Commit bc641634 authored by Jun Liu's avatar Jun Liu
Browse files

Merge branch 'develop-tmp' into amd-develop

parents f30e5975 a3d9a2cd
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2023, Advanced Micro Devices, Inc. All rights reserved.
#include "normalization_instance_common.hpp"
#include "normalization_fwd_instance_common.hpp"
namespace ck {
namespace tensor_operation {
......@@ -10,8 +10,8 @@ namespace instance {
using Pass = ck::tensor_operation::element_wise::PassThrough;
void add_device_normalization_rank_2_1_f32_instances(
std::vector<std::unique_ptr<DeviceNormalization<F32, F32, F32, F32, F32, Pass, 2, 1>>>&
void add_device_normalization_fwd_rank_2_1_f32_instances(
std::vector<std::unique_ptr<DeviceNormalizationFwd<F32, F32, F32, F32, F32, Pass, 2, 1>>>&
instances)
{
add_device_operation_instances(instances,
......
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2023, Advanced Micro Devices, Inc. All rights reserved.
#include "normalization_instance_common.hpp"
#include "normalization_fwd_instance_common.hpp"
namespace ck {
namespace tensor_operation {
......@@ -10,8 +10,8 @@ namespace instance {
using Pass = ck::tensor_operation::element_wise::PassThrough;
void add_device_normalization_rank_4_3_f16_instances(
std::vector<std::unique_ptr<DeviceNormalization<F16, F16, F16, F16, F32, Pass, 4, 3>>>&
void add_device_normalization_fwd_rank_4_3_f16_instances(
std::vector<std::unique_ptr<DeviceNormalizationFwd<F16, F16, F16, F16, F32, Pass, 4, 3>>>&
instances)
{
add_device_operation_instances(instances,
......
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2023, Advanced Micro Devices, Inc. All rights reserved.
#include "normalization_instance_common.hpp"
#include "normalization_fwd_instance_common.hpp"
namespace ck {
namespace tensor_operation {
......@@ -10,8 +10,8 @@ namespace instance {
using Pass = ck::tensor_operation::element_wise::PassThrough;
void add_device_normalization_rank_4_3_f32_instances(
std::vector<std::unique_ptr<DeviceNormalization<F32, F32, F32, F32, F32, Pass, 4, 3>>>&
void add_device_normalization_fwd_rank_4_3_f32_instances(
std::vector<std::unique_ptr<DeviceNormalizationFwd<F32, F32, F32, F32, F32, Pass, 4, 3>>>&
instances)
{
add_device_operation_instances(instances,
......
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2023, Advanced Micro Devices, Inc. All rights reserved.
#pragma once
#include "ck/ck.hpp"
#include "ck/tensor_operation/gpu/device/impl/device_normalization_fwd_impl.hpp"
#include "ck/tensor_operation/gpu/device/impl/device_normalization_fwd_splitk_impl.hpp"
#include "ck/utility/data_type.hpp"
#include "ck/library/tensor_operation_instance/add_device_operation_instance.hpp"
namespace ck {
namespace tensor_operation {
namespace device {
namespace instance {
using F16 = ck::half_t;
using F32 = float;
template <typename OutElementwise, index_t Rank, index_t Reduce>
using device_normalization_f16_instances =
// clang-format off
std::tuple <
// XDataType, GammaDataType, BetaDataType, ComputeDataType, YDataType, SaveMeanInvStdDataType, Rank, NumReduceDim, BlockSize, MThreadClusterSize, KThreadClusterSize, MThreadSliceSize, KThreadSliceSize, XYSrcVectorDim, XSrcVectorSize, GammaSrcVectorDim, GammaSrcVectorSize, BetaSrcVectorDim, BetaSrcVectorSize, YDstVectorSize, SaveMeanInvStdScalarPerVector>
DeviceNormalizationFwdImpl<F16, F16, F16, F32, F16, F32, OutElementwise, Rank, Reduce, 128, 1, 128, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1>, // irregular size
DeviceNormalizationFwdImpl<F16, F16, F16, F32, F16, F32, OutElementwise, Rank, Reduce, 256, 1, 256, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1>, // irregular size
DeviceNormalizationFwdImpl<F16, F16, F16, F32, F16, F32, OutElementwise, Rank, Reduce, 512, 1, 512, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1>, // irregular size
DeviceNormalizationFwdImpl<F16, F16, F16, F32, F16, F32, OutElementwise, Rank, Reduce, 1024, 1, 1024, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1>, // irregular size
DeviceNormalizationFwdImpl<F16, F16, F16, F32, F16, F32, OutElementwise, Rank, Reduce, 256, 1, 256, 1, 2, 1, 2, 1, 2, 1, 2, 2, 1>, // irregular size
DeviceNormalizationFwdImpl<F16, F16, F16, F32, F16, F32, OutElementwise, Rank, Reduce, 256, 1, 256, 1, 4, 1, 4, 1, 4, 1, 4, 4, 1>, // irregular size
DeviceNormalizationFwdImpl<F16, F16, F16, F32, F16, F32, OutElementwise, Rank, Reduce, 64, 1, 64, 1, 8, 1, 8, 1, 8, 1, 8, 8, 1>,
DeviceNormalizationFwdImpl<F16, F16, F16, F32, F16, F32, OutElementwise, Rank, Reduce, 128, 1, 128, 1, 8, 1, 8, 1, 8, 1, 8, 8, 1>,
DeviceNormalizationFwdImpl<F16, F16, F16, F32, F16, F32, OutElementwise, Rank, Reduce, 128, 1, 128, 1, 16, 1, 8, 1, 8, 1, 8, 8, 1>,
DeviceNormalizationFwdImpl<F16, F16, F16, F32, F16, F32, OutElementwise, Rank, Reduce, 128, 1, 128, 1, 32, 1, 8, 1, 8, 1, 8, 8, 1>,
DeviceNormalizationFwdImpl<F16, F16, F16, F32, F16, F32, OutElementwise, Rank, Reduce, 256, 1, 256, 1, 8, 1, 8, 1, 8, 1, 8, 8, 1>,
DeviceNormalizationFwdImpl<F16, F16, F16, F32, F16, F32, OutElementwise, Rank, Reduce, 256, 1, 256, 1, 16, 1, 8, 1, 8, 1, 8, 8, 1>,
DeviceNormalizationFwdImpl<F16, F16, F16, F32, F16, F32, OutElementwise, Rank, Reduce, 256, 1, 256, 2, 16, 1, 8, 1, 8, 1, 8, 8, 2>,
DeviceNormalizationFwdImpl<F16, F16, F16, F32, F16, F32, OutElementwise, Rank, Reduce, 256, 1, 256, 1, 32, 1, 8, 1, 8, 1, 8, 8, 1>,
DeviceNormalizationFwdImpl<F16, F16, F16, F32, F16, F32, OutElementwise, Rank, Reduce, 512, 1, 512, 1, 8, 1, 8, 1, 8, 1, 8, 8, 1>,
DeviceNormalizationFwdImpl<F16, F16, F16, F32, F16, F32, OutElementwise, Rank, Reduce, 512, 1, 512, 1, 16, 1, 8, 1, 8, 1, 8, 8, 1>,
DeviceNormalizationFwdImpl<F16, F16, F16, F32, F16, F32, OutElementwise, Rank, Reduce, 1024, 1, 1024, 1, 8, 1, 8, 1, 8, 1, 8, 8, 1>,
DeviceNormalizationFwdImpl<F16, F16, F16, F32, F16, F32, OutElementwise, Rank, Reduce, 1024, 1, 1024, 1, 16, 1, 8, 1, 8, 1, 8, 8, 1>
// clang-format on
>;
template <typename OutElementwise, index_t Rank, index_t Reduce>
using device_normalization_splitk_f16_instances =
// clang-format off
std::tuple <
// XDataType, GammaDataType, BetaDataType, ComputeDataType, YDataType, SaveMeanInvStdDataType, Rank, NumReduceDim, BlockSize, MThreadClusterSize, KThreadClusterSize, MThreadSliceSize, KThreadSliceSize, XYSrcVectorDim, XSrcVectorSize, GammaSrcVectorDim, GammaSrcVectorSize, BetaSrcVectorDim, BetaSrcVectorSize, YDstVectorSize, SaveMeanInvStdScalarPerVector>
DeviceNormalizationFwdSplitKImpl<F16, F16, F16, F32, F16, F32, OutElementwise, Rank, Reduce, 128, 1, 128, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1>, // irregular size
DeviceNormalizationFwdSplitKImpl<F16, F16, F16, F32, F16, F32, OutElementwise, Rank, Reduce, 256, 1, 256, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1>, // irregular size
DeviceNormalizationFwdSplitKImpl<F16, F16, F16, F32, F16, F32, OutElementwise, Rank, Reduce, 512, 1, 512, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1>, // irregular size
DeviceNormalizationFwdSplitKImpl<F16, F16, F16, F32, F16, F32, OutElementwise, Rank, Reduce, 1024, 1, 1024, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1>, // irregular size
DeviceNormalizationFwdSplitKImpl<F16, F16, F16, F32, F16, F32, OutElementwise, Rank, Reduce, 256, 1, 256, 1, 2, 1, 2, 1, 2, 1, 2, 2, 1>, // irregular size
DeviceNormalizationFwdSplitKImpl<F16, F16, F16, F32, F16, F32, OutElementwise, Rank, Reduce, 256, 1, 256, 1, 4, 1, 4, 1, 4, 1, 4, 4, 1>, // irregular size
DeviceNormalizationFwdSplitKImpl<F16, F16, F16, F32, F16, F32, OutElementwise, Rank, Reduce, 64, 1, 64, 1, 8, 1, 8, 1, 8, 1, 8, 8, 1>,
DeviceNormalizationFwdSplitKImpl<F16, F16, F16, F32, F16, F32, OutElementwise, Rank, Reduce, 128, 1, 128, 1, 8, 1, 8, 1, 8, 1, 8, 8, 1>,
DeviceNormalizationFwdSplitKImpl<F16, F16, F16, F32, F16, F32, OutElementwise, Rank, Reduce, 128, 1, 128, 1, 16, 1, 8, 1, 8, 1, 8, 8, 1>,
DeviceNormalizationFwdSplitKImpl<F16, F16, F16, F32, F16, F32, OutElementwise, Rank, Reduce, 128, 1, 128, 1, 32, 1, 8, 1, 8, 1, 8, 8, 1>,
DeviceNormalizationFwdSplitKImpl<F16, F16, F16, F32, F16, F32, OutElementwise, Rank, Reduce, 256, 1, 256, 1, 8, 1, 8, 1, 8, 1, 8, 8, 1>,
DeviceNormalizationFwdSplitKImpl<F16, F16, F16, F32, F16, F32, OutElementwise, Rank, Reduce, 256, 1, 256, 1, 16, 1, 8, 1, 8, 1, 8, 8, 1>,
DeviceNormalizationFwdSplitKImpl<F16, F16, F16, F32, F16, F32, OutElementwise, Rank, Reduce, 256, 1, 256, 2, 16, 1, 8, 1, 8, 1, 8, 8, 2>,
DeviceNormalizationFwdSplitKImpl<F16, F16, F16, F32, F16, F32, OutElementwise, Rank, Reduce, 256, 1, 256, 1, 32, 1, 8, 1, 8, 1, 8, 8, 1>,
DeviceNormalizationFwdSplitKImpl<F16, F16, F16, F32, F16, F32, OutElementwise, Rank, Reduce, 512, 1, 512, 1, 8, 1, 8, 1, 8, 1, 8, 8, 1>,
DeviceNormalizationFwdSplitKImpl<F16, F16, F16, F32, F16, F32, OutElementwise, Rank, Reduce, 512, 1, 512, 1, 16, 1, 8, 1, 8, 1, 8, 8, 1>,
DeviceNormalizationFwdSplitKImpl<F16, F16, F16, F32, F16, F32, OutElementwise, Rank, Reduce, 1024, 1, 1024, 1, 8, 1, 8, 1, 8, 1, 8, 8, 1>,
DeviceNormalizationFwdSplitKImpl<F16, F16, F16, F32, F16, F32, OutElementwise, Rank, Reduce, 1024, 1, 1024, 1, 16, 1, 8, 1, 8, 1, 8, 8, 1>
// clang-format on
>;
template <typename OutElementwise, index_t Rank, index_t Reduce>
using device_normalization_f16_generic_instance = std::tuple<
// clang-format off
DeviceNormalizationFwdImpl<F16, F16, F16, F32, F16, F32, OutElementwise, Rank, Reduce, 64, 1, 64, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1>
// clang-format on
>;
template <typename OutElementwise, index_t Rank, index_t Reduce>
using device_normalization_f32_instances = std::tuple<
// clang-format off
// XDataType, GammaDataType, BetaDataType, ComputeDataType, YDataType, SaveMeanInvStdDataType, Rank, NumReduceDim, BlockSize, MThreadClusterSize, KThreadClusterSize, MThreadSliceSize, KThreadSliceSize, XYSrcVectorDim, XSrcVectorSize, GammaSrcVectorDim, GammaSrcVectorSize, BetaSrcVectorDim, BetaSrcVectorSize, YDstVectorSize, SaveMeanInvStdScalarPerVector>
DeviceNormalizationFwdImpl<F32, F32, F32, F32, F32, F32, OutElementwise, Rank, Reduce, 128, 1, 128, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1>, // irregular size
DeviceNormalizationFwdImpl<F32, F32, F32, F32, F32, F32, OutElementwise, Rank, Reduce, 256, 1, 256, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1>, // irregular size
DeviceNormalizationFwdImpl<F32, F32, F32, F32, F32, F32, OutElementwise, Rank, Reduce, 512, 1, 512, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1>, // irregular size
DeviceNormalizationFwdImpl<F32, F32, F32, F32, F32, F32, OutElementwise, Rank, Reduce, 1024, 1, 1024, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1>, // irregular size
DeviceNormalizationFwdImpl<F32, F32, F32, F32, F32, F32, OutElementwise, Rank, Reduce, 256, 1, 256, 1, 2, 1, 2, 1, 2, 1, 2, 2, 1>, // irregular size
DeviceNormalizationFwdImpl<F32, F32, F32, F32, F32, F32, OutElementwise, Rank, Reduce, 128, 1, 128, 1, 4, 1, 4, 1, 4, 1, 4, 4, 1>,
DeviceNormalizationFwdImpl<F32, F32, F32, F32, F32, F32, OutElementwise, Rank, Reduce, 128, 1, 128, 1, 8, 1, 4, 1, 4, 1, 4, 4, 1>,
DeviceNormalizationFwdImpl<F32, F32, F32, F32, F32, F32, OutElementwise, Rank, Reduce, 128, 1, 128, 1, 16, 1, 4, 1, 4, 1, 4, 4, 1>,
DeviceNormalizationFwdImpl<F32, F32, F32, F32, F32, F32, OutElementwise, Rank, Reduce, 128, 1, 128, 1, 32, 1, 4, 1, 4, 1, 4, 4, 1>,
DeviceNormalizationFwdImpl<F32, F32, F32, F32, F32, F32, OutElementwise, Rank, Reduce, 256, 1, 256, 1, 4, 1, 4, 1, 4, 1, 4, 4, 1>,
DeviceNormalizationFwdImpl<F32, F32, F32, F32, F32, F32, OutElementwise, Rank, Reduce, 256, 1, 256, 1, 8, 1, 4, 1, 4, 1, 4, 4, 1>,
DeviceNormalizationFwdImpl<F32, F32, F32, F32, F32, F32, OutElementwise, Rank, Reduce, 256, 1, 256, 1, 16, 1, 4, 1, 4, 1, 4, 4, 1>,
DeviceNormalizationFwdImpl<F32, F32, F32, F32, F32, F32, OutElementwise, Rank, Reduce, 256, 1, 256, 2, 16, 1, 4, 1, 4, 1, 4, 4, 2>,
DeviceNormalizationFwdImpl<F32, F32, F32, F32, F32, F32, OutElementwise, Rank, Reduce, 256, 1, 256, 1, 32, 1, 4, 1, 4, 1, 4, 4, 1>,
DeviceNormalizationFwdImpl<F32, F32, F32, F32, F32, F32, OutElementwise, Rank, Reduce, 512, 1, 512, 1, 4, 1, 4, 1, 4, 1, 4, 4, 1>,
DeviceNormalizationFwdImpl<F32, F32, F32, F32, F32, F32, OutElementwise, Rank, Reduce, 512, 1, 512, 1, 8, 1, 4, 1, 4, 1, 4, 4, 1>,
DeviceNormalizationFwdImpl<F32, F32, F32, F32, F32, F32, OutElementwise, Rank, Reduce, 512, 1, 512, 2, 8, 1, 4, 1, 4, 1, 4, 4, 2>,
DeviceNormalizationFwdImpl<F32, F32, F32, F32, F32, F32, OutElementwise, Rank, Reduce, 1024, 1, 1024, 1, 4, 1, 4, 1, 4, 1, 4, 4, 1>,
DeviceNormalizationFwdImpl<F32, F32, F32, F32, F32, F32, OutElementwise, Rank, Reduce, 1024, 1, 1024, 1, 8, 1, 4, 1, 4, 1, 4, 4, 1>
// clang-format on
>;
template <typename OutElementwise, index_t Rank, index_t Reduce>
using device_normalization_splitk_f32_instances = std::tuple<
// clang-format off
// XDataType, GammaDataType, BetaDataType, ComputeDataType, YDataType, SaveMeanInvStdDataType, Rank, NumReduceDim, BlockSize, MThreadClusterSize, KThreadClusterSize, MThreadSliceSize, KThreadSliceSize, XYSrcVectorDim, XSrcVectorSize, GammaSrcVectorDim, GammaSrcVectorSize, BetaSrcVectorDim, BetaSrcVectorSize, YDstVectorSize, SaveMeanInvStdScalarPerVector>
DeviceNormalizationFwdSplitKImpl<F32, F32, F32, F32, F32, F32, OutElementwise, Rank, Reduce, 128, 1, 128, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1>, // irregular size
DeviceNormalizationFwdSplitKImpl<F32, F32, F32, F32, F32, F32, OutElementwise, Rank, Reduce, 256, 1, 256, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1>, // irregular size
DeviceNormalizationFwdSplitKImpl<F32, F32, F32, F32, F32, F32, OutElementwise, Rank, Reduce, 512, 1, 512, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1>, // irregular size
DeviceNormalizationFwdSplitKImpl<F32, F32, F32, F32, F32, F32, OutElementwise, Rank, Reduce, 1024, 1, 1024, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1>, // irregular size
DeviceNormalizationFwdSplitKImpl<F32, F32, F32, F32, F32, F32, OutElementwise, Rank, Reduce, 256, 1, 256, 1, 2, 1, 2, 1, 2, 1, 2, 2, 1>, // irregular size
DeviceNormalizationFwdSplitKImpl<F32, F32, F32, F32, F32, F32, OutElementwise, Rank, Reduce, 128, 1, 128, 1, 4, 1, 4, 1, 4, 1, 4, 4, 1>,
DeviceNormalizationFwdSplitKImpl<F32, F32, F32, F32, F32, F32, OutElementwise, Rank, Reduce, 128, 1, 128, 1, 8, 1, 4, 1, 4, 1, 4, 4, 1>,
DeviceNormalizationFwdSplitKImpl<F32, F32, F32, F32, F32, F32, OutElementwise, Rank, Reduce, 128, 1, 128, 1, 16, 1, 4, 1, 4, 1, 4, 4, 1>,
DeviceNormalizationFwdSplitKImpl<F32, F32, F32, F32, F32, F32, OutElementwise, Rank, Reduce, 128, 1, 128, 1, 32, 1, 4, 1, 4, 1, 4, 4, 1>,
DeviceNormalizationFwdSplitKImpl<F32, F32, F32, F32, F32, F32, OutElementwise, Rank, Reduce, 256, 1, 256, 1, 4, 1, 4, 1, 4, 1, 4, 4, 1>,
DeviceNormalizationFwdSplitKImpl<F32, F32, F32, F32, F32, F32, OutElementwise, Rank, Reduce, 256, 1, 256, 1, 8, 1, 4, 1, 4, 1, 4, 4, 1>,
DeviceNormalizationFwdSplitKImpl<F32, F32, F32, F32, F32, F32, OutElementwise, Rank, Reduce, 256, 1, 256, 1, 16, 1, 4, 1, 4, 1, 4, 4, 1>,
DeviceNormalizationFwdSplitKImpl<F32, F32, F32, F32, F32, F32, OutElementwise, Rank, Reduce, 256, 1, 256, 2, 16, 1, 4, 1, 4, 1, 4, 4, 2>,
DeviceNormalizationFwdSplitKImpl<F32, F32, F32, F32, F32, F32, OutElementwise, Rank, Reduce, 256, 1, 256, 1, 32, 1, 4, 1, 4, 1, 4, 4, 1>,
DeviceNormalizationFwdSplitKImpl<F32, F32, F32, F32, F32, F32, OutElementwise, Rank, Reduce, 512, 1, 512, 1, 4, 1, 4, 1, 4, 1, 4, 4, 1>,
DeviceNormalizationFwdSplitKImpl<F32, F32, F32, F32, F32, F32, OutElementwise, Rank, Reduce, 512, 1, 512, 1, 8, 1, 4, 1, 4, 1, 4, 4, 1>,
DeviceNormalizationFwdSplitKImpl<F32, F32, F32, F32, F32, F32, OutElementwise, Rank, Reduce, 512, 1, 512, 2, 8, 1, 4, 1, 4, 1, 4, 4, 2>,
DeviceNormalizationFwdSplitKImpl<F32, F32, F32, F32, F32, F32, OutElementwise, Rank, Reduce, 1024, 1, 1024, 1, 4, 1, 4, 1, 4, 1, 4, 4, 1>,
DeviceNormalizationFwdSplitKImpl<F32, F32, F32, F32, F32, F32, OutElementwise, Rank, Reduce, 1024, 1, 1024, 1, 8, 1, 4, 1, 4, 1, 4, 4, 1>
// clang-format on
>;
template <typename OutElementwise, index_t Rank, index_t Reduce>
using device_normalization_f32_generic_instance = std::tuple<
// clang-format off
DeviceNormalizationFwdImpl<F32, F32, F32, F32, F32, F32, OutElementwise, Rank, Reduce, 64, 1, 64, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1>
// clang-format on
>;
template <typename OutElementwise, index_t Rank, index_t Reduce>
using device_normalization_f16_f32_f32_f16_instances = std::tuple<
// clang-format off
// XDataType, GammaDataType, BetaDataType, ComputeDataType, YDataType, SaveMeanInvStdDataType, Rank, NumReduceDim, BlockSize, MThreadClusterSize, KThreadClusterSize, MThreadSliceSize, KThreadSliceSize, XYSrcVectorDim, XSrcVectorSize, GammaSrcVectorDim, GammaSrcVectorSize, BetaSrcVectorDim, BetaSrcVectorSize, YDstVectorSize, SaveMeanInvStdScalarPerVector>
DeviceNormalizationFwdImpl<F16, F32, F32, F32, F16, F32, OutElementwise, Rank, Reduce, 128, 1, 128, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1>, // irregular size
DeviceNormalizationFwdImpl<F16, F32, F32, F32, F16, F32, OutElementwise, Rank, Reduce, 256, 1, 256, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1>, // irregular size
DeviceNormalizationFwdImpl<F16, F32, F32, F32, F16, F32, OutElementwise, Rank, Reduce, 512, 1, 512, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1>, // irregular size
DeviceNormalizationFwdImpl<F16, F32, F32, F32, F16, F32, OutElementwise, Rank, Reduce, 1024, 1, 1024, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1>, // irregular size
DeviceNormalizationFwdImpl<F16, F32, F32, F32, F16, F32, OutElementwise, Rank, Reduce, 256, 1, 256, 1, 2, 1, 2, 1, 2, 1, 2, 2, 1>, // irregular size
DeviceNormalizationFwdImpl<F16, F32, F32, F32, F16, F32, OutElementwise, Rank, Reduce, 128, 1, 128, 1, 4, 1, 4, 1, 4, 1, 4, 4, 1>,
DeviceNormalizationFwdImpl<F16, F32, F32, F32, F16, F32, OutElementwise, Rank, Reduce, 128, 1, 128, 1, 8, 1, 4, 1, 4, 1, 4, 4, 1>,
DeviceNormalizationFwdImpl<F16, F32, F32, F32, F16, F32, OutElementwise, Rank, Reduce, 128, 1, 128, 1, 16, 1, 4, 1, 4, 1, 4, 4, 1>,
DeviceNormalizationFwdImpl<F16, F32, F32, F32, F16, F32, OutElementwise, Rank, Reduce, 128, 1, 128, 1, 32, 1, 4, 1, 4, 1, 4, 4, 1>,
DeviceNormalizationFwdImpl<F16, F32, F32, F32, F16, F32, OutElementwise, Rank, Reduce, 256, 1, 256, 1, 4, 1, 4, 1, 4, 1, 4, 4, 1>,
DeviceNormalizationFwdImpl<F16, F32, F32, F32, F16, F32, OutElementwise, Rank, Reduce, 256, 1, 256, 1, 8, 1, 4, 1, 4, 1, 4, 4, 1>,
DeviceNormalizationFwdImpl<F16, F32, F32, F32, F16, F32, OutElementwise, Rank, Reduce, 256, 1, 256, 1, 16, 1, 4, 1, 4, 1, 4, 4, 1>,
DeviceNormalizationFwdImpl<F16, F32, F32, F32, F16, F32, OutElementwise, Rank, Reduce, 256, 1, 256, 2, 16, 1, 4, 1, 4, 1, 4, 4, 2>,
DeviceNormalizationFwdImpl<F16, F32, F32, F32, F16, F32, OutElementwise, Rank, Reduce, 256, 1, 256, 1, 32, 1, 4, 1, 4, 1, 4, 4, 1>,
DeviceNormalizationFwdImpl<F16, F32, F32, F32, F16, F32, OutElementwise, Rank, Reduce, 512, 1, 512, 1, 4, 1, 4, 1, 4, 1, 4, 4, 1>,
DeviceNormalizationFwdImpl<F16, F32, F32, F32, F16, F32, OutElementwise, Rank, Reduce, 512, 1, 512, 1, 8, 1, 4, 1, 4, 1, 4, 4, 1>,
DeviceNormalizationFwdImpl<F16, F32, F32, F32, F16, F32, OutElementwise, Rank, Reduce, 512, 1, 512, 2, 8, 1, 4, 1, 4, 1, 4, 4, 2>,
DeviceNormalizationFwdImpl<F16, F32, F32, F32, F16, F32, OutElementwise, Rank, Reduce, 1024, 1, 1024, 1, 4, 1, 4, 1, 4, 1, 4, 4, 1>,
DeviceNormalizationFwdImpl<F16, F32, F32, F32, F16, F32, OutElementwise, Rank, Reduce, 1024, 1, 1024, 1, 8, 1, 4, 1, 4, 1, 4, 4, 1>
// clang-format on
>;
template <typename OutElementwise, index_t Rank, index_t Reduce>
using device_normalization_splitk_f16_f32_f32_f16_instances = std::tuple<
// clang-format off
// XDataType, GammaDataType, BetaDataType, ComputeDataType, YDataType, SaveMeanInvStdDataType, Rank, NumReduceDim, BlockSize, MThreadClusterSize, KThreadClusterSize, MThreadSliceSize, KThreadSliceSize, XYSrcVectorDim, XSrcVectorSize, GammaSrcVectorDim, GammaSrcVectorSize, BetaSrcVectorDim, BetaSrcVectorSize, YDstVectorSize, SaveMeanInvStdScalarPerVector>
DeviceNormalizationFwdSplitKImpl<F16, F32, F32, F32, F16, F32, OutElementwise, Rank, Reduce, 128, 1, 128, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1>, // irregular size
DeviceNormalizationFwdSplitKImpl<F16, F32, F32, F32, F16, F32, OutElementwise, Rank, Reduce, 256, 1, 256, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1>, // irregular size
DeviceNormalizationFwdSplitKImpl<F16, F32, F32, F32, F16, F32, OutElementwise, Rank, Reduce, 512, 1, 512, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1>, // irregular size
DeviceNormalizationFwdSplitKImpl<F16, F32, F32, F32, F16, F32, OutElementwise, Rank, Reduce, 1024, 1, 1024, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1>, // irregular size
DeviceNormalizationFwdSplitKImpl<F16, F32, F32, F32, F16, F32, OutElementwise, Rank, Reduce, 256, 1, 256, 1, 2, 1, 2, 1, 2, 1, 2, 2, 1>, // irregular size
DeviceNormalizationFwdSplitKImpl<F16, F32, F32, F32, F16, F32, OutElementwise, Rank, Reduce, 128, 1, 128, 1, 4, 1, 4, 1, 4, 1, 4, 4, 1>,
DeviceNormalizationFwdSplitKImpl<F16, F32, F32, F32, F16, F32, OutElementwise, Rank, Reduce, 128, 1, 128, 1, 8, 1, 4, 1, 4, 1, 4, 4, 1>,
DeviceNormalizationFwdSplitKImpl<F16, F32, F32, F32, F16, F32, OutElementwise, Rank, Reduce, 128, 1, 128, 1, 16, 1, 4, 1, 4, 1, 4, 4, 1>,
DeviceNormalizationFwdSplitKImpl<F16, F32, F32, F32, F16, F32, OutElementwise, Rank, Reduce, 128, 1, 128, 1, 32, 1, 4, 1, 4, 1, 4, 4, 1>,
DeviceNormalizationFwdSplitKImpl<F16, F32, F32, F32, F16, F32, OutElementwise, Rank, Reduce, 256, 1, 256, 1, 4, 1, 4, 1, 4, 1, 4, 4, 1>,
DeviceNormalizationFwdSplitKImpl<F16, F32, F32, F32, F16, F32, OutElementwise, Rank, Reduce, 256, 1, 256, 1, 8, 1, 4, 1, 4, 1, 4, 4, 1>,
DeviceNormalizationFwdSplitKImpl<F16, F32, F32, F32, F16, F32, OutElementwise, Rank, Reduce, 256, 1, 256, 1, 16, 1, 4, 1, 4, 1, 4, 4, 1>,
DeviceNormalizationFwdSplitKImpl<F16, F32, F32, F32, F16, F32, OutElementwise, Rank, Reduce, 256, 1, 256, 2, 16, 1, 4, 1, 4, 1, 4, 4, 2>,
DeviceNormalizationFwdSplitKImpl<F16, F32, F32, F32, F16, F32, OutElementwise, Rank, Reduce, 256, 1, 256, 1, 32, 1, 4, 1, 4, 1, 4, 4, 1>,
DeviceNormalizationFwdSplitKImpl<F16, F32, F32, F32, F16, F32, OutElementwise, Rank, Reduce, 512, 1, 512, 1, 4, 1, 4, 1, 4, 1, 4, 4, 1>,
DeviceNormalizationFwdSplitKImpl<F16, F32, F32, F32, F16, F32, OutElementwise, Rank, Reduce, 512, 1, 512, 1, 8, 1, 4, 1, 4, 1, 4, 4, 1>,
DeviceNormalizationFwdSplitKImpl<F16, F32, F32, F32, F16, F32, OutElementwise, Rank, Reduce, 512, 1, 512, 2, 8, 1, 4, 1, 4, 1, 4, 4, 2>,
DeviceNormalizationFwdSplitKImpl<F16, F32, F32, F32, F16, F32, OutElementwise, Rank, Reduce, 1024, 1, 1024, 1, 4, 1, 4, 1, 4, 1, 4, 4, 1>,
DeviceNormalizationFwdSplitKImpl<F16, F32, F32, F32, F16, F32, OutElementwise, Rank, Reduce, 1024, 1, 1024, 1, 8, 1, 4, 1, 4, 1, 4, 4, 1>
// clang-format on
>;
template <typename OutElementwise, index_t Rank, index_t Reduce>
using device_normalization_f16_f32_f32_f16_generic_instance = std::tuple<
// clang-format off
DeviceNormalizationFwdImpl<F16, F32, F32, F32, F16, F32, OutElementwise, Rank, Reduce, 64, 1, 64, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1>
// clang-format on
>;
} // namespace instance
} // namespace device
} // namespace tensor_operation
} // namespace ck
......@@ -50,21 +50,23 @@ Best Perf: 1.42509 ms, 102.988 TFlops, 234.086 GB/s
## Profile contraction kernels
```bash
#arg1: tensor operation (contraction_bilinear=CONTRACTION+Bilinear)
#arg2: data type (0: fp32; 1: f64)\n"
#arg3: matrix layout (0: A[m0, m1, k0, k1] * B[k0, k1, n0, n1] + D[m0, m1, n0, n1] = E[m0, m1, n0, n1];
#arg2: data type (0: fp32; 1: f64; 2: f16; 3: bf16)
#arg3: compute data type (0: fp32; 1: f64; 2: f16; 3: bf16)
#arg4: matrix layout (0: A[m0, m1, k0, k1] * B[k0, k1, n0, n1] + D[m0, m1, n0, n1] = E[m0, m1, n0, n1];
# 1: A[m0, m1, k0, k1] * B[n0, n1, k0, k1] + D[m0, m1, n0, n1] = E[m0, m1, n0, n1];
# 2: A[k0, k1, m0, m1] * B[k0, k1, n0, n1] + D[m0, m1, n0, n1] = E[m0, m1, n0, n1];
# 3: A[k0, k1, m0, m1] * B[n0, n1, k0, k1] + D[m0, m1, n0, n1] = E[m0, m1, n0, n1])
#arg4: verification (0: no; 1: yes)
#arg5: initialization (0: no init; 1: integer value; 2: decimal value)
#arg6: print tensor value (0: no; 1: yes)
#arg7: time kernel (0: no, 1: yes)
#arg8 and arg9: alpha and beta
#arg10 to 15: M0, M1, N0, N1, K0, K1
#arg16 to 31: Strides for A, B, D and E (skip for default)
################ op datatype layout verify init log time alpha beta M0 M1 N0 N1 K0 K1
./bin/ckProfiler contraction_bilinear 0 1 0 0 0 1 1.0 1.0 128 128 128 128 128 128
#arg5: verification (0: no; 1: yes)
#arg6: initialization (0: no init; 1: integer value; 2: decimal value)
#arg7: print tensor value (0: no; 1: yes)
#arg8: time kernel (0: no, 1: yes)
#arg9: alpha
#arg10: beta
#arg11 to 16: M0, M1, N0, N1, K0, K1
#arg17 to 32: Strides for A, B, D and E (skip for default)
################ op datatype compute_datatype layout verify init log time alpha beta M0 M1 N0 N1 K0 K1
./bin/ckProfiler contraction_bilinear 0 0 1 0 0 0 1 1.0 1.0 128 128 128 128 128 128
```
Result (MI100)
......@@ -194,7 +196,8 @@ Note: This kernel use atomic add, this will cause output buffer to be accumulate
# 1: Input fp16, Weight fp16, Output fp16
# 2: Input bf16, Weight bf16, Output bf16
# 3: Input int8, Weight int8, Output int8)
# arg3: tensor layout (0: Input[N, Hi, Wi, C], Output[N * Ho * Wo, Y * X * C])
# arg3: tensor layout (0: Input[G, N, Hi, Wi, C], Output[G * N * Ho * Wo, Y * X * C],
# 1: Input[N, Hi, Wi, G, C], Output[N * Ho * Wo * G, Y * X * C])
# arg4: verification (0: no, 1: yes)
# arg5: initialization (0: no init, 1: integer value, 2: decimal value)
# arg6: print tensor value (0: no; 1: yes)
......
......@@ -31,10 +31,14 @@ namespace profiler {
using Bilinear = ck::tensor_operation::element_wise::Bilinear;
using Scale = ck::tensor_operation::element_wise::Scale;
using F32 = float;
using F64 = double;
template <typename ALayout,
typename BLayout,
typename CDELayout,
typename DataType,
typename ComputeDataType,
typename DTupleDataType,
typename CDElementOp>
int profile_contraction_impl(ck::index_t do_verification,
......@@ -45,10 +49,10 @@ int profile_contraction_impl(ck::index_t do_verification,
const std::vector<ck::index_t>& M,
const std::vector<ck::index_t>& N,
const std::vector<ck::index_t>& K,
const std::vector<ck::index_t>& StridesA,
const std::vector<ck::index_t>& StridesB,
const std::vector<ck::index_t>& StridesE,
const std::vector<ck::index_t>& StridesD)
const std::vector<ck::index_t>& StridesA, // [M0, M1, K0, K1]
const std::vector<ck::index_t>& StridesB, // [N0, N1, K0, K1]
const std::vector<ck::index_t>& StridesE, // [M0, M1, N0, N1]
const std::vector<ck::index_t>& StridesD) // [M0, M1, N0, N1]
{
bool pass = true;
......@@ -63,13 +67,13 @@ int profile_contraction_impl(ck::index_t do_verification,
};
Tensor<DataType> a_m_k(f_host_tensor_descriptor(M, K, StridesA));
Tensor<DataType> b_k_n(f_host_tensor_descriptor(K, N, StridesB));
Tensor<DataType> b_n_k(f_host_tensor_descriptor(N, K, StridesB));
Tensor<DataType> e_m_n_host_result(f_host_tensor_descriptor(M, N, StridesE));
Tensor<DataType> e_m_n_device_result(f_host_tensor_descriptor(M, N, StridesE));
Tensor<DataType> d_m_n(f_host_tensor_descriptor(M, N, StridesD));
std::cout << "a_m_k: " << a_m_k.mDesc << std::endl;
std::cout << "b_k_n: " << b_k_n.mDesc << std::endl;
std::cout << "b_n_k: " << b_n_k.mDesc << std::endl;
std::cout << "d_m_n: " << d_m_n.mDesc << std::endl;
std::cout << "e_m_n: " << e_m_n_device_result.mDesc << std::endl;
......@@ -78,12 +82,12 @@ int profile_contraction_impl(ck::index_t do_verification,
case 0: break;
case 1:
a_m_k.GenerateTensorValue(GeneratorTensor_2<DataType>{-5, 5});
b_k_n.GenerateTensorValue(GeneratorTensor_2<DataType>{-5, 5});
b_n_k.GenerateTensorValue(GeneratorTensor_2<DataType>{-5, 5});
d_m_n.GenerateTensorValue(GeneratorTensor_2<DataType>{-5, 5});
break;
default:
a_m_k.GenerateTensorValue(GeneratorTensor_3<DataType>{0.0, 1.0});
b_k_n.GenerateTensorValue(GeneratorTensor_3<DataType>{-0.5, 0.5});
b_n_k.GenerateTensorValue(GeneratorTensor_3<DataType>{-0.5, 0.5});
d_m_n.GenerateTensorValue(GeneratorTensor_3<DataType>{-0.5, 0.5});
}
......@@ -91,12 +95,12 @@ int profile_contraction_impl(ck::index_t do_verification,
using BElementOp = ck::tensor_operation::element_wise::PassThrough;
DeviceMem a_device_buf(sizeof(DataType) * a_m_k.mDesc.GetElementSpaceSize());
DeviceMem b_device_buf(sizeof(DataType) * b_k_n.mDesc.GetElementSpaceSize());
DeviceMem b_device_buf(sizeof(DataType) * b_n_k.mDesc.GetElementSpaceSize());
DeviceMem e_device_buf(sizeof(DataType) * e_m_n_device_result.mDesc.GetElementSpaceSize());
DeviceMem d_device_buf(sizeof(DataType) * d_m_n.mDesc.GetElementSpaceSize());
a_device_buf.ToDevice(a_m_k.mData.data());
b_device_buf.ToDevice(b_k_n.mData.data());
b_device_buf.ToDevice(b_n_k.mData.data());
e_device_buf.SetZero();
d_device_buf.ToDevice(d_m_n.mData.data());
......@@ -118,7 +122,8 @@ int profile_contraction_impl(ck::index_t do_verification,
DataType,
AElementOp,
BElementOp,
CDElementOp>;
CDElementOp,
ComputeDataType>;
// get device op instances
const auto op_ptrs = ck::tensor_operation::device::instance::DeviceOperationInstanceFactory<
......@@ -126,6 +131,9 @@ int profile_contraction_impl(ck::index_t do_verification,
std::cout << "found " << op_ptrs.size() << " instances" << std::endl;
using AccDataType =
typename std::conditional<std::is_same<ComputeDataType, F64>::value, F64, F32>::type;
// Run reference op
if(do_verification)
{
......@@ -136,7 +144,8 @@ int profile_contraction_impl(ck::index_t do_verification,
DataType,
DataType,
DataType,
DataType,
AccDataType,
ComputeDataType,
AElementOp,
BElementOp>;
......@@ -146,7 +155,7 @@ int profile_contraction_impl(ck::index_t do_verification,
Tensor<DataType> c_m_n_host_result(f_host_tensor_descriptor(M, N, StridesE));
auto ref_argument =
ref_op.MakeArgument(a_m_k, b_k_n, c_m_n_host_result, a_element_op, b_element_op);
ref_op.MakeArgument(a_m_k, b_n_k, c_m_n_host_result, a_element_op, b_element_op);
ref_invoker.Run(ref_argument);
......@@ -272,8 +281,29 @@ int profile_contraction_impl(ck::index_t do_verification,
{
e_device_buf.FromDevice(e_m_n_device_result.mData.data());
float threshold =
static_cast<DataType>(nelems_k) * std::numeric_limits<DataType>::epsilon();
// Both the kernel and the reference use `AccDataType`, so an absolute error of both
// of them is bounded by `nelems_k * std::numeric_limits<AccDataType>::epsilon()`.
// Comparing one to another can result in an absolute error as high as twice that
// value.
double threshold = 2 * nelems_k * std::numeric_limits<AccDataType>::epsilon();
// Handle the possible casting error of either AccDataType -> DataType or
// DataType -> ComputeDataType.
// TODO: Add a generic solution for calculating thresholds in CK.
if constexpr(ck::is_same_v<DataType, ck::bhalf_t> ||
ck::is_same_v<ComputeDataType, ck::bhalf_t>)
{
const double epsilon = std::pow(2, -7);
// Maximum relative casting error when rounding to zero.
threshold += epsilon * 2;
}
else if constexpr(ck::is_same_v<DataType, ck::half_t> ||
ck::is_same_v<ComputeDataType, ck::half_t>)
{
const double epsilon = std::pow(2, -10);
// Maximum relative casting error when rounding to zero.
threshold += epsilon * 2;
}
pass = pass & ck::utils::check_err(e_m_n_device_result,
e_m_n_host_result,
"Error: incorrect results!",
......@@ -283,7 +313,7 @@ int profile_contraction_impl(ck::index_t do_verification,
if(do_log)
{
LogRangeAsType<float>(std::cout << "a : ", a_m_k.mData, ",") << std::endl;
LogRangeAsType<float>(std::cout << "b: ", b_k_n.mData, ",") << std::endl;
LogRangeAsType<float>(std::cout << "b: ", b_n_k.mData, ",") << std::endl;
LogRangeAsType<float>(std::cout << "c_host : ", e_m_n_host_result.mData, ",")
<< std::endl;
LogRangeAsType<float>(std::cout << "c_device: ", e_m_n_device_result.mData, ",")
......
......@@ -23,8 +23,18 @@ enum struct ContractionMatrixLayout
enum struct ContractionDataType
{
F32_F32_F32_F32, // 0
F64_F64_F64_F64, // 1
F32_F32_F32_F32, // 0
F64_F64_F64_F64, // 1
F16_F16_F16_F16, // 2
BF16_BF16_BF16_BF16, // 3
};
enum struct ContractionComputeDataType
{
F32 = 0,
F64,
F16,
BF16,
};
inline void collect_index_params(char* argv[],
......
......@@ -93,6 +93,26 @@ static auto make_ref_op()
}
}
template <typename InputLayout>
static auto create_gemm_desc(const ck::index_t G, const ck::index_t NDoHoWo, const ck::index_t CZYX)
{
using namespace ck::tensor_layout::convolution;
if constexpr(std::is_same_v<InputLayout, GNWC> || std::is_same_v<InputLayout, GNHWC> ||
std::is_same_v<InputLayout, GNDHWC>)
{
return HostTensorDescriptor({G, NDoHoWo, CZYX});
}
else if constexpr(std::is_same_v<InputLayout, NWGC> || std::is_same_v<InputLayout, NHWGC> ||
std::is_same_v<InputLayout, NDHWGC>)
{
return HostTensorDescriptor({G, NDoHoWo, CZYX}, {CZYX, CZYX * G, 1});
}
else
{
throw std::runtime_error("Unsupported layout!");
}
}
template <index_t NDimSpatial,
typename InputLayout,
typename InputDataType,
......@@ -116,13 +136,13 @@ bool profile_conv_tensor_rearrange_impl(int do_verification,
const auto image_desc =
ck::utils::conv::make_input_host_tensor_descriptor_g_n_c_wis_packed<InputLayout>(
conv_param);
const auto gemm_desc = HostTensorDescriptor({NDoHoWo, CZYX});
const auto gemm_desc = create_gemm_desc<InputLayout>(conv_param.G_, NDoHoWo, CZYX);
std::array<ck::index_t, NDimSpatial> input_spatial_lengths{};
std::array<ck::index_t, NDimSpatial> filter_spatial_lengths{};
std::array<ck::index_t, NDimSpatial> output_spatial_lengths{};
std::array<ck::index_t, NDimSpatial + 3> image_g_n_c_wis_strides{};
std::array<ck::index_t, 2> gemm_m_k_strides{};
std::array<ck::index_t, 3> gemm_g_m_k_strides{};
std::array<ck::index_t, NDimSpatial> conv_filter_strides{};
std::array<ck::index_t, NDimSpatial> conv_filter_dilations{};
std::array<ck::index_t, NDimSpatial> input_left_pads{};
......@@ -134,7 +154,7 @@ bool profile_conv_tensor_rearrange_impl(int do_verification,
copy(conv_param.filter_spatial_lengths_, filter_spatial_lengths);
copy(conv_param.output_spatial_lengths_, output_spatial_lengths);
copy(image_desc.GetStrides(), image_g_n_c_wis_strides);
copy(gemm_desc.GetStrides(), gemm_m_k_strides);
copy(gemm_desc.GetStrides(), gemm_g_m_k_strides);
copy(conv_param.conv_filter_strides_, conv_filter_strides);
copy(conv_param.conv_filter_dilations_, conv_filter_dilations);
copy(conv_param.input_left_pads_, input_left_pads);
......@@ -212,13 +232,14 @@ bool profile_conv_tensor_rearrange_impl(int do_verification,
auto argument_ptr = op_ptr->MakeArgumentPointer(
static_cast<InputDataType*>(in_device_buf.GetDeviceBuffer()),
static_cast<OutputDataType*>(out_device_buf.GetDeviceBuffer()),
conv_param.G_,
conv_param.N_,
conv_param.C_,
input_spatial_lengths,
filter_spatial_lengths,
output_spatial_lengths,
image_g_n_c_wis_strides,
gemm_m_k_strides,
gemm_g_m_k_strides,
conv_filter_strides,
conv_filter_dilations,
input_left_pads,
......@@ -234,7 +255,7 @@ bool profile_conv_tensor_rearrange_impl(int do_verification,
float avg_time =
invoker_ptr->Run(argument_ptr.get(), StreamConfig{nullptr, time_kernel});
std::size_t num_btype =
NDoHoWo * CZYX * (sizeof(OutputDataType) + sizeof(InputDataType));
conv_param.G_ * NDoHoWo * CZYX * (sizeof(OutputDataType) + sizeof(InputDataType));
float gb_per_sec = num_btype / 1.E6 / avg_time;
std::cout << "Perf: " << std::setw(10) << avg_time << " ms, " << gb_per_sec << " GB/s, "
<< op_name << std::endl;
......
......@@ -75,8 +75,8 @@ int profile_gemm_impl(int do_verification,
b_k_n.GenerateTensorValue(GeneratorTensor_2<BDataType>{-5, 5});
break;
default:
a_m_k.GenerateTensorValue(GeneratorTensor_3<ADataType>{0.0, 1.0});
b_k_n.GenerateTensorValue(GeneratorTensor_3<BDataType>{-0.5, 0.5});
a_m_k.GenerateTensorValue(GeneratorTensor_3<ADataType>{0.0, 0.1});
b_k_n.GenerateTensorValue(GeneratorTensor_3<BDataType>{-0.05, 0.05});
}
using AElementOp = ck::tensor_operation::element_wise::PassThrough;
......
......@@ -143,8 +143,7 @@ bool profile_gemm_splitk_impl(int do_verification,
// profile device GEMM instances
for(auto& op_ptr : op_ptrs)
{
std::vector<int> kbatch_list = {1, 2, 4, 8, 12, 16, 20, 24, 32, 36, 40, 60,
64, 72, 80, 88, 96, 128, 144, 160, 176, 192, 256};
std::vector<int> kbatch_list = {1, 2, 4, 8, 12, 16, 20, 32, 36, 40, 64, 96, 128};
if(KBatch > 0)
{
......
......@@ -7,7 +7,7 @@
#include "ck/ck.hpp"
#include "ck/library/tensor_operation_instance/gpu/normalization.hpp"
#include "ck/library/tensor_operation_instance/gpu/normalization_fwd.hpp"
#include "ck/library/utility/check_err.hpp"
#include "ck/library/utility/device_memory.hpp"
......@@ -88,14 +88,14 @@ bool profile_groupnorm_impl(int do_verification,
beta_dev.ToDevice(beta.mData.data());
// add device normalization instances
using DeviceOp = ck::tensor_operation::device::DeviceNormalization<XDataType,
GammaDataType,
BetaDataType,
YDataType,
SaveMeanInvStdDataType,
PassThrough,
5,
3>;
using DeviceOp = ck::tensor_operation::device::DeviceNormalizationFwd<XDataType,
GammaDataType,
BetaDataType,
YDataType,
SaveMeanInvStdDataType,
PassThrough,
5,
3>;
// get device op instances
const auto instance_ptrs =
......
......@@ -6,7 +6,7 @@
#include <iomanip>
#include "ck/ck.hpp"
#include "ck/library/tensor_operation_instance/gpu/normalization.hpp"
#include "ck/library/tensor_operation_instance/gpu/normalization_fwd.hpp"
#include "ck/library/utility/check_err.hpp"
#include "ck/library/utility/device_memory.hpp"
#include "ck/library/utility/host_tensor.hpp"
......@@ -94,14 +94,14 @@ bool profile_layernorm_impl(int do_verification,
constexpr int NumReduceDim = Rank - 1;
// add device normalization instances
using DeviceOp = ck::tensor_operation::device::DeviceNormalization<XDataType,
GammaDataType,
BetaDataType,
YDataType,
SaveMeanInvStdDataType,
PassThrough,
Rank,
NumReduceDim>;
using DeviceOp = ck::tensor_operation::device::DeviceNormalizationFwd<XDataType,
GammaDataType,
BetaDataType,
YDataType,
SaveMeanInvStdDataType,
PassThrough,
Rank,
NumReduceDim>;
// get device op instances
const auto instance_ptrs =
......
......@@ -16,8 +16,8 @@ set(PROFILER_SOURCES
profile_grouped_conv_fwd.cpp
profile_grouped_conv_bwd_weight.cpp
profile_reduce.cpp
profile_groupnorm.cpp
profile_layernorm.cpp
profile_groupnorm_fwd.cpp
profile_layernorm_fwd.cpp
profile_max_pool3d_fwd.cpp
profile_avg_pool3d_bwd.cpp
profile_max_pool3d_bwd.cpp
......@@ -28,9 +28,11 @@ set(PROFILER_SOURCES
profile_grouped_conv_bwd_data.cpp
profile_conv_tensor_rearrange.cpp
)
if(DL_KERNELS)
list(APPEND PROFILER_SOURCES profile_batched_gemm_multi_d.cpp)
endif()
if(DTYPES MATCHES "fp16" OR NOT DEFINED DTYPES)
list(APPEND PROFILER_SOURCES profile_batched_gemm_gemm.cpp)
list(APPEND PROFILER_SOURCES profile_gemm_fastgelu.cpp)
......@@ -75,7 +77,7 @@ target_link_libraries(${PROFILER_EXECUTABLE} PRIVATE device_grouped_conv2d_bwd_w
target_link_libraries(${PROFILER_EXECUTABLE} PRIVATE device_grouped_conv3d_bwd_weight_instance)
target_link_libraries(${PROFILER_EXECUTABLE} PRIVATE device_conv2d_fwd_bias_relu_instance)
target_link_libraries(${PROFILER_EXECUTABLE} PRIVATE device_conv2d_fwd_bias_relu_add_instance)
target_link_libraries(${PROFILER_EXECUTABLE} PRIVATE device_normalization_instance)
target_link_libraries(${PROFILER_EXECUTABLE} PRIVATE device_normalization_fwd_instance)
target_link_libraries(${PROFILER_EXECUTABLE} PRIVATE device_softmax_instance)
target_link_libraries(${PROFILER_EXECUTABLE} PRIVATE device_reduce_instance)
target_link_libraries(${PROFILER_EXECUTABLE} PRIVATE device_batchnorm_instance)
......@@ -110,4 +112,5 @@ if(DTYPES MATCHES "fp16" OR NOT DEFINED DTYPES)
target_link_libraries(${PROFILER_EXECUTABLE} PRIVATE device_grouped_gemm_instance)
target_link_libraries(${PROFILER_EXECUTABLE} PRIVATE device_grouped_gemm_fastgelu_instance)
endif()
rocm_install(TARGETS ${PROFILER_EXECUTABLE} COMPONENT profiler)
......@@ -17,8 +17,9 @@
static void print_helper_msg()
{
std::cout << "arg1: tensor operation (" OP_NAME ": " OP_DESC ")\n"
<< "arg2: data type (0: fp32; 1: f64)\n"
<< "arg3: matrix layout (0: A[m0, m1, k0, k1] * B[k0, k1, n0, n1] + "
<< "arg2: data type (0: fp32; 1: f64; 2: f16; 3: bf16)\n"
<< "arg3: compute data type (0: fp32; 1: f64; 2: f16; 3: bf16)\n"
<< "arg4: matrix layout (0: A[m0, m1, k0, k1] * B[k0, k1, n0, n1] + "
"D[m0, m1, n0, n1] = E[m0, m1, n0, n1];\n"
<< " 1: A[m0, m1, k0, k1] * B[n0, n1, k0, k1] + "
"D[m0, m1, n0, n1] = E[m0, m1, n0, n1];\n"
......@@ -26,40 +27,42 @@ static void print_helper_msg()
"D[m0, m1, n0, n1] = E[m0, m1, n0, n1];\n"
<< " 3: A[k0, k1, m0, m1] * B[n0, n1, k0, k1] + "
"D[m0, m1, n0, n1] = E[m0, m1, n0, n1])\n"
<< "arg4: verification (0: no; 1: yes)\n"
<< "arg5: initialization (0: no init; 1: integer value; 2: decimal "
<< "arg5: verification (0: no; 1: yes)\n"
<< "arg6: initialization (0: no init; 1: integer value; 2: decimal "
<< "value)\n"
<< "arg6: print tensor value (0: no; 1: yes)\n"
<< "arg7: time kernel (0: no, 1: yes)\n"
<< "arg8 and arg9: alpha and beta\n"
<< "arg10 to 15: M0, M1, N0, N1, K0, K1\n"
<< "arg16 to 31: Strides for A, B, D and E (skip for default)\n"
<< "arg7: print tensor value (0: no; 1: yes)\n"
<< "arg8: time kernel (0: no, 1: yes)\n"
<< "arg9: alpha\n"
<< "arg10: beta\n"
<< "arg11 to 16: M0, M1, N0, N1, K0, K1\n"
<< "arg17 to 32: Strides for A, B, D and E (skip for default)\n"
<< std::endl;
}
int profile_contraction_bilinear(int argc, char* argv[])
{
const bool default_strides = argc == 16;
const bool default_strides = argc == 17;
if(argc != 32 && argc != 16)
if(argc != 33 && argc != 17)
{
print_helper_msg();
exit(1);
}
const auto data_type = static_cast<ContractionDataType>(std::stoi(argv[2]));
const auto layout = static_cast<ContractionMatrixLayout>(std::stoi(argv[3]));
const bool do_verification = std::stoi(argv[4]);
const ck::index_t init_method = std::stoi(argv[5]);
const bool do_log = std::stoi(argv[6]);
const bool time_kernel = std::stoi(argv[7]);
const float alpha = std::stof(argv[8]);
const float beta = std::stof(argv[9]);
const auto compute_data_type = static_cast<ContractionComputeDataType>(std::stoi(argv[3]));
const auto layout = static_cast<ContractionMatrixLayout>(std::stoi(argv[4]));
const bool do_verification = std::stoi(argv[5]);
const ck::index_t init_method = std::stoi(argv[6]);
const bool do_log = std::stoi(argv[7]);
const bool time_kernel = std::stoi(argv[8]);
const float alpha = std::stof(argv[9]);
const float beta = std::stof(argv[10]);
std::vector<ck::index_t> M;
std::vector<ck::index_t> N;
std::vector<ck::index_t> K;
const ck::index_t dims_arg_num = 10;
const ck::index_t dims_arg_num = 11;
collect_index_params(argv, M, dims_arg_num, 2);
collect_index_params(argv, N, dims_arg_num + 2, 2);
collect_index_params(argv, K, dims_arg_num + 4, 2);
......@@ -76,90 +79,130 @@ int profile_contraction_bilinear(int argc, char* argv[])
collect_index_params(argv, StridesD, dims_arg_num + 18, 4);
}
using F32 = float;
using F64 = double;
auto profile = [&](auto a_layout, auto b_layout, auto cde_layout, auto type) {
using ALayout = decltype(a_layout);
using BLayout = decltype(b_layout);
using CDELayout = decltype(cde_layout);
using DataType = decltype(type);
if(default_strides)
using F16 = ck::half_t;
using BF16 = ck::bhalf_t;
using F32 = float;
using F64 = double;
auto profile =
[&](auto a_layout, auto b_layout, auto cde_layout, auto type, auto compute_type) {
using ALayout = decltype(a_layout);
using BLayout = decltype(b_layout);
using CDELayout = decltype(cde_layout);
using DataType = decltype(type);
using ComputeDataType = decltype(compute_type);
if(default_strides)
{
assign_default_strides(a_layout, StridesA, {M[0], M[1], K[0], K[1]});
assign_default_strides(b_layout, StridesB, {N[0], N[1], K[0], K[1]});
assign_default_strides(cde_layout, StridesE, {M[0], M[1], N[0], N[1]});
assign_default_strides(cde_layout, StridesD, {M[0], M[1], N[0], N[1]});
}
bool pass = ck::profiler::profile_contraction_impl<ALayout,
BLayout,
CDELayout,
DataType,
ComputeDataType,
ck::Tuple<DataType>,
Bilinear>(do_verification,
init_method,
do_log,
time_kernel,
Bilinear{alpha, beta},
M,
N,
K,
StridesA,
StridesB,
StridesE,
StridesD);
return pass;
};
auto run_profile_for_datatype = [&](auto type, auto compute_type) {
if(layout == ContractionMatrixLayout::MK_KN_MN_MN)
{
assign_default_strides(a_layout, StridesA, {M[0], M[1], K[0], K[1]});
assign_default_strides(b_layout, StridesB, {K[0], K[1], N[0], N[1]});
assign_default_strides(cde_layout, StridesE, {M[0], M[1], N[0], N[1]});
assign_default_strides(cde_layout, StridesD, {M[0], M[1], N[0], N[1]});
return profile(Row{}, Row{}, Row{}, type, compute_type);
}
bool pass = ck::profiler::profile_contraction_impl<ALayout,
BLayout,
CDELayout,
DataType,
ck::Tuple<DataType>,
Bilinear>(do_verification,
init_method,
do_log,
time_kernel,
Bilinear{alpha, beta},
M,
N,
K,
StridesA,
StridesB,
StridesE,
StridesD);
return pass;
else if(layout == ContractionMatrixLayout::MK_NK_MN_MN)
{
return profile(Row{}, Col{}, Row{}, type, compute_type);
}
else if(layout == ContractionMatrixLayout::KM_KN_MN_MN)
{
return profile(Col{}, Row{}, Row{}, type, compute_type);
}
else if(layout == ContractionMatrixLayout::KM_NK_MN_MN)
{
return profile(Col{}, Col{}, Row{}, type, compute_type);
}
return false;
};
if(data_type == ContractionDataType::F32_F32_F32_F32 &&
layout == ContractionMatrixLayout::MK_KN_MN_MN)
{
return profile(Row{}, Row{}, Row{}, F32{});
}
else if(data_type == ContractionDataType::F32_F32_F32_F32 &&
layout == ContractionMatrixLayout::MK_NK_MN_MN)
if(data_type == ContractionDataType::F32_F32_F32_F32)
{
return profile(Row{}, Col{}, Row{}, F32{});
}
else if(data_type == ContractionDataType::F32_F32_F32_F32 &&
layout == ContractionMatrixLayout::KM_KN_MN_MN)
{
return profile(Col{}, Row{}, Row{}, F32{});
}
else if(data_type == ContractionDataType::F32_F32_F32_F32 &&
layout == ContractionMatrixLayout::KM_NK_MN_MN)
{
return profile(Col{}, Col{}, Row{}, F32{});
}
else if(data_type == ContractionDataType::F64_F64_F64_F64 &&
layout == ContractionMatrixLayout::MK_KN_MN_MN)
{
return profile(Row{}, Row{}, Row{}, F64{});
}
else if(data_type == ContractionDataType::F64_F64_F64_F64 &&
layout == ContractionMatrixLayout::MK_NK_MN_MN)
{
return profile(Row{}, Col{}, Row{}, F64{});
if(compute_data_type == ContractionComputeDataType::F32)
{
return run_profile_for_datatype(F32{}, F32{});
}
else if(compute_data_type == ContractionComputeDataType::F16)
{
return run_profile_for_datatype(F32{}, F16{});
}
else if(compute_data_type == ContractionComputeDataType::BF16)
{
return run_profile_for_datatype(F32{}, BF16{});
}
else
{
std::cout << "Incorrect combination of data type and compute data type." << std::endl;
return 1;
}
}
else if(data_type == ContractionDataType::F64_F64_F64_F64 &&
layout == ContractionMatrixLayout::KM_KN_MN_MN)
else if(data_type == ContractionDataType::F64_F64_F64_F64)
{
return profile(Col{}, Row{}, Row{}, F64{});
if(compute_data_type == ContractionComputeDataType::F64)
{
return run_profile_for_datatype(F64{}, F64{});
}
else if(compute_data_type == ContractionComputeDataType::F32)
{
return run_profile_for_datatype(F64{}, F32{});
}
else
{
std::cout << "Incorrect combination of data type and compute data type." << std::endl;
return 1;
}
}
else if(data_type == ContractionDataType::F64_F64_F64_F64 &&
layout == ContractionMatrixLayout::KM_NK_MN_MN)
else if(data_type == ContractionDataType::F16_F16_F16_F16)
{
return profile(Col{}, Col{}, Row{}, F64{});
if(compute_data_type == ContractionComputeDataType::F32)
{
return run_profile_for_datatype(F16{}, F32{});
}
else
{
std::cout << "Incorrect combination of data type and compute data type." << std::endl;
return 1;
}
}
else
else if(data_type == ContractionDataType::BF16_BF16_BF16_BF16)
{
std::cout << "this data_type & layout is not implemented" << std::endl;
return 1;
if(compute_data_type == ContractionComputeDataType::F32)
{
return run_profile_for_datatype(BF16{}, F32{});
}
else
{
std::cout << "Incorrect combination of data type and compute data type." << std::endl;
return 1;
}
}
return 1;
}
REGISTER_PROFILER_OPERATION(OP_NAME, OP_DESC, profile_contraction_bilinear);
......@@ -17,8 +17,9 @@
static void print_helper_msg()
{
std::cout << "arg1: tensor operation (" OP_NAME ": " OP_DESC ")\n"
<< "arg2: data type (0: fp32; 1: f64)\n"
<< "arg3: matrix layout (0: A[m0, m1, k0, k1] * B[k0, k1, n0, n1] + "
<< "arg2: data type (0: fp32; 1: f64; 2: f16; 3: bf16)\n"
<< "arg3: compute data type (0: fp32; 1: f64; 2: f16; 3: bf16)\n"
<< "arg4: matrix layout (0: A[m0, m1, k0, k1] * B[k0, k1, n0, n1] + "
"D[m0, m1, n0, n1] = E[m0, m1, n0, n1];\n"
<< " 1: A[m0, m1, k0, k1] * B[n0, n1, k0, k1] + "
"D[m0, m1, n0, n1] = E[m0, m1, n0, n1];\n"
......@@ -26,39 +27,40 @@ static void print_helper_msg()
"D[m0, m1, n0, n1] = E[m0, m1, n0, n1];\n"
<< " 3: A[k0, k1, m0, m1] * B[n0, n1, k0, k1] + "
"D[m0, m1, n0, n1] = E[m0, m1, n0, n1])\n"
<< "arg4: verification (0: no; 1: yes)\n"
<< "arg5: initialization (0: no init; 1: integer value; 2: decimal "
<< "arg5: verification (0: no; 1: yes)\n"
<< "arg6: initialization (0: no init; 1: integer value; 2: decimal "
<< "value)\n"
<< "arg6: print tensor value (0: no; 1: yes)\n"
<< "arg7: time kernel (0: no, 1: yes)\n"
<< "arg8: alpha\n"
<< "arg9 to 14: M0, M1, N0, N1, K0, K1\n"
<< "arg15 to 30: Strides for A, B, D and E (skip for default)\n"
<< "arg7: print tensor value (0: no; 1: yes)\n"
<< "arg8: time kernel (0: no, 1: yes)\n"
<< "arg9: alpha\n"
<< "arg10 to 15: M0, M1, N0, N1, K0, K1\n"
<< "arg16 to 31: Strides for A, B, D and E (skip for default)\n"
<< std::endl;
}
int profile_contraction_scale(int argc, char* argv[])
{
const bool default_strides = argc == 15;
const bool default_strides = argc == 16;
if(argc != 31 && argc != 15)
if(argc != 32 && argc != 16)
{
print_helper_msg();
exit(1);
}
const auto data_type = static_cast<ContractionDataType>(std::stoi(argv[2]));
const auto layout = static_cast<ContractionMatrixLayout>(std::stoi(argv[3]));
const bool do_verification = std::stoi(argv[4]);
const ck::index_t init_method = std::stoi(argv[5]);
const bool do_log = std::stoi(argv[6]);
const bool time_kernel = std::stoi(argv[7]);
const float alpha = std::stof(argv[8]);
const auto compute_data_type = static_cast<ContractionComputeDataType>(std::stoi(argv[3]));
const auto layout = static_cast<ContractionMatrixLayout>(std::stoi(argv[4]));
const bool do_verification = std::stoi(argv[5]);
const ck::index_t init_method = std::stoi(argv[6]);
const bool do_log = std::stoi(argv[7]);
const bool time_kernel = std::stoi(argv[8]);
const float alpha = std::stof(argv[9]);
std::vector<ck::index_t> M;
std::vector<ck::index_t> N;
std::vector<ck::index_t> K;
const ck::index_t dims_arg_num = 9;
const ck::index_t dims_arg_num = 10;
collect_index_params(argv, M, dims_arg_num, 2);
collect_index_params(argv, N, dims_arg_num + 2, 2);
collect_index_params(argv, K, dims_arg_num + 4, 2);
......@@ -75,88 +77,131 @@ int profile_contraction_scale(int argc, char* argv[])
collect_index_params(argv, StridesD, dims_arg_num + 18, 4);
}
using F32 = float;
using F64 = double;
auto profile = [&](auto a_layout, auto b_layout, auto cde_layout, auto type) {
using ALayout = decltype(a_layout);
using BLayout = decltype(b_layout);
using CDELayout = decltype(cde_layout);
using DataType = decltype(type);
if(default_strides)
using F16 = ck::half_t;
using BF16 = ck::bhalf_t;
using F32 = float;
using F64 = double;
auto profile =
[&](auto a_layout, auto b_layout, auto cde_layout, auto type, auto compute_type) {
using ALayout = decltype(a_layout);
using BLayout = decltype(b_layout);
using CDELayout = decltype(cde_layout);
using DataType = decltype(type);
using ComputeDataType = decltype(compute_type);
if(default_strides)
{
assign_default_strides(a_layout, StridesA, {M[0], M[1], K[0], K[1]});
assign_default_strides(b_layout, StridesB, {N[0], N[1], K[0], K[1]});
assign_default_strides(cde_layout, StridesE, {M[0], M[1], N[0], N[1]});
assign_default_strides(cde_layout, StridesD, {M[0], M[1], N[0], N[1]});
}
bool pass = ck::profiler::profile_contraction_impl<ALayout,
BLayout,
CDELayout,
DataType,
ComputeDataType,
ck::Tuple<>,
Scale>(do_verification,
init_method,
do_log,
time_kernel,
Scale{alpha},
M,
N,
K,
StridesA,
StridesB,
StridesE,
StridesD);
return pass;
};
auto run_profile_for_datatype = [&](auto type, auto compute_type) {
if(layout == ContractionMatrixLayout::MK_KN_MN_MN)
{
assign_default_strides(a_layout, StridesA, {M[0], M[1], K[0], K[1]});
assign_default_strides(b_layout, StridesB, {K[0], K[1], N[0], N[1]});
assign_default_strides(cde_layout, StridesE, {M[0], M[1], N[0], N[1]});
assign_default_strides(cde_layout, StridesD, {M[0], M[1], N[0], N[1]});
return profile(Row{}, Row{}, Row{}, type, compute_type);
}
bool pass = ck::profiler::
profile_contraction_impl<ALayout, BLayout, CDELayout, DataType, ck::Tuple<>, Scale>(
do_verification,
init_method,
do_log,
time_kernel,
Scale{alpha},
M,
N,
K,
StridesA,
StridesB,
StridesE,
StridesD);
return pass;
else if(layout == ContractionMatrixLayout::MK_NK_MN_MN)
{
return profile(Row{}, Col{}, Row{}, type, compute_type);
}
else if(layout == ContractionMatrixLayout::KM_KN_MN_MN)
{
return profile(Col{}, Row{}, Row{}, type, compute_type);
}
else if(layout == ContractionMatrixLayout::KM_NK_MN_MN)
{
return profile(Col{}, Col{}, Row{}, type, compute_type);
}
return false;
};
if(data_type == ContractionDataType::F32_F32_F32_F32 &&
layout == ContractionMatrixLayout::MK_KN_MN_MN)
{
return profile(Row{}, Row{}, Row{}, F32{});
}
else if(data_type == ContractionDataType::F32_F32_F32_F32 &&
layout == ContractionMatrixLayout::MK_NK_MN_MN)
{
return profile(Row{}, Col{}, Row{}, F32{});
}
else if(data_type == ContractionDataType::F32_F32_F32_F32 &&
layout == ContractionMatrixLayout::KM_KN_MN_MN)
if(data_type == ContractionDataType::F32_F32_F32_F32)
{
return profile(Col{}, Row{}, Row{}, F32{});
}
else if(data_type == ContractionDataType::F32_F32_F32_F32 &&
layout == ContractionMatrixLayout::KM_NK_MN_MN)
{
return profile(Col{}, Col{}, Row{}, F32{});
}
else if(data_type == ContractionDataType::F64_F64_F64_F64 &&
layout == ContractionMatrixLayout::MK_KN_MN_MN)
{
return profile(Row{}, Row{}, Row{}, F64{});
}
else if(data_type == ContractionDataType::F64_F64_F64_F64 &&
layout == ContractionMatrixLayout::MK_NK_MN_MN)
{
return profile(Row{}, Col{}, Row{}, F64{});
if(compute_data_type == ContractionComputeDataType::F32)
{
return run_profile_for_datatype(F32{}, F32{});
}
else if(compute_data_type == ContractionComputeDataType::F16)
{
return run_profile_for_datatype(F32{}, F16{});
}
else if(compute_data_type == ContractionComputeDataType::BF16)
{
return run_profile_for_datatype(F32{}, BF16{});
}
else
{
std::cout << "Incorrect combination of data type and compute data type." << std::endl;
return 1;
}
}
else if(data_type == ContractionDataType::F64_F64_F64_F64 &&
layout == ContractionMatrixLayout::KM_KN_MN_MN)
else if(data_type == ContractionDataType::F64_F64_F64_F64)
{
return profile(Col{}, Row{}, Row{}, F64{});
if(compute_data_type == ContractionComputeDataType::F64)
{
return run_profile_for_datatype(F64{}, F64{});
}
else if(compute_data_type == ContractionComputeDataType::F32)
{
return run_profile_for_datatype(F64{}, F32{});
}
else
{
std::cout << "Incorrect combination of data type and compute data type." << std::endl;
return 1;
}
}
else if(data_type == ContractionDataType::F64_F64_F64_F64 &&
layout == ContractionMatrixLayout::KM_NK_MN_MN)
else if(data_type == ContractionDataType::F16_F16_F16_F16)
{
return profile(Col{}, Col{}, Row{}, F64{});
if(compute_data_type == ContractionComputeDataType::F32)
{
return run_profile_for_datatype(F16{}, F32{});
}
else
{
std::cout << "Incorrect combination of data type and compute data type." << std::endl;
return 1;
}
}
else
else if(data_type == ContractionDataType::BF16_BF16_BF16_BF16)
{
std::cout << "this data_type & layout is not implemented" << std::endl;
return 1;
if(compute_data_type == ContractionComputeDataType::F32)
{
return run_profile_for_datatype(BF16{}, F32{});
}
else
{
std::cout << "Incorrect combination of data type and compute data type." << std::endl;
return 1;
}
}
return 1;
}
REGISTER_PROFILER_OPERATION(OP_NAME, OP_DESC, profile_contraction_scale);
......@@ -19,7 +19,8 @@ enum struct RearrangeOp
enum struct ConvLayout
{
NHWC, // 0
GNHWC, // 0
NHWGC, // 1
};
enum struct DataType
......@@ -42,7 +43,8 @@ static void print_helper_msg()
<< " 1: Input fp16, Weight fp16, Output fp16\n"
<< " 2: Input bf16, Weight bf16, Output bf16\n"
<< " 3: Input int8, Weight int8, Output int8)\n"
<< "arg3: tensor layout (0: Input[N, Hi, Wi, C], Output[N * Ho * Wo, Y * X * C])\n"
<< "arg3: tensor layout (0: Input[G, N, Hi, Wi, C], Output[G * N * Ho * Wo, Y * X * C],\n"
<< " 1: Input[N, Hi, Wi, G, C], Output[N * Ho * Wo * G, Y * X * C])\n"
<< "arg4: verification (0: no, 1: yes)\n"
<< "arg5: initialization (0: no init, 1: integer value, 2: decimal value)\n"
<< "arg6: print tensor value (0: no; 1: yes)\n"
......@@ -114,11 +116,9 @@ int profile_conv_tensor_rearrange(int argc, char* argv[])
return pass ? 0 : 1;
};
// Image To Column
if(rearrange_op == RearrangeOp::ImageToColumn)
{
// NHWC
if(layout == ConvLayout::NHWC)
if(layout == ConvLayout::GNHWC)
{
if(num_dim_spatial == 1)
{
......@@ -178,11 +178,70 @@ int profile_conv_tensor_rearrange(int argc, char* argv[])
}
}
}
else if(layout == ConvLayout::NHWGC)
{
if(num_dim_spatial == 1)
{
if(data_type == DataType::F32_F32)
{
return profile(I1, NWGC{}, F32{}, F32{}, ImageToColumn{});
}
else if(data_type == DataType::F16_F16)
{
return profile(I1, NWGC{}, F16{}, F16{}, ImageToColumn{});
}
else if(data_type == DataType::BF16_BF16)
{
return profile(I1, NWGC{}, BF16{}, BF16{}, ImageToColumn{});
}
else if(data_type == DataType::INT8_INT8)
{
return profile(I1, NWGC{}, INT8{}, INT8{}, ImageToColumn{});
}
}
else if(num_dim_spatial == 2)
{
if(data_type == DataType::F32_F32)
{
return profile(I2, NHWGC{}, F32{}, F32{}, ImageToColumn{});
}
else if(data_type == DataType::F16_F16)
{
return profile(I2, NHWGC{}, F16{}, F16{}, ImageToColumn{});
}
else if(data_type == DataType::BF16_BF16)
{
return profile(I2, NHWGC{}, BF16{}, BF16{}, ImageToColumn{});
}
else if(data_type == DataType::INT8_INT8)
{
return profile(I2, NHWGC{}, INT8{}, INT8{}, ImageToColumn{});
}
}
else if(num_dim_spatial == 3)
{
if(data_type == DataType::F32_F32)
{
return profile(I3, NDHWGC{}, F32{}, F32{}, ImageToColumn{});
}
else if(data_type == DataType::F16_F16)
{
return profile(I3, NDHWGC{}, F16{}, F16{}, ImageToColumn{});
}
else if(data_type == DataType::BF16_BF16)
{
return profile(I3, NDHWGC{}, BF16{}, BF16{}, ImageToColumn{});
}
else if(data_type == DataType::INT8_INT8)
{
return profile(I3, NDHWGC{}, INT8{}, INT8{}, ImageToColumn{});
}
}
}
}
else if(rearrange_op == RearrangeOp::ColumnToImage)
{
// NHWC
if(layout == ConvLayout::NHWC)
if(layout == ConvLayout::GNHWC)
{
if(num_dim_spatial == 1)
{
......@@ -242,6 +301,66 @@ int profile_conv_tensor_rearrange(int argc, char* argv[])
}
}
}
else if(layout == ConvLayout::NHWGC)
{
if(num_dim_spatial == 1)
{
if(data_type == DataType::F32_F32)
{
return profile(I1, NWGC{}, F32{}, F32{}, ColumnToImage{});
}
else if(data_type == DataType::F16_F16)
{
return profile(I1, NWGC{}, F16{}, F16{}, ColumnToImage{});
}
else if(data_type == DataType::BF16_BF16)
{
return profile(I1, NWGC{}, BF16{}, BF16{}, ColumnToImage{});
}
else if(data_type == DataType::INT8_INT8)
{
return profile(I1, NWGC{}, INT8{}, INT8{}, ColumnToImage{});
}
}
else if(num_dim_spatial == 2)
{
if(data_type == DataType::F32_F32)
{
return profile(I2, NHWGC{}, F32{}, F32{}, ColumnToImage{});
}
else if(data_type == DataType::F16_F16)
{
return profile(I2, NHWGC{}, F16{}, F16{}, ColumnToImage{});
}
else if(data_type == DataType::BF16_BF16)
{
return profile(I2, NHWGC{}, BF16{}, BF16{}, ColumnToImage{});
}
else if(data_type == DataType::INT8_INT8)
{
return profile(I2, NHWGC{}, INT8{}, INT8{}, ColumnToImage{});
}
}
else if(num_dim_spatial == 3)
{
if(data_type == DataType::F32_F32)
{
return profile(I3, NDHWGC{}, F32{}, F32{}, ColumnToImage{});
}
else if(data_type == DataType::F16_F16)
{
return profile(I3, NDHWGC{}, F16{}, F16{}, ColumnToImage{});
}
else if(data_type == DataType::BF16_BF16)
{
return profile(I3, NDHWGC{}, BF16{}, BF16{}, ColumnToImage{});
}
else if(data_type == DataType::INT8_INT8)
{
return profile(I3, NDHWGC{}, INT8{}, INT8{}, ColumnToImage{});
}
}
}
}
std::cout << "this data_type & layout is not implemented" << std::endl;
......
......@@ -27,6 +27,8 @@ enum struct GemmDataType
F16_F16_F16, // 1
BF16_BF16_BF16, // 2
INT8_INT8_INT8, // 3
F8_F16_F16, // 4
F16_F8_F16, // 5
};
#define OP_NAME "grouped_gemm"
......@@ -56,7 +58,7 @@ int profile_grouped_gemm(int argc, char* argv[])
{
std::cout
<< "arg1: tensor operation (" OP_NAME ": " OP_DESC ")\n"
<< "arg2: data type (0: fp32; 1: fp16; 2: bf16; 3: int8)\n"
<< "arg2: data type (0: fp32; 1: fp16; 2: bf16; 3: int8; 4: fp8@fp6; 5: f16@f8)\n"
<< "arg3: matrix layout (0: A[m, k] * B[k, n] = C[m, n];\n"
<< " 1: A[m, k] * B[n, k] = C[m, n];\n"
<< " 2: A[k, m] * B[k, n] = C[m, n];\n"
......@@ -169,6 +171,46 @@ int profile_grouped_gemm(int argc, char* argv[])
StrideCs,
kbatch);
}
else if(data_type == GemmDataType::F8_F16_F16 && layout == GemmMatrixLayout::MK_KN_MN)
{
ck::profiler::profile_grouped_gemm_impl<ck::f8_t,
ck::half_t,
ck::half_t,
float,
ck::tensor_layout::gemm::RowMajor,
ck::tensor_layout::gemm::RowMajor,
ck::tensor_layout::gemm::RowMajor>(do_verification,
init_method,
do_log,
time_kernel,
Ms,
Ns,
Ks,
StrideAs,
StrideBs,
StrideCs,
kbatch);
}
else if(data_type == GemmDataType::F16_F8_F16 && layout == GemmMatrixLayout::MK_KN_MN)
{
ck::profiler::profile_grouped_gemm_impl<ck::half_t,
ck::f8_t,
ck::half_t,
float,
ck::tensor_layout::gemm::RowMajor,
ck::tensor_layout::gemm::RowMajor,
ck::tensor_layout::gemm::RowMajor>(do_verification,
init_method,
do_log,
time_kernel,
Ms,
Ns,
Ks,
StrideAs,
StrideBs,
StrideCs,
kbatch);
}
else
{
throw std::runtime_error("wrong! this GEMM data_type & layout is not implemented");
......
......@@ -6,7 +6,7 @@
#include <unordered_map>
#include "profiler/data_type_enum.hpp"
#include "profiler/profile_groupnorm_impl.hpp"
#include "profiler/profile_groupnorm_fwd_impl.hpp"
#include "profiler_operation_registry.hpp"
using ck::index_t;
......
......@@ -6,7 +6,7 @@
#include <unordered_map>
#include "profiler/data_type_enum.hpp"
#include "profiler/profile_layernorm_impl.hpp"
#include "profiler/profile_layernorm_fwd_impl.hpp"
#include "profiler_operation_registry.hpp"
using ck::index_t;
......@@ -76,19 +76,46 @@ int profile_layernorm(int argc, char* argv[])
arg_parser(argc, argv);
const std::vector<index_t> length = arg_parser.long_opts["length"];
using F16 = ck::half_t;
using F32 = float;
constexpr int rank = 2;
using F16 = ck::half_t;
using F32 = float;
if(data_type == ck::DataTypeEnum::Half)
if(length.size() == 2)
{
ck::profiler::profile_layernorm_impl<F16, F16, F16, F32, F16, F32, false, rank>(
do_verification, init_method, do_log, time_kernel, length);
constexpr int rank = 2;
if(data_type == ck::DataTypeEnum::Half)
{
ck::profiler::profile_layernorm_impl<F16, F16, F16, F32, F16, F32, false, rank>(
do_verification, init_method, do_log, time_kernel, length);
}
else if(data_type == ck::DataTypeEnum::Float)
{
ck::profiler::profile_layernorm_impl<F32, F32, F32, F32, F32, F32, false, rank>(
do_verification, init_method, do_log, time_kernel, length);
}
else
{
throw std::runtime_error("not implemented yet");
}
}
else if(data_type == ck::DataTypeEnum::Float)
else if(length.size() == 4)
{
ck::profiler::profile_layernorm_impl<F32, F32, F32, F32, F32, F32, false, rank>(
do_verification, init_method, do_log, time_kernel, length);
constexpr int rank = 4;
if(data_type == ck::DataTypeEnum::Half)
{
ck::profiler::profile_layernorm_impl<F16, F16, F16, F32, F16, F32, false, rank>(
do_verification, init_method, do_log, time_kernel, length);
}
else if(data_type == ck::DataTypeEnum::Float)
{
ck::profiler::profile_layernorm_impl<F32, F32, F32, F32, F32, F32, false, rank>(
do_verification, init_method, do_log, time_kernel, length);
}
else
{
throw std::runtime_error("not implemented yet");
}
}
else
{
......
......@@ -8,8 +8,7 @@ MY_PROJECT_SOURCE=$1
cmake \
-D CMAKE_PREFIX_PATH=/opt/rocm \
-D CMAKE_CXX_COMPILER=/opt/rocm/bin/hipcc \
-D CMAKE_CXX_FLAGS="-std=c++17 -O3 -ftemplate-backtrace-limit=0 -fPIE -Wno-gnu-line-marker \
-save-temps=$PWD" \
-D CMAKE_CXX_FLAGS="-std=c++17 -O3 -ftemplate-backtrace-limit=0 -fPIE -Wno-gnu-line-marker" \
-D CMAKE_BUILD_TYPE=Release \
-D BUILD_DEV=ON \
-D GPU_TARGETS="gfx908;gfx90a;gfx940" \
......
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment