Commit bcdc330d authored by Jing Zhang's avatar Jing Zhang
Browse files

create files for xdlops

parent 01055d95
#ifndef CK_DRIVER_DYNAMIC_CONVOLUTION_FORWARD_IMPLICIT_GEMM_V4R4_XDLOPS_NCHW_KCYX_NKHW_HPP
#define CK_DRIVER_DYNAMIC_CONVOLUTION_FORWARD_IMPLICIT_GEMM_V4R4_XDLOPS_NCHW_KCYX_NKHW_HPP
#include "common_header.hpp"
#include "dynamic_tensor_descriptor.hpp"
#include "dynamic_tensor_descriptor_helper.hpp"
#include "driver_dynamic_gemm_xdlops_v1.hpp"
namespace ck {
// GemmM = K
// GemmN = N * Ho * Wo
// GemmK = C * Y * X
template <index_t GemmMPerBlock,
index_t GemmNPerBlock,
index_t GemmM1,
index_t GemmN1,
typename... Wei,
typename... In,
typename... Out,
typename ConvStrides,
typename ConvDilations,
typename InLeftPads,
typename InRightPads>
__host__ __device__ constexpr auto
transform_forward_convolution_into_gemm_v4r4_xdlops_nchw_kcyx_nkhw_pad(
const DynamicTensorDescriptor<Wei...>& wei_k_c_y_x_global_desc,
const DynamicTensorDescriptor<In...>& in_n_c_hi_wi_global_desc,
const DynamicTensorDescriptor<Out...>& out_n_k_ho_wo_global_desc,
const ConvStrides& conv_strides,
const ConvDilations& conv_dilations,
const InLeftPads& in_left_pads,
const InRightPads& in_right_pads)
{
constexpr auto I0 = Number<0>{};
constexpr auto I1 = Number<1>{};
constexpr auto I2 = Number<2>{};
constexpr auto I3 = Number<3>{};
const auto N = in_n_c_hi_wi_global_desc.GetLength(I0);
const auto C = in_n_c_hi_wi_global_desc.GetLength(I1);
const auto K = out_n_k_ho_wo_global_desc.GetLength(I1);
const auto Hi = in_n_c_hi_wi_global_desc.GetLength(I2);
const auto Wi = in_n_c_hi_wi_global_desc.GetLength(I3);
const auto Ho = out_n_k_ho_wo_global_desc.GetLength(I2);
const auto Wo = out_n_k_ho_wo_global_desc.GetLength(I3);
const auto Y = wei_k_c_y_x_global_desc.GetLength(I2);
const auto X = wei_k_c_y_x_global_desc.GetLength(I3);
const auto ConvStrideH = conv_strides[I0];
const auto ConvStrideW = conv_strides[I1];
const auto ConvDilationH = conv_dilations[I0];
const auto ConvDilationW = conv_dilations[I1];
const auto InLeftPadH = in_left_pads[I0];
const auto InLeftPadW = in_left_pads[I1];
const auto InRightPadH = in_right_pads[I0];
const auto InRightPadW = in_right_pads[I1];
// weight tensor
const auto wei_gemmk_gemmm_global_desc = transform_dynamic_tensor_descriptor(
make_dynamic_naive_tensor_descriptor_packed_v2(make_tuple(K, C * Y * X)),
make_tuple(make_pass_through_transform(K), make_pass_through_transform(C * Y * X)),
make_tuple(Sequence<0>{}, Sequence<1>{}),
make_tuple(Sequence<1>{}, Sequence<0>{}));
// input tensor
const auto in_n_c_hip_wip_global_desc = transform_dynamic_tensor_descriptor(
in_n_c_hi_wi_global_desc,
make_tuple(make_pass_through_transform(N),
make_pass_through_transform(C),
make_pad_transform(Hi, InLeftPadH, InRightPadH),
make_pad_transform(Wi, InLeftPadW, InRightPadW)),
make_tuple(Sequence<0>{}, Sequence<1>{}, Sequence<2>{}, Sequence<3>{}),
make_tuple(Sequence<0>{}, Sequence<1>{}, Sequence<2>{}, Sequence<3>{}));
const auto in_n_c_y_ho_x_wo_global_desc = transform_dynamic_tensor_descriptor(
in_n_c_hip_wip_global_desc,
make_tuple(make_pass_through_transform(N),
make_pass_through_transform(C),
make_embed_transform(make_tuple(Y, Ho), make_tuple(ConvDilationH, ConvStrideH)),
make_embed_transform(make_tuple(X, Wo), make_tuple(ConvDilationW, ConvStrideW))),
make_tuple(Sequence<0>{}, Sequence<1>{}, Sequence<2>{}, Sequence<3>{}),
make_tuple(Sequence<0>{}, Sequence<1>{}, Sequence<2, 3>{}, Sequence<4, 5>{}));
const auto in_gemmk_gemmn_global_desc =
transform_dynamic_tensor_descriptor(in_n_c_y_ho_x_wo_global_desc,
make_tuple(make_merge_transform(make_tuple(C, Y, X)),
make_merge_transform(make_tuple(N, Ho, Wo))),
make_tuple(Sequence<1, 2, 4>{}, Sequence<0, 3, 5>{}),
make_tuple(Sequence<0>{}, Sequence<1>{}));
// output tensor
const auto out_gemmm_gemmn_global_desc = transform_dynamic_tensor_descriptor(
make_dynamic_naive_tensor_descriptor_packed_v2(make_tuple(N, K, Ho * Wo)),
make_tuple(make_pass_through_transform(K), make_merge_transform(make_tuple(N, Ho * Wo))),
make_tuple(Sequence<1>{}, Sequence<0, 2>{}),
make_tuple(Sequence<0>{}, Sequence<1>{}));
const auto GemmM = out_gemmm_gemmn_global_desc.GetLength(I0);
const auto GemmN = out_gemmm_gemmn_global_desc.GetLength(I1);
const auto GemmK = wei_gemmk_gemmm_global_desc.GetLength(I0);
assert(GemmM % GemmMPerBlock == 0 && GemmN % GemmNPerBlock == 0 && GemmK % GemmKPerBlock == 0);
const auto GemmM0 = GemmM / Number<GemmM1>{};
const auto GemmN0 = GemmN / Number<GemmN1>{};
const auto out_gemmm0_gemmm1_gemmn0_gemmn1_global_desc = transform_dynamic_tensor_descriptor(
out_gemmm_gemmn_global_desc,
make_tuple(make_unmerge_transform(make_tuple(GemmM0, GemmM1)),
make_unmerge_transform(make_tuple(GemmN0, GemmN1))),
make_tuple(Sequence<0>{}, Sequence<1>{}),
make_tuple(Sequence<0, 1>{}, Sequence<2, 3>{}));
// out_gemm_block_cluster_desc
const auto out_gemm_block_cluster_desc = make_cluster_descriptor_v2(
make_tuple(GemmM / Number<GemmMPerBlock>{}, GemmN / Number<GemmNPerBlock>{}));
// hack to control index calculation when iterating over wei_gemmk_gemmm_global tensor
constexpr auto wei_gemmk_gemmm_global_iterator_hacks =
make_tuple(make_tuple(Sequence<0, 0, 0>{}, Sequence<0, 0, 0>{}),
make_tuple(Sequence<0, 0, 0>{}, Sequence<0, 0, 0>{}));
constexpr auto wei_gemmk_gemmm_global_move_slice_window_iterator_hacks = Sequence<0, 0, 0>{};
// hack to control index calculation when iterating over in_gemmk_gemmn_global tensor
constexpr auto in_gemmk_gemmn_global_iterator_hacks =
make_tuple(make_tuple(Sequence<0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0>{},
Sequence<0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1>{}),
make_tuple(Sequence<0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 0>{},
Sequence<0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2>{}));
constexpr auto in_gemmk_gemmn_global_move_slice_window_iterator_hacks =
Sequence<0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 2>{};
// hack to control index calculation when iterating over out_gemmm0_gemmm1_gemmn0_gemmn1_global
// tensor hack for NKHW format
constexpr auto out_gemmm0_gemmm1_gemmn0_gemmn1_global_iterator_hacks =
make_tuple(make_tuple(Sequence<0, 0, 0, 0, 0>{},
Sequence<0, 0, 0, 0, 0>{},
Sequence<0, 0, 1, 0, 0>{},
Sequence<0, 0, 1, 0, 0>{}),
make_tuple(Sequence<0, 0, 0, 0, 0>{},
Sequence<0, 0, 0, 0, 0>{},
Sequence<0, 0, 2, 0, 0>{},
Sequence<0, 0, 2, 0, 0>{}));
return make_tuple(wei_gemmk_gemmm_global_desc,
in_gemmk_gemmn_global_desc,
out_gemmm0_gemmm1_gemmn0_gemmn1_global_desc,
out_gemm_block_cluster_desc,
wei_gemmk_gemmm_global_iterator_hacks,
in_gemmk_gemmn_global_iterator_hacks,
out_gemmm0_gemmm1_gemmn0_gemmn1_global_iterator_hacks,
wei_gemmk_gemmm_global_move_slice_window_iterator_hacks,
in_gemmk_gemmn_global_move_slice_window_iterator_hacks);
}
} // namespace ck
#endif
#ifndef CK_DRIVER_DYNAMIC_GEMM_XDLOPS_V1
#define CK_DRIVER_DYNAMIC_GEMM_XDLOPS_V1
#include "common_header.hpp"
#include "dynamic_tensor_descriptor.hpp"
#include "dynamic_tensor_descriptor_helper.hpp"
#include "gridwise_dynamic_gemm_xdlops.hpp"
#include "gridwise_operation_wrapper.hpp"
namespace ck {
template <index_t BlockSize,
typename FloatAB,
typename FloatAcc,
typename FloatC,
InMemoryDataOperation CGlobalMemoryDataOperation,
typename AGlobalDesc,
typename BGlobalDesc,
typename CGlobalDesc,
typename CBlockClusterDesc,
index_t MPerBlock,
index_t NPerBlock,
index_t KPerBlock,
index_t MPerThread,
index_t NPerThread,
index_t KPerThread,
index_t MLevel0Cluster,
index_t NLevel0Cluster,
index_t MLevel1Cluster,
index_t NLevel1Cluster,
typename ABlockTransferThreadSliceLengths_K_M,
typename ABlockTransferThreadClusterLengths_K_M,
typename ABlockTransferThreadClusterArrangeOrder,
typename ABlockTransferSrcAccessOrder,
index_t ABlockTransferSrcVectorDim,
index_t ABlockTransferSrcScalarPerVector,
index_t ABlockTransferDstScalarPerVector_M,
bool AThreadTransferSrcResetCoordinateAfterRun,
typename BBlockTransferThreadSliceLengths_K_N,
typename BBlockTransferThreadClusterLengths_K_N,
typename BBlockTransferThreadClusterArrangeOrder,
typename BBlockTransferSrcAccessOrder,
index_t BBlockTransferSrcVectorDim,
index_t BBlockTransferSrcScalarPerVector,
index_t BBlockTransferDstScalarPerVector_N,
bool BThreadTransferSrcResetCoordinateAfterRun,
typename CThreadTransferSrcDstAccessOrder,
index_t CThreadTransferSrcDstVectorDim,
index_t CThreadTransferDstScalarPerVector,
typename AGlobalIteratorHacks,
typename BGlobalIteratorHacks,
typename CGlobalIteratorHacks,
typename AGlobalMoveSliceWindowIteratorHacks,
typename BGlobalMoveSliceWindowIteratorHacks>
__host__ float launch_kernel_dynamic_gemm_xdlops_v1(const FloatAB* p_a_global,
const FloatAB* p_b_global,
FloatC* p_c_global,
const AGlobalDesc& a_k_m_global_desc,
const BGlobalDesc& b_k_n_global_desc,
const CGlobalDesc& c_m0_m1_n0_n1_global_desc,
const CBlockClusterDesc& c_block_cluster_desc,
AGlobalIteratorHacks,
BGlobalIteratorHacks,
CGlobalIteratorHacks,
AGlobalMoveSliceWindowIteratorHacks,
BGlobalMoveSliceWindowIteratorHacks,
index_t nrepeat)
{
constexpr auto I0 = Number<0>{};
constexpr auto I1 = Number<1>{};
constexpr auto I2 = Number<2>{};
constexpr auto I3 = Number<3>{};
const auto M = a_k_m_global_desc.GetLength(I1);
const auto N = b_k_n_global_desc.GetLength(I1);
const auto K = a_k_m_global_desc.GetLength(I0);
if(!(M % MPerBlock == 0 && N % NPerBlock == 0 && K % KPerBlock == 0))
{
throw std::runtime_error("wrong! GEMM size no divisible");
}
constexpr auto M1 = Number<MPerThread * MLevel0Cluster * MLevel1Cluster>{};
constexpr auto N1 = Number<NPerThread * NLevel0Cluster * NLevel1Cluster>{};
if(!(MPerBlock % M1 == 0 && NPerBlock % N1 == 0))
{
throw std::runtime_error("wrong! GEMM size no divisible");
}
// GEMM
using gridwise_gemm =
GridwiseDynamicGemm_km_kn_m0m1n0n1_xdlops_v1<BlockSize,
FloatAB,
FloatAcc,
FloatC,
CGlobalMemoryDataOperation,
AGlobalDesc,
BGlobalDesc,
CGlobalDesc,
CBlockClusterDesc,
MPerBlock,
NPerBlock,
KPerBlock,
MPerThread,
NPerThread,
KPerThread,
MLevel0Cluster,
NLevel0Cluster,
MLevel1Cluster,
NLevel1Cluster,
ABlockTransferThreadSliceLengths_K_M,
ABlockTransferThreadClusterLengths_K_M,
ABlockTransferThreadClusterArrangeOrder,
ABlockTransferSrcAccessOrder,
ABlockTransferSrcVectorDim,
ABlockTransferSrcScalarPerVector,
ABlockTransferDstScalarPerVector_M,
AThreadTransferSrcResetCoordinateAfterRun,
BBlockTransferThreadSliceLengths_K_N,
BBlockTransferThreadClusterLengths_K_N,
BBlockTransferThreadClusterArrangeOrder,
BBlockTransferSrcAccessOrder,
BBlockTransferSrcVectorDim,
BBlockTransferSrcScalarPerVector,
BBlockTransferDstScalarPerVector_N,
BThreadTransferSrcResetCoordinateAfterRun,
CThreadTransferSrcDstAccessOrder,
CThreadTransferSrcDstVectorDim,
CThreadTransferDstScalarPerVector,
AGlobalIteratorHacks,
BGlobalIteratorHacks,
CGlobalIteratorHacks,
AGlobalMoveSliceWindowIteratorHacks,
BGlobalMoveSliceWindowIteratorHacks>;
const auto GridSize = (M / MPerBlock) * (N / NPerBlock);
const bool has_main_k_block_loop = (K + KPerBlock) / (2 * KPerBlock) > 1;
const bool has_double_tail_k_block_loop = (K / KPerBlock) % 2 == 0;
float ave_time = 0;
if(has_main_k_block_loop && has_double_tail_k_block_loop)
{
const auto kernel = run_gridwise_operation<gridwise_gemm,
remove_reference_t<AGlobalDesc>,
const FloatAB*,
remove_reference_t<BGlobalDesc>,
const FloatAB*,
remove_reference_t<CGlobalDesc>,
FloatC*,
remove_reference_t<CBlockClusterDesc>,
integral_constant<bool, true>,
integral_constant<bool, true>>;
ave_time = launch_and_time_kernel(kernel,
nrepeat,
dim3(GridSize),
dim3(BlockSize),
0,
0,
a_k_m_global_desc,
p_a_global,
b_k_n_global_desc,
p_b_global,
c_m0_m1_n0_n1_global_desc,
p_c_global,
c_block_cluster_desc,
integral_constant<bool, true>{},
integral_constant<bool, true>{});
}
else if(has_main_k_block_loop && !has_double_tail_k_block_loop)
{
const auto kernel = run_gridwise_operation<gridwise_gemm,
remove_reference_t<AGlobalDesc>,
const FloatAB*,
remove_reference_t<BGlobalDesc>,
const FloatAB*,
remove_reference_t<CGlobalDesc>,
FloatC*,
remove_reference_t<CBlockClusterDesc>,
integral_constant<bool, true>,
integral_constant<bool, false>>;
ave_time = launch_and_time_kernel(kernel,
nrepeat,
dim3(GridSize),
dim3(BlockSize),
0,
0,
a_k_m_global_desc,
p_a_global,
b_k_n_global_desc,
p_b_global,
c_m0_m1_n0_n1_global_desc,
p_c_global,
c_block_cluster_desc,
integral_constant<bool, true>{},
integral_constant<bool, false>{});
}
else if(!has_main_k_block_loop && has_double_tail_k_block_loop)
{
const auto kernel = run_gridwise_operation<gridwise_gemm,
remove_reference_t<AGlobalDesc>,
const FloatAB*,
remove_reference_t<BGlobalDesc>,
const FloatAB*,
remove_reference_t<CGlobalDesc>,
FloatC*,
remove_reference_t<CBlockClusterDesc>,
integral_constant<bool, false>,
integral_constant<bool, true>>;
ave_time = launch_and_time_kernel(kernel,
nrepeat,
dim3(GridSize),
dim3(BlockSize),
0,
0,
a_k_m_global_desc,
p_a_global,
b_k_n_global_desc,
p_b_global,
c_m0_m1_n0_n1_global_desc,
p_c_global,
c_block_cluster_desc,
integral_constant<bool, false>{},
integral_constant<bool, true>{});
}
else
{
const auto kernel = run_gridwise_operation<gridwise_gemm,
remove_reference_t<AGlobalDesc>,
const FloatAB*,
remove_reference_t<BGlobalDesc>,
const FloatAB*,
remove_reference_t<CGlobalDesc>,
FloatC*,
remove_reference_t<CBlockClusterDesc>,
integral_constant<bool, false>,
integral_constant<bool, false>>;
ave_time = launch_and_time_kernel(kernel,
nrepeat,
dim3(GridSize),
dim3(BlockSize),
0,
0,
a_k_m_global_desc,
p_a_global,
b_k_n_global_desc,
p_b_global,
c_m0_m1_n0_n1_global_desc,
p_c_global,
c_block_cluster_desc,
integral_constant<bool, false>{},
integral_constant<bool, false>{});
}
return ave_time;
}
} // namespace ck
#endif
#ifndef CK_GRIDWISE_DYNAMIC_GEMM_XDLOPS_HPP
#define CK_GRIDWISE_DYNAMIC_GEMM_XDLOPS_HPP
#include "common_header.hpp"
#include "dynamic_multi_index_transform_helper.hpp"
#include "dynamic_tensor_descriptor.hpp"
#include "dynamic_tensor_descriptor_helper.hpp"
#include "blockwise_gemm_v2.hpp"
#include "blockwise_dynamic_tensor_slice_transfer.hpp"
#include "threadwise_dynamic_tensor_slice_transfer.hpp"
#include "threadwise_dynamic_tensor_slice_set.hpp"
namespace ck {
template <typename GridwiseGemm,
typename AGlobalDesc,
typename FloatA,
typename BGlobalDesc,
typename FloatB,
typename CGlobalDesc,
typename FloatC,
typename CBlockClusterDesc,
bool HasMainKBlockLoop,
bool HasDoubleTailKBlockLoop>
__global__ void kernel_dynamic_gemm_xdlops_v1(const AGlobalDesc a_k_m_global_desc,
const FloatA* __restrict__ p_a_global,
const BGlobalDesc b_k_n_global_desc,
const FloatB* __restrict__ p_b_global,
const CGlobalDesc c_m0_m1_n0_n1_global_desc,
FloatC* __restrict__ p_c_global,
const CBlockClusterDesc c_block_cluster_desc)
{
GridwiseGemm{}.Run(a_k_m_global_desc,
p_a_global,
b_k_n_global_desc,
p_b_global,
c_m0_m1_n0_n1_global_desc,
p_c_global,
c_block_cluster_desc,
integral_constant<bool, HasMainKBlockLoop>{},
integral_constant<bool, HasDoubleTailKBlockLoop>{});
}
template <index_t BlockSize,
typename FloatAB,
typename FloatAcc,
typename FloatC,
InMemoryDataOperation CGlobalMemoryDataOperation,
typename AGlobalDesc,
typename BGlobalDesc,
typename CGlobalDesc,
typename CBlockClusterDesc,
index_t MPerBlock,
index_t NPerBlock,
index_t KPerBlock,
index_t MPerThread,
index_t NPerThread,
index_t KPerThread,
index_t MLevel0Cluster,
index_t NLevel0Cluster,
index_t MLevel1Cluster,
index_t NLevel1Cluster,
typename ABlockTransferThreadSliceLengths_K_M,
typename ABlockTransferThreadClusterLengths_K_M,
typename ABlockTransferThreadClusterArrangeOrder,
typename ABlockTransferSrcAccessOrder,
index_t ABlockTransferSrcVectorDim,
index_t ABlockTransferSrcScalarPerVector,
index_t ABlockTransferDstScalarPerVector_M,
bool AThreadTransferSrcResetCoordinateAfterRun,
typename BBlockTransferThreadSliceLengths_K_N,
typename BBlockTransferThreadClusterLengths_K_N,
typename BBlockTransferThreadClusterArrangeOrder,
typename BBlockTransferSrcAccessOrder,
index_t BBlockTransferSrcVectorDim,
index_t BBlockTransferSrcScalarPerVector,
index_t BBlockTransferDstScalarPerVector_N,
bool BThreadTransferSrcResetCoordinateAfterRun,
typename CThreadTransferSrcDstAccessOrder,
index_t CThreadTransferSrcDstVectorDim,
index_t CThreadTransferDstScalarPerVector,
typename AGlobalIteratorHacks,
typename BGlobalIteratorHacks,
typename CGlobalIteratorHacks,
typename AGlobalMoveSliceWindowIteratorHacks,
typename BGlobalMoveSliceWindowIteratorHacks>
struct GridwiseDynamicGemm_km_kn_m0m1n0n1_xdlops_v1
{
__host__ __device__ static constexpr index_t GetSharedMemoryNumberOfByte()
{
constexpr auto max_lds_align = math::lcm(Number<ABlockTransferDstScalarPerVector_M>{},
Number<BBlockTransferDstScalarPerVector_N>{},
Number<MPerThread>{},
Number<NPerThread>{});
// A matrix in LDS memory, dst of blockwise copy
// be careful of LDS alignment
constexpr auto a_k_m_block_desc = make_dynamic_naive_tensor_descriptor_aligned_v2(
make_tuple(Number<KPerBlock>{}, Number<MPerBlock>{}), max_lds_align);
// B matrix in LDS memory, dst of blockwise copy
// be careful of LDS alignment
constexpr auto b_k_n_block_desc = make_dynamic_naive_tensor_descriptor_aligned_v2(
make_tuple(Number<KPerBlock>{}, Number<NPerBlock>{}), max_lds_align);
// LDS allocation for A and B: be careful of alignment
constexpr auto a_block_space_size =
math::integer_least_multiple(a_k_m_block_desc.GetElementSpaceSize(), max_lds_align);
constexpr auto b_block_space_size =
math::integer_least_multiple(b_k_n_block_desc.GetElementSpaceSize(), max_lds_align);
return 2 * (a_block_space_size + b_block_space_size) * sizeof(FloatAB);
}
template <bool HasMainKBlockLoop, bool HasDoubleTailKBlockLoop>
__device__ void Run(const AGlobalDesc& a_k_m_global_desc,
const FloatAB* __restrict__ p_a_global,
const BGlobalDesc& b_k_n_global_desc,
const FloatAB* __restrict__ p_b_global,
const CGlobalDesc& c_m0_m1_n0_n1_global_desc,
FloatC* __restrict__ p_c_global,
const CBlockClusterDesc& c_block_cluster_desc,
FloatAB* __restrict__ p_shared_block,
integral_constant<bool, HasMainKBlockLoop>,
integral_constant<bool, HasDoubleTailKBlockLoop>) const
{
constexpr auto I0 = Number<0>{};
constexpr auto I1 = Number<1>{};
constexpr auto I2 = Number<2>{};
constexpr auto I3 = Number<3>{};
const auto K = a_k_m_global_desc.GetLength(I0);
const auto M = a_k_m_global_desc.GetLength(I1);
const auto N = b_k_n_global_desc.GetLength(I1);
// divide block work by [M, N]
const auto block_work_idx =
c_block_cluster_desc.CalculateBottomIndex(make_multi_index(get_block_1d_id()));
// HACK: this force m/n_block_data_idx_on_global into SGPR
const index_t m_block_data_idx_on_global =
__builtin_amdgcn_readfirstlane(block_work_idx[I0] * MPerBlock);
const index_t n_block_data_idx_on_global =
__builtin_amdgcn_readfirstlane(block_work_idx[I1] * NPerBlock);
// lds max alignment
constexpr auto max_lds_align = math::lcm(Number<ABlockTransferDstScalarPerVector_M>{},
Number<BBlockTransferDstScalarPerVector_N>{},
Number<MPerThread>{},
Number<NPerThread>{});
// A matrix in LDS memory, dst of blockwise copy
// be careful of LDS alignment
constexpr auto a_k_m_block_desc = make_dynamic_naive_tensor_descriptor_aligned_v2(
make_tuple(Number<KPerBlock>{}, Number<MPerBlock>{}), max_lds_align);
// B matrix in LDS memory, dst of blockwise copy
// be careful of LDS alignment
constexpr auto b_k_n_block_desc = make_dynamic_naive_tensor_descriptor_aligned_v2(
make_tuple(Number<KPerBlock>{}, Number<NPerBlock>{}), max_lds_align);
// A matrix blockwise copy
auto a_blockwise_copy =
BlockwiseDynamicTensorSliceTransfer_v4<BlockSize,
InMemoryDataOperation::Set,
Sequence<KPerBlock, MPerBlock>,
ABlockTransferThreadSliceLengths_K_M,
ABlockTransferThreadClusterLengths_K_M,
ABlockTransferThreadClusterArrangeOrder,
FloatAB,
FloatAB,
decltype(a_k_m_global_desc),
decltype(a_k_m_block_desc),
ABlockTransferSrcAccessOrder,
Sequence<0, 1>,
ABlockTransferSrcVectorDim,
1,
ABlockTransferSrcScalarPerVector,
ABlockTransferDstScalarPerVector_M,
AddressSpace::Global,
AddressSpace::Lds,
1,
1,
AThreadTransferSrcResetCoordinateAfterRun,
true>(
a_k_m_global_desc,
make_multi_index(0, m_block_data_idx_on_global),
a_k_m_block_desc,
make_multi_index(0, 0));
// B matrix blockwise copy
auto b_blockwise_copy =
BlockwiseDynamicTensorSliceTransfer_v4<BlockSize,
InMemoryDataOperation::Set,
Sequence<KPerBlock, NPerBlock>,
BBlockTransferThreadSliceLengths_K_N,
BBlockTransferThreadClusterLengths_K_N,
BBlockTransferThreadClusterArrangeOrder,
FloatAB,
FloatAB,
decltype(b_k_n_global_desc),
decltype(b_k_n_block_desc),
BBlockTransferSrcAccessOrder,
Sequence<0, 1>,
BBlockTransferSrcVectorDim,
1,
BBlockTransferSrcScalarPerVector,
BBlockTransferDstScalarPerVector_N,
AddressSpace::Global,
AddressSpace::Lds,
1,
1,
BThreadTransferSrcResetCoordinateAfterRun,
true>(
b_k_n_global_desc,
make_multi_index(0, n_block_data_idx_on_global),
b_k_n_block_desc,
make_multi_index(0, 0));
// GEMM definition
// c_mtx += transpose(a_mtx) * b_mtx
// a_mtx[KPerBlock, MPerBlock] is in LDS
// b_mtx[KPerBlocl, NPerBlock] is in LDS
// c_mtx[MPerBlock, NPerBlock] is distributed among threads, and saved in
// register
// sanity check
static_assert(MPerBlock % (MPerThread * MLevel0Cluster * MLevel1Cluster) == 0 &&
NPerBlock % (NPerThread * NLevel0Cluster * NLevel1Cluster) == 0,
"wrong!");
constexpr index_t MRepeat = MPerBlock / (MPerThread * MLevel0Cluster * MLevel1Cluster);
constexpr index_t NRepeat = NPerBlock / (NPerThread * NLevel0Cluster * NLevel1Cluster);
constexpr auto a_k_m0_m1_block_desc = transform_dynamic_tensor_descriptor(
a_k_m_block_desc,
make_tuple(
make_pass_through_transform(Number<KPerBlock>{}),
make_unmerge_transform(make_tuple(
Number<MRepeat>{}, Number<MPerThread * MLevel0Cluster * MLevel1Cluster>{}))),
make_tuple(Sequence<0>{}, Sequence<1>{}),
make_tuple(Sequence<0>{}, Sequence<1, 2>{}));
constexpr auto b_k_n0_n1_block_desc = transform_dynamic_tensor_descriptor(
b_k_n_block_desc,
make_tuple(
make_pass_through_transform(Number<KPerBlock>{}),
make_unmerge_transform(make_tuple(
Number<NRepeat>{}, Number<NPerThread * NLevel0Cluster * NLevel1Cluster>{}))),
make_tuple(Sequence<0>{}, Sequence<1>{}),
make_tuple(Sequence<0>{}, Sequence<1, 2>{}));
constexpr auto c_m0_m1_n0_n1_thread_desc =
make_dynamic_naive_tensor_descriptor_packed_v2(make_tuple(
Number<MRepeat>{}, Number<MPerThread>{}, Number<NRepeat>{}, Number<NPerThread>{}));
const auto blockwise_gemm =
BlockwiseGemm_km0m1_kn0n1_m0m1n0n1_v2_pipeline_2x2<BlockSize,
FloatAB,
FloatAB,
FloatAcc,
decltype(a_k_m0_m1_block_desc),
decltype(b_k_n0_n1_block_desc),
decltype(c_m0_m1_n0_n1_thread_desc),
MPerThread,
NPerThread,
KPerThread,
MLevel0Cluster,
NLevel0Cluster,
MLevel1Cluster,
NLevel1Cluster,
MPerThread,
NPerThread>{};
// LDS allocation for A and B: be careful of alignment
constexpr auto a_block_space_size =
math::integer_least_multiple(a_k_m_block_desc.GetElementSpaceSize(), max_lds_align);
constexpr auto b_block_space_size =
math::integer_least_multiple(b_k_n_block_desc.GetElementSpaceSize(), max_lds_align);
FloatAB* p_a_block_double = p_shared_block;
FloatAB* p_b_block_double = p_shared_block + 2 * a_block_space_size;
// register allocation for output
auto c_thread_buf =
make_static_buffer<FloatAcc>(c_m0_m1_n0_n1_thread_desc.GetElementSpaceSize());
ThreadwiseDynamicTensorSliceSet_v1<FloatAcc,
decltype(c_m0_m1_n0_n1_thread_desc),
Sequence<MRepeat, MPerThread, NRepeat, NPerThread>>{}
.Run(c_m0_m1_n0_n1_thread_desc, make_tuple(I0, I0, I0, I0), c_thread_buf, FloatAcc{0});
constexpr auto a_block_slice_copy_step = make_multi_index(KPerBlock, 0);
constexpr auto b_block_slice_copy_step = make_multi_index(KPerBlock, 0);
// hack to control index calculation when iterating over A and B matrix for threadwise copy
constexpr auto a_k_m_global_iterator_hacks = AGlobalIteratorHacks{};
constexpr auto b_k_n_global_iterator_hacks = BGlobalIteratorHacks{};
// hack to control index calculation when move slice window for A and B matrix for
// threadwise copy
constexpr auto a_k_m_global_move_slice_window_iterator_hack =
AGlobalMoveSliceWindowIteratorHacks{};
constexpr auto b_k_n_global_move_slice_window_iterator_hack =
BGlobalMoveSliceWindowIteratorHacks{};
FloatAB* p_a_block_even = p_a_block_double;
FloatAB* p_b_block_even = p_b_block_double;
FloatAB* p_a_block_odd = p_a_block_double + a_block_space_size;
FloatAB* p_b_block_odd = p_b_block_double + b_block_space_size;
auto a_block_even_buf = make_dynamic_buffer(p_a_block_even);
auto b_block_even_buf = make_dynamic_buffer(p_b_block_even);
auto a_block_odd_buf = make_dynamic_buffer(p_a_block_odd);
auto b_block_odd_buf = make_dynamic_buffer(p_b_block_odd);
// LDS double buffer: preload data into LDS
{
a_blockwise_copy.RunRead(a_k_m_global_desc, p_a_global, a_k_m_global_iterator_hacks);
b_blockwise_copy.RunRead(b_k_n_global_desc, p_b_global, b_k_n_global_iterator_hacks);
a_blockwise_copy.RunWrite(a_k_m_block_desc, p_a_block_double);
b_blockwise_copy.RunWrite(b_k_n_block_desc, p_b_block_double);
}
if constexpr(HasMainKBlockLoop)
{
index_t k_block_data_begin = 0;
// LDS double buffer: main body
// use Do-While loop instead of For loop to simplify control flow
do
{
// even iteration
a_blockwise_copy.MoveSrcSliceWindow(a_k_m_global_desc,
a_block_slice_copy_step,
a_k_m_global_move_slice_window_iterator_hack);
b_blockwise_copy.MoveSrcSliceWindow(b_k_n_global_desc,
b_block_slice_copy_step,
b_k_n_global_move_slice_window_iterator_hack);
__syncthreads();
// LDS doubel buffer: load next data from device mem
a_blockwise_copy.RunRead(
a_k_m_global_desc, p_a_global, a_k_m_global_iterator_hacks);
b_blockwise_copy.RunRead(
b_k_n_global_desc, p_b_global, b_k_n_global_iterator_hacks);
// LDS double buffer: GEMM on current data
blockwise_gemm.Run(a_block_even_buf, b_block_even_buf, c_thread_buf);
// LDS double buffer: store next data to LDS
a_blockwise_copy.RunWrite(a_k_m_block_desc, p_a_block_odd);
b_blockwise_copy.RunWrite(b_k_n_block_desc, p_b_block_odd);
// odd iteration
a_blockwise_copy.MoveSrcSliceWindow(a_k_m_global_desc,
a_block_slice_copy_step,
a_k_m_global_move_slice_window_iterator_hack);
b_blockwise_copy.MoveSrcSliceWindow(b_k_n_global_desc,
b_block_slice_copy_step,
b_k_n_global_move_slice_window_iterator_hack);
__syncthreads();
// LDS doubel buffer: load next data from device mem
a_blockwise_copy.RunRead(
a_k_m_global_desc, p_a_global, a_k_m_global_iterator_hacks);
b_blockwise_copy.RunRead(
b_k_n_global_desc, p_b_global, b_k_n_global_iterator_hacks);
// LDS double buffer: GEMM on current data
blockwise_gemm.Run(a_block_odd_buf, b_block_odd_buf, c_thread_buf);
// LDS double buffer: store next data to LDS
a_blockwise_copy.RunWrite(a_k_m_block_desc, p_a_block_even);
b_blockwise_copy.RunWrite(b_k_n_block_desc, p_b_block_even);
k_block_data_begin += 2 * KPerBlock;
} while(k_block_data_begin < K - 2 * KPerBlock);
}
// LDS double buffer: tail
if constexpr(HasDoubleTailKBlockLoop) // if has 2 iteration left
{
a_blockwise_copy.MoveSrcSliceWindow(a_k_m_global_desc,
a_block_slice_copy_step,
a_k_m_global_move_slice_window_iterator_hack);
b_blockwise_copy.MoveSrcSliceWindow(b_k_n_global_desc,
b_block_slice_copy_step,
b_k_n_global_move_slice_window_iterator_hack);
__syncthreads();
// LDS double buffer: load last data from device mem
a_blockwise_copy.RunRead(a_k_m_global_desc, p_a_global, a_k_m_global_iterator_hacks);
b_blockwise_copy.RunRead(b_k_n_global_desc, p_b_global, b_k_n_global_iterator_hacks);
// LDS double buffer: GEMM on 2nd-last data
blockwise_gemm.Run(a_block_even_buf, b_block_even_buf, c_thread_buf);
// LDS double buffer: store last data to LDS
a_blockwise_copy.RunWrite(a_k_m_block_desc, p_a_block_double + a_block_space_size);
b_blockwise_copy.RunWrite(b_k_n_block_desc, p_b_block_double + b_block_space_size);
__syncthreads();
// LDS double buffer: GEMM on last data
blockwise_gemm.Run(a_block_odd_buf, b_block_odd_buf, c_thread_buf);
}
else // if has 1 iteration left
{
__syncthreads();
// LDS double buffer: GEMM on last data
blockwise_gemm.Run(a_block_even_buf, b_block_even_buf, c_thread_buf);
}
// output: register to global memory
{
constexpr auto M1 = Number<MPerThread * MLevel0Cluster * MLevel1Cluster>{};
constexpr auto N1 = Number<NPerThread * NLevel0Cluster * NLevel1Cluster>{};
// hack to control index calculation when iterating over c_m0_m1_n0_n1_global tensor
constexpr auto c_m0_m1_n0_n1_global_tensor_iterator_hacks = CGlobalIteratorHacks{};
const auto c_thread_data_idx_on_block =
blockwise_gemm.CalculateCThreadOriginDataIndex(get_thread_local_1d_id());
ThreadwiseDynamicTensorSliceTransfer_v1r3<
FloatAcc,
FloatC,
decltype(c_m0_m1_n0_n1_thread_desc),
decltype(c_m0_m1_n0_n1_global_desc),
Sequence<MRepeat, MPerThread, NRepeat, NPerThread>,
CThreadTransferSrcDstAccessOrder,
CThreadTransferSrcDstVectorDim,
CThreadTransferDstScalarPerVector,
AddressSpace::Vgpr,
AddressSpace::Global,
CGlobalMemoryDataOperation,
1,
true>{
c_m0_m1_n0_n1_global_desc,
make_multi_index(m_block_data_idx_on_global / M1 + c_thread_data_idx_on_block[I0],
c_thread_data_idx_on_block[I1],
n_block_data_idx_on_global / N1 + c_thread_data_idx_on_block[I2],
c_thread_data_idx_on_block[I3])}
.Run(c_m0_m1_n0_n1_thread_desc,
make_tuple(I0, I0, I0, I0),
c_thread_buf,
c_m0_m1_n0_n1_global_desc,
p_c_global,
c_m0_m1_n0_n1_global_tensor_iterator_hacks);
}
}
template <bool HasMainKBlockLoop, bool HasDoubleTailKBlockLoop>
__device__ void Run(const AGlobalDesc& a_k_m_global_desc,
const FloatAB* __restrict__ p_a_global,
const BGlobalDesc& b_k_n_global_desc,
const FloatAB* __restrict__ p_b_global,
const CGlobalDesc& c_m0_m1_n0_n1_global_desc,
FloatC* __restrict__ p_c_global,
const CBlockClusterDesc& c_block_cluster_desc,
integral_constant<bool, HasMainKBlockLoop>,
integral_constant<bool, HasDoubleTailKBlockLoop>) const
{
constexpr index_t shared_block_size = GetSharedMemoryNumberOfByte() / sizeof(FloatAB);
__shared__ FloatAB p_shared_block[shared_block_size];
Run(a_k_m_global_desc,
p_a_global,
b_k_n_global_desc,
p_b_global,
c_m0_m1_n0_n1_global_desc,
p_c_global,
c_block_cluster_desc,
p_shared_block,
integral_constant<bool, HasMainKBlockLoop>{},
integral_constant<bool, HasDoubleTailKBlockLoop>{});
}
};
} // namespace ck
#endif
...@@ -16,9 +16,9 @@ ...@@ -16,9 +16,9 @@
// GPU ID // GPU ID
#if 0 #if 0
#define CK_AMD_GPU_GFX906 1 #define CK_AMD_GPU_GFX906 1
#elif 0
#define CK_AMD_GPU_GFX908 1
#elif 1 #elif 1
#define CK_AMD_GPU_GFX908 1
#elif 0
#define CK_AMD_GPU_GFX1030 1 #define CK_AMD_GPU_GFX1030 1
#endif #endif
......
#include <unistd.h>
#include "device.hpp"
#include "host_tensor.hpp"
#include "driver_dynamic_convolution_forward_implicit_gemm_v4r4_xdlops_nchw_kcyx_nkhw.hpp"
template <class TInWei,
ck::index_t InWeiVectorSize,
class TAcc,
class TOut,
class InDesc,
class WeiDesc,
class OutDesc,
class ConvStrides,
class ConvDilations,
class InLeftPads,
class InRightPads>
void device_dynamic_convolution_forward_implicit_gemm_v4r4_xdlops_nchw_kcyx_nkhw(
InDesc,
const Tensor<TInWei>& in_n_c_hi_wi,
WeiDesc,
const Tensor<TInWei>& wei_k_c_y_x,
OutDesc,
Tensor<TOut>& out_n_k_ho_wo,
ConvStrides,
ConvDilations,
InLeftPads,
InRightPads,
ck::index_t nrepeat)
{
using namespace ck;
std::cout << __func__ << std::endl;
constexpr auto I0 = Number<0>{};
constexpr auto I1 = Number<1>{};
constexpr auto I2 = Number<2>{};
constexpr auto I3 = Number<3>{};
constexpr auto I4 = Number<4>{};
constexpr auto I5 = Number<5>{};
constexpr auto I6 = Number<6>{};
constexpr auto I7 = Number<7>{};
constexpr auto I8 = Number<8>{};
DeviceMem in_n_c_hi_wi_device_buf(sizeof(TInWei) * in_n_c_hi_wi.mDesc.GetElementSpace());
DeviceMem wei_k_c_y_x_device_buf(sizeof(TInWei) * wei_k_c_y_x.mDesc.GetElementSpace());
DeviceMem out_n_k_ho_wo_device_buf(sizeof(TOut) * out_n_k_ho_wo.mDesc.GetElementSpace());
in_n_c_hi_wi_device_buf.ToDevice(in_n_c_hi_wi.mData.data());
wei_k_c_y_x_device_buf.ToDevice(wei_k_c_y_x.mData.data());
out_n_k_ho_wo_device_buf.ToDevice(out_n_k_ho_wo.mData.data());
#if 1
// run-time variables
const auto in_n_c_hi_wi_desc =
make_dynamic_naive_tensor_descriptor_packed_v2(to_multi_index(InDesc::GetLengths()));
const auto wei_k_c_y_x_desc =
make_dynamic_naive_tensor_descriptor_packed_v2(to_multi_index(WeiDesc::GetLengths()));
const auto out_n_k_ho_wo_desc =
make_dynamic_naive_tensor_descriptor_packed_v2(to_multi_index(OutDesc::GetLengths()));
const auto conv_strides = to_multi_index(ConvStrides{});
const auto conv_dilations = to_multi_index(ConvDilations{});
const auto in_left_pads = to_multi_index(InLeftPads{});
const auto in_right_pads = to_multi_index(InRightPads{});
#else
// compile-time variables
const auto in_n_c_hi_wi_desc = make_dynamic_naive_tensor_descriptor_packed_v2(
sequence_to_tuple_of_number(InDesc::GetLengths()));
const auto wei_k_c_y_x_desc = make_dynamic_naive_tensor_descriptor_packed_v2(
sequence_to_tuple_of_number(WeiDesc::GetLengths()));
const auto out_n_k_ho_wo_desc = make_dynamic_naive_tensor_descriptor_packed_v2(
sequence_to_tuple_of_number(OutDesc::GetLengths()));
const auto conv_strides = sequence_to_tuple_of_number(ConvStrides{});
const auto conv_dilations = sequence_to_tuple_of_number(ConvDilations{});
const auto in_left_pads = sequence_to_tuple_of_number(InLeftPads{});
const auto in_right_pads = sequence_to_tuple_of_number(InRightPads{});
#endif
// cdata = 64, BlockSize = 256, 128x128x8
// b thread copy 4x1
constexpr index_t BlockSize = 256;
constexpr index_t GemmMPerBlock = 128;
constexpr index_t GemmNPerBlock = 128;
constexpr index_t GemmKPerBlock = 8;
constexpr index_t GemmMPerThread = 4;
constexpr index_t GemmNPerThread = 4;
constexpr index_t GemmKPerThread = 1;
constexpr index_t GemmMLevel0Cluster = 2;
constexpr index_t GemmNLevel0Cluster = 2;
constexpr index_t GemmMLevel1Cluster = 8;
constexpr index_t GemmNLevel1Cluster = 8;
using GemmABlockTransferThreadSliceLengths_GemmK_GemmM = Sequence<4, 1>;
using GemmABlockTransferThreadClusterLengths_GemmK_GemmM = Sequence<2, 128>;
constexpr index_t GemmABlockTransferSrcScalarPerVector_GemmK = 4;
constexpr index_t GemmABlockTransferDstScalarPerVector_GemmM = 1;
using GemmBBlockTransferThreadSliceLengths_GemmK_GemmN = Sequence<4, 1>;
using GemmBBlockTransferThreadClusterLengths_GemmK_GemmN = Sequence<2, 128>;
constexpr index_t GemmBBlockTransferSrcScalarPerVector_GemmN = 1;
constexpr index_t GemmBBlockTransferDstScalarPerVector_GemmN = 1;
constexpr index_t GemmCThreadTransferDstScalarPerVector_GemmN1 = 1;
constexpr index_t GemmM1 = GemmMPerThread * GemmMLevel0Cluster * GemmMLevel1Cluster;
constexpr index_t GemmN1 = GemmNPerThread * GemmNLevel0Cluster * GemmNLevel1Cluster;
const auto descs =
transform_forward_convolution_into_gemm_v4r4_xdlops_nchw_kcyx_nkhw_pad<GemmMPerBlock,
GemmNPerBlock,
GemmM1,
GemmN1>(
wei_k_c_y_x_desc,
in_n_c_hi_wi_desc,
out_n_k_ho_wo_desc,
conv_strides,
conv_dilations,
in_left_pads,
in_right_pads);
for(index_t i = 0; i < 5; ++i)
{
float ave_time = launch_kernel_dynamic_gemm_xdlops_v1<
BlockSize,
typename vector_type<TInWei, InWeiVectorSize>::type,
TAcc,
TOut,
InMemoryDataOperation::Set,
decltype(descs[I0]),
decltype(descs[I1]),
decltype(descs[I2]),
decltype(descs[I3]),
GemmMPerBlock,
GemmNPerBlock,
GemmKPerBlock,
GemmMPerThread,
GemmNPerThread,
GemmKPerThread,
GemmMLevel0Cluster,
GemmNLevel0Cluster,
GemmMLevel1Cluster,
GemmNLevel1Cluster,
GemmABlockTransferThreadSliceLengths_GemmK_GemmM,
GemmABlockTransferThreadClusterLengths_GemmK_GemmM,
Sequence<1, 0>,
Sequence<1, 0>,
0,
GemmABlockTransferSrcScalarPerVector_GemmK,
GemmABlockTransferDstScalarPerVector_GemmM,
false, // don't move back src coordinate after threadwise copy
GemmBBlockTransferThreadSliceLengths_GemmK_GemmN,
GemmBBlockTransferThreadClusterLengths_GemmK_GemmN,
Sequence<0, 1>,
Sequence<0, 1>,
1,
GemmBBlockTransferSrcScalarPerVector_GemmN,
GemmBBlockTransferDstScalarPerVector_GemmN,
false, // don't move back src coordinate after threadwise copy, which will be fused with
// MoveSrcSliceWindow() to save addr computation
Sequence<2, 3, 0, 1>,
3,
GemmCThreadTransferDstScalarPerVector_GemmN1,
decltype(descs[I4]),
decltype(descs[I5]),
decltype(descs[I6]),
decltype(descs[I7]),
decltype(descs[I8])>(static_cast<typename vector_type<TInWei, InWeiVectorSize>::type*>(
wei_k_c_y_x_device_buf.GetDeviceBuffer()),
static_cast<typename vector_type<TInWei, InWeiVectorSize>::type*>(
in_n_c_hi_wi_device_buf.GetDeviceBuffer()),
static_cast<TOut*>(out_n_k_ho_wo_device_buf.GetDeviceBuffer()),
descs[I0],
descs[I1],
descs[I2],
descs[I3],
descs[I4],
descs[I5],
descs[I6],
descs[I7],
descs[I8],
nrepeat);
float perf = (float)calculate_convolution_flops(
in_n_c_hi_wi_desc, wei_k_c_y_x_desc, out_n_k_ho_wo_desc) /
(std::size_t(1000) * 1000 * 1000) / ave_time;
std::cout << "Average time : " << ave_time << " ms, " << perf << " TFlop/s" << std::endl;
}
// copy result back to host
out_n_k_ho_wo_device_buf.FromDevice(out_n_k_ho_wo.mData.data());
}
...@@ -18,11 +18,27 @@ ...@@ -18,11 +18,27 @@
#include "device_dynamic_convolution_forward_implicit_gemm_v4r4_nhwc_kyxc_nhwk.hpp" #include "device_dynamic_convolution_forward_implicit_gemm_v4r4_nhwc_kyxc_nhwk.hpp"
#include "device_dynamic_convolution_forward_implicit_gemm_v5r1_nchw_kcyx_nkhw.hpp" #include "device_dynamic_convolution_forward_implicit_gemm_v5r1_nchw_kcyx_nkhw.hpp"
#include "device_dynamic_convolution_forward_implicit_gemm_v4r4_xdlops_nchw_kcyx_nkhw.hpp"
int main(int argc, char* argv[]) int main(int argc, char* argv[])
{ {
using namespace ck; using namespace ck;
#if 0 #if 1
constexpr index_t N = 8;
constexpr index_t C = 16;
constexpr index_t HI = 4;
constexpr index_t WI = 4;
constexpr index_t K = 128;
constexpr index_t Y = 1;
constexpr index_t X = 1;
using ConvStrides = Sequence<1, 1>;
using ConvDilations = Sequence<1, 1>;
using LeftPads = Sequence<0, 0>;
using RightPads = Sequence<0, 0>;
#elif 0
constexpr index_t N = 1; constexpr index_t N = 1;
constexpr index_t C = 16; constexpr index_t C = 16;
constexpr index_t HI = 1080; constexpr index_t HI = 1080;
...@@ -630,7 +646,7 @@ int main(int argc, char* argv[]) ...@@ -630,7 +646,7 @@ int main(int argc, char* argv[])
print_array("ConvStrides", to_multi_index(ConvStrides{})); print_array("ConvStrides", to_multi_index(ConvStrides{}));
print_array("ConvDilations", to_multi_index(ConvDilations{})); print_array("ConvDilations", to_multi_index(ConvDilations{}));
#if 0 #if 1
using in_data_t = float; using in_data_t = float;
constexpr index_t in_vector_size = 1; constexpr index_t in_vector_size = 1;
using acc_data_t = float; using acc_data_t = float;
...@@ -724,6 +740,22 @@ int main(int argc, char* argv[]) ...@@ -724,6 +740,22 @@ int main(int argc, char* argv[])
LeftPads{}, LeftPads{},
RightPads{}, RightPads{},
nrepeat); nrepeat);
#elif 1
device_dynamic_convolution_forward_implicit_gemm_v4r4_xdlops_nchw_kcyx_nkhw<in_data_t,
in_vector_size,
acc_data_t,
out_data_t>(
in_nchw_desc,
in_nchw,
wei_kcyx_desc,
wei_kcyx,
out_nkhw_desc,
out_nkhw_device,
ConvStrides{},
ConvDilations{},
LeftPads{},
RightPads{},
nrepeat);
#elif 0 #elif 0
device_dynamic_convolution_forward_implicit_gemm_v4r4_nchw_kcyx_nkhw<in_data_t, device_dynamic_convolution_forward_implicit_gemm_v4r4_nchw_kcyx_nkhw<in_data_t,
in_vector_size, in_vector_size,
......
...@@ -10,7 +10,7 @@ cmake ...@@ -10,7 +10,7 @@ cmake
-D CMAKE_INSTALL_PREFIX=${MY_PROJECT_INSTALL} \ -D CMAKE_INSTALL_PREFIX=${MY_PROJECT_INSTALL} \
-D CMAKE_BUILD_TYPE=Release \ -D CMAKE_BUILD_TYPE=Release \
-D DEVICE_BACKEND="AMD" \ -D DEVICE_BACKEND="AMD" \
-D CMAKE_CXX_FLAGS="-O3 --amdgpu-target=gfx1030 -gline-tables-only -save-temps=$CWD -ftemplate-backtrace-limit=0" \ -D CMAKE_CXX_FLAGS="-O3 --amdgpu-target=gfx908 -gline-tables-only -save-temps=$CWD -ftemplate-backtrace-limit=0" \
-D CMAKE_CXX_COMPILER=/opt/rocm/bin/hipcc \ -D CMAKE_CXX_COMPILER=/opt/rocm/bin/hipcc \
-D CMAKE_PREFIX_PATH="/opt/rocm" \ -D CMAKE_PREFIX_PATH="/opt/rocm" \
-D CMAKE_VERBOSE_MAKEFILE:BOOL=ON \ -D CMAKE_VERBOSE_MAKEFILE:BOOL=ON \
......
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment