Commit bb1f8082 authored by root's avatar root
Browse files

Merge remote-tracking branch 'origin/develop' into myamlak/cgemm

parents 97ac5007 82d7d993
#!/usr/bin/env python3 #!/usr/bin/env python3
import os, io import os, io, argparse, datetime
import argparse import numpy as np
import sqlalchemy
def print_to_string(*args, **kwargs): from sqlalchemy.types import NVARCHAR, Float, Integer
output = io.StringIO() import pymysql
print(*args, file=output, **kwargs) import pandas as pd
contents = output.getvalue() from sshtunnel import SSHTunnelForwarder
output.close()
return contents def print_to_string(*args, **kwargs):
output = io.StringIO()
def parse_args(): print(*args, file=output, **kwargs)
parser = argparse.ArgumentParser(description='Parse results from tf benchmark runs') contents = output.getvalue()
parser.add_argument('filename', type=str, help='Log file to prase or directory containing log files') output.close()
args = parser.parse_args() return contents
files = []
if os.path.isdir(args.filename): def parse_args():
all_files = os.listdir(args.filename) parser = argparse.ArgumentParser(description='Parse results from tf benchmark runs')
for name in all_files: parser.add_argument('filename', type=str, help='Log file to prase or directory containing log files')
if not 'log' in name: args = parser.parse_args()
continue files = []
files.append(os.path.join(args.filename, name)) if os.path.isdir(args.filename):
else: all_files = os.listdir(args.filename)
files = [args.filename] for name in all_files:
args.files = files if not 'log' in name:
return args continue
files.append(os.path.join(args.filename, name))
def main(): else:
args = parse_args() files = [args.filename]
results = [] args.files = files
#parse results return args
glue=""
for filename in args.files: def main():
for line in open(filename): args = parse_args()
if 'Best Perf' in line: tests = []
lst=line.split() kernels=[]
results.append(print_to_string(glue.join(lst[8:]),lst[4])) tflops=[]
dtype=[]
#sort results alayout=[]
blayout=[]
#read baseline results for the latest develop branch M=[]
N=[]
#write new results to the db K=[]
StrideA=[]
#compare the results to the baseline StrideB=[]
StrideC=[]
#return 0 if performance criteria met, otherwise return 1 #parse results, get the Tflops value for "Best Perf" kernels
glue=""
print(results) for filename in args.files:
return 0 for line in open(filename):
if 'Branch name' in line:
if __name__ == '__main__': lst=line.split()
branch_name=lst[2]
for filename in args.files:
for line in open(filename):
if 'Best Perf' in line:
lst=line.split()
if len(lst)>=37: #the line is complete
tests.append(glue.join(lst[5:30]))
kernels.append(glue.join(lst[37:]))
tflops.append(lst[33])
dtype.append(lst[5])
alayout.append(lst[8])
blayout.append(lst[11])
M.append(lst[14])
N.append(lst[17])
K.append(lst[20])
StrideA.append(lst[23])
StrideB.append(lst[26])
StrideC.append(lst[29])
elif len(lst)<37 and len(lst)>=33: #the tflops are available
tests.append(glue.join(lst[5:30]))
kernels.append("N/A")
tflops.append(lst[33])
dtype.append(lst[5])
alayout.append(lst[8])
blayout.append(lst[11])
M.append(lst[14])
N.append(lst[17])
K.append(lst[20])
StrideA.append(lst[23])
StrideB.append(lst[26])
StrideC.append(lst[29])
print("warning: incomplete line:",lst)
elif len(lst)<33: #even the tflops are not available
print("Error in ckProfiler output!")
print("warning: incomplete line=",lst)
#sort results
print("Number of tests:",len(tests))
print("Branch name:",branch_name)
#sorted_tests = sorted(tests)
#print("sorted tests:",sorted_tests)
sorted_tflops = [x for _,x in sorted(zip(tests,tflops))]
#sorted_kernels = [x for _,x in sorted(zip(tests,kernels))]
test_list=list(range(1,len(tests)+1))
sql_hostname = '127.0.0.1'
sql_username = os.environ["dbuser"]
print("sql_username=",sql_username)
sql_password = os.environ["dbpassword"]
sql_main_database = 'miopen_perf'
sql_port = 3306
ssh_host = os.environ["dbsship"]
print("ssh_host=",ssh_host)
ssh_user = os.environ["dbsshuser"]
print("ssh_user=",ssh_user)
ssh_port = int(os.environ["dbsshport"])
ssh_pass = os.environ["dbsshpassword"]
with SSHTunnelForwarder(
(ssh_host, ssh_port),
ssh_username=ssh_user,
ssh_password=ssh_pass,
remote_bind_address=(sql_hostname, sql_port)) as tunnel:
sqlEngine = sqlalchemy.create_engine('mysql+pymysql://{0}:{1}@{2}:{3}/{4}'.
format(sql_username, sql_password, sql_hostname, tunnel.local_bind_port, sql_main_database))
conn = sqlEngine.connect()
#write the ck_gemm_test_params table
#only needed once the test set changes
'''
sorted_dtypes = [x for _,x in sorted(zip(tests,dtype))]
sorted_alayout = [x for _,x in sorted(zip(tests,alayout))]
sorted_blayout = [x for _,x in sorted(zip(tests,blayout))]
sorted_M = [x for _,x in sorted(zip(tests,M))]
sorted_N = [x for _,x in sorted(zip(tests,N))]
sorted_K = [x for _,x in sorted(zip(tests,K))]
sorted_StrideA = [x for _,x in sorted(zip(tests,StrideA))]
sorted_StrideB = [x for _,x in sorted(zip(tests,StrideB))]
sorted_StrideC = [x for _,x in sorted(zip(tests,StrideC))]
ck_gemm_params=[test_list,sorted_dtypes,sorted_alayout,sorted_blayout,
sorted_M,sorted_N,sorted_K,sorted_StrideA,sorted_StrideB,
sorted_StrideC]
df=pd.DataFrame(np.transpose(ck_gemm_params),columns=['Test_number','Data_type',
'Alayout','BLayout','M','N','K', 'StrideA','StrideB','StrideC'])
print(df)
dtypes = {
'Test_number': Integer(),
'Data_type': NVARCHAR(length=5),
'Alayout': NVARCHAR(length=12),
'Blayout': NVARCHAR(length=12),
'M': Integer(),
'N': Integer(),
'K': Integer(),
'StrideA': Integer(),
'StrideB': Integer(),
'StrideC': Integer()
}
df.to_sql("ck_gemm_test_params",conn,if_exists='replace',index=False, dtype=dtypes)
'''
#read baseline results for the latest develop branch
query = '''SELECT * from ck_gemm_tflops WHERE Datetime = (SELECT MAX(Datetime) FROM ck_gemm_tflops where Branch_ID='develop' );'''
tflops_base = pd.read_sql_query(query, conn)
#write new results to the db
testlist=[]
for i in range(1,len(tests)+1):
testlist.append("Test%i"%i)
ck_gemm_tflops=[str(branch_name),str(datetime.datetime.now())]
flops=pd.DataFrame(data=[ck_gemm_tflops],columns=['Branch_ID','Datetime'])
df_add=pd.DataFrame(data=[sorted_tflops],columns=testlist)
flops=pd.concat([flops,df_add],axis=1)
print("new tflops results:",flops)
flops.to_sql("ck_gemm_tflops",conn,if_exists='append',index=False)
conn.close()
#compare the results to the baseline
regression=0
base=tflops_base[testlist].to_numpy(dtype='float')
base_list=base[0]
ave_perf=0
for i in range(len(base_list)):
# success criterion:
if base_list[i]>1.01*float(sorted_tflops[i]):
print("test # ",i,"shows regression by {:.3f}%".format(
(float(sorted_tflops[i])-base_list[i])/base_list[i]*100))
regression=1
ave_perf=ave_perf+float(sorted_tflops[i])/base_list[i]
if regression==0:
print("no regressions found")
ave_perf=ave_perf/len(base_list)
print("average performance relative to baseline:",ave_perf)
#return 0 if performance criteria met, otherwise return 1
return regression
if __name__ == '__main__':
main() main()
\ No newline at end of file
...@@ -15,6 +15,17 @@ bin/test_reduce_no_index -D 64,4,280,82 -R 1 0 2 ...@@ -15,6 +15,17 @@ bin/test_reduce_no_index -D 64,4,280,82 -R 1 0 2
bin/test_reduce_no_index -D 64,4,280,82 -R 2 0 2 bin/test_reduce_no_index -D 64,4,280,82 -R 2 0 2
bin/test_reduce_no_index -D 64,4,280,82 -R 3 0 2 bin/test_reduce_no_index -D 64,4,280,82 -R 3 0 2
## for float64
bin/test_reduce_no_index -D 64,4,280,82 -R 0,1,2,3 6 2
bin/test_reduce_no_index -D 64,4,280,82 -R 0,1,2 6 2
bin/test_reduce_no_index -D 64,4,280,82 -R 0,1,3 6 2
bin/test_reduce_no_index -D 64,4,280,82 -R 0,2,3 6 2
bin/test_reduce_no_index -D 64,4,280,82 -R 1,2,3 6 2
bin/test_reduce_no_index -D 64,4,280,82 -R 0 6 2
bin/test_reduce_no_index -D 64,4,280,82 -R 1 6 2
bin/test_reduce_no_index -D 64,4,280,82 -R 2 6 2
bin/test_reduce_no_index -D 64,4,280,82 -R 3 6 2
## for float16 ## for float16
bin/test_reduce_no_index -D 64,4,280,82 -R 0,1,2,3 1 2 bin/test_reduce_no_index -D 64,4,280,82 -R 0,1,2,3 1 2
bin/test_reduce_no_index -D 64,4,280,82 -R 0,1,2 1 2 bin/test_reduce_no_index -D 64,4,280,82 -R 0,1,2 1 2
......
...@@ -15,6 +15,17 @@ bin/test_reduce_with_index -D 64,4,280,82 -R 1 0 2 ...@@ -15,6 +15,17 @@ bin/test_reduce_with_index -D 64,4,280,82 -R 1 0 2
bin/test_reduce_with_index -D 64,4,280,82 -R 2 0 2 bin/test_reduce_with_index -D 64,4,280,82 -R 2 0 2
bin/test_reduce_with_index -D 64,4,280,82 -R 3 0 2 bin/test_reduce_with_index -D 64,4,280,82 -R 3 0 2
## for float64
bin/test_reduce_with_index -D 64,4,280,82 -R 0,1,2,3 6 2
bin/test_reduce_with_index -D 64,4,280,82 -R 0,1,2 6 2
bin/test_reduce_with_index -D 64,4,280,82 -R 0,1,3 6 2
bin/test_reduce_with_index -D 64,4,280,82 -R 0,2,3 6 2
bin/test_reduce_with_index -D 64,4,280,82 -R 1,2,3 6 2
bin/test_reduce_with_index -D 64,4,280,82 -R 0 6 2
bin/test_reduce_with_index -D 64,4,280,82 -R 1 6 2
bin/test_reduce_with_index -D 64,4,280,82 -R 2 6 2
bin/test_reduce_with_index -D 64,4,280,82 -R 3 6 2
## for float16 ## for float16
bin/test_reduce_with_index -D 64,4,280,82 -R 0,1,2,3 1 2 bin/test_reduce_with_index -D 64,4,280,82 -R 0,1,2,3 1 2
bin/test_reduce_with_index -D 64,4,280,82 -R 0,1,2 1 2 bin/test_reduce_with_index -D 64,4,280,82 -R 0,1,2 1 2
......
...@@ -2,6 +2,7 @@ include_directories(BEFORE ...@@ -2,6 +2,7 @@ include_directories(BEFORE
${PROJECT_SOURCE_DIR}/ ${PROJECT_SOURCE_DIR}/
${PROJECT_SOURCE_DIR}/include/ck ${PROJECT_SOURCE_DIR}/include/ck
${PROJECT_SOURCE_DIR}/include/ck/utility ${PROJECT_SOURCE_DIR}/include/ck/utility
${PROJECT_SOURCE_DIR}/include/ck/host_utility
${PROJECT_SOURCE_DIR}/include/ck/tensor_description ${PROJECT_SOURCE_DIR}/include/ck/tensor_description
${PROJECT_SOURCE_DIR}/include/ck/tensor ${PROJECT_SOURCE_DIR}/include/ck/tensor
${PROJECT_SOURCE_DIR}/include/ck/problem_transform ${PROJECT_SOURCE_DIR}/include/ck/problem_transform
......
...@@ -8,6 +8,7 @@ using namespace ck; ...@@ -8,6 +8,7 @@ using namespace ck;
static auto I0 = Number<0>{}; static auto I0 = Number<0>{};
static auto I1 = Number<1>{}; static auto I1 = Number<1>{};
static auto I2 = Number<2>{};
TEST(BlockToCTileMap, TestBlockToCTileMap_M00_N00_M01_N01_DeviceCTileIndexCheck1) TEST(BlockToCTileMap, TestBlockToCTileMap_M00_N00_M01_N01_DeviceCTileIndexCheck1)
{ {
...@@ -20,7 +21,7 @@ TEST(BlockToCTileMap, TestBlockToCTileMap_M00_N00_M01_N01_DeviceCTileIndexCheck1 ...@@ -20,7 +21,7 @@ TEST(BlockToCTileMap, TestBlockToCTileMap_M00_N00_M01_N01_DeviceCTileIndexCheck1
const index_t M01 = 4; const index_t M01 = 4;
const index_t N01 = 4; const index_t N01 = 4;
auto c_grid_desc_m_n = make_naive_tensor_descriptor(make_tuple(M, N), make_tuple(I1, I1)); auto c_grid_desc_m_n = make_naive_tensor_descriptor_packed(make_tuple(M, N));
printf("(M, N, MPerBlock, NPerBlock, M01, N01) = (%d, %d, %d, %d, %d, %d)\n", printf("(M, N, MPerBlock, NPerBlock, M01, N01) = (%d, %d, %d, %d, %d, %d)\n",
M, M,
...@@ -37,7 +38,7 @@ TEST(BlockToCTileMap, TestBlockToCTileMap_M00_N00_M01_N01_DeviceCTileIndexCheck1 ...@@ -37,7 +38,7 @@ TEST(BlockToCTileMap, TestBlockToCTileMap_M00_N00_M01_N01_DeviceCTileIndexCheck1
EXPECT_TRUE(tile_map.CalculateGridSize(c_grid_desc_m_n) == 16); EXPECT_TRUE(tile_map.CalculateGridSize(c_grid_desc_m_n) == 16);
// clang-format off // clang-format off
std::vector<std::vector<int>> expected = { std::vector<std::vector<int>> expected_m0idx_n0idx_valid = {
{0, 0, 1}, {0, 0, 1},
{0, 1, 1}, {0, 1, 1},
{0, 2, 1}, {0, 2, 1},
...@@ -64,7 +65,7 @@ TEST(BlockToCTileMap, TestBlockToCTileMap_M00_N00_M01_N01_DeviceCTileIndexCheck1 ...@@ -64,7 +65,7 @@ TEST(BlockToCTileMap, TestBlockToCTileMap_M00_N00_M01_N01_DeviceCTileIndexCheck1
std::cout << ", valid = " << tile_map.ValidCTileIndex(m0n0_idx, make_tuple(MBlock, NBlock)) std::cout << ", valid = " << tile_map.ValidCTileIndex(m0n0_idx, make_tuple(MBlock, NBlock))
<< std::endl; << std::endl;
bool equal = bool equal =
expected[i] == expected_m0idx_n0idx_valid[i] ==
std::vector<int>{m0n0_idx[I0], std::vector<int>{m0n0_idx[I0],
m0n0_idx[I1], m0n0_idx[I1],
tile_map.ValidCTileIndex(m0n0_idx, make_tuple(MBlock, NBlock))}; tile_map.ValidCTileIndex(m0n0_idx, make_tuple(MBlock, NBlock))};
...@@ -78,12 +79,11 @@ TEST(BlockToCTileMap, TestBlockToCTileMap_M00_N00_M01_N01_DeviceCTileIndexCheck0 ...@@ -78,12 +79,11 @@ TEST(BlockToCTileMap, TestBlockToCTileMap_M00_N00_M01_N01_DeviceCTileIndexCheck0
const index_t N = 384; const index_t N = 384;
const index_t MPerBlock = 128; const index_t MPerBlock = 128;
const index_t NPerBlock = 128; const index_t NPerBlock = 128;
// const index_t MBlock = M / MPerBlock;
// const index_t NBlock = N / NPerBlock;
const index_t M01 = 4; const index_t M01 = 4;
const index_t N01 = 4; const index_t N01 = 4;
auto c_grid_desc_m_n = make_naive_tensor_descriptor(make_tuple(M, N), make_tuple(I1, I1)); auto c_grid_desc_m_n = make_naive_tensor_descriptor_packed(make_tuple(M, N));
printf("(M, N, MPerBlock, NPerBlock, M01, N01) = (%d, %d, %d, %d, %d, %d)\n", printf("(M, N, MPerBlock, NPerBlock, M01, N01) = (%d, %d, %d, %d, %d, %d)\n",
M, M,
...@@ -98,3 +98,221 @@ TEST(BlockToCTileMap, TestBlockToCTileMap_M00_N00_M01_N01_DeviceCTileIndexCheck0 ...@@ -98,3 +98,221 @@ TEST(BlockToCTileMap, TestBlockToCTileMap_M00_N00_M01_N01_DeviceCTileIndexCheck0
EXPECT_TRUE(tile_map.CheckValidity(c_grid_desc_m_n) == false); EXPECT_TRUE(tile_map.CheckValidity(c_grid_desc_m_n) == false);
} }
TEST(BlockToCTileMap, TestBlockToCTileMap_M00_N0_M01_DeviceCTileIndexCheck1)
{
const index_t M = 384;
const index_t N = 512;
const index_t MPerBlock = 128;
const index_t NPerBlock = 128;
const index_t MBlock = M / MPerBlock;
const index_t NBlock = N / NPerBlock;
const index_t M01 = 4;
auto c_grid_desc_m_n = make_naive_tensor_descriptor_packed(make_tuple(M, N));
printf("(M, N, MPerBlock, NPerBlock, M01) = (%d, %d, %d, %d, %d)\n",
M,
N,
MPerBlock,
NPerBlock,
M01);
BlockToCTileMap_M00_N0_M01<MPerBlock, NPerBlock, decltype(c_grid_desc_m_n), true> tile_map(
c_grid_desc_m_n, M01);
EXPECT_TRUE(tile_map.CheckValidity(c_grid_desc_m_n) == true);
EXPECT_TRUE(tile_map.CalculateGridSize(c_grid_desc_m_n) == 16);
// clang-format off
std::vector<std::vector<int>> expected_m0idx_n0idx_valid = {
{0, 0, 1},
{1, 0, 1},
{2, 0, 1},
{3, 0, 0},
{0, 1, 1},
{1, 1, 1},
{2, 1, 1},
{3, 1, 0},
{0, 2, 1},
{1, 2, 1},
{2, 2, 1},
{3, 2, 0},
{0, 3, 1},
{1, 3, 1},
{2, 3, 1},
{3, 3, 0}
};
// clang-format on
for(index_t i = 0; i < tile_map.CalculateGridSize(c_grid_desc_m_n); i++)
{
auto m0n0_idx = tile_map.CalculateBottomIndex(make_multi_index(i));
std::cout << "block_1d_id = " << i << ", m0, n0 = " << m0n0_idx[I0] << ", " << m0n0_idx[I1];
std::cout << ", valid = " << tile_map.ValidCTileIndex(m0n0_idx, make_tuple(MBlock, NBlock))
<< std::endl;
bool equal =
expected_m0idx_n0idx_valid[i] ==
std::vector<int>{m0n0_idx[I0],
m0n0_idx[I1],
tile_map.ValidCTileIndex(m0n0_idx, make_tuple(MBlock, NBlock))};
EXPECT_TRUE(equal);
}
}
TEST(BlockToCTileMap, TestBlockToCTileMap_M00_N0_M01_DeviceCTileIndexCheck0)
{
const index_t M = 512;
const index_t N = 384;
const index_t MPerBlock = 128;
const index_t NPerBlock = 128;
auto c_grid_desc_m_n = make_naive_tensor_descriptor_packed(make_tuple(M, N));
// clang-format off
std::vector<std::tuple<int, int, bool>> expected_m0_gridsize_validity = {
{5, 15, false},
{4, 12, true},
{3, 18, false},
{2, 12, true},
{1, 12, true}
};
// clang-format on
for(auto e : expected_m0_gridsize_validity)
{
const index_t M01 = std::get<0>(e);
printf("(M, N, MPerBlock, NPerBlock, M01) = (%d, %d, %d, %d, %d)\n",
M,
N,
MPerBlock,
NPerBlock,
M01);
BlockToCTileMap_M00_N0_M01<MPerBlock, NPerBlock, decltype(c_grid_desc_m_n), false> tile_map(
c_grid_desc_m_n, M01);
EXPECT_EQ(tile_map.CalculateGridSize(c_grid_desc_m_n), std::get<1>(e));
EXPECT_EQ(tile_map.CheckValidity(c_grid_desc_m_n), std::get<2>(e));
}
}
TEST(BlockToCTileMap, TestBlockToCTileMap_M00_N0_M01Adapt)
{
const index_t M = 768;
const index_t N = 384;
const index_t MPerBlock = 128;
const index_t NPerBlock = 128;
const index_t MBlock = M / MPerBlock;
const index_t NBlock = N / NPerBlock;
constexpr index_t M01 = 4;
auto c_grid_desc_m_n = make_naive_tensor_descriptor_packed(make_tuple(M, N));
printf("(M, N, MPerBlock, NPerBlock, M01) = (%d, %d, %d, %d, %d)\n",
M,
N,
MPerBlock,
NPerBlock,
M01);
BlockToCTileMap_M00_N0_M01Adapt<MPerBlock, NPerBlock, decltype(c_grid_desc_m_n)> tile_map(
c_grid_desc_m_n, M01);
EXPECT_TRUE(tile_map.CheckValidity(c_grid_desc_m_n) == true);
EXPECT_TRUE(tile_map.CalculateGridSize(c_grid_desc_m_n) == 18);
// clang-format off
std::vector<std::vector<int>> expected_m0idx_n0idx_valid = {
{0, 0, 1},
{1, 0, 1},
{2, 0, 1},
{3, 0, 1},
{0, 1, 1},
{1, 1, 1},
{2, 1, 1},
{3, 1, 1},
{0, 2, 1},
{1, 2, 1},
{2, 2, 1},
{3, 2, 1},
{4, 0, 1},
{5, 0, 1},
{4, 1, 1},
{5, 1, 1},
{4, 2, 1},
{5, 2, 1},
};
// clang-format on
for(index_t i = 0; i < tile_map.CalculateGridSize(c_grid_desc_m_n); i++)
{
auto m0n0_idx = tile_map.CalculateBottomIndex(make_multi_index(i));
std::cout << "block_1d_id = " << i << ", m0, n0 = " << m0n0_idx[I0] << ", " << m0n0_idx[I1];
std::cout << ", valid = " << tile_map.ValidCTileIndex(m0n0_idx, make_tuple(MBlock, NBlock))
<< std::endl;
bool equal =
expected_m0idx_n0idx_valid[i] ==
std::vector<int>{m0n0_idx[I0],
m0n0_idx[I1],
tile_map.ValidCTileIndex(m0n0_idx, make_tuple(MBlock, NBlock))};
EXPECT_TRUE(equal);
}
}
TEST(BlockToCTileMap, TestBlockToCTileMap_KSplit_M00_N0_M01Adapt)
{
const index_t M = 768;
const index_t N = 384;
const index_t MPerBlock = 128;
const index_t NPerBlock = 128;
const index_t MBlock = M / MPerBlock;
const index_t NBlock = N / NPerBlock;
constexpr index_t M01 = 4;
const index_t KSplit = 3;
auto c_grid_desc_m_n = make_naive_tensor_descriptor_packed(make_tuple(M, N));
printf("(M, N, MPerBlock, NPerBlock, M01) = (%d, %d, %d, %d, %d)\n",
M,
N,
MPerBlock,
NPerBlock,
M01);
BlockToCTileMap_KSplit_M00_N0_M01Adapt<MPerBlock, NPerBlock, decltype(c_grid_desc_m_n)>
tile_map(c_grid_desc_m_n, M01, KSplit);
EXPECT_TRUE(tile_map.CheckValidity(c_grid_desc_m_n) == true);
EXPECT_TRUE(tile_map.CalculateGridSize(c_grid_desc_m_n) == 18 * KSplit);
std::vector<std::vector<int>> expected_ksplitidx_m0idx_n0idx_valid = {
{0, 0, 0, 1}, {0, 1, 0, 1}, {0, 2, 0, 1}, {0, 3, 0, 1}, {0, 0, 1, 1}, {0, 1, 1, 1},
{0, 2, 1, 1}, {0, 3, 1, 1}, {0, 0, 2, 1}, {0, 1, 2, 1}, {0, 2, 2, 1}, {0, 3, 2, 1},
{0, 4, 0, 1}, {0, 5, 0, 1}, {0, 4, 1, 1}, {0, 5, 1, 1}, {0, 4, 2, 1}, {0, 5, 2, 1},
{1, 0, 0, 1}, {1, 1, 0, 1}, {1, 2, 0, 1}, {1, 3, 0, 1}, {1, 0, 1, 1}, {1, 1, 1, 1},
{1, 2, 1, 1}, {1, 3, 1, 1}, {1, 0, 2, 1}, {1, 1, 2, 1}, {1, 2, 2, 1}, {1, 3, 2, 1},
{1, 4, 0, 1}, {1, 5, 0, 1}, {1, 4, 1, 1}, {1, 5, 1, 1}, {1, 4, 2, 1}, {1, 5, 2, 1},
{2, 0, 0, 1}, {2, 1, 0, 1}, {2, 2, 0, 1}, {2, 3, 0, 1}, {2, 0, 1, 1}, {2, 1, 1, 1},
{2, 2, 1, 1}, {2, 3, 1, 1}, {2, 0, 2, 1}, {2, 1, 2, 1}, {2, 2, 2, 1}, {2, 3, 2, 1},
{2, 4, 0, 1}, {2, 5, 0, 1}, {2, 4, 1, 1}, {2, 5, 1, 1}, {2, 4, 2, 1}, {2, 5, 2, 1},
};
for(index_t i = 0; i < tile_map.CalculateGridSize(c_grid_desc_m_n); i++)
{
auto ksplitm0n0_idx = tile_map.CalculateBottomIndex(make_multi_index(i));
std::cout << "block_1d_id = " << i << ", ksplit, m0, n0 = " << ksplitm0n0_idx[I0] << ", "
<< ksplitm0n0_idx[I1] << ", " << ksplitm0n0_idx[I2];
std::cout << ", valid = "
<< tile_map.ValidCTileIndex(ksplitm0n0_idx, make_tuple(MBlock, NBlock))
<< std::endl;
bool equal =
expected_ksplitidx_m0idx_n0idx_valid[i] ==
std::vector<int>{ksplitm0n0_idx[I0],
ksplitm0n0_idx[I1],
ksplitm0n0_idx[I2],
tile_map.ValidCTileIndex(ksplitm0n0_idx, make_tuple(MBlock, NBlock))};
EXPECT_TRUE(equal);
}
}
add_test_executable(test_gemm_fp32 gemm_fp32.cpp) # GEMM XDL
target_link_libraries(test_gemm_fp32 PRIVATE host_tensor) add_test_executable(test_gemm_xdl_fp32 gemm_xdl_fp32.cpp)
target_link_libraries(test_gemm_fp32 PRIVATE device_gemm_instance) target_link_libraries(test_gemm_xdl_fp32 PRIVATE host_tensor)
target_link_libraries(test_gemm_xdl_fp32 PRIVATE device_gemm_instance)
add_test_executable(test_gemm_fp16 gemm_fp16.cpp) add_test_executable(test_gemm_xdl_fp16 gemm_xdl_fp16.cpp)
target_link_libraries(test_gemm_fp16 PRIVATE host_tensor) target_link_libraries(test_gemm_xdl_fp16 PRIVATE host_tensor)
target_link_libraries(test_gemm_fp16 PRIVATE device_gemm_instance) target_link_libraries(test_gemm_xdl_fp16 PRIVATE device_gemm_instance)
add_test_executable(test_gemm_bf16 gemm_bf16.cpp) add_test_executable(test_gemm_xdl_bf16 gemm_xdl_bf16.cpp)
target_link_libraries(test_gemm_bf16 PRIVATE host_tensor) target_link_libraries(test_gemm_xdl_bf16 PRIVATE host_tensor)
target_link_libraries(test_gemm_bf16 PRIVATE device_gemm_instance) target_link_libraries(test_gemm_xdl_bf16 PRIVATE device_gemm_instance)
add_test_executable(test_gemm_int8 gemm_int8.cpp) add_test_executable(test_gemm_xdl_int8 gemm_xdl_int8.cpp)
target_link_libraries(test_gemm_int8 PRIVATE host_tensor) target_link_libraries(test_gemm_xdl_int8 PRIVATE host_tensor)
target_link_libraries(test_gemm_int8 PRIVATE device_gemm_instance) target_link_libraries(test_gemm_xdl_int8 PRIVATE device_gemm_instance)
# GEMM DL
add_test_executable(test_gemm_dl_fp32 gemm_dl_fp32.cpp)
target_link_libraries(test_gemm_dl_fp32 PRIVATE host_tensor)
target_link_libraries(test_gemm_dl_fp32 PRIVATE device_gemm_instance)
add_test_executable(test_gemm_dl_fp16 gemm_dl_fp16.cpp)
target_link_libraries(test_gemm_dl_fp16 PRIVATE host_tensor)
target_link_libraries(test_gemm_dl_fp16 PRIVATE device_gemm_instance)
add_test_executable(test_gemm_dl_int8 gemm_dl_int8.cpp)
target_link_libraries(test_gemm_dl_int8 PRIVATE host_tensor)
TArget_link_libraries(test_gemm_dl_int8 PRIVATE device_gemm_instance)
#include <algorithm>
#include <cstdlib>
#include <half.hpp>
#include <iostream>
#include <numeric>
#include <tuple>
#include <vector>
#include "../gemm/gemm_util.hpp"
#include "config.hpp"
#include "print.hpp"
#include "device.hpp"
#include "host_tensor.hpp"
#include "host_tensor_generator.hpp"
#include "host_gemm.hpp"
#include "device_tensor.hpp"
#include "device_gemm_dl.hpp"
#include "element_wise_operation.hpp"
#include "reference_gemm.hpp"
#include "gemm_specialization.hpp"
using PassThrough = ck::tensor_operation::element_wise::PassThrough;
using DeviceGemmNoOpPtr =
ck::tensor_operation::device::DeviceGemmPtr<ck::tensor_operation::element_wise::PassThrough,
ck::tensor_operation::element_wise::PassThrough,
ck::tensor_operation::element_wise::PassThrough>;
namespace ck {
namespace tensor_operation {
namespace device {
namespace device_gemm_instance {
void add_device_gemm_dl_f16_f16_f16_km_kn_mn_instances(std::vector<DeviceGemmNoOpPtr>&);
void add_device_gemm_dl_f16_f16_f16_km_nk_mn_instances(std::vector<DeviceGemmNoOpPtr>&);
void add_device_gemm_dl_f16_f16_f16_mk_nk_mn_instances(std::vector<DeviceGemmNoOpPtr>&);
void add_device_gemm_dl_f16_f16_f16_mk_kn_mn_instances(std::vector<DeviceGemmNoOpPtr>&);
} // namespace device_gemm_instance
} // namespace device
} // namespace tensor_operation
} // namespace ck
int main()
{
using ADataType = ck::half_t;
using BDataType = ck::half_t;
using CDataType = ck::half_t;
using RowMajor = ck::tensor_layout::gemm::RowMajor;
using ColumnMajor = ck::tensor_layout::gemm::ColumnMajor;
bool res = true;
std::vector<DeviceGemmNoOpPtr> gemmPtrs;
ck::tensor_operation::device::device_gemm_instance::
add_device_gemm_dl_f16_f16_f16_km_kn_mn_instances(gemmPtrs);
for(auto& gemmPtr : gemmPtrs)
{
res &= ck::gemm_util::TestGemm<DeviceGemmNoOpPtr,
ADataType,
BDataType,
CDataType,
ColumnMajor,
RowMajor,
RowMajor,
PassThrough,
PassThrough,
PassThrough>{}(gemmPtr);
}
gemmPtrs.clear();
ck::tensor_operation::device::device_gemm_instance::
add_device_gemm_dl_f16_f16_f16_km_nk_mn_instances(gemmPtrs);
for(auto& gemmPtr : gemmPtrs)
{
res &= ck::gemm_util::TestGemm<DeviceGemmNoOpPtr,
ADataType,
BDataType,
CDataType,
ColumnMajor,
ColumnMajor,
RowMajor,
PassThrough,
PassThrough,
PassThrough>{}(gemmPtr);
}
gemmPtrs.clear();
ck::tensor_operation::device::device_gemm_instance::
add_device_gemm_dl_f16_f16_f16_mk_kn_mn_instances(gemmPtrs);
for(auto& gemmPtr : gemmPtrs)
{
res &= ck::gemm_util::TestGemm<DeviceGemmNoOpPtr,
ADataType,
BDataType,
CDataType,
RowMajor,
RowMajor,
RowMajor,
PassThrough,
PassThrough,
PassThrough>{}(gemmPtr);
}
gemmPtrs.clear();
ck::tensor_operation::device::device_gemm_instance::
add_device_gemm_dl_f16_f16_f16_mk_nk_mn_instances(gemmPtrs);
for(auto& gemmPtr : gemmPtrs)
{
res &= ck::gemm_util::TestGemm<DeviceGemmNoOpPtr,
ADataType,
BDataType,
CDataType,
RowMajor,
ColumnMajor,
RowMajor,
PassThrough,
PassThrough,
PassThrough>{}(gemmPtr);
}
std::cout << "TestGemm ..... " << (res ? "SUCCESS" : "FAILURE") << std::endl;
return res ? 0 : 1;
}
#include <algorithm>
#include <cstdlib>
#include <half.hpp>
#include <iostream>
#include <numeric>
#include <tuple>
#include <vector>
#include "../gemm/gemm_util.hpp"
#include "config.hpp"
#include "print.hpp"
#include "device.hpp"
#include "host_tensor.hpp"
#include "host_tensor_generator.hpp"
#include "host_gemm.hpp"
#include "device_tensor.hpp"
#include "device_gemm_dl.hpp"
#include "element_wise_operation.hpp"
#include "reference_gemm.hpp"
#include "gemm_specialization.hpp"
using PassThrough = ck::tensor_operation::element_wise::PassThrough;
using DeviceGemmNoOpPtr =
ck::tensor_operation::device::DeviceGemmPtr<ck::tensor_operation::element_wise::PassThrough,
ck::tensor_operation::element_wise::PassThrough,
ck::tensor_operation::element_wise::PassThrough>;
namespace ck {
namespace tensor_operation {
namespace device {
namespace device_gemm_instance {
void add_device_gemm_dl_f32_f32_f32_km_kn_mn_instances(std::vector<DeviceGemmNoOpPtr>&);
void add_device_gemm_dl_f32_f32_f32_km_nk_mn_instances(std::vector<DeviceGemmNoOpPtr>&);
void add_device_gemm_dl_f32_f32_f32_mk_nk_mn_instances(std::vector<DeviceGemmNoOpPtr>&);
void add_device_gemm_dl_f32_f32_f32_mk_kn_mn_instances(std::vector<DeviceGemmNoOpPtr>&);
} // namespace device_gemm_instance
} // namespace device
} // namespace tensor_operation
} // namespace ck
int main()
{
using ADataType = float;
using BDataType = float;
using CDataType = float;
using RowMajor = ck::tensor_layout::gemm::RowMajor;
using ColumnMajor = ck::tensor_layout::gemm::ColumnMajor;
bool res = true;
std::vector<DeviceGemmNoOpPtr> gemmPtrs;
ck::tensor_operation::device::device_gemm_instance::
add_device_gemm_dl_f32_f32_f32_km_kn_mn_instances(gemmPtrs);
for(auto& gemmPtr : gemmPtrs)
{
res &= ck::gemm_util::TestGemm<DeviceGemmNoOpPtr,
ADataType,
BDataType,
CDataType,
ColumnMajor,
RowMajor,
RowMajor,
PassThrough,
PassThrough,
PassThrough>{}(gemmPtr);
}
gemmPtrs.clear();
ck::tensor_operation::device::device_gemm_instance::
add_device_gemm_dl_f32_f32_f32_km_nk_mn_instances(gemmPtrs);
for(auto& gemmPtr : gemmPtrs)
{
res &= ck::gemm_util::TestGemm<DeviceGemmNoOpPtr,
ADataType,
BDataType,
CDataType,
ColumnMajor,
ColumnMajor,
RowMajor,
PassThrough,
PassThrough,
PassThrough>{}(gemmPtr);
}
gemmPtrs.clear();
ck::tensor_operation::device::device_gemm_instance::
add_device_gemm_dl_f32_f32_f32_mk_kn_mn_instances(gemmPtrs);
for(auto& gemmPtr : gemmPtrs)
{
res &= ck::gemm_util::TestGemm<DeviceGemmNoOpPtr,
ADataType,
BDataType,
CDataType,
RowMajor,
RowMajor,
RowMajor,
PassThrough,
PassThrough,
PassThrough>{}(gemmPtr);
}
gemmPtrs.clear();
ck::tensor_operation::device::device_gemm_instance::
add_device_gemm_dl_f32_f32_f32_mk_nk_mn_instances(gemmPtrs);
for(auto& gemmPtr : gemmPtrs)
{
res &= ck::gemm_util::TestGemm<DeviceGemmNoOpPtr,
ADataType,
BDataType,
CDataType,
RowMajor,
ColumnMajor,
RowMajor,
PassThrough,
PassThrough,
PassThrough>{}(gemmPtr);
}
std::cout << "TestGemm ..... " << (res ? "SUCCESS" : "FAILURE") << std::endl;
return res ? 0 : 1;
}
#include <algorithm>
#include <cstdlib>
#include <half.hpp>
#include <iostream>
#include <numeric>
#include <tuple>
#include <vector>
#include "../gemm/gemm_util.hpp"
#include "config.hpp"
#include "print.hpp"
#include "device.hpp"
#include "host_tensor.hpp"
#include "host_tensor_generator.hpp"
#include "host_gemm.hpp"
#include "device_tensor.hpp"
#include "device_gemm_dl.hpp"
#include "element_wise_operation.hpp"
#include "reference_gemm.hpp"
#include "gemm_specialization.hpp"
using PassThrough = ck::tensor_operation::element_wise::PassThrough;
using DeviceGemmNoOpPtr =
ck::tensor_operation::device::DeviceGemmPtr<ck::tensor_operation::element_wise::PassThrough,
ck::tensor_operation::element_wise::PassThrough,
ck::tensor_operation::element_wise::PassThrough>;
namespace ck {
namespace tensor_operation {
namespace device {
namespace device_gemm_instance {
void add_device_gemm_dl_i8_i8_i8_km_kn_mn_instances(std::vector<DeviceGemmNoOpPtr>&);
void add_device_gemm_dl_i8_i8_i8_km_nk_mn_instances(std::vector<DeviceGemmNoOpPtr>&);
void add_device_gemm_dl_i8_i8_i8_mk_nk_mn_instances(std::vector<DeviceGemmNoOpPtr>&);
void add_device_gemm_dl_i8_i8_i8_mk_kn_mn_instances(std::vector<DeviceGemmNoOpPtr>&);
} // namespace device_gemm_instance
} // namespace device
} // namespace tensor_operation
} // namespace ck
int main()
{
using ADataType = int8_t;
using BDataType = int8_t;
using CDataType = int8_t;
using RowMajor = ck::tensor_layout::gemm::RowMajor;
using ColumnMajor = ck::tensor_layout::gemm::ColumnMajor;
bool res = true;
std::vector<DeviceGemmNoOpPtr> gemmPtrs;
ck::tensor_operation::device::device_gemm_instance::
add_device_gemm_dl_i8_i8_i8_km_kn_mn_instances(gemmPtrs);
for(auto& gemmPtr : gemmPtrs)
{
res &= ck::gemm_util::TestGemm<DeviceGemmNoOpPtr,
ADataType,
BDataType,
CDataType,
ColumnMajor,
RowMajor,
RowMajor,
PassThrough,
PassThrough,
PassThrough>{}(gemmPtr);
}
gemmPtrs.clear();
ck::tensor_operation::device::device_gemm_instance::
add_device_gemm_dl_i8_i8_i8_km_nk_mn_instances(gemmPtrs);
for(auto& gemmPtr : gemmPtrs)
{
res &= ck::gemm_util::TestGemm<DeviceGemmNoOpPtr,
ADataType,
BDataType,
CDataType,
ColumnMajor,
ColumnMajor,
RowMajor,
PassThrough,
PassThrough,
PassThrough>{}(gemmPtr);
}
gemmPtrs.clear();
ck::tensor_operation::device::device_gemm_instance::
add_device_gemm_dl_i8_i8_i8_mk_kn_mn_instances(gemmPtrs);
for(auto& gemmPtr : gemmPtrs)
{
res &= ck::gemm_util::TestGemm<DeviceGemmNoOpPtr,
ADataType,
BDataType,
CDataType,
RowMajor,
RowMajor,
RowMajor,
PassThrough,
PassThrough,
PassThrough>{}(gemmPtr);
}
gemmPtrs.clear();
ck::tensor_operation::device::device_gemm_instance::
add_device_gemm_dl_i8_i8_i8_mk_nk_mn_instances(gemmPtrs);
for(auto& gemmPtr : gemmPtrs)
{
res &= ck::gemm_util::TestGemm<DeviceGemmNoOpPtr,
ADataType,
BDataType,
CDataType,
RowMajor,
ColumnMajor,
RowMajor,
PassThrough,
PassThrough,
PassThrough>{}(gemmPtr);
}
std::cout << "TestGemm ..... " << (res ? "SUCCESS" : "FAILURE") << std::endl;
return res ? 0 : 1;
}
...@@ -60,7 +60,7 @@ template <typename DeviceGemmPtr_, ...@@ -60,7 +60,7 @@ template <typename DeviceGemmPtr_,
typename AElementwiseOperation, typename AElementwiseOperation,
typename BElementwiseOperation, typename BElementwiseOperation,
typename CElementwiseOperation> typename CElementwiseOperation>
void RunDeviceGEMM(DeviceGemmPtr_& gemmPtr, bool RunDeviceGEMM(DeviceGemmPtr_& gemmPtr,
const ck::gemm_util::GemmParams& params, const ck::gemm_util::GemmParams& params,
const Tensor<ADataType>& A, const Tensor<ADataType>& A,
const Tensor<BDataType>& B, const Tensor<BDataType>& B,
...@@ -73,9 +73,6 @@ void RunDeviceGEMM(DeviceGemmPtr_& gemmPtr, ...@@ -73,9 +73,6 @@ void RunDeviceGEMM(DeviceGemmPtr_& gemmPtr,
DeviceMem b_k_n_device_buf(sizeof(BDataType) * B.mDesc.GetElementSpace()); DeviceMem b_k_n_device_buf(sizeof(BDataType) * B.mDesc.GetElementSpace());
DeviceMem c_m_n_device_buf(sizeof(CDataType) * C.mDesc.GetElementSpace()); DeviceMem c_m_n_device_buf(sizeof(CDataType) * C.mDesc.GetElementSpace());
a_m_k_device_buf.ToDevice(A.mData.data());
b_k_n_device_buf.ToDevice(B.mData.data());
auto invoker_ptr = gemmPtr->MakeInvokerPointer(); auto invoker_ptr = gemmPtr->MakeInvokerPointer();
auto argument_ptr = auto argument_ptr =
gemmPtr->MakeArgumentPointer(static_cast<ADataType*>(a_m_k_device_buf.GetDeviceBuffer()), gemmPtr->MakeArgumentPointer(static_cast<ADataType*>(a_m_k_device_buf.GetDeviceBuffer()),
...@@ -91,15 +88,23 @@ void RunDeviceGEMM(DeviceGemmPtr_& gemmPtr, ...@@ -91,15 +88,23 @@ void RunDeviceGEMM(DeviceGemmPtr_& gemmPtr,
b_element_op, b_element_op,
c_element_op); c_element_op);
if(!gemmPtr->IsSupportedArgument(argument_ptr.get())) if(gemmPtr->IsSupportedArgument(argument_ptr.get()))
{ {
throw std::runtime_error( a_m_k_device_buf.ToDevice(A.mData.data());
"wrong! device_gemm with the specified compilation parameters does " b_k_n_device_buf.ToDevice(B.mData.data());
"not support this GEMM problem"); invoker_ptr->Run(argument_ptr.get());
c_m_n_device_buf.FromDevice(C.mData.data());
return true;
} }
else
{
std::cout << "device_gemm with the specified compilation parameters does "
"not support this GEMM problem"
<< std::endl;
invoker_ptr->Run(argument_ptr.get()); return false;
c_m_n_device_buf.FromDevice(C.mData.data()); }
} }
template <typename DeviceGemmPtr_, template <typename DeviceGemmPtr_,
...@@ -188,28 +193,35 @@ struct TestGemm ...@@ -188,28 +193,35 @@ struct TestGemm
a, b, c_host, a_element_op, b_element_op, c_element_op); a, b, c_host, a_element_op, b_element_op, c_element_op);
// Act // Act
ck::gemm_util::RunDeviceGEMM( bool is_supported = ck::gemm_util::RunDeviceGEMM(
gemmPtr, params, a, b, c_device, a_element_op, b_element_op, c_element_op); gemmPtr, params, a, b, c_device, a_element_op, b_element_op, c_element_op);
// Assert if(is_supported)
bool res = false;
if(std::is_same<CDataType, float>::value)
{ {
res = ck::utils::check_err(c_device.mData, c_host.mData); // Assert
std::cout << (res ? "SUCCESS" : "FAILURE") << std::endl; bool res = false;
if(std::is_same<CDataType, float>::value)
{
res = ck::utils::check_err(c_device.mData, c_host.mData);
std::cout << (res ? "SUCCESS" : "FAILURE") << std::endl;
}
else if(std::is_same<CDataType, ck::half_t>::value)
{
res = ck::utils::check_err(c_device.mData, c_host.mData);
std::cout << (res ? "SUCCESS" : "FAILURE") << std::endl;
}
else if(std::is_same<CDataType, int8_t>::value)
{
res = ck::utils::check_err(c_device.mData, c_host.mData);
std::cout << (res ? "SUCCESS" : "FAILURE") << std::endl;
}
return res;
} }
else if(std::is_same<CDataType, ck::half_t>::value) else
{ {
res = ck::utils::check_err(c_device.mData, c_host.mData); return true;
std::cout << (res ? "SUCCESS" : "FAILURE") << std::endl;
} }
else if(std::is_same<CDataType, int8_t>::value)
{
res = ck::utils::check_err(c_device.mData, c_host.mData);
std::cout << (res ? "SUCCESS" : "FAILURE") << std::endl;
}
return res;
} }
}; };
......
...@@ -31,14 +31,10 @@ namespace ck { ...@@ -31,14 +31,10 @@ namespace ck {
namespace tensor_operation { namespace tensor_operation {
namespace device { namespace device {
namespace device_gemm_instance { namespace device_gemm_instance {
void add_device_gemm_xdl_c_shuffle_int8_int8_int8_km_kn_mn_instances( void add_device_gemm_xdl_c_shuffle_i8_i8_i8_km_kn_mn_instances(std::vector<DeviceGemmNoOpPtr>&);
std::vector<DeviceGemmNoOpPtr>&); void add_device_gemm_xdl_c_shuffle_i8_i8_i8_km_nk_mn_instances(std::vector<DeviceGemmNoOpPtr>&);
void add_device_gemm_xdl_c_shuffle_int8_int8_int8_km_nk_mn_instances( void add_device_gemm_xdl_c_shuffle_i8_i8_i8_mk_nk_mn_instances(std::vector<DeviceGemmNoOpPtr>&);
std::vector<DeviceGemmNoOpPtr>&); void add_device_gemm_xdl_c_shuffle_i8_i8_i8_mk_kn_mn_instances(std::vector<DeviceGemmNoOpPtr>&);
void add_device_gemm_xdl_c_shuffle_int8_int8_int8_mk_nk_mn_instances(
std::vector<DeviceGemmNoOpPtr>&);
void add_device_gemm_xdl_c_shuffle_int8_int8_int8_mk_kn_mn_instances(
std::vector<DeviceGemmNoOpPtr>&);
} // namespace device_gemm_instance } // namespace device_gemm_instance
} // namespace device } // namespace device
} // namespace tensor_operation } // namespace tensor_operation
...@@ -57,7 +53,7 @@ int main() ...@@ -57,7 +53,7 @@ int main()
bool res = true; bool res = true;
ck::tensor_operation::device::device_gemm_instance:: ck::tensor_operation::device::device_gemm_instance::
add_device_gemm_xdl_c_shuffle_int8_int8_int8_km_kn_mn_instances(gemmPtrs); add_device_gemm_xdl_c_shuffle_i8_i8_i8_km_kn_mn_instances(gemmPtrs);
for(auto& gemmPtr : gemmPtrs) for(auto& gemmPtr : gemmPtrs)
{ {
...@@ -75,7 +71,7 @@ int main() ...@@ -75,7 +71,7 @@ int main()
gemmPtrs.clear(); gemmPtrs.clear();
ck::tensor_operation::device::device_gemm_instance:: ck::tensor_operation::device::device_gemm_instance::
add_device_gemm_xdl_c_shuffle_int8_int8_int8_km_nk_mn_instances(gemmPtrs); add_device_gemm_xdl_c_shuffle_i8_i8_i8_km_nk_mn_instances(gemmPtrs);
for(auto& gemmPtr : gemmPtrs) for(auto& gemmPtr : gemmPtrs)
{ {
...@@ -93,7 +89,7 @@ int main() ...@@ -93,7 +89,7 @@ int main()
gemmPtrs.clear(); gemmPtrs.clear();
ck::tensor_operation::device::device_gemm_instance:: ck::tensor_operation::device::device_gemm_instance::
add_device_gemm_xdl_c_shuffle_int8_int8_int8_mk_kn_mn_instances(gemmPtrs); add_device_gemm_xdl_c_shuffle_i8_i8_i8_mk_kn_mn_instances(gemmPtrs);
for(auto& gemmPtr : gemmPtrs) for(auto& gemmPtr : gemmPtrs)
{ {
...@@ -111,7 +107,7 @@ int main() ...@@ -111,7 +107,7 @@ int main()
gemmPtrs.clear(); gemmPtrs.clear();
ck::tensor_operation::device::device_gemm_instance:: ck::tensor_operation::device::device_gemm_instance::
add_device_gemm_xdl_c_shuffle_int8_int8_int8_mk_nk_mn_instances(gemmPtrs); add_device_gemm_xdl_c_shuffle_i8_i8_i8_mk_nk_mn_instances(gemmPtrs);
for(auto& gemmPtr : gemmPtrs) for(auto& gemmPtr : gemmPtrs)
{ {
......
#include "getopt.h" #include "getopt.h"
#include "check_err.hpp" #include "host_common_util.hpp"
#include "device_reduce_instance.hpp" #include "profile_reduce_impl.hpp"
#include "reduction_enums.hpp"
#include "host_tensor.hpp"
#include "host_tensor_generator.hpp"
#include "host_reduction.hpp"
#include "reduce_util.hpp"
using namespace ck; using namespace ck;
namespace {
template <index_t Rank, index_t NumReduceDim>
static inline std::vector<int> get_invariant_dims(const std::vector<int>& reduceDims)
{
assert(NumReduceDim == reduceDims.size());
int reduceFlag = 0;
// flag the bits for the reduceDims
for(int i = 0; i < NumReduceDim; i++)
{
reduceFlag |= 1 << reduceDims[i];
};
std::vector<int> invariantDims;
// collect invariant dimensions
for(int i = 0; i < Rank; i++)
if((reduceFlag & (1 << i)) == 0)
{
invariantDims.push_back(i);
};
return invariantDims;
};
constexpr int Rank = 4;
constexpr ReduceTensorOp ReduceOpId = ReduceTensorOp::AVG;
constexpr NanPropagation NanOpt = NanPropagation::PROPAGATE_NAN;
constexpr bool PropagateNan = false;
constexpr ReduceTensorIndices IndicesOpt = ReduceTensorIndices::NO_INDICES;
constexpr bool NeedIndices = false;
template <typename InDataType,
typename AccDataType,
typename OutDataType,
int Rank,
int NumReduceDim>
bool test_reduce_no_index_impl(int init_method,
const std::vector<size_t>& inLengths,
const std::vector<int>& reduceDims,
float alpha,
float beta)
{
using namespace ck::tensor_operation::device;
using namespace ck::tensor_operation::device::device_reduce_instance;
using namespace ck::host_reduce;
constexpr bool out_support_atomic_add = std::is_same<OutDataType, float>::value;
constexpr bool op_support_atomic_add = true;
constexpr bool use_atomic_add = (out_support_atomic_add && op_support_atomic_add);
Tensor<InDataType> in(inLengths);
std::vector<size_t> outLengths;
const auto invariantDims = get_invariant_dims<Rank, NumReduceDim>(reduceDims);
if(reduceDims.size() == Rank)
outLengths.push_back(1);
else
for(auto dim : invariantDims)
outLengths.push_back(inLengths[dim]);
Tensor<OutDataType> out_ref(outLengths);
Tensor<OutDataType> out(outLengths);
// only used when the OutDataType is bhalf_t
Tensor<float> out_ref_fp32(outLengths);
Tensor<float> out_fp32(outLengths);
auto inStrides = in.mDesc.GetStrides();
auto outStrides = out.mDesc.GetStrides();
size_t invariant_total_length = out.mDesc.GetElementSize();
size_t reduce_total_length = in.mDesc.GetElementSize() / invariant_total_length;
std::size_t num_thread = 1;
switch(init_method)
{
case 0: break;
case 1:
in.GenerateTensorValue(GeneratorTensor_1<InDataType>{1}, num_thread);
if(beta != 0.0f)
out_ref.GenerateTensorValue(GeneratorTensor_1<InDataType>{1}, num_thread);
break;
case 2:
in.GenerateTensorValue(GeneratorTensor_2<InDataType>{-5, 5}, num_thread);
if(beta != 0.0f)
out_ref.GenerateTensorValue(GeneratorTensor_2<InDataType>{-5, 5}, num_thread);
break;
default:
in.GenerateTensorValue(GeneratorTensor_3<InDataType>{-5.0, 5.0}, num_thread);
if(beta != 0.0f)
out_ref.GenerateTensorValue(GeneratorTensor_3<InDataType>{-5.0, 5.0}, num_thread);
}
if(beta != 0.0f)
for(size_t i = 0; i < out_ref.mDesc.GetElementSpace(); i++)
out.mData[i] = out_ref.mData[i];
// these buffers are usually provided by the user application
DeviceMem in_dev(sizeof(InDataType) * in.mDesc.GetElementSpace());
DeviceMem out_dev(sizeof(OutDataType) * out.mDesc.GetElementSpace());
in_dev.ToDevice(in.mData.data());
if(beta != 0.0f)
out_dev.ToDevice(out.mData.data());
using InElementwiseOperation_0 =
typename reduce_unary_operator<AccDataType, ReduceOpId, true, true>::InElementwiseOperation;
using AccElementwiseOperation_0 =
typename reduce_unary_operator<AccDataType, ReduceOpId, true, true>::
AccElementwiseOperation;
using InElementwiseOperation_1 =
typename reduce_unary_operator<AccDataType, ReduceOpId, true, false>::
InElementwiseOperation;
using AccElementwiseOperation_1 =
typename reduce_unary_operator<AccDataType, ReduceOpId, true, false>::
AccElementwiseOperation;
using InElementwiseOperation_2 =
typename reduce_unary_operator<AccDataType, ReduceOpId, false, true>::
InElementwiseOperation;
using AccElementwiseOperation_2 =
typename reduce_unary_operator<AccDataType, ReduceOpId, false, true>::
AccElementwiseOperation;
using DeviceReduceInstPtr0 =
DeviceReducePtr<InElementwiseOperation_0, AccElementwiseOperation_0>;
using DeviceReduceInstPtr1 =
DeviceReducePtr<InElementwiseOperation_1, AccElementwiseOperation_1>;
using DeviceReduceInstPtr2 =
DeviceReducePtr<InElementwiseOperation_2, AccElementwiseOperation_2>;
std::vector<DeviceReduceInstPtr0> reduce0_ptrs;
std::vector<DeviceReduceInstPtr1> reduce1_ptrs;
std::vector<DeviceReduceInstPtr2> reduce2_ptrs;
add_device_reduce_instance_threadwise<InDataType,
AccDataType,
OutDataType,
Rank,
NumReduceDim,
ReduceOpId,
NanOpt,
IndicesOpt>(reduce0_ptrs);
add_device_reduce_instance_blockwise<InDataType,
AccDataType,
OutDataType,
Rank,
NumReduceDim,
ReduceOpId,
NanOpt,
IndicesOpt>(reduce0_ptrs);
if constexpr(use_atomic_add)
{
add_device_reduce_instance_multiblock_atomic_add<InDataType,
AccDataType,
OutDataType,
Rank,
NumReduceDim,
ReduceOpId,
NanOpt,
IndicesOpt>(reduce0_ptrs);
}
else
{
add_device_reduce_instance_multiblock_partial_reduce<InDataType,
AccDataType,
OutDataType,
Rank,
NumReduceDim,
ReduceOpId,
NanOpt,
IndicesOpt>(reduce1_ptrs);
};
// used for secondary reduction
if constexpr(!use_atomic_add)
{
add_device_reduce_instance_blockwise_second_call<AccDataType,
AccDataType,
OutDataType,
Rank,
NumReduceDim,
ReduceOpId,
NanOpt,
IndicesOpt>(reduce2_ptrs);
};
if(reduce0_ptrs.empty() && reduce1_ptrs.empty())
{
throw std::runtime_error("Wrong! No device REDUCE instance found");
};
bool result = true;
ReductionHost<InDataType,
AccDataType,
OutDataType,
ReduceOpId,
Rank,
NumReduceDim,
PropagateNan,
NeedIndices>
hostReduce(in.mDesc, out_ref.mDesc, invariantDims, reduceDims);
hostReduce.Run(alpha, in.mData.data(), beta, out_ref.mData.data(), nullptr);
const auto i_inLengths = to_int_vector(inLengths);
const auto i_inStrides = to_int_vector(inStrides);
const auto i_outLengths = to_int_vector(outLengths);
const auto i_outStrides = to_int_vector(outStrides);
for(auto& reduce_ptr : reduce0_ptrs)
{
auto wsSizeInBytes = reduce_ptr->GetWorkspaceSizeInBytes(i_inLengths, reduceDims);
DeviceMem ws_dev(wsSizeInBytes);
InElementwiseOperation_0 in_elementwise_op_0(static_cast<int32_t>(reduce_total_length));
AccElementwiseOperation_0 acc_elementwise_op_0(static_cast<int32_t>(reduce_total_length));
auto argument_ptr = reduce_ptr->MakeArgumentPointer(i_inLengths,
i_inStrides,
i_outLengths,
i_outStrides,
reduceDims,
alpha,
beta,
in_dev.GetDeviceBuffer(),
out_dev.GetDeviceBuffer(),
nullptr,
ws_dev.GetDeviceBuffer(),
in_elementwise_op_0,
acc_elementwise_op_0);
if(!reduce_ptr->IsSupportedArgument(argument_ptr.get()))
continue;
auto invoker_ptr = reduce_ptr->MakeInvokerPointer();
(void)invoker_ptr->Run(argument_ptr.get());
out_dev.FromDevice(out.mData.data());
bool single_result = true;
if constexpr(std::is_same<OutDataType, ck::half_t>::value ||
std::is_same<OutDataType, ck::bhalf_t>::value)
{
reduce_util::to_f32_vector(out, out_fp32);
reduce_util::to_f32_vector(out_ref, out_ref_fp32);
single_result = ck::utils::check_err(
out_fp32.mData, out_ref_fp32.mData, "Error: incorrect data result!");
}
else
{
single_result =
ck::utils::check_err(out.mData, out_ref.mData, "Error: incorrect data result!");
};
if(!single_result)
{
std::cout << "Fail Info: " << reduce_ptr->GetTypeString() << std::endl;
result = false;
}
};
for(auto& reduce_ptr : reduce1_ptrs)
{
auto wsSizeInBytes = reduce_ptr->GetWorkspaceSizeInBytes(i_inLengths, reduceDims);
DeviceMem ws_dev(wsSizeInBytes);
InElementwiseOperation_1 in_elementwise_op_1(static_cast<int32_t>(reduce_total_length));
AccElementwiseOperation_1 acc_elementwise_op_1(static_cast<int32_t>(reduce_total_length));
auto argument_ptr = reduce_ptr->MakeArgumentPointer(i_inLengths,
i_inStrides,
i_outLengths,
i_outStrides,
reduceDims,
alpha,
beta,
in_dev.GetDeviceBuffer(),
out_dev.GetDeviceBuffer(),
nullptr,
ws_dev.GetDeviceBuffer(),
in_elementwise_op_1,
acc_elementwise_op_1);
if(!reduce_ptr->IsSupportedArgument(argument_ptr.get()))
continue;
auto invoker_ptr = reduce_ptr->MakeInvokerPointer();
(void)invoker_ptr->Run(argument_ptr.get());
std::vector<int> inLengths2 = reduce_ptr->GetWorkspace2dLengths(argument_ptr.get());
std::vector<int> inStrides2{inLengths2[1], 1};
for(auto& reduce2_ptr : reduce2_ptrs)
{
InElementwiseOperation_2 in_elementwise_op_2(static_cast<int32_t>(reduce_total_length));
AccElementwiseOperation_2 acc_elementwise_op_2(
static_cast<int32_t>(reduce_total_length));
auto argument2_ptr = reduce2_ptr->MakeArgumentPointer(inLengths2,
inStrides2,
i_outLengths,
i_outStrides,
reduceDims,
alpha,
beta,
ws_dev.GetDeviceBuffer(),
out_dev.GetDeviceBuffer(),
nullptr,
ws_dev.GetDeviceBuffer(),
in_elementwise_op_2,
acc_elementwise_op_2);
if(!reduce2_ptr->IsSupportedArgument(argument2_ptr.get()))
continue;
std::string reduce2_name = reduce2_ptr->GetTypeString();
auto invoker2_ptr = reduce2_ptr->MakeInvokerPointer();
(void)invoker2_ptr->Run(argument2_ptr.get());
out_dev.FromDevice(out.mData.data());
bool single_result = true;
if constexpr(std::is_same<OutDataType, ck::half_t>::value ||
std::is_same<OutDataType, ck::bhalf_t>::value)
{
reduce_util::to_f32_vector(out, out_fp32);
reduce_util::to_f32_vector(out_ref, out_ref_fp32);
single_result = ck::utils::check_err(
out_fp32.mData, out_ref_fp32.mData, "Error: incorrect data result!");
}
else
{
single_result =
ck::utils::check_err(out.mData, out_ref.mData, "Error: incorrect data result!");
};
if(!single_result)
{
std::cout << "Fail Info: " << reduce_ptr->GetTypeString() << " => "
<< reduce2_ptr->GetTypeString() << std::endl;
result = false;
}
};
};
return (result);
};
} // anonymous namespace
static struct option long_options[] = {{"inLengths", required_argument, nullptr, 'D'}, static struct option long_options[] = {{"inLengths", required_argument, nullptr, 'D'},
{"reduceDimensions", required_argument, nullptr, 'R'}, {"reduceDimensions", required_argument, nullptr, 'R'},
{"scales", required_argument, nullptr, 'S'}, {"scales", required_argument, nullptr, 'S'},
...@@ -387,48 +13,6 @@ static struct option long_options[] = {{"inLengths", required_argument, nullptr, ...@@ -387,48 +13,6 @@ static struct option long_options[] = {{"inLengths", required_argument, nullptr,
class SimpleAppArgs class SimpleAppArgs
{ {
template <typename T>
static T getSingleValueFromString(const std::string& valueStr)
{
std::istringstream iss(valueStr);
T ret;
iss >> ret;
return (ret);
};
template <typename T>
static std::vector<T> getTypeValuesFromString(const char* cstr_values)
{
std::string valuesStr(cstr_values);
std::vector<T> values;
std::size_t pos = 0;
std::size_t new_pos;
new_pos = valuesStr.find(',', pos);
while(new_pos != std::string::npos)
{
const std::string sliceStr = valuesStr.substr(pos, new_pos - pos);
T val = getSingleValueFromString<T>(sliceStr);
values.push_back(val);
pos = new_pos + 1;
new_pos = valuesStr.find(',', pos);
};
std::string sliceStr = valuesStr.substr(pos);
T val = getSingleValueFromString<T>(sliceStr);
values.push_back(val);
return (values);
};
private: private:
int option_index = 0; int option_index = 0;
...@@ -460,6 +44,8 @@ class SimpleAppArgs ...@@ -460,6 +44,8 @@ class SimpleAppArgs
int processArgs(int argc, char* argv[]) int processArgs(int argc, char* argv[])
{ {
using ck::host_common::getTypeValuesFromString;
int ch; int ch;
while(1) while(1)
...@@ -514,7 +100,7 @@ class SimpleAppArgs ...@@ -514,7 +100,7 @@ class SimpleAppArgs
(reduceDims.size() != 1 && reduceDims.size() != 3 && reduceDims.size() != 4)) (reduceDims.size() != 1 && reduceDims.size() != 3 && reduceDims.size() != 4))
return (-1); return (-1);
if(data_type != 0 && data_type != 1 && data_type != 3 && data_type != 5) if(data_type != 0 && data_type != 1 && data_type != 3 && data_type != 5 && data_type != 6)
return (-1); return (-1);
return (0); return (0);
...@@ -525,87 +111,92 @@ bool test_reduce_no_index(int data_type, ...@@ -525,87 +111,92 @@ bool test_reduce_no_index(int data_type,
int init_method, int init_method,
std::vector<int> reduceDims, std::vector<int> reduceDims,
std::vector<size_t> inLengths, std::vector<size_t> inLengths,
ReduceTensorOp reduceOpId,
bool propagateNan,
float alpha, float alpha,
float beta) float beta)
{ {
using ck::profiler::profile_reduce_impl;
bool result = true; bool result = true;
if(data_type == 0) if(data_type == 0)
{ {
switch(reduceDims.size()) result = profile_reduce_impl<float, float, float>(true,
{ init_method,
case 1: false,
result = test_reduce_no_index_impl<float, float, float, Rank, 1>( false,
init_method, inLengths, reduceDims, alpha, beta); inLengths,
break; reduceDims,
case 3: reduceOpId,
result = test_reduce_no_index_impl<float, float, float, Rank, 3>( propagateNan,
init_method, inLengths, reduceDims, alpha, beta); false,
break; alpha,
case 4: beta);
result = test_reduce_no_index_impl<float, float, float, Rank, 4>(
init_method, inLengths, reduceDims, alpha, beta);
break;
};
} }
else if(data_type == 1) else if(data_type == 1)
{ {
switch(reduceDims.size()) result = profile_reduce_impl<ck::half_t, float, ck::half_t>(true,
{ init_method,
case 1: false,
result = test_reduce_no_index_impl<ck::half_t, float, ck::half_t, Rank, 1>( false,
init_method, inLengths, reduceDims, alpha, beta); inLengths,
break; reduceDims,
case 3: reduceOpId,
result = test_reduce_no_index_impl<ck::half_t, float, ck::half_t, Rank, 3>( propagateNan,
init_method, inLengths, reduceDims, alpha, beta); false,
break; alpha,
case 4: beta);
result = test_reduce_no_index_impl<ck::half_t, float, ck::half_t, Rank, 4>(
init_method, inLengths, reduceDims, alpha, beta);
break;
};
} }
else if(data_type == 3) else if(data_type == 3)
{ {
switch(reduceDims.size()) result = profile_reduce_impl<int8_t, int32_t, int8_t>(true,
{ init_method,
case 1: false,
result = test_reduce_no_index_impl<int8_t, int32_t, int8_t, Rank, 1>( false,
init_method, inLengths, reduceDims, alpha, beta); inLengths,
break; reduceDims,
case 3: reduceOpId,
result = test_reduce_no_index_impl<int8_t, int32_t, int8_t, Rank, 3>( propagateNan,
init_method, inLengths, reduceDims, alpha, beta); false,
break; alpha,
case 4: beta);
result = test_reduce_no_index_impl<int8_t, int32_t, int8_t, Rank, 4>(
init_method, inLengths, reduceDims, alpha, beta);
break;
};
} }
else if(data_type == 5) else if(data_type == 5)
{ {
switch(reduceDims.size()) result = profile_reduce_impl<ck::bhalf_t, float, ck::bhalf_t>(true,
{ init_method,
case 1: false,
result = test_reduce_no_index_impl<ck::bhalf_t, float, ck::bhalf_t, Rank, 1>( false,
init_method, inLengths, reduceDims, alpha, beta); inLengths,
break; reduceDims,
case 3: reduceOpId,
result = test_reduce_no_index_impl<ck::bhalf_t, float, ck::bhalf_t, Rank, 3>( propagateNan,
init_method, inLengths, reduceDims, alpha, beta); false,
break; alpha,
case 4: beta);
result = test_reduce_no_index_impl<ck::bhalf_t, float, ck::bhalf_t, Rank, 4>( }
init_method, inLengths, reduceDims, alpha, beta); else if(data_type == 6)
break; {
}; result = profile_reduce_impl<double, double, double>(true,
init_method,
false,
false,
inLengths,
reduceDims,
reduceOpId,
propagateNan,
false,
alpha,
beta);
} }
return (result); return (result);
}; };
constexpr ReduceTensorOp reduceOpId = ReduceTensorOp::AVG;
constexpr bool propagateNan = false;
int main(int argc, char* argv[]) int main(int argc, char* argv[])
{ {
SimpleAppArgs args; SimpleAppArgs args;
...@@ -621,8 +212,14 @@ int main(int argc, char* argv[]) ...@@ -621,8 +212,14 @@ int main(int argc, char* argv[])
{0, 1, 2, 3}, {0, 1, 2}, {1, 2, 3}, {0, 1, 3}, {0, 2, 3}, {0}, {1}, {2}, {3}}; {0, 1, 2, 3}, {0, 1, 2}, {1, 2, 3}, {0, 1, 3}, {0, 2, 3}, {0}, {1}, {2}, {3}};
for(auto& reduceDims : v_reduceDims) for(auto& reduceDims : v_reduceDims)
result = result && test_reduce_no_index( result = result && test_reduce_no_index(data_type,
data_type, init_method, reduceDims, inLengths, 1.0f, 0.0f); init_method,
reduceDims,
inLengths,
reduceOpId,
propagateNan,
1.0f,
0.0f);
} }
else else
{ {
...@@ -636,6 +233,8 @@ int main(int argc, char* argv[]) ...@@ -636,6 +233,8 @@ int main(int argc, char* argv[])
args.init_method, args.init_method,
args.reduceDims, args.reduceDims,
args.inLengths, args.inLengths,
reduceOpId,
propagateNan,
args.scales[0], args.scales[0],
args.scales[1]); args.scales[1]);
} }
......
#ifndef REDUCE_UTILS_HPP
#define REDUCE_UTILS_HPP
#include "data_type.hpp"
namespace ck {
namespace reduce_util {
template <typename T>
void to_f32_vector(const Tensor<T>& src, Tensor<float>& dst)
{
for(std::size_t i = 0; i < src.mData.size(); ++i)
dst.mData[i] = type_convert<float>(src.mData[i]);
}
} // namespace reduce_util
} // namespace ck
#endif
#include "getopt.h" #include "getopt.h"
#include "device_reduce_instance.hpp"
#include "reduction_enums.hpp"
#include "host_tensor.hpp"
#include "host_tensor_generator.hpp"
#include "host_reduction.hpp"
#include "check_err.hpp"
#include "reduce_util.hpp"
using namespace ck; #include "host_common_util.hpp"
#include "profile_reduce_impl.hpp"
namespace {
template <index_t Rank, index_t NumReduceDim>
static inline std::vector<int> get_invariant_dims(const std::vector<int>& reduceDims)
{
assert(NumReduceDim == reduceDims.size());
int reduceFlag = 0;
// flag the bits for the reduceDims
for(int i = 0; i < NumReduceDim; i++)
{
reduceFlag |= 1 << reduceDims[i];
};
std::vector<int> invariantDims;
// collect invariant dimensions
for(int i = 0; i < Rank; i++)
if((reduceFlag & (1 << i)) == 0)
{
invariantDims.push_back(i);
};
return invariantDims;
};
constexpr int Rank = 4;
constexpr ReduceTensorOp ReduceOpId = ReduceTensorOp::AMAX;
constexpr NanPropagation NanOpt = NanPropagation::PROPAGATE_NAN;
constexpr bool PropagateNan = false;
constexpr ReduceTensorIndices IndicesOpt = ReduceTensorIndices::FLATTENED_INDICES;
constexpr bool NeedIndices = true;
template <typename InDataType,
typename AccDataType,
typename OutDataType,
int Rank,
int NumReduceDim>
bool test_reduce_with_index_impl(int init_method,
const std::vector<size_t>& inLengths,
const std::vector<int>& reduceDims,
float alpha,
float beta)
{
using namespace ck::tensor_operation::device;
using namespace ck::tensor_operation::device::device_reduce_instance;
using namespace ck::host_reduce;
Tensor<InDataType> in(inLengths);
std::vector<size_t> outLengths;
const auto invariantDims = get_invariant_dims<Rank, NumReduceDim>(reduceDims);
if(reduceDims.size() == Rank)
outLengths.push_back(1);
else
for(auto dim : invariantDims)
outLengths.push_back(inLengths[dim]);
Tensor<OutDataType> out_ref(outLengths);
Tensor<OutDataType> out(outLengths);
Tensor<int32_t> out_indices_ref(outLengths);
Tensor<int32_t> out_indices(outLengths);
// only used when the OutDataType is bhalf_t
Tensor<float> out_ref_fp32(outLengths);
Tensor<float> out_fp32(outLengths);
auto inStrides = in.mDesc.GetStrides();
auto outStrides = out.mDesc.GetStrides();
size_t invariant_total_length = out.mDesc.GetElementSize();
size_t reduce_total_length = in.mDesc.GetElementSize() / invariant_total_length;
std::size_t num_thread = 1;
switch(init_method)
{
case 0: break;
case 1:
in.GenerateTensorValue(GeneratorTensor_1<InDataType>{1}, num_thread);
if(beta != 0.0f)
out_ref.GenerateTensorValue(GeneratorTensor_1<InDataType>{1}, num_thread);
break;
case 2:
in.GenerateTensorValue(GeneratorTensor_2<InDataType>{-5, 5}, num_thread);
if(beta != 0.0f)
out_ref.GenerateTensorValue(GeneratorTensor_2<InDataType>{-5, 5}, num_thread);
break;
default:
in.GenerateTensorValue(GeneratorTensor_3<InDataType>{-5.0, 5.0}, num_thread);
if(beta != 0.0f)
out_ref.GenerateTensorValue(GeneratorTensor_3<InDataType>{-5.0, 5.0}, num_thread);
}
if(beta != 0.0f)
for(size_t i = 0; i < out_ref.mDesc.GetElementSpace(); i++)
out.mData[i] = out_ref.mData[i];
// these buffers are usually provided by the user application
DeviceMem in_dev(sizeof(InDataType) * in.mDesc.GetElementSpace());
DeviceMem out_dev(sizeof(OutDataType) * out.mDesc.GetElementSpace());
in_dev.ToDevice(in.mData.data());
if(beta != 0.0f)
out_dev.ToDevice(out.mData.data());
size_t indicesSizeInBytes = NeedIndices ? out.mDesc.GetElementSize() * sizeof(int) : 0;
DeviceMem out_indices_dev(indicesSizeInBytes);
using InElementwiseOperation_0 =
typename reduce_unary_operator<AccDataType, ReduceOpId, true, true>::InElementwiseOperation;
using AccElementwiseOperation_0 =
typename reduce_unary_operator<AccDataType, ReduceOpId, true, true>::
AccElementwiseOperation;
using InElementwiseOperation_1 =
typename reduce_unary_operator<AccDataType, ReduceOpId, true, false>::
InElementwiseOperation;
using AccElementwiseOperation_1 =
typename reduce_unary_operator<AccDataType, ReduceOpId, true, false>::
AccElementwiseOperation;
using InElementwiseOperation_2 =
typename reduce_unary_operator<AccDataType, ReduceOpId, false, true>::
InElementwiseOperation;
using AccElementwiseOperation_2 =
typename reduce_unary_operator<AccDataType, ReduceOpId, false, true>::
AccElementwiseOperation;
using DeviceReduceInstPtr0 =
DeviceReducePtr<InElementwiseOperation_0, AccElementwiseOperation_0>;
using DeviceReduceInstPtr1 =
DeviceReducePtr<InElementwiseOperation_1, AccElementwiseOperation_1>;
using DeviceReduceInstPtr2 =
DeviceReducePtr<InElementwiseOperation_2, AccElementwiseOperation_2>;
std::vector<DeviceReduceInstPtr0> reduce0_ptrs;
std::vector<DeviceReduceInstPtr1> reduce1_ptrs;
std::vector<DeviceReduceInstPtr2> reduce2_ptrs;
add_device_reduce_instance_threadwise<InDataType,
AccDataType,
OutDataType,
Rank,
NumReduceDim,
ReduceOpId,
NanOpt,
IndicesOpt>(reduce0_ptrs);
add_device_reduce_instance_blockwise<InDataType,
AccDataType,
OutDataType,
Rank,
NumReduceDim,
ReduceOpId,
NanOpt,
IndicesOpt>(reduce0_ptrs);
add_device_reduce_instance_multiblock_partial_reduce<InDataType,
AccDataType,
OutDataType,
Rank,
NumReduceDim,
ReduceOpId,
NanOpt,
IndicesOpt>(reduce1_ptrs);
add_device_reduce_instance_blockwise_second_call<AccDataType,
AccDataType,
OutDataType,
Rank,
NumReduceDim,
ReduceOpId,
NanOpt,
IndicesOpt>(reduce2_ptrs);
if(reduce0_ptrs.empty() && reduce1_ptrs.empty())
{
throw std::runtime_error("Wrong! No device REDUCE instance found");
};
bool result = true;
ReductionHost<InDataType,
AccDataType,
OutDataType,
ReduceOpId,
Rank,
NumReduceDim,
PropagateNan,
NeedIndices>
hostReduce(in.mDesc, out_ref.mDesc, invariantDims, reduceDims);
hostReduce.Run(
alpha, in.mData.data(), beta, out_ref.mData.data(), out_indices_ref.mData.data());
const auto i_inLengths = to_int_vector(inLengths);
const auto i_inStrides = to_int_vector(inStrides);
const auto i_outLengths = to_int_vector(outLengths);
const auto i_outStrides = to_int_vector(outStrides);
for(auto& reduce_ptr : reduce0_ptrs)
{
auto wsSizeInBytes = reduce_ptr->GetWorkspaceSizeInBytes(i_inLengths, reduceDims);
DeviceMem ws_dev(wsSizeInBytes);
InElementwiseOperation_0 in_elementwise_op_0(static_cast<int32_t>(reduce_total_length));
AccElementwiseOperation_0 acc_elementwise_op_0(static_cast<int32_t>(reduce_total_length));
auto argument_ptr = reduce_ptr->MakeArgumentPointer(i_inLengths,
i_inStrides,
i_outLengths,
i_outStrides,
reduceDims,
alpha,
beta,
in_dev.GetDeviceBuffer(),
out_dev.GetDeviceBuffer(),
out_indices_dev.GetDeviceBuffer(),
ws_dev.GetDeviceBuffer(),
in_elementwise_op_0,
acc_elementwise_op_0);
if(!reduce_ptr->IsSupportedArgument(argument_ptr.get()))
continue;
auto invoker_ptr = reduce_ptr->MakeInvokerPointer();
(void)invoker_ptr->Run(argument_ptr.get());
out_dev.FromDevice(out.mData.data());
bool single_result = true;
if constexpr(std::is_same<OutDataType, ck::half_t>::value ||
std::is_same<OutDataType, ck::bhalf_t>::value)
{
reduce_util::to_f32_vector(out, out_fp32);
reduce_util::to_f32_vector(out_ref, out_ref_fp32);
single_result = ck::utils::check_err(
out_fp32.mData, out_ref_fp32.mData, "Error: incorrect data result!");
}
else
{
single_result =
ck::utils::check_err(out.mData, out_ref.mData, "Error: incorrect data result!");
};
if(NeedIndices)
{
out_indices_dev.FromDevice(out_indices.mData.data());
single_result = single_result && ck::utils::check_err(out_indices_ref.mData,
out_indices.mData,
"Error: incorrect index result!");
};
if(!single_result) using namespace ck;
{
std::cout << "Fail Info: " << reduce_ptr->GetTypeString() << std::endl;
result = false;
}
};
for(auto& reduce_ptr : reduce1_ptrs)
{
auto wsSizeInBytes = reduce_ptr->GetWorkspaceSizeInBytes(i_inLengths, reduceDims);
DeviceMem ws_dev(wsSizeInBytes);
InElementwiseOperation_1 in_elementwise_op_1(static_cast<int32_t>(reduce_total_length));
AccElementwiseOperation_1 acc_elementwise_op_1(static_cast<int32_t>(reduce_total_length));
auto argument_ptr = reduce_ptr->MakeArgumentPointer(i_inLengths,
i_inStrides,
i_outLengths,
i_outStrides,
reduceDims,
alpha,
beta,
in_dev.GetDeviceBuffer(),
out_dev.GetDeviceBuffer(),
out_indices_dev.GetDeviceBuffer(),
ws_dev.GetDeviceBuffer(),
in_elementwise_op_1,
acc_elementwise_op_1);
if(!reduce_ptr->IsSupportedArgument(argument_ptr.get()))
continue;
std::string reduce_name = reduce_ptr->GetTypeString();
auto invoker_ptr = reduce_ptr->MakeInvokerPointer();
(void)invoker_ptr->Run(argument_ptr.get());
std::vector<int> inLengths2 = reduce_ptr->GetWorkspace2dLengths(argument_ptr.get());
std::vector<int> inStrides2{inLengths2[1], 1};
for(auto& reduce2_ptr : reduce2_ptrs)
{
InElementwiseOperation_2 in_elementwise_op_2(static_cast<int32_t>(reduce_total_length));
AccElementwiseOperation_2 acc_elementwise_op_2(
static_cast<int32_t>(reduce_total_length));
auto argument2_ptr = reduce2_ptr->MakeArgumentPointer(inLengths2,
inStrides2,
i_outLengths,
i_outStrides,
reduceDims,
alpha,
beta,
ws_dev.GetDeviceBuffer(),
out_dev.GetDeviceBuffer(),
out_indices_dev.GetDeviceBuffer(),
ws_dev.GetDeviceBuffer(),
in_elementwise_op_2,
acc_elementwise_op_2);
if(!reduce2_ptr->IsSupportedArgument(argument2_ptr.get()))
continue;
std::string reduce2_name = reduce2_ptr->GetTypeString();
auto invoker2_ptr = reduce2_ptr->MakeInvokerPointer();
(void)invoker2_ptr->Run(argument2_ptr.get());
out_dev.FromDevice(out.mData.data());
bool single_result = true;
if constexpr(std::is_same<OutDataType, ck::half_t>::value ||
std::is_same<OutDataType, ck::bhalf_t>::value)
{
reduce_util::to_f32_vector(out, out_fp32);
reduce_util::to_f32_vector(out_ref, out_ref_fp32);
single_result = ck::utils::check_err(
out_fp32.mData, out_ref_fp32.mData, "Error: incorrect data result!");
}
else
{
single_result =
ck::utils::check_err(out.mData, out_ref.mData, "Error: incorrect data result!");
};
if(NeedIndices)
{
out_indices_dev.FromDevice(out_indices.mData.data());
single_result =
single_result && ck::utils::check_err(out_indices_ref.mData,
out_indices.mData,
"Error: incorrect index result!");
};
if(!single_result)
{
std::cout << "Fail Info: " << reduce_ptr->GetTypeString() << " => "
<< reduce2_ptr->GetTypeString() << std::endl;
result = false;
}
};
};
return (result);
};
} // anonymous namespace
static struct option long_options[] = {{"inLengths", required_argument, nullptr, 'D'}, static struct option long_options[] = {{"inLengths", required_argument, nullptr, 'D'},
{"reduceDimensions", required_argument, nullptr, 'R'}, {"reduceDimensions", required_argument, nullptr, 'R'},
...@@ -390,48 +13,6 @@ static struct option long_options[] = {{"inLengths", required_argument, nullptr, ...@@ -390,48 +13,6 @@ static struct option long_options[] = {{"inLengths", required_argument, nullptr,
class SimpleAppArgs class SimpleAppArgs
{ {
template <typename T>
static T getSingleValueFromString(const std::string& valueStr)
{
std::istringstream iss(valueStr);
T ret;
iss >> ret;
return (ret);
};
template <typename T>
static std::vector<T> getTypeValuesFromString(const char* cstr_values)
{
std::string valuesStr(cstr_values);
std::vector<T> values;
std::size_t pos = 0;
std::size_t new_pos;
new_pos = valuesStr.find(',', pos);
while(new_pos != std::string::npos)
{
const std::string sliceStr = valuesStr.substr(pos, new_pos - pos);
T val = getSingleValueFromString<T>(sliceStr);
values.push_back(val);
pos = new_pos + 1;
new_pos = valuesStr.find(',', pos);
};
std::string sliceStr = valuesStr.substr(pos);
T val = getSingleValueFromString<T>(sliceStr);
values.push_back(val);
return (values);
};
private: private:
int option_index = 0; int option_index = 0;
...@@ -463,6 +44,8 @@ class SimpleAppArgs ...@@ -463,6 +44,8 @@ class SimpleAppArgs
int processArgs(int argc, char* argv[]) int processArgs(int argc, char* argv[])
{ {
using ck::host_common::getTypeValuesFromString;
int ch; int ch;
while(1) while(1)
...@@ -517,7 +100,7 @@ class SimpleAppArgs ...@@ -517,7 +100,7 @@ class SimpleAppArgs
(reduceDims.size() != 1 && reduceDims.size() != 3 && reduceDims.size() != 4)) (reduceDims.size() != 1 && reduceDims.size() != 3 && reduceDims.size() != 4))
return (-1); return (-1);
if(data_type != 0 && data_type != 1 && data_type != 3 && data_type != 5) if(data_type != 0 && data_type != 1 && data_type != 3 && data_type != 5 && data_type != 6)
return (-1); return (-1);
return (0); return (0);
...@@ -528,87 +111,92 @@ bool test_reduce_with_index(int data_type, ...@@ -528,87 +111,92 @@ bool test_reduce_with_index(int data_type,
int init_method, int init_method,
std::vector<int> reduceDims, std::vector<int> reduceDims,
std::vector<size_t> inLengths, std::vector<size_t> inLengths,
ReduceTensorOp reduceOpId,
bool propagateNan,
float alpha, float alpha,
float beta) float beta)
{ {
using ck::profiler::profile_reduce_impl;
bool result = true; bool result = true;
if(data_type == 0) if(data_type == 0)
{ {
switch(reduceDims.size()) result = profile_reduce_impl<float, float, float>(true,
{ init_method,
case 1: false,
result = test_reduce_with_index_impl<float, float, float, Rank, 1>( false,
init_method, inLengths, reduceDims, alpha, beta); inLengths,
break; reduceDims,
case 3: reduceOpId,
result = test_reduce_with_index_impl<float, float, float, Rank, 3>( propagateNan,
init_method, inLengths, reduceDims, alpha, beta); true,
break; alpha,
case 4: beta);
result = test_reduce_with_index_impl<float, float, float, Rank, 4>(
init_method, inLengths, reduceDims, alpha, beta);
break;
};
} }
else if(data_type == 1) else if(data_type == 1)
{ {
switch(reduceDims.size()) result = profile_reduce_impl<ck::half_t, ck::half_t, ck::half_t>(true,
{ init_method,
case 1: false,
result = test_reduce_with_index_impl<ck::half_t, ck::half_t, ck::half_t, Rank, 1>( false,
init_method, inLengths, reduceDims, alpha, beta); inLengths,
break; reduceDims,
case 3: reduceOpId,
result = test_reduce_with_index_impl<ck::half_t, ck::half_t, ck::half_t, Rank, 3>( propagateNan,
init_method, inLengths, reduceDims, alpha, beta); true,
break; alpha,
case 4: beta);
result = test_reduce_with_index_impl<ck::half_t, ck::half_t, ck::half_t, Rank, 4>(
init_method, inLengths, reduceDims, alpha, beta);
break;
};
} }
else if(data_type == 3) else if(data_type == 3)
{ {
switch(reduceDims.size()) result = profile_reduce_impl<int8_t, int8_t, int8_t>(true,
{ init_method,
case 1: false,
result = test_reduce_with_index_impl<int8_t, int8_t, int8_t, Rank, 1>( false,
init_method, inLengths, reduceDims, alpha, beta); inLengths,
break; reduceDims,
case 3: reduceOpId,
result = test_reduce_with_index_impl<int8_t, int8_t, int8_t, Rank, 3>( propagateNan,
init_method, inLengths, reduceDims, alpha, beta); true,
break; alpha,
case 4: beta);
result = test_reduce_with_index_impl<int8_t, int8_t, int8_t, Rank, 4>(
init_method, inLengths, reduceDims, alpha, beta);
break;
};
} }
else if(data_type == 5) else if(data_type == 5)
{ {
switch(reduceDims.size()) result = profile_reduce_impl<ck::bhalf_t, float, ck::bhalf_t>(true,
{ init_method,
case 1: false,
result = test_reduce_with_index_impl<ck::bhalf_t, float, ck::bhalf_t, Rank, 1>( false,
init_method, inLengths, reduceDims, alpha, beta); inLengths,
break; reduceDims,
case 3: reduceOpId,
result = test_reduce_with_index_impl<ck::bhalf_t, float, ck::bhalf_t, Rank, 3>( propagateNan,
init_method, inLengths, reduceDims, alpha, beta); true,
break; alpha,
case 4: beta);
result = test_reduce_with_index_impl<ck::bhalf_t, float, ck::bhalf_t, Rank, 4>( }
init_method, inLengths, reduceDims, alpha, beta); else if(data_type == 6)
break; {
}; result = profile_reduce_impl<double, double, double>(true,
init_method,
false,
false,
inLengths,
reduceDims,
reduceOpId,
propagateNan,
true,
alpha,
beta);
} }
return (result); return (result);
}; };
constexpr ReduceTensorOp reduceOpId = ReduceTensorOp::AMAX;
constexpr bool propagateNan = false;
int main(int argc, char* argv[]) int main(int argc, char* argv[])
{ {
SimpleAppArgs args; SimpleAppArgs args;
...@@ -624,8 +212,14 @@ int main(int argc, char* argv[]) ...@@ -624,8 +212,14 @@ int main(int argc, char* argv[])
{0, 1, 2, 3}, {0, 1, 2}, {1, 2, 3}, {0, 1, 3}, {0, 2, 3}, {0}, {1}, {2}, {3}}; {0, 1, 2, 3}, {0, 1, 2}, {1, 2, 3}, {0, 1, 3}, {0, 2, 3}, {0}, {1}, {2}, {3}};
for(auto& reduceDims : v_reduceDims) for(auto& reduceDims : v_reduceDims)
result = result && test_reduce_with_index( result = result && test_reduce_with_index(data_type,
data_type, init_method, reduceDims, inLengths, 1.0f, 0.0f); init_method,
reduceDims,
inLengths,
reduceOpId,
propagateNan,
1.0f,
0.0f);
} }
else else
{ {
...@@ -639,6 +233,8 @@ int main(int argc, char* argv[]) ...@@ -639,6 +233,8 @@ int main(int argc, char* argv[])
args.init_method, args.init_method,
args.reduceDims, args.reduceDims,
args.inLengths, args.inLengths,
reduceOpId,
propagateNan,
args.scales[0], args.scales[0],
args.scales[1]); args.scales[1]);
} }
......
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment