Skip to content
GitLab
Menu
Projects
Groups
Snippets
Loading...
Help
Help
Support
Community forum
Keyboard shortcuts
?
Submit feedback
Contribute to GitLab
Sign in / Register
Toggle navigation
Menu
Open sidebar
gaoqiong
composable_kernel
Commits
b89a88b5
Commit
b89a88b5
authored
Sep 19, 2022
by
Adam Osewski
Browse files
Merge branch 'develop' into wavelet_model
parents
41d5fca7
43c898f6
Changes
261
Hide whitespace changes
Inline
Side-by-side
Showing
20 changed files
with
648 additions
and
1200 deletions
+648
-1200
.gitignore
.gitignore
+1
-0
CMakeLists.txt
CMakeLists.txt
+16
-0
Dockerfile
Dockerfile
+5
-9
Jenkinsfile
Jenkinsfile
+45
-10
client_example/03_gemm_layernorm/gemm_add_add_layernorm.cpp
client_example/03_gemm_layernorm/gemm_add_add_layernorm.cpp
+7
-4
client_example/05_layernorm/CMakeLists.txt
client_example/05_layernorm/CMakeLists.txt
+2
-0
client_example/05_layernorm/layernorm2d.cpp
client_example/05_layernorm/layernorm2d.cpp
+159
-0
client_example/06_softmax/CMakeLists.txt
client_example/06_softmax/CMakeLists.txt
+2
-0
client_example/06_softmax/softmax4d.cpp
client_example/06_softmax/softmax4d.cpp
+150
-0
client_example/CMakeLists.txt
client_example/CMakeLists.txt
+2
-0
cmake/googletest.cmake
cmake/googletest.cmake
+5
-0
example/01_gemm/CMakeLists.txt
example/01_gemm/CMakeLists.txt
+28
-0
example/01_gemm/common.hpp
example/01_gemm/common.hpp
+89
-0
example/01_gemm/gemm_dl_fp16.cpp
example/01_gemm/gemm_dl_fp16.cpp
+12
-185
example/01_gemm/gemm_dl_fp32.cpp
example/01_gemm/gemm_dl_fp32.cpp
+12
-184
example/01_gemm/gemm_dl_int4.cpp
example/01_gemm/gemm_dl_int4.cpp
+45
-0
example/01_gemm/gemm_dl_int8.cpp
example/01_gemm/gemm_dl_int8.cpp
+12
-182
example/01_gemm/gemm_xdl_bf16.cpp
example/01_gemm/gemm_xdl_bf16.cpp
+21
-221
example/01_gemm/gemm_xdl_fp16.cpp
example/01_gemm/gemm_xdl_fp16.cpp
+20
-197
example/01_gemm/gemm_xdl_fp64.cpp
example/01_gemm/gemm_xdl_fp64.cpp
+15
-208
No files found.
.gitignore
View file @
b89a88b5
...
...
@@ -46,3 +46,4 @@ build*
# GDB temporary files
.gdb_history
install.dir*
CMakeLists.txt
View file @
b89a88b5
...
...
@@ -21,6 +21,19 @@ rocm_setup_version(VERSION 0.2.0)
include
(
TargetFlags
)
list
(
APPEND CMAKE_PREFIX_PATH
${
CMAKE_INSTALL_PREFIX
}
${
CMAKE_INSTALL_PREFIX
}
/llvm
${
CMAKE_INSTALL_PREFIX
}
/hip /opt/rocm /opt/rocm/llvm /opt/rocm/hip
)
option
(
USE_BITINT_EXTENSION_INT4,
"Whether to enable clang's BitInt extension to provide int4 data type."
OFF
)
if
(
USE_BITINT_EXTENSION_INT4
)
add_compile_definitions
(
CK_EXPERIMENTAL_BIT_INT_EXTENSION_INT4
)
add_compile_options
(
-Wno-bit-int-extension
)
message
(
"CK compiled with USE_BITINT_EXTENSION_INT4 set to
${
USE_BITINT_EXTENSION_INT4
}
"
)
endif
()
## Threads
set
(
THREADS_PREFER_PTHREAD_FLAG ON
)
find_package
(
Threads REQUIRED
)
link_libraries
(
Threads::Threads
)
## C++
enable_language
(
CXX
)
set
(
CMAKE_CXX_STANDARD 17
)
...
...
@@ -70,6 +83,8 @@ if( DEFINED CK_OVERRIDE_HIP_VERSION_PATCH )
message
(
STATUS
"CK_HIP_VERSION_PATCH overriden with
${
CK_OVERRIDE_HIP_VERSION_PATCH
}
"
)
endif
()
message
(
STATUS
"Build with HIP
${
HIP_VERSION
}
"
)
link_libraries
(
hip::device
)
add_compile_definitions
(
__HIP_PLATFORM_HCC__=1
)
## tidy
include
(
EnableCompilerWarnings
)
...
...
@@ -219,6 +234,7 @@ set(CMAKE_RUNTIME_OUTPUT_DIRECTORY ${CMAKE_CURRENT_BINARY_DIR}/bin)
include_directories
(
BEFORE
${
PROJECT_SOURCE_DIR
}
/include
${
PROJECT_SOURCE_DIR
}
/library/include
${
HIP_INCLUDE_DIRS
}
)
...
...
Dockerfile
View file @
b89a88b5
FROM
ubuntu:
18
.04
FROM
ubuntu:
20
.04
ARG
ROCMVERSION=5.1
ARG
OSDB_BKC_VERSION
ARG
ROCMVERSION=5.2.3
ARG
compiler_version
RUN
set
-xe
ARG
BUILD_THREADS=8
ARG
DEB_ROCM_REPO=http://repo.radeon.com/rocm/apt/.apt_$ROCMVERSION/
# Add rocm repository
RUN
apt-get update
...
...
@@ -20,8 +18,8 @@ RUN sh -c "echo deb https://apt.kitware.com/ubuntu/ bionic main | tee -a /etc/ap
RUN
apt-get update
&&
DEBIAN_FRONTEND
=
noninteractive apt-get
install
-y
--allow-unauthenticated
\
apt-utils
\
build-essential
\
cmake-data
=
3.15.1-0kitware1
\
cmake
=
3.15.1-0kitware1
\
cmake-data
\
cmake
\
curl
\
git
\
hip-rocclr
\
...
...
@@ -33,13 +31,11 @@ RUN apt-get update && DEBIAN_FRONTEND=noninteractive apt-get install -y --allow-
llvm-amdgpu
\
pkg-config
\
python
\
python3
.8
\
python3
\
python-dev
\
python3-dev
\
python-pip
\
python3-pip
\
software-properties-common
\
wget
\
rocm-dev
\
rocm-device-libs
\
rocm-cmake
\
...
...
Jenkinsfile
View file @
b89a88b5
...
...
@@ -19,10 +19,26 @@ def runShell(String command){
}
def
getDockerImageName
(){
def
img
=
"${env.
MIOPEN
_IMAGE_URL}:c
omposable_kernels
_${params.COMPILER_VERSION}"
def
img
=
"${env.
CK
_IMAGE_URL}:c
k_ub20.04_rocm5.2.3
_${params.COMPILER_VERSION}"
return
img
}
def
build_compiler
(){
def
compiler
if
(
params
.
BUILD_COMPILER
==
"hipcc"
){
compiler
=
'/opt/rocm/bin/hipcc'
}
else
{
if
(
params
.
COMPILER_VERSION
==
"release"
){
compiler
=
"/opt/rocm/llvm/bin/clang++"
}
else
{
compiler
=
"/llvm-project/build/bin/clang++"
}
}
return
compiler
}
def
getDockerImage
(
Map
conf
=[:]){
env
.
DOCKER_BUILDKIT
=
1
def
prefixpath
=
conf
.
get
(
"prefixpath"
,
"/opt/rocm"
)
// prefix:/opt/rocm
...
...
@@ -103,7 +119,7 @@ def buildDocker(install_prefix){
def
cmake_build
(
Map
conf
=[:]){
def
compiler
=
conf
.
get
(
"compiler"
,
"/opt/rocm/bin/hipcc"
)
def
compiler
=
build_compiler
(
)
def
config_targets
=
conf
.
get
(
"config_targets"
,
"check"
)
def
debug_flags
=
"-g -fno-omit-frame-pointer -fsanitize=undefined -fno-sanitize-recover=undefined "
+
conf
.
get
(
"extradebugflags"
,
""
)
def
build_envs
=
"CTEST_PARALLEL_LEVEL=4 "
+
conf
.
get
(
"build_env"
,
""
)
...
...
@@ -185,7 +201,6 @@ def buildHipClangJob(Map conf=[:]){
if
(
conf
.
get
(
"enforce_xnack_on"
,
false
))
{
dockerOpts
=
dockerOpts
+
" --env HSA_XNACK=1 --env GPU_ARCH='${gpu_arch}' "
}
//def dockerArgs = "--build-arg PREFIX=${prefixpath} --build-arg GPU_ARCH='${gpu_arch}' --build-arg compiler_version='${params.COMPILER_VERSION}' "
def
dockerArgs
=
"--build-arg PREFIX=${prefixpath} --build-arg compiler_version='${params.COMPILER_VERSION}' "
if
(
params
.
COMPILER_VERSION
!=
"release"
){
dockerOpts
=
dockerOpts
+
" --env HIP_CLANG_PATH='/llvm-project/build/bin' "
...
...
@@ -337,6 +352,8 @@ def runCKProfiler(Map conf=[:]){
archiveArtifacts
"perf_conv_bwd_data_${gpu_arch}.log"
archiveArtifacts
"perf_gemm_bilinear_${gpu_arch}.log"
archiveArtifacts
"perf_reduction_${gpu_arch}.log"
archiveArtifacts
"perf_splitK_gemm_${gpu_arch}.log"
archiveArtifacts
"perf_onnx_gemm_${gpu_arch}.log"
// stash perf files to master
stash
name:
"perf_gemm_${gpu_arch}.log"
stash
name:
"perf_resnet50_N256_${gpu_arch}.log"
...
...
@@ -347,6 +364,8 @@ def runCKProfiler(Map conf=[:]){
stash
name:
"perf_conv_bwd_data_${gpu_arch}.log"
stash
name:
"perf_gemm_bilinear_${gpu_arch}.log"
stash
name:
"perf_reduction_${gpu_arch}.log"
stash
name:
"perf_splitK_gemm_${gpu_arch}.log"
stash
name:
"perf_onnx_gemm_${gpu_arch}.log"
//we will process results on the master node
}
else
{
...
...
@@ -427,6 +446,8 @@ def process_results(Map conf=[:]){
unstash
"perf_conv_bwd_data_${gpu_arch}.log"
unstash
"perf_gemm_bilinear_${gpu_arch}.log"
unstash
"perf_reduction_${gpu_arch}.log"
unstash
"perf_splitK_gemm_${gpu_arch}.log"
unstash
"perf_onnx_gemm_${gpu_arch}.log"
sh
"./process_qa_data.sh ${gpu_arch}"
}
else
{
...
...
@@ -467,6 +488,10 @@ pipeline {
name:
'COMPILER_VERSION'
,
defaultValue:
'ck-9110'
,
description:
'Specify which version of compiler to use: ck-9110 (default), release, or amd-stg-open.'
)
string
(
name:
'BUILD_COMPILER'
,
defaultValue:
'hipcc'
,
description:
'Specify whether to build CK with hipcc (default) or with clang.'
)
booleanParam
(
name:
"RUN_FULL_QA"
,
defaultValue:
false
,
...
...
@@ -549,7 +574,8 @@ pipeline {
{
agent
{
label
rocmnode
(
"gfx908"
)}
environment
{
setup_args
=
""" -D CMAKE_CXX_FLAGS=" --offload-arch=gfx908 -O3 " -DBUILD_DEV=On """
//setup_args = """ -D CMAKE_CXX_FLAGS=" --offload-arch=gfx908 -O3 " -DBUILD_DEV=On """
setup_args
=
"${params.COMPILER_VERSION == "
release
" ? """
-
D
CMAKE_CXX_FLAGS
=
" --offload-arch=gfx908 -O3 "
-
DBUILD_DEV
=
On
""" : """
-
D
CMAKE_CXX_FLAGS
=
" --offload-arch=gfx908 -O3 -Xclang -mlink-builtin-bitcode -Xclang /opt/rocm/amdgcn/bitcode/oclc_abi_version_400.bc"
-
DBUILD_DEV
=
On
"""}"
}
steps{
buildHipClangJobAndReboot(setup_args:setup_args, config_targets: "check", no_reboot:true, build_type: 'Release', gpu_arch: "gfx908")
...
...
@@ -561,9 +587,11 @@ pipeline {
beforeAgent true
expression { params.RUN_FULL_QA.toBoolean() }
}
options { retry(2) }
agent{ label rocmnode("gfx90a")}
environment{
setup_args
=
""" -D CMAKE_CXX_FLAGS="--offload-arch=gfx90a -O3 " -DBUILD_DEV=On """
//setup_args = """
-
D
CMAKE_CXX_FLAGS
=
"--offload-arch=gfx90a -O3 "
-
DBUILD_DEV
=
On
"""
setup_args = "${params.COMPILER_VERSION == "release" ? """
-
D
CMAKE_CXX_FLAGS
=
" --offload-arch=gfx90a -O3 "
-
DBUILD_DEV
=
On
""" : """
-
D
CMAKE_CXX_FLAGS
=
" --offload-arch=gfx90a -O3 -Xclang -mlink-builtin-bitcode -Xclang /opt/rocm/amdgcn/bitcode/oclc_abi_version_400.bc"
-
DBUILD_DEV
=
On
"""}"
}
steps{
buildHipClangJobAndReboot(setup_args:setup_args, config_targets: "check", no_reboot:true, build_type: 'Release', gpu_arch: "gfx90a")
...
...
@@ -583,8 +611,11 @@ pipeline {
{
agent{ label rocmnode("gfx908")}
environment{
setup_args
=
""" -D -DBUILD_DEV=Off -DCMAKE_INSTALL_PREFIX=../install CMAKE_CXX_FLAGS="--offload-arch=gfx908 -O3 " """
execute_args
=
""" cd ../client_example && rm -rf build && mkdir build && cd build && cmake -DCMAKE_PREFIX_PATH="${env.WORKSPACE}/install;/opt/rocm" -DCMAKE_CXX_COMPILER=/opt/rocm/bin/hipcc .. && make -j """
//setup_args = """
-
DBUILD_DEV
=
Off
-
DCMAKE_INSTALL_PREFIX
=../
install
-
D
CMAKE_CXX_FLAGS
=
"--offload-arch=gfx908 -O3 "
"""
setup_args = "${params.COMPILER_VERSION == "release" ? """
-
DBUILD_DEV
=
Off
-
DCMAKE_INSTALL_PREFIX
=..
/install -D CMAKE_CXX_FLAGS="--offload-arch=gfx908 -O3 " """ : """ -DBUILD_DEV=Off -DCMAKE_INSTALL_PREFIX=../
install
-
D
CMAKE_CXX_FLAGS
=
"--offload-arch=gfx908 -O3 -Xclang -mlink-builtin-bitcode -Xclang /opt/rocm/amdgcn/bitcode/oclc_abi_version_400.bc"
""" }"
//execute_args = """
cd
..
/client_example && rm -rf build && mkdir build && cd build && cmake -D CMAKE_PREFIX_PATH="${env.WORKSPACE}/
install
;
/opt/
rocm
" -D CMAKE_CXX_FLAGS="
--
offload
-
arch
=
gfx908
-
O3
" -D CMAKE_CXX_COMPILER="
$
{
build_compiler
()}
" .. && make -j """
execute_args
=
"${params.COMPILER_VERSION == "
release
" ? """
cd
..
/client_example && rm -rf build && mkdir build && cd build && cmake -D CMAKE_PREFIX_PATH="${env.WORKSPACE}/
install
;
/opt/
rocm
" -D CMAKE_CXX_FLAGS="
--
offload
-
arch
=
gfx908
-
O3
" -D CMAKE_CXX_COMPILER="
$
{
build_compiler
()}
" .. && make -j """
:
""" cd ../client_example && rm -rf build && mkdir build && cd build && cmake -D CMAKE_PREFIX_PATH="${env.WORKSPACE}/install;/opt/rocm" -D CMAKE_CXX_FLAGS=" --offload-arch=gfx908 -O3 -Xclang -mlink-builtin-bitcode -Xclang /opt/rocm/amdgcn/bitcode/oclc_abi_version_400.bc" -D CMAKE_CXX_COMPILER="${build_compiler()}" .. && make -j """
}
"
}
steps
{
buildHipClangJobAndReboot
(
setup_args:
setup_args
,
config_targets:
"install"
,
no_reboot:
true
,
build_type:
'Release'
,
execute_cmd:
execute_args
,
prefixpath:
'/usr/local'
)
...
...
@@ -602,9 +633,11 @@ pipeline {
beforeAgent
true
expression
{
!
params
.
RUN_FULL_QA
.
toBoolean
()
&&
!
params
.
TEST_NODE_PERFORMANCE
.
toBoolean
()
}
}
options
{
retry
(
2
)
}
agent
{
label
rocmnode
(
"gfx908"
)}
environment
{
setup_args
=
""" -D CMAKE_CXX_FLAGS="--offload-arch=gfx908 -O3 " -DBUILD_DEV=On """
//setup_args = """ -D CMAKE_CXX_FLAGS="--offload-arch=gfx908 -O3 " -DBUILD_DEV=On """
setup_args
=
"${params.COMPILER_VERSION == "
release
" ? """
-
D
CMAKE_CXX_FLAGS
=
" --offload-arch=gfx908 -O3 "
-
DBUILD_DEV
=
On
""" : """
-
D
CMAKE_CXX_FLAGS
=
" --offload-arch=gfx908 -O3 -Xclang -mlink-builtin-bitcode -Xclang /opt/rocm/amdgcn/bitcode/oclc_abi_version_400.bc"
-
DBUILD_DEV
=
On
"""}"
}
steps{
runPerfTest(setup_args:setup_args, config_targets: "ckProfiler", no_reboot:true, build_type: 'Release', gpu_arch: "gfx908")
...
...
@@ -616,10 +649,12 @@ pipeline {
beforeAgent true
expression { params.RUN_FULL_QA.toBoolean() || params.TEST_NODE_PERFORMANCE.toBoolean() }
}
options { retry(2) }
agent{ label rocmnode("gfx90a")}
environment{
setup_args
=
""" -D CMAKE_CXX_FLAGS="--offload-arch=gfx90a -O3 " -DBUILD_DEV=On """
}
//setup_args = """
-
D
CMAKE_CXX_FLAGS
=
"--offload-arch=gfx90a -O3 "
-
DBUILD_DEV
=
On
"""
setup_args = "${params.COMPILER_VERSION == "release" ? """
-
D
CMAKE_CXX_FLAGS
=
" --offload-arch=gfx90a -O3 "
-
DBUILD_DEV
=
On
""" : """
-
D
CMAKE_CXX_FLAGS
=
" --offload-arch=gfx90a -O3 -Xclang -mlink-builtin-bitcode -Xclang /opt/rocm/amdgcn/bitcode/oclc_abi_version_400.bc"
-
DBUILD_DEV
=
On
"""}"
}
steps
{
runPerfTest
(
setup_args:
setup_args
,
config_targets:
"ckProfiler"
,
no_reboot:
true
,
build_type:
'Release'
,
gpu_arch:
"gfx90a"
)
}
...
...
client_example/03_gemm_layernorm/gemm_add_add_layernorm.cpp
View file @
b89a88b5
...
...
@@ -128,11 +128,14 @@ bool RunDeviceNormalize2D(normalize_op_ptr& p_op,
std
::
array
<
void
*
,
1
>
output
=
{
p_y
};
auto
normalize_functor
=
ck
::
tensor_operation
::
element_wise
::
Normalize
{};
auto
argument_ptr
=
p_op
->
MakeArgumentPointer
(
input
,
std
::
array
<
ck
::
index_t
,
2
>
xyLengths
=
{
M
,
N
};
std
::
array
<
ck
::
index_t
,
2
>
xyStrides
=
{
StrideX
,
1
};
auto
argument_ptr
=
p_op
->
MakeArgumentPointer
(
xyLengths
,
{
xyStrides
,
{
1
,
0
},
{
1
,
0
},
{
0
,
1
},
{
0
,
1
}},
{
xyStrides
},
input
,
output
,
{
M
,
N
},
{{
StrideX
,
1
},
{
1
,
0
},
{
1
,
0
},
{
0
,
1
},
{
0
,
1
}},
{{
StrideX
,
1
}},
ck
::
tensor_operation
::
element_wise
::
Normalize
{});
if
(
p_op
->
IsSupportedArgument
(
argument_ptr
.
get
()))
...
...
client_example/05_layernorm/CMakeLists.txt
0 → 100644
View file @
b89a88b5
add_executable
(
client_layernorm2d layernorm2d.cpp
)
target_link_libraries
(
client_layernorm2d PRIVATE composable_kernel::device_operations
)
client_example/05_layernorm/layernorm2d.cpp
0 → 100644
View file @
b89a88b5
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2022, Advanced Micro Devices, Inc. All rights reserved.
#include <iomanip>
#include <vector>
#include <iostream>
#include "ck/ck.hpp"
#include "ck/tensor_operation/gpu/device/tensor_layout.hpp"
#include "ck/tensor_operation/gpu/device/device_normalization.hpp"
#include "ck/tensor_operation/gpu/element/element_wise_operation.hpp"
#include "ck/library/tensor_operation_instance/gpu/layernorm.hpp"
using
XDataType
=
ck
::
half_t
;
using
GammaDataType
=
ck
::
half_t
;
using
BetaDataType
=
ck
::
half_t
;
using
YDataType
=
ck
::
half_t
;
using
AccDataType
=
float
;
using
PassThrough
=
ck
::
tensor_operation
::
element_wise
::
PassThrough
;
constexpr
int
Rank
=
2
;
constexpr
int
NumReduceDim
=
1
;
struct
SimpleDeviceMem
{
SimpleDeviceMem
()
=
delete
;
SimpleDeviceMem
(
std
::
size_t
mem_size
)
:
p_mem_
{}
{
(
void
)
hipMalloc
(
static_cast
<
void
**>
(
&
p_mem_
),
mem_size
);
}
void
*
GetDeviceBuffer
()
{
return
p_mem_
;
}
~
SimpleDeviceMem
()
{
(
void
)
hipFree
(
p_mem_
);
}
void
*
p_mem_
;
};
int
main
(
int
argc
,
char
*
argv
[])
{
ck
::
index_t
M
=
1024
;
ck
::
index_t
N
=
1024
;
ck
::
index_t
Stride
=
1024
;
auto
xy_size
=
(
M
-
1
)
*
Stride
+
N
;
SimpleDeviceMem
x_device_buf
(
sizeof
(
XDataType
)
*
xy_size
);
SimpleDeviceMem
gamma_device_buf
(
sizeof
(
GammaDataType
)
*
N
);
SimpleDeviceMem
beta_device_buf
(
sizeof
(
BetaDataType
)
*
N
);
SimpleDeviceMem
y_device_buf
(
sizeof
(
YDataType
)
*
xy_size
);
using
DeviceOp
=
ck
::
tensor_operation
::
device
::
DeviceLayernorm
<
XDataType
,
GammaDataType
,
BetaDataType
,
AccDataType
,
YDataType
,
PassThrough
,
Rank
,
NumReduceDim
>
;
// get device op instances
const
auto
op_ptrs
=
ck
::
tensor_operation
::
device
::
instance
::
DeviceOperationInstanceFactory
<
DeviceOp
>::
GetInstances
();
std
::
cout
<<
"found "
<<
op_ptrs
.
size
()
<<
" instances"
<<
std
::
endl
;
std
::
string
best_op_name
;
bool
found
=
false
;
int
best_op_id
=
-
1
;
float
best_ave_time
=
std
::
numeric_limits
<
float
>::
max
();
float
best_gb_per_sec
=
0
;
// profile device operation instances
std
::
cout
<<
"Run all instances and do timing"
<<
std
::
endl
;
for
(
int
i
=
0
;
i
<
op_ptrs
.
size
();
++
i
)
{
auto
&
op_ptr
=
op_ptrs
[
i
];
auto
argument_ptr
=
op_ptr
->
MakeArgumentPointer
({
M
,
N
},
// lengths
{
Stride
,
1
},
// xStrides
{
1
},
// gammaStrides
{
1
},
// betaStrides
{
Stride
,
1
},
// yStrides
{
1
},
// reduceDims
1e-4
,
x_device_buf
.
GetDeviceBuffer
(),
gamma_device_buf
.
GetDeviceBuffer
(),
beta_device_buf
.
GetDeviceBuffer
(),
y_device_buf
.
GetDeviceBuffer
(),
PassThrough
{});
auto
invoker_ptr
=
op_ptr
->
MakeInvokerPointer
();
std
::
string
op_name
=
op_ptr
->
GetTypeString
();
if
(
op_ptr
->
IsSupportedArgument
(
argument_ptr
.
get
()))
{
float
ave_time
=
invoker_ptr
->
Run
(
argument_ptr
.
get
(),
StreamConfig
{
nullptr
,
true
});
std
::
size_t
num_byte
=
sizeof
(
XDataType
)
*
M
*
N
+
sizeof
(
GammaDataType
)
*
N
+
sizeof
(
BetaDataType
)
*
N
+
sizeof
(
YDataType
)
*
M
*
N
;
float
gb_per_sec
=
num_byte
/
1.E6
/
ave_time
;
std
::
cout
<<
"Perf: "
<<
std
::
setw
(
10
)
<<
ave_time
<<
" ms, "
<<
gb_per_sec
<<
" GB/s, "
<<
op_name
<<
std
::
endl
;
if
(
ave_time
<
best_ave_time
)
{
found
=
true
;
best_op_id
=
i
;
best_op_name
=
op_name
;
best_ave_time
=
ave_time
;
best_gb_per_sec
=
gb_per_sec
;
}
}
else
{
std
::
cout
<<
op_name
<<
" does not support this problem"
<<
std
::
endl
;
}
}
std
::
cout
<<
"Best Perf: "
<<
best_ave_time
<<
" ms, "
<<
best_gb_per_sec
<<
" GB/s, "
<<
best_op_name
<<
std
::
endl
;
// run the best intance
{
auto
&
op_ptr
=
op_ptrs
[
best_op_id
];
std
::
cout
<<
"Run the best instance without timing: "
<<
op_ptr
->
GetTypeString
()
<<
std
::
endl
;
auto
argument_ptr
=
op_ptr
->
MakeArgumentPointer
({
M
,
N
},
// lengths
{
Stride
,
1
},
// xStrides
{
1
},
// gammaStrides
{
1
},
// betaStrides
{
Stride
,
1
},
// yStrides
{
1
},
// reduceDims
1e-4
,
x_device_buf
.
GetDeviceBuffer
(),
gamma_device_buf
.
GetDeviceBuffer
(),
beta_device_buf
.
GetDeviceBuffer
(),
y_device_buf
.
GetDeviceBuffer
(),
PassThrough
{});
auto
invoker_ptr
=
op_ptr
->
MakeInvokerPointer
();
if
(
op_ptr
->
IsSupportedArgument
(
argument_ptr
.
get
()))
{
invoker_ptr
->
Run
(
argument_ptr
.
get
(),
StreamConfig
{
nullptr
,
false
});
}
std
::
cout
<<
"Done"
<<
std
::
endl
;
}
return
0
;
}
client_example/06_softmax/CMakeLists.txt
0 → 100644
View file @
b89a88b5
add_executable
(
client_softmax4d softmax4d.cpp
)
target_link_libraries
(
client_softmax4d PRIVATE composable_kernel::device_operations
)
client_example/06_softmax/softmax4d.cpp
0 → 100644
View file @
b89a88b5
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2022, Advanced Micro Devices, Inc. All rights reserved.
#include <functional>
#include <numeric>
#include <iomanip>
#include <iostream>
#include <vector>
#include "ck/ck.hpp"
#include "ck/tensor_operation/gpu/device/tensor_layout.hpp"
#include "ck/tensor_operation/gpu/device/device_softmax.hpp"
#include "ck/tensor_operation/gpu/element/element_wise_operation.hpp"
#include "ck/library/tensor_operation_instance/gpu/softmax.hpp"
using
InDataType
=
ck
::
half_t
;
using
OutDataType
=
ck
::
half_t
;
using
AccDataType
=
float
;
using
PassThrough
=
ck
::
tensor_operation
::
element_wise
::
PassThrough
;
constexpr
int
Rank
=
4
;
constexpr
int
NumReduceDim
=
2
;
struct
SimpleDeviceMem
{
SimpleDeviceMem
()
=
delete
;
SimpleDeviceMem
(
std
::
size_t
mem_size
)
:
p_mem_
{}
{
(
void
)
hipMalloc
(
static_cast
<
void
**>
(
&
p_mem_
),
mem_size
);
}
void
*
GetDeviceBuffer
()
{
return
p_mem_
;
}
~
SimpleDeviceMem
()
{
(
void
)
hipFree
(
p_mem_
);
}
void
*
p_mem_
;
};
int
main
(
int
argc
,
char
*
argv
[])
{
std
::
vector
<
ck
::
index_t
>
in_lengths
{
2
,
8
,
128
,
1024
};
std
::
vector
<
ck
::
index_t
>
in_strides
{
8
*
128
*
1024
,
128
*
1024
,
1024
,
1
};
std
::
vector
<
ck
::
index_t
>
reduce_dims
{
2
,
3
};
ck
::
index_t
num_elements
=
std
::
accumulate
(
in_lengths
.
begin
(),
in_lengths
.
end
(),
1
,
std
::
multiplies
<
ck
::
index_t
>
());
AccDataType
alpha
{
2.0
f
};
AccDataType
beta
{
2.0
f
};
SimpleDeviceMem
in
(
sizeof
(
InDataType
)
*
num_elements
);
SimpleDeviceMem
out
(
sizeof
(
OutDataType
)
*
num_elements
);
using
DeviceOp
=
ck
::
tensor_operation
::
device
::
DeviceSoftmax
<
InDataType
,
AccDataType
,
OutDataType
,
PassThrough
,
PassThrough
,
Rank
>
;
// get device op instances
const
auto
op_ptrs
=
ck
::
tensor_operation
::
device
::
instance
::
DeviceOperationInstanceFactory
<
DeviceOp
>::
GetInstances
();
std
::
cout
<<
"found "
<<
op_ptrs
.
size
()
<<
" instances"
<<
std
::
endl
;
std
::
string
best_op_name
;
bool
found
=
false
;
int
best_op_id
=
-
1
;
float
best_ave_time
=
std
::
numeric_limits
<
float
>::
max
();
float
best_gb_per_sec
=
0
;
// profile device operation instances
std
::
cout
<<
"Run all instances and do timing"
<<
std
::
endl
;
for
(
int
i
=
0
;
i
<
op_ptrs
.
size
();
++
i
)
{
auto
&
op_ptr
=
op_ptrs
[
i
];
if
(
op_ptr
->
GetRank
()
!=
Rank
||
op_ptr
->
GetNumReduceDim
()
!=
NumReduceDim
)
{
continue
;
}
auto
argument_ptr
=
op_ptr
->
MakeArgumentPointer
(
in_lengths
,
in_strides
,
reduce_dims
,
&
alpha
,
&
beta
,
in
.
GetDeviceBuffer
(),
out
.
GetDeviceBuffer
(),
PassThrough
{},
PassThrough
{});
auto
invoker_ptr
=
op_ptr
->
MakeInvokerPointer
();
std
::
string
op_name
=
op_ptr
->
GetTypeString
();
if
(
op_ptr
->
IsSupportedArgument
(
argument_ptr
.
get
()))
{
float
ave_time
=
invoker_ptr
->
Run
(
argument_ptr
.
get
(),
StreamConfig
{
nullptr
,
true
});
std
::
size_t
num_bytes
=
num_elements
*
sizeof
(
InDataType
)
+
(
beta
==
0.0
f
?
1
:
2
)
*
num_elements
*
sizeof
(
OutDataType
);
float
gb_per_sec
=
num_bytes
/
1.E6
/
ave_time
;
std
::
cout
<<
"Perf: "
<<
std
::
setw
(
10
)
<<
ave_time
<<
" ms, "
<<
gb_per_sec
<<
" GB/s, "
<<
op_name
<<
std
::
endl
;
if
(
ave_time
<
best_ave_time
)
{
found
=
true
;
best_op_id
=
i
;
best_op_name
=
op_name
;
best_ave_time
=
ave_time
;
best_gb_per_sec
=
gb_per_sec
;
}
}
else
{
std
::
cout
<<
op_name
<<
" does not support this problem"
<<
std
::
endl
;
}
}
std
::
cout
<<
"Best Perf: "
<<
best_ave_time
<<
" ms, "
<<
best_gb_per_sec
<<
" GB/s, "
<<
best_op_name
<<
std
::
endl
;
// run the best intance
{
auto
&
op_ptr
=
op_ptrs
[
best_op_id
];
std
::
cout
<<
"Run the best instance without timing: "
<<
op_ptr
->
GetTypeString
()
<<
std
::
endl
;
auto
argument_ptr
=
op_ptr
->
MakeArgumentPointer
(
in_lengths
,
in_strides
,
reduce_dims
,
&
alpha
,
&
beta
,
in
.
GetDeviceBuffer
(),
out
.
GetDeviceBuffer
(),
PassThrough
{},
PassThrough
{});
auto
invoker_ptr
=
op_ptr
->
MakeInvokerPointer
();
if
(
op_ptr
->
IsSupportedArgument
(
argument_ptr
.
get
()))
{
invoker_ptr
->
Run
(
argument_ptr
.
get
(),
StreamConfig
{
nullptr
,
false
});
}
std
::
cout
<<
"Done"
<<
std
::
endl
;
}
return
0
;
}
\ No newline at end of file
client_example/CMakeLists.txt
View file @
b89a88b5
...
...
@@ -10,3 +10,5 @@ add_subdirectory(01_gemm)
add_subdirectory
(
02_gemm_add_add_fastgelu
)
add_subdirectory
(
03_gemm_layernorm
)
add_subdirectory
(
04_contraction
)
add_subdirectory
(
05_layernorm
)
add_subdirectory
(
06_softmax
)
cmake/googletest.cmake
View file @
b89a88b5
...
...
@@ -42,3 +42,8 @@ target_compile_options(gtest PRIVATE ${GTEST_CMAKE_CXX_FLAGS})
target_compile_options
(
gtest_main PRIVATE
${
GTEST_CMAKE_CXX_FLAGS
}
)
target_compile_options
(
gmock PRIVATE
${
GTEST_CMAKE_CXX_FLAGS
}
)
target_compile_options
(
gmock_main PRIVATE
${
GTEST_CMAKE_CXX_FLAGS
}
)
set_target_properties
(
gtest PROPERTIES POSITION_INDEPENDENT_CODE ON
)
set_target_properties
(
gtest_main PROPERTIES POSITION_INDEPENDENT_CODE ON
)
set_target_properties
(
gmock PROPERTIES POSITION_INDEPENDENT_CODE ON
)
set_target_properties
(
gmock_main PROPERTIES POSITION_INDEPENDENT_CODE ON
)
example/01_gemm/CMakeLists.txt
View file @
b89a88b5
add_custom_target
(
example_gemm_dl
)
add_example_executable
(
example_gemm_dl_fp32 gemm_dl_fp32.cpp
)
add_example_executable
(
example_gemm_dl_fp16 gemm_dl_fp16.cpp
)
add_example_executable
(
example_gemm_dl_int8 gemm_dl_int8.cpp
)
add_dependencies
(
example_gemm_dl example_gemm_dl_fp32
)
add_dependencies
(
example_gemm_dl example_gemm_dl_fp16
)
add_dependencies
(
example_gemm_dl example_gemm_dl_int8
)
if
(
USE_BITINT_EXTENSION_INT4
)
add_example_executable
(
example_gemm_dl_int4 gemm_dl_int4.cpp
)
add_dependencies
(
example_gemm_dl example_gemm_dl_int4
)
endif
(
USE_BITINT_EXTENSION_INT4
)
add_custom_target
(
example_gemm_xdl
)
add_example_executable
(
example_gemm_xdl_fp16 gemm_xdl_fp16.cpp
)
add_example_executable
(
example_gemm_xdl_bf16 gemm_xdl_bf16.cpp
)
add_example_executable
(
example_gemm_xdl_int8 gemm_xdl_int8.cpp
)
add_dependencies
(
example_gemm_xdl example_gemm_xdl_fp16
)
add_dependencies
(
example_gemm_xdl example_gemm_xdl_bf16
)
add_dependencies
(
example_gemm_xdl example_gemm_xdl_int8
)
if
(
USE_BITINT_EXTENSION_INT4
)
add_example_executable
(
example_gemm_xdl_int4 gemm_xdl_int4.cpp
)
add_dependencies
(
example_gemm_xdl example_gemm_xdl_int4
)
endif
(
USE_BITINT_EXTENSION_INT4
)
add_example_executable
(
example_gemm_xdl_skip_b_lds_fp16 gemm_xdl_skip_b_lds_fp16.cpp
)
# FIXME: re-enable this exampe as test when SWDEV-335738 is fixed
add_example_executable_no_testing
(
example_gemm_xdl_fp64 gemm_xdl_fp64.cpp
)
add_dependencies
(
example_gemm_xdl example_gemm_xdl_skip_b_lds_fp16
)
add_dependencies
(
example_gemm_xdl example_gemm_xdl_fp64
)
example/01_gemm/common.hpp
0 → 100644
View file @
b89a88b5
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2022, Advanced Micro Devices, Inc. All rights reserved.
#pragma once
#include <cstdlib>
#include <iostream>
#include <initializer_list>
#include <numeric>
#include "ck/ck.hpp"
#include "ck/tensor_operation/gpu/device/gemm_specialization.hpp"
#include "ck/tensor_operation/gpu/device/tensor_layout.hpp"
#include "ck/tensor_operation/gpu/element/element_wise_operation.hpp"
#include "ck/utility/data_type.hpp"
#include "ck/library/utility/check_err.hpp"
#include "ck/library/utility/device_memory.hpp"
#include "ck/library/utility/fill.hpp"
#include "ck/library/utility/host_tensor.hpp"
#include "ck/library/utility/host_tensor_generator.hpp"
#include "ck/library/utility/literals.hpp"
#include "ck/library/reference_tensor_operation/cpu/reference_gemm.hpp"
struct
ProblemSize
final
{
ck
::
index_t
M
=
3840
;
ck
::
index_t
N
=
4096
;
ck
::
index_t
K
=
4096
;
ck
::
index_t
StrideA
=
4096
;
ck
::
index_t
StrideB
=
4096
;
ck
::
index_t
StrideC
=
4096
;
};
struct
ExecutionConfig
final
{
bool
do_verification
=
true
;
int
init_method
=
1
;
bool
time_kernel
=
false
;
};
template
<
ck
::
index_t
...
Is
>
using
S
=
ck
::
Sequence
<
Is
...
>
;
using
Row
=
ck
::
tensor_layout
::
gemm
::
RowMajor
;
using
Col
=
ck
::
tensor_layout
::
gemm
::
ColumnMajor
;
using
PassThrough
=
ck
::
tensor_operation
::
element_wise
::
PassThrough
;
inline
bool
parse_cmd_args
(
int
argc
,
char
*
argv
[],
ProblemSize
&
problem_size
,
ExecutionConfig
&
config
)
{
if
(
argc
==
1
)
{
// use default case
}
else
if
(
argc
==
4
)
{
config
.
do_verification
=
std
::
stoi
(
argv
[
1
]);
config
.
init_method
=
std
::
stoi
(
argv
[
2
]);
config
.
time_kernel
=
std
::
stoi
(
argv
[
3
]);
}
else
if
(
argc
==
10
)
{
config
.
do_verification
=
std
::
stoi
(
argv
[
1
]);
config
.
init_method
=
std
::
stoi
(
argv
[
2
]);
config
.
time_kernel
=
std
::
stoi
(
argv
[
3
]);
problem_size
.
M
=
std
::
stoi
(
argv
[
4
]);
problem_size
.
N
=
std
::
stoi
(
argv
[
5
]);
problem_size
.
K
=
std
::
stoi
(
argv
[
6
]);
problem_size
.
StrideA
=
std
::
stoi
(
argv
[
7
]);
problem_size
.
StrideB
=
std
::
stoi
(
argv
[
8
]);
problem_size
.
StrideC
=
std
::
stoi
(
argv
[
9
]);
}
else
{
std
::
cerr
<<
"arg1: verification (0=no, 1=yes)"
<<
std
::
endl
<<
"arg2: initialization (0=no init, 1=integer value, 2=decimal value)"
<<
std
::
endl
<<
"arg3: time kernel (0=no, 1=yes)"
<<
std
::
endl
<<
"arg4 to 9: M (256x), N(128x), K(32x), StrideA, StrideB, StrideC"
<<
std
::
endl
;
return
false
;
}
return
true
;
}
example/01_gemm/gemm_dl_fp16.cpp
View file @
b89a88b5
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2022, Advanced Micro Devices, Inc. All rights reserved.
#include <iostream>
#include <numeric>
#include <initializer_list>
#include <cstdlib>
#include "common.hpp"
#include "ck/ck.hpp"
#include "ck/tensor_operation/gpu/device/gemm_specialization.hpp"
#include "ck/tensor_operation/gpu/device/device_gemm_dl.hpp"
#include "ck/tensor_operation/gpu/element/element_wise_operation.hpp"
#include "ck/library/utility/check_err.hpp"
#include "ck/library/utility/device_memory.hpp"
#include "ck/library/utility/host_tensor.hpp"
#include "ck/library/utility/host_tensor_generator.hpp"
#include "ck/library/reference_tensor_operation/cpu/reference_gemm.hpp"
template
<
ck
::
index_t
...
Is
>
using
S
=
ck
::
Sequence
<
Is
...
>
;
using
F16
=
ck
::
half_t
;
using
F32
=
float
;
using
Row
=
ck
::
tensor_layout
::
gemm
::
RowMajor
;
using
Col
=
ck
::
tensor_layout
::
gemm
::
ColumnMajor
;
using
PassThrough
=
ck
::
tensor_operation
::
element_wise
::
PassThrough
;
using
ADataType
=
ck
::
half_t
;
using
BDataType
=
ck
::
half_t
;
...
...
@@ -37,174 +14,24 @@ using ALayout = Col;
using
BLayout
=
Row
;
using
CLayout
=
Row
;
using
AElementOp
=
ck
::
tensor_operation
::
element_wise
::
PassThrough
;
using
BElementOp
=
ck
::
tensor_operation
::
element_wise
::
PassThrough
;
using
CElementOp
=
ck
::
tensor_operation
::
element_wise
::
PassThrough
;
using
AElementOp
=
PassThrough
;
using
BElementOp
=
PassThrough
;
using
CElementOp
=
PassThrough
;
static
constexpr
auto
GemmDefault
=
ck
::
tensor_operation
::
device
::
GemmSpecialization
::
Default
;
// clang-format off
using
DeviceGemmInstance
=
ck
::
tensor_operation
::
device
::
// ##
######| AData| BData| CData| AccData| ALayout| BLayout| CLayout| A| B| C| GEMM| Block| MPer| NPer| K0Per| K1| M1Per| N1Per| KPer| M11N11Thread| M11N11Thread| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer|
ABlockTransfer| BBlockTransfer| BBlockTransfer| BBlockTransfer| BBlockTransfer| BBlockTransfer| BBlockTransfer|
BBlockTransfer| CThreadTransfer|
CThreadTransfer| CThreadTransfer|
// ##
######| Type| Type| Type| Type| | | | Elementwise| Elementwise| Elementwise| Spacialization| Size| Block| Block| Block| | ThreadM111| ThreadN111| Thread| ClusterM110Xs| ClusterN110Xs| ThreadSliceLengths| ThreadClusterLengths| ThreadCluster| SrcAccess| SrcVectorTensor| SrcVectorTensor|
DstVectorTensor| ThreadSliceLengths| ThreadClusterLengths| ThreadCluster| SrcAccess| SrcVectorTensor| SrcVectorTensor|
DstVectorTensor| SrcDstAccess|
SrcDstVectorDim| DstScalarPerVector|
// ##
######|
|
|
|
| | | | Operation| Operation| Operation| | | | | | | | | | | | K0_M0_M1_K1| K0_M0_M1_K1| ArrangeOrder| Order| Lengths_K0_M0_M1_K1| ContiguousDimOrder|
Lengths_K0_M0_M1_K1| K0_N0_N1_K1| K0_N0_N1_K1| ArrangeOrder| Order| Lengths_K0_N0_N1_K1| ContiguousDimOrder|
Lengths_K0_N0_N1_K1| Order|
| |
// ##
######|
|
|
|
| | | | | | | | | | | | | | | | | | | | | | | |
| | | | | | |
| |
| |
DeviceGemmDl
<
F16
,
F16
,
F16
,
F32
,
Col
,
Row
,
Row
,
PassThrough
,
PassThrough
,
PassThrough
,
GemmDefault
,
256
,
128
,
128
,
16
,
2
,
4
,
4
,
1
,
S
<
8
,
2
>
,
S
<
8
,
2
>
,
S
<
2
,
1
,
4
,
2
>
,
S
<
8
,
1
,
32
,
1
>
,
S
<
0
,
3
,
1
,
2
>
,
S
<
0
,
3
,
1
,
2
>
,
S
<
1
,
1
,
4
,
1
>
,
S
<
0
,
3
,
1
,
2
>
,
S
<
1
,
1
,
4
,
2
>
,
S
<
2
,
1
,
4
,
2
>
,
S
<
8
,
1
,
32
,
1
>
,
S
<
0
,
3
,
1
,
2
>
,
S
<
0
,
3
,
1
,
2
>
,
S
<
1
,
1
,
4
,
1
>
,
S
<
0
,
3
,
1
,
2
>
,
S
<
1
,
1
,
4
,
2
>
,
S
<
0
,
1
,
2
,
3
,
4
,
5
>
,
5
,
4
>
;
using
DeviceGemmInstance
=
ck
::
tensor_operation
::
device
::
DeviceGemmDl
//
######|
AData|
BData|
CData|
AccData| ALayout| BLayout| CLayout| A| B| C| GEMM| Block| MPer| NPer| K0Per| K1| M1Per| N1Per| KPer| M11N11Thread| M11N11Thread| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| BBlockTransfer| BBlockTransfer| BBlockTransfer| BBlockTransfer| BBlockTransfer| BBlockTransfer| BBlockTransfer| CThreadTransfer| CThreadTransfer| CThreadTransfer|
//
######|
Type|
Type|
Type|
Type| | | | Elementwise| Elementwise| Elementwise| Spacialization| Size| Block| Block| Block| | ThreadM111| ThreadN111| Thread| ClusterM110Xs| ClusterN110Xs| ThreadSliceLengths| ThreadClusterLengths| ThreadCluster| SrcAccess| SrcVectorTensor| SrcVectorTensor| DstVectorTensor| ThreadSliceLengths| ThreadClusterLengths| ThreadCluster| SrcAccess| SrcVectorTensor| SrcVectorTensor| DstVectorTensor| SrcDstAccess| SrcDstVectorDim| DstScalarPerVector|
//
######|
|
|
|
| | | | Operation| Operation| Operation| | | | | | | | | | | | K0_M0_M1_K1| K0_M0_M1_K1| ArrangeOrder| Order| Lengths_K0_M0_M1_K1| ContiguousDimOrder| Lengths_K0_M0_M1_K1| K0_N0_N1_K1| K0_N0_N1_K1| ArrangeOrder| Order| Lengths_K0_N0_N1_K1| ContiguousDimOrder| Lengths_K0_N0_N1_K1| Order| | |
//
######|
|
|
|
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
<
ADataType
,
BDataType
,
CDataType
,
AccDataType
,
ALayout
,
BLayout
,
CLayout
,
AElementOp
,
BElementOp
,
CElementOp
,
GemmDefault
,
256
,
128
,
128
,
16
,
2
,
4
,
4
,
1
,
S
<
8
,
2
>
,
S
<
8
,
2
>
,
S
<
2
,
1
,
4
,
2
>
,
S
<
8
,
1
,
32
,
1
>
,
S
<
0
,
3
,
1
,
2
>
,
S
<
0
,
3
,
1
,
2
>
,
S
<
1
,
1
,
4
,
1
>
,
S
<
0
,
3
,
1
,
2
>
,
S
<
1
,
1
,
4
,
2
>
,
S
<
2
,
1
,
4
,
2
>
,
S
<
8
,
1
,
32
,
1
>
,
S
<
0
,
3
,
1
,
2
>
,
S
<
0
,
3
,
1
,
2
>
,
S
<
1
,
1
,
4
,
1
>
,
S
<
0
,
3
,
1
,
2
>
,
S
<
1
,
1
,
4
,
2
>
,
S
<
0
,
1
,
2
,
3
,
4
,
5
>
,
5
,
4
>
;
// clang-format on
using
ReferenceGemmInstance
=
ck
::
tensor_operation
::
host
::
ReferenceGemm
<
ADataType
,
BDataType
,
CDataType
,
AccDataType
,
AElementOp
,
BElementOp
,
CElementOp
>
;
int
main
(
int
argc
,
char
*
argv
[])
{
bool
do_verification
=
true
;
int
init_method
=
1
;
bool
time_kernel
=
false
;
// GEMM shape
ck
::
index_t
M
=
3840
;
ck
::
index_t
N
=
4096
;
ck
::
index_t
K
=
4096
;
ck
::
index_t
StrideA
=
4096
;
ck
::
index_t
StrideB
=
4096
;
ck
::
index_t
StrideC
=
4096
;
if
(
argc
==
1
)
{
// do nothing
}
else
if
(
argc
==
4
)
{
do_verification
=
std
::
stoi
(
argv
[
1
]);
init_method
=
std
::
stoi
(
argv
[
2
]);
time_kernel
=
std
::
stoi
(
argv
[
3
]);
}
else
if
(
argc
==
10
)
{
do_verification
=
std
::
stoi
(
argv
[
1
]);
init_method
=
std
::
stoi
(
argv
[
2
]);
time_kernel
=
std
::
stoi
(
argv
[
3
]);
M
=
std
::
stoi
(
argv
[
4
]);
N
=
std
::
stoi
(
argv
[
5
]);
K
=
std
::
stoi
(
argv
[
6
]);
StrideA
=
std
::
stoi
(
argv
[
7
]);
StrideB
=
std
::
stoi
(
argv
[
8
]);
StrideC
=
std
::
stoi
(
argv
[
9
]);
}
else
{
printf
(
"arg1: verification (0=no, 1=yes)
\n
"
);
printf
(
"arg2: initialization (0=no init, 1=integer value, 2=decimal value)
\n
"
);
printf
(
"arg3: time kernel (0=n0, 1=yes)
\n
"
);
printf
(
"arg4 to 9: M (256x), N(128x), K(32x), StrideA, StrideB, StrideC
\n
"
);
exit
(
1
);
}
auto
f_host_tensor_descriptor
=
[](
std
::
size_t
row
,
std
::
size_t
col
,
std
::
size_t
stride
,
auto
layout
)
{
if
(
std
::
is_same
<
decltype
(
layout
),
ck
::
tensor_layout
::
gemm
::
RowMajor
>::
value
)
{
return
HostTensorDescriptor
(
std
::
vector
<
std
::
size_t
>
({
row
,
col
}),
std
::
vector
<
std
::
size_t
>
({
stride
,
1
}));
}
else
{
return
HostTensorDescriptor
(
std
::
vector
<
std
::
size_t
>
({
row
,
col
}),
std
::
vector
<
std
::
size_t
>
({
1
,
stride
}));
}
};
Tensor
<
ADataType
>
a_m_k
(
f_host_tensor_descriptor
(
M
,
K
,
StrideA
,
ALayout
{}));
Tensor
<
BDataType
>
b_k_n
(
f_host_tensor_descriptor
(
K
,
N
,
StrideB
,
BLayout
{}));
Tensor
<
CDataType
>
c_m_n_host_result
(
f_host_tensor_descriptor
(
M
,
N
,
StrideC
,
CLayout
{}));
Tensor
<
CDataType
>
c_m_n_device_result
(
f_host_tensor_descriptor
(
M
,
N
,
StrideC
,
CLayout
{}));
std
::
cout
<<
"a_m_k: "
<<
a_m_k
.
mDesc
<<
std
::
endl
;
std
::
cout
<<
"b_k_n: "
<<
b_k_n
.
mDesc
<<
std
::
endl
;
std
::
cout
<<
"c_m_n: "
<<
c_m_n_host_result
.
mDesc
<<
std
::
endl
;
switch
(
init_method
)
{
case
0
:
break
;
case
1
:
a_m_k
.
GenerateTensorValue
(
GeneratorTensor_2
<
ADataType
>
{
-
5
,
5
});
b_k_n
.
GenerateTensorValue
(
GeneratorTensor_2
<
BDataType
>
{
-
5
,
5
});
break
;
case
2
:
a_m_k
.
GenerateTensorValue
(
GeneratorTensor_3
<
ADataType
>
{
0.0
,
1.0
});
b_k_n
.
GenerateTensorValue
(
GeneratorTensor_3
<
BDataType
>
{
-
0.5
,
0.5
});
break
;
default:
a_m_k
.
GenerateTensorValue
(
GeneratorTensor_Sequential
<
0
>
{});
b_k_n
.
GenerateTensorValue
(
GeneratorTensor_Sequential
<
1
>
{});
}
DeviceMem
a_m_k_device_buf
(
sizeof
(
ADataType
)
*
a_m_k
.
mDesc
.
GetElementSpaceSize
());
DeviceMem
b_k_n_device_buf
(
sizeof
(
BDataType
)
*
b_k_n
.
mDesc
.
GetElementSpaceSize
());
DeviceMem
c_m_n_device_buf
(
sizeof
(
CDataType
)
*
c_m_n_device_result
.
mDesc
.
GetElementSpaceSize
());
a_m_k_device_buf
.
ToDevice
(
a_m_k
.
mData
.
data
());
b_k_n_device_buf
.
ToDevice
(
b_k_n
.
mData
.
data
());
auto
a_element_op
=
AElementOp
{};
auto
b_element_op
=
BElementOp
{};
auto
c_element_op
=
CElementOp
{};
// do GEMM
auto
gemm
=
DeviceGemmInstance
{};
auto
invoker
=
gemm
.
MakeInvoker
();
auto
argument
=
gemm
.
MakeArgument
(
static_cast
<
ADataType
*>
(
a_m_k_device_buf
.
GetDeviceBuffer
()),
static_cast
<
BDataType
*>
(
b_k_n_device_buf
.
GetDeviceBuffer
()),
static_cast
<
CDataType
*>
(
c_m_n_device_buf
.
GetDeviceBuffer
()),
M
,
N
,
K
,
StrideA
,
StrideB
,
StrideC
,
a_element_op
,
b_element_op
,
c_element_op
);
if
(
!
gemm
.
IsSupportedArgument
(
argument
))
{
std
::
cout
<<
gemm
.
GetTypeString
()
<<
" does not support this problem"
<<
std
::
endl
;
return
0
;
}
float
ave_time
=
invoker
.
Run
(
argument
,
StreamConfig
{
nullptr
,
time_kernel
});
std
::
size_t
flop
=
std
::
size_t
(
2
)
*
M
*
N
*
K
;
std
::
size_t
num_btype
=
sizeof
(
ADataType
)
*
M
*
K
+
sizeof
(
BDataType
)
*
K
*
N
+
sizeof
(
CDataType
)
*
M
*
N
;
float
tflops
=
static_cast
<
float
>
(
flop
)
/
1.E9
/
ave_time
;
float
gb_per_sec
=
num_btype
/
1.E6
/
ave_time
;
std
::
cout
<<
"Perf: "
<<
ave_time
<<
" ms, "
<<
tflops
<<
" TFlops, "
<<
gb_per_sec
<<
" GB/s, "
<<
gemm
.
GetTypeString
()
<<
std
::
endl
;
c_m_n_device_buf
.
FromDevice
(
c_m_n_device_result
.
mData
.
data
());
bool
pass
=
true
;
if
(
do_verification
)
{
auto
ref_gemm
=
ReferenceGemmInstance
{};
auto
ref_invoker
=
ref_gemm
.
MakeInvoker
();
auto
ref_argument
=
ref_gemm
.
MakeArgument
(
a_m_k
,
b_k_n
,
c_m_n_host_result
,
a_element_op
,
b_element_op
,
c_element_op
);
ref_invoker
.
Run
(
ref_argument
);
pass
=
ck
::
utils
::
check_err
(
c_m_n_device_result
.
mData
,
c_m_n_host_result
.
mData
);
}
#include "run_gemm_example.inc"
return
pass
?
0
:
1
;
}
int
main
(
int
argc
,
char
*
argv
[])
{
return
!
run_gemm_example
(
argc
,
argv
);
}
example/01_gemm/gemm_dl_fp32.cpp
View file @
b89a88b5
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2022, Advanced Micro Devices, Inc. All rights reserved.
#include <iostream>
#include <numeric>
#include <initializer_list>
#include <cstdlib>
#include "common.hpp"
#include "ck/ck.hpp"
#include "ck/tensor_operation/gpu/device/gemm_specialization.hpp"
#include "ck/tensor_operation/gpu/device/device_gemm_dl.hpp"
#include "ck/tensor_operation/gpu/element/element_wise_operation.hpp"
#include "ck/library/utility/check_err.hpp"
#include "ck/library/utility/device_memory.hpp"
#include "ck/library/utility/host_tensor.hpp"
#include "ck/library/utility/host_tensor_generator.hpp"
#include "ck/library/reference_tensor_operation/cpu/reference_gemm.hpp"
template
<
ck
::
index_t
...
Is
>
using
S
=
ck
::
Sequence
<
Is
...
>
;
using
F32
=
float
;
using
Row
=
ck
::
tensor_layout
::
gemm
::
RowMajor
;
using
Col
=
ck
::
tensor_layout
::
gemm
::
ColumnMajor
;
using
PassThrough
=
ck
::
tensor_operation
::
element_wise
::
PassThrough
;
using
ADataType
=
float
;
using
BDataType
=
float
;
...
...
@@ -36,174 +14,24 @@ using ALayout = Col;
using
BLayout
=
Row
;
using
CLayout
=
Row
;
using
AElementOp
=
ck
::
tensor_operation
::
element_wise
::
PassThrough
;
using
BElementOp
=
ck
::
tensor_operation
::
element_wise
::
PassThrough
;
using
CElementOp
=
ck
::
tensor_operation
::
element_wise
::
PassThrough
;
using
AElementOp
=
PassThrough
;
using
BElementOp
=
PassThrough
;
using
CElementOp
=
PassThrough
;
static
constexpr
auto
GemmDefault
=
ck
::
tensor_operation
::
device
::
GemmSpecialization
::
Default
;
// clang-format off
using
DeviceGemmInstance
=
ck
::
tensor_operation
::
device
::
// ##
######| AData| BData| CData| AccData| ALayout| BLayout| CLayout| A| B| C| GEMM| Block| MPer| NPer| K0Per| K1| M1Per| N1Per| KPer| M11N11Thread| M11N11Thread| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer|
ABlockTransfer| BBlockTransfer| BBlockTransfer| BBlockTransfer| BBlockTransfer| BBlockTransfer| BBlockTransfer|
BBlockTransfer| CThreadTransfer|
CThreadTransfer| CThreadTransfer|
// ##
######| Type| Type| Type| Type| | | | Elementwise| Elementwise| Elementwise| Spacialization| Size| Block| Block| Block| | ThreadM111| ThreadN111| Thread| ClusterM110Xs| ClusterN110Xs| ThreadSliceLengths| ThreadClusterLengths| ThreadCluster| SrcAccess| SrcVectorTensor| SrcVectorTensor|
DstVectorTensor| ThreadSliceLengths| ThreadClusterLengths| ThreadCluster| SrcAccess| SrcVectorTensor| SrcVectorTensor|
DstVectorTensor| SrcDstAccess|
SrcDstVectorDim| DstScalarPerVector|
// ##
######|
|
|
|
| | | | Operation| Operation| Operation| | | | | | | | | | | | K0_M0_M1_K1| K0_M0_M1_K1| ArrangeOrder| Order| Lengths_K0_M0_M1_K1| ContiguousDimOrder|
Lengths_K0_M0_M1_K1| K0_N0_N1_K1| K0_N0_N1_K1| ArrangeOrder| Order| Lengths_K0_N0_N1_K1| ContiguousDimOrder|
Lengths_K0_N0_N1_K1| Order|
| |
// ##
######|
|
|
|
| | | | | | | | | | | | | | | | | | | | | | | |
| | | | | | |
| |
| |
DeviceGemmDl
<
F32
,
F32
,
F32
,
F32
,
Col
,
Row
,
Row
,
PassThrough
,
PassThrough
,
PassThrough
,
GemmDefault
,
256
,
128
,
128
,
16
,
1
,
4
,
4
,
1
,
S
<
8
,
2
>
,
S
<
8
,
2
>
,
S
<
2
,
1
,
4
,
1
>
,
S
<
8
,
1
,
32
,
1
>
,
S
<
0
,
3
,
1
,
2
>
,
S
<
0
,
3
,
1
,
2
>
,
S
<
1
,
1
,
4
,
1
>
,
S
<
0
,
3
,
1
,
2
>
,
S
<
1
,
1
,
4
,
1
>
,
S
<
2
,
1
,
4
,
1
>
,
S
<
8
,
1
,
32
,
1
>
,
S
<
0
,
3
,
1
,
2
>
,
S
<
0
,
3
,
1
,
2
>
,
S
<
1
,
1
,
4
,
1
>
,
S
<
0
,
3
,
1
,
2
>
,
S
<
1
,
1
,
4
,
1
>
,
S
<
0
,
1
,
2
,
3
,
4
,
5
>
,
5
,
4
>
;
using
DeviceGemmInstance
=
ck
::
tensor_operation
::
device
::
DeviceGemmDl
//
######|
AData|
BData|
CData|
AccData| ALayout| BLayout| CLayout| A| B| C| GEMM| Block| MPer| NPer| K0Per| K1| M1Per| N1Per| KPer| M11N11Thread| M11N11Thread| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| BBlockTransfer| BBlockTransfer| BBlockTransfer| BBlockTransfer| BBlockTransfer| BBlockTransfer| BBlockTransfer| CThreadTransfer| CThreadTransfer| CThreadTransfer|
//
######|
Type|
Type|
Type|
Type| | | | Elementwise| Elementwise| Elementwise| Spacialization| Size| Block| Block| Block| | ThreadM111| ThreadN111| Thread| ClusterM110Xs| ClusterN110Xs| ThreadSliceLengths| ThreadClusterLengths| ThreadCluster| SrcAccess| SrcVectorTensor| SrcVectorTensor| DstVectorTensor| ThreadSliceLengths| ThreadClusterLengths| ThreadCluster| SrcAccess| SrcVectorTensor| SrcVectorTensor| DstVectorTensor| SrcDstAccess| SrcDstVectorDim| DstScalarPerVector|
//
######|
|
|
|
| | | | Operation| Operation| Operation| | | | | | | | | | | | K0_M0_M1_K1| K0_M0_M1_K1| ArrangeOrder| Order| Lengths_K0_M0_M1_K1| ContiguousDimOrder| Lengths_K0_M0_M1_K1| K0_N0_N1_K1| K0_N0_N1_K1| ArrangeOrder| Order| Lengths_K0_N0_N1_K1| ContiguousDimOrder| Lengths_K0_N0_N1_K1| Order| | |
//
######|
|
|
|
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
<
ADataType
,
BDataType
,
CDataType
,
AccDataType
,
ALayout
,
BLayout
,
CLayout
,
AElementOp
,
BElementOp
,
CElementOp
,
GemmDefault
,
256
,
128
,
128
,
16
,
1
,
4
,
4
,
1
,
S
<
8
,
2
>
,
S
<
8
,
2
>
,
S
<
2
,
1
,
4
,
1
>
,
S
<
8
,
1
,
32
,
1
>
,
S
<
0
,
3
,
1
,
2
>
,
S
<
0
,
3
,
1
,
2
>
,
S
<
1
,
1
,
4
,
1
>
,
S
<
0
,
3
,
1
,
2
>
,
S
<
1
,
1
,
4
,
1
>
,
S
<
2
,
1
,
4
,
1
>
,
S
<
8
,
1
,
32
,
1
>
,
S
<
0
,
3
,
1
,
2
>
,
S
<
0
,
3
,
1
,
2
>
,
S
<
1
,
1
,
4
,
1
>
,
S
<
0
,
3
,
1
,
2
>
,
S
<
1
,
1
,
4
,
1
>
,
S
<
0
,
1
,
2
,
3
,
4
,
5
>
,
5
,
4
>
;
// clang-format on
using
ReferenceGemmInstance
=
ck
::
tensor_operation
::
host
::
ReferenceGemm
<
ADataType
,
BDataType
,
CDataType
,
AccDataType
,
AElementOp
,
BElementOp
,
CElementOp
>
;
int
main
(
int
argc
,
char
*
argv
[])
{
bool
do_verification
=
true
;
int
init_method
=
1
;
bool
time_kernel
=
false
;
// GEMM shape
ck
::
index_t
M
=
3840
;
ck
::
index_t
N
=
4096
;
ck
::
index_t
K
=
4096
;
ck
::
index_t
StrideA
=
4096
;
ck
::
index_t
StrideB
=
4096
;
ck
::
index_t
StrideC
=
4096
;
if
(
argc
==
1
)
{
// do nothing
}
else
if
(
argc
==
4
)
{
do_verification
=
std
::
stoi
(
argv
[
1
]);
init_method
=
std
::
stoi
(
argv
[
2
]);
time_kernel
=
std
::
stoi
(
argv
[
3
]);
}
else
if
(
argc
==
10
)
{
do_verification
=
std
::
stoi
(
argv
[
1
]);
init_method
=
std
::
stoi
(
argv
[
2
]);
time_kernel
=
std
::
stoi
(
argv
[
3
]);
M
=
std
::
stoi
(
argv
[
4
]);
N
=
std
::
stoi
(
argv
[
5
]);
K
=
std
::
stoi
(
argv
[
6
]);
StrideA
=
std
::
stoi
(
argv
[
7
]);
StrideB
=
std
::
stoi
(
argv
[
8
]);
StrideC
=
std
::
stoi
(
argv
[
9
]);
}
else
{
printf
(
"arg1: verification (0=no, 1=yes)
\n
"
);
printf
(
"arg2: initialization (0=no init, 1=integer value, 2=decimal value)
\n
"
);
printf
(
"arg3: time kernel (0=n0, 1=yes)
\n
"
);
printf
(
"arg4 to 9: M (256x), N(128x), K(32x), StrideA, StrideB, StrideC
\n
"
);
exit
(
1
);
}
auto
f_host_tensor_descriptor
=
[](
std
::
size_t
row
,
std
::
size_t
col
,
std
::
size_t
stride
,
auto
layout
)
{
if
(
std
::
is_same
<
decltype
(
layout
),
ck
::
tensor_layout
::
gemm
::
RowMajor
>::
value
)
{
return
HostTensorDescriptor
(
std
::
vector
<
std
::
size_t
>
({
row
,
col
}),
std
::
vector
<
std
::
size_t
>
({
stride
,
1
}));
}
else
{
return
HostTensorDescriptor
(
std
::
vector
<
std
::
size_t
>
({
row
,
col
}),
std
::
vector
<
std
::
size_t
>
({
1
,
stride
}));
}
};
Tensor
<
ADataType
>
a_m_k
(
f_host_tensor_descriptor
(
M
,
K
,
StrideA
,
ALayout
{}));
Tensor
<
BDataType
>
b_k_n
(
f_host_tensor_descriptor
(
K
,
N
,
StrideB
,
BLayout
{}));
Tensor
<
CDataType
>
c_m_n_host_result
(
f_host_tensor_descriptor
(
M
,
N
,
StrideC
,
CLayout
{}));
Tensor
<
CDataType
>
c_m_n_device_result
(
f_host_tensor_descriptor
(
M
,
N
,
StrideC
,
CLayout
{}));
std
::
cout
<<
"a_m_k: "
<<
a_m_k
.
mDesc
<<
std
::
endl
;
std
::
cout
<<
"b_k_n: "
<<
b_k_n
.
mDesc
<<
std
::
endl
;
std
::
cout
<<
"c_m_n: "
<<
c_m_n_host_result
.
mDesc
<<
std
::
endl
;
switch
(
init_method
)
{
case
0
:
break
;
case
1
:
a_m_k
.
GenerateTensorValue
(
GeneratorTensor_2
<
ADataType
>
{
-
5
,
5
});
b_k_n
.
GenerateTensorValue
(
GeneratorTensor_2
<
BDataType
>
{
-
5
,
5
});
break
;
case
2
:
a_m_k
.
GenerateTensorValue
(
GeneratorTensor_3
<
ADataType
>
{
0.0
,
1.0
});
b_k_n
.
GenerateTensorValue
(
GeneratorTensor_3
<
BDataType
>
{
-
0.5
,
0.5
});
break
;
default:
a_m_k
.
GenerateTensorValue
(
GeneratorTensor_Sequential
<
0
>
{});
b_k_n
.
GenerateTensorValue
(
GeneratorTensor_Sequential
<
1
>
{});
}
DeviceMem
a_m_k_device_buf
(
sizeof
(
ADataType
)
*
a_m_k
.
mDesc
.
GetElementSpaceSize
());
DeviceMem
b_k_n_device_buf
(
sizeof
(
BDataType
)
*
b_k_n
.
mDesc
.
GetElementSpaceSize
());
DeviceMem
c_m_n_device_buf
(
sizeof
(
CDataType
)
*
c_m_n_device_result
.
mDesc
.
GetElementSpaceSize
());
a_m_k_device_buf
.
ToDevice
(
a_m_k
.
mData
.
data
());
b_k_n_device_buf
.
ToDevice
(
b_k_n
.
mData
.
data
());
auto
a_element_op
=
AElementOp
{};
auto
b_element_op
=
BElementOp
{};
auto
c_element_op
=
CElementOp
{};
// do GEMM
auto
gemm
=
DeviceGemmInstance
{};
auto
invoker
=
gemm
.
MakeInvoker
();
auto
argument
=
gemm
.
MakeArgument
(
static_cast
<
ADataType
*>
(
a_m_k_device_buf
.
GetDeviceBuffer
()),
static_cast
<
BDataType
*>
(
b_k_n_device_buf
.
GetDeviceBuffer
()),
static_cast
<
CDataType
*>
(
c_m_n_device_buf
.
GetDeviceBuffer
()),
M
,
N
,
K
,
StrideA
,
StrideB
,
StrideC
,
a_element_op
,
b_element_op
,
c_element_op
);
if
(
!
gemm
.
IsSupportedArgument
(
argument
))
{
std
::
cout
<<
gemm
.
GetTypeString
()
<<
" does not support this problem"
<<
std
::
endl
;
return
0
;
}
float
ave_time
=
invoker
.
Run
(
argument
,
StreamConfig
{
nullptr
,
time_kernel
});
std
::
size_t
flop
=
std
::
size_t
(
2
)
*
M
*
N
*
K
;
std
::
size_t
num_btype
=
sizeof
(
ADataType
)
*
M
*
K
+
sizeof
(
BDataType
)
*
K
*
N
+
sizeof
(
CDataType
)
*
M
*
N
;
float
tflops
=
static_cast
<
float
>
(
flop
)
/
1.E9
/
ave_time
;
float
gb_per_sec
=
num_btype
/
1.E6
/
ave_time
;
std
::
cout
<<
"Perf: "
<<
ave_time
<<
" ms, "
<<
tflops
<<
" TFlops, "
<<
gb_per_sec
<<
" GB/s, "
<<
gemm
.
GetTypeString
()
<<
std
::
endl
;
c_m_n_device_buf
.
FromDevice
(
c_m_n_device_result
.
mData
.
data
());
bool
pass
=
true
;
if
(
do_verification
)
{
auto
ref_gemm
=
ReferenceGemmInstance
{};
auto
ref_invoker
=
ref_gemm
.
MakeInvoker
();
auto
ref_argument
=
ref_gemm
.
MakeArgument
(
a_m_k
,
b_k_n
,
c_m_n_host_result
,
a_element_op
,
b_element_op
,
c_element_op
);
ref_invoker
.
Run
(
ref_argument
);
pass
=
ck
::
utils
::
check_err
(
c_m_n_device_result
.
mData
,
c_m_n_host_result
.
mData
);
}
#include "run_gemm_example.inc"
return
pass
?
0
:
1
;
}
int
main
(
int
argc
,
char
*
argv
[])
{
return
!
run_gemm_example
(
argc
,
argv
);
}
example/01_gemm/gemm_dl_int4.cpp
0 → 100644
View file @
b89a88b5
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2022, Advanced Micro Devices, Inc. All rights reserved.
#ifndef CK_EXPERIMENTAL_BIT_INT_EXTENSION_INT4
#error Should compile this file with ck::int4_t support
#endif
#include "common.hpp"
#include "ck/tensor_operation/gpu/device/device_gemm_dl.hpp"
using
ADataType
=
ck
::
int4_t
;
using
BDataType
=
ck
::
int4_t
;
using
CDataType
=
ck
::
int4_t
;
using
KernelADataType
=
int8_t
;
using
KernelBDataType
=
int8_t
;
using
KernelCDataType
=
int8_t
;
using
AccDataType
=
int32_t
;
using
ALayout
=
Col
;
using
BLayout
=
Row
;
using
CLayout
=
Row
;
using
AElementOp
=
PassThrough
;
using
BElementOp
=
PassThrough
;
using
CElementOp
=
PassThrough
;
static
constexpr
auto
GemmDefault
=
ck
::
tensor_operation
::
device
::
GemmSpecialization
::
Default
;
// clang-format off
using
DeviceGemmInstance
=
ck
::
tensor_operation
::
device
::
DeviceGemmDl
// ######| AData| BData| CData| AccData| ALayout| BLayout| CLayout| A| B| C| GEMM| Block| MPer| NPer| K0Per| K1| M1Per| N1Per| KPer| M11N11Thread| M11N11Thread| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| BBlockTransfer| BBlockTransfer| BBlockTransfer| BBlockTransfer| BBlockTransfer| BBlockTransfer| BBlockTransfer| CThreadTransfer| CThreadTransfer| CThreadTransfer|
// ######| Type| Type| Type| Type| | | | Elementwise| Elementwise| Elementwise| Spacialization| Size| Block| Block| Block| | ThreadM111| ThreadN111| Thread| ClusterM110Xs| ClusterN110Xs| ThreadSliceLengths| ThreadClusterLengths| ThreadCluster| SrcAccess| SrcVectorTensor| SrcVectorTensor| DstVectorTensor| ThreadSliceLengths| ThreadClusterLengths| ThreadCluster| SrcAccess| SrcVectorTensor| SrcVectorTensor| DstVectorTensor| SrcDstAccess| SrcDstVectorDim| DstScalarPerVector|
// ######| | | | | | | | Operation| Operation| Operation| | | | | | | | | | | | K0_M0_M1_K1| K0_M0_M1_K1| ArrangeOrder| Order| Lengths_K0_M0_M1_K1| ContiguousDimOrder| Lengths_K0_M0_M1_K1| K0_N0_N1_K1| K0_N0_N1_K1| ArrangeOrder| Order| Lengths_K0_N0_N1_K1| ContiguousDimOrder| Lengths_K0_N0_N1_K1| Order| | |
// ######| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
<
KernelADataType
,
KernelBDataType
,
KernelCDataType
,
AccDataType
,
ALayout
,
BLayout
,
CLayout
,
AElementOp
,
BElementOp
,
CElementOp
,
GemmDefault
,
256
,
128
,
128
,
16
,
4
,
4
,
4
,
1
,
S
<
8
,
2
>
,
S
<
8
,
2
>
,
S
<
2
,
1
,
4
,
4
>
,
S
<
8
,
1
,
32
,
1
>
,
S
<
0
,
3
,
1
,
2
>
,
S
<
0
,
3
,
1
,
2
>
,
S
<
1
,
1
,
4
,
1
>
,
S
<
0
,
3
,
1
,
2
>
,
S
<
1
,
1
,
4
,
4
>
,
S
<
2
,
1
,
4
,
4
>
,
S
<
8
,
1
,
32
,
1
>
,
S
<
0
,
3
,
1
,
2
>
,
S
<
0
,
3
,
1
,
2
>
,
S
<
1
,
1
,
4
,
1
>
,
S
<
0
,
3
,
1
,
2
>
,
S
<
1
,
1
,
4
,
4
>
,
S
<
0
,
1
,
2
,
3
,
4
,
5
>
,
5
,
4
>
;
// clang-format on
using
ReferenceGemmInstance
=
ck
::
tensor_operation
::
host
::
ReferenceGemm
<
ADataType
,
BDataType
,
CDataType
,
AccDataType
,
AElementOp
,
BElementOp
,
CElementOp
>
;
#define BUILD_INT4_EXAMPLE
#include "run_gemm_example.inc"
int
main
(
int
argc
,
char
*
argv
[])
{
return
!
run_gemm_example
(
argc
,
argv
);
}
example/01_gemm/gemm_dl_int8.cpp
View file @
b89a88b5
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2022, Advanced Micro Devices, Inc. All rights reserved.
#include <iostream>
#include <numeric>
#include <initializer_list>
#include <cstdlib>
#include "common.hpp"
#include "ck/ck.hpp"
#include "ck/tensor_operation/gpu/device/gemm_specialization.hpp"
#include "ck/tensor_operation/gpu/device/device_gemm_dl.hpp"
#include "ck/tensor_operation/gpu/element/element_wise_operation.hpp"
#include "ck/library/utility/check_err.hpp"
#include "ck/library/utility/device_memory.hpp"
#include "ck/library/utility/host_tensor.hpp"
#include "ck/library/utility/host_tensor_generator.hpp"
#include "ck/library/reference_tensor_operation/cpu/reference_gemm.hpp"
template
<
ck
::
index_t
...
Is
>
using
S
=
ck
::
Sequence
<
Is
...
>
;
using
Row
=
ck
::
tensor_layout
::
gemm
::
RowMajor
;
using
Col
=
ck
::
tensor_layout
::
gemm
::
ColumnMajor
;
using
PassThrough
=
ck
::
tensor_operation
::
element_wise
::
PassThrough
;
using
ADataType
=
int8_t
;
using
BDataType
=
int8_t
;
...
...
@@ -34,174 +14,24 @@ using ALayout = Col;
using
BLayout
=
Row
;
using
CLayout
=
Row
;
using
AElementOp
=
ck
::
tensor_operation
::
element_wise
::
PassThrough
;
using
BElementOp
=
ck
::
tensor_operation
::
element_wise
::
PassThrough
;
using
CElementOp
=
ck
::
tensor_operation
::
element_wise
::
PassThrough
;
using
AElementOp
=
PassThrough
;
using
BElementOp
=
PassThrough
;
using
CElementOp
=
PassThrough
;
static
constexpr
auto
GemmDefault
=
ck
::
tensor_operation
::
device
::
GemmSpecialization
::
Default
;
// clang-format off
using
DeviceGemmInstance
=
ck
::
tensor_operation
::
device
::
// ######
##
#
| AData| BData| CData| AccData| ALayout| BLayout| CLayout| A| B| C| GEMM| Block| MPer| NPer| K0Per| K1| M1Per| N1Per| KPer| M11N11Thread| M11N11Thread| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer|
ABlockTransfer| BBlockTransfer| BBlockTransfer| BBlockTransfer| BBlockTransfer| BBlockTransfer| BBlockTransfer| BBlockTransfer| CThreadTransfer| CThreadTransfer| CThreadTransfer|
// ######
##
#
| Type| Type| Type| Type| | | | Elementwise| Elementwise| Elementwise| Spacialization| Size| Block| Block| Block| | ThreadM111| ThreadN111| Thread| ClusterM110Xs| ClusterN110Xs| ThreadSliceLengths| ThreadClusterLengths| ThreadCluster| SrcAccess| SrcVectorTensor| SrcVectorTensor|
DstVectorTensor| ThreadSliceLengths| ThreadClusterLengths| ThreadCluster| SrcAccess| SrcVectorTensor| SrcVectorTensor| DstVectorTensor| SrcDstAccess| SrcDstVectorDim| DstScalarPerVector|
// ######
##
#
| |
|
| | | | | Operation| Operation| Operation| | | | | | | | | | | | K0_M0_M1_K1| K0_M0_M1_K1| ArrangeOrder| Order| Lengths_K0_M0_M1_K1| ContiguousDimOrder|
Lengths_K0_M0_M1_K1| K0_N0_N1_K1| K0_N0_N1_K1| ArrangeOrder| Order| Lengths_K0_N0_N1_K1| ContiguousDimOrder| Lengths_K0_N0_N1_K1| Order| | |
// ######
##
#
| |
|
| | | | | | | | | | | | | | | | | | | | | | | | |
| | | | | | | | | | |
DeviceGemmDl
<
int8_t
,
int8_t
,
int8_t
,
int32_t
,
Col
,
Row
,
Row
,
PassThrough
,
PassThrough
,
PassThrough
,
GemmDefault
,
256
,
128
,
128
,
16
,
4
,
4
,
4
,
1
,
S
<
8
,
2
>
,
S
<
8
,
2
>
,
S
<
2
,
1
,
4
,
4
>
,
S
<
8
,
1
,
32
,
1
>
,
S
<
0
,
3
,
1
,
2
>
,
S
<
0
,
3
,
1
,
2
>
,
S
<
1
,
1
,
4
,
1
>
,
S
<
0
,
3
,
1
,
2
>
,
S
<
1
,
1
,
4
,
4
>
,
S
<
2
,
1
,
4
,
4
>
,
S
<
8
,
1
,
32
,
1
>
,
S
<
0
,
3
,
1
,
2
>
,
S
<
0
,
3
,
1
,
2
>
,
S
<
1
,
1
,
4
,
1
>
,
S
<
0
,
3
,
1
,
2
>
,
S
<
1
,
1
,
4
,
4
>
,
S
<
0
,
1
,
2
,
3
,
4
,
5
>
,
5
,
4
>
;
using
DeviceGemmInstance
=
ck
::
tensor_operation
::
device
::
DeviceGemmDl
// ######|
AData|
BData|
CData|
AccData| ALayout| BLayout| CLayout| A| B| C| GEMM| Block| MPer| NPer| K0Per| K1| M1Per| N1Per| KPer| M11N11Thread| M11N11Thread| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| BBlockTransfer| BBlockTransfer| BBlockTransfer| BBlockTransfer| BBlockTransfer| BBlockTransfer| BBlockTransfer| CThreadTransfer| CThreadTransfer| CThreadTransfer|
// ######|
Type|
Type|
Type|
Type| | | | Elementwise| Elementwise| Elementwise| Spacialization| Size| Block| Block| Block| | ThreadM111| ThreadN111| Thread| ClusterM110Xs| ClusterN110Xs| ThreadSliceLengths| ThreadClusterLengths| ThreadCluster| SrcAccess| SrcVectorTensor| SrcVectorTensor| DstVectorTensor| ThreadSliceLengths| ThreadClusterLengths| ThreadCluster| SrcAccess| SrcVectorTensor| SrcVectorTensor| DstVectorTensor| SrcDstAccess| SrcDstVectorDim| DstScalarPerVector|
// ######|
|
|
|
| | | | Operation| Operation| Operation| | | | | | | | | | | | K0_M0_M1_K1| K0_M0_M1_K1| ArrangeOrder| Order| Lengths_K0_M0_M1_K1| ContiguousDimOrder| Lengths_K0_M0_M1_K1| K0_N0_N1_K1| K0_N0_N1_K1| ArrangeOrder| Order| Lengths_K0_N0_N1_K1| ContiguousDimOrder| Lengths_K0_N0_N1_K1| Order| | |
// ######|
|
|
|
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
<
ADataType
,
BDataType
,
CDataType
,
AccDataType
,
ALayout
,
BLayout
,
CLayout
,
AElementOp
,
BElementOp
,
CElementOp
,
GemmDefault
,
256
,
128
,
128
,
16
,
4
,
4
,
4
,
1
,
S
<
8
,
2
>
,
S
<
8
,
2
>
,
S
<
2
,
1
,
4
,
4
>
,
S
<
8
,
1
,
32
,
1
>
,
S
<
0
,
3
,
1
,
2
>
,
S
<
0
,
3
,
1
,
2
>
,
S
<
1
,
1
,
4
,
1
>
,
S
<
0
,
3
,
1
,
2
>
,
S
<
1
,
1
,
4
,
4
>
,
S
<
2
,
1
,
4
,
4
>
,
S
<
8
,
1
,
32
,
1
>
,
S
<
0
,
3
,
1
,
2
>
,
S
<
0
,
3
,
1
,
2
>
,
S
<
1
,
1
,
4
,
1
>
,
S
<
0
,
3
,
1
,
2
>
,
S
<
1
,
1
,
4
,
4
>
,
S
<
0
,
1
,
2
,
3
,
4
,
5
>
,
5
,
4
>
;
// clang-format on
using
ReferenceGemmInstance
=
ck
::
tensor_operation
::
host
::
ReferenceGemm
<
ADataType
,
BDataType
,
CDataType
,
AccDataType
,
AElementOp
,
BElementOp
,
CElementOp
>
;
int
main
(
int
argc
,
char
*
argv
[])
{
bool
do_verification
=
true
;
int
init_method
=
1
;
bool
time_kernel
=
false
;
// GEMM shape
ck
::
index_t
M
=
3840
;
ck
::
index_t
N
=
4096
;
ck
::
index_t
K
=
4096
;
ck
::
index_t
StrideA
=
4096
;
ck
::
index_t
StrideB
=
4096
;
ck
::
index_t
StrideC
=
4096
;
if
(
argc
==
1
)
{
// do nothing
}
else
if
(
argc
==
4
)
{
do_verification
=
std
::
stoi
(
argv
[
1
]);
init_method
=
std
::
stoi
(
argv
[
2
]);
time_kernel
=
std
::
stoi
(
argv
[
3
]);
}
else
if
(
argc
==
10
)
{
do_verification
=
std
::
stoi
(
argv
[
1
]);
init_method
=
std
::
stoi
(
argv
[
2
]);
time_kernel
=
std
::
stoi
(
argv
[
3
]);
M
=
std
::
stoi
(
argv
[
4
]);
N
=
std
::
stoi
(
argv
[
5
]);
K
=
std
::
stoi
(
argv
[
6
]);
StrideA
=
std
::
stoi
(
argv
[
7
]);
StrideB
=
std
::
stoi
(
argv
[
8
]);
StrideC
=
std
::
stoi
(
argv
[
9
]);
}
else
{
printf
(
"arg1: verification (0=no, 1=yes)
\n
"
);
printf
(
"arg2: initialization (0=no init, 1=integer value, 2=decimal value)
\n
"
);
printf
(
"arg3: time kernel (0=n0, 1=yes)
\n
"
);
printf
(
"arg4 to 9: M (256x), N(128x), K(32x), StrideA, StrideB, StrideC
\n
"
);
exit
(
1
);
}
auto
f_host_tensor_descriptor
=
[](
std
::
size_t
row
,
std
::
size_t
col
,
std
::
size_t
stride
,
auto
layout
)
{
if
(
std
::
is_same
<
decltype
(
layout
),
ck
::
tensor_layout
::
gemm
::
RowMajor
>::
value
)
{
return
HostTensorDescriptor
(
std
::
vector
<
std
::
size_t
>
({
row
,
col
}),
std
::
vector
<
std
::
size_t
>
({
stride
,
1
}));
}
else
{
return
HostTensorDescriptor
(
std
::
vector
<
std
::
size_t
>
({
row
,
col
}),
std
::
vector
<
std
::
size_t
>
({
1
,
stride
}));
}
};
Tensor
<
ADataType
>
a_m_k
(
f_host_tensor_descriptor
(
M
,
K
,
StrideA
,
ALayout
{}));
Tensor
<
BDataType
>
b_k_n
(
f_host_tensor_descriptor
(
K
,
N
,
StrideB
,
BLayout
{}));
Tensor
<
CDataType
>
c_m_n_host_result
(
f_host_tensor_descriptor
(
M
,
N
,
StrideC
,
CLayout
{}));
Tensor
<
CDataType
>
c_m_n_device_result
(
f_host_tensor_descriptor
(
M
,
N
,
StrideC
,
CLayout
{}));
std
::
cout
<<
"a_m_k: "
<<
a_m_k
.
mDesc
<<
std
::
endl
;
std
::
cout
<<
"b_k_n: "
<<
b_k_n
.
mDesc
<<
std
::
endl
;
std
::
cout
<<
"c_m_n: "
<<
c_m_n_host_result
.
mDesc
<<
std
::
endl
;
switch
(
init_method
)
{
case
0
:
break
;
case
1
:
a_m_k
.
GenerateTensorValue
(
GeneratorTensor_2
<
ADataType
>
{
-
5
,
5
});
b_k_n
.
GenerateTensorValue
(
GeneratorTensor_2
<
BDataType
>
{
-
5
,
5
});
break
;
case
2
:
a_m_k
.
GenerateTensorValue
(
GeneratorTensor_3
<
ADataType
>
{
0.0
,
1.0
});
b_k_n
.
GenerateTensorValue
(
GeneratorTensor_3
<
BDataType
>
{
-
0.5
,
0.5
});
break
;
default:
a_m_k
.
GenerateTensorValue
(
GeneratorTensor_Sequential
<
0
>
{});
b_k_n
.
GenerateTensorValue
(
GeneratorTensor_Sequential
<
1
>
{});
}
DeviceMem
a_m_k_device_buf
(
sizeof
(
ADataType
)
*
a_m_k
.
mDesc
.
GetElementSpaceSize
());
DeviceMem
b_k_n_device_buf
(
sizeof
(
BDataType
)
*
b_k_n
.
mDesc
.
GetElementSpaceSize
());
DeviceMem
c_m_n_device_buf
(
sizeof
(
CDataType
)
*
c_m_n_device_result
.
mDesc
.
GetElementSpaceSize
());
a_m_k_device_buf
.
ToDevice
(
a_m_k
.
mData
.
data
());
b_k_n_device_buf
.
ToDevice
(
b_k_n
.
mData
.
data
());
auto
a_element_op
=
AElementOp
{};
auto
b_element_op
=
BElementOp
{};
auto
c_element_op
=
CElementOp
{};
// do GEMM
auto
gemm
=
DeviceGemmInstance
{};
auto
invoker
=
gemm
.
MakeInvoker
();
auto
argument
=
gemm
.
MakeArgument
(
static_cast
<
ADataType
*>
(
a_m_k_device_buf
.
GetDeviceBuffer
()),
static_cast
<
BDataType
*>
(
b_k_n_device_buf
.
GetDeviceBuffer
()),
static_cast
<
CDataType
*>
(
c_m_n_device_buf
.
GetDeviceBuffer
()),
M
,
N
,
K
,
StrideA
,
StrideB
,
StrideC
,
a_element_op
,
b_element_op
,
c_element_op
);
if
(
!
gemm
.
IsSupportedArgument
(
argument
))
{
std
::
cout
<<
gemm
.
GetTypeString
()
<<
" does not support this problem"
<<
std
::
endl
;
return
0
;
}
float
ave_time
=
invoker
.
Run
(
argument
,
StreamConfig
{
nullptr
,
time_kernel
});
std
::
size_t
flop
=
std
::
size_t
(
2
)
*
M
*
N
*
K
;
std
::
size_t
num_btype
=
sizeof
(
ADataType
)
*
M
*
K
+
sizeof
(
BDataType
)
*
K
*
N
+
sizeof
(
CDataType
)
*
M
*
N
;
float
tflops
=
static_cast
<
float
>
(
flop
)
/
1.E9
/
ave_time
;
float
gb_per_sec
=
num_btype
/
1.E6
/
ave_time
;
std
::
cout
<<
"Perf: "
<<
ave_time
<<
" ms, "
<<
tflops
<<
" TFlops, "
<<
gb_per_sec
<<
" GB/s, "
<<
gemm
.
GetTypeString
()
<<
std
::
endl
;
c_m_n_device_buf
.
FromDevice
(
c_m_n_device_result
.
mData
.
data
());
bool
pass
=
true
;
if
(
do_verification
)
{
auto
ref_gemm
=
ReferenceGemmInstance
{};
auto
ref_invoker
=
ref_gemm
.
MakeInvoker
();
auto
ref_argument
=
ref_gemm
.
MakeArgument
(
a_m_k
,
b_k_n
,
c_m_n_host_result
,
a_element_op
,
b_element_op
,
c_element_op
);
ref_invoker
.
Run
(
ref_argument
);
pass
=
ck
::
utils
::
check_err
(
c_m_n_device_result
.
mData
,
c_m_n_host_result
.
mData
);
}
#include "run_gemm_example.inc"
return
pass
?
0
:
1
;
}
int
main
(
int
argc
,
char
*
argv
[])
{
return
!
run_gemm_example
(
argc
,
argv
);
}
example/01_gemm/gemm_xdl_bf16.cpp
View file @
b89a88b5
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2022, Advanced Micro Devices, Inc. All rights reserved.
#include <iostream>
#include <numeric>
#include <initializer_list>
#include <cstdlib>
#include "common.hpp"
#include "ck/ck.hpp"
#include "ck/tensor_operation/gpu/device/device_gemm_xdl_cshuffle.hpp"
#include "ck/tensor_operation/gpu/element/element_wise_operation.hpp"
#include "ck/tensor_operation/gpu/device/gemm_specialization.hpp"
#include "ck/library/utility/device_memory.hpp"
#include "ck/library/utility/host_tensor.hpp"
#include "ck/library/utility/host_tensor_generator.hpp"
#include "ck/library/reference_tensor_operation/cpu/reference_gemm.hpp"
#include "ck/library/utility/check_err.hpp"
using
ADataType
=
ck
::
bhalf_t
;
using
BDataType
=
ck
::
bhalf_t
;
using
CDataType
=
ck
::
bhalf_t
;
using
AccDataType
=
float
;
using
CShuffleDataType
=
ck
::
bhalf_t
;
template
<
ck
::
index_t
...
Is
>
using
S
=
ck
::
Sequence
<
Is
...
>
;
using
ALayout
=
Row
;
using
BLayout
=
Col
;
using
CLayout
=
Row
;
using
BF16
=
ck
::
bhalf_t
;
using
F32
=
float
;
using
Row
=
ck
::
tensor_layout
::
gemm
::
RowMajor
;
using
Col
=
ck
::
tensor_layout
::
gemm
::
ColumnMajor
;
using
PassThrough
=
ck
::
tensor_operation
::
element_wise
::
PassThrough
;
using
ADataType
=
BF16
;
using
BDataType
=
BF16
;
using
CDataType
=
BF16
;
using
AccDataType
=
F32
;
using
ALayout
=
ck
::
tensor_layout
::
gemm
::
RowMajor
;
using
BLayout
=
ck
::
tensor_layout
::
gemm
::
ColumnMajor
;
using
CLayout
=
ck
::
tensor_layout
::
gemm
::
RowMajor
;
using
AElementOp
=
PassThrough
;
using
BElementOp
=
PassThrough
;
using
CElementOp
=
PassThrough
;
static
constexpr
auto
GemmDefault
=
ck
::
tensor_operation
::
device
::
GemmSpecialization
::
Default
;
// clang-format off
using
DeviceGemmInstance
=
ck
::
tensor_operation
::
device
::
DeviceGemm_Xdl_CShuffle
<
ALayout
,
// typename ALayout
BLayout
,
// typename BLayout
CLayout
,
// typename CLayout
ADataType
,
// typename ADataType
BDataType
,
// typename BDataType
CDataType
,
// typename CDataType
AccDataType
,
// typename GemmAccDataType
CDataType
,
// typename CShuffleDataType
PassThrough
,
// typename AElementwiseOperation
PassThrough
,
// typename BElementwiseOperation
PassThrough
,
// typename CElementwiseOperation
GemmDefault
,
// GemmSpecialization GemmSpec
1
,
// index_t NumGemmKPrefetchStage
256
,
// index_t BlockSize
256
,
// index_t MPerBlock
128
,
// index_t NPerBlock
32
,
// index_t KPerBlock
8
,
// index_t AK1
8
,
// index_t BK1
32
,
// index_t MPerXDL
32
,
// index_t NPerXDL
4
,
// index_t MXdlPerWave
2
,
// index_t NXdlPerWave
S
<
4
,
64
,
1
>
,
// typename ABlockTransferThreadClusterLengths_AK0_M_AK1
S
<
1
,
0
,
2
>
,
// typename ABlockTransferThreadClusterArrangeOrder
S
<
1
,
0
,
2
>
,
// typename ABlockTransferSrcAccessOrder
2
,
// index_t ABlockTransferSrcVectorDim
8
,
// index_t ABlockTransferSrcScalarPerVector
8
,
// index_t ABlockTransferDstScalarPerVector_AK1
1
,
// index_t ABlockLdsExtraM
S
<
4
,
64
,
1
>
,
// typename BBlockTransferThreadClusterLengths_BK0_N_BK1
S
<
1
,
0
,
2
>
,
// typename BBlockTransferThreadClusterArrangeOrder
S
<
1
,
0
,
2
>
,
// typename BBlockTransferSrcAccessOrder
2
,
// index_t BBlockTransferSrcVectorDim
8
,
// index_t BBlockTransferSrcScalarPerVector
8
,
// index_t BBlockTransferDstScalarPerVector_BK1
1
,
// index_t BBlockLdsExtraN
1
,
// index_t CShuffleMXdlPerWavePerShuffle
1
,
// index_t CShuffleNXdlPerWavePerShuffle
S
<
1
,
32
,
1
,
8
>
,
// typename CShuffleBlockTransferClusterLengths_MBlock_MPerBlock_NBlock_NPerBlock
8
>
;
// index_t CShuffleBlockTransferScalarPerVector_NPerBlock
// ######| ALayout| BLayout| CLayout| AData| BData| CData| AccData| CShuffle| A| B| C| GEMM| NumGemmK| Block| MPer| NPer| KPer| AK1| BK1| MPer| NPer| MXdl| NXdl| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockLds| BBlockTransfer| BBlockTransfer| BBlockTransfer| BlockTransfer| BBlockTransfer| BBlockTransfer| BBlockLds| CShuffle| CShuffle| CBlockTransferClusterLengths| CBlockTransfer|
// ######| | | | Type| Type| Type| Type| DataType| Elementwise| Elementwise| Elementwise| Spacialization| Prefetch| Size| Block| Block| Block| | | XDL| XDL| Per| Per| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| AddExtraM| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| AddExtraN| MXdlPerWave| NXdlPerWave| _MBlock_MWaveMPerXdl| ScalarPerVector|
// ######| | | | | | | | | Operation| Operation| Operation| | Stage| | | | | | | | | Wave| Wave| Lengths_K0_M_K1| ArrangeOrder| | | PerVector| PerVector_K1| | Lengths_K0_N_K1| ArrangeOrder| | | PerVector| PerVector_K1| | PerShuffle| PerShuffle| _NBlock_NWaveNPerXdl| _NWaveNPerXdl|
// ######| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
<
ALayout
,
BLayout
,
CLayout
,
ADataType
,
BDataType
,
CDataType
,
AccDataType
,
CShuffleDataType
,
AElementOp
,
BElementOp
,
CElementOp
,
GemmDefault
,
1
,
256
,
256
,
128
,
32
,
8
,
8
,
32
,
32
,
4
,
2
,
S
<
4
,
64
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
8
,
8
,
1
,
S
<
4
,
64
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
8
,
8
,
1
,
1
,
1
,
S
<
1
,
32
,
1
,
8
>
,
8
>
;
// clang-format on
using
ReferenceGemmInstance
=
ck
::
tensor_operation
::
host
::
ReferenceGemm
<
ADataType
,
BDataType
,
CDataType
,
AccDataType
,
PassThrough
,
PassThrough
,
PassThrough
>
;
int
main
(
int
argc
,
char
*
argv
[])
{
bool
do_verification
=
true
;
int
init_method
=
1
;
bool
time_kernel
=
false
;
// GEMM shape
ck
::
index_t
M
=
3840
;
ck
::
index_t
N
=
4096
;
ck
::
index_t
K
=
4096
;
ck
::
index_t
StrideA
=
4096
;
ck
::
index_t
StrideB
=
4096
;
ck
::
index_t
StrideC
=
4096
;
if
(
argc
==
4
)
{
do_verification
=
std
::
stoi
(
argv
[
1
]);
init_method
=
std
::
stoi
(
argv
[
2
]);
time_kernel
=
std
::
stoi
(
argv
[
3
]);
}
else
if
(
argc
==
10
)
{
do_verification
=
std
::
stoi
(
argv
[
1
]);
init_method
=
std
::
stoi
(
argv
[
2
]);
time_kernel
=
std
::
stoi
(
argv
[
3
]);
M
=
std
::
stoi
(
argv
[
4
]);
N
=
std
::
stoi
(
argv
[
5
]);
K
=
std
::
stoi
(
argv
[
6
]);
StrideA
=
std
::
stoi
(
argv
[
7
]);
StrideB
=
std
::
stoi
(
argv
[
8
]);
StrideC
=
std
::
stoi
(
argv
[
9
]);
}
else
{
printf
(
"arg1: verification (0=no, 1=yes)
\n
"
);
printf
(
"arg2: initialization (0=no init, 1=integer value, 2=decimal value)
\n
"
);
printf
(
"arg3: time kernel (0=n0, 1=yes)
\n
"
);
printf
(
"arg4 to 9: M (256x), N(128x), K(32x), StrideA, StrideB, StrideC
\n
"
);
exit
(
0
);
}
auto
f_host_tensor_descriptor
=
[](
std
::
size_t
row
,
std
::
size_t
col
,
std
::
size_t
stride
,
auto
layout
)
{
if
(
std
::
is_same
<
decltype
(
layout
),
ck
::
tensor_layout
::
gemm
::
RowMajor
>::
value
)
{
return
HostTensorDescriptor
(
std
::
vector
<
std
::
size_t
>
({
row
,
col
}),
std
::
vector
<
std
::
size_t
>
({
stride
,
1
}));
}
else
{
return
HostTensorDescriptor
(
std
::
vector
<
std
::
size_t
>
({
row
,
col
}),
std
::
vector
<
std
::
size_t
>
({
1
,
stride
}));
}
};
Tensor
<
ADataType
>
a_m_k
(
f_host_tensor_descriptor
(
M
,
K
,
StrideA
,
ALayout
{}));
Tensor
<
BDataType
>
b_k_n
(
f_host_tensor_descriptor
(
K
,
N
,
StrideB
,
BLayout
{}));
Tensor
<
CDataType
>
c_m_n_device_result
(
f_host_tensor_descriptor
(
M
,
N
,
StrideC
,
CLayout
{}));
std
::
cout
<<
"a_m_k: "
<<
a_m_k
.
mDesc
<<
std
::
endl
;
std
::
cout
<<
"b_k_n: "
<<
b_k_n
.
mDesc
<<
std
::
endl
;
std
::
cout
<<
"c_m_n: "
<<
c_m_n_device_result
.
mDesc
<<
std
::
endl
;
switch
(
init_method
)
{
case
0
:
break
;
case
1
:
a_m_k
.
GenerateTensorValue
(
GeneratorTensor_2
<
ADataType
>
{
-
5
,
5
});
b_k_n
.
GenerateTensorValue
(
GeneratorTensor_2
<
BDataType
>
{
-
5
,
5
});
break
;
default:
a_m_k
.
GenerateTensorValue
(
GeneratorTensor_3
<
ADataType
>
{
0.0
,
1.0
});
b_k_n
.
GenerateTensorValue
(
GeneratorTensor_3
<
BDataType
>
{
-
0.5
,
0.5
});
}
DeviceMem
a_m_k_device_buf
(
sizeof
(
ADataType
)
*
a_m_k
.
mDesc
.
GetElementSpaceSize
());
DeviceMem
b_k_n_device_buf
(
sizeof
(
BDataType
)
*
b_k_n
.
mDesc
.
GetElementSpaceSize
());
DeviceMem
c_m_n_device_buf
(
sizeof
(
CDataType
)
*
c_m_n_device_result
.
mDesc
.
GetElementSpaceSize
());
a_m_k_device_buf
.
ToDevice
(
a_m_k
.
mData
.
data
());
b_k_n_device_buf
.
ToDevice
(
b_k_n
.
mData
.
data
());
auto
a_element_op
=
PassThrough
{};
auto
b_element_op
=
PassThrough
{};
auto
c_element_op
=
PassThrough
{};
// do GEMM
auto
gemm
=
DeviceGemmInstance
{};
auto
invoker
=
gemm
.
MakeInvoker
();
auto
argument
=
gemm
.
MakeArgument
(
static_cast
<
ADataType
*>
(
a_m_k_device_buf
.
GetDeviceBuffer
()),
static_cast
<
BDataType
*>
(
b_k_n_device_buf
.
GetDeviceBuffer
()),
static_cast
<
CDataType
*>
(
c_m_n_device_buf
.
GetDeviceBuffer
()),
M
,
N
,
K
,
StrideA
,
StrideB
,
StrideC
,
a_element_op
,
b_element_op
,
c_element_op
);
if
(
!
gemm
.
IsSupportedArgument
(
argument
))
{
std
::
cout
<<
gemm
.
GetTypeString
()
<<
" does not support this problem"
<<
std
::
endl
;
return
0
;
}
float
ave_time
=
invoker
.
Run
(
argument
,
StreamConfig
{
nullptr
,
time_kernel
});
std
::
size_t
flop
=
std
::
size_t
(
2
)
*
M
*
N
*
K
;
std
::
size_t
num_btype
=
sizeof
(
ADataType
)
*
M
*
K
+
sizeof
(
BDataType
)
*
K
*
N
+
sizeof
(
CDataType
)
*
M
*
N
;
float
tflops
=
static_cast
<
float
>
(
flop
)
/
1.E9
/
ave_time
;
float
gb_per_sec
=
num_btype
/
1.E6
/
ave_time
;
std
::
cout
<<
"Perf: "
<<
ave_time
<<
" ms, "
<<
tflops
<<
" TFlops, "
<<
gb_per_sec
<<
" GB/s, "
<<
gemm
.
GetTypeString
()
<<
std
::
endl
;
c_m_n_device_buf
.
FromDevice
(
c_m_n_device_result
.
mData
.
data
());
if
(
do_verification
)
{
Tensor
<
CDataType
>
c_m_n_host_result
(
f_host_tensor_descriptor
(
M
,
N
,
StrideC
,
CLayout
{}));
auto
ref_gemm
=
ReferenceGemmInstance
{};
auto
ref_invoker
=
ref_gemm
.
MakeInvoker
();
auto
ref_argument
=
ref_gemm
.
MakeArgument
(
a_m_k
,
b_k_n
,
c_m_n_host_result
,
a_element_op
,
b_element_op
,
c_element_op
);
ref_invoker
.
Run
(
ref_argument
);
using
ReferenceGemmInstance
=
ck
::
tensor_operation
::
host
::
ReferenceGemm
<
ADataType
,
BDataType
,
CDataType
,
AccDataType
,
AElementOp
,
BElementOp
,
CElementOp
>
;
return
ck
::
utils
::
check_err
(
c_m_n_device_result
.
mData
,
c_m_n_host_result
.
mData
)
?
0
:
1
;
}
#include "run_gemm_example.inc"
return
0
;
}
int
main
(
int
argc
,
char
*
argv
[])
{
return
!
run_gemm_example
(
argc
,
argv
);
}
example/01_gemm/gemm_xdl_fp16.cpp
View file @
b89a88b5
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2022, Advanced Micro Devices, Inc. All rights reserved.
#include <iostream>
#include <numeric>
#include <initializer_list>
#include <cstdlib>
#include "common.hpp"
#include "ck/ck.hpp"
#include "ck/tensor_operation/gpu/device/gemm_specialization.hpp"
#include "ck/tensor_operation/gpu/device/device_gemm_xdl.hpp"
#include "ck/tensor_operation/gpu/device/device_gemm_xdl_cshuffle.hpp"
#include "ck/tensor_operation/gpu/device/device_gemm_xdl_waveletmodel_cshuffle.hpp"
#include "ck/tensor_operation/gpu/element/element_wise_operation.hpp"
#include "ck/library/utility/check_err.hpp"
#include "ck/library/utility/device_memory.hpp"
#include "ck/library/utility/host_tensor.hpp"
#include "ck/library/utility/host_tensor_generator.hpp"
#include "ck/library/reference_tensor_operation/cpu/reference_gemm.hpp"
template
<
ck
::
index_t
...
Is
>
using
S
=
ck
::
Sequence
<
Is
...
>
;
using
F16
=
ck
::
half_t
;
using
F32
=
float
;
using
Row
=
ck
::
tensor_layout
::
gemm
::
RowMajor
;
using
Col
=
ck
::
tensor_layout
::
gemm
::
ColumnMajor
;
using
PassThrough
=
ck
::
tensor_operation
::
element_wise
::
PassThrough
;
using
ADataType
=
F16
;
using
BDataType
=
F16
;
using
AccDataType
=
F32
;
using
CShuffleDataType
=
F32
;
using
CDataType
=
F16
;
using
ADataType
=
ck
::
half_t
;
using
BDataType
=
ck
::
half_t
;
using
AccDataType
=
float
;
using
CShuffleDataType
=
float
;
using
CDataType
=
ck
::
half_t
;
using
ALayout
=
Row
;
using
BLayout
=
Col
;
...
...
@@ -48,18 +25,20 @@ static constexpr auto GemmDefault = ck::tensor_operation::device::GemmSpecializa
// clang-format off
using
DeviceGemmInstance0
=
ck
::
tensor_operation
::
device
::
DeviceGemmXdl
//######| AData| BData| CData| AccData| ALayout| BLayout| CLayout| A| B| C| GEMM| Block| MPer| NPer| K0Per| K1| MPer| NPer| MXdl| NXdl| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockLds| BBlockTransfer| BBlockTransfer| BBlockTransfer| BlockTransfer| BBlockTransfer| BBlockTransfer| BBlockLds| CThreadTransfer| CThreadTransfer|
//######| Type| Type| Type| Type| | | | Elementwise| Elementwise| Elementwise|Spacialization| Size| Block| Block| Block| | XDL| XDL| Per| Per| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| AddExtraM| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| AddExtraN| SrcDstVectorDim| DstScalar|
//######| | | | | | | | Operation| Operation| Operation| | | | | | | | | Wave| Wave| Lengths_K0_M_K1| ArrangeOrder| | | PerVector| PerVector_K1| | Lengths_K0_N_K1| ArrangeOrder| | | PerVector| PerVector_K1| | | PerVector|
//######| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
<
ADataType
,
BDataType
,
CDataType
,
AccDataType
,
ALayout
,
BLayout
,
CLayout
,
AElementOp
,
BElementOp
,
CElementOp
,
GemmDefault
,
256
,
256
,
128
,
4
,
8
,
32
,
32
,
4
,
2
,
S
<
4
,
64
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
8
,
8
,
true
,
S
<
4
,
64
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
8
,
8
,
true
,
7
,
1
>
;
// ######| AData| BData| CData| AccData| ALayout| BLayout| CLayout| A| B| C| GEMM| Block| MPer| NPer| K0Per| K1| MPer| NPer| MXdl| NXdl| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockLds| BBlockTransfer| BBlockTransfer| BBlockTransfer| BlockTransfer| BBlockTransfer| BBlockTransfer| BBlockLds| CThreadTransfer| CThreadTransfer|
// ######| Type| Type| Type| Type| | | | Elementwise| Elementwise| Elementwise|Spacialization| Size| Block| Block| Block| | XDL| XDL| Per| Per| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| AddExtraM| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| AddExtraN| SrcDstVectorDim| DstScalar|
// ######| | | | | | | | Operation| Operation| Operation| | | | | | | | | Wave| Wave| Lengths_K0_M_K1| ArrangeOrder| | | PerVector| PerVector_K1| | Lengths_K0_N_K1| ArrangeOrder| | | PerVector| PerVector_K1| | | PerVector|
// ######| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
<
ADataType
,
BDataType
,
CDataType
,
AccDataType
,
ALayout
,
BLayout
,
CLayout
,
AElementOp
,
BElementOp
,
CElementOp
,
GemmDefault
,
256
,
256
,
128
,
4
,
8
,
32
,
32
,
4
,
2
,
S
<
4
,
64
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
8
,
8
,
true
,
S
<
4
,
64
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
8
,
8
,
true
,
7
,
1
>
;
// clang-format on
// clang-format off
using
DeviceGemmInstance1
=
ck
::
tensor_operation
::
device
::
DeviceGemm_Xdl_CShuffle
//######| ALayout| BLayout| CLayout| AData| BData| CData| AccData| CShuffle| A| B| C| GEMM| NumGemmK| Block| MPer| NPer| KPer| AK1| BK1| MPer| NPer| MXdl| NXdl| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockLds| BBlockTransfer| BBlockTransfer| BBlockTransfer| BlockTransfer| BBlockTransfer| BBlockTransfer| BBlockLds| CShuffle| CShuffle| CBlockTransferClusterLengths| CBlockTransfer|
//######| | | | Type| Type| Type| Type| DataType| Elementwise| Elementwise| Elementwise| Spacialization| Prefetch| Size| Block| Block| Block| | | XDL| XDL| Per| Per| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| AddExtraM| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| AddExtraN| MXdlPerWave| NXdlPerWave| _MBlock_MWaveMPerXdl| ScalarPerVector|
//######| | | | | | | | | Operation| Operation| Operation| | Stage| | | | | | | | | Wave| Wave| Lengths_K0_M_K1| ArrangeOrder| | | PerVector| PerVector_K1| | Lengths_K0_N_K1| ArrangeOrder| | | PerVector| PerVector_K1| | PerShuffle| PerShuffle| _NBlock_NWaveNPerXdl| _NWaveNPerXdl|
//######| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
<
ALayout
,
BLayout
,
CLayout
,
ADataType
,
BDataType
,
CDataType
,
AccDataType
,
CShuffleDataType
,
AElementOp
,
BElementOp
,
CElementOp
,
GemmDefault
,
1
,
256
,
256
,
128
,
32
,
8
,
8
,
32
,
32
,
4
,
2
,
S
<
4
,
64
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
8
,
8
,
1
,
S
<
4
,
64
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
8
,
8
,
1
,
1
,
1
,
S
<
1
,
32
,
1
,
8
>
,
8
>
;
//
######| ALayout| BLayout| CLayout| AData| BData| CData| AccData| CShuffle| A| B| C| GEMM| NumGemmK| Block| MPer| NPer| KPer| AK1| BK1| MPer| NPer| MXdl| NXdl| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockLds| BBlockTransfer| BBlockTransfer| BBlockTransfer| BlockTransfer| BBlockTransfer| BBlockTransfer| BBlockLds| CShuffle| CShuffle| CBlockTransferClusterLengths| CBlockTransfer|
//
######| | | | Type| Type| Type| Type| DataType| Elementwise| Elementwise| Elementwise| Spacialization| Prefetch| Size| Block| Block| Block| | | XDL| XDL| Per| Per| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| AddExtraM| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| AddExtraN| MXdlPerWave| NXdlPerWave| _MBlock_MWaveMPerXdl| ScalarPerVector|
//
######| | | | | | | | | Operation| Operation| Operation| | Stage| | | | | | | | | Wave| Wave| Lengths_K0_M_K1| ArrangeOrder| | | PerVector| PerVector_K1| | Lengths_K0_N_K1| ArrangeOrder| | | PerVector| PerVector_K1| | PerShuffle| PerShuffle| _NBlock_NWaveNPerXdl| _NWaveNPerXdl|
//
######| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
<
ALayout
,
BLayout
,
CLayout
,
ADataType
,
BDataType
,
CDataType
,
AccDataType
,
CShuffleDataType
,
AElementOp
,
BElementOp
,
CElementOp
,
GemmDefault
,
1
,
256
,
256
,
128
,
32
,
8
,
8
,
32
,
32
,
4
,
2
,
S
<
4
,
64
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
8
,
8
,
1
,
S
<
4
,
64
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
8
,
8
,
1
,
1
,
1
,
S
<
1
,
32
,
1
,
8
>
,
8
>
;
using
DeviceGemmInstance2
=
ck
::
tensor_operation
::
device
::
DeviceGemm_Xdl_WaveletModel_CShuffle
//######| ALayout| BLayout| CLayout| AData| BData| AccData| CShuffle| CData| A| B| C| GEMM| NumGemmK| ABBlockTransfer| BlockGemm| MPer| NPer| KPer| AK1| BK1| MPer| NPer| MXdl| NXdl| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockLds| BBlockTransfer| BBlockTransfer| BBlockTransfer| BlockTransfer| BBlockTransfer| BBlockTransfer| BBlockLds| CShuffle| CShuffle| CBlockTransferClusterLengths| CBlockTransfer|
...
...
@@ -74,162 +53,6 @@ using DeviceGemmInstance = DeviceGemmInstance2;
using
ReferenceGemmInstance
=
ck
::
tensor_operation
::
host
::
ReferenceGemm
<
ADataType
,
BDataType
,
CDataType
,
AccDataType
,
AElementOp
,
BElementOp
,
CElementOp
>
;
int
main
(
int
argc
,
char
*
argv
[])
{
bool
do_verification
=
true
;
int
init_method
=
1
;
bool
time_kernel
=
false
;
// GEMM shape
ck
::
index_t
M
=
3840
;
ck
::
index_t
N
=
4096
;
ck
::
index_t
K
=
4096
;
ck
::
index_t
StrideA
=
4096
;
ck
::
index_t
StrideB
=
4096
;
ck
::
index_t
StrideC
=
4096
;
if
(
argc
==
1
)
{
// use default case
}
else
if
(
argc
==
4
)
{
do_verification
=
std
::
stoi
(
argv
[
1
]);
init_method
=
std
::
stoi
(
argv
[
2
]);
time_kernel
=
std
::
stoi
(
argv
[
3
]);
}
else
if
(
argc
==
10
)
{
do_verification
=
std
::
stoi
(
argv
[
1
]);
init_method
=
std
::
stoi
(
argv
[
2
]);
time_kernel
=
std
::
stoi
(
argv
[
3
]);
M
=
std
::
stoi
(
argv
[
4
]);
N
=
std
::
stoi
(
argv
[
5
]);
K
=
std
::
stoi
(
argv
[
6
]);
StrideA
=
std
::
stoi
(
argv
[
7
]);
StrideB
=
std
::
stoi
(
argv
[
8
]);
StrideC
=
std
::
stoi
(
argv
[
9
]);
}
else
{
printf
(
"arg1: verification (0=no, 1=yes)
\n
"
);
printf
(
"arg2: initialization (0=no init, 1=integer value, 2=decimal value)
\n
"
);
printf
(
"arg3: time kernel (0=no, 1=yes)
\n
"
);
printf
(
"arg4 to 9: M (256x), N(128x), K(32x), StrideA, StrideB, StrideC
\n
"
);
exit
(
0
);
}
const
ck
::
index_t
PackedStrideA
=
ck
::
is_same_v
<
ALayout
,
Row
>
?
K
:
M
;
const
ck
::
index_t
PackedStrideB
=
ck
::
is_same_v
<
BLayout
,
Row
>
?
N
:
K
;
const
ck
::
index_t
PackedStrideC
=
ck
::
is_same_v
<
CLayout
,
Row
>
?
N
:
M
;
StrideA
=
(
StrideA
<
0
)
?
PackedStrideA
:
StrideA
;
StrideB
=
(
StrideB
<
0
)
?
PackedStrideB
:
StrideB
;
StrideC
=
(
StrideC
<
0
)
?
PackedStrideC
:
StrideC
;
auto
f_host_tensor_descriptor
=
[](
std
::
size_t
row
,
std
::
size_t
col
,
std
::
size_t
stride
,
auto
layout
)
{
if
(
std
::
is_same
<
decltype
(
layout
),
ck
::
tensor_layout
::
gemm
::
RowMajor
>::
value
)
{
return
HostTensorDescriptor
(
std
::
vector
<
std
::
size_t
>
({
row
,
col
}),
std
::
vector
<
std
::
size_t
>
({
stride
,
1
}));
}
else
{
return
HostTensorDescriptor
(
std
::
vector
<
std
::
size_t
>
({
row
,
col
}),
std
::
vector
<
std
::
size_t
>
({
1
,
stride
}));
}
};
Tensor
<
ADataType
>
a_m_k
(
f_host_tensor_descriptor
(
M
,
K
,
StrideA
,
ALayout
{}));
Tensor
<
BDataType
>
b_k_n
(
f_host_tensor_descriptor
(
K
,
N
,
StrideB
,
BLayout
{}));
Tensor
<
CDataType
>
c_m_n_host_result
(
f_host_tensor_descriptor
(
M
,
N
,
StrideC
,
CLayout
{}));
Tensor
<
CDataType
>
c_m_n_device_result
(
f_host_tensor_descriptor
(
M
,
N
,
StrideC
,
CLayout
{}));
std
::
cout
<<
"a_m_k: "
<<
a_m_k
.
mDesc
<<
std
::
endl
;
std
::
cout
<<
"b_k_n: "
<<
b_k_n
.
mDesc
<<
std
::
endl
;
std
::
cout
<<
"c_m_n: "
<<
c_m_n_host_result
.
mDesc
<<
std
::
endl
;
switch
(
init_method
)
{
case
0
:
break
;
case
1
:
a_m_k
.
GenerateTensorValue
(
GeneratorTensor_2
<
ADataType
>
{
-
5
,
5
});
b_k_n
.
GenerateTensorValue
(
GeneratorTensor_2
<
BDataType
>
{
-
5
,
5
});
break
;
case
2
:
a_m_k
.
GenerateTensorValue
(
GeneratorTensor_3
<
ADataType
>
{
0.0
,
1.0
});
b_k_n
.
GenerateTensorValue
(
GeneratorTensor_3
<
BDataType
>
{
-
0.5
,
0.5
});
break
;
default:
a_m_k
.
GenerateTensorValue
(
GeneratorTensor_Sequential
<
0
>
{});
b_k_n
.
GenerateTensorValue
(
GeneratorTensor_Sequential
<
1
>
{});
}
DeviceMem
a_m_k_device_buf
(
sizeof
(
ADataType
)
*
a_m_k
.
mDesc
.
GetElementSpaceSize
());
DeviceMem
b_k_n_device_buf
(
sizeof
(
BDataType
)
*
b_k_n
.
mDesc
.
GetElementSpaceSize
());
DeviceMem
c_m_n_device_buf
(
sizeof
(
CDataType
)
*
c_m_n_device_result
.
mDesc
.
GetElementSpaceSize
());
a_m_k_device_buf
.
ToDevice
(
a_m_k
.
mData
.
data
());
b_k_n_device_buf
.
ToDevice
(
b_k_n
.
mData
.
data
());
auto
a_element_op
=
AElementOp
{};
auto
b_element_op
=
BElementOp
{};
auto
c_element_op
=
CElementOp
{};
// do GEMM
auto
gemm
=
DeviceGemmInstance
{};
auto
invoker
=
gemm
.
MakeInvoker
();
auto
argument
=
gemm
.
MakeArgument
(
static_cast
<
ADataType
*>
(
a_m_k_device_buf
.
GetDeviceBuffer
()),
static_cast
<
BDataType
*>
(
b_k_n_device_buf
.
GetDeviceBuffer
()),
static_cast
<
CDataType
*>
(
c_m_n_device_buf
.
GetDeviceBuffer
()),
M
,
N
,
K
,
StrideA
,
StrideB
,
StrideC
,
a_element_op
,
b_element_op
,
c_element_op
);
if
(
!
gemm
.
IsSupportedArgument
(
argument
))
{
std
::
cout
<<
gemm
.
GetTypeString
()
<<
" does not support this problem"
<<
std
::
endl
;
return
0
;
}
float
ave_time
=
invoker
.
Run
(
argument
,
StreamConfig
{
nullptr
,
time_kernel
});
std
::
size_t
flop
=
std
::
size_t
(
2
)
*
M
*
N
*
K
;
std
::
size_t
num_btype
=
sizeof
(
ADataType
)
*
M
*
K
+
sizeof
(
BDataType
)
*
K
*
N
+
sizeof
(
CDataType
)
*
M
*
N
;
float
tflops
=
static_cast
<
float
>
(
flop
)
/
1.E9
/
ave_time
;
float
gb_per_sec
=
num_btype
/
1.E6
/
ave_time
;
std
::
cout
<<
"Perf: "
<<
ave_time
<<
" ms, "
<<
tflops
<<
" TFlops, "
<<
gb_per_sec
<<
" GB/s, "
<<
gemm
.
GetTypeString
()
<<
std
::
endl
;
c_m_n_device_buf
.
FromDevice
(
c_m_n_device_result
.
mData
.
data
());
if
(
do_verification
)
{
auto
ref_gemm
=
ReferenceGemmInstance
{};
auto
ref_invoker
=
ref_gemm
.
MakeInvoker
();
auto
ref_argument
=
ref_gemm
.
MakeArgument
(
a_m_k
,
b_k_n
,
c_m_n_host_result
,
a_element_op
,
b_element_op
,
c_element_op
);
ref_invoker
.
Run
(
ref_argument
);
return
ck
::
utils
::
check_err
(
c_m_n_device_result
.
mData
,
c_m_n_host_result
.
mData
)
?
0
:
1
;
}
#include "run_gemm_example.inc"
return
0
;
}
int
main
(
int
argc
,
char
*
argv
[])
{
return
!
run_gemm_example
(
argc
,
argv
);
}
example/01_gemm/gemm_xdl_fp64.cpp
View file @
b89a88b5
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2022, Advanced Micro Devices, Inc. All rights reserved.
#include <iostream>
#include <numeric>
#include <initializer_list>
#include <cstdlib>
#include "common.hpp"
#include "ck/ck.hpp"
#include "ck/tensor_operation/gpu/device/tensor_layout.hpp"
#include "ck/tensor_operation/gpu/device/gemm_specialization.hpp"
#include "ck/tensor_operation/gpu/device/device_gemm_xdl.hpp"
#include "ck/tensor_operation/gpu/element/element_wise_operation.hpp"
#include "ck/library/utility/device_memory.hpp"
#include "ck/library/utility/host_tensor.hpp"
#include "ck/library/utility/host_tensor_generator.hpp"
#include "ck/library/reference_tensor_operation/cpu/reference_gemm.hpp"
#include "ck/library/utility/check_err.hpp"
template
<
ck
::
index_t
...
Is
>
using
S
=
ck
::
Sequence
<
Is
...
>
;
using
F64
=
double
;
using
ADataType
=
double
;
using
BDataType
=
double
;
using
CDataType
=
double
;
using
AccDataType
=
double
;
using
Row
=
ck
::
tensor_layout
::
gemm
::
RowMajor
;
using
Col
=
ck
::
tensor_layout
::
gemm
::
ColumnMajor
;
using
PassThrough
=
ck
::
tensor_operation
::
element_wise
::
PassThrough
;
using
ALayout
=
ck
::
tensor_layout
::
gemm
::
RowMajor
;
using
BLayout
=
ck
::
tensor_layout
::
gemm
::
ColumnMajor
;
using
CLayout
=
ck
::
tensor_layout
::
gemm
::
RowMajor
;
using
ALayout
=
Row
;
using
BLayout
=
Col
;
using
CLayout
=
Row
;
using
AElementOp
=
ck
::
tensor_operation
::
element_wise
::
PassThrough
;
using
BElementOp
=
ck
::
tensor_operation
::
element_wise
::
PassThrough
;
using
CElementOp
=
ck
::
tensor_operation
::
element_wise
::
PassThrough
;
using
AElementOp
=
PassThrough
;
using
BElementOp
=
PassThrough
;
using
CElementOp
=
PassThrough
;
static
constexpr
auto
GemmDefault
=
ck
::
tensor_operation
::
device
::
GemmSpecialization
::
Default
;
// clang-format off
using
DeviceGemmInstance
=
ck
::
tensor_operation
::
device
::
DeviceGemmXdl
//
####
######| AData| BData| CData| AccData| ALayout| BLayout| CLayout| A| B| C| GEMM| Block| MPer| NPer| K0Per| K1| MPer| NPer| MXdl| NXdl| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockLds| BBlockTransfer| BBlockTransfer| BBlockTransfer| BlockTransfer| BBlockTransfer| BBlockTransfer| BBlockLds| CThreadTransfer| CThreadTransfer|
//
####
######| Type| Type| Type| Type| | | | Elementwise| Elementwise| Elementwise|Spacialization| Size| Block| Block| Block| | XDL| XDL| Per| Per| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| AddExtraM| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| AddExtraN| SrcDstVectorDim| DstScalar|
//
####
######|
| | |
| | | | Operation| Operation| Operation| | | | | | | | | Wave| Wave| Lengths_K0_M_K1| ArrangeOrder| | | PerVector| PerVector_K1| | Lengths_K0_N_K1| ArrangeOrder| | | PerVector| PerVector_K1| | | PerVector|
//
####
######|
| | |
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
//
######|
AData|
BData|
CData|
AccData| ALayout| BLayout| CLayout| A| B| C| GEMM| Block| MPer| NPer| K0Per| K1| MPer| NPer| MXdl| NXdl| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockLds| BBlockTransfer| BBlockTransfer| BBlockTransfer| BlockTransfer| BBlockTransfer| BBlockTransfer| BBlockLds| CThreadTransfer| CThreadTransfer|
//
######|
Type|
Type|
Type|
Type| | | | Elementwise| Elementwise| Elementwise|Spacialization| Size| Block| Block| Block| | XDL| XDL| Per| Per| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| AddExtraM| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| AddExtraN| SrcDstVectorDim| DstScalar|
//
######|
| | |
| | | | Operation| Operation| Operation| | | | | | | | | Wave| Wave| Lengths_K0_M_K1| ArrangeOrder| | | PerVector| PerVector_K1| | Lengths_K0_N_K1| ArrangeOrder| | | PerVector| PerVector_K1| | | PerVector|
//
######|
| | |
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
#if 0
< F64, F64, F64, F64, Row, Col, Row, PassThrough, PassThrough, PassThrough
, GemmDefault, 64, 32, 32, 4, 1, 16, 16, 2, 2, S<4, 16, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 1, 1, true, S<4, 16, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 1, 1, true, 7, 1>;
< ADataType, BDataType, CDataType, AccDataType, ALayout, BLayout, CLayout, AElementOp, BElementOp, CElementOp
, GemmDefault,
64, 32, 32, 4, 1, 16, 16, 2, 2, S<4, 16, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 1, 1, true, S<4, 16, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 1, 1, true, 7, 1>;
#else
<
F64
,
F64
,
F64
,
F64
,
Row
,
Col
,
Row
,
PassThrough
,
PassThrough
,
PassThrough
,
GemmDefault
,
256
,
128
,
128
,
4
,
2
,
16
,
16
,
4
,
4
,
S
<
4
,
64
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
2
,
2
,
true
,
S
<
4
,
64
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
2
,
2
,
true
,
7
,
1
>
;
<
ADataType
,
BDataType
,
CDataType
,
AccDataType
,
ALayout
,
BLayout
,
CLayout
,
AElementOp
,
BElementOp
,
CElementOp
,
GemmDefault
,
256
,
128
,
128
,
4
,
2
,
16
,
16
,
4
,
4
,
S
<
4
,
64
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
2
,
2
,
true
,
S
<
4
,
64
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
2
,
2
,
true
,
7
,
1
>
;
#endif
// clang-format on
...
...
@@ -64,176 +41,6 @@ using DeviceGemmInstance = ck::tensor_operation::device::DeviceGemmXdl
BElementOp
,
CElementOp
>
;
template
<
typename
DataType
>
std
::
ostream
&
show_2d_matrix
(
std
::
ostream
&
os
,
Tensor
<
DataType
>&
matrix
)
{
os
<<
"["
<<
std
::
endl
;
for
(
int
x
=
0
;
x
<
matrix
.
mDesc
.
GetLengths
()[
0
];
x
++
)
{
os
<<
"["
;
for
(
int
y
=
0
;
y
<
matrix
.
mDesc
.
GetLengths
()[
1
];
y
++
)
{
os
<<
std
::
setw
(
4
)
<<
static_cast
<
float
>
(
matrix
(
x
,
y
));
}
os
<<
"]"
<<
std
::
endl
;
}
os
<<
"]"
;
return
os
;
}
int
main
(
int
argc
,
char
*
argv
[])
{
bool
do_verification
=
0
;
int
init_method
=
0
;
bool
time_kernel
=
false
;
// GEMM shape
ck
::
index_t
M
=
3840
;
ck
::
index_t
N
=
4096
;
ck
::
index_t
K
=
4096
;
ck
::
index_t
StrideA
=
4096
;
ck
::
index_t
StrideB
=
4096
;
ck
::
index_t
StrideC
=
4096
;
if
(
argc
==
4
)
{
do_verification
=
std
::
stoi
(
argv
[
1
]);
init_method
=
std
::
stoi
(
argv
[
2
]);
time_kernel
=
std
::
stoi
(
argv
[
3
]);
}
else
if
(
argc
==
10
)
{
do_verification
=
std
::
stoi
(
argv
[
1
]);
init_method
=
std
::
stoi
(
argv
[
2
]);
time_kernel
=
std
::
stoi
(
argv
[
3
]);
M
=
std
::
stoi
(
argv
[
4
]);
N
=
std
::
stoi
(
argv
[
5
]);
K
=
std
::
stoi
(
argv
[
6
]);
StrideA
=
std
::
stoi
(
argv
[
7
]);
StrideB
=
std
::
stoi
(
argv
[
8
]);
StrideC
=
std
::
stoi
(
argv
[
9
]);
}
else
{
printf
(
"arg1: verification (0=no, 1=yes)
\n
"
);
printf
(
"arg2: initialization (0=no init, 1=integer value, 2=decimal value)
\n
"
);
printf
(
"arg3: run kernel # of times (>1)
\n
"
);
printf
(
"arg4 to 9: M (256x), N(128x), K(32x), StrideA, StrideB, StrideC
\n
"
);
exit
(
0
);
}
auto
f_host_tensor_descriptor
=
[](
std
::
size_t
row
,
std
::
size_t
col
,
std
::
size_t
stride
,
auto
layout
)
{
if
(
std
::
is_same
<
decltype
(
layout
),
ck
::
tensor_layout
::
gemm
::
RowMajor
>::
value
)
{
return
HostTensorDescriptor
(
std
::
vector
<
std
::
size_t
>
({
row
,
col
}),
std
::
vector
<
std
::
size_t
>
({
stride
,
1
}));
}
else
{
return
HostTensorDescriptor
(
std
::
vector
<
std
::
size_t
>
({
row
,
col
}),
std
::
vector
<
std
::
size_t
>
({
1
,
stride
}));
}
};
Tensor
<
ADataType
>
a_m_k
(
f_host_tensor_descriptor
(
M
,
K
,
StrideA
,
ALayout
{}));
Tensor
<
BDataType
>
b_k_n
(
f_host_tensor_descriptor
(
K
,
N
,
StrideB
,
BLayout
{}));
Tensor
<
CDataType
>
c_m_n_host_result
(
f_host_tensor_descriptor
(
M
,
N
,
StrideC
,
CLayout
{}));
Tensor
<
CDataType
>
c_m_n_device_result
(
f_host_tensor_descriptor
(
M
,
N
,
StrideC
,
CLayout
{}));
std
::
cout
<<
"data type: "
<<
typeid
(
ADataType
{}).
name
()
<<
std
::
endl
;
std
::
cout
<<
"a_m_k: "
<<
a_m_k
.
mDesc
<<
std
::
endl
;
std
::
cout
<<
"b_k_n: "
<<
b_k_n
.
mDesc
<<
std
::
endl
;
std
::
cout
<<
"c_m_n: "
<<
c_m_n_host_result
.
mDesc
<<
std
::
endl
;
switch
(
init_method
)
{
case
0
:
break
;
case
1
:
a_m_k
.
GenerateTensorValue
(
GeneratorTensor_2
<
ADataType
>
{
-
5
,
5
});
b_k_n
.
GenerateTensorValue
(
GeneratorTensor_2
<
BDataType
>
{
-
5
,
5
});
break
;
case
2
:
a_m_k
.
GenerateTensorValue
(
GeneratorTensor_3
<
ADataType
>
{
0.0
,
1.0
});
b_k_n
.
GenerateTensorValue
(
GeneratorTensor_3
<
BDataType
>
{
-
0.5
,
0.5
});
break
;
default:
a_m_k
.
GenerateTensorValue
(
GeneratorTensor_1
<
ADataType
>
{
1
});
b_k_n
.
GenerateTensorValue
(
GeneratorTensor_1
<
BDataType
>
{
1
});
}
DeviceMem
a_m_k_device_buf
(
sizeof
(
ADataType
)
*
a_m_k
.
mDesc
.
GetElementSpaceSize
());
DeviceMem
b_k_n_device_buf
(
sizeof
(
BDataType
)
*
b_k_n
.
mDesc
.
GetElementSpaceSize
());
DeviceMem
c_m_n_device_buf
(
sizeof
(
CDataType
)
*
c_m_n_device_result
.
mDesc
.
GetElementSpaceSize
());
a_m_k_device_buf
.
ToDevice
(
a_m_k
.
mData
.
data
());
b_k_n_device_buf
.
ToDevice
(
b_k_n
.
mData
.
data
());
auto
a_element_op
=
AElementOp
{};
auto
b_element_op
=
BElementOp
{};
auto
c_element_op
=
CElementOp
{};
// do GEMM
auto
gemm
=
DeviceGemmInstance
{};
auto
invoker
=
gemm
.
MakeInvoker
();
auto
argument
=
gemm
.
MakeArgument
(
static_cast
<
ADataType
*>
(
a_m_k_device_buf
.
GetDeviceBuffer
()),
static_cast
<
BDataType
*>
(
b_k_n_device_buf
.
GetDeviceBuffer
()),
static_cast
<
CDataType
*>
(
c_m_n_device_buf
.
GetDeviceBuffer
()),
M
,
N
,
K
,
StrideA
,
StrideB
,
StrideC
,
a_element_op
,
b_element_op
,
c_element_op
);
if
(
!
gemm
.
IsSupportedArgument
(
argument
))
{
std
::
cout
<<
gemm
.
GetTypeString
()
<<
" does not support this problem"
<<
std
::
endl
;
return
0
;
}
float
ave_time
=
invoker
.
Run
(
argument
,
StreamConfig
{
nullptr
,
time_kernel
});
std
::
size_t
flop
=
std
::
size_t
(
2
)
*
M
*
N
*
K
;
std
::
size_t
num_btype
=
sizeof
(
ADataType
)
*
M
*
K
+
sizeof
(
BDataType
)
*
K
*
N
+
sizeof
(
CDataType
)
*
M
*
N
;
float
tflops
=
static_cast
<
float
>
(
flop
)
/
1.E9
/
ave_time
;
float
gb_per_sec
=
num_btype
/
1.E6
/
ave_time
;
std
::
cout
<<
"Perf: "
<<
ave_time
<<
" ms, "
<<
tflops
<<
" TFlops, "
<<
gb_per_sec
<<
" GB/s, "
<<
gemm
.
GetTypeString
()
<<
std
::
endl
;
c_m_n_device_buf
.
FromDevice
(
c_m_n_device_result
.
mData
.
data
());
if
(
do_verification
)
{
auto
ref_gemm
=
ReferenceGemmInstance
{};
auto
ref_invoker
=
ref_gemm
.
MakeInvoker
();
auto
ref_argument
=
ref_gemm
.
MakeArgument
(
a_m_k
,
b_k_n
,
c_m_n_host_result
,
a_element_op
,
b_element_op
,
c_element_op
);
ref_invoker
.
Run
(
ref_argument
);
#if 0
{
show_2d_matrix(std::cout << "a : ", a_m_k) << std::endl;
show_2d_matrix(std::cout << "b: ", b_k_n) << std::endl;
show_2d_matrix(std::cout << "c_device: ", c_m_n_device_result) << std::endl;
show_2d_matrix(std::cout << "c_host :", c_m_n_host_result) << std::endl;
}
#endif
return
ck
::
utils
::
check_err
(
c_m_n_device_result
.
mData
,
c_m_n_host_result
.
mData
)
?
0
:
1
;
}
#include "run_gemm_example.inc"
return
0
;
}
int
main
(
int
argc
,
char
*
argv
[])
{
return
!
run_gemm_example
(
argc
,
argv
);
}
Prev
1
2
3
4
5
…
14
Next
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
.
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment