Commit bbe74503 authored by Jun Liu's avatar Jun Liu
Browse files

Merge branch 'develop' into amd-develop

parents 8b76b832 f53ede26
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2022, Advanced Micro Devices, Inc. All rights reserved.
#include "ck/ck.hpp"
#include "ck/tensor_operation/gpu/device/impl/device_normalization_impl.hpp"
#include "ck/utility/data_type.hpp"
#include "ck/library/tensor_operation_instance/add_device_operation_instance.hpp"
namespace ck {
namespace tensor_operation {
namespace device {
namespace instance {
using F16 = ck::half_t;
using F32 = float;
using Pass = ck::tensor_operation::element_wise::PassThrough;
template <typename OutElementwise, index_t Rank, index_t Reduce>
// clang-format off
using device_normalization_f16_instances =
std::tuple <
// XDataType, GammaDataType, BetaDataType, ComputeDataType, YDataType, Rank, NumReduceDim, BlockSize, MThreadClusterSize, KThreadClusterSize, MThreadSliceSize, KThreadSliceSize, XYSrcVectorDim, XSrcVectorSize, GammaSrcVectorDim, GammaSrcVectorSize, BetaSrcVectorDim, BetaSrcVectorSize, YDstVectorSize>
DeviceNormalizationImpl<F16, F16, F16, F32, F16, OutElementwise, Rank, Reduce, 128, 1, 128, 1, 1, 1, 1, 1, 1, 1, 1, 1>, // irregular size
DeviceNormalizationImpl<F16, F16, F16, F32, F16, OutElementwise, Rank, Reduce, 256, 1, 256, 1, 1, 1, 1, 1, 1, 1, 1, 1>, // irregular size
DeviceNormalizationImpl<F16, F16, F16, F32, F16, OutElementwise, Rank, Reduce, 512, 1, 512, 1, 1, 1, 1, 1, 1, 1, 1, 1>, // irregular size
DeviceNormalizationImpl<F16, F16, F16, F32, F16, OutElementwise, Rank, Reduce, 1024, 1, 1024, 1, 1, 1, 1, 1, 1, 1, 1, 1>, // irregular size
DeviceNormalizationImpl<F16, F16, F16, F32, F16, OutElementwise, Rank, Reduce, 256, 1, 256, 1, 2, 1, 2, 1, 2, 1, 2, 2>, // irregular size
DeviceNormalizationImpl<F16, F16, F16, F32, F16, OutElementwise, Rank, Reduce, 256, 1, 256, 1, 4, 1, 4, 1, 4, 1, 4, 4>, // irregular size
DeviceNormalizationImpl<F16, F16, F16, F32, F16, OutElementwise, Rank, Reduce, 64, 1, 64, 1, 8, 1, 8, 1, 8, 1, 8, 8>,
DeviceNormalizationImpl<F16, F16, F16, F32, F16, OutElementwise, Rank, Reduce, 128, 1, 128, 1, 8, 1, 8, 1, 8, 1, 8, 8>,
DeviceNormalizationImpl<F16, F16, F16, F32, F16, OutElementwise, Rank, Reduce, 128, 1, 128, 1, 16, 1, 8, 1, 8, 1, 8, 8>,
DeviceNormalizationImpl<F16, F16, F16, F32, F16, OutElementwise, Rank, Reduce, 128, 1, 128, 1, 32, 1, 8, 1, 8, 1, 8, 8>,
DeviceNormalizationImpl<F16, F16, F16, F32, F16, OutElementwise, Rank, Reduce, 256, 1, 256, 1, 8, 1, 8, 1, 8, 1, 8, 8>,
DeviceNormalizationImpl<F16, F16, F16, F32, F16, OutElementwise, Rank, Reduce, 256, 1, 256, 1, 16, 1, 8, 1, 8, 1, 8, 8>,
DeviceNormalizationImpl<F16, F16, F16, F32, F16, OutElementwise, Rank, Reduce, 256, 1, 256, 2, 16, 1, 8, 1, 8, 1, 8, 8>,
DeviceNormalizationImpl<F16, F16, F16, F32, F16, OutElementwise, Rank, Reduce, 256, 1, 256, 1, 32, 1, 8, 1, 8, 1, 8, 8>,
DeviceNormalizationImpl<F16, F16, F16, F32, F16, OutElementwise, Rank, Reduce, 512, 1, 512, 1, 8, 1, 8, 1, 8, 1, 8, 8>,
DeviceNormalizationImpl<F16, F16, F16, F32, F16, OutElementwise, Rank, Reduce, 512, 1, 512, 1, 16, 1, 8, 1, 8, 1, 8, 8>,
DeviceNormalizationImpl<F16, F16, F16, F32, F16, OutElementwise, Rank, Reduce, 1024, 1, 1024, 1, 8, 1, 8, 1, 8, 1, 8, 8>,
DeviceNormalizationImpl<F16, F16, F16, F32, F16, OutElementwise, Rank, Reduce, 1024, 1, 1024, 1, 16, 1, 8, 1, 8, 1, 8, 8>
>;
// clang-format on
void add_device_normalization_rank_2_1_f16_instances(
std::vector<std::unique_ptr<DeviceNormalization<F16, F16, F16, F32, F16, Pass, 2, 1>>>&
instances)
{
add_device_operation_instances(instances, device_normalization_f16_instances<Pass, 2, 1>{});
}
void add_device_normalization_rank_4_3_f16_instances(
std::vector<std::unique_ptr<DeviceNormalization<F16, F16, F16, F32, F16, Pass, 4, 3>>>&
instances)
{
add_device_operation_instances(instances, device_normalization_f16_instances<Pass, 4, 3>{});
}
void add_device_normalization_rank_5_3_f16_instances(
std::vector<std::unique_ptr<DeviceNormalization<F16, F16, F16, F32, F16, Pass, 5, 3>>>&
instances)
{
add_device_operation_instances(instances, device_normalization_f16_instances<Pass, 5, 3>{});
}
} // namespace instance
} // namespace device
} // namespace tensor_operation
} // namespace ck
// SPDX-License-Identifier: MIT // SPDX-License-Identifier: MIT
// Copyright (c) 2018-2022, Advanced Micro Devices, Inc. All rights reserved. // Copyright (c) 2018-2022, Advanced Micro Devices, Inc. All rights reserved.
#pragma once
#include "ck/ck.hpp" #include "ck/ck.hpp"
#include "ck/tensor_operation/gpu/device/impl/device_normalization_impl.hpp" #include "ck/tensor_operation/gpu/device/impl/device_normalization_impl.hpp"
#include "ck/utility/data_type.hpp" #include "ck/utility/data_type.hpp"
...@@ -12,12 +14,37 @@ namespace tensor_operation { ...@@ -12,12 +14,37 @@ namespace tensor_operation {
namespace device { namespace device {
namespace instance { namespace instance {
using F16 = ck::half_t;
using F32 = float; using F32 = float;
using Pass = ck::tensor_operation::element_wise::PassThrough; template <typename OutElementwise, index_t Rank, index_t Reduce>
using device_normalization_f16_instances =
// clang-format off
std::tuple <
// XDataType, GammaDataType, BetaDataType, ComputeDataType, YDataType, Rank, NumReduceDim, BlockSize, MThreadClusterSize, KThreadClusterSize, MThreadSliceSize, KThreadSliceSize, XYSrcVectorDim, XSrcVectorSize, GammaSrcVectorDim, GammaSrcVectorSize, BetaSrcVectorDim, BetaSrcVectorSize, YDstVectorSize>
DeviceNormalizationImpl<F16, F16, F16, F32, F16, OutElementwise, Rank, Reduce, 128, 1, 128, 1, 1, 1, 1, 1, 1, 1, 1, 1>, // irregular size
DeviceNormalizationImpl<F16, F16, F16, F32, F16, OutElementwise, Rank, Reduce, 256, 1, 256, 1, 1, 1, 1, 1, 1, 1, 1, 1>, // irregular size
DeviceNormalizationImpl<F16, F16, F16, F32, F16, OutElementwise, Rank, Reduce, 512, 1, 512, 1, 1, 1, 1, 1, 1, 1, 1, 1>, // irregular size
DeviceNormalizationImpl<F16, F16, F16, F32, F16, OutElementwise, Rank, Reduce, 1024, 1, 1024, 1, 1, 1, 1, 1, 1, 1, 1, 1>, // irregular size
DeviceNormalizationImpl<F16, F16, F16, F32, F16, OutElementwise, Rank, Reduce, 256, 1, 256, 1, 2, 1, 2, 1, 2, 1, 2, 2>, // irregular size
DeviceNormalizationImpl<F16, F16, F16, F32, F16, OutElementwise, Rank, Reduce, 256, 1, 256, 1, 4, 1, 4, 1, 4, 1, 4, 4>, // irregular size
DeviceNormalizationImpl<F16, F16, F16, F32, F16, OutElementwise, Rank, Reduce, 64, 1, 64, 1, 8, 1, 8, 1, 8, 1, 8, 8>,
DeviceNormalizationImpl<F16, F16, F16, F32, F16, OutElementwise, Rank, Reduce, 128, 1, 128, 1, 8, 1, 8, 1, 8, 1, 8, 8>,
DeviceNormalizationImpl<F16, F16, F16, F32, F16, OutElementwise, Rank, Reduce, 128, 1, 128, 1, 16, 1, 8, 1, 8, 1, 8, 8>,
DeviceNormalizationImpl<F16, F16, F16, F32, F16, OutElementwise, Rank, Reduce, 128, 1, 128, 1, 32, 1, 8, 1, 8, 1, 8, 8>,
DeviceNormalizationImpl<F16, F16, F16, F32, F16, OutElementwise, Rank, Reduce, 256, 1, 256, 1, 8, 1, 8, 1, 8, 1, 8, 8>,
DeviceNormalizationImpl<F16, F16, F16, F32, F16, OutElementwise, Rank, Reduce, 256, 1, 256, 1, 16, 1, 8, 1, 8, 1, 8, 8>,
DeviceNormalizationImpl<F16, F16, F16, F32, F16, OutElementwise, Rank, Reduce, 256, 1, 256, 2, 16, 1, 8, 1, 8, 1, 8, 8>,
DeviceNormalizationImpl<F16, F16, F16, F32, F16, OutElementwise, Rank, Reduce, 256, 1, 256, 1, 32, 1, 8, 1, 8, 1, 8, 8>,
DeviceNormalizationImpl<F16, F16, F16, F32, F16, OutElementwise, Rank, Reduce, 512, 1, 512, 1, 8, 1, 8, 1, 8, 1, 8, 8>,
DeviceNormalizationImpl<F16, F16, F16, F32, F16, OutElementwise, Rank, Reduce, 512, 1, 512, 1, 16, 1, 8, 1, 8, 1, 8, 8>,
DeviceNormalizationImpl<F16, F16, F16, F32, F16, OutElementwise, Rank, Reduce, 1024, 1, 1024, 1, 8, 1, 8, 1, 8, 1, 8, 8>,
DeviceNormalizationImpl<F16, F16, F16, F32, F16, OutElementwise, Rank, Reduce, 1024, 1, 1024, 1, 16, 1, 8, 1, 8, 1, 8, 8>
// clang-format on
>;
template <typename OutElementwise, index_t Rank, index_t Reduce> template <typename OutElementwise, index_t Rank, index_t Reduce>
using device_layernorm_f32_instances = std::tuple< using device_normalization_f32_instances = std::tuple<
// clang-format off // clang-format off
// XDataType, GammaDataType, BetaDataType, ComputeDataType, YDataType, Rank, NumReduceDim, BlockSize, MThreadClusterSize, KThreadClusterSize, MThreadSliceSize, KThreadSliceSize, XYSrcVectorDim, XSrcVectorSize, GammaSrcVectorSize, BetaSrcVectorSize, YDstVectorSize> // XDataType, GammaDataType, BetaDataType, ComputeDataType, YDataType, Rank, NumReduceDim, BlockSize, MThreadClusterSize, KThreadClusterSize, MThreadSliceSize, KThreadSliceSize, XYSrcVectorDim, XSrcVectorSize, GammaSrcVectorSize, BetaSrcVectorSize, YDstVectorSize>
DeviceNormalizationImpl<F32, F32, F32, F32, F32, OutElementwise, Rank, Reduce, 128, 1, 128, 1, 1, 1, 1, 1, 1, 1, 1, 1>, // irregular size DeviceNormalizationImpl<F32, F32, F32, F32, F32, OutElementwise, Rank, Reduce, 128, 1, 128, 1, 1, 1, 1, 1, 1, 1, 1, 1>, // irregular size
...@@ -42,26 +69,31 @@ using device_layernorm_f32_instances = std::tuple< ...@@ -42,26 +69,31 @@ using device_layernorm_f32_instances = std::tuple<
// clang-format on // clang-format on
>; >;
void add_device_normalization_rank_2_1_f32_instances( template <typename OutElementwise, index_t Rank, index_t Reduce>
std::vector<std::unique_ptr<DeviceNormalization<F32, F32, F32, F32, F32, Pass, 2, 1>>>& using device_normalization_f16_f32_f32_f16_instances = std::tuple<
instances) // clang-format off
{ // XDataType, GammaDataType, BetaDataType, ComputeDataType, YDataType, Rank, NumReduceDim, BlockSize, MThreadClusterSize, KThreadClusterSize, MThreadSliceSize, KThreadSliceSize, XYSrcVectorDim, XSrcVectorSize, GammaSrcVectorSize, BetaSrcVectorSize, YDstVectorSize>
add_device_operation_instances(instances, device_layernorm_f32_instances<Pass, 2, 1>{}); DeviceNormalizationImpl<F16, F32, F32, F32, F16, OutElementwise, Rank, Reduce, 128, 1, 128, 1, 1, 1, 1, 1, 1, 1, 1, 1>, // irregular size
} DeviceNormalizationImpl<F16, F32, F32, F32, F16, OutElementwise, Rank, Reduce, 256, 1, 256, 1, 1, 1, 1, 1, 1, 1, 1, 1>, // irregular size
DeviceNormalizationImpl<F16, F32, F32, F32, F16, OutElementwise, Rank, Reduce, 512, 1, 512, 1, 1, 1, 1, 1, 1, 1, 1, 1>, // irregular size
void add_device_normalization_rank_4_3_f32_instances( DeviceNormalizationImpl<F16, F32, F32, F32, F16, OutElementwise, Rank, Reduce, 1024, 1, 1024, 1, 1, 1, 1, 1, 1, 1, 1, 1>, // irregular size
std::vector<std::unique_ptr<DeviceNormalization<F32, F32, F32, F32, F32, Pass, 4, 3>>>& DeviceNormalizationImpl<F16, F32, F32, F32, F16, OutElementwise, Rank, Reduce, 256, 1, 256, 1, 2, 1, 2, 1, 2, 1, 2, 2>, // irregular size
instances) DeviceNormalizationImpl<F16, F32, F32, F32, F16, OutElementwise, Rank, Reduce, 128, 1, 128, 1, 4, 1, 4, 1, 4, 1, 4, 4>,
{ DeviceNormalizationImpl<F16, F32, F32, F32, F16, OutElementwise, Rank, Reduce, 128, 1, 128, 1, 8, 1, 4, 1, 4, 1, 4, 4>,
add_device_operation_instances(instances, device_layernorm_f32_instances<Pass, 4, 3>{}); DeviceNormalizationImpl<F16, F32, F32, F32, F16, OutElementwise, Rank, Reduce, 128, 1, 128, 1, 16, 1, 4, 1, 4, 1, 4, 4>,
} DeviceNormalizationImpl<F16, F32, F32, F32, F16, OutElementwise, Rank, Reduce, 128, 1, 128, 1, 32, 1, 4, 1, 4, 1, 4, 4>,
DeviceNormalizationImpl<F16, F32, F32, F32, F16, OutElementwise, Rank, Reduce, 256, 1, 256, 1, 4, 1, 4, 1, 4, 1, 4, 4>,
void add_device_normalization_rank_5_3_f32_instances( DeviceNormalizationImpl<F16, F32, F32, F32, F16, OutElementwise, Rank, Reduce, 256, 1, 256, 1, 8, 1, 4, 1, 4, 1, 4, 4>,
std::vector<std::unique_ptr<DeviceNormalization<F32, F32, F32, F32, F32, Pass, 5, 3>>>& DeviceNormalizationImpl<F16, F32, F32, F32, F16, OutElementwise, Rank, Reduce, 256, 1, 256, 1, 16, 1, 4, 1, 4, 1, 4, 4>,
instances) DeviceNormalizationImpl<F16, F32, F32, F32, F16, OutElementwise, Rank, Reduce, 256, 1, 256, 2, 16, 1, 4, 1, 4, 1, 4, 4>,
{ DeviceNormalizationImpl<F16, F32, F32, F32, F16, OutElementwise, Rank, Reduce, 256, 1, 256, 1, 32, 1, 4, 1, 4, 1, 4, 4>,
add_device_operation_instances(instances, device_layernorm_f32_instances<Pass, 5, 3>{}); DeviceNormalizationImpl<F16, F32, F32, F32, F16, OutElementwise, Rank, Reduce, 512, 1, 512, 1, 4, 1, 4, 1, 4, 1, 4, 4>,
} DeviceNormalizationImpl<F16, F32, F32, F32, F16, OutElementwise, Rank, Reduce, 512, 1, 512, 1, 8, 1, 4, 1, 4, 1, 4, 4>,
DeviceNormalizationImpl<F16, F32, F32, F32, F16, OutElementwise, Rank, Reduce, 512, 1, 512, 2, 8, 1, 4, 1, 4, 1, 4, 4>,
DeviceNormalizationImpl<F16, F32, F32, F32, F16, OutElementwise, Rank, Reduce, 1024, 1, 1024, 1, 4, 1, 4, 1, 4, 1, 4, 4>,
DeviceNormalizationImpl<F16, F32, F32, F32, F16, OutElementwise, Rank, Reduce, 1024, 1, 1024, 1, 8, 1, 4, 1, 4, 1, 4, 4>
// clang-format on
>;
} // namespace instance } // namespace instance
} // namespace device } // namespace device
......
set(CONV2D_PERLAYER_QUANT_SRC
conv2d_fwd/device_conv2d_dl_perlayer_quantization_int8_instance.cpp
conv2d_fwd/device_conv2d_xdl_perlayer_quantization_int8_instance.cpp
)
set(CONV2D_PERCHANNEL_QUANT_SRC
conv2d_fwd/device_conv2d_dl_perchannel_quantization_int8_instance.cpp
conv2d_fwd/device_conv2d_xdl_perchannel_quantization_int8_instance.cpp
)
set(CONV2D_BIAS_PERLAYER_QUANT_SRC
conv2d_fwd/device_conv2d_dl_bias_perlayer_quantization_int8_instance.cpp
conv2d_fwd/device_conv2d_xdl_bias_perlayer_quantization_int8_instance.cpp
)
set(CONV2D_BIAS_PERCHANNEL_QUANT_SRC
conv2d_fwd/device_conv2d_dl_bias_perchannel_quantization_int8_instance.cpp
conv2d_fwd/device_conv2d_xdl_bias_perchannel_quantization_int8_instance.cpp
)
set(GEMM_QUANT_SRC
gemm/device_gemm_quantization_dl_c_shuffle_i8_i8_i8_km_kn_mn_instance.cpp
gemm/device_gemm_quantization_dl_c_shuffle_i8_i8_i8_km_nk_mn_instance.cpp
gemm/device_gemm_quantization_dl_c_shuffle_i8_i8_i8_mk_kn_mn_instance.cpp
gemm/device_gemm_quantization_dl_c_shuffle_i8_i8_i8_mk_nk_mn_instance.cpp
gemm/device_gemm_quantization_xdl_c_shuffle_i8_i8_i8_km_kn_mn_instance.cpp
gemm/device_gemm_quantization_xdl_c_shuffle_i8_i8_i8_km_nk_mn_instance.cpp
gemm/device_gemm_quantization_xdl_c_shuffle_i8_i8_i8_mk_kn_mn_instance.cpp
gemm/device_gemm_quantization_xdl_c_shuffle_i8_i8_i8_mk_nk_mn_instance.cpp
)
add_instance_library(device_quantization_instance add_instance_library(device_quantization_instance
device_conv2d_xdl_bias_perchannel_quantization_int8_instance.cpp ${CONV2D_PERLAYER_QUANT_SRC}
device_conv2d_xdl_bias_perlayer_quantization_int8_instance.cpp ${CONV2D_PERCHANNEL_QUANT_SRC}
device_conv2d_xdl_perchannel_quantization_int8_instance.cpp ${CONV2D_BIAS_PERLAYER_QUANT_SRC}
device_conv2d_xdl_perlayer_quantization_int8_instance.cpp ${CONV2D_BIAS_PERCHANNEL_QUANT_SRC}
${GEMM_QUANT_SRC}
) )
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2022, Advanced Micro Devices, Inc. All rights reserved.
#pragma once
#include "ck/ck.hpp"
#include "ck/tensor_operation/gpu/device/tensor_layout.hpp"
#include "ck/tensor_operation/gpu/element/element_wise_operation.hpp"
#include "ck/library/tensor_operation_instance/add_device_operation_instance.hpp"
#include "ck/tensor_operation/gpu/device/gemm_specialization.hpp"
#include "ck/tensor_operation/gpu/device/convolution_forward_specialization.hpp"
namespace ck {
namespace tensor_operation {
namespace device {
namespace instance {
using Empty_Tuple = ck::Tuple<>;
template <ck::index_t... Is>
using S = ck::Sequence<Is...>;
using NHWGC = ck::tensor_layout::convolution::NHWGC;
using GKYXC = ck::tensor_layout::convolution::GKYXC;
using NHWGK = ck::tensor_layout::convolution::NHWGK;
using GK = ck::tensor_layout::convolution::G_K;
using PassThrough = ck::tensor_operation::element_wise::PassThrough;
using Relu = ck::tensor_operation::element_wise::Relu;
using TanH = ck::tensor_operation::element_wise::TanH;
using GK_Tuple = ck::Tuple<GK>;
using GK_GK_Tuple = ck::Tuple<GK, GK>;
using I32_Tuple = ck::Tuple<int32_t>;
using F32_Tuple = ck::Tuple<float>;
using I32_F32_Tuple = ck::Tuple<int32_t, float>;
// perlayer
using Mul_Clamp = ck::tensor_operation::element_wise::Activation_Mul_Clamp<PassThrough>;
using Relu_Mul_Clamp = ck::tensor_operation::element_wise::Activation_Mul_Clamp<Relu>;
// bias + perlayer
using Add_Mul_Clamp = ck::tensor_operation::element_wise::Add_Activation_Mul_Clamp<PassThrough>;
using Add_Relu_Mul_Clamp = ck::tensor_operation::element_wise::Add_Activation_Mul_Clamp<Relu>;
using Add_Mul_TanH_Mul_Clamp =
ck::tensor_operation::element_wise::Add_Mul_Activation_Mul_Clamp<TanH>;
// perchannel
using Mul2_Clamp = ck::tensor_operation::element_wise::Activation_Mul2_Clamp<PassThrough>;
using Relu_Mul2_Clamp = ck::tensor_operation::element_wise::Activation_Mul2_Clamp<Relu>;
// bias + perchannel
using Add_Mul2_Clamp = ck::tensor_operation::element_wise::Add_Activation_Mul2_Clamp<PassThrough>;
using Add_Relu_Mul2_Clamp = ck::tensor_operation::element_wise::Add_Activation_Mul2_Clamp<Relu>;
using Add_Mul2_TanH_Mul_Clamp =
ck::tensor_operation::element_wise::Add_Mul2_Activation_Mul_Clamp<TanH>;
static constexpr ck::index_t NDimSpatial = 2;
static constexpr auto GemmSpec = ck::tensor_operation::device::GemmSpecialization::MNKPadding;
static constexpr auto ConvFwdDefault =
ck::tensor_operation::device::ConvolutionForwardSpecialization::Default;
static constexpr auto ConvFwd1x1P0 =
ck::tensor_operation::device::ConvolutionForwardSpecialization::Filter1x1Pad0;
static constexpr auto ConvFwd1x1S1P0 =
ck::tensor_operation::device::ConvolutionForwardSpecialization::Filter1x1Stride1Pad0;
} // namespace instance
} // namespace device
} // namespace tensor_operation
} // namespace ck
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2022, Advanced Micro Devices, Inc. All rights reserved.
#include "device_conv2d_dl_int8_instance.hpp"
namespace ck {
namespace tensor_operation {
namespace device {
namespace instance {
void add_device_conv2d_dl_bias_perchannel_quantization_int8_instances(
std::vector<std::unique_ptr<DeviceGroupedConvFwdMultipleD<NDimSpatial,
NHWGC,
GKYXC,
GK_GK_Tuple,
NHWGK,
int8_t,
int8_t,
I32_F32_Tuple,
int8_t,
PassThrough,
PassThrough,
Add_Mul2_Clamp>>>& instances)
{
// dl
add_device_operation_instances(instances,
device_grouped_conv2d_dl_int8_instances<NHWGC,
GKYXC,
GK_GK_Tuple,
NHWGK,
I32_F32_Tuple,
Add_Mul2_Clamp,
ConvFwdDefault,
4>{});
add_device_operation_instances(instances,
device_grouped_conv2d_dl_int8_instances<NHWGC,
GKYXC,
GK_GK_Tuple,
NHWGK,
I32_F32_Tuple,
Add_Mul2_Clamp,
ConvFwd1x1P0,
4>{});
add_device_operation_instances(instances,
device_grouped_conv2d_dl_int8_instances<NHWGC,
GKYXC,
GK_GK_Tuple,
NHWGK,
I32_F32_Tuple,
Add_Mul2_Clamp,
ConvFwd1x1S1P0,
4>{});
}
void add_device_conv2d_dl_bias_relu_perchannel_quantization_int8_instances(
std::vector<std::unique_ptr<DeviceGroupedConvFwdMultipleD<NDimSpatial,
NHWGC,
GKYXC,
GK_GK_Tuple,
NHWGK,
int8_t,
int8_t,
I32_F32_Tuple,
int8_t,
PassThrough,
PassThrough,
Add_Relu_Mul2_Clamp>>>& instances)
{
// dl
add_device_operation_instances(instances,
device_grouped_conv2d_dl_int8_instances<NHWGC,
GKYXC,
GK_GK_Tuple,
NHWGK,
I32_F32_Tuple,
Add_Relu_Mul2_Clamp,
ConvFwdDefault,
4>{});
add_device_operation_instances(instances,
device_grouped_conv2d_dl_int8_instances<NHWGC,
GKYXC,
GK_GK_Tuple,
NHWGK,
I32_F32_Tuple,
Add_Relu_Mul2_Clamp,
ConvFwd1x1P0,
4>{});
add_device_operation_instances(instances,
device_grouped_conv2d_dl_int8_instances<NHWGC,
GKYXC,
GK_GK_Tuple,
NHWGK,
I32_F32_Tuple,
Add_Relu_Mul2_Clamp,
ConvFwd1x1S1P0,
4>{});
}
void add_device_conv2d_dl_bias_tanh_perchannel_quantization_int8_instances(
std::vector<std::unique_ptr<DeviceGroupedConvFwdMultipleD<NDimSpatial,
NHWGC,
GKYXC,
GK_GK_Tuple,
NHWGK,
int8_t,
int8_t,
I32_F32_Tuple,
int8_t,
PassThrough,
PassThrough,
Add_Mul2_TanH_Mul_Clamp>>>& instances)
{
// dl
add_device_operation_instances(instances,
device_grouped_conv2d_dl_int8_instances<NHWGC,
GKYXC,
GK_GK_Tuple,
NHWGK,
I32_F32_Tuple,
Add_Mul2_TanH_Mul_Clamp,
ConvFwdDefault,
4>{});
add_device_operation_instances(instances,
device_grouped_conv2d_dl_int8_instances<NHWGC,
GKYXC,
GK_GK_Tuple,
NHWGK,
I32_F32_Tuple,
Add_Mul2_TanH_Mul_Clamp,
ConvFwd1x1P0,
4>{});
add_device_operation_instances(instances,
device_grouped_conv2d_dl_int8_instances<NHWGC,
GKYXC,
GK_GK_Tuple,
NHWGK,
I32_F32_Tuple,
Add_Mul2_TanH_Mul_Clamp,
ConvFwd1x1S1P0,
4>{});
}
} // namespace instance
} // namespace device
} // namespace tensor_operation
} // namespace ck
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2022, Advanced Micro Devices, Inc. All rights reserved.
#include "device_conv2d_dl_int8_instance.hpp"
namespace ck {
namespace tensor_operation {
namespace device {
namespace instance {
void add_device_conv2d_dl_bias_perlayer_quantization_int8_instances(
std::vector<std::unique_ptr<DeviceGroupedConvFwdMultipleD<NDimSpatial,
NHWGC,
GKYXC,
GK_Tuple,
NHWGK,
int8_t,
int8_t,
I32_Tuple,
int8_t,
PassThrough,
PassThrough,
Add_Mul_Clamp>>>& instances)
{
add_device_operation_instances(instances,
device_grouped_conv2d_dl_int8_instances<NHWGC,
GKYXC,
GK_Tuple,
NHWGK,
I32_Tuple,
Add_Mul_Clamp,
ConvFwdDefault,
4>{});
add_device_operation_instances(instances,
device_grouped_conv2d_dl_int8_instances<NHWGC,
GKYXC,
GK_Tuple,
NHWGK,
I32_Tuple,
Add_Mul_Clamp,
ConvFwd1x1P0,
4>{});
add_device_operation_instances(instances,
device_grouped_conv2d_dl_int8_instances<NHWGC,
GKYXC,
GK_Tuple,
NHWGK,
I32_Tuple,
Add_Mul_Clamp,
ConvFwd1x1S1P0,
4>{});
}
void add_device_conv2d_dl_bias_relu_perlayer_quantization_int8_instances(
std::vector<std::unique_ptr<DeviceGroupedConvFwdMultipleD<NDimSpatial,
NHWGC,
GKYXC,
GK_Tuple,
NHWGK,
int8_t,
int8_t,
I32_Tuple,
int8_t,
PassThrough,
PassThrough,
Add_Relu_Mul_Clamp>>>& instances)
{
add_device_operation_instances(instances,
device_grouped_conv2d_dl_int8_instances<NHWGC,
GKYXC,
GK_Tuple,
NHWGK,
I32_Tuple,
Add_Relu_Mul_Clamp,
ConvFwdDefault,
4>{});
add_device_operation_instances(instances,
device_grouped_conv2d_dl_int8_instances<NHWGC,
GKYXC,
GK_Tuple,
NHWGK,
I32_Tuple,
Add_Relu_Mul_Clamp,
ConvFwd1x1P0,
4>{});
add_device_operation_instances(instances,
device_grouped_conv2d_dl_int8_instances<NHWGC,
GKYXC,
GK_Tuple,
NHWGK,
I32_Tuple,
Add_Relu_Mul_Clamp,
ConvFwd1x1S1P0,
4>{});
}
void add_device_conv2d_dl_bias_tanh_perlayer_quantization_int8_instances(
std::vector<std::unique_ptr<DeviceGroupedConvFwdMultipleD<NDimSpatial,
NHWGC,
GKYXC,
GK_Tuple,
NHWGK,
int8_t,
int8_t,
I32_Tuple,
int8_t,
PassThrough,
PassThrough,
Add_Mul_TanH_Mul_Clamp>>>& instances)
{
add_device_operation_instances(instances,
device_grouped_conv2d_dl_int8_instances<NHWGC,
GKYXC,
GK_Tuple,
NHWGK,
I32_Tuple,
Add_Mul_TanH_Mul_Clamp,
ConvFwdDefault,
4>{});
add_device_operation_instances(instances,
device_grouped_conv2d_dl_int8_instances<NHWGC,
GKYXC,
GK_Tuple,
NHWGK,
I32_Tuple,
Add_Mul_TanH_Mul_Clamp,
ConvFwd1x1P0,
4>{});
add_device_operation_instances(instances,
device_grouped_conv2d_dl_int8_instances<NHWGC,
GKYXC,
GK_Tuple,
NHWGK,
I32_Tuple,
Add_Mul_TanH_Mul_Clamp,
ConvFwd1x1S1P0,
4>{});
}
} // namespace instance
} // namespace device
} // namespace tensor_operation
} // namespace ck
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2022, Advanced Micro Devices, Inc. All rights reserved.
#pragma once
#include "conv2d_quantization_common.hpp"
#include "ck/tensor_operation/gpu/device/device_grouped_conv_fwd_dl_multiple_d_nhwc_kyxc_nhwk.hpp"
namespace ck {
namespace tensor_operation {
namespace device {
namespace instance {
// clang-format off
template <typename InLayout,
typename WeiLayout,
typename DsLayout,
typename OutLayout,
typename DsDatatype,
typename OutElementOp,
ConvolutionForwardSpecialization ConvSpec,
index_t DstScalarPerVector>
using device_grouped_conv2d_dl_int8_instances =
std::tuple<
// ###########################################| NDim| InData| WeiData| MultpleD| OutData| AccData| InLayout| WeiLayout| MultipleD| OutLayout| In| Wei| Out| Convolution| GEMM| Block| MPer| NPer| K0Per| K1| M1Per| N1Per| KPer| M11N11Thread| M11N11Thread| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| BBlockTransfer| BBlockTransfer| BBlockTransfer| BBlockTransfer| BBlockTransfer| BBlockTransfer| BBlockTransfer| CThreadTransfer| CThreadTransfer| CThreadTransfer|
// ###########################################| Spatial| Type| Type| Type| Type| Type| | | Layout| | Elementwise| Elementwise| Elementwise| Forward| Spacialization| Size| Block| Block| Block| | ThreadM111| ThreadN111| Thread| ClusterM110Xs| ClusterN110Xs| ThreadSliceLengths| ThreadClusterLengths| ThreadCluster| SrcAccess| SrcVectorTensor| SrcVectorTensor| DstVectorTensor| ThreadSliceLengths| ThreadClusterLengths| ThreadCluster| SrcAccess| SrcVectorTensor| SrcVectorTensor| DstVectorTensor| SrcDstAccess| SrcDstVectorDim| DstScalarPerVector|
// ###########################################| | | | | | | | | | | Operation| Operation| Operation| Specialization| | | | | | | | | | | | K0_M0_M1_K1| K0_M0_M1_K1| ArrangeOrder| Order| Lengths_K0_M0_M1_K1| ContiguousDimOrder| Lengths_K0_M0_M1_K1| K0_N0_N1_K1| K0_N0_N1_K1| ArrangeOrder| Order| Lengths_K0_N0_N1_K1| ContiguousDimOrder| Lengths_K0_N0_N1_K1| Order| | |
// ###########################################| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
DeviceGroupedConvFwdDlMultipleD_NHWC_KYXC_NHWK< NDimSpatial, int8_t, int8_t, DsDatatype, int8_t, int32_t, InLayout, WeiLayout, DsLayout, OutLayout, PassThrough, PassThrough, OutElementOp, ConvSpec, GemmSpec, 256, 128, 128, 16, 4, 4, 4, 1, S<8, 2>, S<8, 2>, S<8, 1, 1, 4>, S<2, 1, 128, 1>, S<1, 2, 0, 3>, S<1, 2, 0, 3>, S<4, 1, 1, 4>, S<1, 2, 0, 3>, S<1, 1, 1, 4>, S<8, 1, 1, 4>, S<2, 1, 128, 1>, S<1, 2, 0, 3>, S<1, 2, 0, 3>, S<4, 1, 1, 4>, S<1, 2, 0, 3>, S<1, 1, 1, 4>, S<0, 1, 2, 3, 4, 5>, 5, DstScalarPerVector>
>;
// clang-format on
} // namespace instance
} // namespace device
} // namespace tensor_operation
} // namespace ck
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2022, Advanced Micro Devices, Inc. All rights reserved.
#include "device_conv2d_dl_int8_instance.hpp"
namespace ck {
namespace tensor_operation {
namespace device {
namespace instance {
void add_device_conv2d_dl_perchannel_quantization_int8_instances(
std::vector<std::unique_ptr<DeviceGroupedConvFwdMultipleD<NDimSpatial,
NHWGC,
GKYXC,
GK_Tuple,
NHWGK,
int8_t,
int8_t,
F32_Tuple,
int8_t,
PassThrough,
PassThrough,
Mul2_Clamp>>>& instances)
{
add_device_operation_instances(instances,
device_grouped_conv2d_dl_int8_instances<NHWGC,
GKYXC,
GK_Tuple,
NHWGK,
F32_Tuple,
Mul2_Clamp,
ConvFwdDefault,
4>{});
add_device_operation_instances(instances,
device_grouped_conv2d_dl_int8_instances<NHWGC,
GKYXC,
GK_Tuple,
NHWGK,
F32_Tuple,
Mul2_Clamp,
ConvFwd1x1P0,
4>{});
add_device_operation_instances(instances,
device_grouped_conv2d_dl_int8_instances<NHWGC,
GKYXC,
GK_Tuple,
NHWGK,
F32_Tuple,
Mul2_Clamp,
ConvFwd1x1S1P0,
4>{});
}
void add_device_conv2d_dl_relu_perchannel_quantization_int8_instances(
std::vector<std::unique_ptr<DeviceGroupedConvFwdMultipleD<NDimSpatial,
NHWGC,
GKYXC,
GK_Tuple,
NHWGK,
int8_t,
int8_t,
F32_Tuple,
int8_t,
PassThrough,
PassThrough,
Relu_Mul2_Clamp>>>& instances)
{
add_device_operation_instances(instances,
device_grouped_conv2d_dl_int8_instances<NHWGC,
GKYXC,
GK_Tuple,
NHWGK,
F32_Tuple,
Relu_Mul2_Clamp,
ConvFwdDefault,
4>{});
add_device_operation_instances(instances,
device_grouped_conv2d_dl_int8_instances<NHWGC,
GKYXC,
GK_Tuple,
NHWGK,
F32_Tuple,
Relu_Mul2_Clamp,
ConvFwd1x1P0,
4>{});
add_device_operation_instances(instances,
device_grouped_conv2d_dl_int8_instances<NHWGC,
GKYXC,
GK_Tuple,
NHWGK,
F32_Tuple,
Relu_Mul2_Clamp,
ConvFwd1x1S1P0,
4>{});
}
} // namespace instance
} // namespace device
} // namespace tensor_operation
} // namespace ck
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2022, Advanced Micro Devices, Inc. All rights reserved.
#include "device_conv2d_dl_int8_instance.hpp"
namespace ck {
namespace tensor_operation {
namespace device {
namespace instance {
void add_device_conv2d_dl_perlayer_quantization_int8_instances(
std::vector<std::unique_ptr<DeviceGroupedConvFwdMultipleD<NDimSpatial,
NHWGC,
GKYXC,
Empty_Tuple,
NHWGK,
int8_t,
int8_t,
Empty_Tuple,
int8_t,
PassThrough,
PassThrough,
Mul_Clamp>>>& instances)
{
add_device_operation_instances(instances,
device_grouped_conv2d_dl_int8_instances<NHWGC,
GKYXC,
Empty_Tuple,
NHWGK,
Empty_Tuple,
Mul_Clamp,
ConvFwdDefault,
4>{});
add_device_operation_instances(instances,
device_grouped_conv2d_dl_int8_instances<NHWGC,
GKYXC,
Empty_Tuple,
NHWGK,
Empty_Tuple,
Mul_Clamp,
ConvFwd1x1P0,
4>{});
add_device_operation_instances(instances,
device_grouped_conv2d_dl_int8_instances<NHWGC,
GKYXC,
Empty_Tuple,
NHWGK,
Empty_Tuple,
Mul_Clamp,
ConvFwd1x1S1P0,
4>{});
}
void add_device_conv2d_dl_relu_perlayer_quantization_int8_instances(
std::vector<std::unique_ptr<DeviceGroupedConvFwdMultipleD<NDimSpatial,
NHWGC,
GKYXC,
Empty_Tuple,
NHWGK,
int8_t,
int8_t,
Empty_Tuple,
int8_t,
PassThrough,
PassThrough,
Relu_Mul_Clamp>>>& instances)
{
add_device_operation_instances(instances,
device_grouped_conv2d_dl_int8_instances<NHWGC,
GKYXC,
Empty_Tuple,
NHWGK,
Empty_Tuple,
Relu_Mul_Clamp,
ConvFwdDefault,
4>{});
add_device_operation_instances(instances,
device_grouped_conv2d_dl_int8_instances<NHWGC,
GKYXC,
Empty_Tuple,
NHWGK,
Empty_Tuple,
Relu_Mul_Clamp,
ConvFwd1x1P0,
4>{});
add_device_operation_instances(instances,
device_grouped_conv2d_dl_int8_instances<NHWGC,
GKYXC,
Empty_Tuple,
NHWGK,
Empty_Tuple,
Relu_Mul_Clamp,
ConvFwd1x1S1P0,
4>{});
}
} // namespace instance
} // namespace device
} // namespace tensor_operation
} // namespace ck
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2022, Advanced Micro Devices, Inc. All rights reserved.
#include "device_conv2d_xdl_int8_instance.hpp"
namespace ck {
namespace tensor_operation {
namespace device {
namespace instance {
void add_device_conv2d_xdl_bias_perchannel_quantization_int8_instances(
std::vector<std::unique_ptr<DeviceGroupedConvFwdMultipleD<NDimSpatial,
NHWGC,
GKYXC,
GK_GK_Tuple,
NHWGK,
int8_t,
int8_t,
I32_F32_Tuple,
int8_t,
PassThrough,
PassThrough,
Add_Mul2_Clamp>>>& instances)
{
add_device_operation_instances(instances,
device_grouped_conv2d_xdl_int8_instances<NHWGC,
GKYXC,
GK_GK_Tuple,
NHWGK,
I32_F32_Tuple,
Add_Mul2_Clamp,
ConvFwdDefault,
8>{});
add_device_operation_instances(instances,
device_grouped_conv2d_xdl_int8_instances<NHWGC,
GKYXC,
GK_GK_Tuple,
NHWGK,
I32_F32_Tuple,
Add_Mul2_Clamp,
ConvFwd1x1P0,
8>{});
add_device_operation_instances(instances,
device_grouped_conv2d_xdl_int8_instances<NHWGC,
GKYXC,
GK_GK_Tuple,
NHWGK,
I32_F32_Tuple,
Add_Mul2_Clamp,
ConvFwd1x1S1P0,
8>{});
}
void add_device_conv2d_xdl_bias_relu_perchannel_quantization_int8_instances(
std::vector<std::unique_ptr<DeviceGroupedConvFwdMultipleD<NDimSpatial,
NHWGC,
GKYXC,
GK_GK_Tuple,
NHWGK,
int8_t,
int8_t,
I32_F32_Tuple,
int8_t,
PassThrough,
PassThrough,
Add_Relu_Mul2_Clamp>>>& instances)
{
add_device_operation_instances(instances,
device_grouped_conv2d_xdl_int8_instances<NHWGC,
GKYXC,
GK_GK_Tuple,
NHWGK,
I32_F32_Tuple,
Add_Relu_Mul2_Clamp,
ConvFwdDefault,
8>{});
add_device_operation_instances(instances,
device_grouped_conv2d_xdl_int8_instances<NHWGC,
GKYXC,
GK_GK_Tuple,
NHWGK,
I32_F32_Tuple,
Add_Relu_Mul2_Clamp,
ConvFwd1x1P0,
8>{});
add_device_operation_instances(instances,
device_grouped_conv2d_xdl_int8_instances<NHWGC,
GKYXC,
GK_GK_Tuple,
NHWGK,
I32_F32_Tuple,
Add_Relu_Mul2_Clamp,
ConvFwd1x1S1P0,
8>{});
}
void add_device_conv2d_xdl_bias_tanh_perchannel_quantization_int8_instances(
std::vector<std::unique_ptr<DeviceGroupedConvFwdMultipleD<NDimSpatial,
NHWGC,
GKYXC,
GK_GK_Tuple,
NHWGK,
int8_t,
int8_t,
I32_F32_Tuple,
int8_t,
PassThrough,
PassThrough,
Add_Mul2_TanH_Mul_Clamp>>>& instances)
{
add_device_operation_instances(instances,
device_grouped_conv2d_xdl_int8_instances<NHWGC,
GKYXC,
GK_GK_Tuple,
NHWGK,
I32_F32_Tuple,
Add_Mul2_TanH_Mul_Clamp,
ConvFwdDefault,
8>{});
add_device_operation_instances(instances,
device_grouped_conv2d_xdl_int8_instances<NHWGC,
GKYXC,
GK_GK_Tuple,
NHWGK,
I32_F32_Tuple,
Add_Mul2_TanH_Mul_Clamp,
ConvFwd1x1P0,
8>{});
add_device_operation_instances(instances,
device_grouped_conv2d_xdl_int8_instances<NHWGC,
GKYXC,
GK_GK_Tuple,
NHWGK,
I32_F32_Tuple,
Add_Mul2_TanH_Mul_Clamp,
ConvFwd1x1S1P0,
8>{});
}
} // namespace instance
} // namespace device
} // namespace tensor_operation
} // namespace ck
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2022, Advanced Micro Devices, Inc. All rights reserved.
#include "device_conv2d_xdl_int8_instance.hpp"
namespace ck {
namespace tensor_operation {
namespace device {
namespace instance {
void add_device_conv2d_xdl_bias_perlayer_quantization_int8_instances(
std::vector<std::unique_ptr<DeviceGroupedConvFwdMultipleD<NDimSpatial,
NHWGC,
GKYXC,
GK_Tuple,
NHWGK,
int8_t,
int8_t,
I32_Tuple,
int8_t,
PassThrough,
PassThrough,
Add_Mul_Clamp>>>& instances)
{
add_device_operation_instances(instances,
device_grouped_conv2d_xdl_int8_instances<NHWGC,
GKYXC,
GK_Tuple,
NHWGK,
I32_Tuple,
Add_Mul_Clamp,
ConvFwdDefault,
8>{});
add_device_operation_instances(instances,
device_grouped_conv2d_xdl_int8_instances<NHWGC,
GKYXC,
GK_Tuple,
NHWGK,
I32_Tuple,
Add_Mul_Clamp,
ConvFwd1x1P0,
8>{});
add_device_operation_instances(instances,
device_grouped_conv2d_xdl_int8_instances<NHWGC,
GKYXC,
GK_Tuple,
NHWGK,
I32_Tuple,
Add_Mul_Clamp,
ConvFwd1x1S1P0,
8>{});
}
void add_device_conv2d_xdl_bias_relu_perlayer_quantization_int8_instances(
std::vector<std::unique_ptr<DeviceGroupedConvFwdMultipleD<NDimSpatial,
NHWGC,
GKYXC,
GK_Tuple,
NHWGK,
int8_t,
int8_t,
I32_Tuple,
int8_t,
PassThrough,
PassThrough,
Add_Relu_Mul_Clamp>>>& instances)
{
add_device_operation_instances(instances,
device_grouped_conv2d_xdl_int8_instances<NHWGC,
GKYXC,
GK_Tuple,
NHWGK,
I32_Tuple,
Add_Relu_Mul_Clamp,
ConvFwdDefault,
8>{});
add_device_operation_instances(instances,
device_grouped_conv2d_xdl_int8_instances<NHWGC,
GKYXC,
GK_Tuple,
NHWGK,
I32_Tuple,
Add_Relu_Mul_Clamp,
ConvFwd1x1P0,
8>{});
add_device_operation_instances(instances,
device_grouped_conv2d_xdl_int8_instances<NHWGC,
GKYXC,
GK_Tuple,
NHWGK,
I32_Tuple,
Add_Relu_Mul_Clamp,
ConvFwd1x1S1P0,
8>{});
}
void add_device_conv2d_xdl_bias_tanh_perlayer_quantization_int8_instances(
std::vector<std::unique_ptr<DeviceGroupedConvFwdMultipleD<NDimSpatial,
NHWGC,
GKYXC,
GK_Tuple,
NHWGK,
int8_t,
int8_t,
I32_Tuple,
int8_t,
PassThrough,
PassThrough,
Add_Mul_TanH_Mul_Clamp>>>& instances)
{
add_device_operation_instances(instances,
device_grouped_conv2d_xdl_int8_instances<NHWGC,
GKYXC,
GK_Tuple,
NHWGK,
I32_Tuple,
Add_Mul_TanH_Mul_Clamp,
ConvFwdDefault,
8>{});
add_device_operation_instances(instances,
device_grouped_conv2d_xdl_int8_instances<NHWGC,
GKYXC,
GK_Tuple,
NHWGK,
I32_Tuple,
Add_Mul_TanH_Mul_Clamp,
ConvFwd1x1P0,
8>{});
add_device_operation_instances(instances,
device_grouped_conv2d_xdl_int8_instances<NHWGC,
GKYXC,
GK_Tuple,
NHWGK,
I32_Tuple,
Add_Mul_TanH_Mul_Clamp,
ConvFwd1x1S1P0,
8>{});
}
} // namespace instance
} // namespace device
} // namespace tensor_operation
} // namespace ck
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2022, Advanced Micro Devices, Inc. All rights reserved.
#pragma once
#include "conv2d_quantization_common.hpp"
#include "ck/tensor_operation/gpu/device/impl/device_grouped_conv_fwd_multiple_d_xdl_cshuffle.hpp"
namespace ck {
namespace tensor_operation {
namespace device {
namespace instance {
// clang-format off
template <typename ALayout,
typename BLayout,
typename DsLayout,
typename ELayout,
typename DsDatatype,
typename OutElementOp,
ConvolutionForwardSpecialization ConvSpec,
index_t DstScalarPerVector>
using device_grouped_conv2d_xdl_int8_instances =
std::tuple <
//########################################| NumDim| A| B| Ds| E| AData| BData| AccData| CShuffle| Ds| EData| A| B| CDE| ConvForward| GEMM| NumGemmK| Block| MPer| NPer| KPer| AK1| BK1| MPer| NPer| MXdl| NXdl| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockLds| BBlockTransfer| BBlockTransfer| BBlockTransfer| BlockTransfer| BBlockTransfer| BBlockTransfer| BBlockLds| CShuffle| CShuffle| CBlockTransferClusterLengths| CBlockTransfer|
//########################################| Spatial| Layout| Layout| Layout| Layout| Type| Type| Type| DataType| DataType| Type| Elementwise| Elementwise| Elementwise| Specialization| Specialization| Prefetch| Size| Block| Block| Block| | | XDL| XDL| Per| Per| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| AddExtraM| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| AddExtraN| MXdlPerWave| NXdlPerWave| _MBlock_MWaveMPerXdl| ScalarPerVector|
//########################################| | | | | | | | | | | | Operation| Operation| Operation| | | Stage| | | | | | | | | Wave| Wave| Lengths_K0_M_K1| ArrangeOrder| | | PerVector| PerVector_K1| | Lengths_K0_N_K1| ArrangeOrder| | | PerVector| PerVector_K1| | PerShuffle| PerShuffle| _NBlock_NWaveNPerXdl| _NWaveNPerXdl|
//########################################| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
DeviceGroupedConvFwdMultipleD_Xdl_CShuffle<NDimSpatial, ALayout, BLayout, DsLayout, ELayout, int8_t, int8_t, int32_t, int32_t, DsDatatype, int8_t, PassThrough, PassThrough, OutElementOp, ConvSpec, GemmSpec, 1, 256, 256, 128, 64, 16, 16, 32, 32, 4, 2, S<4, 64, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 16, 16, 1, S<4, 64, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 16, 16, 1, 1, 1, S<1, 64, 1, 4>, DstScalarPerVector>,
DeviceGroupedConvFwdMultipleD_Xdl_CShuffle<NDimSpatial, ALayout, BLayout, DsLayout, ELayout, int8_t, int8_t, int32_t, int32_t, DsDatatype, int8_t, PassThrough, PassThrough, OutElementOp, ConvSpec, GemmSpec, 1, 256, 128, 256, 64, 16, 16, 32, 32, 2, 4, S<4, 64, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 16, 16, 1, S<4, 64, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 16, 16, 1, 1, 1, S<1, 64, 1, 4>, DstScalarPerVector>,
DeviceGroupedConvFwdMultipleD_Xdl_CShuffle<NDimSpatial, ALayout, BLayout, DsLayout, ELayout, int8_t, int8_t, int32_t, int32_t, DsDatatype, int8_t, PassThrough, PassThrough, OutElementOp, ConvSpec, GemmSpec, 1, 128, 128, 128, 64, 16, 16, 32, 32, 4, 2, S<4, 32, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 16, 16, 1, S<4, 32, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 16, 16, 1, 1, 1, S<1, 32, 1, 4>, DstScalarPerVector>,
DeviceGroupedConvFwdMultipleD_Xdl_CShuffle<NDimSpatial, ALayout, BLayout, DsLayout, ELayout, int8_t, int8_t, int32_t, int32_t, DsDatatype, int8_t, PassThrough, PassThrough, OutElementOp, ConvSpec, GemmSpec, 1, 256, 128, 128, 64, 16, 16, 32, 32, 2, 2, S<4, 64, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 16, 16, 1, S<4, 64, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 16, 16, 1, 1, 1, S<1, 64, 1, 4>, DstScalarPerVector>,
DeviceGroupedConvFwdMultipleD_Xdl_CShuffle<NDimSpatial, ALayout, BLayout, DsLayout, ELayout, int8_t, int8_t, int32_t, int32_t, DsDatatype, int8_t, PassThrough, PassThrough, OutElementOp, ConvSpec, GemmSpec, 1, 128, 128, 64, 64, 16, 16, 32, 32, 2, 2, S<4, 32, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 16, 16, 1, S<4, 32, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 16, 16, 1, 1, 1, S<1, 64, 1, 2>, DstScalarPerVector>,
DeviceGroupedConvFwdMultipleD_Xdl_CShuffle<NDimSpatial, ALayout, BLayout, DsLayout, ELayout, int8_t, int8_t, int32_t, int32_t, DsDatatype, int8_t, PassThrough, PassThrough, OutElementOp, ConvSpec, GemmSpec, 1, 128, 64, 128, 64, 16, 16, 32, 32, 2, 2, S<4, 32, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 16, 16, 1, S<4, 32, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 16, 16, 1, 1, 1, S<1, 32, 1, 4>, DstScalarPerVector>,
DeviceGroupedConvFwdMultipleD_Xdl_CShuffle<NDimSpatial, ALayout, BLayout, DsLayout, ELayout, int8_t, int8_t, int32_t, int32_t, DsDatatype, int8_t, PassThrough, PassThrough, OutElementOp, ConvSpec, GemmSpec, 1, 64, 64, 64, 64, 16, 16, 32, 32, 2, 2, S<4, 16, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 16, 16, 1, S<4, 16, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 16, 16, 1, 1, 1, S<1, 32, 1, 2>, DstScalarPerVector>,
DeviceGroupedConvFwdMultipleD_Xdl_CShuffle<NDimSpatial, ALayout, BLayout, DsLayout, ELayout, int8_t, int8_t, int32_t, int32_t, DsDatatype, int8_t, PassThrough, PassThrough, OutElementOp, ConvSpec, GemmSpec, 1, 256, 128, 64, 64, 16, 16, 32, 32, 2, 1, S<4, 64, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 16, 16, 1, S<4, 64, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 16, 16, 1, 1, 1, S<1, 64, 1, 4>, DstScalarPerVector>,
DeviceGroupedConvFwdMultipleD_Xdl_CShuffle<NDimSpatial, ALayout, BLayout, DsLayout, ELayout, int8_t, int8_t, int32_t, int32_t, DsDatatype, int8_t, PassThrough, PassThrough, OutElementOp, ConvSpec, GemmSpec, 1, 256, 64, 128, 64, 16, 16, 32, 32, 1, 2, S<4, 64, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 16, 16, 1, S<4, 64, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 16, 16, 1, 1, 1, S<1, 64, 1, 4>, DstScalarPerVector>,
DeviceGroupedConvFwdMultipleD_Xdl_CShuffle<NDimSpatial, ALayout, BLayout, DsLayout, ELayout, int8_t, int8_t, int32_t, int32_t, DsDatatype, int8_t, PassThrough, PassThrough, OutElementOp, ConvSpec, GemmSpec, 1, 128, 128, 32, 64, 16, 16, 32, 32, 2, 1, S<4, 32, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 16, 16, 1, S<4, 32, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 16, 16, 1, 1, 1, S<1, 64, 1, 2>, DstScalarPerVector>,
DeviceGroupedConvFwdMultipleD_Xdl_CShuffle<NDimSpatial, ALayout, BLayout, DsLayout, ELayout, int8_t, int8_t, int32_t, int32_t, DsDatatype, int8_t, PassThrough, PassThrough, OutElementOp, ConvSpec, GemmSpec, 1, 128, 32, 128, 64, 16, 16, 32, 32, 1, 2, S<4, 32, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 16, 16, 1, S<4, 32, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 16, 16, 1, 1, 1, S<1, 32, 1, 4>, DstScalarPerVector>,
DeviceGroupedConvFwdMultipleD_Xdl_CShuffle<NDimSpatial, ALayout, BLayout, DsLayout, ELayout, int8_t, int8_t, int32_t, int32_t, DsDatatype, int8_t, PassThrough, PassThrough, OutElementOp, ConvSpec, GemmSpec, 1, 64, 64, 32, 64, 16, 16, 32, 32, 2, 1, S<4, 16, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 16, 16, 1, S<4, 16, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 16, 16, 1, 1, 1, S<1, 32, 1, 2>, DstScalarPerVector>,
DeviceGroupedConvFwdMultipleD_Xdl_CShuffle<NDimSpatial, ALayout, BLayout, DsLayout, ELayout, int8_t, int8_t, int32_t, int32_t, DsDatatype, int8_t, PassThrough, PassThrough, OutElementOp, ConvSpec, GemmSpec, 1, 64, 32, 64, 64, 16, 16, 32, 32, 1, 2, S<4, 16, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 16, 16, 1, S<4, 16, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 16, 16, 1, 1, 1, S<1, 32, 1, 2>, DstScalarPerVector>
>;
// clang-format on
} // namespace instance
} // namespace device
} // namespace tensor_operation
} // namespace ck
...@@ -7,66 +7,90 @@ namespace ck { ...@@ -7,66 +7,90 @@ namespace ck {
namespace tensor_operation { namespace tensor_operation {
namespace device { namespace device {
namespace instance { namespace instance {
void add_device_conv2d_bias_perchannel_quantization_int8_instances( void add_device_conv2d_xdl_perchannel_quantization_int8_instances(
std::vector<std::unique_ptr<DeviceGroupedConvFwdMultipleD<NDimSpatial, std::vector<std::unique_ptr<DeviceGroupedConvFwdMultipleD<NDimSpatial,
GNHWC, NHWGC,
GKYXC, GKYXC,
GK_GK_Tuple, GK_Tuple,
GNHWK, NHWGK,
int8_t, int8_t,
int8_t, int8_t,
I32_F32_Tuple, F32_Tuple,
int8_t, int8_t,
PassThrough, PassThrough,
PassThrough, PassThrough,
Add_Mul2_Clamp>>>& instances) Mul2_Clamp>>>& instances)
{ {
add_device_operation_instances(instances, add_device_operation_instances(instances,
device_conv2d_int8_32Ds_instances<GK_GK_Tuple, device_grouped_conv2d_xdl_int8_instances<NHWGC,
I32_F32_Tuple, GKYXC,
Add_Mul2_Clamp, GK_Tuple,
ConvFwdDefault>{}); NHWGK,
F32_Tuple,
Mul2_Clamp,
ConvFwdDefault,
8>{});
add_device_operation_instances(instances, add_device_operation_instances(instances,
device_conv2d_int8_32Ds_instances<GK_GK_Tuple, device_grouped_conv2d_xdl_int8_instances<NHWGC,
I32_F32_Tuple, GKYXC,
Add_Mul2_Clamp, GK_Tuple,
ConvFwd1x1P0>{}); NHWGK,
F32_Tuple,
Mul2_Clamp,
ConvFwd1x1P0,
8>{});
add_device_operation_instances(instances, add_device_operation_instances(instances,
device_conv2d_int8_32Ds_instances<GK_GK_Tuple, device_grouped_conv2d_xdl_int8_instances<NHWGC,
I32_F32_Tuple, GKYXC,
Add_Mul2_Clamp, GK_Tuple,
ConvFwd1x1S1P0>{}); NHWGK,
F32_Tuple,
Mul2_Clamp,
ConvFwd1x1S1P0,
8>{});
} }
void add_device_conv2d_bias_relu_perchannel_quantization_int8_instances( void add_device_conv2d_xdl_relu_perchannel_quantization_int8_instances(
std::vector<std::unique_ptr<DeviceGroupedConvFwdMultipleD<NDimSpatial, std::vector<std::unique_ptr<DeviceGroupedConvFwdMultipleD<NDimSpatial,
GNHWC, NHWGC,
GKYXC, GKYXC,
GK_GK_Tuple, GK_Tuple,
GNHWK, NHWGK,
int8_t, int8_t,
int8_t, int8_t,
I32_F32_Tuple, F32_Tuple,
int8_t, int8_t,
PassThrough, PassThrough,
PassThrough, PassThrough,
Add_Relu_Mul2_Clamp>>>& instances) Relu_Mul2_Clamp>>>& instances)
{ {
add_device_operation_instances(instances, add_device_operation_instances(instances,
device_conv2d_int8_32Ds_instances<GK_GK_Tuple, device_grouped_conv2d_xdl_int8_instances<NHWGC,
I32_F32_Tuple, GKYXC,
Add_Relu_Mul2_Clamp, GK_Tuple,
ConvFwdDefault>{}); NHWGK,
F32_Tuple,
Relu_Mul2_Clamp,
ConvFwdDefault,
8>{});
add_device_operation_instances(instances, add_device_operation_instances(instances,
device_conv2d_int8_32Ds_instances<GK_GK_Tuple, device_grouped_conv2d_xdl_int8_instances<NHWGC,
I32_F32_Tuple, GKYXC,
Add_Relu_Mul2_Clamp, GK_Tuple,
ConvFwd1x1P0>{}); NHWGK,
F32_Tuple,
Relu_Mul2_Clamp,
ConvFwd1x1P0,
8>{});
add_device_operation_instances(instances, add_device_operation_instances(instances,
device_conv2d_int8_32Ds_instances<GK_GK_Tuple, device_grouped_conv2d_xdl_int8_instances<NHWGC,
I32_F32_Tuple, GKYXC,
Add_Relu_Mul2_Clamp, GK_Tuple,
ConvFwd1x1S1P0>{}); NHWGK,
F32_Tuple,
Relu_Mul2_Clamp,
ConvFwd1x1S1P0,
8>{});
} }
} // namespace instance } // namespace instance
} // namespace device } // namespace device
......
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2022, Advanced Micro Devices, Inc. All rights reserved.
#include "device_conv2d_xdl_int8_instance.hpp"
namespace ck {
namespace tensor_operation {
namespace device {
namespace instance {
void add_device_conv2d_xdl_perlayer_quantization_int8_instances(
std::vector<std::unique_ptr<DeviceGroupedConvFwdMultipleD<NDimSpatial,
NHWGC,
GKYXC,
Empty_Tuple,
NHWGK,
int8_t,
int8_t,
Empty_Tuple,
int8_t,
PassThrough,
PassThrough,
Mul_Clamp>>>& instances)
{
add_device_operation_instances(instances,
device_grouped_conv2d_xdl_int8_instances<NHWGC,
GKYXC,
Empty_Tuple,
NHWGK,
Empty_Tuple,
Mul_Clamp,
ConvFwdDefault,
16>{});
add_device_operation_instances(instances,
device_grouped_conv2d_xdl_int8_instances<NHWGC,
GKYXC,
Empty_Tuple,
NHWGK,
Empty_Tuple,
Mul_Clamp,
ConvFwd1x1P0,
16>{});
add_device_operation_instances(instances,
device_grouped_conv2d_xdl_int8_instances<NHWGC,
GKYXC,
Empty_Tuple,
NHWGK,
Empty_Tuple,
Mul_Clamp,
ConvFwd1x1S1P0,
16>{});
}
void add_device_conv2d_xdl_relu_perlayer_quantization_int8_instances(
std::vector<std::unique_ptr<DeviceGroupedConvFwdMultipleD<NDimSpatial,
NHWGC,
GKYXC,
Empty_Tuple,
NHWGK,
int8_t,
int8_t,
Empty_Tuple,
int8_t,
PassThrough,
PassThrough,
Relu_Mul_Clamp>>>& instances)
{
add_device_operation_instances(instances,
device_grouped_conv2d_xdl_int8_instances<NHWGC,
GKYXC,
Empty_Tuple,
NHWGK,
Empty_Tuple,
Relu_Mul_Clamp,
ConvFwdDefault,
16>{});
add_device_operation_instances(instances,
device_grouped_conv2d_xdl_int8_instances<NHWGC,
GKYXC,
Empty_Tuple,
NHWGK,
Empty_Tuple,
Relu_Mul_Clamp,
ConvFwd1x1P0,
16>{});
add_device_operation_instances(instances,
device_grouped_conv2d_xdl_int8_instances<NHWGC,
GKYXC,
Empty_Tuple,
NHWGK,
Empty_Tuple,
Relu_Mul_Clamp,
ConvFwd1x1S1P0,
16>{});
}
} // namespace instance
} // namespace device
} // namespace tensor_operation
} // namespace ck
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2022, Advanced Micro Devices, Inc. All rights reserved.
#include "device_conv2d_xdl_int8_instance.hpp"
namespace ck {
namespace tensor_operation {
namespace device {
namespace instance {
void add_device_conv2d_bias_perlayer_quantization_int8_instances(
std::vector<std::unique_ptr<DeviceGroupedConvFwdMultipleD<NDimSpatial,
GNHWC,
GKYXC,
GK_Tuple,
GNHWK,
int8_t,
int8_t,
I32_Tuple,
int8_t,
PassThrough,
PassThrough,
Add_Mul_Clamp>>>& instances)
{
add_device_operation_instances(
instances,
device_conv2d_int8_32Ds_instances<GK_Tuple, I32_Tuple, Add_Mul_Clamp, ConvFwdDefault>{});
add_device_operation_instances(
instances,
device_conv2d_int8_32Ds_instances<GK_Tuple, I32_Tuple, Add_Mul_Clamp, ConvFwd1x1P0>{});
add_device_operation_instances(
instances,
device_conv2d_int8_32Ds_instances<GK_Tuple, I32_Tuple, Add_Mul_Clamp, ConvFwd1x1S1P0>{});
}
void add_device_conv2d_bias_relu_perlayer_quantization_int8_instances(
std::vector<std::unique_ptr<DeviceGroupedConvFwdMultipleD<NDimSpatial,
GNHWC,
GKYXC,
GK_Tuple,
GNHWK,
int8_t,
int8_t,
I32_Tuple,
int8_t,
PassThrough,
PassThrough,
Add_Relu_Mul_Clamp>>>& instances)
{
add_device_operation_instances(instances,
device_conv2d_int8_32Ds_instances<GK_Tuple,
I32_Tuple,
Add_Relu_Mul_Clamp,
ConvFwdDefault>{});
add_device_operation_instances(
instances,
device_conv2d_int8_32Ds_instances<GK_Tuple, I32_Tuple, Add_Relu_Mul_Clamp, ConvFwd1x1P0>{});
add_device_operation_instances(instances,
device_conv2d_int8_32Ds_instances<GK_Tuple,
I32_Tuple,
Add_Relu_Mul_Clamp,
ConvFwd1x1S1P0>{});
}
} // namespace instance
} // namespace device
} // namespace tensor_operation
} // namespace ck
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2022, Advanced Micro Devices, Inc. All rights reserved.
#include "ck/ck.hpp"
#include "ck/tensor_operation/gpu/device/tensor_layout.hpp"
#include "ck/tensor_operation/gpu/device/impl/device_grouped_conv_fwd_multiple_d_xdl_cshuffle.hpp"
#include "ck/tensor_operation/gpu/element/element_wise_operation.hpp"
#include "ck/library/tensor_operation_instance/add_device_operation_instance.hpp"
namespace ck {
namespace tensor_operation {
namespace device {
namespace instance {
using Empty_Tuple = ck::Tuple<>;
template <ck::index_t... Is>
using S = ck::Sequence<Is...>;
using GNHWC = ck::tensor_layout::convolution::GNHWC;
using GKYXC = ck::tensor_layout::convolution::GKYXC;
using GNHWK = ck::tensor_layout::convolution::GNHWK;
using GK = ck::tensor_layout::convolution::G_K;
using PassThrough = ck::tensor_operation::element_wise::PassThrough;
using Relu = ck::tensor_operation::element_wise::Relu;
using GK_Tuple = ck::Tuple<GK>;
using GK_GK_Tuple = ck::Tuple<GK, GK>;
using I32_Tuple = ck::Tuple<int32_t>;
using F32_Tuple = ck::Tuple<float>;
using I32_F32_Tuple = ck::Tuple<int32_t, float>;
using Mul_Clamp = ck::tensor_operation::element_wise::Activation_Mul_Clamp<PassThrough>;
using Relu_Mul_Clamp = ck::tensor_operation::element_wise::Activation_Mul_Clamp<Relu>;
using Add_Mul_Clamp = ck::tensor_operation::element_wise::Add_Activation_Mul_Clamp<PassThrough>;
using Add_Relu_Mul_Clamp = ck::tensor_operation::element_wise::Add_Activation_Mul_Clamp<Relu>;
using Mul2_Clamp = ck::tensor_operation::element_wise::Activation_Mul2_Clamp<PassThrough>;
using Relu_Mul2_Clamp = ck::tensor_operation::element_wise::Activation_Mul2_Clamp<Relu>;
using Add_Mul2_Clamp = ck::tensor_operation::element_wise::Add_Activation_Mul2_Clamp<PassThrough>;
using Add_Relu_Mul2_Clamp = ck::tensor_operation::element_wise::Add_Activation_Mul2_Clamp<Relu>;
static constexpr ck::index_t NDimSpatial = 2;
static constexpr auto GemmSpec = ck::tensor_operation::device::GemmSpecialization::MNKPadding;
static constexpr auto ConvFwdDefault =
ck::tensor_operation::device::ConvolutionForwardSpecialization::Default;
static constexpr auto ConvFwd1x1P0 =
ck::tensor_operation::device::ConvolutionForwardSpecialization::Filter1x1Pad0;
static constexpr auto ConvFwd1x1S1P0 =
ck::tensor_operation::device::ConvolutionForwardSpecialization::Filter1x1Stride1Pad0;
template <typename DsLayout,
typename DsDatatype,
typename OutElementOp,
ConvolutionForwardSpecialization ConvSpec>
// clang-format off
using device_conv2d_int8_instances =
std::tuple <
//########################################| NumDim| A| B| Ds| E| AData| BData| AccData| CShuffle| Ds| EData| A| B| CDE| ConvForward| GEMM| NumGemmK| Block| MPer| NPer| KPer| AK1| BK1| MPer| NPer| MXdl| NXdl| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockLds| BBlockTransfer| BBlockTransfer| BBlockTransfer| BlockTransfer| BBlockTransfer| BBlockTransfer| BBlockLds| CShuffle| CShuffle| CBlockTransferClusterLengths| CBlockTransfer|
//########################################| Spatial| Layout| Layout| Layout| Layout| Type| Type| Type| DataType| DataType| Type| Elementwise| Elementwise| Elementwise| Specialization| Specialization| Prefetch| Size| Block| Block| Block| | | XDL| XDL| Per| Per| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| AddExtraM| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| AddExtraN| MXdlPerWave| NXdlPerWave| _MBlock_MWaveMPerXdl| ScalarPerVector|
//########################################| | | | | | | | | | | | Operation| Operation| Operation| | | Stage| | | | | | | | | Wave| Wave| Lengths_K0_M_K1| ArrangeOrder| | | PerVector| PerVector_K1| | Lengths_K0_N_K1| ArrangeOrder| | | PerVector| PerVector_K1| | PerShuffle| PerShuffle| _NBlock_NWaveNPerXdl| _NWaveNPerXdl|
//########################################| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
DeviceGroupedConvFwdMultipleD_Xdl_CShuffle< 2, GNHWC, GKYXC, DsLayout, GNHWK, int8_t, int8_t, int32_t, int32_t, DsDatatype, int8_t, PassThrough, PassThrough, OutElementOp, ConvSpec, GemmSpec, 1, 256, 256, 128, 64, 16, 16, 32, 32, 4, 2, S<4, 64, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 16, 16, 1, S<4, 64, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 16, 16, 1, 1, 1, S<1, 64, 1, 4>, 16>,
DeviceGroupedConvFwdMultipleD_Xdl_CShuffle< 2, GNHWC, GKYXC, DsLayout, GNHWK, int8_t, int8_t, int32_t, int32_t, DsDatatype, int8_t, PassThrough, PassThrough, OutElementOp, ConvSpec, GemmSpec, 1, 256, 128, 256, 64, 16, 16, 32, 32, 2, 4, S<4, 64, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 16, 16, 1, S<4, 64, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 16, 16, 1, 1, 1, S<1, 64, 1, 4>, 16>,
DeviceGroupedConvFwdMultipleD_Xdl_CShuffle< 2, GNHWC, GKYXC, DsLayout, GNHWK, int8_t, int8_t, int32_t, int32_t, DsDatatype, int8_t, PassThrough, PassThrough, OutElementOp, ConvSpec, GemmSpec, 1, 128, 128, 128, 64, 16, 16, 32, 32, 4, 2, S<4, 32, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 16, 16, 1, S<4, 32, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 16, 16, 1, 1, 1, S<1, 32, 1, 4>, 16>,
DeviceGroupedConvFwdMultipleD_Xdl_CShuffle< 2, GNHWC, GKYXC, DsLayout, GNHWK, int8_t, int8_t, int32_t, int32_t, DsDatatype, int8_t, PassThrough, PassThrough, OutElementOp, ConvSpec, GemmSpec, 1, 256, 128, 128, 64, 16, 16, 32, 32, 2, 2, S<4, 64, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 16, 16, 1, S<4, 64, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 16, 16, 1, 1, 1, S<1, 64, 1, 4>, 16>,
DeviceGroupedConvFwdMultipleD_Xdl_CShuffle< 2, GNHWC, GKYXC, DsLayout, GNHWK, int8_t, int8_t, int32_t, int32_t, DsDatatype, int8_t, PassThrough, PassThrough, OutElementOp, ConvSpec, GemmSpec, 1, 128, 128, 64, 64, 16, 16, 32, 32, 2, 2, S<4, 32, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 16, 16, 1, S<4, 32, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 16, 16, 1, 1, 1, S<1, 64, 1, 2>, 16>,
DeviceGroupedConvFwdMultipleD_Xdl_CShuffle< 2, GNHWC, GKYXC, DsLayout, GNHWK, int8_t, int8_t, int32_t, int32_t, DsDatatype, int8_t, PassThrough, PassThrough, OutElementOp, ConvSpec, GemmSpec, 1, 128, 64, 128, 64, 16, 16, 32, 32, 2, 2, S<4, 32, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 16, 16, 1, S<4, 32, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 16, 16, 1, 1, 1, S<1, 32, 1, 4>, 16>,
DeviceGroupedConvFwdMultipleD_Xdl_CShuffle< 2, GNHWC, GKYXC, DsLayout, GNHWK, int8_t, int8_t, int32_t, int32_t, DsDatatype, int8_t, PassThrough, PassThrough, OutElementOp, ConvSpec, GemmSpec, 1, 64, 64, 64, 64, 16, 16, 32, 32, 2, 2, S<4, 16, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 16, 16, 1, S<4, 16, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 16, 16, 1, 1, 1, S<1, 32, 1, 2>, 16>,
DeviceGroupedConvFwdMultipleD_Xdl_CShuffle< 2, GNHWC, GKYXC, DsLayout, GNHWK, int8_t, int8_t, int32_t, int32_t, DsDatatype, int8_t, PassThrough, PassThrough, OutElementOp, ConvSpec, GemmSpec, 1, 256, 128, 64, 64, 16, 16, 32, 32, 2, 1, S<4, 64, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 16, 16, 1, S<4, 64, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 16, 16, 1, 1, 1, S<1, 64, 1, 4>, 16>,
DeviceGroupedConvFwdMultipleD_Xdl_CShuffle< 2, GNHWC, GKYXC, DsLayout, GNHWK, int8_t, int8_t, int32_t, int32_t, DsDatatype, int8_t, PassThrough, PassThrough, OutElementOp, ConvSpec, GemmSpec, 1, 256, 64, 128, 64, 16, 16, 32, 32, 1, 2, S<4, 64, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 16, 16, 1, S<4, 64, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 16, 16, 1, 1, 1, S<1, 64, 1, 4>, 16>,
DeviceGroupedConvFwdMultipleD_Xdl_CShuffle< 2, GNHWC, GKYXC, DsLayout, GNHWK, int8_t, int8_t, int32_t, int32_t, DsDatatype, int8_t, PassThrough, PassThrough, OutElementOp, ConvSpec, GemmSpec, 1, 128, 128, 32, 64, 16, 16, 32, 32, 2, 1, S<4, 32, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 16, 16, 1, S<4, 32, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 16, 16, 1, 1, 1, S<1, 64, 1, 2>, 16>,
DeviceGroupedConvFwdMultipleD_Xdl_CShuffle< 2, GNHWC, GKYXC, DsLayout, GNHWK, int8_t, int8_t, int32_t, int32_t, DsDatatype, int8_t, PassThrough, PassThrough, OutElementOp, ConvSpec, GemmSpec, 1, 128, 32, 128, 64, 16, 16, 32, 32, 1, 2, S<4, 32, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 16, 16, 1, S<4, 32, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 16, 16, 1, 1, 1, S<1, 32, 1, 4>, 16>,
DeviceGroupedConvFwdMultipleD_Xdl_CShuffle< 2, GNHWC, GKYXC, DsLayout, GNHWK, int8_t, int8_t, int32_t, int32_t, DsDatatype, int8_t, PassThrough, PassThrough, OutElementOp, ConvSpec, GemmSpec, 1, 64, 64, 32, 64, 16, 16, 32, 32, 2, 1, S<4, 16, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 16, 16, 1, S<4, 16, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 16, 16, 1, 1, 1, S<1, 32, 1, 2>, 16>,
DeviceGroupedConvFwdMultipleD_Xdl_CShuffle< 2, GNHWC, GKYXC, DsLayout, GNHWK, int8_t, int8_t, int32_t, int32_t, DsDatatype, int8_t, PassThrough, PassThrough, OutElementOp, ConvSpec, GemmSpec, 1, 64, 32, 64, 64, 16, 16, 32, 32, 1, 2, S<4, 16, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 16, 16, 1, S<4, 16, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 16, 16, 1, 1, 1, S<1, 32, 1, 2>, 16>
>;
// clang-format on
// for conv + multiple of 32 bit Ds. bit of Ds will affect the ScalarPerVector of C
template <typename DsLayout,
typename DsDatatype,
typename OutElementOp,
ConvolutionForwardSpecialization ConvSpec>
// clang-format off
using device_conv2d_int8_32Ds_instances =
std::tuple <
//########################################| NumDim| A| B| Ds| E| AData| BData| AccData| CShuffle| Ds| EData| A| B| CDE| ConvForward| GEMM| NumGemmK| Block| MPer| NPer| KPer| AK1| BK1| MPer| NPer| MXdl| NXdl| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockLds| BBlockTransfer| BBlockTransfer| BBlockTransfer| BlockTransfer| BBlockTransfer| BBlockTransfer| BBlockLds| CShuffle| CShuffle| CBlockTransferClusterLengths| CBlockTransfer|
//########################################| Spatial| Layout| Layout| Layout| Layout| Type| Type| Type| DataType| DataType| Type| Elementwise| Elementwise| Elementwise| Specialization| Specialization| Prefetch| Size| Block| Block| Block| | | XDL| XDL| Per| Per| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| AddExtraM| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| AddExtraN| MXdlPerWave| NXdlPerWave| _MBlock_MWaveMPerXdl| ScalarPerVector|
//########################################| | | | | | | | | | | | Operation| Operation| Operation| | | Stage| | | | | | | | | Wave| Wave| Lengths_K0_M_K1| ArrangeOrder| | | PerVector| PerVector_K1| | Lengths_K0_N_K1| ArrangeOrder| | | PerVector| PerVector_K1| | PerShuffle| PerShuffle| _NBlock_NWaveNPerXdl| _NWaveNPerXdl|
//########################################| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
DeviceGroupedConvFwdMultipleD_Xdl_CShuffle< 2, GNHWC, GKYXC, DsLayout, GNHWK, int8_t, int8_t, int32_t, int32_t, DsDatatype, int8_t, PassThrough, PassThrough, OutElementOp, ConvSpec, GemmSpec, 1, 256, 256, 128, 64, 16, 16, 32, 32, 4, 2, S<4, 64, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 16, 16, 1, S<4, 64, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 16, 16, 1, 1, 1, S<1, 64, 1, 4>, 8>,
DeviceGroupedConvFwdMultipleD_Xdl_CShuffle< 2, GNHWC, GKYXC, DsLayout, GNHWK, int8_t, int8_t, int32_t, int32_t, DsDatatype, int8_t, PassThrough, PassThrough, OutElementOp, ConvSpec, GemmSpec, 1, 256, 128, 256, 64, 16, 16, 32, 32, 2, 4, S<4, 64, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 16, 16, 1, S<4, 64, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 16, 16, 1, 1, 1, S<1, 64, 1, 4>, 8>,
DeviceGroupedConvFwdMultipleD_Xdl_CShuffle< 2, GNHWC, GKYXC, DsLayout, GNHWK, int8_t, int8_t, int32_t, int32_t, DsDatatype, int8_t, PassThrough, PassThrough, OutElementOp, ConvSpec, GemmSpec, 1, 128, 128, 128, 64, 16, 16, 32, 32, 4, 2, S<4, 32, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 16, 16, 1, S<4, 32, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 16, 16, 1, 1, 1, S<1, 32, 1, 4>, 8>,
DeviceGroupedConvFwdMultipleD_Xdl_CShuffle< 2, GNHWC, GKYXC, DsLayout, GNHWK, int8_t, int8_t, int32_t, int32_t, DsDatatype, int8_t, PassThrough, PassThrough, OutElementOp, ConvSpec, GemmSpec, 1, 256, 128, 128, 64, 16, 16, 32, 32, 2, 2, S<4, 64, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 16, 16, 1, S<4, 64, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 16, 16, 1, 1, 1, S<1, 64, 1, 4>, 8>,
DeviceGroupedConvFwdMultipleD_Xdl_CShuffle< 2, GNHWC, GKYXC, DsLayout, GNHWK, int8_t, int8_t, int32_t, int32_t, DsDatatype, int8_t, PassThrough, PassThrough, OutElementOp, ConvSpec, GemmSpec, 1, 128, 128, 64, 64, 16, 16, 32, 32, 2, 2, S<4, 32, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 16, 16, 1, S<4, 32, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 16, 16, 1, 1, 1, S<1, 64, 1, 2>, 8>,
DeviceGroupedConvFwdMultipleD_Xdl_CShuffle< 2, GNHWC, GKYXC, DsLayout, GNHWK, int8_t, int8_t, int32_t, int32_t, DsDatatype, int8_t, PassThrough, PassThrough, OutElementOp, ConvSpec, GemmSpec, 1, 128, 64, 128, 64, 16, 16, 32, 32, 2, 2, S<4, 32, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 16, 16, 1, S<4, 32, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 16, 16, 1, 1, 1, S<1, 32, 1, 4>, 8>,
DeviceGroupedConvFwdMultipleD_Xdl_CShuffle< 2, GNHWC, GKYXC, DsLayout, GNHWK, int8_t, int8_t, int32_t, int32_t, DsDatatype, int8_t, PassThrough, PassThrough, OutElementOp, ConvSpec, GemmSpec, 1, 64, 64, 64, 64, 16, 16, 32, 32, 2, 2, S<4, 16, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 16, 16, 1, S<4, 16, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 16, 16, 1, 1, 1, S<1, 32, 1, 2>, 8>,
DeviceGroupedConvFwdMultipleD_Xdl_CShuffle< 2, GNHWC, GKYXC, DsLayout, GNHWK, int8_t, int8_t, int32_t, int32_t, DsDatatype, int8_t, PassThrough, PassThrough, OutElementOp, ConvSpec, GemmSpec, 1, 256, 128, 64, 64, 16, 16, 32, 32, 2, 1, S<4, 64, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 16, 16, 1, S<4, 64, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 16, 16, 1, 1, 1, S<1, 64, 1, 4>, 8>,
DeviceGroupedConvFwdMultipleD_Xdl_CShuffle< 2, GNHWC, GKYXC, DsLayout, GNHWK, int8_t, int8_t, int32_t, int32_t, DsDatatype, int8_t, PassThrough, PassThrough, OutElementOp, ConvSpec, GemmSpec, 1, 256, 64, 128, 64, 16, 16, 32, 32, 1, 2, S<4, 64, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 16, 16, 1, S<4, 64, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 16, 16, 1, 1, 1, S<1, 64, 1, 4>, 8>,
DeviceGroupedConvFwdMultipleD_Xdl_CShuffle< 2, GNHWC, GKYXC, DsLayout, GNHWK, int8_t, int8_t, int32_t, int32_t, DsDatatype, int8_t, PassThrough, PassThrough, OutElementOp, ConvSpec, GemmSpec, 1, 128, 128, 32, 64, 16, 16, 32, 32, 2, 1, S<4, 32, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 16, 16, 1, S<4, 32, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 16, 16, 1, 1, 1, S<1, 64, 1, 2>, 8>,
DeviceGroupedConvFwdMultipleD_Xdl_CShuffle< 2, GNHWC, GKYXC, DsLayout, GNHWK, int8_t, int8_t, int32_t, int32_t, DsDatatype, int8_t, PassThrough, PassThrough, OutElementOp, ConvSpec, GemmSpec, 1, 128, 32, 128, 64, 16, 16, 32, 32, 1, 2, S<4, 32, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 16, 16, 1, S<4, 32, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 16, 16, 1, 1, 1, S<1, 32, 1, 4>, 8>,
DeviceGroupedConvFwdMultipleD_Xdl_CShuffle< 2, GNHWC, GKYXC, DsLayout, GNHWK, int8_t, int8_t, int32_t, int32_t, DsDatatype, int8_t, PassThrough, PassThrough, OutElementOp, ConvSpec, GemmSpec, 1, 64, 64, 32, 64, 16, 16, 32, 32, 2, 1, S<4, 16, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 16, 16, 1, S<4, 16, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 16, 16, 1, 1, 1, S<1, 32, 1, 2>, 8>,
DeviceGroupedConvFwdMultipleD_Xdl_CShuffle< 2, GNHWC, GKYXC, DsLayout, GNHWK, int8_t, int8_t, int32_t, int32_t, DsDatatype, int8_t, PassThrough, PassThrough, OutElementOp, ConvSpec, GemmSpec, 1, 64, 32, 64, 64, 16, 16, 32, 32, 1, 2, S<4, 16, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 16, 16, 1, S<4, 16, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 16, 16, 1, 1, 1, S<1, 32, 1, 2>, 8>
>;
// clang-format on
} // namespace instance
} // namespace device
} // namespace tensor_operation
} // namespace ck
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2022, Advanced Micro Devices, Inc. All rights reserved.
#include "device_conv2d_xdl_int8_instance.hpp"
namespace ck {
namespace tensor_operation {
namespace device {
namespace instance {
void add_device_conv2d_perchannel_quantization_int8_instances(
std::vector<std::unique_ptr<DeviceGroupedConvFwdMultipleD<NDimSpatial,
GNHWC,
GKYXC,
GK_Tuple,
GNHWK,
int8_t,
int8_t,
F32_Tuple,
int8_t,
PassThrough,
PassThrough,
Mul2_Clamp>>>& instances)
{
add_device_operation_instances(
instances,
device_conv2d_int8_32Ds_instances<GK_Tuple, F32_Tuple, Mul2_Clamp, ConvFwdDefault>{});
add_device_operation_instances(
instances,
device_conv2d_int8_32Ds_instances<GK_Tuple, F32_Tuple, Mul2_Clamp, ConvFwd1x1P0>{});
add_device_operation_instances(
instances,
device_conv2d_int8_32Ds_instances<GK_Tuple, F32_Tuple, Mul2_Clamp, ConvFwd1x1S1P0>{});
}
void add_device_conv2d_relu_perchannel_quantization_int8_instances(
std::vector<std::unique_ptr<DeviceGroupedConvFwdMultipleD<NDimSpatial,
GNHWC,
GKYXC,
GK_Tuple,
GNHWK,
int8_t,
int8_t,
F32_Tuple,
int8_t,
PassThrough,
PassThrough,
Relu_Mul2_Clamp>>>& instances)
{
add_device_operation_instances(
instances,
device_conv2d_int8_32Ds_instances<GK_Tuple, F32_Tuple, Relu_Mul2_Clamp, ConvFwdDefault>{});
add_device_operation_instances(
instances,
device_conv2d_int8_32Ds_instances<GK_Tuple, F32_Tuple, Relu_Mul2_Clamp, ConvFwd1x1P0>{});
add_device_operation_instances(
instances,
device_conv2d_int8_32Ds_instances<GK_Tuple, F32_Tuple, Relu_Mul2_Clamp, ConvFwd1x1S1P0>{});
}
} // namespace instance
} // namespace device
} // namespace tensor_operation
} // namespace ck
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2022, Advanced Micro Devices, Inc. All rights reserved.
#include "device_conv2d_xdl_int8_instance.hpp"
namespace ck {
namespace tensor_operation {
namespace device {
namespace instance {
void add_device_conv2d_perlayer_quantization_int8_instances(
std::vector<std::unique_ptr<DeviceGroupedConvFwdMultipleD<NDimSpatial,
GNHWC,
GKYXC,
Empty_Tuple,
GNHWK,
int8_t,
int8_t,
Empty_Tuple,
int8_t,
PassThrough,
PassThrough,
Mul_Clamp>>>& instances)
{
add_device_operation_instances(
instances,
device_conv2d_int8_instances<Empty_Tuple, Empty_Tuple, Mul_Clamp, ConvFwdDefault>{});
add_device_operation_instances(
instances,
device_conv2d_int8_instances<Empty_Tuple, Empty_Tuple, Mul_Clamp, ConvFwd1x1P0>{});
add_device_operation_instances(
instances,
device_conv2d_int8_instances<Empty_Tuple, Empty_Tuple, Mul_Clamp, ConvFwd1x1S1P0>{});
}
void add_device_conv2d_relu_perlayer_quantization_int8_instances(
std::vector<std::unique_ptr<DeviceGroupedConvFwdMultipleD<NDimSpatial,
GNHWC,
GKYXC,
Empty_Tuple,
GNHWK,
int8_t,
int8_t,
Empty_Tuple,
int8_t,
PassThrough,
PassThrough,
Relu_Mul_Clamp>>>& instances)
{
add_device_operation_instances(
instances,
device_conv2d_int8_instances<Empty_Tuple, Empty_Tuple, Relu_Mul_Clamp, ConvFwdDefault>{});
add_device_operation_instances(
instances,
device_conv2d_int8_instances<Empty_Tuple, Empty_Tuple, Relu_Mul_Clamp, ConvFwd1x1P0>{});
add_device_operation_instances(
instances,
device_conv2d_int8_instances<Empty_Tuple, Empty_Tuple, Relu_Mul_Clamp, ConvFwd1x1S1P0>{});
}
} // namespace instance
} // namespace device
} // namespace tensor_operation
} // namespace ck
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2022, Advanced Micro Devices, Inc. All rights reserved.
#include "gemm_quantization_common.hpp"
#include "ck/tensor_operation/gpu/device/impl/device_gemm_multiple_d_dl.hpp"
namespace ck {
namespace tensor_operation {
namespace device {
namespace instance {
template <typename OutElementOp>
using device_gemm_quantization_dl_c_shuffle_i8_i8_i8_km_kn_mn_instances = std::tuple<
// clang-format off
//####################| A| B| Ds| E| AData| BData| AccData| DsData| EData| A| B| CDE| GEMM| Block| MPer| NPer| KPer| K1| M1Per| N1Per| KPer| M11N11Thread| M11N11Thread| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| BBlockTransfer| BBlockTransfer| BBlockTransfer| BBlockTransfer| BBlockTransfer| BBlockTransfer| BBlockTransfer| CThreadTransfer| CThreadTransfer| CThreadTransfer|
//####################| Layout| Layout| Layout| Layout| Type| Type| Type| Type| Type| Elementwise| Elementwise| Elementwise| Specialization| Size| Block| Block| Block| | ThreadM| Thread| Thread| ClusterM110Xs| ClusterN110Xs| ThreadSliceLengths| ThreadClusterLengths| ThreadCluster| SrcAccess| SrcVectorTensor| SrcVectorTensor| DstVectorTensor| ThreadSliceLengths| ThreadClusterLengths| ThreadCluster| SrcAccess| SrcVectorTensor| SrcVectorTensor| DstVectorTensor| SrcDstAccess| SrcDstVectorDim| DstScalarPerVector|
//####################| | | | | | | | | | Operation| Operation| Operation| | | | | | | | | | | | K0_M0_M1_K1| K0_M0_M1_K1| ArrangeOrder| Order| Lengths_K0_M0_M1_K1| ContiguousDimOrder| Lengths_K0_M0_M1_K1| K0_N0_N1_K1| K0_N0_N1_K1| ArrangeOrder| Order| Lengths_K0_N0_N1_K1| ContiguousDimOrder| Lengths_K0_N0_N1_K1| Order| | |
//####################| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
DeviceGemmMultipleD_Dl< Col, Row, Empty_Tuple, Row, int8_t, int8_t, int32_t, Empty_Tuple, int8_t, PassThrough, PassThrough, OutElementOp, MNKPadding, 256, 128, 128, 16, 4, 4, 4, 1, S<8, 2>, S<8, 2>, S<2, 1, 4, 4>, S<8, 1, 32, 1>, S<0, 3, 1, 2>, S<0, 3, 1, 2>, S<1, 1, 4, 1>, S<0, 3, 1, 2>, S<1, 1, 4, 4>, S<2, 1, 4, 4>, S<8, 1, 32, 1>, S<0, 3, 1, 2>, S<0, 3, 1, 2>, S<1, 1, 4, 1>, S<0, 3, 1, 2>, S<1, 1, 4, 4>, S<0, 1, 2, 3, 4, 5>, 5, 4>
// clang-format on
>;
template <typename OutElementOp>
using device_gemm_quantization_dl_c_shuffle_i8_i8_i8_km_nk_mn_instances = std::tuple<
// clang-format off
//####################| A| B| Ds| E| AData| BData| AccData| DsData| EData| A| B| CDE| GEMM| Block| MPer| NPer| KPer| K1| M1Per| N1Per| KPer| M11N11Thread| M11N11Thread| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| BBlockTransfer| BBlockTransfer| BBlockTransfer| BBlockTransfer| BBlockTransfer| BBlockTransfer| BBlockTransfer| CThreadTransfer| CThreadTransfer| CThreadTransfer|
//####################| Layout| Layout| Layout| Layout| Type| Type| Type| Type| Type| Elementwise| Elementwise| Elementwise| Specialization| Size| Block| Block| Block| | ThreadM| Thread| Thread| ClusterM110Xs| ClusterN110Xs| ThreadSliceLengths| ThreadClusterLengths| ThreadCluster| SrcAccess| SrcVectorTensor| SrcVectorTensor| DstVectorTensor| ThreadSliceLengths| ThreadClusterLengths| ThreadCluster| SrcAccess| SrcVectorTensor| SrcVectorTensor| DstVectorTensor| SrcDstAccess| SrcDstVectorDim| DstScalarPerVector|
//####################| | | | | | | | | | Operation| Operation| Operation| | | | | | | | | | | | K0_M0_M1_K1| K0_M0_M1_K1| ArrangeOrder| Order| Lengths_K0_M0_M1_K1| ContiguousDimOrder| Lengths_K0_M0_M1_K1| K0_N0_N1_K1| K0_N0_N1_K1| ArrangeOrder| Order| Lengths_K0_N0_N1_K1| ContiguousDimOrder| Lengths_K0_N0_N1_K1| Order| | |
//####################| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
DeviceGemmMultipleD_Dl< Col, Col, Empty_Tuple, Row, int8_t, int8_t, int32_t, Empty_Tuple, int8_t, PassThrough, PassThrough, OutElementOp, MNKPadding, 256, 128, 128, 16, 4, 4, 4, 1, S<8, 2>, S<8, 2>, S<2, 1, 4, 4>, S<8, 1, 32, 1>, S<0, 3, 1, 2>, S<0, 3, 1, 2>, S<1, 1, 4, 1>, S<0, 3, 1, 2>, S<1, 1, 4, 4>, S<8, 1, 1, 4>, S<2, 1, 128, 1>, S<1, 2, 0, 3>, S<1, 2, 0, 3>, S<4, 1, 1, 4>, S<1, 2, 0, 3>, S<1, 1, 1, 4>, S<0, 1, 2, 3, 4, 5>, 5, 4>
// clang-format on
>;
template <typename OutElementOp>
using device_gemm_quantization_dl_c_shuffle_i8_i8_i8_mk_kn_mn_instances = std::tuple<
// clang-format off
//####################| A| B| Ds| E| AData| BData| AccData| DsData| EData| A| B| CDE| GEMM| Block| MPer| NPer| KPer| K1| M1Per| N1Per| KPer| M11N11Thread| M11N11Thread| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| BBlockTransfer| BBlockTransfer| BBlockTransfer| BBlockTransfer| BBlockTransfer| BBlockTransfer| BBlockTransfer| CThreadTransfer| CThreadTransfer| CThreadTransfer|
//####################| Layout| Layout| Layout| Layout| Type| Type| Type| Type| Type| Elementwise| Elementwise| Elementwise| Specialization| Size| Block| Block| Block| | ThreadM| Thread| Thread| ClusterM110Xs| ClusterN110Xs| ThreadSliceLengths| ThreadClusterLengths| ThreadCluster| SrcAccess| SrcVectorTensor| SrcVectorTensor| DstVectorTensor| ThreadSliceLengths| ThreadClusterLengths| ThreadCluster| SrcAccess| SrcVectorTensor| SrcVectorTensor| DstVectorTensor| SrcDstAccess| SrcDstVectorDim| DstScalarPerVector|
//####################| | | | | | | | | | Operation| Operation| Operation| | | | | | | | | | | | K0_M0_M1_K1| K0_M0_M1_K1| ArrangeOrder| Order| Lengths_K0_M0_M1_K1| ContiguousDimOrder| Lengths_K0_M0_M1_K1| K0_N0_N1_K1| K0_N0_N1_K1| ArrangeOrder| Order| Lengths_K0_N0_N1_K1| ContiguousDimOrder| Lengths_K0_N0_N1_K1| Order| | |
//####################| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
DeviceGemmMultipleD_Dl< Row, Row, Empty_Tuple, Row, int8_t, int8_t, int32_t, Empty_Tuple, int8_t, PassThrough, PassThrough, OutElementOp, MNKPadding, 256, 128, 128, 16, 4, 4, 4, 1, S<8, 2>, S<8, 2>, S<8, 1, 1, 4>, S<2, 1, 128, 1>, S<1, 2, 0, 3>, S<1, 2, 0, 3>, S<4, 1, 1, 4>, S<1, 2, 0, 3>, S<1, 1, 1, 4>, S<2, 1, 4, 4>, S<8, 1, 32, 1>, S<0, 3, 1, 2>, S<0, 3, 1, 2>, S<1, 1, 4, 1>, S<0, 3, 1, 2>, S<1, 1, 4, 4>, S<0, 1, 2, 3, 4, 5>, 5, 4>
// clang-format on
>;
template <typename OutElementOp>
using device_gemm_quantization_dl_c_shuffle_i8_i8_i8_mk_nk_mn_instances = std::tuple<
// clang-format off
//####################| A| B| Ds| E| AData| BData| AccData| DsData| EData| A| B| CDE| GEMM| Block| MPer| NPer| KPer| K1| M1Per| N1Per| KPer| M11N11Thread| M11N11Thread| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| BBlockTransfer| BBlockTransfer| BBlockTransfer| BBlockTransfer| BBlockTransfer| BBlockTransfer| BBlockTransfer| CThreadTransfer| CThreadTransfer| CThreadTransfer|
//####################| Layout| Layout| Layout| Layout| Type| Type| Type| Type| Type| Elementwise| Elementwise| Elementwise| Specialization| Size| Block| Block| Block| | ThreadM| Thread| Thread| ClusterM110Xs| ClusterN110Xs| ThreadSliceLengths| ThreadClusterLengths| ThreadCluster| SrcAccess| SrcVectorTensor| SrcVectorTensor| DstVectorTensor| ThreadSliceLengths| ThreadClusterLengths| ThreadCluster| SrcAccess| SrcVectorTensor| SrcVectorTensor| DstVectorTensor| SrcDstAccess| SrcDstVectorDim| DstScalarPerVector|
//####################| | | | | | | | | | Operation| Operation| Operation| | | | | | | | | | | | K0_M0_M1_K1| K0_M0_M1_K1| ArrangeOrder| Order| Lengths_K0_M0_M1_K1| ContiguousDimOrder| Lengths_K0_M0_M1_K1| K0_N0_N1_K1| K0_N0_N1_K1| ArrangeOrder| Order| Lengths_K0_N0_N1_K1| ContiguousDimOrder| Lengths_K0_N0_N1_K1| Order| | |
//####################| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
DeviceGemmMultipleD_Dl< Row, Col, Empty_Tuple, Row, int8_t, int8_t, int32_t, Empty_Tuple, int8_t, PassThrough, PassThrough, OutElementOp, MNKPadding, 256, 128, 128, 16, 4, 4, 4, 1, S<8, 2>, S<8, 2>, S<8, 1, 1, 4>, S<2, 1, 128, 1>, S<1, 2, 0, 3>, S<1, 2, 0, 3>, S<4, 1, 1, 4>, S<1, 2, 0, 3>, S<1, 1, 1, 4>, S<8, 1, 1, 4>, S<2, 1, 128, 1>, S<1, 2, 0, 3>, S<1, 2, 0, 3>, S<4, 1, 1, 4>, S<1, 2, 0, 3>, S<1, 1, 1, 4>, S<0, 1, 2, 3, 4, 5>, 5, 4>
// clang-format on
>;
} // namespace instance
} // namespace device
} // namespace tensor_operation
} // namespace ck
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2022, Advanced Micro Devices, Inc. All rights reserved.
#include "device_gemm_quantization_dl_c_shuffle_i8_i8_i8_instance.hpp"
namespace ck {
namespace tensor_operation {
namespace device {
namespace instance {
// Layout(A, B, C) = [Col, Row, Row]
void add_device_gemm_quantization_dl_c_shuffle_i8_i8_i8_km_kn_mn_instances(
std::vector<std::unique_ptr<DeviceGemmMultipleD<Col,
Row,
Empty_Tuple,
Row,
int8_t,
int8_t,
Empty_Tuple,
int8_t,
PassThrough,
PassThrough,
Mul_Clamp>>>& instances)
{
add_device_operation_instances(
instances, device_gemm_quantization_dl_c_shuffle_i8_i8_i8_km_kn_mn_instances<Mul_Clamp>{});
}
} // namespace instance
} // namespace device
} // namespace tensor_operation
} // namespace ck
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment