto& conv_ptr : conv_ptrs)
{
// using atomic, so need to reset input, setzero is done in invoker
// if(split_k > 1)
//{
// wei_device_buf.SetZero();
//}
auto argument_ptr = conv_ptr->MakeArgumentPointer(
static_cast<InDataType*>(in_device_buf.GetDeviceBuffer()),
static_cast<WeiDataType*>(wei_device_buf.GetDeviceBuffer()),
static_cast<OutDataType*>(out_device_buf.GetDeviceBuffer()),
N,
K,
C,
input_spatial_lengths,
filter_spatial_lengths,
output_spatial_lengths,
conv_filter_strides,
conv_filter_dilations,
input_left_pads,
input_right_pads,
in_element_op,
wei_element_op,
out_element_op,
split_k);
if(!conv_ptr->IsSupportedArgument(argument_ptr.get()))
{
std::cout << "wrong! device_conv with the specified compilation parameters does "
"not support this Conv problem"
<< std::endl;
continue;
}
auto invoker_ptr = conv_ptr->MakeInvokerPointer();
std::string conv_name = conv_ptr->GetTypeString();
float ave_time = 0;
if(std::is_same<InDataType, ck::bhalf_t>::value && split_k > 1)
{
// alloc work space
size_t bwd_weight_workspace_size = conv_ptr->GetWorkSpaceSize(argument_ptr.get());
if(bwd_weight_workspace_size <= 0)
{
printf("wrong work space size\n");
exit(1);
}
DeviceMem wei_work_space_device_buf(bwd_weight_workspace_size);
wei_work_space_device_buf.SetZero();
conv_ptr->SetWorkSpacePointer(argument_ptr.get(),
wei_work_space_device_buf.GetDeviceBuffer());
ave_time = invoker_ptr->Run(argument_ptr.get(), StreamConfig{nullptr, time_kernel});
}
else
{
ave_time = invoker_ptr->Run(argument_ptr.get(), StreamConfig{nullptr, time_kernel});
}
std::size_t flop =
ck::utils::conv::get_flops(N, C, K, filter_spatial_lengths, output_spatial_lengths);
std::size_t num_btype = ck::utils::conv::get_btype<InDataType, WeiDataType, OutDataType>(
N, C, K, input_spatial_lengths, filter_spatial_lengths, output_spatial_lengths);
float tflops = static_cast<float>(flop) / 1.E9 / ave_time;
float gb_per_sec = num_btype / 1.E6 / ave_time;
std::cout << "Perf: " << ave_time << " ms, " << tflops << " TFlops, " << gb_per_sec
<< " GB/s" << std::endl;
if(tflops > best_tflops)
{
best_conv_name = conv_name;
best_tflops = tflops;
best_ave_time = ave_time;
best_gb_per_sec = gb_per_sec;
}
if(do_verification)
{
wei_device_buf.FromDevice(weights_device_result.mData.data());
float max_error = check_error(weights_host_result, weights_device_result);
if(max_error > 8)
{
std::cout << "Fail Info: " << conv_ptr->GetTypeString() << std::endl;
success = false;
}
else
{
std::cout << "Pass Info: " << conv_ptr->GetTypeString() << std::endl;
}
check_error(weights_host_result, weights_device_result);
if(do_log)
{
std::cout << "in : ";
show_data_nhwc_layout(output);
std::cout << std::endl;
std::cout << "wei: ";
show_data_nhwc_layout(weights_host_result);
std::cout << std::endl;
std::cout << "out : ";
show_data_nhwc_layout(input);
std::cout << std::endl;
std::cout << "wei_device: ";
show_data_nhwc_layout(weights_device_result);
std::cout << std::endl;
}
}
}
std::cout << "Best Perf: " << best_ave_time << " ms, " << best_tflops << " TFlops, "
<< best_gb_per_sec << " GB/s, " << best_conv_name << std::endl;
return success;
}
} // namespace profiler
} // namespace ck
......@@ -10,13 +10,12 @@
#include "ck/tensor_operation/gpu/device/device_gemm_multiple_d.hpp"
#include "ck/tensor_operation/gpu/element/element_wise_operation.hpp"
#include "ck/library/tensor_operation_instance/gpu/device_gemm_add_add_fastgelu_instance.hpp"
#include "ck/library/tensor_operation_instance/gpu/gemm_add_add_fastgelu.hpp"
#include "ck/library/utility/check_err.hpp"
#include "ck/library/host_tensor/device_memory.hpp"
#include "ck/library/host_tensor/host_tensor.hpp"
#include "ck/library/host_tensor/host_tensor_generator.hpp"
#include "ck/library/host_tensor/host_conv.hpp"
#include "ck/library/reference_tensor_operation/cpu/reference_gemm.hpp"
namespace ck {
......@@ -30,9 +29,7 @@ template <typename ADataType,
typename EDataType,
typename ALayout,
typename BLayout,
typename D0Layout,
typename D1Layout,
typename ELayout>
typename DELayout> // assume Ds and E have same layout
bool profile_gemm_add_add_fastgelu_impl(int do_verification,
int init_method,
bool /*do_log*/,
......@@ -62,10 +59,10 @@ bool profile_gemm_add_add_fastgelu_impl(int do_verification,
Tensor<ADataType> a_m_k(f_host_tensor_descriptor(M, K, StrideA, ALayout{}));
Tensor<BDataType> b_k_n(f_host_tensor_descriptor(K, N, StrideB, BLayout{}));
Tensor<D0DataType> d0_m_n(f_host_tensor_descriptor(M, N, StrideD0, D0Layout{}));
Tensor<D1DataType> d1_m_n(f_host_tensor_descriptor(M, N, StrideD1, D1Layout{}));
Tensor<EDataType> e_m_n_device_result(f_host_tensor_descriptor(M, N, StrideE, ELayout{}));
Tensor<EDataType> e_m_n_host_result(f_host_tensor_descriptor(M, N, StrideE, ELayout{}));
Tensor<D0DataType> d0_m_n(f_host_tensor_descriptor(M, N, StrideD0, DELayout{}));
Tensor<D1DataType> d1_m_n(f_host_tensor_descriptor(M, N, StrideD1, DELayout{}));
Tensor<EDataType> e_m_n_device_result(f_host_tensor_descriptor(M, N, StrideE, DELayout{}));
Tensor<EDataType> e_m_n_host_result(f_host_tensor_descriptor(M, N, StrideE, DELayout{}));
std::cout << "a_m_k: " << a_m_k.mDesc << std::endl;
std::cout << "b_k_n: " << b_k_n.mDesc << std::endl;
......@@ -100,19 +97,21 @@ bool profile_gemm_add_add_fastgelu_impl(int do_verification,
const auto b_element_op = BElementOp{};
const auto cde_element_op = CDEElementOp{};
// add device op instances
const auto op_ptrs = ck::tensor_operation::device::device_gemm_instance::
get_device_gemm_add_add_fastgelu_instances<ADataType,
BDataType,
AccDataType,
D0DataType,
D1DataType,
EDataType,
ALayout,
BLayout,
D0Layout,
D1Layout,
ELayout>();
using DeviceOp = ck::tensor_operation::device::DeviceGemmMultipleD<
ALayout,
BLayout,
DELayout,
ADataType,
BDataType,
ck::Tuple<D0DataType, D1DataType>,
EDataType,
ck::tensor_operation::element_wise::PassThrough,
ck::tensor_operation::element_wise::PassThrough,
ck::tensor_operation::element_wise::AddAddFastGelu>;
// get device op instances
const auto op_ptrs = ck::tensor_operation::device::instance::DeviceOperationInstanceFactory<
DeviceOp>::GetInstances();
std::cout << "found " << op_ptrs.size() << " instances" << std::endl;
......
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2022, Advanced Micro Devices, Inc. All rights reserved.
#pragma once
#include "ck/ck.hpp"
#include "ck/tensor_operation/gpu/device/tensor_layout.hpp"
#include "ck/tensor_operation/gpu/device/device_gemm_bias.hpp"
#include "ck/tensor_operation/gpu/element/element_wise_operation.hpp"
#include "ck/library/utility/check_err.hpp"
#include "ck/library/host_tensor/device_memory.hpp"
#include "ck/library/host_tensor/host_tensor.hpp"
#include "ck/library/host_tensor/host_tensor_generator.hpp"
#include "ck/library/reference_tensor_operation/cpu/reference_gemm_bias_2d.hpp"
namespace ck {
namespace tensor_operation {
namespace device {
namespace device_gemm_instance {
using DeviceGemmAlphaBetaPtr = ck::tensor_operation::device::DeviceGemmBiasPtr<
ck::tensor_operation::element_wise::PassThrough,
ck::tensor_operation::element_wise::PassThrough,
ck::tensor_operation::element_wise::AlphaBetaAdd>;
void add_device_gemm_xdl_c_shuffle_bias_2d_f32_f32_f32_km_kn_mn_instances(
std::vector<DeviceGemmAlphaBetaPtr>&);
void add_device_gemm_xdl_c_shuffle_bias_2d_f32_f32_f32_km_nk_mn_instances(
std::vector<DeviceGemmAlphaBetaPtr>&);
void add_device_gemm_xdl_c_shuffle_bias_2d_f32_f32_f32_mk_kn_mn_instances(
std::vector<DeviceGemmAlphaBetaPtr>&);
void add_device_gemm_xdl_c_shuffle_bias_2d_f32_f32_f32_mk_nk_mn_instances(
std::vector<DeviceGemmAlphaBetaPtr>&);
void add_device_gemm_xdl_c_shuffle_bias_2d_f16_f16_f16_km_kn_mn_instances(
std::vector<DeviceGemmAlphaBetaPtr>&);
void add_device_gemm_xdl_c_shuffle_bias_2d_f16_f16_f16_km_nk_mn_instances(
std::vector<DeviceGemmAlphaBetaPtr>&);
void add_device_gemm_xdl_c_shuffle_bias_2d_f16_f16_f16_mk_kn_mn_instances(
std::vector<DeviceGemmAlphaBetaPtr>&);
void add_device_gemm_xdl_c_shuffle_bias_2d_f16_f16_f16_mk_nk_mn_instances(
std::vector<DeviceGemmAlphaBetaPtr>&);
} // namespace device_gemm_instance
} // namespace device
} // namespace tensor_operation
} // namespace ck
namespace ck {
namespace profiler {
template <typename ADataType,
typename BDataType,
typename C0DataType,
typename CDataType,
typename AccDataType,
typename ALayout,
typename BLayout,
typename CLayout>
void profile_gemm_bias_2d_impl(int do_verification,
int init_method,
bool do_log,
bool time_kernel,
int M,
int N,
int K,
int StrideA,
int StrideB,
int StrideC,
float alpha,
float beta)
{
auto f_host_tensor_descriptor =
[](std::size_t row, std::size_t col, std::size_t stride, auto layout) {
if(is_same<decltype(layout), tensor_layout::gemm::RowMajor>::value)
{
return HostTensorDescriptor(std::vector<std::size_t>({row, col}),
std::vector<std::size_t>({stride, 1}));
}
else
{
return HostTensorDescriptor(std::vector<std::size_t>({row, col}),
std::vector<std::size_t>({1, stride}));
}
};
Tensor<ADataType> a_m_k(f_host_tensor_descriptor(M, K, StrideA, ALayout{}));
Tensor<BDataType> b_k_n(f_host_tensor_descriptor(K, N, StrideB, BLayout{}));
Tensor<C0DataType> c0_m_n(f_host_tensor_descriptor(M, N, StrideC, CLayout{}));
Tensor<CDataType> c_m_n_host_result(f_host_tensor_descriptor(M, N, StrideC, CLayout{}));
Tensor<CDataType> c_m_n_device_result(f_host_tensor_descriptor(M, N, StrideC, CLayout{}));
std::cout << "a_m_k: " << a_m_k.mDesc << std::endl;
std::cout << "b_k_n: " << b_k_n.mDesc << std::endl;
std::cout << "c0_m_n: " << c0_m_n.mDesc << std::endl;
std::cout << "c_m_n: " << c_m_n_host_result.mDesc << std::endl;
std::size_t num_thread = 1;
switch(init_method)
{
case 0: break;
case 1:
a_m_k.GenerateTensorValue(GeneratorTensor_2<ADataType>{-5, 5}, num_thread);
b_k_n.GenerateTensorValue(GeneratorTensor_2<BDataType>{-5, 5}, num_thread);
c0_m_n.GenerateTensorValue(GeneratorTensor_2<C0DataType>{-5, 5}, num_thread);
break;
default:
a_m_k.GenerateTensorValue(GeneratorTensor_3<ADataType>{0.0, 1.0}, num_thread);
b_k_n.GenerateTensorValue(GeneratorTensor_3<BDataType>{-0.5, 0.5}, num_thread);
c0_m_n.GenerateTensorValue(GeneratorTensor_3<C0DataType>{-0.5, 0.5}, num_thread);
}
// set zero to c_device_buf
c_m_n_device_result.GenerateTensorValue(GeneratorTensor_0<CDataType>{}, num_thread);
using AElementOp = ck::tensor_operation::element_wise::PassThrough;
using BElementOp = ck::tensor_operation::element_wise::PassThrough;
using CElementOp = ck::tensor_operation::element_wise::AlphaBetaAdd;
const auto a_element_op = AElementOp{};
const auto b_element_op = BElementOp{};
const auto c_element_op = CElementOp{alpha, beta};
if(do_verification)
{
using ReferenceGemmInstance = ck::tensor_operation::host::ReferenceGemmBias2D<ADataType,
BDataType,
C0DataType,
CDataType,
AccDataType,
AElementOp,
BElementOp,
CElementOp>;
auto ref_gemm = ReferenceGemmInstance{};
auto ref_invoker = ref_gemm.MakeInvoker();
auto ref_argument = ref_gemm.MakeArgument(
a_m_k, b_k_n, c0_m_n, c_m_n_host_result, a_element_op, b_element_op, c_element_op);
ref_invoker.Run(ref_argument);
}
DeviceMem a_device_buf(sizeof(ADataType) * a_m_k.mDesc.GetElementSpace());
DeviceMem b_device_buf(sizeof(BDataType) * b_k_n.mDesc.GetElementSpace());
DeviceMem c0_device_buf(sizeof(C0DataType) * c0_m_n.mDesc.GetElementSpace());
DeviceMem c_device_buf(sizeof(CDataType) * c_m_n_device_result.mDesc.GetElementSpace());
a_device_buf.ToDevice(a_m_k.mData.data());
b_device_buf.ToDevice(b_k_n.mData.data());
c0_device_buf.ToDevice(c0_m_n.mData.data());
c_device_buf.ToDevice(c_m_n_device_result.mData.data());
// add device GEMM instances
std::vector<ck::tensor_operation::device::device_gemm_instance::DeviceGemmAlphaBetaPtr>
gemm_ptrs;
if constexpr(is_same<ADataType, half_t>::value && is_same<BDataType, half_t>::value &&
is_same<CDataType, half_t>::value)
{
if constexpr(is_same<ALayout, tensor_layout::gemm::RowMajor>::value &&
is_same<BLayout, tensor_layout::gemm::RowMajor>::value &&
is_same<CLayout, tensor_layout::gemm::RowMajor>::value)
{
ck::tensor_operation::device::device_gemm_instance::
add_device_gemm_xdl_c_shuffle_bias_2d_f16_f16_f16_mk_kn_mn_instances(gemm_ptrs);
}
else if constexpr(is_same<ALayout, tensor_layout::gemm::RowMajor>::value &&
is_same<BLayout, tensor_layout::gemm::ColumnMajor>::value &&
is_same<CLayout, tensor_layout::gemm::RowMajor>::value)
{
ck::tensor_operation::device::device_gemm_instance::
add_device_gemm_xdl_c_shuffle_bias_2d_f16_f16_f16_mk_nk_mn_instances(gemm_ptrs);
}
else if constexpr(is_same<ALayout, tensor_layout::gemm::ColumnMajor>::value &&
is_same<BLayout, tensor_layout::gemm::RowMajor>::value &&
is_same<CLayout, tensor_layout::gemm::RowMajor>::value)
{
ck::tensor_operation::device::device_gemm_instance::
add_device_gemm_xdl_c_shuffle_bias_2d_f16_f16_f16_km_kn_mn_instances(gemm_ptrs);
}
else if constexpr(is_same<ALayout, tensor_layout::gemm::ColumnMajor>::value &&
is_same<BLayout, tensor_layout::gemm::ColumnMajor>::value &&
is_same<CLayout, tensor_layout::gemm::RowMajor>::value)
{
ck::tensor_operation::device::device_gemm_instance::
add_device_gemm_xdl_c_shuffle_bias_2d_f16_f16_f16_km_nk_mn_instances(gemm_ptrs);
}
}
else if constexpr(is_same<ADataType, float>::value && is_same<BDataType, float>::value &&
is_same<CDataType, float>::value)
{
if constexpr(is_same<ALayout, tensor_layout::gemm::RowMajor>::value &&
is_same<BLayout, tensor_layout::gemm::RowMajor>::value &&
is_same<CLayout, tensor_layout::gemm::RowMajor>::value)
{
ck::tensor_operation::device::device_gemm_instance::
add_device_gemm_xdl_c_shuffle_bias_2d_f32_f32_f32_mk_kn_mn_instances(gemm_ptrs);
}
else if constexpr(is_same<ALayout, tensor_layout::gemm::RowMajor>::value &&
is_same<BLayout, tensor_layout::gemm::ColumnMajor>::value &&
is_same<CLayout, tensor_layout::gemm::RowMajor>::value)
{
ck::tensor_operation::device::device_gemm_instance::
add_device_gemm_xdl_c_shuffle_bias_2d_f32_f32_f32_mk_nk_mn_instances(gemm_ptrs);
}
else if constexpr(is_same<ALayout, tensor_layout::gemm::ColumnMajor>::value &&
is_same<BLayout, tensor_layout::gemm::RowMajor>::value &&
is_same<CLayout, tensor_layout::gemm::RowMajor>::value)
{
ck::tensor_operation::device::device_gemm_instance::
add_device_gemm_xdl_c_shuffle_bias_2d_f32_f32_f32_km_kn_mn_instances(gemm_ptrs);
}
else if constexpr(is_same<ALayout, tensor_layout::gemm::ColumnMajor>::value &&
is_same<BLayout, tensor_layout::gemm::ColumnMajor>::value &&
is_same<CLayout, tensor_layout::gemm::RowMajor>::value)
{
ck::tensor_operation::device::device_gemm_instance::
add_device_gemm_xdl_c_shuffle_bias_2d_f32_f32_f32_km_nk_mn_instances(gemm_ptrs);
}
}
if(gemm_ptrs.size() <= 0)
{
throw std::runtime_error("wrong! no device GEMM instance found");
}
std::string best_gemm_name;
float best_ave_time = 0;
float best_tflops = 0;
float best_gb_per_sec = 0;
// profile device GEMM instances
for(auto& gemm_ptr : gemm_ptrs)
{
auto argument_ptr =
gemm_ptr->MakeArgumentPointer(static_cast<ADataType*>(a_device_buf.GetDeviceBuffer()),
static_cast<BDataType*>(b_device_buf.GetDeviceBuffer()),
static_cast<C0DataType*>(c0_device_buf.GetDeviceBuffer()),
static_cast<CDataType*>(c_device_buf.GetDeviceBuffer()),
M,
N,
K,
StrideA,
StrideB,
StrideC,
a_element_op,
b_element_op,
c_element_op);
auto invoker_ptr = gemm_ptr->MakeInvokerPointer();
if(gemm_ptr->IsSupportedArgument(argument_ptr.get()))
{
std::string gemm_name = gemm_ptr->GetTypeString();
float ave_time =
invoker_ptr->Run(argument_ptr.get(), StreamConfig{nullptr, time_kernel});
std::size_t flop = std::size_t(2) * M * N * K;
std::size_t num_btype =
sizeof(ADataType) * M * K + sizeof(BDataType) * K * M + sizeof(CDataType) * M * N;
float tflops = static_cast<float>(flop) / 1.E9 / ave_time;
float gb_per_sec = num_btype / 1.E6 / ave_time;
std::cout << "Perf: " << ave_time << " ms, " << tflops << " TFlops, " << gb_per_sec
<< " GB/s, " << gemm_name << std::endl;
if(tflops > best_tflops)
{
best_gemm_name = gemm_name;
best_tflops = tflops;
best_ave_time = ave_time;
best_gb_per_sec = gb_per_sec;
}
if(do_verification)
{
c_device_buf.FromDevice(c_m_n_device_result.mData.data());
ck::utils::check_err(c_m_n_device_result.mData, c_m_n_host_result.mData);
if(do_log)
{
LogRangeAsType<float>(std::cout << "a : ", a_m_k.mData, ",") << std::endl;
LogRangeAsType<float>(std::cout << "b: ", b_k_n.mData, ",") << std::endl;
LogRangeAsType<float>(std::cout << "c0 : ", c0_m_n.mData, ",") << std::endl;
LogRangeAsType<float>(std::cout << "c_host : ", c_m_n_host_result.mData, ",")
<< std::endl;
LogRangeAsType<float>(std::cout << "c_device: ", c_m_n_device_result.mData, ",")
<< std::endl;
}
}
}
else
{
std::cout << "does not support this GEMM problem" << std::endl;
}
}
std::cout << "Best Perf: " << best_ave_time << " ms, " << best_tflops << " TFlops, "
<< best_gb_per_sec << " GB/s, " << best_gemm_name << std::endl;
}
} // namespace profiler
} // namespace ck
......@@ -19,7 +19,7 @@
namespace ck {
namespace tensor_operation {
namespace device {
namespace device_gemm_instance {
namespace instance {
using F32 = float;
using F16 = ck::half_t;
......@@ -45,7 +45,7 @@ void add_device_gemm_bias_add_mean_squaremean_xdl_cshuffle_f16_f16_f16_f16_f16_f
void add_device_gemm_bias_add_mean_squaremean_xdl_cshuffle_f16_f16_f16_f16_f16_f32_f32_km_nk_mn_instances(
std::vector<DeviceGemmBiasAddReduceNoOpPtr>&);
} // namespace device_gemm_instance
} // namespace instance
} // namespace device
} // namespace tensor_operation
} // namespace ck
......@@ -236,8 +236,7 @@ void profile_gemm_bias_add_reduce_impl(int do_verification,
d0_device_buf.ToDevice(d0_m_n.mData.data());
// add device GEMM instances
std::vector<ck::tensor_operation::device::device_gemm_instance::DeviceGemmBiasAddReduceNoOpPtr>
gemm_ptrs;
std::vector<ck::tensor_operation::device::instance::DeviceGemmBiasAddReduceNoOpPtr> gemm_ptrs;
if constexpr(is_same<ADataType, half_t>::value && is_same<BDataType, half_t>::value &&
is_same<CDataType, half_t>::value)
......@@ -246,7 +245,7 @@ void profile_gemm_bias_add_reduce_impl(int do_verification,
is_same<BLayout, tensor_layout::gemm::RowMajor>::value &&
is_same<CLayout, tensor_layout::gemm::RowMajor>::value)
{
ck::tensor_operation::device::device_gemm_instance::
ck::tensor_operation::device::instance::
add_device_gemm_bias_add_mean_squaremean_xdl_cshuffle_f16_f16_f16_f16_f16_f32_f32_mk_kn_mn_instances(
gemm_ptrs);
}
......@@ -254,7 +253,7 @@ void profile_gemm_bias_add_reduce_impl(int do_verification,
is_same<BLayout, tensor_layout::gemm::ColumnMajor>::value &&
is_same<CLayout, tensor_layout::gemm::RowMajor>::value)
{
ck::tensor_operation::device::device_gemm_instance::
ck::tensor_operation::device::instance::
add_device_gemm_bias_add_mean_squaremean_xdl_cshuffle_f16_f16_f16_f16_f16_f32_f32_mk_nk_mn_instances(
gemm_ptrs);
}
......@@ -262,7 +261,7 @@ void profile_gemm_bias_add_reduce_impl(int do_verification,
is_same<BLayout, tensor_layout::gemm::RowMajor>::value &&
is_same<CLayout, tensor_layout::gemm::RowMajor>::value)
{
ck::tensor_operation::device::device_gemm_instance::
ck::tensor_operation::device::instance::
add_device_gemm_bias_add_mean_squaremean_xdl_cshuffle_f16_f16_f16_f16_f16_f32_f32_km_kn_mn_instances(
gemm_ptrs);
}
......@@ -270,7 +269,7 @@ void profile_gemm_bias_add_reduce_impl(int do_verification,
is_same<BLayout, tensor_layout::gemm::ColumnMajor>::value &&
is_same<CLayout, tensor_layout::gemm::RowMajor>::value)
{
ck::tensor_operation::device::device_gemm_instance::
ck::tensor_operation::device::instance::
add_device_gemm_bias_add_mean_squaremean_xdl_cshuffle_f16_f16_f16_f16_f16_f32_f32_km_nk_mn_instances(
gemm_ptrs);
}
......
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2022, Advanced Micro Devices, Inc. All rights reserved.
#pragma once
#include "ck/ck.hpp"
#include "ck/tensor_operation/gpu/device/tensor_layout.hpp"
#include "ck/tensor_operation/gpu/device/device_gemm_bias_activation_add.hpp"
#include "ck/tensor_operation/gpu/element/element_wise_operation.hpp"
#include "ck/library/utility/check_err.hpp"
#include "ck/library/utility/conv_util.hpp"
#include "ck/library/host_tensor/device_memory.hpp"
#include "ck/library/host_tensor/host_tensor.hpp"
#include "ck/library/host_tensor/host_tensor_generator.hpp"
#include "ck/library/reference_tensor_operation/cpu/reference_gemm_bias_activation_add.hpp"
namespace ck {
namespace tensor_operation {
namespace device {
namespace device_gemm_instance {
using DeviceGemmBiasReluAddPtr = ck::tensor_operation::device::DeviceGemmBiasActivationAddPtr<
ck::tensor_operation::element_wise::PassThrough,
ck::tensor_operation::element_wise::PassThrough,
ck::tensor_operation::element_wise::AddReluAdd>;
void add_device_gemm_xdl_c_shuffle_bias_relu_add_f16_f16_f16_mk_kn_mn_instances(
std::vector<DeviceGemmBiasReluAddPtr>&);
void add_device_gemm_xdl_c_shuffle_bias_relu_add_f16_f16_f16_mk_nk_mn_instances(
std::vector<DeviceGemmBiasReluAddPtr>&);
void add_device_gemm_xdl_c_shuffle_bias_relu_add_f16_f16_f16_km_kn_mn_instances(
std::vector<DeviceGemmBiasReluAddPtr>&);
void add_device_gemm_xdl_c_shuffle_bias_relu_add_f16_f16_f16_km_nk_mn_instances(
std::vector<DeviceGemmBiasReluAddPtr>&);
} // namespace device_gemm_instance
} // namespace device
} // namespace tensor_operation
} // namespace ck
namespace ck {
namespace profiler {
template <typename ADataType,
typename BDataType,
typename CDataType,
typename ALayout,
typename BLayout,
typename CLayout>
void profile_gemm_bias_relu_add_impl(int do_verification,
int init_method,
bool do_log,
bool time_kernel,
int M,
int N,
int K,
int StrideA,
int StrideB,
int StrideC,
int StrideC1,
int KBatch = 1)
{
auto f_host_tensor_descriptor =
[](std::size_t row, std::size_t col, std::size_t stride, auto layout) {
if(is_same<decltype(layout), tensor_layout::gemm::RowMajor>::value)
{
return HostTensorDescriptor(std::vector<std::size_t>({row, col}),
std::vector<std::size_t>({stride, 1}));
}
else
{
return HostTensorDescriptor(std::vector<std::size_t>({row, col}),
std::vector<std::size_t>({1, stride}));
}
};
Tensor<ADataType> a_m_k(f_host_tensor_descriptor(M, K, StrideA, ALayout{}));
Tensor<BDataType> b_k_n(f_host_tensor_descriptor(K, N, StrideB, BLayout{}));
Tensor<CDataType> c_m_n_host_result(f_host_tensor_descriptor(M, N, StrideC, CLayout{}));
Tensor<CDataType> c_m_n_device_result(f_host_tensor_descriptor(M, N, StrideC, CLayout{}));
// c0_n[n]
Tensor<CDataType> c0_n(HostTensorDescriptor(
std::vector<std::size_t>({static_cast<std::size_t>(N)}), std::vector<std::size_t>({1})));
// c1_m_n[m ,n]
Tensor<BDataType> c1_m_n(f_host_tensor_descriptor(M, N, StrideC, CLayout{}));
std::cout << "a_m_k: " << a_m_k.mDesc << std::endl;
std::cout << "b_k_n: " << b_k_n.mDesc << std::endl;
std::cout << "c_m_n: " << c_m_n_host_result.mDesc << std::endl;
std::cout << "c0_n: " << c0_n.mDesc << std::endl;
std::cout << "c1_m_n: " << c1_m_n.mDesc << std::endl;
switch(init_method)
{
case 0: break;
case 1:
a_m_k.GenerateTensorValue(GeneratorTensor_2<ADataType>{-5, 5});
b_k_n.GenerateTensorValue(GeneratorTensor_2<BDataType>{-5, 5});
c0_n.GenerateTensorValue(GeneratorTensor_2<CDataType>{-5, 5});
c1_m_n.GenerateTensorValue(GeneratorTensor_2<CDataType>{-5, 5});
break;
default:
a_m_k.GenerateTensorValue(GeneratorTensor_3<ADataType>{0.0, 1.0});
b_k_n.GenerateTensorValue(GeneratorTensor_3<BDataType>{-0.5, 0.5});
c0_n.GenerateTensorValue(GeneratorTensor_3<CDataType>{0.0, 1.0});
c1_m_n.GenerateTensorValue(GeneratorTensor_3<CDataType>{0.0, 1.0});
}
// set zero to c_device_buf
c_m_n_device_result.GenerateTensorValue(GeneratorTensor_0<CDataType>{});
using AElementOp = ck::tensor_operation::element_wise::PassThrough;
using BElementOp = ck::tensor_operation::element_wise::PassThrough;
using CElementOp = ck::tensor_operation::element_wise::AddReluAdd;
const auto a_element_op = AElementOp{};
const auto b_element_op = BElementOp{};
const auto c_element_op = CElementOp{};
if(do_verification)
{
using ReferenceGemmInstance =
ck::tensor_operation::host::ReferenceGemmBiasActivationAdd<ADataType,
BDataType,
CDataType,
AElementOp,
BElementOp,
CElementOp>;
auto ref_gemm = ReferenceGemmInstance{};
auto ref_invoker = ref_gemm.MakeInvoker();
auto ref_argument = ref_gemm.MakeArgument(a_m_k,
b_k_n,
c_m_n_host_result,
c0_n,
c1_m_n,
a_element_op,
b_element_op,
c_element_op);
ref_invoker.Run(ref_argument);
}
DeviceMem a_device_buf(sizeof(ADataType) * a_m_k.mDesc.GetElementSpace());
DeviceMem b_device_buf(sizeof(BDataType) * b_k_n.mDesc.GetElementSpace());
DeviceMem c_device_buf(sizeof(CDataType) * c_m_n_device_result.mDesc.GetElementSpace());
DeviceMem c0_n_device_buf(sizeof(CDataType) * c0_n.mDesc.GetElementSpace());
DeviceMem c1_m_n_device_buf(sizeof(CDataType) * c1_m_n.mDesc.GetElementSpace());
a_device_buf.ToDevice(a_m_k.mData.data());
b_device_buf.ToDevice(b_k_n.mData.data());
c_device_buf.ToDevice(c_m_n_device_result.mData.data());
c0_n_device_buf.ToDevice(c0_n.mData.data());
c1_m_n_device_buf.ToDevice(c1_m_n.mData.data());
// add device GEMM instances
std::vector<ck::tensor_operation::device::device_gemm_instance::DeviceGemmBiasReluAddPtr>
gemm_ptrs;
if constexpr(is_same<ADataType, half_t>::value && is_same<BDataType, half_t>::value &&
is_same<CDataType, half_t>::value)
{
if constexpr(is_same<ALayout, tensor_layout::gemm::RowMajor>::value &&
is_same<BLayout, tensor_layout::gemm::RowMajor>::value &&
is_same<CLayout, tensor_layout::gemm::RowMajor>::value)
{
ck::tensor_operation::device::device_gemm_instance::
add_device_gemm_xdl_c_shuffle_bias_relu_add_f16_f16_f16_mk_kn_mn_instances(
gemm_ptrs);
}
else if constexpr(is_same<ALayout, tensor_layout::gemm::RowMajor>::value &&
is_same<BLayout, tensor_layout::gemm::ColumnMajor>::value &&
is_same<CLayout, tensor_layout::gemm::RowMajor>::value)
{
ck::tensor_operation::device::device_gemm_instance::
add_device_gemm_xdl_c_shuffle_bias_relu_add_f16_f16_f16_mk_nk_mn_instances(
gemm_ptrs);
}
else if constexpr(is_same<ALayout, tensor_layout::gemm::ColumnMajor>::value &&
is_same<BLayout, tensor_layout::gemm::RowMajor>::value &&
is_same<CLayout, tensor_layout::gemm::RowMajor>::value)
{
ck::tensor_operation::device::device_gemm_instance::
add_device_gemm_xdl_c_shuffle_bias_relu_add_f16_f16_f16_km_kn_mn_instances(
gemm_ptrs);
}
else if constexpr(is_same<ALayout, tensor_layout::gemm::ColumnMajor>::value &&
is_same<BLayout, tensor_layout::gemm::ColumnMajor>::value &&
is_same<CLayout, tensor_layout::gemm::RowMajor>::value)
{
ck::tensor_operation::device::device_gemm_instance::
add_device_gemm_xdl_c_shuffle_bias_relu_add_f16_f16_f16_km_nk_mn_instances(
gemm_ptrs);
}
}
if(gemm_ptrs.size() <= 0)
{
throw std::runtime_error("wrong! no device GEMM instance found");
}
std::string best_gemm_name;
float best_ave_time = 0;
float best_tflops = 0;
float best_gb_per_sec = 0;
// profile device GEMM instances
for(auto& gemm_ptr : gemm_ptrs)
{
auto argument_ptr = gemm_ptr->MakeArgumentPointer(
static_cast<ADataType*>(a_device_buf.GetDeviceBuffer()),
static_cast<BDataType*>(b_device_buf.GetDeviceBuffer()),
static_cast<CDataType*>(c_device_buf.GetDeviceBuffer()),
static_cast<CDataType*>(c0_n_device_buf.GetDeviceBuffer()),
static_cast<CDataType*>(c1_m_n_device_buf.GetDeviceBuffer()),
M,
N,
K,
StrideA,
StrideB,
StrideC,
StrideC1,
a_element_op,
b_element_op,
c_element_op,
KBatch);
auto invoker_ptr = gemm_ptr->MakeInvokerPointer();
if(gemm_ptr->IsSupportedArgument(argument_ptr.get()))
{
std::string gemm_name = gemm_ptr->GetTypeString();
float ave_time =
invoker_ptr->Run(argument_ptr.get(), StreamConfig{nullptr, time_kernel});
std::size_t flop = std::size_t(2) * M * N * K;
std::size_t num_btype = sizeof(ADataType) * M * K + sizeof(BDataType) * K * M +
sizeof(CDataType) * M * N + sizeof(CDataType) * N +
sizeof(CDataType) * M * N;
float tflops = static_cast<float>(flop) / 1.E9 / ave_time;
float gb_per_sec = num_btype / 1.E6 / ave_time;
std::cout << "Perf: " << ave_time << " ms, " << tflops << " TFlops, " << gb_per_sec
<< " GB/s, " << gemm_name << std::endl;
if(tflops > best_tflops)
{
best_gemm_name = gemm_name;
best_tflops = tflops;
best_ave_time = ave_time;
best_gb_per_sec = gb_per_sec;
}
if(do_verification)
{
c_device_buf.FromDevice(c_m_n_device_result.mData.data());
ck::utils::check_err(c_m_n_device_result.mData, c_m_n_host_result.mData);
if(do_log)
{
LogRangeAsType<float>(std::cout << "a: ", a_m_k.mData, ",") << std::endl;
LogRangeAsType<float>(std::cout << "b: ", b_k_n.mData, ",") << std::endl;
LogRangeAsType<float>(std::cout << "c0: ", c0_n.mData, ",") << std::endl;
LogRangeAsType<float>(std::cout << "c1: ", c1_m_n.mData, ",") << std::endl;
LogRangeAsType<float>(std::cout << "c_host: ", c_m_n_host_result.mData, ",")
<< std::endl;
LogRangeAsType<float>(std::cout << "c_device: ", c_m_n_device_result.mData, ",")
<< std::endl;
}
}
}
else
{
std::cout << "does not support this GEMM problem" << std::endl;
}
}
std::cout << "Best Perf: " << best_ave_time << " ms, " << best_tflops << " TFlops, "
<< best_gb_per_sec << " GB/s, " << best_gemm_name << std::endl;
}
} // namespace profiler
} // namespace ck
......@@ -3,62 +3,45 @@
#pragma once
#include <iomanip>
#include "ck/ck.hpp"
#include "ck/tensor_operation/gpu/device/tensor_layout.hpp"
#include "ck/tensor_operation/gpu/device/device_gemm_bias_activation.hpp"
#include "ck/tensor_operation/gpu/device/device_gemm_multiple_d.hpp"
#include "ck/tensor_operation/gpu/element/element_wise_operation.hpp"
#include "ck/library/tensor_operation_instance/gpu/gemm_bilinear.hpp"
#include "ck/library/utility/check_err.hpp"
#include "ck/library/utility/conv_util.hpp"
#include "ck/library/host_tensor/device_memory.hpp"
#include "ck/library/host_tensor/host_tensor.hpp"
#include "ck/library/host_tensor/host_tensor_generator.hpp"
#include "ck/library/reference_tensor_operation/cpu/reference_gemm_bias_activation.hpp"
namespace ck {
namespace tensor_operation {
namespace device {
namespace device_gemm_instance {
using DeviceGemmBiasReluPtr = ck::tensor_operation::device::DeviceGemmBiasActivationPtr<
ck::tensor_operation::element_wise::PassThrough,
ck::tensor_operation::element_wise::PassThrough,
ck::tensor_operation::element_wise::AddRelu>;
void add_device_gemm_xdl_c_shuffle_bias_relu_f16_f16_f16_mk_kn_mn_instances(
std::vector<DeviceGemmBiasReluPtr>&);
void add_device_gemm_xdl_c_shuffle_bias_relu_f16_f16_f16_mk_nk_mn_instances(
std::vector<DeviceGemmBiasReluPtr>&);
void add_device_gemm_xdl_c_shuffle_bias_relu_f16_f16_f16_km_kn_mn_instances(
std::vector<DeviceGemmBiasReluPtr>&);
void add_device_gemm_xdl_c_shuffle_bias_relu_f16_f16_f16_km_nk_mn_instances(
std::vector<DeviceGemmBiasReluPtr>&);
} // namespace device_gemm_instance
} // namespace device
} // namespace tensor_operation
} // namespace ck
#include "ck/library/reference_tensor_operation/cpu/reference_gemm.hpp"
namespace ck {
namespace profiler {
template <typename ADataType,
typename BDataType,
typename CDataType,
typename AccDataType,
typename DDataType,
typename EDataType,
typename ALayout,
typename BLayout,
typename CLayout>
void profile_gemm_bias_relu_impl(int do_verification,
int init_method,
bool do_log,
bool time_kernel,
int M,
int N,
int K,
int StrideA,
int StrideB,
int StrideC,
int KBatch = 1)
typename DELayout> // assume Ds and E have same layout
bool profile_gemm_bilinear_impl(int do_verification,
int init_method,
bool /*do_log*/,
bool time_kernel,
int M,
int N,
int K,
int StrideA,
int StrideB,
int StrideD,
int StrideE,
float alpha,
float beta)
{
auto f_host_tensor_descriptor =
[](std::size_t row, std::size_t col, std::size_t stride, auto layout) {
......@@ -76,163 +59,151 @@ void profile_gemm_bias_relu_impl(int do_verification,
Tensor<ADataType> a_m_k(f_host_tensor_descriptor(M, K, StrideA, ALayout{}));
Tensor<BDataType> b_k_n(f_host_tensor_descriptor(K, N, StrideB, BLayout{}));
Tensor<CDataType> c_m_n_host_result(f_host_tensor_descriptor(M, N, StrideC, CLayout{}));
Tensor<CDataType> c_m_n_device_result(f_host_tensor_descriptor(M, N, StrideC, CLayout{}));
// c0_n[n]
Tensor<CDataType> c0_n(HostTensorDescriptor(
std::vector<std::size_t>({static_cast<std::size_t>(N)}), std::vector<std::size_t>({1})));
Tensor<DDataType> d_m_n(f_host_tensor_descriptor(M, N, StrideD, DELayout{}));
Tensor<EDataType> e_m_n_device_result(f_host_tensor_descriptor(M, N, StrideE, DELayout{}));
Tensor<EDataType> e_m_n_host_result(f_host_tensor_descriptor(M, N, StrideE, DELayout{}));
std::cout << "a_m_k: " << a_m_k.mDesc << std::endl;
std::cout << "b_k_n: " << b_k_n.mDesc << std::endl;
std::cout << "c_m_n: " << c_m_n_host_result.mDesc << std::endl;
std::cout << "c0_n: " << c0_n.mDesc << std::endl;
std::cout << "d_m_n: " << d_m_n.mDesc << std::endl;
std::cout << "e_m_n: " << e_m_n_device_result.mDesc << std::endl;
std::size_t num_thread = 1;
switch(init_method)
{
case 0: break;
case 1:
a_m_k.GenerateTensorValue(GeneratorTensor_2<ADataType>{-5, 5}, num_thread);
b_k_n.GenerateTensorValue(GeneratorTensor_2<BDataType>{-5, 5}, num_thread);
c0_n.GenerateTensorValue(GeneratorTensor_2<CDataType>{-5, 5});
a_m_k.GenerateTensorValue(GeneratorTensor_2<ADataType>{-5, 5});
b_k_n.GenerateTensorValue(GeneratorTensor_2<BDataType>{-5, 5});
d_m_n.GenerateTensorValue(GeneratorTensor_2<DDataType>{-5, 5});
break;
default:
a_m_k.GenerateTensorValue(GeneratorTensor_3<ADataType>{0.0, 1.0}, num_thread);
b_k_n.GenerateTensorValue(GeneratorTensor_3<BDataType>{-0.5, 0.5}, num_thread);
c0_n.GenerateTensorValue(GeneratorTensor_3<CDataType>{0.0, 1.0});
a_m_k.GenerateTensorValue(GeneratorTensor_3<ADataType>{0.0, 1.0});
b_k_n.GenerateTensorValue(GeneratorTensor_3<BDataType>{-0.5, 0.5});
d_m_n.GenerateTensorValue(GeneratorTensor_3<DDataType>{0.0, 1.0});
}
// set zero to c_device_buf
c_m_n_device_result.GenerateTensorValue(GeneratorTensor_0<CDataType>{}, num_thread);
using PassThrough = ck::tensor_operation::element_wise::PassThrough;
using Bilinear = ck::tensor_operation::element_wise::Bilinear;
using AElementOp = PassThrough;
using BElementOp = PassThrough;
using CDEElementOp = Bilinear;
const auto a_element_op = AElementOp{};
const auto b_element_op = BElementOp{};
const auto cde_element_op = CDEElementOp{alpha, beta};
using DeviceOp = ck::tensor_operation::device::DeviceGemmMultipleD<
ALayout,
BLayout,
DELayout,
ADataType,
BDataType,
ck::Tuple<DDataType>,
EDataType,
ck::tensor_operation::element_wise::PassThrough,
ck::tensor_operation::element_wise::PassThrough,
ck::tensor_operation::element_wise::Bilinear>;
using AElementOp = ck::tensor_operation::element_wise::PassThrough;
using BElementOp = ck::tensor_operation::element_wise::PassThrough;
using CElementOp = ck::tensor_operation::element_wise::AddRelu;
// get device op instances
const auto op_ptrs = ck::tensor_operation::device::instance::DeviceOperationInstanceFactory<
DeviceOp>::GetInstances();
const auto a_element_op = AElementOp{};
const auto b_element_op = BElementOp{};
const auto c_element_op = CElementOp{};
std::cout << "found " << op_ptrs.size() << " instances" << std::endl;
// run reference
if(do_verification)
{
using ReferenceGemmInstance =
ck::tensor_operation::host::ReferenceGemmBiasActivation<ADataType,
BDataType,
CDataType,
AElementOp,
BElementOp,
CElementOp>;
Tensor<AccDataType> c_m_n(HostTensorDescriptor(
std::vector<std::size_t>{static_cast<std::size_t>(M), static_cast<std::size_t>(N)}));
using ReferenceGemmInstance = ck::tensor_operation::host::ReferenceGemm<ADataType,
BDataType,
AccDataType,
AccDataType,
AElementOp,
BElementOp,
PassThrough>;
auto ref_gemm = ReferenceGemmInstance{};
auto ref_invoker = ref_gemm.MakeInvoker();
auto ref_argument = ref_gemm.MakeArgument(
a_m_k, b_k_n, c_m_n_host_result, c0_n, a_element_op, b_element_op, c_element_op);
auto ref_argument =
ref_gemm.MakeArgument(a_m_k, b_k_n, c_m_n, a_element_op, b_element_op, PassThrough{});
ref_invoker.Run(ref_argument);
for(int m = 0; m < M; ++m)
{
for(int n = 0; n < N; ++n)
{
cde_element_op(e_m_n_host_result(m, n), c_m_n(m, n), d_m_n(m, n));
}
}
}
DeviceMem a_device_buf(sizeof(ADataType) * a_m_k.mDesc.GetElementSpace());
DeviceMem b_device_buf(sizeof(BDataType) * b_k_n.mDesc.GetElementSpace());
DeviceMem c_device_buf(sizeof(CDataType) * c_m_n_device_result.mDesc.GetElementSpace());
DeviceMem c0_n_device_buf(sizeof(CDataType) * c0_n.mDesc.GetElementSpace());
DeviceMem d_m_n_device_buf(sizeof(DDataType) * d_m_n.mDesc.GetElementSpace());
DeviceMem e_device_buf(sizeof(EDataType) * e_m_n_device_result.mDesc.GetElementSpace());
a_device_buf.ToDevice(a_m_k.mData.data());
b_device_buf.ToDevice(b_k_n.mData.data());
c_device_buf.ToDevice(c_m_n_device_result.mData.data());
c0_n_device_buf.ToDevice(c0_n.mData.data());
// add device GEMM instances
std::vector<ck::tensor_operation::device::device_gemm_instance::DeviceGemmBiasReluPtr>
gemm_ptrs;
if constexpr(is_same<ADataType, half_t>::value && is_same<BDataType, half_t>::value &&
is_same<CDataType, half_t>::value)
{
if constexpr(is_same<ALayout, tensor_layout::gemm::RowMajor>::value &&
is_same<BLayout, tensor_layout::gemm::RowMajor>::value &&
is_same<CLayout, tensor_layout::gemm::RowMajor>::value)
{
ck::tensor_operation::device::device_gemm_instance::
add_device_gemm_xdl_c_shuffle_bias_relu_f16_f16_f16_mk_kn_mn_instances(gemm_ptrs);
}
else if constexpr(is_same<ALayout, tensor_layout::gemm::RowMajor>::value &&
is_same<BLayout, tensor_layout::gemm::ColumnMajor>::value &&
is_same<CLayout, tensor_layout::gemm::RowMajor>::value)
{
ck::tensor_operation::device::device_gemm_instance::
add_device_gemm_xdl_c_shuffle_bias_relu_f16_f16_f16_mk_nk_mn_instances(gemm_ptrs);
}
else if constexpr(is_same<ALayout, tensor_layout::gemm::ColumnMajor>::value &&
is_same<BLayout, tensor_layout::gemm::RowMajor>::value &&
is_same<CLayout, tensor_layout::gemm::RowMajor>::value)
{
ck::tensor_operation::device::device_gemm_instance::
add_device_gemm_xdl_c_shuffle_bias_relu_f16_f16_f16_km_kn_mn_instances(gemm_ptrs);
}
else if constexpr(is_same<ALayout, tensor_layout::gemm::ColumnMajor>::value &&
is_same<BLayout, tensor_layout::gemm::ColumnMajor>::value &&
is_same<CLayout, tensor_layout::gemm::RowMajor>::value)
{
ck::tensor_operation::device::device_gemm_instance::
add_device_gemm_xdl_c_shuffle_bias_relu_f16_f16_f16_km_nk_mn_instances(gemm_ptrs);
}
}
if(gemm_ptrs.size() <= 0)
{
throw std::runtime_error("wrong! no device GEMM instance found");
}
d_m_n_device_buf.ToDevice(d_m_n.mData.data());
std::string best_gemm_name;
std::string best_op_name;
float best_ave_time = 0;
float best_tflops = 0;
float best_gb_per_sec = 0;
// profile device GEMM instances
for(auto& gemm_ptr : gemm_ptrs)
bool pass = true;
// profile device operation instances
for(auto& op_ptr : op_ptrs)
{
auto argument_ptr = gemm_ptr->MakeArgumentPointer(
static_cast<ADataType*>(a_device_buf.GetDeviceBuffer()),
static_cast<BDataType*>(b_device_buf.GetDeviceBuffer()),
static_cast<CDataType*>(c_device_buf.GetDeviceBuffer()),
static_cast<CDataType*>(c0_n_device_buf.GetDeviceBuffer()),
auto argument_ptr = op_ptr->MakeArgumentPointer(
a_device_buf.GetDeviceBuffer(),
b_device_buf.GetDeviceBuffer(),
std::array<const void*, 1>{d_m_n_device_buf.GetDeviceBuffer()},
e_device_buf.GetDeviceBuffer(),
M,
N,
K,
StrideA,
StrideB,
StrideC,
std::array<ck::index_t, 1>{StrideD},
StrideE,
a_element_op,
b_element_op,
c_element_op,
KBatch);
cde_element_op);
auto invoker_ptr = op_ptr->MakeInvokerPointer();
auto invoker_ptr = gemm_ptr->MakeInvokerPointer();
std::string op_name = op_ptr->GetTypeString();
if(gemm_ptr->IsSupportedArgument(argument_ptr.get()))
if(op_ptr->IsSupportedArgument(argument_ptr.get()))
{
std::string gemm_name = gemm_ptr->GetTypeString();
// re-init E to zero before profiling a kernel
e_device_buf.SetZero();
float ave_time =
invoker_ptr->Run(argument_ptr.get(), StreamConfig{nullptr, time_kernel});
std::size_t flop = std::size_t(2) * M * N * K;
std::size_t num_btype = sizeof(ADataType) * M * K + sizeof(BDataType) * K * M +
sizeof(CDataType) * M * N + sizeof(CDataType) * N;
std::size_t num_btype =
sizeof(ADataType) * M * K + sizeof(BDataType) * K * N + sizeof(EDataType) * M * N;
float tflops = static_cast<float>(flop) / 1.E9 / ave_time;
float gb_per_sec = num_btype / 1.E6 / ave_time;
std::cout << "Perf: " << ave_time << " ms, " << tflops << " TFlops, " << gb_per_sec
<< " GB/s, " << gemm_name << std::endl;
std::cout << "Perf: " << std::setw(10) << ave_time << " ms, " << tflops << " TFlops, "
<< gb_per_sec << " GB/s, " << op_name << std::endl;
if(tflops > best_tflops)
{
best_gemm_name = gemm_name;
best_op_name = op_name;
best_tflops = tflops;
best_ave_time = ave_time;
best_gb_per_sec = gb_per_sec;
......@@ -240,30 +211,22 @@ void profile_gemm_bias_relu_impl(int do_verification,
if(do_verification)
{
c_device_buf.FromDevice(c_m_n_device_result.mData.data());
ck::utils::check_err(c_m_n_device_result.mData, c_m_n_host_result.mData);
if(do_log)
{
LogRangeAsType<float>(std::cout << "a : ", a_m_k.mData, ",") << std::endl;
LogRangeAsType<float>(std::cout << "b: ", b_k_n.mData, ",") << std::endl;
LogRangeAsType<float>(std::cout << "c0 : ", c0_n.mData, ",") << std::endl;
LogRangeAsType<float>(std::cout << "c_host : ", c_m_n_host_result.mData, ",")
<< std::endl;
LogRangeAsType<float>(std::cout << "c_device: ", c_m_n_device_result.mData, ",")
<< std::endl;
}
e_device_buf.FromDevice(e_m_n_device_result.mData.data());
pass = pass &&
ck::utils::check_err(e_m_n_device_result.mData, e_m_n_host_result.mData);
}
}
else
{
std::cout << "does not support this GEMM problem" << std::endl;
std::cout << op_name << " does not support this problem" << std::endl;
}
}
std::cout << "Best Perf: " << best_ave_time << " ms, " << best_tflops << " TFlops, "
<< best_gb_per_sec << " GB/s, " << best_gemm_name << std::endl;
<< best_gb_per_sec << " GB/s, " << best_op_name << std::endl;
return pass;
}
} // namespace profiler
......
......@@ -12,7 +12,7 @@
#include "ck/tensor_operation/gpu/device/device_gemm.hpp"
#include "ck/tensor_operation/gpu/element/element_wise_operation.hpp"
#include "ck/library/tensor_operation_instance/gpu/device_gemm_instance.hpp"
#include "ck/library/tensor_operation_instance/gpu/gemm.hpp"
#include "ck/library/utility/check_err.hpp"
#include "ck/library/host_tensor/device_memory.hpp"
......@@ -94,14 +94,21 @@ int profile_gemm_impl(int do_verification,
b_device_buf.ToDevice(b_k_n.mData.data());
c_device_buf.ToDevice(c_m_n_device_result.mData.data());
// add device op instances
const auto op_ptrs = ck::tensor_operation::device::device_gemm_instance::
get_device_gemm_instances<ADataType, BDataType, CDataType, ALayout, BLayout, CLayout>();
using DeviceOp = ck::tensor_operation::device::DeviceGemm<ALayout,
BLayout,
CLayout,
ADataType,
BDataType,
CDataType,
AElementOp,
BElementOp,
CElementOp>;
if(op_ptrs.size() <= 0)
{
throw std::runtime_error("wrong! no device GEMM instance found");
}
// get device op instances
const auto op_ptrs = ck::tensor_operation::device::instance::DeviceOperationInstanceFactory<
DeviceOp>::GetInstances();
std::cout << "found " << op_ptrs.size() << " instances" << std::endl;
// Run reference GEMM
if(do_verification)
......@@ -141,9 +148,9 @@ int profile_gemm_impl(int do_verification,
StrideA,
StrideB,
StrideC,
ck::tensor_operation::element_wise::PassThrough{},
ck::tensor_operation::element_wise::PassThrough{},
ck::tensor_operation::element_wise::PassThrough{});
a_element_op,
b_element_op,
c_element_op);
auto invoker_ptr = op_ptr->MakeInvokerPointer();
......
......@@ -19,7 +19,7 @@
namespace ck {
namespace tensor_operation {
namespace device {
namespace device_gemm_instance {
namespace instance {
using F32 = float;
using F16 = ck::half_t;
......@@ -45,7 +45,7 @@ void add_device_gemm_reduce_xdl_cshuffle_f16_f16_f16_f32_f32_km_kn_mn_instances(
void add_device_gemm_reduce_xdl_cshuffle_f16_f16_f16_f32_f32_km_nk_mn_instances(
std::vector<DeviceGemmReduceNoOpPtr>&);
} // namespace device_gemm_instance
} // namespace instance
} // namespace device
} // namespace tensor_operation
} // namespace ck
......@@ -204,8 +204,7 @@ bool profile_gemm_reduce_impl(int do_verification,
b_device_buf.ToDevice(b_k_n.mData.data());
// add device GEMM instances
std::vector<ck::tensor_operation::device::device_gemm_instance::DeviceGemmReduceNoOpPtr>
gemm_ptrs;
std::vector<ck::tensor_operation::device::instance::DeviceGemmReduceNoOpPtr> gemm_ptrs;
if constexpr(is_same<ADataType, half_t>::value && is_same<BDataType, half_t>::value &&
is_same<CDataType, half_t>::value)
......@@ -214,7 +213,7 @@ bool profile_gemm_reduce_impl(int do_verification,
is_same<BLayout, tensor_layout::gemm::RowMajor>::value &&
is_same<CLayout, tensor_layout::gemm::RowMajor>::value)
{
ck::tensor_operation::device::device_gemm_instance::
ck::tensor_operation::device::instance::
add_device_gemm_reduce_xdl_cshuffle_f16_f16_f16_f32_f32_mk_kn_mn_instances(
gemm_ptrs);
}
......@@ -222,7 +221,7 @@ bool profile_gemm_reduce_impl(int do_verification,
is_same<BLayout, tensor_layout::gemm::ColumnMajor>::value &&
is_same<CLayout, tensor_layout::gemm::RowMajor>::value)
{
ck::tensor_operation::device::device_gemm_instance::
ck::tensor_operation::device::instance::
add_device_gemm_reduce_xdl_cshuffle_f16_f16_f16_f32_f32_mk_nk_mn_instances(
gemm_ptrs);
}
......@@ -230,7 +229,7 @@ bool profile_gemm_reduce_impl(int do_verification,
is_same<BLayout, tensor_layout::gemm::RowMajor>::value &&
is_same<CLayout, tensor_layout::gemm::RowMajor>::value)
{
ck::tensor_operation::device::device_gemm_instance::
ck::tensor_operation::device::instance::
add_device_gemm_reduce_xdl_cshuffle_f16_f16_f16_f32_f32_km_kn_mn_instances(
gemm_ptrs);
}
......@@ -238,7 +237,7 @@ bool profile_gemm_reduce_impl(int do_verification,
is_same<BLayout, tensor_layout::gemm::ColumnMajor>::value &&
is_same<CLayout, tensor_layout::gemm::RowMajor>::value)
{
ck::tensor_operation::device::device_gemm_instance::
ck::tensor_operation::device::instance::
add_device_gemm_reduce_xdl_cshuffle_f16_f16_f16_f32_f32_km_nk_mn_instances(
gemm_ptrs);
}
......
......@@ -12,7 +12,7 @@
#include "ck/tensor_operation/gpu/device/device_gemm_splitk.hpp"
#include "ck/tensor_operation/gpu/element/element_wise_operation.hpp"
#include "ck/library/tensor_operation_instance/gpu/device_gemm_splitk_instance.hpp"
#include "ck/library/tensor_operation_instance/gpu/gemm_splitk.hpp"
#include "ck/library/utility/check_err.hpp"
#include "ck/library/host_tensor/device_memory.hpp"
......@@ -95,20 +95,21 @@ bool profile_gemm_splitk_impl(int do_verification,
b_device_buf.ToDevice(b_k_n.mData.data());
c_device_buf.ToDevice(c_m_n_device_result.mData.data());
// add device op instances
const auto op_ptrs =
ck::tensor_operation::device::device_gemm_instance::get_device_gemm_splitk_instances<
ADataType,
BDataType,
CDataType,
ALayout,
BLayout,
CLayout>();
if(op_ptrs.size() <= 0)
{
throw std::runtime_error("wrong! no device operation instance found");
}
using DeviceOp = ck::tensor_operation::device::DeviceGemmSplitK<ALayout,
BLayout,
CLayout,
ADataType,
BDataType,
CDataType,
AElementOp,
BElementOp,
CElementOp>;
// get device op instances
const auto op_ptrs = ck::tensor_operation::device::instance::DeviceOperationInstanceFactory<
DeviceOp>::GetInstances();
std::cout << "found " << op_ptrs.size() << " instances" << std::endl;
// Run reference GEMM
if(do_verification)
......
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment