Skip to content
GitLab
Menu
Projects
Groups
Snippets
Loading...
Help
Help
Support
Community forum
Keyboard shortcuts
?
Submit feedback
Contribute to GitLab
Sign in / Register
Toggle navigation
Menu
Open sidebar
gaoqiong
composable_kernel
Commits
b89a88b5
Commit
b89a88b5
authored
Sep 19, 2022
by
Adam Osewski
Browse files
Merge branch 'develop' into wavelet_model
parents
41d5fca7
43c898f6
Changes
261
Hide whitespace changes
Inline
Side-by-side
Showing
20 changed files
with
2347 additions
and
1247 deletions
+2347
-1247
include/ck/stream_config.hpp
include/ck/stream_config.hpp
+1
-0
include/ck/tensor_operation/gpu/block/blockwise_gemm_xdlops.hpp
...e/ck/tensor_operation/gpu/block/blockwise_gemm_xdlops.hpp
+5
-7
include/ck/tensor_operation/gpu/block/blockwise_softmax.hpp
include/ck/tensor_operation/gpu/block/blockwise_softmax.hpp
+32
-13
include/ck/tensor_operation/gpu/device/device_5ary_elementwise.hpp
...k/tensor_operation/gpu/device/device_5ary_elementwise.hpp
+0
-353
include/ck/tensor_operation/gpu/device/device_batched_contraction_multiple_d_xdl_cshuffle.hpp
...ce/device_batched_contraction_multiple_d_xdl_cshuffle.hpp
+19
-0
include/ck/tensor_operation/gpu/device/device_batched_gemm_gemm.hpp
.../tensor_operation/gpu/device/device_batched_gemm_gemm.hpp
+0
-27
include/ck/tensor_operation/gpu/device/device_batched_gemm_gemm_xdl_cshuffle.hpp
...tion/gpu/device/device_batched_gemm_gemm_xdl_cshuffle.hpp
+75
-239
include/ck/tensor_operation/gpu/device/device_batched_gemm_multi_d_xdl.hpp
..._operation/gpu/device/device_batched_gemm_multi_d_xdl.hpp
+1
-0
include/ck/tensor_operation/gpu/device/device_batched_gemm_multiple_d_gemm_multiple_d.hpp
...device/device_batched_gemm_multiple_d_gemm_multiple_d.hpp
+72
-0
include/ck/tensor_operation/gpu/device/device_batched_gemm_multiple_d_gemm_multiple_d_xdl_cshuffle.hpp
..._batched_gemm_multiple_d_gemm_multiple_d_xdl_cshuffle.hpp
+951
-0
include/ck/tensor_operation/gpu/device/device_batched_gemm_softmax_gemm.hpp
...operation/gpu/device/device_batched_gemm_softmax_gemm.hpp
+0
-28
include/ck/tensor_operation/gpu/device/device_batched_gemm_softmax_gemm_permute.hpp
...n/gpu/device/device_batched_gemm_softmax_gemm_permute.hpp
+59
-0
include/ck/tensor_operation/gpu/device/device_batched_gemm_softmax_gemm_permute_xdl_cshuffle.hpp
...device_batched_gemm_softmax_gemm_permute_xdl_cshuffle.hpp
+881
-0
include/ck/tensor_operation/gpu/device/device_batched_gemm_softmax_gemm_xdl_cshuffle.hpp
.../device/device_batched_gemm_softmax_gemm_xdl_cshuffle.hpp
+80
-240
include/ck/tensor_operation/gpu/device/device_batchnorm_forward.hpp
.../tensor_operation/gpu/device/device_batchnorm_forward.hpp
+44
-0
include/ck/tensor_operation/gpu/device/device_batchnorm_infer.hpp
...ck/tensor_operation/gpu/device/device_batchnorm_infer.hpp
+41
-0
include/ck/tensor_operation/gpu/device/device_binary_elementwise.hpp
...tensor_operation/gpu/device/device_binary_elementwise.hpp
+0
-247
include/ck/tensor_operation/gpu/device/device_cgemm_4gemm_xdl_cshuffle.hpp
..._operation/gpu/device/device_cgemm_4gemm_xdl_cshuffle.hpp
+86
-91
include/ck/tensor_operation/gpu/device/device_conv2d_backward_weight_xdl_c_shuffle_nhwc_kyxc_nhwk.hpp
...e_conv2d_backward_weight_xdl_c_shuffle_nhwc_kyxc_nhwk.hpp
+0
-1
include/ck/tensor_operation/gpu/device/device_convnd_bwd_weight_nwc_kxc_nwk_xdl_cshuffle.hpp
...ice/device_convnd_bwd_weight_nwc_kxc_nwk_xdl_cshuffle.hpp
+0
-1
No files found.
include/ck/stream_config.hpp
View file @
b89a88b5
...
@@ -10,4 +10,5 @@ struct StreamConfig
...
@@ -10,4 +10,5 @@ struct StreamConfig
{
{
hipStream_t
stream_id_
=
nullptr
;
hipStream_t
stream_id_
=
nullptr
;
bool
time_kernel_
=
false
;
bool
time_kernel_
=
false
;
int
log_level_
=
0
;
};
};
include/ck/tensor_operation/gpu/block/blockwise_gemm_xdlops.hpp
View file @
b89a88b5
...
@@ -701,9 +701,7 @@ struct BlockwiseGemmXdlops_v2
...
@@ -701,9 +701,7 @@ struct BlockwiseGemmXdlops_v2
const
auto
waveId_m
=
wave_idx
[
I0
];
const
auto
waveId_m
=
wave_idx
[
I0
];
const
auto
waveId_n
=
wave_idx
[
I1
];
const
auto
waveId_n
=
wave_idx
[
I1
];
const
auto
tmp
=
xdlops_gemm
.
GetBeginOfThreadBlk
(
xdlops_i
,
blk_i
);
const
auto
blk_idx
=
xdlops_gemm
.
GetBeginOfThreadBlk
(
xdlops_i
,
blk_i
);
const
auto
blk_idx
=
TransposeC
?
make_multi_index
(
tmp
[
I1
],
tmp
[
I0
])
:
make_multi_index
(
tmp
[
I0
],
tmp
[
I1
]);
constexpr
auto
mrepeat_mwave_mperxdl_to_m_adaptor
=
make_single_stage_tensor_adaptor
(
constexpr
auto
mrepeat_mwave_mperxdl_to_m_adaptor
=
make_single_stage_tensor_adaptor
(
make_tuple
(
make_unmerge_transform
(
make_tuple
(
MRepeat
,
MWaves
,
MPerXDL
))),
make_tuple
(
make_unmerge_transform
(
make_tuple
(
MRepeat
,
MWaves
,
MPerXDL
))),
...
@@ -922,13 +920,13 @@ struct BlockwiseGemmXdlops_v2
...
@@ -922,13 +920,13 @@ struct BlockwiseGemmXdlops_v2
}
}
protected:
protected:
// A[M0, M1, M2, KP
erThread
]
// A[M0, M1, M2, KP
ack
]
static
constexpr
auto
a_thread_desc_
=
static
constexpr
auto
a_thread_desc_
=
make_naive_tensor_descriptor_packed
(
make_tuple
(
I1
,
I1
,
I1
,
Number
<
KP
erThread
>
{}));
make_naive_tensor_descriptor_packed
(
make_tuple
(
I1
,
I1
,
I1
,
Number
<
KP
ack
>
{}));
// B[N0, N1, N2, KP
erThread
]
// B[N0, N1, N2, KP
ack
]
static
constexpr
auto
b_thread_desc_
=
static
constexpr
auto
b_thread_desc_
=
make_naive_tensor_descriptor_packed
(
make_tuple
(
I1
,
I1
,
I1
,
Number
<
KP
erThread
>
{}));
make_naive_tensor_descriptor_packed
(
make_tuple
(
I1
,
I1
,
I1
,
Number
<
KP
ack
>
{}));
// C[M, N, NumRegXdlops]
// C[M, N, NumRegXdlops]
static
constexpr
auto
c_thread_desc_
=
make_naive_tensor_descriptor_packed
(
static
constexpr
auto
c_thread_desc_
=
make_naive_tensor_descriptor_packed
(
...
...
include/ck/tensor_operation/gpu/block/blockwise_softmax.hpp
View file @
b89a88b5
...
@@ -16,7 +16,8 @@ template <index_t BlockSize,
...
@@ -16,7 +16,8 @@ template <index_t BlockSize,
typename
AccDataType
,
typename
AccDataType
,
typename
ThreadMap_M_K
,
// thread_id to m_k
typename
ThreadMap_M_K
,
// thread_id to m_k
typename
ThreadClusterDesc_M_K
,
typename
ThreadClusterDesc_M_K
,
typename
ThreadSliceDesc_M_K
>
typename
ThreadSliceDesc_M_K
,
bool
IgnoreNaN
=
false
>
struct
BlockwiseSoftmax
struct
BlockwiseSoftmax
{
{
static
constexpr
auto
I0
=
Number
<
0
>
{};
static
constexpr
auto
I0
=
Number
<
0
>
{};
...
@@ -27,11 +28,33 @@ struct BlockwiseSoftmax
...
@@ -27,11 +28,33 @@ struct BlockwiseSoftmax
using
ThreadSliceDesc_M
=
decltype
(
using
ThreadSliceDesc_M
=
decltype
(
make_naive_tensor_descriptor_packed
(
make_tuple
(
ThreadSliceDesc_M_K
{}.
GetLength
(
I0
))));
make_naive_tensor_descriptor_packed
(
make_tuple
(
ThreadSliceDesc_M_K
{}.
GetLength
(
I0
))));
using
ThreadwiseMaxReduce
=
ThreadwiseReduction
<
AccDataType
,
using
ThreadwiseMaxReduce
=
typename
conditional
<
ThreadSliceDesc_M_K
,
IgnoreNaN
,
ThreadSliceDesc_M
,
ThreadwiseReduction
<
AccDataType
,
reduce
::
Max
,
ThreadSliceDesc_M_K
,
false
>
;
ThreadSliceDesc_M
,
reduce
::
Max
,
false
,
detail
::
AccumulateWithNanIgnore
<
reduce
::
Max
,
AccDataType
>>
,
ThreadwiseReduction
<
AccDataType
,
ThreadSliceDesc_M_K
,
ThreadSliceDesc_M
,
reduce
::
Max
,
false
>>::
type
;
using
ThreadwiseSumReduce
=
typename
conditional
<
IgnoreNaN
,
ThreadwiseReduction
<
AccDataType
,
ThreadSliceDesc_M_K
,
ThreadSliceDesc_M
,
reduce
::
Add
,
false
,
detail
::
AccumulateWithNanIgnore
<
reduce
::
Add
,
AccDataType
>>
,
ThreadwiseReduction
<
AccDataType
,
ThreadSliceDesc_M_K
,
ThreadSliceDesc_M
,
reduce
::
Add
,
false
>>::
type
;
using
ThreadClusterLengths_M_K
=
decltype
(
ThreadClusterDesc_M_K
{}.
GetLengths
());
using
ThreadClusterLengths_M_K
=
decltype
(
ThreadClusterDesc_M_K
{}.
GetLengths
());
...
@@ -49,12 +72,6 @@ struct BlockwiseSoftmax
...
@@ -49,12 +72,6 @@ struct BlockwiseSoftmax
reduce
::
Add
,
reduce
::
Add
,
false
>
;
false
>
;
using
ThreadwiseSumReduce
=
ThreadwiseReduction
<
AccDataType
,
ThreadSliceDesc_M_K
,
ThreadSliceDesc_M
,
reduce
::
Add
,
false
>
;
using
BufferType
=
StaticBuffer
<
AddressSpaceEnum
::
Vgpr
,
AccDataType
,
MRepeat
,
true
>
;
using
BufferType
=
StaticBuffer
<
AddressSpaceEnum
::
Vgpr
,
AccDataType
,
MRepeat
,
true
>
;
template
<
typename
CThreadBuffer
,
typename
WorkspaceBuffer
>
template
<
typename
CThreadBuffer
,
typename
WorkspaceBuffer
>
...
@@ -74,7 +91,9 @@ struct BlockwiseSoftmax
...
@@ -74,7 +91,9 @@ struct BlockwiseSoftmax
static_for
<
0
,
MRepeat
,
1
>
{}([
&
](
auto
iM
)
{
static_for
<
0
,
MRepeat
,
1
>
{}([
&
](
auto
iM
)
{
static_for
<
0
,
KRepeat
,
1
>
{}([
&
](
auto
iK
)
{
static_for
<
0
,
KRepeat
,
1
>
{}([
&
](
auto
iK
)
{
auto
offset
=
Number
<
ThreadSliceDesc_M_K
{}.
CalculateOffset
(
make_tuple
(
iM
,
iK
))
>
{};
auto
offset
=
Number
<
ThreadSliceDesc_M_K
{}.
CalculateOffset
(
make_tuple
(
iM
,
iK
))
>
{};
in_thread_buf
(
offset
)
=
math
::
exp
(
in_thread_buf
[
offset
]
-
max_value_buf
(
iM
));
in_thread_buf
(
offset
)
=
IgnoreNaN
&&
ck
::
math
::
isnan
(
in_thread_buf
[
offset
])
?
0
:
math
::
exp
(
in_thread_buf
[
offset
]
-
max_value_buf
(
iM
));
});
});
});
});
...
...
include/ck/tensor_operation/gpu/device/device_5ary_elementwise.hpp
deleted
100644 → 0
View file @
41d5fca7
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2022, Advanced Micro Devices, Inc. All rights reserved.
#pragma once
#include <iostream>
#include <sstream>
#include <vector>
#include "ck/utility/common_header.hpp"
#include "ck/tensor_description/tensor_descriptor.hpp"
#include "ck/tensor_description/tensor_descriptor_helper.hpp"
#include "ck/tensor_operation/gpu/device/device_elementwise.hpp"
#include "ck/tensor_operation/gpu/grid/gridwise_5ary_Elementwise_1d.hpp"
#include "ck/host_utility/device_prop.hpp"
#include "ck/host_utility/kernel_launch.hpp"
namespace
ck
{
namespace
tensor_operation
{
namespace
device
{
template
<
typename
ADataType
,
typename
BDataType
,
typename
CDataType
,
typename
DDataType
,
typename
EDataType
,
typename
FDataType
,
typename
ComputeDataType
,
typename
ElementwiseFunctor
,
index_t
NDim
,
index_t
MPerThread
,
index_t
AScalarPerVector
,
index_t
BScalarPerVector
,
index_t
CScalarPerVector
,
index_t
DScalarPerVector
,
index_t
EScalarPerVector
,
index_t
FScalarPerVector
>
struct
Device5AryElementwise
:
public
DeviceElementwise
<
5
,
1
,
NDim
,
ElementwiseFunctor
>
{
static
constexpr
auto
I0
=
Number
<
0
>
{};
template
<
typename
Desc_M
>
static
auto
PadDescriptor_M_1d
(
Desc_M
desc_m
,
index_t
gridSize
,
index_t
blockSize
)
{
const
auto
m
=
desc_m
.
GetLength
(
I0
);
const
index_t
loop_step
=
gridSize
*
blockSize
*
MPerThread
;
const
auto
pad
=
math
::
integer_least_multiple
(
m
,
loop_step
)
-
m
;
const
auto
desc_m_pad
=
transform_tensor_descriptor
(
desc_m
,
make_tuple
(
make_right_pad_transform
(
m
,
pad
)),
make_tuple
(
Sequence
<
0
>
{}),
make_tuple
(
Sequence
<
0
>
{}));
return
desc_m_pad
;
}
static
auto
MakeDescriptor_M
(
const
std
::
vector
<
index_t
>&
lengths
,
const
std
::
vector
<
index_t
>&
stride
,
index_t
gridSize
,
index_t
blockSize
)
{
auto
tupleOfShape
=
generate_tuple
([
&
](
auto
I
)
{
return
lengths
[
I
];
},
Number
<
NDim
>
{});
auto
tupleOfStride
=
generate_tuple
([
&
](
auto
I
)
{
return
stride
[
I
];
},
Number
<
NDim
>
{});
// nd desc - [s0, s1, s2, ...]
const
auto
desc
=
make_naive_tensor_descriptor
(
tupleOfShape
,
tupleOfStride
);
// merge nd to 1d desc - [s0 * s1 * ...]
if
constexpr
(
NDim
>
1
)
{
const
auto
desc_m
=
transform_tensor_descriptor
(
desc
,
make_tuple
(
make_merge_transform
(
tupleOfShape
)),
make_tuple
(
generate_sequence_v2
([
&
](
auto
I
)
{
return
I
;
},
Number
<
NDim
>
{})),
make_tuple
(
Sequence
<
0
>
{}));
return
PadDescriptor_M_1d
(
desc_m
,
gridSize
,
blockSize
);
}
else
return
PadDescriptor_M_1d
(
desc
,
gridSize
,
blockSize
);
}
using
AGridDesc_M
=
decltype
(
MakeDescriptor_M
({
1
,
1
},
{
1
,
1
},
1
,
1
));
using
BGridDesc_M
=
decltype
(
MakeDescriptor_M
({
1
,
1
},
{
1
,
1
},
1
,
1
));
using
CGridDesc_M
=
decltype
(
MakeDescriptor_M
({
1
,
1
},
{
1
,
1
},
1
,
1
));
using
DGridDesc_M
=
decltype
(
MakeDescriptor_M
({
1
,
1
},
{
1
,
1
},
1
,
1
));
using
EGridDesc_M
=
decltype
(
MakeDescriptor_M
({
1
,
1
},
{
1
,
1
},
1
,
1
));
using
FGridDesc_M
=
decltype
(
MakeDescriptor_M
({
1
,
1
},
{
1
,
1
},
1
,
1
));
using
Gridwise5AryEltwise
=
Gridwise5AryElementwise_1D
<
ADataType
,
BDataType
,
CDataType
,
DDataType
,
EDataType
,
FDataType
,
ComputeDataType
,
AGridDesc_M
,
BGridDesc_M
,
CGridDesc_M
,
DGridDesc_M
,
EGridDesc_M
,
FGridDesc_M
,
ElementwiseFunctor
,
MPerThread
,
AScalarPerVector
,
BScalarPerVector
,
CScalarPerVector
,
DScalarPerVector
,
EScalarPerVector
,
FScalarPerVector
>
;
struct
Argument
:
public
BaseArgument
{
Argument
(
const
ADataType
*
p_a
,
const
BDataType
*
p_b
,
const
CDataType
*
p_c
,
const
DDataType
*
p_d
,
const
EDataType
*
p_e
,
FDataType
*
p_f
,
const
std
::
vector
<
index_t
>&
lengths
,
const
std
::
vector
<
index_t
>&
a_strides
,
const
std
::
vector
<
index_t
>&
b_strides
,
const
std
::
vector
<
index_t
>&
c_strides
,
const
std
::
vector
<
index_t
>&
d_strides
,
const
std
::
vector
<
index_t
>&
e_strides
,
const
std
::
vector
<
index_t
>&
f_strides
,
ElementwiseFunctor
functor
)
:
p_a_
(
p_a
),
p_b_
(
p_b
),
p_c_
(
p_c
),
p_d_
(
p_d
),
p_e_
(
p_e
),
p_f_
(
p_f
),
lengths_
(
lengths
),
a_strides_
(
a_strides
),
b_strides_
(
b_strides
),
c_strides_
(
c_strides
),
d_strides_
(
d_strides
),
e_strides_
(
e_strides
),
f_strides_
(
f_strides
),
functor_
(
functor
),
blockSize_
(
256
),
gridSize_
(
120
)
// FIXME - Calculate the grid size by number of CU in the future
{
a_grid_desc_m_
=
MakeDescriptor_M
(
lengths
,
a_strides
,
gridSize_
,
blockSize_
);
b_grid_desc_m_
=
MakeDescriptor_M
(
lengths
,
b_strides
,
gridSize_
,
blockSize_
);
c_grid_desc_m_
=
MakeDescriptor_M
(
lengths
,
c_strides
,
gridSize_
,
blockSize_
);
d_grid_desc_m_
=
MakeDescriptor_M
(
lengths
,
d_strides
,
gridSize_
,
blockSize_
);
e_grid_desc_m_
=
MakeDescriptor_M
(
lengths
,
e_strides
,
gridSize_
,
blockSize_
);
f_grid_desc_m_
=
MakeDescriptor_M
(
lengths
,
f_strides
,
gridSize_
,
blockSize_
);
}
const
ADataType
*
p_a_
;
const
BDataType
*
p_b_
;
const
CDataType
*
p_c_
;
const
DDataType
*
p_d_
;
const
EDataType
*
p_e_
;
FDataType
*
p_f_
;
std
::
vector
<
index_t
>
lengths_
;
AGridDesc_M
a_grid_desc_m_
;
BGridDesc_M
b_grid_desc_m_
;
CGridDesc_M
c_grid_desc_m_
;
DGridDesc_M
d_grid_desc_m_
;
EGridDesc_M
e_grid_desc_m_
;
FGridDesc_M
f_grid_desc_m_
;
std
::
vector
<
index_t
>
a_strides_
;
std
::
vector
<
index_t
>
b_strides_
;
std
::
vector
<
index_t
>
c_strides_
;
std
::
vector
<
index_t
>
d_strides_
;
std
::
vector
<
index_t
>
e_strides_
;
std
::
vector
<
index_t
>
f_strides_
;
ElementwiseFunctor
functor_
;
index_t
blockSize_
;
index_t
gridSize_
;
};
struct
Invoker
:
public
BaseInvoker
{
float
Run
(
const
Argument
&
arg
,
const
StreamConfig
&
stream_config
=
StreamConfig
{})
{
const
auto
kernel
=
kernel_5ary_elementwise_1d
<
Gridwise5AryEltwise
,
ADataType
,
BDataType
,
CDataType
,
DDataType
,
EDataType
,
FDataType
,
AGridDesc_M
,
BGridDesc_M
,
CGridDesc_M
,
DGridDesc_M
,
EGridDesc_M
,
FGridDesc_M
,
ElementwiseFunctor
>
;
float
elapsed_time
=
launch_and_time_kernel
(
stream_config
,
kernel
,
dim3
(
arg
.
gridSize_
),
dim3
(
arg
.
blockSize_
),
0
,
arg
.
p_a_
,
arg
.
p_b_
,
arg
.
p_c_
,
arg
.
p_d_
,
arg
.
p_e_
,
arg
.
p_f_
,
arg
.
a_grid_desc_m_
,
arg
.
b_grid_desc_m_
,
arg
.
c_grid_desc_m_
,
arg
.
d_grid_desc_m_
,
arg
.
e_grid_desc_m_
,
arg
.
f_grid_desc_m_
,
arg
.
functor_
);
return
elapsed_time
;
}
// polymorphic
float
Run
(
const
BaseArgument
*
p_arg
,
const
StreamConfig
&
stream_config
=
StreamConfig
{})
override
{
return
Run
(
*
dynamic_cast
<
const
Argument
*>
(
p_arg
),
stream_config
);
}
};
bool
IsSupportedArgument
(
const
BaseArgument
&
p_arg
)
{
return
IsSupportedArgument
(
&
p_arg
);
}
bool
IsSupportedArgument
(
const
BaseArgument
*
p_arg
)
override
{
const
Argument
*
pArg
=
dynamic_cast
<
const
Argument
*>
(
p_arg
);
if
(
pArg
==
nullptr
)
return
false
;
if
(
pArg
->
lengths_
.
size
()
!=
NDim
)
return
false
;
if
(
pArg
->
lengths_
.
back
()
%
MPerThread
!=
0
)
return
false
;
auto
IsScalarPerVectorValid
=
[](
bool
isLastDimensionCoalesced
,
int
scalarPerVector
)
{
bool
ret
=
true
;
if
(
!
isLastDimensionCoalesced
)
ret
=
scalarPerVector
==
1
;
else
ret
=
MPerThread
%
scalarPerVector
==
0
;
return
ret
;
};
if
(
!
IsScalarPerVectorValid
(
pArg
->
a_strides_
.
back
()
==
1
,
AScalarPerVector
))
return
false
;
if
(
!
IsScalarPerVectorValid
(
pArg
->
b_strides_
.
back
()
==
1
,
BScalarPerVector
))
return
false
;
if
(
!
IsScalarPerVectorValid
(
pArg
->
c_strides_
.
back
()
==
1
,
CScalarPerVector
))
return
false
;
if
(
!
IsScalarPerVectorValid
(
pArg
->
d_strides_
.
back
()
==
1
,
DScalarPerVector
))
return
false
;
if
(
!
IsScalarPerVectorValid
(
pArg
->
e_strides_
.
back
()
==
1
,
EScalarPerVector
))
return
false
;
if
(
!
IsScalarPerVectorValid
(
pArg
->
f_strides_
.
back
()
==
1
,
FScalarPerVector
))
return
false
;
return
true
;
};
static
auto
MakeArgument
(
std
::
array
<
const
void
*
,
5
>
p_inputs
,
std
::
array
<
void
*
,
1
>
p_outputs
,
std
::
vector
<
index_t
>
lengths
,
std
::
vector
<
index_t
>
a_strides
,
std
::
vector
<
index_t
>
b_strides
,
std
::
vector
<
index_t
>
c_strides
,
std
::
vector
<
index_t
>
d_strides
,
std
::
vector
<
index_t
>
e_strides
,
std
::
vector
<
index_t
>
f_strides
,
ElementwiseFunctor
functor
)
{
return
Argument
{
static_cast
<
const
ADataType
*>
(
p_inputs
[
0
]),
static_cast
<
const
BDataType
*>
(
p_inputs
[
1
]),
static_cast
<
const
CDataType
*>
(
p_inputs
[
2
]),
static_cast
<
const
DDataType
*>
(
p_inputs
[
3
]),
static_cast
<
const
EDataType
*>
(
p_inputs
[
4
]),
static_cast
<
FDataType
*>
(
p_outputs
[
0
]),
lengths
,
a_strides
,
b_strides
,
c_strides
,
d_strides
,
e_strides
,
f_strides
,
functor
};
}
std
::
unique_ptr
<
BaseArgument
>
MakeArgumentPointer
(
std
::
array
<
const
void
*
,
5
>
p_inputs
,
std
::
array
<
void
*
,
1
>
p_outputs
,
std
::
vector
<
index_t
>
lengths
,
std
::
vector
<
std
::
vector
<
index_t
>>
input_strides
,
std
::
vector
<
std
::
vector
<
index_t
>>
output_strides
,
ElementwiseFunctor
functor
)
override
{
return
std
::
make_unique
<
Argument
>
(
static_cast
<
const
ADataType
*>
(
p_inputs
[
0
]),
static_cast
<
const
BDataType
*>
(
p_inputs
[
1
]),
static_cast
<
const
CDataType
*>
(
p_inputs
[
2
]),
static_cast
<
const
DDataType
*>
(
p_inputs
[
3
]),
static_cast
<
const
EDataType
*>
(
p_inputs
[
4
]),
static_cast
<
FDataType
*>
(
p_outputs
[
0
]),
lengths
,
input_strides
[
0
],
input_strides
[
1
],
input_strides
[
2
],
input_strides
[
3
],
input_strides
[
4
],
output_strides
[
0
],
functor
);
}
static
auto
MakeInvoker
()
{
return
Invoker
{};
}
std
::
unique_ptr
<
BaseInvoker
>
MakeInvokerPointer
()
override
{
return
std
::
make_unique
<
Invoker
>
();
}
// polymorphic
std
::
string
GetTypeString
()
const
override
{
auto
str
=
std
::
stringstream
();
// clang-format off
str
<<
"Device5aryElementwise"
<<
"<"
<<
"NDim = "
<<
NDim
<<
"MPerThread = "
<<
MPerThread
<<
"AScalarPerVector = "
<<
AScalarPerVector
<<
"BScalarPerVector = "
<<
BScalarPerVector
<<
"CScalarPerVector = "
<<
CScalarPerVector
<<
"DScalarPerVector = "
<<
DScalarPerVector
<<
"EScalarPerVector = "
<<
EScalarPerVector
<<
"FScalarPerVector = "
<<
FScalarPerVector
<<
">"
;
// clang-format on
return
str
.
str
();
}
};
// namespace device
}
// namespace device
}
// namespace tensor_operation
}
// namespace ck
include/ck/tensor_operation/gpu/device/device_batched_contraction_multiple_d_xdl_cshuffle.hpp
View file @
b89a88b5
...
@@ -129,6 +129,25 @@ namespace device {
...
@@ -129,6 +129,25 @@ namespace device {
// B[G0, G1, ..., N0, N1, N2, ..., K0, K1, K2, ...]
// B[G0, G1, ..., N0, N1, N2, ..., K0, K1, K2, ...]
// D[G0, G1, ..., M0, M1, M2, ..., N0, N1, N2, ...]
// D[G0, G1, ..., M0, M1, M2, ..., N0, N1, N2, ...]
// E[G0, G1, ..., M0, M1, M2, ..., N0, N1, N2, ...]
// E[G0, G1, ..., M0, M1, M2, ..., N0, N1, N2, ...]
// FIXME: TensorSpecialization::Packed specialization does not cover all packed tensor cases, it
// merely degenerates into TensorSpecialization::Default with NumDimG/M/N/K = 1
//
// Detail- Packed tensor satisfies
// stride_0 = 1
// stride_i = stride_{i - 1} * extent_{i - 1}
// So tensor
// [G0, G1, G2, M, N]
// transposed into tensor
// [G0, G2, G1, M, N]
// with strides
// [G2 * G1 * M * N, G1 * M * N, M * N, N, 1]
// is again a packed tensor. MakeGridDescriptor() currently just merges dimensions and ignores some
// strides from input tensor extents so finer dimension information is lost. Merging dimensions is
// essentially a degenerated case of TensorSpecialization::Default with NumDimG/M/N/K = 1.
//
// Might need to expose dimension order to the interface to fully support
// TensorSpecialization::Packed.
template
<
index_t
NumDimG
,
template
<
index_t
NumDimG
,
index_t
NumDimM
,
index_t
NumDimM
,
index_t
NumDimN
,
index_t
NumDimN
,
...
...
include/ck/tensor_operation/gpu/device/device_batched_gemm_gemm.hpp
View file @
b89a88b5
...
@@ -54,33 +54,6 @@ struct DeviceBatchedGemmGemm : public BaseOperator
...
@@ -54,33 +54,6 @@ struct DeviceBatchedGemmGemm : public BaseOperator
virtual
std
::
unique_ptr
<
BaseInvoker
>
MakeInvokerPointer
()
=
0
;
virtual
std
::
unique_ptr
<
BaseInvoker
>
MakeInvokerPointer
()
=
0
;
};
};
template
<
typename
ALayout
,
typename
B0Layout
,
typename
B1Layout
,
typename
CLayout
,
typename
ADataType
,
typename
B0DataType
,
typename
B1DataType
,
typename
CDataType
,
typename
AElementwiseOperation
,
typename
B0ElementwiseOperation
,
typename
Acc0ElementwiseOperation
,
typename
B1ElementwiseOperation
,
typename
CElementwiseOperation
>
using
DeviceBatchedGemmGemmPtr
=
std
::
unique_ptr
<
DeviceBatchedGemmGemm
<
ALayout
,
B0Layout
,
B1Layout
,
CLayout
,
ADataType
,
B0DataType
,
B1DataType
,
CDataType
,
AElementwiseOperation
,
B0ElementwiseOperation
,
Acc0ElementwiseOperation
,
B1ElementwiseOperation
,
CElementwiseOperation
>>
;
}
// namespace device
}
// namespace device
}
// namespace tensor_operation
}
// namespace tensor_operation
}
// namespace ck
}
// namespace ck
include/ck/tensor_operation/gpu/device/device_batched_gemm_gemm_xdl_cshuffle.hpp
View file @
b89a88b5
...
@@ -12,9 +12,11 @@
...
@@ -12,9 +12,11 @@
#include "ck/tensor_operation/gpu/device/tensor_layout.hpp"
#include "ck/tensor_operation/gpu/device/tensor_layout.hpp"
#include "ck/tensor_operation/gpu/device/device_batched_gemm_gemm.hpp"
#include "ck/tensor_operation/gpu/device/device_batched_gemm_gemm.hpp"
#include "ck/tensor_operation/gpu/device/gemm_specialization.hpp"
#include "ck/tensor_operation/gpu/device/gemm_specialization.hpp"
#include "ck/tensor_operation/gpu/device/matrix_padder.hpp"
#include "ck/tensor_operation/gpu/grid/gridwise_batched_gemm_gemm_xdl_cshuffle_v1.hpp"
#include "ck/tensor_operation/gpu/grid/gridwise_batched_gemm_gemm_xdl_cshuffle_v1.hpp"
#include "ck/host_utility/device_prop.hpp"
#include "ck/host_utility/device_prop.hpp"
#include "ck/host_utility/kernel_launch.hpp"
#include "ck/host_utility/kernel_launch.hpp"
#include "ck/host_utility/io.hpp"
namespace
ck
{
namespace
ck
{
namespace
tensor_operation
{
namespace
tensor_operation
{
...
@@ -188,6 +190,10 @@ struct DeviceBatchedGemmGemm_Xdl_CShuffle : public DeviceBatchedGemmGemm<ALayout
...
@@ -188,6 +190,10 @@ struct DeviceBatchedGemmGemm_Xdl_CShuffle : public DeviceBatchedGemmGemm<ALayout
static
constexpr
auto
I1
=
Number
<
1
>
{};
static
constexpr
auto
I1
=
Number
<
1
>
{};
static
constexpr
auto
I2
=
Number
<
2
>
{};
static
constexpr
auto
I2
=
Number
<
2
>
{};
static
constexpr
auto
matrix_padder
=
GemmGemmPadder
<
GemmSpec
,
index_t
,
index_t
,
index_t
,
index_t
>
{
MPerBlock
,
NPerBlock
,
KPerBlock
,
Gemm1NPerBlock
};
static
auto
MakeAGridDescriptor_AK0_M_AK1
(
index_t
MRaw
,
index_t
KRaw
,
index_t
StrideA
)
static
auto
MakeAGridDescriptor_AK0_M_AK1
(
index_t
MRaw
,
index_t
KRaw
,
index_t
StrideA
)
{
{
const
auto
a_grid_desc_mraw_kraw
=
[
&
]()
{
const
auto
a_grid_desc_mraw_kraw
=
[
&
]()
{
...
@@ -203,92 +209,18 @@ struct DeviceBatchedGemmGemm_Xdl_CShuffle : public DeviceBatchedGemmGemm<ALayout
...
@@ -203,92 +209,18 @@ struct DeviceBatchedGemmGemm_Xdl_CShuffle : public DeviceBatchedGemmGemm<ALayout
}
}
}();
}();
const
auto
M
=
math
::
integer_divide_ceil
(
MRaw
,
MPerBlock
)
*
MPerBlock
;
const
auto
a_grid_desc_m_k
=
matrix_padder
.
PadADescriptor_M_K
(
a_grid_desc_mraw_kraw
);
const
auto
K
=
math
::
integer_divide_ceil
(
KRaw
,
KPerBlock
)
*
KPerBlock
;
const
auto
MPad
=
M
-
MRaw
;
const
auto
KPad
=
K
-
KRaw
;
if
constexpr
(
GemmSpec
==
GemmSpecialization
::
MKPadding
||
GemmSpec
==
GemmSpecialization
::
MNKPadding
)
{
// pad both M and K
assert
(
K
%
AK1
==
0
);
const
auto
AK0
=
K
/
AK1
;
const
auto
a_grid_desc_m_k
=
transform_tensor_descriptor
(
a_grid_desc_mraw_kraw
,
make_tuple
(
make_right_pad_transform
(
MRaw
,
MPad
),
make_right_pad_transform
(
KRaw
,
KPad
)),
make_tuple
(
Sequence
<
0
>
{},
Sequence
<
1
>
{}),
make_tuple
(
Sequence
<
0
>
{},
Sequence
<
1
>
{}));
const
auto
a_grid_desc_ak0_m_ak1
=
transform_tensor_descriptor
(
a_grid_desc_m_k
,
make_tuple
(
make_unmerge_transform
(
make_tuple
(
AK0
,
AK1
)),
make_pass_through_transform
(
M
)),
make_tuple
(
Sequence
<
1
>
{},
Sequence
<
0
>
{}),
make_tuple
(
Sequence
<
0
,
2
>
{},
Sequence
<
1
>
{}));
return
a_grid_desc_ak0_m_ak1
;
}
else
if
constexpr
(
GemmSpec
==
GemmSpecialization
::
MPadding
||
GemmSpec
==
GemmSpecialization
::
MNPadding
)
{
// pad M, but not K
assert
(
KRaw
%
AK1
==
0
);
const
auto
AK0
=
KRaw
/
AK1
;
const
auto
a_grid_desc_ak0_m_ak1
=
transform_tensor_descriptor
(
a_grid_desc_mraw_kraw
,
make_tuple
(
make_unmerge_transform
(
make_tuple
(
AK0
,
AK1
)),
make_right_pad_transform
(
MRaw
,
MPad
)),
make_tuple
(
Sequence
<
1
>
{},
Sequence
<
0
>
{}),
make_tuple
(
Sequence
<
0
,
2
>
{},
Sequence
<
1
>
{}));
return
a_grid_desc_ak0_m_ak1
;
}
else
if
constexpr
(
GemmSpec
==
GemmSpecialization
::
KPadding
||
GemmSpec
==
GemmSpecialization
::
NKPadding
)
{
// pad K, but not M
assert
(
K
%
AK1
==
0
);
const
auto
AK0
=
K
/
AK1
;
const
auto
a_grid_desc_m_k
=
transform_tensor_descriptor
(
a_grid_desc_mraw_kraw
,
make_tuple
(
make_pass_through_transform
(
MRaw
),
make_right_pad_transform
(
KRaw
,
KPad
)),
make_tuple
(
Sequence
<
0
>
{},
Sequence
<
1
>
{}),
make_tuple
(
Sequence
<
0
>
{},
Sequence
<
1
>
{}));
const
auto
a_grid_desc_ak0_m_ak1
=
const
auto
M
=
a_grid_desc_m_k
.
GetLength
(
I0
);
transform_tensor_descriptor
(
a_grid_desc_m_k
,
const
auto
K
=
a_grid_desc_m_k
.
GetLength
(
I1
);
make_tuple
(
make_unmerge_transform
(
make_tuple
(
AK0
,
AK1
)),
make_pass_through_transform
(
MRaw
)),
make_tuple
(
Sequence
<
1
>
{},
Sequence
<
0
>
{}),
make_tuple
(
Sequence
<
0
,
2
>
{},
Sequence
<
1
>
{}));
return
a_grid_desc_ak0_m_ak1
;
const
auto
AK0
=
K
/
AK1
;
}
else
{
// not pad M or K
assert
(
KRaw
%
AK1
==
0
);
const
auto
AK0
=
KRaw
/
AK1
;
const
auto
a_grid_desc_ak0_m_ak1
=
transform_tensor_descriptor
(
a_grid_desc_mraw_kraw
,
make_tuple
(
make_unmerge_transform
(
make_tuple
(
AK0
,
AK1
)),
make_pass_through_transform
(
MRaw
)),
make_tuple
(
Sequence
<
1
>
{},
Sequence
<
0
>
{}),
make_tuple
(
Sequence
<
0
,
2
>
{},
Sequence
<
1
>
{}));
return
a_grid_desc_ak0_m_ak1
;
return
transform_tensor_descriptor
(
a_grid_desc_m_k
,
}
make_tuple
(
make_unmerge_transform
(
make_tuple
(
AK0
,
AK1
)),
make_pass_through_transform
(
M
)),
make_tuple
(
Sequence
<
1
>
{},
Sequence
<
0
>
{}),
make_tuple
(
Sequence
<
0
,
2
>
{},
Sequence
<
1
>
{}));
}
}
static
auto
MakeBGridDescriptor_BK0_N_BK1
(
index_t
KRaw
,
index_t
NRaw
,
index_t
StrideB
)
static
auto
MakeBGridDescriptor_BK0_N_BK1
(
index_t
KRaw
,
index_t
NRaw
,
index_t
StrideB
)
...
@@ -306,84 +238,18 @@ struct DeviceBatchedGemmGemm_Xdl_CShuffle : public DeviceBatchedGemmGemm<ALayout
...
@@ -306,84 +238,18 @@ struct DeviceBatchedGemmGemm_Xdl_CShuffle : public DeviceBatchedGemmGemm<ALayout
}
}
}();
}();
const
auto
N
=
math
::
integer_divide_ceil
(
NRaw
,
NPerBlock
)
*
NPerBlock
;
const
auto
b_grid_desc_n_k
=
matrix_padder
.
PadBDescriptor_N_K
(
b_grid_desc_nraw_kraw
);
const
auto
K
=
math
::
integer_divide_ceil
(
KRaw
,
KPerBlock
)
*
KPerBlock
;
const
auto
NPad
=
N
-
NRaw
;
const
auto
KPad
=
K
-
KRaw
;
if
constexpr
(
GemmSpec
==
GemmSpecialization
::
NKPadding
||
const
auto
N
=
b_grid_desc_n_k
.
GetLength
(
I0
);
GemmSpec
==
GemmSpecialization
::
MNKPadding
)
const
auto
K
=
b_grid_desc_n_k
.
GetLength
(
I1
);
{
// pad both N and K
const
auto
BK0
=
K
/
BK1
;
const
auto
b_grid_desc_n_k
=
transform_tensor_descriptor
(
b_grid_desc_nraw_kraw
,
make_tuple
(
make_right_pad_transform
(
NRaw
,
NPad
),
make_right_pad_transform
(
KRaw
,
KPad
)),
make_tuple
(
Sequence
<
0
>
{},
Sequence
<
1
>
{}),
make_tuple
(
Sequence
<
0
>
{},
Sequence
<
1
>
{}));
const
auto
b_grid_desc_bk0_n_bk1
=
transform_tensor_descriptor
(
b_grid_desc_n_k
,
make_tuple
(
make_unmerge_transform
(
make_tuple
(
BK0
,
BK1
)),
make_pass_through_transform
(
N
)),
make_tuple
(
Sequence
<
1
>
{},
Sequence
<
0
>
{}),
make_tuple
(
Sequence
<
0
,
2
>
{},
Sequence
<
1
>
{}));
return
b_grid_desc_bk0_n_bk1
;
}
else
if
constexpr
(
GemmSpec
==
GemmSpecialization
::
NPadding
||
GemmSpec
==
GemmSpecialization
::
MNPadding
)
{
// pad N, but not K
const
auto
BK0
=
KRaw
/
BK1
;
const
auto
b_grid_desc_bk0_n_bk1
=
transform_tensor_descriptor
(
b_grid_desc_nraw_kraw
,
make_tuple
(
make_unmerge_transform
(
make_tuple
(
BK0
,
BK1
)),
make_right_pad_transform
(
NRaw
,
NPad
)),
make_tuple
(
Sequence
<
1
>
{},
Sequence
<
0
>
{}),
make_tuple
(
Sequence
<
0
,
2
>
{},
Sequence
<
1
>
{}));
return
b_grid_desc_bk0_n_bk1
;
}
else
if
constexpr
(
GemmSpec
==
GemmSpecialization
::
KPadding
||
GemmSpec
==
GemmSpecialization
::
MKPadding
)
{
// pad K, but not N
const
auto
BK0
=
K
/
BK1
;
const
auto
b_grid_desc_n_k
=
transform_tensor_descriptor
(
b_grid_desc_nraw_kraw
,
make_tuple
(
make_pass_through_transform
(
NRaw
),
make_right_pad_transform
(
KRaw
,
KPad
)),
make_tuple
(
Sequence
<
0
>
{},
Sequence
<
1
>
{}),
make_tuple
(
Sequence
<
0
>
{},
Sequence
<
1
>
{}));
const
auto
b_grid_desc_bk0_n_bk1
=
transform_tensor_descriptor
(
b_grid_desc_n_k
,
make_tuple
(
make_unmerge_transform
(
make_tuple
(
BK0
,
BK1
)),
make_pass_through_transform
(
NRaw
)),
make_tuple
(
Sequence
<
1
>
{},
Sequence
<
0
>
{}),
make_tuple
(
Sequence
<
0
,
2
>
{},
Sequence
<
1
>
{}));
return
b_grid_desc_bk0_n_bk1
;
}
else
{
// not pad N or K
const
auto
BK0
=
KRaw
/
BK1
;
const
auto
b_grid_desc_bk0_n_bk1
=
const
auto
BK0
=
K
/
BK1
;
transform_tensor_descriptor
(
b_grid_desc_nraw_kraw
,
make_tuple
(
make_unmerge_transform
(
make_tuple
(
BK0
,
BK1
)),
make_pass_through_transform
(
NRaw
)),
make_tuple
(
Sequence
<
1
>
{},
Sequence
<
0
>
{}),
make_tuple
(
Sequence
<
0
,
2
>
{},
Sequence
<
1
>
{}));
return
b_grid_desc_bk0_n_bk1
;
return
transform_tensor_descriptor
(
b_grid_desc_n_k
,
}
make_tuple
(
make_unmerge_transform
(
make_tuple
(
BK0
,
BK1
)),
make_pass_through_transform
(
N
)),
make_tuple
(
Sequence
<
1
>
{},
Sequence
<
0
>
{}),
make_tuple
(
Sequence
<
0
,
2
>
{},
Sequence
<
1
>
{}));
}
}
// Args: Gemm1KRaw, Gemm1NRaw, StrideB1
// Args: Gemm1KRaw, Gemm1NRaw, StrideB1
...
@@ -402,47 +268,19 @@ struct DeviceBatchedGemmGemm_Xdl_CShuffle : public DeviceBatchedGemmGemm<ALayout
...
@@ -402,47 +268,19 @@ struct DeviceBatchedGemmGemm_Xdl_CShuffle : public DeviceBatchedGemmGemm<ALayout
}
}
}();
}();
const
auto
N
=
math
::
integer_divide_ceil
(
NRaw
,
Gemm1NPerBlock
)
*
Gemm1NPerBlock
;
const
auto
b1_grid_desc_n_k
=
matrix_padder
.
PadB1Descriptor_N_K
(
b1_grid_desc_nraw_kraw
);
const
auto
K
=
math
::
integer_divide_ceil
(
KRaw
,
Gemm1KPerBlock
)
*
Gemm1KPerBlock
;
const
auto
N
Pad
=
N
-
NRaw
;
const
auto
N
=
b1_grid_desc_n_k
.
GetLength
(
I0
)
;
const
auto
K
Pad
=
K
-
KRaw
;
const
auto
K
=
b1_grid_desc_n_k
.
GetLength
(
I1
)
;
// TODO: implement finer-grained padding
const
auto
B1K0
=
K
/
B1K1
;
if
constexpr
(
GemmSpec
==
GemmSpecialization
::
Default
)
{
const
auto
B1K0
=
KRaw
/
B1K1
;
const
auto
b1_grid_desc_bk0_n_bk1
=
transform_tensor_descriptor
(
return
transform_tensor_descriptor
(
b1_grid_desc_nraw_kraw
,
b1_grid_desc_n_k
,
make_tuple
(
make_unmerge_transform
(
make_tuple
(
B1K0
,
B1K1
)),
make_tuple
(
make_unmerge_transform
(
make_tuple
(
B1K0
,
B1K1
)),
make_pass_through_transform
(
NRaw
)),
make_pass_through_transform
(
N
)),
make_tuple
(
Sequence
<
1
>
{},
Sequence
<
0
>
{}),
make_tuple
(
Sequence
<
1
>
{},
Sequence
<
0
>
{}),
make_tuple
(
Sequence
<
0
,
2
>
{},
Sequence
<
1
>
{}));
make_tuple
(
Sequence
<
0
,
2
>
{},
Sequence
<
1
>
{}));
return
b1_grid_desc_bk0_n_bk1
;
}
else
{
// pad both B1N and B1K
const
auto
B1K0
=
K
/
B1K1
;
const
auto
b1_grid_desc_n_k
=
transform_tensor_descriptor
(
b1_grid_desc_nraw_kraw
,
make_tuple
(
make_right_pad_transform
(
NRaw
,
NPad
),
make_right_pad_transform
(
KRaw
,
KPad
)),
make_tuple
(
Sequence
<
0
>
{},
Sequence
<
1
>
{}),
make_tuple
(
Sequence
<
0
>
{},
Sequence
<
1
>
{}));
const
auto
b1_grid_desc_bk0_n_bk1
=
transform_tensor_descriptor
(
b1_grid_desc_n_k
,
make_tuple
(
make_unmerge_transform
(
make_tuple
(
B1K0
,
B1K1
)),
make_pass_through_transform
(
N
)),
make_tuple
(
Sequence
<
1
>
{},
Sequence
<
0
>
{}),
make_tuple
(
Sequence
<
0
,
2
>
{},
Sequence
<
1
>
{}));
return
b1_grid_desc_bk0_n_bk1
;
}
}
}
static
auto
MakeCGridDescriptor_M_N
(
index_t
MRaw
,
index_t
NRaw
,
index_t
StrideC
)
static
auto
MakeCGridDescriptor_M_N
(
index_t
MRaw
,
index_t
NRaw
,
index_t
StrideC
)
...
@@ -460,47 +298,7 @@ struct DeviceBatchedGemmGemm_Xdl_CShuffle : public DeviceBatchedGemmGemm<ALayout
...
@@ -460,47 +298,7 @@ struct DeviceBatchedGemmGemm_Xdl_CShuffle : public DeviceBatchedGemmGemm<ALayout
}
}
}();
}();
const
auto
M
=
math
::
integer_divide_ceil
(
MRaw
,
MPerBlock
)
*
MPerBlock
;
return
matrix_padder
.
PadCDescriptor_M_N
(
c_grid_desc_mraw_nraw
);
const
auto
N
=
math
::
integer_divide_ceil
(
NRaw
,
Gemm1NPerBlock
)
*
Gemm1NPerBlock
;
const
auto
MPad
=
M
-
MRaw
;
const
auto
NPad
=
N
-
NRaw
;
if
constexpr
(
GemmSpec
==
GemmSpecialization
::
MNPadding
||
GemmSpec
==
GemmSpecialization
::
MNKPadding
)
{
// pad M and N
return
transform_tensor_descriptor
(
c_grid_desc_mraw_nraw
,
make_tuple
(
make_right_pad_transform
(
MRaw
,
MPad
),
make_right_pad_transform
(
NRaw
,
NPad
)),
make_tuple
(
Sequence
<
0
>
{},
Sequence
<
1
>
{}),
make_tuple
(
Sequence
<
0
>
{},
Sequence
<
1
>
{}));
}
else
if
constexpr
(
GemmSpec
==
GemmSpecialization
::
MPadding
||
GemmSpec
==
GemmSpecialization
::
MKPadding
)
{
// pad M, but not N
return
transform_tensor_descriptor
(
c_grid_desc_mraw_nraw
,
make_tuple
(
make_right_pad_transform
(
MRaw
,
MPad
),
make_pass_through_transform
(
NRaw
)),
make_tuple
(
Sequence
<
0
>
{},
Sequence
<
1
>
{}),
make_tuple
(
Sequence
<
0
>
{},
Sequence
<
1
>
{}));
}
else
if
constexpr
(
GemmSpec
==
GemmSpecialization
::
NPadding
||
GemmSpec
==
GemmSpecialization
::
NKPadding
)
{
// pad N, but not M
return
transform_tensor_descriptor
(
c_grid_desc_mraw_nraw
,
make_tuple
(
make_pass_through_transform
(
MRaw
),
make_right_pad_transform
(
NRaw
,
NPad
)),
make_tuple
(
Sequence
<
0
>
{},
Sequence
<
1
>
{}),
make_tuple
(
Sequence
<
0
>
{},
Sequence
<
1
>
{}));
}
else
{
// not pad M or N
return
c_grid_desc_mraw_nraw
;
}
}
}
struct
ComputeBasePtrOfStridedBatch
struct
ComputeBasePtrOfStridedBatch
...
@@ -651,7 +449,8 @@ struct DeviceBatchedGemmGemm_Xdl_CShuffle : public DeviceBatchedGemmGemm<ALayout
...
@@ -651,7 +449,8 @@ struct DeviceBatchedGemmGemm_Xdl_CShuffle : public DeviceBatchedGemmGemm<ALayout
b1_element_op_
{
b1_element_op
},
b1_element_op_
{
b1_element_op
},
c_element_op_
{
c_element_op
},
c_element_op_
{
c_element_op
},
batch_count_
(
Batch
),
batch_count_
(
Batch
),
compute_base_ptr_of_batch_
{
BatchStrideA
,
BatchStrideB
,
BatchStrideB1
,
BatchStrideC
}
compute_base_ptr_of_batch_
{
BatchStrideA
,
BatchStrideB
,
BatchStrideB1
,
BatchStrideC
},
raw_lengths_m_n_k_o_
{
MRaw
,
NRaw
,
KRaw
,
Gemm1NRaw
}
{
{
if
(
GridwiseGemm
::
CheckValidity
(
a_grid_desc_ak0_m_ak1_
,
if
(
GridwiseGemm
::
CheckValidity
(
a_grid_desc_ak0_m_ak1_
,
b_grid_desc_bk0_n_bk1_
,
b_grid_desc_bk0_n_bk1_
,
...
@@ -665,6 +464,14 @@ struct DeviceBatchedGemmGemm_Xdl_CShuffle : public DeviceBatchedGemmGemm<ALayout
...
@@ -665,6 +464,14 @@ struct DeviceBatchedGemmGemm_Xdl_CShuffle : public DeviceBatchedGemmGemm<ALayout
}
}
}
}
void
Print
()
const
{
std
::
cout
<<
"A[AK0, M, AK1]: "
<<
a_grid_desc_ak0_m_ak1_
<<
std
::
endl
;
std
::
cout
<<
"B0[BK0, N, BK1]: "
<<
b_grid_desc_bk0_n_bk1_
<<
std
::
endl
;
std
::
cout
<<
"B1[BK0, N, BK1]: "
<<
b1_grid_desc_bk0_n_bk1_
<<
std
::
endl
;
std
::
cout
<<
"C[M, N]: "
<<
c_grid_desc_m_n_
<<
std
::
endl
;
}
// private:
// private:
const
ADataType
*
p_a_grid_
;
const
ADataType
*
p_a_grid_
;
const
BDataType
*
p_b_grid_
;
const
BDataType
*
p_b_grid_
;
...
@@ -684,6 +491,9 @@ struct DeviceBatchedGemmGemm_Xdl_CShuffle : public DeviceBatchedGemmGemm<ALayout
...
@@ -684,6 +491,9 @@ struct DeviceBatchedGemmGemm_Xdl_CShuffle : public DeviceBatchedGemmGemm<ALayout
CElementwiseOperation
c_element_op_
;
CElementwiseOperation
c_element_op_
;
index_t
batch_count_
;
index_t
batch_count_
;
ComputeBasePtrOfStridedBatch
compute_base_ptr_of_batch_
;
ComputeBasePtrOfStridedBatch
compute_base_ptr_of_batch_
;
// For robust IsSupportedArgument() check
std
::
vector
<
index_t
>
raw_lengths_m_n_k_o_
;
};
};
// Invoker
// Invoker
...
@@ -787,6 +597,31 @@ struct DeviceBatchedGemmGemm_Xdl_CShuffle : public DeviceBatchedGemmGemm<ALayout
...
@@ -787,6 +597,31 @@ struct DeviceBatchedGemmGemm_Xdl_CShuffle : public DeviceBatchedGemmGemm<ALayout
return
false
;
return
false
;
}
}
// Note: we need raw lengths since threadwise copy can not handle vector load when part of
// vector is out of bounds
const
auto
MRaw
=
arg
.
raw_lengths_m_n_k_o_
[
0
];
const
auto
NRaw
=
arg
.
raw_lengths_m_n_k_o_
[
1
];
const
auto
KRaw
=
arg
.
raw_lengths_m_n_k_o_
[
2
];
const
auto
Gemm1NRaw
=
arg
.
raw_lengths_m_n_k_o_
[
3
];
// Check scalar per vector requirement
const
auto
a_extent_lowest
=
is_same_v
<
tensor_layout
::
gemm
::
RowMajor
,
ALayout
>
?
KRaw
:
MRaw
;
const
auto
b_extent_lowest
=
is_same_v
<
tensor_layout
::
gemm
::
RowMajor
,
BLayout
>
?
NRaw
:
KRaw
;
const
auto
b1_extent_lowest
=
is_same_v
<
tensor_layout
::
gemm
::
RowMajor
,
B1Layout
>
?
Gemm1NRaw
:
NRaw
;
const
auto
c_extent_lowest
=
is_same_v
<
tensor_layout
::
gemm
::
RowMajor
,
CLayout
>
?
Gemm1NRaw
:
MRaw
;
if
(
!
(
a_extent_lowest
%
ABlockTransferSrcScalarPerVector
==
0
&&
b_extent_lowest
%
BBlockTransferSrcScalarPerVector
==
0
&&
b1_extent_lowest
%
B1BlockTransferSrcScalarPerVector
==
0
&&
c_extent_lowest
%
CShuffleBlockTransferScalarPerVector_NPerBlock
==
0
))
{
return
false
;
}
return
GridwiseGemm
::
CheckValidity
(
arg
.
a_grid_desc_ak0_m_ak1_
,
return
GridwiseGemm
::
CheckValidity
(
arg
.
a_grid_desc_ak0_m_ak1_
,
arg
.
b_grid_desc_bk0_n_bk1_
,
arg
.
b_grid_desc_bk0_n_bk1_
,
arg
.
b1_grid_desc_bk0_n_bk1_
,
arg
.
b1_grid_desc_bk0_n_bk1_
,
...
@@ -903,7 +738,8 @@ struct DeviceBatchedGemmGemm_Xdl_CShuffle : public DeviceBatchedGemmGemm<ALayout
...
@@ -903,7 +738,8 @@ struct DeviceBatchedGemmGemm_Xdl_CShuffle : public DeviceBatchedGemmGemm<ALayout
<<
MPerBlock
<<
", "
<<
MPerBlock
<<
", "
<<
Gemm1NPerBlock
<<
", "
<<
Gemm1NPerBlock
<<
", "
<<
Gemm1KPerBlock
<<
", "
<<
Gemm1KPerBlock
<<
", "
<<
B1K1
<<
">"
;
<<
B1K1
<<
", "
<<
getGemmSpecializationString
(
GemmSpec
)
<<
">"
;
// clang-format on
// clang-format on
return
str
.
str
();
return
str
.
str
();
...
...
include/ck/tensor_operation/gpu/device/device_batched_gemm_multi_d_xdl.hpp
View file @
b89a88b5
...
@@ -16,6 +16,7 @@
...
@@ -16,6 +16,7 @@
#include "ck/tensor_operation/gpu/grid/gridwise_gemm_multiple_d_xdl_cshuffle.hpp"
#include "ck/tensor_operation/gpu/grid/gridwise_gemm_multiple_d_xdl_cshuffle.hpp"
#include "ck/host_utility/device_prop.hpp"
#include "ck/host_utility/device_prop.hpp"
#include "ck/host_utility/kernel_launch.hpp"
#include "ck/host_utility/kernel_launch.hpp"
#include "ck/host_utility/io.hpp"
namespace
ck
{
namespace
ck
{
namespace
tensor_operation
{
namespace
tensor_operation
{
...
...
include/ck/tensor_operation/gpu/device/device_batched_gemm_multiple_d_gemm_multiple_d.hpp
0 → 100644
View file @
b89a88b5
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2022, Advanced Micro Devices, Inc. All rights reserved.
#pragma once
#include <iostream>
#include <vector>
#include "device_base.hpp"
namespace
ck
{
namespace
tensor_operation
{
namespace
device
{
template
<
typename
A0Layout
,
typename
B0Layout
,
typename
D0sLayout
,
typename
B1Layout
,
typename
D1sLayout
,
typename
E1Layout
,
typename
A0DataType
,
typename
B0DataType
,
typename
D0sDataType
,
typename
B1DataType
,
typename
D1sDataType
,
typename
E1DataType
,
typename
A0ElementwiseOperation
,
typename
B0ElementwiseOperation
,
typename
CDE0ElementwiseOperation
,
typename
B1ElementwiseOperation
,
typename
CDE1ElementwiseOperation
>
struct
DeviceBatchedGemmMultipleDGemmMultipleD
:
public
BaseOperator
{
static
constexpr
index_t
NumD0Tensor
=
D0sDataType
::
Size
();
static
constexpr
index_t
NumD1Tensor
=
D1sDataType
::
Size
();
virtual
std
::
unique_ptr
<
BaseArgument
>
MakeArgumentPointer
(
const
void
*
p_a0
,
const
void
*
p_b0
,
std
::
array
<
const
void
*
,
NumD0Tensor
>
p_d0s
,
const
void
*
p_b1
,
std
::
array
<
const
void
*
,
NumD1Tensor
>
p_d1s
,
void
*
p_e1
,
ck
::
index_t
M
,
ck
::
index_t
N
,
ck
::
index_t
K
,
ck
::
index_t
O
,
ck
::
index_t
Batch
,
ck
::
index_t
StrideA0
,
ck
::
index_t
StrideB0
,
std
::
array
<
ck
::
index_t
,
NumD0Tensor
>
StrideD0s
,
ck
::
index_t
StrideB1
,
std
::
array
<
ck
::
index_t
,
NumD1Tensor
>
StrideD1s
,
ck
::
index_t
StrideE1
,
ck
::
index_t
BatchStrideA0
,
ck
::
index_t
BatchStrideB0
,
std
::
array
<
ck
::
index_t
,
NumD0Tensor
>
BatchStrideD0s
,
ck
::
index_t
BatchStrideB1
,
std
::
array
<
ck
::
index_t
,
NumD1Tensor
>
BatchStrideD1s
,
ck
::
index_t
BatchStrideE1
,
A0ElementwiseOperation
a0_element_op
,
B0ElementwiseOperation
b0_element_op
,
CDE0ElementwiseOperation
cde0_element_op
,
B1ElementwiseOperation
b1_element_op
,
CDE1ElementwiseOperation
cde1_element_op
)
=
0
;
virtual
std
::
unique_ptr
<
BaseInvoker
>
MakeInvokerPointer
()
=
0
;
};
}
// namespace device
}
// namespace tensor_operation
}
// namespace ck
include/ck/tensor_operation/gpu/device/device_batched_gemm_multiple_d_gemm_multiple_d_xdl_cshuffle.hpp
0 → 100644
View file @
b89a88b5
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2022, Advanced Micro Devices, Inc. All rights reserved.
#pragma once
#include <iostream>
#include <sstream>
#include "ck/utility/common_header.hpp"
#include "ck/tensor_description/tensor_descriptor.hpp"
#include "ck/tensor_description/tensor_descriptor_helper.hpp"
#include "ck/tensor_operation/gpu/device/tensor_layout.hpp"
#include "ck/tensor_operation/gpu/device/device_batched_gemm_multiple_d_gemm_multiple_d.hpp"
#include "ck/tensor_operation/gpu/device/matrix_padder.hpp"
#include "ck/tensor_operation/gpu/grid/gridwise_batched_gemm_multiple_d_gemm_multiple_d_xdl_cshuffle_v1.hpp"
#include "ck/host_utility/device_prop.hpp"
#include "ck/host_utility/kernel_launch.hpp"
namespace
ck
{
namespace
tensor_operation
{
namespace
device
{
template
<
typename
GridwiseGemm
,
typename
A0B0B1DataType
,
typename
D0sPointer
,
typename
D1sPointer
,
typename
E1DataType
,
typename
A0ElementwiseOperation
,
typename
B0ElementwiseOperation
,
typename
CDE0ElementwiseOperation
,
typename
B1ElementwiseOperation
,
typename
CDE1ElementwiseOperation
,
typename
A0GridDesc_AK0_M_AK1
,
typename
B0GridDesc_BK0_N_BK1
,
typename
D0sGridDescriptor_M0_N0_M1_N1_M2_N2_M3_N3_N4_N5
,
typename
B1GridDesc_BK0_N_BK1
,
typename
D1sGridDescriptor_MBlock_MPerBlock_NBlock_NPerBlock
,
typename
E1GridDescriptor_MBlock_MPerBlock_NBlock_NPerBlock
,
typename
Block2E1TileMap
,
typename
ComputeBasePtrOfStridedBatch
,
bool
HasMainKBlockLoop
>
__global__
void
#if CK_USE_LAUNCH_BOUNDS
__launch_bounds__
(
CK_MAX_THREAD_PER_BLOCK
,
CK_MIN_BLOCK_PER_CU
)
#endif
kernel_batched_gemm_gemm_xdl_cshuffle_v1
(
const
A0B0B1DataType
*
__restrict__
p_a0_grid
,
const
A0B0B1DataType
*
__restrict__
p_b0_grid
,
D0sPointer
p_d0s_grid
,
const
A0B0B1DataType
*
__restrict__
p_b1_grid
,
D1sPointer
p_d1s_grid
,
E1DataType
*
__restrict__
p_e1_grid
,
const
A0ElementwiseOperation
a0_element_op
,
const
B0ElementwiseOperation
b0_element_op
,
const
CDE0ElementwiseOperation
cde0_element_op
,
const
B1ElementwiseOperation
b1_element_op
,
const
CDE1ElementwiseOperation
cde1_element_op
,
const
A0GridDesc_AK0_M_AK1
a0_grid_desc_ak0_m_ak1
,
const
B0GridDesc_BK0_N_BK1
b0_grid_desc_bk0_n_bk1
,
const
D0sGridDescriptor_M0_N0_M1_N1_M2_N2_M3_N3_N4_N5
d0s_griddesc_m0_n0_m1_n1_m2_n2_m3_n3_n4_n5
,
const
B1GridDesc_BK0_N_BK1
b1_grid_desc_bk0_n_bk1
,
const
D1sGridDescriptor_MBlock_MPerBlock_NBlock_NPerBlock
d1s_grid_desc_mblock_mperblock_nblock_nperblock
,
const
E1GridDescriptor_MBlock_MPerBlock_NBlock_NPerBlock
e1_grid_desc_mblock_mperblock_nblock_nperblock
,
const
Block2E1TileMap
block_2_e1tile_map
,
const
index_t
batch_count
,
const
ComputeBasePtrOfStridedBatch
compute_base_ptr_of_batch
)
{
#if(!defined(__HIP_DEVICE_COMPILE__) || defined(__gfx908__) || defined(__gfx90a__))
__shared__
char
p_shared
[
GridwiseGemm
::
GetSharedMemoryNumberOfByte
()];
const
index_t
num_blocks_per_batch
=
__builtin_amdgcn_readfirstlane
(
get_grid_size
()
/
batch_count
);
const
index_t
g_idx
=
__builtin_amdgcn_readfirstlane
(
get_block_1d_id
()
/
num_blocks_per_batch
);
const
long_index_t
a_batch_offset
=
__builtin_amdgcn_readfirstlane
(
static_cast
<
long_index_t
>
(
compute_base_ptr_of_batch
.
GetABasePtr
(
g_idx
)));
const
long_index_t
b_batch_offset
=
__builtin_amdgcn_readfirstlane
(
static_cast
<
long_index_t
>
(
compute_base_ptr_of_batch
.
GetBBasePtr
(
g_idx
)));
const
long_index_t
b1_batch_offset
=
__builtin_amdgcn_readfirstlane
(
static_cast
<
long_index_t
>
(
compute_base_ptr_of_batch
.
GetB1BasePtr
(
g_idx
)));
const
long_index_t
c_batch_offset
=
__builtin_amdgcn_readfirstlane
(
static_cast
<
long_index_t
>
(
compute_base_ptr_of_batch
.
GetCBasePtr
(
g_idx
)));
static_for
<
0
,
p_d0s_grid
.
Size
(),
1
>
{}([
&
](
auto
In
)
{
const
long_index_t
d0_batch_offset
=
__builtin_amdgcn_readfirstlane
(
static_cast
<
long_index_t
>
(
compute_base_ptr_of_batch
.
GetD0BasePtr
(
g_idx
,
In
)));
p_d0s_grid
(
In
)
=
p_d0s_grid
(
In
)
+
d0_batch_offset
;
});
static_for
<
0
,
p_d1s_grid
.
Size
(),
1
>
{}([
&
](
auto
In
)
{
const
long_index_t
d1_batch_offset
=
__builtin_amdgcn_readfirstlane
(
static_cast
<
long_index_t
>
(
compute_base_ptr_of_batch
.
GetD1BasePtr
(
g_idx
,
In
)));
p_d1s_grid
(
In
)
=
p_d1s_grid
(
In
)
+
d1_batch_offset
;
});
GridwiseGemm
::
template
Run
<
HasMainKBlockLoop
>(
p_a0_grid
+
a_batch_offset
,
p_b0_grid
+
b_batch_offset
,
p_d0s_grid
,
p_b1_grid
+
b1_batch_offset
,
p_d1s_grid
,
p_e1_grid
+
c_batch_offset
,
p_shared
,
a0_element_op
,
b0_element_op
,
cde0_element_op
,
b1_element_op
,
cde1_element_op
,
a0_grid_desc_ak0_m_ak1
,
b0_grid_desc_bk0_n_bk1
,
d0s_griddesc_m0_n0_m1_n1_m2_n2_m3_n3_n4_n5
,
b1_grid_desc_bk0_n_bk1
,
d1s_grid_desc_mblock_mperblock_nblock_nperblock
,
e1_grid_desc_mblock_mperblock_nblock_nperblock
,
block_2_e1tile_map
);
#else
ignore
=
p_a0_grid
;
ignore
=
p_b0_grid
;
ignore
=
p_d0s_grid
;
ignore
=
p_b1_grid
;
ignore
=
p_d1s_grid
;
ignore
=
p_e1_grid
;
ignore
=
a0_element_op
;
ignore
=
b0_element_op
;
ignore
=
cde0_element_op
;
ignore
=
b1_element_op
;
ignore
=
cde1_element_op
;
ignore
=
a0_grid_desc_ak0_m_ak1
;
ignore
=
b0_grid_desc_bk0_n_bk1
;
ignore
=
d0s_griddesc_m0_n0_m1_n1_m2_n2_m3_n3_n4_n5
;
ignore
=
b1_grid_desc_bk0_n_bk1
;
ignore
=
d1s_grid_desc_mblock_mperblock_nblock_nperblock
;
ignore
=
e1_grid_desc_mblock_mperblock_nblock_nperblock
;
ignore
=
block_2_e1tile_map
;
ignore
=
batch_count
;
ignore
=
compute_base_ptr_of_batch
;
#endif
}
// Computes C = A * B0 * B1
// ^^^^^^ (Acc0)
// ^^^^^^^^^^^ (Acc1)
template
<
typename
A0Layout
,
typename
B0Layout
,
// B0Layout
typename
D0sLayout
,
typename
B1Layout
,
typename
D1sLayout
,
typename
E1Layout
,
typename
A0DataType
,
typename
B0DataType
,
typename
Acc0DataType
,
typename
D0sDataType
,
typename
B1DataType
,
typename
Acc1DataType
,
typename
C1ShuffleDataType
,
typename
D1sDataType
,
typename
E1DataType
,
typename
A0ElementwiseOperation
,
typename
B0ElementwiseOperation
,
typename
CDE0ElementwiseOperation
,
typename
B1ElementwiseOperation
,
typename
CDE1ElementwiseOperation
,
bool
PadGemm0M
,
bool
PadGemm0N
,
bool
PadGemm0K
,
bool
PadGemm1N
,
bool
PadGemm1K
,
index_t
NumGemm0KPrefetchStage
,
index_t
BlockSize
,
index_t
Gemm0MPerBlock
,
index_t
Gemm0NPerBlock
,
index_t
Gemm0KPerBlock
,
index_t
Gemm1NPerBlock
,
index_t
Gemm1KPerBlock
,
index_t
A0K1
,
index_t
B0K1
,
index_t
B1K1
,
index_t
Gemm0MPerXdl
,
index_t
Gemm0NPerXdl
,
index_t
Gemm0MXdlPerWave
,
index_t
Gemm0NXdlPerWave
,
index_t
Gemm1NXdlPerWave
,
typename
A0BlockTransferThreadClusterLengths_AK0_M_AK1
,
typename
A0BlockTransferThreadClusterArrangeOrder
,
typename
A0BlockTransferSrcAccessOrder
,
index_t
A0BlockTransferSrcVectorDim
,
index_t
A0BlockTransferSrcScalarPerVector
,
index_t
A0BlockTransferDstScalarPerVector_AK1
,
bool
A0BlockLdsExtraM
,
typename
B0BlockTransferThreadClusterLengths_BK0_N_BK1
,
typename
B0BlockTransferThreadClusterArrangeOrder
,
typename
B0BlockTransferSrcAccessOrder
,
index_t
B0BlockTransferSrcVectorDim
,
index_t
B0BlockTransferSrcScalarPerVector
,
index_t
B0BlockTransferDstScalarPerVector_BK1
,
bool
B0BlockLdsExtraN
,
typename
B1BlockTransferThreadClusterLengths_BK0_N_BK1
,
typename
B1BlockTransferThreadClusterArrangeOrder
,
typename
B1BlockTransferSrcAccessOrder
,
index_t
B1BlockTransferSrcVectorDim
,
index_t
B1BlockTransferSrcScalarPerVector
,
index_t
B1BlockTransferDstScalarPerVector_BK1
,
bool
B1BlockLdsExtraN
,
index_t
C1ShuffleMXdlPerWavePerShuffle
,
index_t
C1ShuffleGemm0NXdlPerWavePerShuffle
,
typename
CDE1ShuffleBlockTransferClusterLengths_MBlock_MPerBlock_NBlock_NPerBlock
,
index_t
CDE1ShuffleBlockTransferScalarPerVector_NPerBlock
,
LoopScheduler
LoopSched
=
LoopScheduler
::
Default
>
struct
DeviceBatchedGemmMultipleDGemmMultipleD_Xdl_CShuffle
:
public
DeviceBatchedGemmMultipleDGemmMultipleD
<
A0Layout
,
B0Layout
,
D0sLayout
,
B1Layout
,
D1sLayout
,
E1Layout
,
A0DataType
,
B0DataType
,
D0sDataType
,
B1DataType
,
D1sDataType
,
E1DataType
,
A0ElementwiseOperation
,
B0ElementwiseOperation
,
CDE0ElementwiseOperation
,
B1ElementwiseOperation
,
CDE1ElementwiseOperation
>
{
using
DeviceOp
=
DeviceBatchedGemmMultipleDGemmMultipleD_Xdl_CShuffle
;
static
constexpr
index_t
NumD0Tensor
=
D0sDataType
::
Size
();
static
constexpr
index_t
NumD1Tensor
=
D1sDataType
::
Size
();
static
constexpr
auto
I0
=
Number
<
0
>
{};
static
constexpr
auto
I1
=
Number
<
1
>
{};
static
constexpr
auto
I2
=
Number
<
2
>
{};
static
constexpr
auto
I3
=
Number
<
3
>
{};
static
constexpr
auto
I4
=
Number
<
4
>
{};
static
constexpr
auto
I5
=
Number
<
5
>
{};
static
constexpr
auto
I6
=
Number
<
6
>
{};
static
constexpr
auto
I7
=
Number
<
7
>
{};
static
constexpr
auto
I8
=
Number
<
8
>
{};
static
constexpr
auto
I9
=
Number
<
9
>
{};
static
constexpr
auto
gemm0_padder
=
GemmPadder_v2
<
PadGemm0M
,
PadGemm0N
,
PadGemm0K
,
index_t
,
index_t
,
index_t
>
{
Gemm0MPerBlock
,
Gemm0NPerBlock
,
Gemm0KPerBlock
};
static
constexpr
auto
gemm1_padder
=
GemmPadder_v2
<
PadGemm0M
,
PadGemm1N
,
PadGemm1K
,
index_t
,
index_t
,
index_t
>
{
Gemm0MPerBlock
,
Gemm1NPerBlock
,
Gemm1KPerBlock
};
// for Gemm0
static
auto
MakeA0GridDescriptor_M_K
(
index_t
MRaw
,
index_t
KRaw
,
index_t
StrideA0
)
{
const
auto
a0_grid_desc_mraw_kraw
=
[
&
]()
{
if
constexpr
(
is_same_v
<
tensor_layout
::
gemm
::
RowMajor
,
A0Layout
>
)
{
return
make_naive_tensor_descriptor
(
make_tuple
(
MRaw
,
KRaw
),
make_tuple
(
StrideA0
,
I1
));
}
else
if
constexpr
(
is_same_v
<
tensor_layout
::
gemm
::
ColumnMajor
,
A0Layout
>
)
{
return
make_naive_tensor_descriptor
(
make_tuple
(
MRaw
,
KRaw
),
make_tuple
(
I1
,
StrideA0
));
}
}();
return
gemm0_padder
.
PadADescriptor_M_K
(
a0_grid_desc_mraw_kraw
);
}
// for Gemm0
static
auto
MakeB0GridDescriptor_N_K
(
index_t
KRaw
,
index_t
NRaw
,
index_t
StrideB
)
{
const
auto
b0_grid_desc_nraw_kraw
=
[
&
]()
{
if
constexpr
(
is_same
<
tensor_layout
::
gemm
::
RowMajor
,
B0Layout
>::
value
)
{
return
make_naive_tensor_descriptor
(
make_tuple
(
NRaw
,
KRaw
),
make_tuple
(
I1
,
StrideB
));
}
else
if
constexpr
(
is_same
<
tensor_layout
::
gemm
::
ColumnMajor
,
B0Layout
>::
value
)
{
return
make_naive_tensor_descriptor
(
make_tuple
(
NRaw
,
KRaw
),
make_tuple
(
StrideB
,
I1
));
}
}();
return
gemm0_padder
.
PadBDescriptor_N_K
(
b0_grid_desc_nraw_kraw
);
}
// for Gemm0
template
<
typename
DLay
>
static
auto
MakeD0GridDescriptor_M_N
(
index_t
MRaw
,
index_t
NRaw
,
index_t
StrideD0
)
{
const
auto
d0_grid_desc_mraw_nraw
=
[
&
]()
{
if
constexpr
(
is_same
<
tensor_layout
::
gemm
::
RowMajor
,
DLay
>::
value
)
{
return
make_naive_tensor_descriptor
(
make_tuple
(
MRaw
,
NRaw
),
make_tuple
(
StrideD0
,
I1
));
}
else
if
constexpr
(
is_same
<
tensor_layout
::
gemm
::
ColumnMajor
,
DLay
>::
value
)
{
return
make_naive_tensor_descriptor
(
make_tuple
(
MRaw
,
NRaw
),
make_tuple
(
I1
,
StrideD0
));
}
}();
return
gemm0_padder
.
PadCDescriptor_M_N
(
d0_grid_desc_mraw_nraw
);
}
// for Gemm1
static
auto
MakeB1GridDescriptor_N_K
(
index_t
KRaw
,
index_t
NRaw
,
index_t
StrideB
)
{
const
auto
b1_grid_desc_nraw_kraw
=
[
&
]()
{
if
constexpr
(
is_same
<
tensor_layout
::
gemm
::
RowMajor
,
B1Layout
>::
value
)
{
return
make_naive_tensor_descriptor
(
make_tuple
(
NRaw
,
KRaw
),
make_tuple
(
I1
,
StrideB
));
}
else
if
constexpr
(
is_same
<
tensor_layout
::
gemm
::
ColumnMajor
,
B1Layout
>::
value
)
{
return
make_naive_tensor_descriptor
(
make_tuple
(
NRaw
,
KRaw
),
make_tuple
(
StrideB
,
I1
));
}
}();
return
gemm1_padder
.
PadBDescriptor_N_K
(
b1_grid_desc_nraw_kraw
);
}
// for Gemm1
template
<
typename
ELay
>
static
auto
MakeE1GridDescriptor_M_N
(
index_t
MRaw
,
index_t
NRaw
,
index_t
StrideE1
)
{
const
auto
e1_grid_desc_mraw_nraw
=
[
&
]()
{
if
constexpr
(
is_same
<
tensor_layout
::
gemm
::
RowMajor
,
ELay
>::
value
)
{
return
make_naive_tensor_descriptor
(
make_tuple
(
MRaw
,
NRaw
),
make_tuple
(
StrideE1
,
I1
));
}
else
if
constexpr
(
is_same
<
tensor_layout
::
gemm
::
ColumnMajor
,
ELay
>::
value
)
{
return
make_naive_tensor_descriptor
(
make_tuple
(
MRaw
,
NRaw
),
make_tuple
(
I1
,
StrideE1
));
}
}();
return
gemm1_padder
.
PadCDescriptor_M_N
(
e1_grid_desc_mraw_nraw
);
}
static
auto
MakeD0sGridDescriptor_M_N
(
const
std
::
array
<
index_t
,
NumD1Tensor
>&
MRaws
,
const
std
::
array
<
index_t
,
NumD1Tensor
>&
NRaws
,
const
std
::
array
<
index_t
,
NumD1Tensor
>&
DsStride
)
{
return
generate_tuple
(
[
&
](
auto
i
)
{
using
DLayout
=
remove_cvref_t
<
tuple_element_t
<
i
.
value
,
D0sLayout
>>
;
return
DeviceOp
::
MakeD0GridDescriptor_M_N
<
DLayout
>
(
MRaws
[
i
],
NRaws
[
i
],
DsStride
[
i
]);
},
Number
<
NumD0Tensor
>
{});
}
static
auto
MakeD1sGridDescriptor_M_N
(
const
std
::
array
<
index_t
,
NumD1Tensor
>&
MRaws
,
const
std
::
array
<
index_t
,
NumD1Tensor
>&
NRaws
,
const
std
::
array
<
index_t
,
NumD1Tensor
>&
DsStride
)
{
return
generate_tuple
(
[
&
](
auto
i
)
{
using
DLayout
=
remove_cvref_t
<
tuple_element_t
<
i
.
value
,
D1sLayout
>>
;
return
DeviceOp
::
MakeE1GridDescriptor_M_N
<
DLayout
>
(
MRaws
[
i
],
NRaws
[
i
],
DsStride
[
i
]);
},
Number
<
NumD1Tensor
>
{});
}
struct
ComputeBasePtrOfStridedBatch
{
ComputeBasePtrOfStridedBatch
(
index_t
BatchStrideA0
,
index_t
BatchStrideB0
,
std
::
array
<
index_t
,
NumD0Tensor
>
BatchStrideD0s
,
index_t
BatchStrideB1
,
std
::
array
<
index_t
,
NumD1Tensor
>
BatchStrideD1s
,
index_t
BatchStrideE1
)
:
BatchStrideA0_
(
BatchStrideA0
),
BatchStrideB0_
(
BatchStrideB0
),
BatchStrideD0s_
(
BatchStrideD0s
),
BatchStrideB1_
(
BatchStrideB1
),
BatchStrideD1s_
(
BatchStrideD1s
),
BatchStrideE1_
(
BatchStrideE1
)
{
}
__host__
__device__
constexpr
long_index_t
GetABasePtr
(
index_t
g_idx
)
const
{
return
g_idx
*
static_cast
<
long_index_t
>
(
BatchStrideA0_
);
}
__host__
__device__
constexpr
long_index_t
GetBBasePtr
(
index_t
g_idx
)
const
{
return
g_idx
*
static_cast
<
long_index_t
>
(
BatchStrideB0_
);
}
template
<
index_t
I
>
__host__
__device__
constexpr
long_index_t
GetD0BasePtr
(
index_t
g_idx
,
Number
<
I
>
d1_idx
)
const
{
return
g_idx
*
static_cast
<
long_index_t
>
(
BatchStrideD0s_
[
d1_idx
]);
}
__host__
__device__
constexpr
long_index_t
GetB1BasePtr
(
index_t
g_idx
)
const
{
return
g_idx
*
static_cast
<
long_index_t
>
(
BatchStrideB1_
);
}
__host__
__device__
constexpr
long_index_t
GetCBasePtr
(
index_t
g_idx
)
const
{
return
g_idx
*
static_cast
<
long_index_t
>
(
BatchStrideE1_
);
}
template
<
index_t
I
>
__host__
__device__
constexpr
auto
GetD1BasePtr
(
index_t
g_idx
,
Number
<
I
>
d1_idx
)
const
{
return
g_idx
*
static_cast
<
long_index_t
>
(
BatchStrideD1s_
[
d1_idx
]);
}
private:
index_t
BatchStrideA0_
;
index_t
BatchStrideB0_
;
std
::
array
<
index_t
,
NumD0Tensor
>
BatchStrideD0s_
;
index_t
BatchStrideB1_
;
std
::
array
<
index_t
,
NumD1Tensor
>
BatchStrideD1s_
;
index_t
BatchStrideE1_
;
};
using
A0GridDesc_M_K
=
decltype
(
MakeA0GridDescriptor_M_K
(
1
,
1
,
1
));
using
B0GridDesc_N_K
=
decltype
(
MakeB0GridDescriptor_N_K
(
1
,
1
,
1
));
using
D0sGridDesc_M_N
=
remove_cvref_t
<
decltype
(
MakeD0sGridDescriptor_M_N
({},
{},
{}))
>
;
using
B1GridDesc_N_K
=
decltype
(
MakeB1GridDescriptor_N_K
(
1
,
1
,
1
));
using
D1sGridDesc_M_N
=
remove_cvref_t
<
decltype
(
MakeD1sGridDescriptor_M_N
({},
{},
{}))
>
;
using
E1GridDesc_M_N
=
decltype
(
MakeE1GridDescriptor_M_N
<
E1Layout
>
(
1
,
1
,
1
));
// GridwiseGemm
using
GridwiseGemm
=
GridwiseBatchedGemmMultipleDGemmMultipleD_Xdl_CShuffle
<
A0DataType
,
// TODO: distinguish A/B datatype
Acc0DataType
,
D0sDataType
,
Acc1DataType
,
C1ShuffleDataType
,
D1sDataType
,
E1DataType
,
A0ElementwiseOperation
,
B0ElementwiseOperation
,
CDE0ElementwiseOperation
,
B1ElementwiseOperation
,
CDE1ElementwiseOperation
,
InMemoryDataOperationEnum
::
Set
,
A0GridDesc_M_K
,
B0GridDesc_N_K
,
D0sGridDesc_M_N
,
B1GridDesc_N_K
,
D1sGridDesc_M_N
,
E1GridDesc_M_N
,
NumGemm0KPrefetchStage
,
BlockSize
,
Gemm0MPerBlock
,
Gemm0NPerBlock
,
Gemm0KPerBlock
,
Gemm1NPerBlock
,
Gemm1KPerBlock
,
A0K1
,
B0K1
,
B1K1
,
Gemm0MPerXdl
,
Gemm0NPerXdl
,
Gemm0MXdlPerWave
,
Gemm0NXdlPerWave
,
Gemm1NXdlPerWave
,
A0BlockTransferThreadClusterLengths_AK0_M_AK1
,
A0BlockTransferThreadClusterArrangeOrder
,
A0BlockTransferSrcAccessOrder
,
A0BlockTransferSrcVectorDim
,
A0BlockTransferSrcScalarPerVector
,
A0BlockTransferDstScalarPerVector_AK1
,
true
,
A0BlockLdsExtraM
,
B0BlockTransferThreadClusterLengths_BK0_N_BK1
,
B0BlockTransferThreadClusterArrangeOrder
,
B0BlockTransferSrcAccessOrder
,
B0BlockTransferSrcVectorDim
,
B0BlockTransferSrcScalarPerVector
,
B0BlockTransferDstScalarPerVector_BK1
,
true
,
B0BlockLdsExtraN
,
B1BlockTransferThreadClusterLengths_BK0_N_BK1
,
B1BlockTransferThreadClusterArrangeOrder
,
B1BlockTransferSrcAccessOrder
,
B1BlockTransferSrcVectorDim
,
B1BlockTransferSrcScalarPerVector
,
B1BlockTransferDstScalarPerVector_BK1
,
false
,
B1BlockLdsExtraN
,
C1ShuffleMXdlPerWavePerShuffle
,
C1ShuffleGemm0NXdlPerWavePerShuffle
,
CDE1ShuffleBlockTransferClusterLengths_MBlock_MPerBlock_NBlock_NPerBlock
,
CDE1ShuffleBlockTransferScalarPerVector_NPerBlock
,
LoopSched
>
;
using
A0GridDesc_AK0_M_AK1
=
remove_cvref_t
<
decltype
(
GridwiseGemm
::
MakeDefaultA0GridDescriptor_AK0_M_AK1
(
A0GridDesc_M_K
{}))
>
;
using
B0GridDesc_BK0_N_BK1
=
remove_cvref_t
<
decltype
(
GridwiseGemm
::
MakeDefaultB0GridDescriptor_BK0_N_BK1
(
B0GridDesc_N_K
{}))
>
;
using
B1GridDesc_BK0_N_BK1
=
remove_cvref_t
<
decltype
(
GridwiseGemm
::
MakeDefaultB1GridDescriptor_BK0_N_BK1
(
B1GridDesc_N_K
{}))
>
;
// Argument
struct
Argument
:
public
BaseArgument
{
Argument
(
const
A0DataType
*
p_a0_grid
,
const
B0DataType
*
p_b0_grid
,
std
::
array
<
const
void
*
,
NumD0Tensor
>
p_d0s_grid
,
const
B1DataType
*
p_b1_grid
,
std
::
array
<
const
void
*
,
NumD1Tensor
>
p_d1s_grid
,
E1DataType
*
p_e1_grid
,
index_t
MRaw
,
index_t
NRaw
,
index_t
KRaw
,
index_t
Gemm1NRaw
,
// = ORaw
index_t
Batch
,
index_t
StrideA0
,
index_t
StrideB0
,
std
::
array
<
index_t
,
NumD0Tensor
>
StrideD0s
,
index_t
StrideB1
,
std
::
array
<
index_t
,
NumD1Tensor
>
StrideD1s
,
index_t
StrideE1
,
index_t
BatchStrideA0
,
index_t
BatchStrideB0
,
std
::
array
<
index_t
,
NumD0Tensor
>
BatchStrideD0s
,
index_t
BatchStrideB1
,
std
::
array
<
index_t
,
NumD1Tensor
>
BatchStrideD1s
,
index_t
BatchStrideE1
,
A0ElementwiseOperation
a0_element_op
,
B0ElementwiseOperation
b0_element_op
,
CDE0ElementwiseOperation
cde0_element_op
,
B1ElementwiseOperation
b1_element_op
,
CDE1ElementwiseOperation
cde1_element_op
)
:
p_a0_grid_
{
p_a0_grid
},
p_b0_grid_
{
p_b0_grid
},
p_d0s_grid_
{},
p_b1_grid_
{
p_b1_grid
},
p_d1s_grid_
{},
p_e1_grid_
{
p_e1_grid
},
a0_grid_desc_m_k_
{
DeviceOp
::
MakeA0GridDescriptor_M_K
(
MRaw
,
KRaw
,
StrideA0
)},
b0_grid_desc_n_k_
{
DeviceOp
::
MakeB0GridDescriptor_N_K
(
KRaw
,
NRaw
,
StrideB0
)},
d0s_grid_desc_m_n_
{},
b1_grid_desc_n_k_
{
DeviceOp
::
MakeB1GridDescriptor_N_K
(
NRaw
,
Gemm1NRaw
,
StrideB1
)},
d1s_grid_desc_m_n_
{},
e1_grid_desc_m_n_
{
DeviceOp
::
MakeE1GridDescriptor_M_N
<
E1Layout
>
(
MRaw
,
Gemm1NRaw
,
StrideE1
)},
a0_grid_desc_ak0_m_ak1_
{
GridwiseGemm
::
MakeDefaultA0GridDescriptor_AK0_M_AK1
(
a0_grid_desc_m_k_
)},
b0_grid_desc_bk0_n_bk1_
{
GridwiseGemm
::
MakeDefaultB0GridDescriptor_BK0_N_BK1
(
b0_grid_desc_n_k_
)},
d0s_grid_desc_m0_n0_m1_n1_m2_n2_m3_n3_n4_n5_
{},
b1_grid_desc_bk0_n_bk1_
{
GridwiseGemm
::
MakeDefaultB1GridDescriptor_BK0_N_BK1
(
b1_grid_desc_n_k_
)},
d1s_grid_desc_mblock_mperblock_nblock_nperblock_
{},
e1_grid_desc_mblock_mperblock_nblock_nperblock_
{},
block_2_e1tile_map_
{
GridwiseGemm
::
MakeDefaultBlock2E1TileMap
(
e1_grid_desc_m_n_
)},
a0_element_op_
{
a0_element_op
},
b0_element_op_
{
b0_element_op
},
cde0_element_op_
{
cde0_element_op
},
b1_element_op_
{
b1_element_op
},
cde1_element_op_
{
cde1_element_op
},
batch_count_
(
Batch
),
compute_base_ptr_of_batch_
{
BatchStrideA0
,
BatchStrideB0
,
BatchStrideD0s
,
BatchStrideB1
,
BatchStrideD1s
,
BatchStrideE1
}
{
std
::
cout
<<
"a0_grid_desc_m_k_{"
<<
a0_grid_desc_m_k_
.
GetLength
(
I0
)
<<
", "
<<
a0_grid_desc_m_k_
.
GetLength
(
I1
)
<<
"}"
<<
std
::
endl
;
std
::
cout
<<
"b0_grid_desc_n_k_{"
<<
b0_grid_desc_n_k_
.
GetLength
(
I0
)
<<
", "
<<
b0_grid_desc_n_k_
.
GetLength
(
I1
)
<<
"}"
<<
std
::
endl
;
std
::
cout
<<
"d0s_grid_desc_m_n_[I0]{"
<<
d0s_grid_desc_m_n_
[
I0
].
GetLength
(
I0
)
<<
", "
<<
d0s_grid_desc_m_n_
[
I0
].
GetLength
(
I1
)
<<
"}"
<<
std
::
endl
;
std
::
cout
<<
"b1_grid_desc_n_k_{"
<<
b1_grid_desc_n_k_
.
GetLength
(
I0
)
<<
", "
<<
b1_grid_desc_n_k_
.
GetLength
(
I1
)
<<
"}"
<<
std
::
endl
;
std
::
cout
<<
"d0s_grid_desc_m0_n0_m1_n1_m2_n2_m3_n3_n4_n5_{"
<<
d0s_grid_desc_m0_n0_m1_n1_m2_n2_m3_n3_n4_n5_
[
I0
].
GetLength
(
I0
)
<<
", "
<<
d0s_grid_desc_m0_n0_m1_n1_m2_n2_m3_n3_n4_n5_
[
I0
].
GetLength
(
I1
)
<<
", "
<<
d0s_grid_desc_m0_n0_m1_n1_m2_n2_m3_n3_n4_n5_
[
I0
].
GetLength
(
I2
)
<<
", "
<<
d0s_grid_desc_m0_n0_m1_n1_m2_n2_m3_n3_n4_n5_
[
I0
].
GetLength
(
I3
)
<<
", "
<<
d0s_grid_desc_m0_n0_m1_n1_m2_n2_m3_n3_n4_n5_
[
I0
].
GetLength
(
I4
)
<<
", "
<<
d0s_grid_desc_m0_n0_m1_n1_m2_n2_m3_n3_n4_n5_
[
I0
].
GetLength
(
I5
)
<<
", "
<<
d0s_grid_desc_m0_n0_m1_n1_m2_n2_m3_n3_n4_n5_
[
I0
].
GetLength
(
I6
)
<<
", "
<<
d0s_grid_desc_m0_n0_m1_n1_m2_n2_m3_n3_n4_n5_
[
I0
].
GetLength
(
I7
)
<<
", "
<<
d0s_grid_desc_m0_n0_m1_n1_m2_n2_m3_n3_n4_n5_
[
I0
].
GetLength
(
I8
)
<<
", "
<<
d0s_grid_desc_m0_n0_m1_n1_m2_n2_m3_n3_n4_n5_
[
I0
].
GetLength
(
I9
)
<<
"}"
<<
std
::
endl
;
std
::
cout
<<
"e1_grid_desc_m_n_{"
<<
e1_grid_desc_m_n_
.
GetLength
(
I0
)
<<
", "
<<
e1_grid_desc_m_n_
.
GetLength
(
I1
)
<<
"}"
<<
std
::
endl
;
static_for
<
0
,
NumD0Tensor
,
1
>
{}([
&
](
auto
i
)
{
using
D0Layout
=
remove_cvref_t
<
tuple_element_t
<
i
.
value
,
D0sLayout
>>
;
using
D0DataType
=
remove_cvref_t
<
tuple_element_t
<
i
.
value
,
D0sDataType
>>
;
// D0 pointer
p_d0s_grid_
(
i
)
=
static_cast
<
const
D0DataType
*>
(
p_d0s_grid
[
i
]);
// D0 desc
d0s_grid_desc_m_n_
(
i
)
=
DeviceOp
::
MakeD0GridDescriptor_M_N
<
D0Layout
>
(
MRaw
,
NRaw
,
StrideD0s
[
i
]);
});
static_for
<
0
,
NumD1Tensor
,
1
>
{}([
&
](
auto
i
)
{
using
D1Layout
=
remove_cvref_t
<
tuple_element_t
<
i
.
value
,
D1sLayout
>>
;
using
D1DataType
=
remove_cvref_t
<
tuple_element_t
<
i
.
value
,
D1sDataType
>>
;
// D1 pointer
p_d1s_grid_
(
i
)
=
static_cast
<
const
D1DataType
*>
(
p_d1s_grid
[
i
]);
// D1 desc
d1s_grid_desc_m_n_
(
i
)
=
DeviceOp
::
MakeE1GridDescriptor_M_N
<
D1Layout
>
(
MRaw
,
Gemm1NRaw
,
StrideD1s
[
i
]);
});
if
(
GridwiseGemm
::
CheckValidity
(
a0_grid_desc_m_k_
,
b0_grid_desc_n_k_
,
b1_grid_desc_n_k_
,
e1_grid_desc_m_n_
,
block_2_e1tile_map_
))
{
e1_grid_desc_mblock_mperblock_nblock_nperblock_
=
GridwiseGemm
::
MakeE1GridDescriptor_MBlock_MPerBlock_NBlock_NPerBlock
(
e1_grid_desc_m_n_
);
d0s_grid_desc_m0_n0_m1_n1_m2_n2_m3_n3_n4_n5_
=
GridwiseGemm
::
MakeD0sGridDescriptor_M0_N0_M1_N1_M2_N2_M3_N3_N4_N5
(
d0s_grid_desc_m_n_
);
d1s_grid_desc_mblock_mperblock_nblock_nperblock_
=
GridwiseGemm
::
MakeD1sGridDescriptor_MBlock_MPerBlock_NBlock_NPerBlock
(
d1s_grid_desc_m_n_
);
}
}
// private:
// pointers
const
A0DataType
*
p_a0_grid_
;
const
B0DataType
*
p_b0_grid_
;
typename
GridwiseGemm
::
D0sGridPointer
p_d0s_grid_
;
const
B1DataType
*
p_b1_grid_
;
typename
GridwiseGemm
::
D1sGridPointer
p_d1s_grid_
;
E1DataType
*
p_e1_grid_
;
// tensor descriptors for problem definiton
A0GridDesc_M_K
a0_grid_desc_m_k_
;
B0GridDesc_N_K
b0_grid_desc_n_k_
;
D0sGridDesc_M_N
d0s_grid_desc_m_n_
;
B1GridDesc_N_K
b1_grid_desc_n_k_
;
D1sGridDesc_M_N
d1s_grid_desc_m_n_
;
E1GridDesc_M_N
e1_grid_desc_m_n_
;
// tensor descriptors for block/thread-wise copy
A0GridDesc_AK0_M_AK1
a0_grid_desc_ak0_m_ak1_
;
B0GridDesc_BK0_N_BK1
b0_grid_desc_bk0_n_bk1_
;
typename
GridwiseGemm
::
D0sGridDescriptor_M0_N0_M1_N1_M2_N2_M3_N3_N4_N5
d0s_grid_desc_m0_n0_m1_n1_m2_n2_m3_n3_n4_n5_
;
B1GridDesc_BK0_N_BK1
b1_grid_desc_bk0_n_bk1_
;
typename
GridwiseGemm
::
D1sGridDescriptor_MBlock_MPerBlock_NBlock_NPerBlock
d1s_grid_desc_mblock_mperblock_nblock_nperblock_
;
typename
GridwiseGemm
::
E1GridDescriptor_MBlock_MPerBlock_NBlock_NPerBlock
e1_grid_desc_mblock_mperblock_nblock_nperblock_
;
// block-to-e1-tile map
typename
GridwiseGemm
::
DefaultBlock2E1TileMap
block_2_e1tile_map_
;
// element-wise op
A0ElementwiseOperation
a0_element_op_
;
B0ElementwiseOperation
b0_element_op_
;
CDE0ElementwiseOperation
cde0_element_op_
;
B1ElementwiseOperation
b1_element_op_
;
CDE1ElementwiseOperation
cde1_element_op_
;
// batch
index_t
batch_count_
;
ComputeBasePtrOfStridedBatch
compute_base_ptr_of_batch_
;
};
// Invoker
struct
Invoker
:
public
BaseInvoker
{
using
Argument
=
DeviceOp
::
Argument
;
float
Run
(
const
Argument
&
arg
,
const
StreamConfig
&
stream_config
=
StreamConfig
{})
{
if
(
!
GridwiseGemm
::
CheckValidity
(
arg
.
a0_grid_desc_m_k_
,
arg
.
b0_grid_desc_n_k_
,
arg
.
b1_grid_desc_n_k_
,
arg
.
e1_grid_desc_m_n_
,
arg
.
block_2_e1tile_map_
))
{
throw
std
::
runtime_error
(
"wrong! GridwiseGemm has invalid setting"
);
}
const
index_t
grid_size
=
arg
.
block_2_e1tile_map_
.
CalculateGridSize
(
arg
.
e1_grid_desc_m_n_
)
*
arg
.
batch_count_
;
// Gemm0_K
const
auto
K
=
arg
.
a0_grid_desc_m_k_
.
GetLength
(
I1
);
auto
launch_kernel
=
[
&
](
auto
has_main_k_block_loop_
)
{
const
auto
kernel
=
kernel_batched_gemm_gemm_xdl_cshuffle_v1
<
GridwiseGemm
,
A0DataType
,
// TODO: distiguish A/B datatype
typename
GridwiseGemm
::
D0sGridPointer
,
typename
GridwiseGemm
::
D1sGridPointer
,
E1DataType
,
A0ElementwiseOperation
,
B0ElementwiseOperation
,
CDE0ElementwiseOperation
,
B1ElementwiseOperation
,
CDE1ElementwiseOperation
,
DeviceOp
::
A0GridDesc_AK0_M_AK1
,
DeviceOp
::
B0GridDesc_BK0_N_BK1
,
typename
GridwiseGemm
::
D0sGridDescriptor_M0_N0_M1_N1_M2_N2_M3_N3_N4_N5
,
DeviceOp
::
B1GridDesc_BK0_N_BK1
,
typename
GridwiseGemm
::
D1sGridDescriptor_MBlock_MPerBlock_NBlock_NPerBlock
,
typename
GridwiseGemm
::
E1GridDescriptor_MBlock_MPerBlock_NBlock_NPerBlock
,
typename
GridwiseGemm
::
DefaultBlock2E1TileMap
,
ComputeBasePtrOfStridedBatch
,
has_main_k_block_loop_
>
;
return
launch_and_time_kernel
(
stream_config
,
kernel
,
dim3
(
grid_size
),
dim3
(
BlockSize
),
0
,
arg
.
p_a0_grid_
,
arg
.
p_b0_grid_
,
arg
.
p_d0s_grid_
,
arg
.
p_b1_grid_
,
arg
.
p_d1s_grid_
,
arg
.
p_e1_grid_
,
arg
.
a0_element_op_
,
arg
.
b0_element_op_
,
arg
.
cde0_element_op_
,
arg
.
b1_element_op_
,
arg
.
cde1_element_op_
,
arg
.
a0_grid_desc_ak0_m_ak1_
,
arg
.
b0_grid_desc_bk0_n_bk1_
,
arg
.
d0s_grid_desc_m0_n0_m1_n1_m2_n2_m3_n3_n4_n5_
,
arg
.
b1_grid_desc_bk0_n_bk1_
,
arg
.
d1s_grid_desc_mblock_mperblock_nblock_nperblock_
,
arg
.
e1_grid_desc_mblock_mperblock_nblock_nperblock_
,
arg
.
block_2_e1tile_map_
,
arg
.
batch_count_
,
arg
.
compute_base_ptr_of_batch_
);
};
// Gemm1_K is split into Gemm1_K0/K1 where K1 is known at compile time, so we only need
// to concern Gemm0's loop
if
(
GridwiseGemm
::
CalculateHasMainKBlockLoop
(
K
))
{
return
launch_kernel
(
integral_constant
<
bool
,
true
>
{});
}
else
{
return
launch_kernel
(
integral_constant
<
bool
,
false
>
{});
}
}
// polymorphic
float
Run
(
const
BaseArgument
*
p_arg
,
const
StreamConfig
&
stream_config
=
StreamConfig
{})
override
{
return
Run
(
*
dynamic_cast
<
const
Argument
*>
(
p_arg
),
stream_config
);
}
};
static
constexpr
bool
IsValidCompilationParameter
()
{
// TODO: properly implement this check
return
true
;
}
static
bool
IsSupportedArgument
(
const
Argument
&
arg
)
{
if
(
!
(
ck
::
get_device_name
()
==
"gfx908"
||
ck
::
get_device_name
()
==
"gfx90a"
))
{
return
false
;
}
return
GridwiseGemm
::
CheckValidity
(
arg
.
a0_grid_desc_m_k_
,
arg
.
b0_grid_desc_n_k_
,
arg
.
b1_grid_desc_n_k_
,
arg
.
e1_grid_desc_m_n_
,
arg
.
block_2_e1tile_map_
);
}
// polymorphic
bool
IsSupportedArgument
(
const
BaseArgument
*
p_arg
)
override
{
return
IsSupportedArgument
(
*
dynamic_cast
<
const
Argument
*>
(
p_arg
));
}
static
auto
MakeArgument
(
const
A0DataType
*
p_a0
,
const
B0DataType
*
p_b0
,
std
::
array
<
const
void
*
,
NumD0Tensor
>
p_d0s
,
const
B1DataType
*
p_b1
,
std
::
array
<
const
void
*
,
NumD1Tensor
>
p_d1s
,
E1DataType
*
p_e1
,
index_t
MRaw
,
index_t
NRaw
,
index_t
KRaw
,
index_t
Gemm1NRaw
,
index_t
Batch
,
index_t
StrideA0
,
index_t
StrideB0
,
std
::
array
<
index_t
,
NumD0Tensor
>
StrideD0s
,
index_t
StrideB1
,
std
::
array
<
index_t
,
NumD1Tensor
>
StrideD1s
,
index_t
StrideE1
,
index_t
BatchStrideA0
,
index_t
BatchStrideB0
,
std
::
array
<
index_t
,
NumD0Tensor
>
BatchStrideD0s
,
index_t
BatchStrideB1
,
std
::
array
<
index_t
,
NumD1Tensor
>
BatchStrideD1s
,
index_t
BatchStrideE1
,
A0ElementwiseOperation
a0_element_op
,
B0ElementwiseOperation
b0_element_op
,
CDE0ElementwiseOperation
cde0_element_op
,
B1ElementwiseOperation
b1_element_op
,
CDE1ElementwiseOperation
cde1_element_op
)
{
return
Argument
{
p_a0
,
p_b0
,
p_d0s
,
p_b1
,
p_d1s
,
p_e1
,
MRaw
,
NRaw
,
KRaw
,
Gemm1NRaw
,
Batch
,
StrideA0
,
StrideB0
,
StrideD0s
,
StrideB1
,
StrideD1s
,
StrideE1
,
BatchStrideA0
,
BatchStrideB0
,
BatchStrideD0s
,
BatchStrideB1
,
BatchStrideD1s
,
BatchStrideE1
,
a0_element_op
,
b0_element_op
,
cde0_element_op
,
b1_element_op
,
cde1_element_op
};
}
static
auto
MakeInvoker
()
{
return
Invoker
{};
}
// polymorphic
std
::
unique_ptr
<
BaseArgument
>
MakeArgumentPointer
(
const
void
*
p_a0
,
const
void
*
p_b0
,
std
::
array
<
const
void
*
,
NumD0Tensor
>
p_d0s
,
const
void
*
p_b1
,
std
::
array
<
const
void
*
,
NumD1Tensor
>
p_d1s
,
void
*
p_e1
,
index_t
MRaw
,
index_t
NRaw
,
index_t
KRaw
,
index_t
Gemm1NRaw
,
index_t
Batch
,
index_t
StrideA0
,
index_t
StrideB0
,
std
::
array
<
ck
::
index_t
,
NumD0Tensor
>
StrideD0s
,
index_t
StrideB1
,
std
::
array
<
ck
::
index_t
,
NumD1Tensor
>
StrideD1s
,
index_t
StrideE1
,
index_t
BatchStrideA0
,
index_t
BatchStrideB0
,
std
::
array
<
ck
::
index_t
,
NumD0Tensor
>
BatchStrideD0s
,
index_t
BatchStrideB1
,
std
::
array
<
ck
::
index_t
,
NumD1Tensor
>
BatchStrideD1s
,
index_t
BatchStrideE1
,
A0ElementwiseOperation
a0_element_op
,
B0ElementwiseOperation
b0_element_op
,
CDE0ElementwiseOperation
cde0_element_op
,
B1ElementwiseOperation
b1_element_op
,
CDE1ElementwiseOperation
cde1_element_op
)
override
{
return
std
::
make_unique
<
Argument
>
(
static_cast
<
const
A0DataType
*>
(
p_a0
),
static_cast
<
const
B0DataType
*>
(
p_b0
),
p_d0s
,
static_cast
<
const
B1DataType
*>
(
p_b1
),
p_d1s
,
static_cast
<
E1DataType
*>
(
p_e1
),
MRaw
,
NRaw
,
KRaw
,
Gemm1NRaw
,
Batch
,
StrideA0
,
StrideB0
,
StrideD0s
,
StrideB1
,
StrideD1s
,
StrideE1
,
BatchStrideA0
,
BatchStrideB0
,
BatchStrideD0s
,
BatchStrideB1
,
BatchStrideD1s
,
BatchStrideE1
,
a0_element_op
,
b0_element_op
,
cde0_element_op
,
b1_element_op
,
cde1_element_op
);
}
// polymorphic
std
::
unique_ptr
<
BaseInvoker
>
MakeInvokerPointer
()
override
{
return
std
::
make_unique
<
Invoker
>
(
Invoker
{});
}
// polymorphic
std
::
string
GetTypeString
()
const
override
{
auto
str
=
std
::
stringstream
();
// clang-format off
str
<<
"DeviceBatchedGemmMultipleDGemmMultipleD_Xdl_CShuffle"
<<
"<"
<<
BlockSize
<<
", "
<<
Gemm0MPerBlock
<<
", "
<<
Gemm0NPerBlock
<<
", "
<<
Gemm0KPerBlock
<<
", "
<<
A0K1
<<
", "
<<
B0K1
<<
", "
<<
B1K1
<<
", "
<<
Gemm0MPerXdl
<<
", "
<<
Gemm0NPerXdl
<<
", "
<<
Gemm0MXdlPerWave
<<
", "
<<
Gemm0NXdlPerWave
<<
", "
<<
Gemm1NXdlPerWave
<<
"> "
;
// clang-format on
return
str
.
str
();
}
};
}
// namespace device
}
// namespace tensor_operation
}
// namespace ck
include/ck/tensor_operation/gpu/device/device_batched_gemm_softmax_gemm.hpp
View file @
b89a88b5
...
@@ -54,34 +54,6 @@ struct DeviceBatchedGemmSoftmaxGemm : public BaseOperator
...
@@ -54,34 +54,6 @@ struct DeviceBatchedGemmSoftmaxGemm : public BaseOperator
virtual
std
::
unique_ptr
<
BaseInvoker
>
MakeInvokerPointer
()
=
0
;
virtual
std
::
unique_ptr
<
BaseInvoker
>
MakeInvokerPointer
()
=
0
;
};
};
template
<
typename
ALayout
,
typename
B0Layout
,
typename
B1Layout
,
typename
CLayout
,
typename
ADataType
,
typename
B0DataType
,
typename
B1DataType
,
typename
CDataType
,
typename
AElementwiseOperation
,
typename
B0ElementwiseOperation
,
typename
Acc0ElementwiseOperation
,
typename
B1ElementwiseOperation
,
typename
CElementwiseOperation
>
using
DeviceBatchedGemmSoftmaxGemmPtr
=
std
::
unique_ptr
<
DeviceBatchedGemmSoftmaxGemm
<
ALayout
,
B0Layout
,
B1Layout
,
CLayout
,
ADataType
,
B0DataType
,
B1DataType
,
CDataType
,
AElementwiseOperation
,
B0ElementwiseOperation
,
Acc0ElementwiseOperation
,
B1ElementwiseOperation
,
CElementwiseOperation
>>
;
}
// namespace device
}
// namespace device
}
// namespace tensor_operation
}
// namespace tensor_operation
}
// namespace ck
}
// namespace ck
include/ck/tensor_operation/gpu/device/device_batched_gemm_softmax_gemm_permute.hpp
0 → 100644
View file @
b89a88b5
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2022, Advanced Micro Devices, Inc. All rights reserved.
#pragma once
#include <iostream>
#include <vector>
#include "device_base.hpp"
namespace
ck
{
namespace
tensor_operation
{
namespace
device
{
template
<
typename
ALayout
,
typename
B0Layout
,
typename
B1Layout
,
typename
CPermuteNumDims_G_M_Gemm1N
,
// Sequence<>
typename
ADataType
,
typename
B0DataType
,
typename
B1DataType
,
typename
CDataType
,
typename
AElementwiseOperation
,
typename
B0ElementwiseOperation
,
typename
Acc0ElementwiseOperation
,
typename
B1ElementwiseOperation
,
typename
CElementwiseOperation
>
struct
DeviceBatchedGemmSoftmaxGemmPermute
:
public
BaseOperator
{
virtual
std
::
unique_ptr
<
BaseArgument
>
MakeArgumentPointer
(
const
void
*
p_a
,
const
void
*
p_b0
,
const
void
*
p_b1
,
void
*
p_c
,
ck
::
index_t
M
,
ck
::
index_t
N
,
ck
::
index_t
K
,
ck
::
index_t
O
,
ck
::
index_t
Batch
,
std
::
vector
<
index_t
>
c_gs_ms_os_lengths
,
std
::
vector
<
index_t
>
c_gs_ms_os_strides
,
ck
::
index_t
StrideA
,
ck
::
index_t
StrideB0
,
ck
::
index_t
StrideB1
,
ck
::
index_t
BatchStrideA
,
ck
::
index_t
BatchStrideB0
,
ck
::
index_t
BatchStrideB1
,
AElementwiseOperation
a_element_op
,
B0ElementwiseOperation
b0_element_op
,
Acc0ElementwiseOperation
acc0_element_op
,
B1ElementwiseOperation
b1_element_op
,
CElementwiseOperation
c_element_op
)
=
0
;
virtual
std
::
unique_ptr
<
BaseInvoker
>
MakeInvokerPointer
()
=
0
;
};
}
// namespace device
}
// namespace tensor_operation
}
// namespace ck
include/ck/tensor_operation/gpu/device/device_batched_gemm_softmax_gemm_permute_xdl_cshuffle.hpp
0 → 100644
View file @
b89a88b5
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2022, Advanced Micro Devices, Inc. All rights reserved.
#pragma once
#include <iostream>
#include <sstream>
#include "ck/utility/common_header.hpp"
#include "ck/tensor_description/tensor_descriptor.hpp"
#include "ck/tensor_description/tensor_descriptor_helper.hpp"
#include "ck/tensor_operation/gpu/device/tensor_layout.hpp"
#include "ck/tensor_operation/gpu/device/device_batched_gemm_softmax_gemm_permute.hpp"
#include "ck/tensor_operation/gpu/device/gemm_specialization.hpp"
#include "ck/tensor_operation/gpu/device/matrix_padder.hpp"
#include "ck/tensor_operation/gpu/grid/gridwise_batched_gemm_softmax_gemm_xdl_cshuffle_v1.hpp"
#include "ck/host_utility/device_prop.hpp"
#include "ck/host_utility/kernel_launch.hpp"
namespace
ck
{
namespace
tensor_operation
{
namespace
device
{
template
<
typename
GridwiseGemm
,
typename
FloatAB
,
typename
FloatC
,
typename
AElementwiseOperation
,
typename
BElementwiseOperation
,
typename
AccElementwiseOperation
,
typename
B1ElementwiseOperation
,
typename
CElementwiseOperation
,
typename
AGridDesc_AK0_M_AK1
,
typename
BGridDesc_BK0_N_BK1
,
typename
B1GridDesc_BK0_N_BK1
,
typename
CGridDescriptor_MBlock_MPerBlock_NBlock_NPerBlock
,
typename
Block2CTileMap
,
typename
ComputeBasePtrOfStridedBatch
,
bool
HasMainKBlockLoop
>
__global__
void
#if CK_USE_LAUNCH_BOUNDS
__launch_bounds__
(
CK_MAX_THREAD_PER_BLOCK
,
CK_MIN_BLOCK_PER_CU
)
#endif
kernel_batched_gemm_softmax_gemm_xdl_cshuffle_v1
(
const
FloatAB
*
__restrict__
p_a_grid
,
const
FloatAB
*
__restrict__
p_b_grid
,
const
FloatAB
*
__restrict__
p_b1_grid
,
FloatC
*
__restrict__
p_c_grid
,
const
AElementwiseOperation
a_element_op
,
const
BElementwiseOperation
b_element_op
,
const
AccElementwiseOperation
acc_element_op
,
const
B1ElementwiseOperation
b1_element_op
,
const
CElementwiseOperation
c_element_op
,
const
AGridDesc_AK0_M_AK1
a_grid_desc_ak0_m_ak1
,
const
BGridDesc_BK0_N_BK1
b_grid_desc_bk0_n_bk1
,
const
B1GridDesc_BK0_N_BK1
b1_grid_desc_bk0_n_bk1
,
const
CGridDescriptor_MBlock_MPerBlock_NBlock_NPerBlock
c_grid_desc_mblock_mperblock_nblock_nperblock
,
const
Block2CTileMap
block_2_ctile_map
,
const
index_t
batch_count
,
const
ComputeBasePtrOfStridedBatch
compute_base_ptr_of_batch
)
{
#if(!defined(__HIP_DEVICE_COMPILE__) || defined(__gfx908__) || defined(__gfx90a__))
__shared__
char
p_shared
[
GridwiseGemm
::
GetSharedMemoryNumberOfByte
()];
const
index_t
num_blocks_per_batch
=
__builtin_amdgcn_readfirstlane
(
get_grid_size
()
/
batch_count
);
const
index_t
g_idx
=
__builtin_amdgcn_readfirstlane
(
get_block_1d_id
()
/
num_blocks_per_batch
);
const
long_index_t
a_batch_offset
=
__builtin_amdgcn_readfirstlane
(
static_cast
<
long_index_t
>
(
compute_base_ptr_of_batch
.
GetABasePtr
(
g_idx
)));
const
long_index_t
b_batch_offset
=
__builtin_amdgcn_readfirstlane
(
static_cast
<
long_index_t
>
(
compute_base_ptr_of_batch
.
GetBBasePtr
(
g_idx
)));
const
long_index_t
b1_batch_offset
=
__builtin_amdgcn_readfirstlane
(
static_cast
<
long_index_t
>
(
compute_base_ptr_of_batch
.
GetB1BasePtr
(
g_idx
)));
const
long_index_t
c_batch_offset
=
__builtin_amdgcn_readfirstlane
(
static_cast
<
long_index_t
>
(
compute_base_ptr_of_batch
.
GetCBasePtr
(
g_idx
)));
GridwiseGemm
::
template
Run
<
HasMainKBlockLoop
>(
p_a_grid
+
a_batch_offset
,
p_b_grid
+
b_batch_offset
,
p_b1_grid
+
b1_batch_offset
,
p_c_grid
+
c_batch_offset
,
p_shared
,
a_element_op
,
b_element_op
,
acc_element_op
,
b1_element_op
,
c_element_op
,
a_grid_desc_ak0_m_ak1
,
b_grid_desc_bk0_n_bk1
,
b1_grid_desc_bk0_n_bk1
,
c_grid_desc_mblock_mperblock_nblock_nperblock
,
block_2_ctile_map
);
#else
ignore
=
p_a_grid
;
ignore
=
p_b_grid
;
ignore
=
p_b1_grid
;
ignore
=
p_c_grid
;
ignore
=
a_element_op
;
ignore
=
b_element_op
;
ignore
=
acc_element_op
;
ignore
=
b1_element_op
;
ignore
=
c_element_op
;
ignore
=
a_grid_desc_ak0_m_ak1
;
ignore
=
b_grid_desc_bk0_n_bk1
;
ignore
=
b1_grid_desc_bk0_n_bk1
;
ignore
=
c_grid_desc_mblock_mperblock_nblock_nperblock
;
ignore
=
block_2_ctile_map
;
ignore
=
batch_count
;
ignore
=
compute_base_ptr_of_batch
;
#endif // end of if (defined(__gfx908__) || defined(__gfx90a__))
}
// Computes C = A * B0 * B1
// ^^^^^^ (Acc0)
// ^^^^^^^^^^^ (Acc1)
template
<
typename
ALayout
,
typename
BLayout
,
// B0Layout
typename
B1Layout
,
typename
CPermuteNumDims_G_M_Gemm1N
,
// Sequence<NumDimG, NumDimM, NumDimGemm1N>
typename
ADataType
,
typename
BDataType
,
typename
B1DataType
,
typename
CDataType
,
typename
GemmAccDataType
,
typename
CShuffleDataType
,
typename
AElementwiseOperation
,
typename
BElementwiseOperation
,
typename
AccElementwiseOperation
,
typename
B1ElementwiseOperation
,
typename
CElementwiseOperation
,
GemmSpecialization
GemmSpec
,
index_t
NumGemmKPrefetchStage
,
index_t
BlockSize
,
index_t
MPerBlock
,
index_t
NPerBlock
,
// Gemm0NPerBlock
index_t
KPerBlock
,
// Gemm0KPerBlock
index_t
Gemm1NPerBlock
,
index_t
Gemm1KPerBlock
,
index_t
AK1
,
index_t
BK1
,
index_t
B1K1
,
index_t
MPerXDL
,
index_t
NPerXDL
,
index_t
MXdlPerWave
,
index_t
NXdlPerWave
,
index_t
Gemm1NXdlPerWave
,
typename
ABlockTransferThreadClusterLengths_AK0_M_AK1
,
typename
ABlockTransferThreadClusterArrangeOrder
,
typename
ABlockTransferSrcAccessOrder
,
index_t
ABlockTransferSrcVectorDim
,
index_t
ABlockTransferSrcScalarPerVector
,
index_t
ABlockTransferDstScalarPerVector_AK1
,
bool
ABlockLdsExtraM
,
typename
BBlockTransferThreadClusterLengths_BK0_N_BK1
,
typename
BBlockTransferThreadClusterArrangeOrder
,
typename
BBlockTransferSrcAccessOrder
,
index_t
BBlockTransferSrcVectorDim
,
index_t
BBlockTransferSrcScalarPerVector
,
index_t
BBlockTransferDstScalarPerVector_BK1
,
bool
BBlockLdsExtraN
,
typename
B1BlockTransferThreadClusterLengths_BK0_N_BK1
,
typename
B1BlockTransferThreadClusterArrangeOrder
,
typename
B1BlockTransferSrcAccessOrder
,
index_t
B1BlockTransferSrcVectorDim
,
index_t
B1BlockTransferSrcScalarPerVector
,
index_t
B1BlockTransferDstScalarPerVector_BK1
,
bool
B1BlockLdsExtraN
,
index_t
CShuffleMXdlPerWavePerShuffle
,
index_t
CShuffleNXdlPerWavePerShuffle
,
typename
CShuffleBlockTransferClusterLengths_MBlock_MPerBlock_NBlock_NPerBlock
,
index_t
CShuffleBlockTransferScalarPerVector_NPerBlock
,
LoopScheduler
LoopSched
=
LoopScheduler
::
Default
>
struct
DeviceBatchedGemmSoftmaxGemmPermute_Xdl_CShuffle
:
public
DeviceBatchedGemmSoftmaxGemmPermute
<
ALayout
,
BLayout
,
B1Layout
,
CPermuteNumDims_G_M_Gemm1N
,
ADataType
,
BDataType
,
B1DataType
,
CDataType
,
AElementwiseOperation
,
BElementwiseOperation
,
AccElementwiseOperation
,
B1ElementwiseOperation
,
CElementwiseOperation
>
{
using
DeviceOp
=
DeviceBatchedGemmSoftmaxGemmPermute_Xdl_CShuffle
;
static
constexpr
auto
I0
=
Number
<
0
>
{};
static
constexpr
auto
I1
=
Number
<
1
>
{};
static
constexpr
auto
I2
=
Number
<
2
>
{};
static
constexpr
auto
matrix_padder
=
GemmGemmPadder
<
GemmSpec
,
index_t
,
index_t
,
index_t
,
index_t
>
{
MPerBlock
,
NPerBlock
,
KPerBlock
,
Gemm1NPerBlock
};
// FIXME: pad K
static_assert
(
!
matrix_padder
.
PadK
,
"KPadding is currently not supported"
);
static
auto
MakeAGridDescriptor_AK0_M_AK1
(
index_t
MRaw
,
index_t
KRaw
,
index_t
StrideA
)
{
const
auto
a_grid_desc_mraw_kraw
=
[
&
]()
{
if
constexpr
(
is_same_v
<
tensor_layout
::
gemm
::
RowMajor
,
ALayout
>
)
{
return
make_naive_tensor_descriptor
(
make_tuple
(
MRaw
,
KRaw
),
make_tuple
(
StrideA
,
I1
));
}
else
if
constexpr
(
is_same_v
<
tensor_layout
::
gemm
::
ColumnMajor
,
ALayout
>
)
{
return
make_naive_tensor_descriptor
(
make_tuple
(
MRaw
,
KRaw
),
make_tuple
(
I1
,
StrideA
));
}
}();
const
auto
a_grid_desc_m_k
=
matrix_padder
.
PadADescriptor_M_K
(
a_grid_desc_mraw_kraw
);
const
auto
M
=
a_grid_desc_m_k
.
GetLength
(
I0
);
const
auto
K
=
a_grid_desc_m_k
.
GetLength
(
I1
);
const
auto
AK0
=
K
/
AK1
;
return
transform_tensor_descriptor
(
a_grid_desc_m_k
,
make_tuple
(
make_unmerge_transform
(
make_tuple
(
AK0
,
AK1
)),
make_pass_through_transform
(
M
)),
make_tuple
(
Sequence
<
1
>
{},
Sequence
<
0
>
{}),
make_tuple
(
Sequence
<
0
,
2
>
{},
Sequence
<
1
>
{}));
}
static
auto
MakeBGridDescriptor_BK0_N_BK1
(
index_t
KRaw
,
index_t
NRaw
,
index_t
StrideB
)
{
const
auto
b_grid_desc_nraw_kraw
=
[
&
]()
{
if
constexpr
(
is_same
<
tensor_layout
::
gemm
::
RowMajor
,
BLayout
>::
value
)
{
return
make_naive_tensor_descriptor
(
make_tuple
(
NRaw
,
KRaw
),
make_tuple
(
I1
,
StrideB
));
}
else
if
constexpr
(
is_same
<
tensor_layout
::
gemm
::
ColumnMajor
,
BLayout
>::
value
)
{
return
make_naive_tensor_descriptor
(
make_tuple
(
NRaw
,
KRaw
),
make_tuple
(
StrideB
,
I1
));
}
}();
const
auto
b_grid_desc_n_k
=
matrix_padder
.
PadBDescriptor_N_K
(
b_grid_desc_nraw_kraw
);
const
auto
N
=
b_grid_desc_n_k
.
GetLength
(
I0
);
const
auto
K
=
b_grid_desc_n_k
.
GetLength
(
I1
);
const
auto
BK0
=
K
/
BK1
;
return
transform_tensor_descriptor
(
b_grid_desc_n_k
,
make_tuple
(
make_unmerge_transform
(
make_tuple
(
BK0
,
BK1
)),
make_pass_through_transform
(
N
)),
make_tuple
(
Sequence
<
1
>
{},
Sequence
<
0
>
{}),
make_tuple
(
Sequence
<
0
,
2
>
{},
Sequence
<
1
>
{}));
}
// Args: Gemm1KRaw, Gemm1NRaw, StrideB1
static
auto
MakeB1GridDescriptor_BK0_N_BK1
(
index_t
KRaw
,
index_t
NRaw
,
index_t
StrideB
)
{
const
auto
b1_grid_desc_nraw_kraw
=
[
&
]()
{
if
constexpr
(
is_same
<
tensor_layout
::
gemm
::
RowMajor
,
B1Layout
>::
value
)
{
return
make_naive_tensor_descriptor
(
make_tuple
(
NRaw
,
KRaw
),
make_tuple
(
I1
,
StrideB
));
}
else
if
constexpr
(
is_same
<
tensor_layout
::
gemm
::
ColumnMajor
,
B1Layout
>::
value
)
{
return
make_naive_tensor_descriptor
(
make_tuple
(
NRaw
,
KRaw
),
make_tuple
(
StrideB
,
I1
));
}
}();
const
auto
b1_grid_desc_n_k
=
matrix_padder
.
PadB1Descriptor_N_K
(
b1_grid_desc_nraw_kraw
);
const
auto
N
=
b1_grid_desc_n_k
.
GetLength
(
I0
);
const
auto
K
=
b1_grid_desc_n_k
.
GetLength
(
I1
);
const
auto
B1K0
=
K
/
B1K1
;
return
transform_tensor_descriptor
(
b1_grid_desc_n_k
,
make_tuple
(
make_unmerge_transform
(
make_tuple
(
B1K0
,
B1K1
)),
make_pass_through_transform
(
N
)),
make_tuple
(
Sequence
<
1
>
{},
Sequence
<
0
>
{}),
make_tuple
(
Sequence
<
0
,
2
>
{},
Sequence
<
1
>
{}));
}
// assume C[G0, G1, ..., M0, M1, M2, ..., N0, N1, N2...]
static
auto
MakeCGridDescriptor_M_N
(
const
std
::
vector
<
index_t
>&
c_gs_ms_ns_lengths_vec
,
const
std
::
vector
<
index_t
>&
c_gs_ms_ns_strides_vec
)
{
constexpr
index_t
NumDimG
=
CPermuteNumDims_G_M_Gemm1N
::
At
(
I0
);
constexpr
index_t
NumDimM
=
CPermuteNumDims_G_M_Gemm1N
::
At
(
I1
);
constexpr
index_t
NumDimN
=
CPermuteNumDims_G_M_Gemm1N
::
At
(
I2
);
// NumDimGemm1N
assert
(
c_gs_ms_ns_lengths_vec
.
size
()
==
NumDimG
+
NumDimM
+
NumDimN
&&
c_gs_ms_ns_strides_vec
.
size
()
==
NumDimG
+
NumDimM
+
NumDimN
);
const
auto
to_tuple
=
[
&
](
auto
&
vec
,
auto
start
,
auto
end
)
{
return
generate_tuple
([
&
](
auto
i
)
{
return
vec
[
start
+
i
];
},
Number
<
end
-
start
>
{});
};
const
auto
c_ms_ns_lengths
=
to_tuple
(
c_gs_ms_ns_lengths_vec
,
Number
<
NumDimG
>
{},
Number
<
NumDimG
+
NumDimM
+
NumDimN
>
{});
const
auto
c_ms_ns_strides
=
to_tuple
(
c_gs_ms_ns_strides_vec
,
Number
<
NumDimG
>
{},
Number
<
NumDimG
+
NumDimM
+
NumDimN
>
{});
// dimension Ids for M0, M1, ...
constexpr
auto
mDimIds
=
typename
arithmetic_sequence_gen
<
0
,
NumDimM
,
1
>::
type
{};
// dimension Ids for N0, N1, ...
constexpr
auto
nDimIds
=
typename
arithmetic_sequence_gen
<
NumDimM
,
NumDimM
+
NumDimN
,
1
>::
type
{};
// lengths for M0, M1, ...
const
auto
mLengths
=
get_container_subset
(
c_ms_ns_lengths
,
mDimIds
);
// lengths for K0, K1, ...
const
auto
nLengths
=
get_container_subset
(
c_ms_ns_lengths
,
nDimIds
);
// naive tensor C[M0, M1, M2, ..., N0, N1, N2...]
const
auto
c_grid_desc_ms_ns
=
make_naive_tensor_descriptor
(
c_ms_ns_lengths
,
c_ms_ns_strides
);
// transformed tensor C[MRaw = M0 * M1 * M2 * ... , NRaw = N0 * N1 * N2 * ...]
const
auto
c_grid_desc_mraw_nraw
=
transform_tensor_descriptor
(
c_grid_desc_ms_ns
,
make_tuple
(
make_merge_transform
(
mLengths
),
make_merge_transform
(
nLengths
)),
make_tuple
(
mDimIds
,
nDimIds
),
make_tuple
(
Sequence
<
0
>
{},
Sequence
<
1
>
{}));
return
matrix_padder
.
PadCDescriptor_M_N
(
c_grid_desc_mraw_nraw
);
}
// assume C[G0, G1, ..., M0, M1, M2, ..., N0, N1, N2...]
static
auto
MakeCGridDescriptor_G_M_N
(
const
std
::
vector
<
index_t
>&
c_gs_ms_ns_lengths_vec
,
const
std
::
vector
<
index_t
>&
c_gs_ms_ns_strides_vec
)
{
constexpr
index_t
NumDimG
=
CPermuteNumDims_G_M_Gemm1N
::
At
(
I0
);
constexpr
index_t
NumDimM
=
CPermuteNumDims_G_M_Gemm1N
::
At
(
I1
);
constexpr
index_t
NumDimN
=
CPermuteNumDims_G_M_Gemm1N
::
At
(
I2
);
// NumDimGemm1N
assert
(
c_gs_ms_ns_lengths_vec
.
size
()
==
NumDimG
+
NumDimM
+
NumDimN
&&
c_gs_ms_ns_strides_vec
.
size
()
==
NumDimG
+
NumDimM
+
NumDimN
);
const
auto
to_tuple
=
[
&
](
auto
&
vec
,
auto
start
,
auto
end
)
{
return
generate_tuple
([
&
](
auto
i
)
{
return
vec
[
start
+
i
];
},
Number
<
end
-
start
>
{});
};
const
auto
c_gs_ms_ns_lengths
=
to_tuple
(
c_gs_ms_ns_lengths_vec
,
Number
<
0
>
{},
Number
<
NumDimG
+
NumDimM
+
NumDimN
>
{});
const
auto
c_gs_ms_ns_strides
=
to_tuple
(
c_gs_ms_ns_strides_vec
,
Number
<
0
>
{},
Number
<
NumDimG
+
NumDimM
+
NumDimN
>
{});
// dimension Ids for G0, G1, ...
constexpr
auto
gDimIds
=
typename
arithmetic_sequence_gen
<
0
,
NumDimG
,
1
>::
type
{};
// dimension Ids for M0, M1, ...
constexpr
auto
mDimIds
=
typename
arithmetic_sequence_gen
<
NumDimG
,
NumDimG
+
NumDimM
,
1
>::
type
{};
// dimension Ids for N0, N1, ...
constexpr
auto
nDimIds
=
typename
arithmetic_sequence_gen
<
NumDimG
+
NumDimM
,
NumDimG
+
NumDimM
+
NumDimN
,
1
>::
type
{};
// lengths for G0, G1, ...
const
auto
gLengths
=
get_container_subset
(
c_gs_ms_ns_lengths
,
gDimIds
);
// lengths for M0, M1, ...
const
auto
mLengths
=
get_container_subset
(
c_gs_ms_ns_lengths
,
mDimIds
);
// lengths for K0, K1, ...
const
auto
nLengths
=
get_container_subset
(
c_gs_ms_ns_lengths
,
nDimIds
);
// naive tensor C[G0, G1, ..., M0, M1, M2, ..., N0, N1, N2...]
const
auto
c_grid_desc_gs_ms_ns
=
make_naive_tensor_descriptor
(
c_gs_ms_ns_lengths
,
c_gs_ms_ns_strides
);
// transformed tensor C[G = G0 * G1 * ..., MRaw = M0 * M1 * M2 * ... , NRaw = N0 * N1 *
// N2 * ...]
const
auto
c_grid_desc_g_mraw_nraw
=
transform_tensor_descriptor
(
c_grid_desc_gs_ms_ns
,
make_tuple
(
make_merge_transform
(
gLengths
),
make_merge_transform
(
mLengths
),
make_merge_transform
(
nLengths
)),
make_tuple
(
gDimIds
,
mDimIds
,
nDimIds
),
make_tuple
(
Sequence
<
0
>
{},
Sequence
<
1
>
{},
Sequence
<
2
>
{}));
// this desc is only for calculating batch offset so no padding needed
return
c_grid_desc_g_mraw_nraw
;
}
using
AGridDesc_AK0_M_AK1
=
decltype
(
MakeAGridDescriptor_AK0_M_AK1
(
1
,
1
,
1
));
using
BGridDesc_BK0_N_BK1
=
decltype
(
MakeBGridDescriptor_BK0_N_BK1
(
1
,
1
,
1
));
using
B1GridDesc_BK0_N_BK1
=
decltype
(
MakeB1GridDescriptor_BK0_N_BK1
(
1
,
1
,
1
));
using
CGridDesc_M_N
=
decltype
(
MakeCGridDescriptor_M_N
({},
{}));
using
CGridDesc_G_M_N
=
decltype
(
MakeCGridDescriptor_G_M_N
({},
{}));
struct
ComputeBasePtrOfStridedBatch
{
ComputeBasePtrOfStridedBatch
(
index_t
BatchStrideA
,
index_t
BatchStrideB
,
index_t
BatchStrideB1
,
CGridDesc_G_M_N
c_grid_desc_g_m_n
)
:
BatchStrideA_
(
BatchStrideA
),
BatchStrideB_
(
BatchStrideB
),
BatchStrideB1_
(
BatchStrideB1
),
c_grid_desc_g_m_n_
(
c_grid_desc_g_m_n
)
{
}
__host__
__device__
constexpr
long_index_t
GetABasePtr
(
index_t
g_idx
)
const
{
return
g_idx
*
static_cast
<
long_index_t
>
(
BatchStrideA_
);
}
__host__
__device__
constexpr
long_index_t
GetBBasePtr
(
index_t
g_idx
)
const
{
return
g_idx
*
static_cast
<
long_index_t
>
(
BatchStrideB_
);
}
__host__
__device__
constexpr
long_index_t
GetB1BasePtr
(
index_t
g_idx
)
const
{
return
g_idx
*
static_cast
<
long_index_t
>
(
BatchStrideB1_
);
}
__host__
__device__
constexpr
long_index_t
GetCBasePtr
(
index_t
g_idx
)
const
{
return
c_grid_desc_g_m_n_
.
CalculateOffset
(
make_multi_index
(
g_idx
,
0
,
0
));
}
private:
index_t
BatchStrideA_
;
index_t
BatchStrideB_
;
index_t
BatchStrideB1_
;
CGridDesc_G_M_N
c_grid_desc_g_m_n_
;
};
// GridwiseGemm
using
GridwiseGemm
=
GridwiseBatchedGemmSoftmaxGemm_Xdl_CShuffle
<
ADataType
,
// TODO: distinguish A/B datatype
GemmAccDataType
,
CShuffleDataType
,
CDataType
,
AElementwiseOperation
,
BElementwiseOperation
,
AccElementwiseOperation
,
B1ElementwiseOperation
,
CElementwiseOperation
,
InMemoryDataOperationEnum
::
Set
,
AGridDesc_AK0_M_AK1
,
BGridDesc_BK0_N_BK1
,
B1GridDesc_BK0_N_BK1
,
CGridDesc_M_N
,
NumGemmKPrefetchStage
,
BlockSize
,
MPerBlock
,
NPerBlock
,
KPerBlock
,
Gemm1NPerBlock
,
Gemm1KPerBlock
,
AK1
,
BK1
,
B1K1
,
MPerXDL
,
NPerXDL
,
MXdlPerWave
,
NXdlPerWave
,
Gemm1NXdlPerWave
,
ABlockTransferThreadClusterLengths_AK0_M_AK1
,
ABlockTransferThreadClusterArrangeOrder
,
ABlockTransferSrcAccessOrder
,
ABlockTransferSrcVectorDim
,
ABlockTransferSrcScalarPerVector
,
ABlockTransferDstScalarPerVector_AK1
,
true
,
ABlockLdsExtraM
,
BBlockTransferThreadClusterLengths_BK0_N_BK1
,
BBlockTransferThreadClusterArrangeOrder
,
BBlockTransferSrcAccessOrder
,
BBlockTransferSrcVectorDim
,
BBlockTransferSrcScalarPerVector
,
BBlockTransferDstScalarPerVector_BK1
,
true
,
BBlockLdsExtraN
,
B1BlockTransferThreadClusterLengths_BK0_N_BK1
,
B1BlockTransferThreadClusterArrangeOrder
,
B1BlockTransferSrcAccessOrder
,
B1BlockTransferSrcVectorDim
,
B1BlockTransferSrcScalarPerVector
,
B1BlockTransferDstScalarPerVector_BK1
,
false
,
B1BlockLdsExtraN
,
CShuffleMXdlPerWavePerShuffle
,
CShuffleNXdlPerWavePerShuffle
,
CShuffleBlockTransferClusterLengths_MBlock_MPerBlock_NBlock_NPerBlock
,
CShuffleBlockTransferScalarPerVector_NPerBlock
,
LoopSched
,
matrix_padder
.
PadN
>
;
// Argument
// FIXME: constness
struct
Argument
:
public
BaseArgument
{
Argument
(
const
ADataType
*
p_a_grid
,
const
BDataType
*
p_b_grid
,
const
B1DataType
*
p_b1_grid
,
CDataType
*
p_c_grid
,
index_t
MRaw
,
index_t
NRaw
,
index_t
KRaw
,
index_t
Gemm1NRaw
,
// = ORaw
index_t
Batch
,
std
::
vector
<
index_t
>
c_gs_ms_gemm1ns_lengths
,
// c_gs_ms_os_lengths
std
::
vector
<
index_t
>
c_gs_ms_gemm1ns_strides
,
// c_gs_ms_os_strides
index_t
StrideA
,
index_t
StrideB
,
index_t
StrideB1
,
index_t
BatchStrideA
,
index_t
BatchStrideB
,
index_t
BatchStrideB1
,
AElementwiseOperation
a_element_op
,
BElementwiseOperation
b_element_op
,
AccElementwiseOperation
acc_element_op
,
B1ElementwiseOperation
b1_element_op
,
CElementwiseOperation
c_element_op
)
:
p_a_grid_
{
p_a_grid
},
p_b_grid_
{
p_b_grid
},
p_b1_grid_
{
p_b1_grid
},
p_c_grid_
{
p_c_grid
},
a_grid_desc_ak0_m_ak1_
{
DeviceOp
::
MakeAGridDescriptor_AK0_M_AK1
(
MRaw
,
KRaw
,
StrideA
)},
b_grid_desc_bk0_n_bk1_
{
DeviceOp
::
MakeBGridDescriptor_BK0_N_BK1
(
KRaw
,
NRaw
,
StrideB
)},
b1_grid_desc_bk0_n_bk1_
{
DeviceOp
::
MakeB1GridDescriptor_BK0_N_BK1
(
NRaw
,
Gemm1NRaw
,
StrideB1
)},
c_grid_desc_m_n_
{
DeviceOp
::
MakeCGridDescriptor_M_N
(
c_gs_ms_gemm1ns_lengths
,
c_gs_ms_gemm1ns_strides
)},
c_grid_desc_g_m_n_
{
DeviceOp
::
MakeCGridDescriptor_G_M_N
(
c_gs_ms_gemm1ns_lengths
,
c_gs_ms_gemm1ns_strides
)},
c_grid_desc_mblock_mperblock_nblock_nperblock_
{},
block_2_ctile_map_
{
GridwiseGemm
::
MakeDefaultBlock2CTileMap
(
c_grid_desc_m_n_
)},
a_element_op_
{
a_element_op
},
b_element_op_
{
b_element_op
},
acc_element_op_
{
acc_element_op
},
b1_element_op_
{
b1_element_op
},
c_element_op_
{
c_element_op
},
batch_count_
(
Batch
),
compute_base_ptr_of_batch_
{
BatchStrideA
,
BatchStrideB
,
BatchStrideB1
,
c_grid_desc_g_m_n_
},
raw_lengths_m_n_k_o_
{
MRaw
,
NRaw
,
KRaw
,
Gemm1NRaw
},
c_extent_lowest_
{
c_gs_ms_gemm1ns_lengths
.
back
()},
c_stride_lowest_
{
c_gs_ms_gemm1ns_strides
.
back
()}
{
if
(
GridwiseGemm
::
CheckValidity
(
a_grid_desc_ak0_m_ak1_
,
b_grid_desc_bk0_n_bk1_
,
b1_grid_desc_bk0_n_bk1_
,
c_grid_desc_m_n_
,
block_2_ctile_map_
))
{
c_grid_desc_mblock_mperblock_nblock_nperblock_
=
GridwiseGemm
::
MakeCGridDescriptor_MBlock_MPerBlock_NBlock_NPerBlock
(
c_grid_desc_m_n_
);
}
}
// private:
const
ADataType
*
p_a_grid_
;
const
BDataType
*
p_b_grid_
;
const
B1DataType
*
p_b1_grid_
;
CDataType
*
p_c_grid_
;
AGridDesc_AK0_M_AK1
a_grid_desc_ak0_m_ak1_
;
BGridDesc_BK0_N_BK1
b_grid_desc_bk0_n_bk1_
;
B1GridDesc_BK0_N_BK1
b1_grid_desc_bk0_n_bk1_
;
CGridDesc_M_N
c_grid_desc_m_n_
;
CGridDesc_G_M_N
c_grid_desc_g_m_n_
;
typename
GridwiseGemm
::
CGridDescriptor_MBlock_MPerBlock_NBlock_NPerBlock
c_grid_desc_mblock_mperblock_nblock_nperblock_
;
typename
GridwiseGemm
::
DefaultBlock2CTileMap
block_2_ctile_map_
;
AElementwiseOperation
a_element_op_
;
BElementwiseOperation
b_element_op_
;
AccElementwiseOperation
acc_element_op_
;
B1ElementwiseOperation
b1_element_op_
;
CElementwiseOperation
c_element_op_
;
index_t
batch_count_
;
ComputeBasePtrOfStridedBatch
compute_base_ptr_of_batch_
;
// For robust IsSupportedArgument() check
std
::
vector
<
index_t
>
raw_lengths_m_n_k_o_
;
index_t
c_extent_lowest_
;
index_t
c_stride_lowest_
;
};
// Invoker
struct
Invoker
:
public
BaseInvoker
{
using
Argument
=
DeviceOp
::
Argument
;
float
Run
(
const
Argument
&
arg
,
const
StreamConfig
&
stream_config
=
StreamConfig
{})
{
if
(
!
GridwiseGemm
::
CheckValidity
(
arg
.
a_grid_desc_ak0_m_ak1_
,
arg
.
b_grid_desc_bk0_n_bk1_
,
arg
.
b1_grid_desc_bk0_n_bk1_
,
arg
.
c_grid_desc_m_n_
,
arg
.
block_2_ctile_map_
))
{
throw
std
::
runtime_error
(
"wrong! GridwiseGemm has invalid setting"
);
}
const
index_t
grid_size
=
arg
.
block_2_ctile_map_
.
CalculateGridSize
(
arg
.
c_grid_desc_m_n_
)
*
arg
.
batch_count_
;
// Gemm0_K
const
auto
K
=
arg
.
a_grid_desc_ak0_m_ak1_
.
GetLength
(
I0
)
*
arg
.
a_grid_desc_ak0_m_ak1_
.
GetLength
(
I2
);
float
ave_time
=
0
;
auto
launch_kernel
=
[
&
](
auto
has_main_k_block_loop_
)
{
const
auto
kernel
=
kernel_batched_gemm_softmax_gemm_xdl_cshuffle_v1
<
GridwiseGemm
,
ADataType
,
// TODO: distiguish A/B datatype
CDataType
,
AElementwiseOperation
,
BElementwiseOperation
,
AccElementwiseOperation
,
B1ElementwiseOperation
,
CElementwiseOperation
,
DeviceOp
::
AGridDesc_AK0_M_AK1
,
DeviceOp
::
BGridDesc_BK0_N_BK1
,
DeviceOp
::
B1GridDesc_BK0_N_BK1
,
typename
GridwiseGemm
::
CGridDescriptor_MBlock_MPerBlock_NBlock_NPerBlock
,
typename
GridwiseGemm
::
DefaultBlock2CTileMap
,
ComputeBasePtrOfStridedBatch
,
has_main_k_block_loop_
>
;
return
launch_and_time_kernel
(
stream_config
,
kernel
,
dim3
(
grid_size
),
dim3
(
BlockSize
),
0
,
arg
.
p_a_grid_
,
arg
.
p_b_grid_
,
arg
.
p_b1_grid_
,
arg
.
p_c_grid_
,
arg
.
a_element_op_
,
arg
.
b_element_op_
,
arg
.
acc_element_op_
,
arg
.
b1_element_op_
,
arg
.
c_element_op_
,
arg
.
a_grid_desc_ak0_m_ak1_
,
arg
.
b_grid_desc_bk0_n_bk1_
,
arg
.
b1_grid_desc_bk0_n_bk1_
,
arg
.
c_grid_desc_mblock_mperblock_nblock_nperblock_
,
arg
.
block_2_ctile_map_
,
arg
.
batch_count_
,
arg
.
compute_base_ptr_of_batch_
);
};
// Gemm1_K is split into Gemm1_K0/K1 where K1 is known at compile time, so we only need
// to concern Gemm0's loop
if
(
GridwiseGemm
::
CalculateHasMainKBlockLoop
(
K
))
{
ave_time
=
launch_kernel
(
integral_constant
<
bool
,
true
>
{});
}
else
{
ave_time
=
launch_kernel
(
integral_constant
<
bool
,
false
>
{});
}
return
ave_time
;
}
// polymorphic
float
Run
(
const
BaseArgument
*
p_arg
,
const
StreamConfig
&
stream_config
=
StreamConfig
{})
override
{
return
Run
(
*
dynamic_cast
<
const
Argument
*>
(
p_arg
),
stream_config
);
}
};
static
constexpr
bool
IsValidCompilationParameter
()
{
// TODO: properly implement this check
return
true
;
}
static
bool
IsSupportedArgument
(
const
Argument
&
arg
)
{
if
(
!
(
ck
::
get_device_name
()
==
"gfx908"
||
ck
::
get_device_name
()
==
"gfx90a"
))
{
return
false
;
}
// Check if C permute dimension matches GEMM + GEMM shape
const
index_t
c_g
=
arg
.
c_grid_desc_g_m_n_
.
GetLength
(
I0
);
// unpadded
const
index_t
c_m
=
arg
.
c_grid_desc_m_n_
.
GetLength
(
I0
);
const
index_t
c_gemm1n
=
arg
.
c_grid_desc_m_n_
.
GetLength
(
I1
);
const
index_t
a_m
=
arg
.
a_grid_desc_ak0_m_ak1_
.
GetLength
(
I1
);
const
index_t
b1_gemm1n
=
arg
.
b1_grid_desc_bk0_n_bk1_
.
GetLength
(
I1
);
if
(
!
(
c_g
==
arg
.
batch_count_
&&
c_m
==
a_m
&&
c_gemm1n
==
b1_gemm1n
))
{
return
false
;
}
// Note: we need raw lengths since threadwise copy can not handle vector load when part of
// vector is out of bounds
const
auto
MRaw
=
arg
.
raw_lengths_m_n_k_o_
[
0
];
const
auto
NRaw
=
arg
.
raw_lengths_m_n_k_o_
[
1
];
const
auto
KRaw
=
arg
.
raw_lengths_m_n_k_o_
[
2
];
const
auto
Gemm1NRaw
=
arg
.
raw_lengths_m_n_k_o_
[
3
];
// Check scalar per vector requirement
const
auto
a_extent_lowest
=
is_same_v
<
tensor_layout
::
gemm
::
RowMajor
,
ALayout
>
?
KRaw
:
MRaw
;
const
auto
b_extent_lowest
=
is_same_v
<
tensor_layout
::
gemm
::
RowMajor
,
BLayout
>
?
NRaw
:
KRaw
;
const
auto
b1_extent_lowest
=
is_same_v
<
tensor_layout
::
gemm
::
RowMajor
,
B1Layout
>
?
Gemm1NRaw
:
NRaw
;
const
auto
c_extent_lowest
=
arg
.
c_extent_lowest_
;
if
(
!
(
a_extent_lowest
%
ABlockTransferSrcScalarPerVector
==
0
&&
b_extent_lowest
%
BBlockTransferSrcScalarPerVector
==
0
&&
b1_extent_lowest
%
B1BlockTransferSrcScalarPerVector
==
0
&&
c_extent_lowest
%
CShuffleBlockTransferScalarPerVector_NPerBlock
==
0
))
{
return
false
;
}
// Check vector store requirement; assumes last dimension in N to be contiguous
if
(
arg
.
c_stride_lowest_
!=
1
)
{
return
false
;
}
return
GridwiseGemm
::
CheckValidity
(
arg
.
a_grid_desc_ak0_m_ak1_
,
arg
.
b_grid_desc_bk0_n_bk1_
,
arg
.
b1_grid_desc_bk0_n_bk1_
,
arg
.
c_grid_desc_m_n_
,
arg
.
block_2_ctile_map_
);
}
// polymorphic
bool
IsSupportedArgument
(
const
BaseArgument
*
p_arg
)
override
{
return
IsSupportedArgument
(
*
dynamic_cast
<
const
Argument
*>
(
p_arg
));
}
static
auto
MakeArgument
(
const
ADataType
*
p_a
,
const
BDataType
*
p_b
,
const
B1DataType
*
p_b1
,
CDataType
*
p_c
,
index_t
MRaw
,
index_t
NRaw
,
index_t
KRaw
,
index_t
Gemm1NRaw
,
index_t
Batch
,
std
::
vector
<
index_t
>
c_gs_ms_gemm1ns_lengths
,
// c_gs_ms_os_lengths
std
::
vector
<
index_t
>
c_gs_ms_gemm1ns_strides
,
// c_gs_ms_os_strides
index_t
StrideA
,
index_t
StrideB
,
index_t
StrideB1
,
index_t
BatchStrideA
,
index_t
BatchStrideB
,
index_t
BatchStrideB1
,
AElementwiseOperation
a_element_op
,
BElementwiseOperation
b_element_op
,
AccElementwiseOperation
acc_element_op
,
B1ElementwiseOperation
b1_element_op
,
CElementwiseOperation
c_element_op
)
{
return
Argument
{
p_a
,
p_b
,
p_b1
,
p_c
,
MRaw
,
NRaw
,
KRaw
,
Gemm1NRaw
,
Batch
,
c_gs_ms_gemm1ns_lengths
,
c_gs_ms_gemm1ns_strides
,
StrideA
,
StrideB
,
StrideB1
,
BatchStrideA
,
BatchStrideB
,
BatchStrideB1
,
a_element_op
,
b_element_op
,
acc_element_op
,
b1_element_op
,
c_element_op
};
}
static
auto
MakeInvoker
()
{
return
Invoker
{};
}
// polymorphic
// FIXME: constness
std
::
unique_ptr
<
BaseArgument
>
MakeArgumentPointer
(
const
void
*
p_a
,
const
void
*
p_b
,
const
void
*
p_b1
,
void
*
p_c
,
index_t
MRaw
,
index_t
NRaw
,
index_t
KRaw
,
index_t
Gemm1NRaw
,
index_t
Batch
,
std
::
vector
<
index_t
>
c_gs_ms_gemm1ns_lengths
,
// c_gs_ms_os_lengths
std
::
vector
<
index_t
>
c_gs_ms_gemm1ns_strides
,
// c_gs_ms_os_strides
index_t
StrideA
,
index_t
StrideB
,
index_t
StrideB1
,
index_t
BatchStrideA
,
index_t
BatchStrideB
,
index_t
BatchStrideB1
,
AElementwiseOperation
a_element_op
,
BElementwiseOperation
b_element_op
,
AccElementwiseOperation
acc_element_op
,
B1ElementwiseOperation
b1_element_op
,
CElementwiseOperation
c_element_op
)
override
{
return
std
::
make_unique
<
Argument
>
(
static_cast
<
const
ADataType
*>
(
p_a
),
static_cast
<
const
BDataType
*>
(
p_b
),
static_cast
<
const
B1DataType
*>
(
p_b1
),
static_cast
<
CDataType
*>
(
p_c
),
MRaw
,
NRaw
,
KRaw
,
Gemm1NRaw
,
Batch
,
c_gs_ms_gemm1ns_lengths
,
c_gs_ms_gemm1ns_strides
,
StrideA
,
StrideB
,
StrideB1
,
BatchStrideA
,
BatchStrideB
,
BatchStrideB1
,
a_element_op
,
b_element_op
,
acc_element_op
,
b1_element_op
,
c_element_op
);
}
// polymorphic
std
::
unique_ptr
<
BaseInvoker
>
MakeInvokerPointer
()
override
{
return
std
::
make_unique
<
Invoker
>
(
Invoker
{});
}
// polymorphic
std
::
string
GetTypeString
()
const
override
{
auto
str
=
std
::
stringstream
();
// clang-format off
str
<<
"DeviceBatchedGemmSoftmaxGemmPermute_Xdl_CShuffle"
<<
"<"
<<
BlockSize
<<
", "
<<
MPerBlock
<<
", "
<<
NPerBlock
<<
", "
<<
KPerBlock
<<
", "
<<
AK1
<<
", "
<<
BK1
<<
", "
<<
MPerBlock
<<
", "
<<
Gemm1NPerBlock
<<
", "
<<
Gemm1KPerBlock
<<
", "
<<
B1K1
<<
", "
<<
getGemmSpecializationString
(
GemmSpec
)
<<
">"
;
// clang-format on
return
str
.
str
();
}
};
}
// namespace device
}
// namespace tensor_operation
}
// namespace ck
include/ck/tensor_operation/gpu/device/device_batched_gemm_softmax_gemm_xdl_cshuffle.hpp
View file @
b89a88b5
...
@@ -12,6 +12,7 @@
...
@@ -12,6 +12,7 @@
#include "ck/tensor_operation/gpu/device/tensor_layout.hpp"
#include "ck/tensor_operation/gpu/device/tensor_layout.hpp"
#include "ck/tensor_operation/gpu/device/device_batched_gemm_softmax_gemm.hpp"
#include "ck/tensor_operation/gpu/device/device_batched_gemm_softmax_gemm.hpp"
#include "ck/tensor_operation/gpu/device/gemm_specialization.hpp"
#include "ck/tensor_operation/gpu/device/gemm_specialization.hpp"
#include "ck/tensor_operation/gpu/device/matrix_padder.hpp"
#include "ck/tensor_operation/gpu/grid/gridwise_batched_gemm_softmax_gemm_xdl_cshuffle_v1.hpp"
#include "ck/tensor_operation/gpu/grid/gridwise_batched_gemm_softmax_gemm_xdl_cshuffle_v1.hpp"
#include "ck/host_utility/device_prop.hpp"
#include "ck/host_utility/device_prop.hpp"
#include "ck/host_utility/kernel_launch.hpp"
#include "ck/host_utility/kernel_launch.hpp"
...
@@ -111,6 +112,15 @@ __global__ void
...
@@ -111,6 +112,15 @@ __global__ void
// Computes C = A * B0 * B1
// Computes C = A * B0 * B1
// ^^^^^^ (Acc0)
// ^^^^^^ (Acc0)
// ^^^^^^^^^^^ (Acc1)
// ^^^^^^^^^^^ (Acc1)
// When using NPadding as GemmSpecialization, AccElementwiseOperation should be set to
// ScaleAndResetNaNToMinusInfinity.
// if !isNan(AccElement)
// AccElement *= scale
// else
// AccElement = -INFINITY
// Otherwise, result may be wrong.
template
<
typename
ALayout
,
template
<
typename
ALayout
,
typename
BLayout
,
// B0Layout
typename
BLayout
,
// B0Layout
typename
B1Layout
,
typename
B1Layout
,
...
@@ -189,6 +199,13 @@ struct DeviceBatchedGemmSoftmaxGemm_Xdl_CShuffle
...
@@ -189,6 +199,13 @@ struct DeviceBatchedGemmSoftmaxGemm_Xdl_CShuffle
static
constexpr
auto
I1
=
Number
<
1
>
{};
static
constexpr
auto
I1
=
Number
<
1
>
{};
static
constexpr
auto
I2
=
Number
<
2
>
{};
static
constexpr
auto
I2
=
Number
<
2
>
{};
static
constexpr
auto
matrix_padder
=
GemmGemmPadder
<
GemmSpec
,
index_t
,
index_t
,
index_t
,
index_t
>
{
MPerBlock
,
NPerBlock
,
KPerBlock
,
Gemm1NPerBlock
};
// FIXME: pad K
static_assert
(
!
matrix_padder
.
PadK
,
"KPadding is currently not supported"
);
static
auto
MakeAGridDescriptor_AK0_M_AK1
(
index_t
MRaw
,
index_t
KRaw
,
index_t
StrideA
)
static
auto
MakeAGridDescriptor_AK0_M_AK1
(
index_t
MRaw
,
index_t
KRaw
,
index_t
StrideA
)
{
{
const
auto
a_grid_desc_mraw_kraw
=
[
&
]()
{
const
auto
a_grid_desc_mraw_kraw
=
[
&
]()
{
...
@@ -204,92 +221,18 @@ struct DeviceBatchedGemmSoftmaxGemm_Xdl_CShuffle
...
@@ -204,92 +221,18 @@ struct DeviceBatchedGemmSoftmaxGemm_Xdl_CShuffle
}
}
}();
}();
const
auto
M
=
math
::
integer_divide_ceil
(
MRaw
,
MPerBlock
)
*
MPerBlock
;
const
auto
a_grid_desc_m_k
=
matrix_padder
.
PadADescriptor_M_K
(
a_grid_desc_mraw_kraw
);
const
auto
K
=
math
::
integer_divide_ceil
(
KRaw
,
KPerBlock
)
*
KPerBlock
;
const
auto
MPad
=
M
-
MRaw
;
const
auto
KPad
=
K
-
KRaw
;
if
constexpr
(
GemmSpec
==
GemmSpecialization
::
MKPadding
||
GemmSpec
==
GemmSpecialization
::
MNKPadding
)
{
// pad both M and K
assert
(
K
%
AK1
==
0
);
const
auto
AK0
=
K
/
AK1
;
const
auto
a_grid_desc_m_k
=
transform_tensor_descriptor
(
a_grid_desc_mraw_kraw
,
make_tuple
(
make_right_pad_transform
(
MRaw
,
MPad
),
make_right_pad_transform
(
KRaw
,
KPad
)),
make_tuple
(
Sequence
<
0
>
{},
Sequence
<
1
>
{}),
make_tuple
(
Sequence
<
0
>
{},
Sequence
<
1
>
{}));
const
auto
a_grid_desc_ak0_m_ak1
=
transform_tensor_descriptor
(
a_grid_desc_m_k
,
make_tuple
(
make_unmerge_transform
(
make_tuple
(
AK0
,
AK1
)),
make_pass_through_transform
(
M
)),
make_tuple
(
Sequence
<
1
>
{},
Sequence
<
0
>
{}),
make_tuple
(
Sequence
<
0
,
2
>
{},
Sequence
<
1
>
{}));
return
a_grid_desc_ak0_m_ak1
;
}
else
if
constexpr
(
GemmSpec
==
GemmSpecialization
::
MPadding
||
GemmSpec
==
GemmSpecialization
::
MNPadding
)
{
// pad M, but not K
assert
(
KRaw
%
AK1
==
0
);
const
auto
AK0
=
KRaw
/
AK1
;
const
auto
a_grid_desc_ak0_m_ak1
=
transform_tensor_descriptor
(
a_grid_desc_mraw_kraw
,
make_tuple
(
make_unmerge_transform
(
make_tuple
(
AK0
,
AK1
)),
make_right_pad_transform
(
MRaw
,
MPad
)),
make_tuple
(
Sequence
<
1
>
{},
Sequence
<
0
>
{}),
make_tuple
(
Sequence
<
0
,
2
>
{},
Sequence
<
1
>
{}));
return
a_grid_desc_ak0_m_ak1
;
}
else
if
constexpr
(
GemmSpec
==
GemmSpecialization
::
KPadding
||
GemmSpec
==
GemmSpecialization
::
NKPadding
)
{
// pad K, but not M
assert
(
K
%
AK1
==
0
);
const
auto
AK0
=
K
/
AK1
;
const
auto
a_grid_desc_m_k
=
transform_tensor_descriptor
(
a_grid_desc_mraw_kraw
,
make_tuple
(
make_pass_through_transform
(
MRaw
),
make_right_pad_transform
(
KRaw
,
KPad
)),
make_tuple
(
Sequence
<
0
>
{},
Sequence
<
1
>
{}),
make_tuple
(
Sequence
<
0
>
{},
Sequence
<
1
>
{}));
const
auto
a_grid_desc_ak0_m_ak1
=
transform_tensor_descriptor
(
a_grid_desc_m_k
,
make_tuple
(
make_unmerge_transform
(
make_tuple
(
AK0
,
AK1
)),
make_pass_through_transform
(
MRaw
)),
make_tuple
(
Sequence
<
1
>
{},
Sequence
<
0
>
{}),
make_tuple
(
Sequence
<
0
,
2
>
{},
Sequence
<
1
>
{}));
return
a_grid_desc_ak0_m_ak1
;
}
else
{
// not pad M or K
assert
(
KRaw
%
AK1
==
0
);
const
auto
AK0
=
KRaw
/
AK1
;
const
auto
M
=
a_grid_desc_m_k
.
GetLength
(
I0
);
const
auto
K
=
a_grid_desc_m_k
.
GetLength
(
I1
);
const
auto
a_grid_desc_ak0_m_ak1
=
const
auto
AK0
=
K
/
AK1
;
transform_tensor_descriptor
(
a_grid_desc_mraw_kraw
,
make_tuple
(
make_unmerge_transform
(
make_tuple
(
AK0
,
AK1
)),
make_pass_through_transform
(
MRaw
)),
make_tuple
(
Sequence
<
1
>
{},
Sequence
<
0
>
{}),
make_tuple
(
Sequence
<
0
,
2
>
{},
Sequence
<
1
>
{}));
return
a_grid_desc_ak0_m_ak1
;
return
transform_tensor_descriptor
(
a_grid_desc_m_k
,
}
make_tuple
(
make_unmerge_transform
(
make_tuple
(
AK0
,
AK1
)),
make_pass_through_transform
(
M
)),
make_tuple
(
Sequence
<
1
>
{},
Sequence
<
0
>
{}),
make_tuple
(
Sequence
<
0
,
2
>
{},
Sequence
<
1
>
{}));
}
}
static
auto
MakeBGridDescriptor_BK0_N_BK1
(
index_t
KRaw
,
index_t
NRaw
,
index_t
StrideB
)
static
auto
MakeBGridDescriptor_BK0_N_BK1
(
index_t
KRaw
,
index_t
NRaw
,
index_t
StrideB
)
...
@@ -307,84 +250,18 @@ struct DeviceBatchedGemmSoftmaxGemm_Xdl_CShuffle
...
@@ -307,84 +250,18 @@ struct DeviceBatchedGemmSoftmaxGemm_Xdl_CShuffle
}
}
}();
}();
const
auto
N
=
math
::
integer_divide_ceil
(
NRaw
,
NPerBlock
)
*
NPerBlock
;
const
auto
b_grid_desc_n_k
=
matrix_padder
.
PadBDescriptor_N_K
(
b_grid_desc_nraw_kraw
);
const
auto
K
=
math
::
integer_divide_ceil
(
KRaw
,
KPerBlock
)
*
KPerBlock
;
const
auto
NPad
=
N
-
NRaw
;
const
auto
KPad
=
K
-
KRaw
;
if
constexpr
(
GemmSpec
==
GemmSpecialization
::
NKPadding
||
GemmSpec
==
GemmSpecialization
::
MNKPadding
)
{
// pad both N and K
const
auto
BK0
=
K
/
BK1
;
const
auto
b_grid_desc_n_k
=
transform_tensor_descriptor
(
b_grid_desc_nraw_kraw
,
make_tuple
(
make_right_pad_transform
(
NRaw
,
NPad
),
make_right_pad_transform
(
KRaw
,
KPad
)),
make_tuple
(
Sequence
<
0
>
{},
Sequence
<
1
>
{}),
make_tuple
(
Sequence
<
0
>
{},
Sequence
<
1
>
{}));
const
auto
b_grid_desc_bk0_n_bk1
=
transform_tensor_descriptor
(
b_grid_desc_n_k
,
make_tuple
(
make_unmerge_transform
(
make_tuple
(
BK0
,
BK1
)),
make_pass_through_transform
(
N
)),
make_tuple
(
Sequence
<
1
>
{},
Sequence
<
0
>
{}),
make_tuple
(
Sequence
<
0
,
2
>
{},
Sequence
<
1
>
{}));
return
b_grid_desc_bk0_n_bk1
;
}
else
if
constexpr
(
GemmSpec
==
GemmSpecialization
::
NPadding
||
GemmSpec
==
GemmSpecialization
::
MNPadding
)
{
// pad N, but not K
const
auto
BK0
=
KRaw
/
BK1
;
const
auto
b_grid_desc_bk0_n_bk1
=
transform_tensor_descriptor
(
b_grid_desc_nraw_kraw
,
make_tuple
(
make_unmerge_transform
(
make_tuple
(
BK0
,
BK1
)),
make_right_pad_transform
(
NRaw
,
NPad
)),
make_tuple
(
Sequence
<
1
>
{},
Sequence
<
0
>
{}),
make_tuple
(
Sequence
<
0
,
2
>
{},
Sequence
<
1
>
{}));
return
b_grid_desc_bk0_n_bk1
;
const
auto
N
=
b_grid_desc_n_k
.
GetLength
(
I0
);
}
const
auto
K
=
b_grid_desc_n_k
.
GetLength
(
I1
);
else
if
constexpr
(
GemmSpec
==
GemmSpecialization
::
KPadding
||
GemmSpec
==
GemmSpecialization
::
MKPadding
)
{
// pad K, but not N
const
auto
BK0
=
K
/
BK1
;
const
auto
b_grid_desc_n_k
=
transform_tensor_descriptor
(
b_grid_desc_nraw_kraw
,
make_tuple
(
make_pass_through_transform
(
NRaw
),
make_right_pad_transform
(
KRaw
,
KPad
)),
make_tuple
(
Sequence
<
0
>
{},
Sequence
<
1
>
{}),
make_tuple
(
Sequence
<
0
>
{},
Sequence
<
1
>
{}));
const
auto
b_grid_desc_bk0_n_bk1
=
transform_tensor_descriptor
(
b_grid_desc_n_k
,
make_tuple
(
make_unmerge_transform
(
make_tuple
(
BK0
,
BK1
)),
make_pass_through_transform
(
NRaw
)),
make_tuple
(
Sequence
<
1
>
{},
Sequence
<
0
>
{}),
make_tuple
(
Sequence
<
0
,
2
>
{},
Sequence
<
1
>
{}));
return
b_grid_desc_bk0_n_bk1
;
}
else
{
// not pad N or K
const
auto
BK0
=
KRaw
/
BK1
;
const
auto
b_grid_desc_bk0_n_bk1
=
const
auto
BK0
=
K
/
BK1
;
transform_tensor_descriptor
(
b_grid_desc_nraw_kraw
,
make_tuple
(
make_unmerge_transform
(
make_tuple
(
BK0
,
BK1
)),
make_pass_through_transform
(
NRaw
)),
make_tuple
(
Sequence
<
1
>
{},
Sequence
<
0
>
{}),
make_tuple
(
Sequence
<
0
,
2
>
{},
Sequence
<
1
>
{}));
return
b_grid_desc_bk0_n_bk1
;
return
transform_tensor_descriptor
(
b_grid_desc_n_k
,
}
make_tuple
(
make_unmerge_transform
(
make_tuple
(
BK0
,
BK1
)),
make_pass_through_transform
(
N
)),
make_tuple
(
Sequence
<
1
>
{},
Sequence
<
0
>
{}),
make_tuple
(
Sequence
<
0
,
2
>
{},
Sequence
<
1
>
{}));
}
}
// Args: Gemm1KRaw, Gemm1NRaw, StrideB1
// Args: Gemm1KRaw, Gemm1NRaw, StrideB1
...
@@ -403,47 +280,19 @@ struct DeviceBatchedGemmSoftmaxGemm_Xdl_CShuffle
...
@@ -403,47 +280,19 @@ struct DeviceBatchedGemmSoftmaxGemm_Xdl_CShuffle
}
}
}();
}();
const
auto
N
=
math
::
integer_divide_ceil
(
NRaw
,
Gemm1NPerBlock
)
*
Gemm1NPerBlock
;
const
auto
b1_grid_desc_n_k
=
matrix_padder
.
PadB1Descriptor_N_K
(
b1_grid_desc_nraw_kraw
);
const
auto
K
=
math
::
integer_divide_ceil
(
KRaw
,
Gemm1KPerBlock
)
*
Gemm1KPerBlock
;
const
auto
N
Pad
=
N
-
NRaw
;
const
auto
N
=
b1_grid_desc_n_k
.
GetLength
(
I0
)
;
const
auto
K
Pad
=
K
-
KRaw
;
const
auto
K
=
b1_grid_desc_n_k
.
GetLength
(
I1
)
;
// TODO: implement finer-grained padding
const
auto
B1K0
=
K
/
B1K1
;
if
constexpr
(
GemmSpec
==
GemmSpecialization
::
Default
)
{
const
auto
B1K0
=
KRaw
/
B1K1
;
const
auto
b1_grid_desc_bk0_n_bk1
=
transform_tensor_descriptor
(
return
transform_tensor_descriptor
(
b1_grid_desc_nraw_kraw
,
b1_grid_desc_n_k
,
make_tuple
(
make_unmerge_transform
(
make_tuple
(
B1K0
,
B1K1
)),
make_tuple
(
make_unmerge_transform
(
make_tuple
(
B1K0
,
B1K1
)),
make_pass_through_transform
(
NRaw
)),
make_pass_through_transform
(
N
)),
make_tuple
(
Sequence
<
1
>
{},
Sequence
<
0
>
{}),
make_tuple
(
Sequence
<
1
>
{},
Sequence
<
0
>
{}),
make_tuple
(
Sequence
<
0
,
2
>
{},
Sequence
<
1
>
{}));
make_tuple
(
Sequence
<
0
,
2
>
{},
Sequence
<
1
>
{}));
return
b1_grid_desc_bk0_n_bk1
;
}
else
{
// pad both B1N and B1K
const
auto
B1K0
=
K
/
B1K1
;
const
auto
b1_grid_desc_n_k
=
transform_tensor_descriptor
(
b1_grid_desc_nraw_kraw
,
make_tuple
(
make_right_pad_transform
(
NRaw
,
NPad
),
make_right_pad_transform
(
KRaw
,
KPad
)),
make_tuple
(
Sequence
<
0
>
{},
Sequence
<
1
>
{}),
make_tuple
(
Sequence
<
0
>
{},
Sequence
<
1
>
{}));
const
auto
b1_grid_desc_bk0_n_bk1
=
transform_tensor_descriptor
(
b1_grid_desc_n_k
,
make_tuple
(
make_unmerge_transform
(
make_tuple
(
B1K0
,
B1K1
)),
make_pass_through_transform
(
N
)),
make_tuple
(
Sequence
<
1
>
{},
Sequence
<
0
>
{}),
make_tuple
(
Sequence
<
0
,
2
>
{},
Sequence
<
1
>
{}));
return
b1_grid_desc_bk0_n_bk1
;
}
}
}
static
auto
MakeCGridDescriptor_M_N
(
index_t
MRaw
,
index_t
NRaw
,
index_t
StrideC
)
static
auto
MakeCGridDescriptor_M_N
(
index_t
MRaw
,
index_t
NRaw
,
index_t
StrideC
)
...
@@ -461,47 +310,7 @@ struct DeviceBatchedGemmSoftmaxGemm_Xdl_CShuffle
...
@@ -461,47 +310,7 @@ struct DeviceBatchedGemmSoftmaxGemm_Xdl_CShuffle
}
}
}();
}();
const
auto
M
=
math
::
integer_divide_ceil
(
MRaw
,
MPerBlock
)
*
MPerBlock
;
return
matrix_padder
.
PadCDescriptor_M_N
(
c_grid_desc_mraw_nraw
);
const
auto
N
=
math
::
integer_divide_ceil
(
NRaw
,
Gemm1NPerBlock
)
*
Gemm1NPerBlock
;
const
auto
MPad
=
M
-
MRaw
;
const
auto
NPad
=
N
-
NRaw
;
if
constexpr
(
GemmSpec
==
GemmSpecialization
::
MNPadding
||
GemmSpec
==
GemmSpecialization
::
MNKPadding
)
{
// pad M and N
return
transform_tensor_descriptor
(
c_grid_desc_mraw_nraw
,
make_tuple
(
make_right_pad_transform
(
MRaw
,
MPad
),
make_right_pad_transform
(
NRaw
,
NPad
)),
make_tuple
(
Sequence
<
0
>
{},
Sequence
<
1
>
{}),
make_tuple
(
Sequence
<
0
>
{},
Sequence
<
1
>
{}));
}
else
if
constexpr
(
GemmSpec
==
GemmSpecialization
::
MPadding
||
GemmSpec
==
GemmSpecialization
::
MKPadding
)
{
// pad M, but not N
return
transform_tensor_descriptor
(
c_grid_desc_mraw_nraw
,
make_tuple
(
make_right_pad_transform
(
MRaw
,
MPad
),
make_pass_through_transform
(
NRaw
)),
make_tuple
(
Sequence
<
0
>
{},
Sequence
<
1
>
{}),
make_tuple
(
Sequence
<
0
>
{},
Sequence
<
1
>
{}));
}
else
if
constexpr
(
GemmSpec
==
GemmSpecialization
::
NPadding
||
GemmSpec
==
GemmSpecialization
::
NKPadding
)
{
// pad N, but not M
return
transform_tensor_descriptor
(
c_grid_desc_mraw_nraw
,
make_tuple
(
make_pass_through_transform
(
MRaw
),
make_right_pad_transform
(
NRaw
,
NPad
)),
make_tuple
(
Sequence
<
0
>
{},
Sequence
<
1
>
{}),
make_tuple
(
Sequence
<
0
>
{},
Sequence
<
1
>
{}));
}
else
{
// not pad M or N
return
c_grid_desc_mraw_nraw
;
}
}
}
struct
ComputeBasePtrOfStridedBatch
struct
ComputeBasePtrOfStridedBatch
...
@@ -608,7 +417,8 @@ struct DeviceBatchedGemmSoftmaxGemm_Xdl_CShuffle
...
@@ -608,7 +417,8 @@ struct DeviceBatchedGemmSoftmaxGemm_Xdl_CShuffle
CShuffleNXdlPerWavePerShuffle
,
CShuffleNXdlPerWavePerShuffle
,
CShuffleBlockTransferClusterLengths_MBlock_MPerBlock_NBlock_NPerBlock
,
CShuffleBlockTransferClusterLengths_MBlock_MPerBlock_NBlock_NPerBlock
,
CShuffleBlockTransferScalarPerVector_NPerBlock
,
CShuffleBlockTransferScalarPerVector_NPerBlock
,
LoopSched
>
;
LoopSched
,
matrix_padder
.
PadN
>
;
// Argument
// Argument
struct
Argument
:
public
BaseArgument
struct
Argument
:
public
BaseArgument
...
@@ -652,7 +462,8 @@ struct DeviceBatchedGemmSoftmaxGemm_Xdl_CShuffle
...
@@ -652,7 +462,8 @@ struct DeviceBatchedGemmSoftmaxGemm_Xdl_CShuffle
b1_element_op_
{
b1_element_op
},
b1_element_op_
{
b1_element_op
},
c_element_op_
{
c_element_op
},
c_element_op_
{
c_element_op
},
batch_count_
(
Batch
),
batch_count_
(
Batch
),
compute_base_ptr_of_batch_
{
BatchStrideA
,
BatchStrideB
,
BatchStrideB1
,
BatchStrideC
}
compute_base_ptr_of_batch_
{
BatchStrideA
,
BatchStrideB
,
BatchStrideB1
,
BatchStrideC
},
raw_lengths_m_n_k_o_
{
MRaw
,
NRaw
,
KRaw
,
Gemm1NRaw
}
{
{
if
(
GridwiseGemm
::
CheckValidity
(
a_grid_desc_ak0_m_ak1_
,
if
(
GridwiseGemm
::
CheckValidity
(
a_grid_desc_ak0_m_ak1_
,
b_grid_desc_bk0_n_bk1_
,
b_grid_desc_bk0_n_bk1_
,
...
@@ -685,6 +496,9 @@ struct DeviceBatchedGemmSoftmaxGemm_Xdl_CShuffle
...
@@ -685,6 +496,9 @@ struct DeviceBatchedGemmSoftmaxGemm_Xdl_CShuffle
CElementwiseOperation
c_element_op_
;
CElementwiseOperation
c_element_op_
;
index_t
batch_count_
;
index_t
batch_count_
;
ComputeBasePtrOfStridedBatch
compute_base_ptr_of_batch_
;
ComputeBasePtrOfStridedBatch
compute_base_ptr_of_batch_
;
// For robust IsSupportedArgument() check
std
::
vector
<
index_t
>
raw_lengths_m_n_k_o_
;
};
};
// Invoker
// Invoker
...
@@ -788,6 +602,31 @@ struct DeviceBatchedGemmSoftmaxGemm_Xdl_CShuffle
...
@@ -788,6 +602,31 @@ struct DeviceBatchedGemmSoftmaxGemm_Xdl_CShuffle
return
false
;
return
false
;
}
}
// Note: we need raw lengths since threadwise copy can not handle vector load when part of
// vector is out of bounds
const
auto
MRaw
=
arg
.
raw_lengths_m_n_k_o_
[
0
];
const
auto
NRaw
=
arg
.
raw_lengths_m_n_k_o_
[
1
];
const
auto
KRaw
=
arg
.
raw_lengths_m_n_k_o_
[
2
];
const
auto
Gemm1NRaw
=
arg
.
raw_lengths_m_n_k_o_
[
3
];
// Check scalar per vector requirement
const
auto
a_extent_lowest
=
is_same_v
<
tensor_layout
::
gemm
::
RowMajor
,
ALayout
>
?
KRaw
:
MRaw
;
const
auto
b_extent_lowest
=
is_same_v
<
tensor_layout
::
gemm
::
RowMajor
,
BLayout
>
?
NRaw
:
KRaw
;
const
auto
b1_extent_lowest
=
is_same_v
<
tensor_layout
::
gemm
::
RowMajor
,
B1Layout
>
?
Gemm1NRaw
:
NRaw
;
const
auto
c_extent_lowest
=
is_same_v
<
tensor_layout
::
gemm
::
RowMajor
,
CLayout
>
?
Gemm1NRaw
:
MRaw
;
if
(
!
(
a_extent_lowest
%
ABlockTransferSrcScalarPerVector
==
0
&&
b_extent_lowest
%
BBlockTransferSrcScalarPerVector
==
0
&&
b1_extent_lowest
%
B1BlockTransferSrcScalarPerVector
==
0
&&
c_extent_lowest
%
CShuffleBlockTransferScalarPerVector_NPerBlock
==
0
))
{
return
false
;
}
return
GridwiseGemm
::
CheckValidity
(
arg
.
a_grid_desc_ak0_m_ak1_
,
return
GridwiseGemm
::
CheckValidity
(
arg
.
a_grid_desc_ak0_m_ak1_
,
arg
.
b_grid_desc_bk0_n_bk1_
,
arg
.
b_grid_desc_bk0_n_bk1_
,
arg
.
b1_grid_desc_bk0_n_bk1_
,
arg
.
b1_grid_desc_bk0_n_bk1_
,
...
@@ -904,7 +743,8 @@ struct DeviceBatchedGemmSoftmaxGemm_Xdl_CShuffle
...
@@ -904,7 +743,8 @@ struct DeviceBatchedGemmSoftmaxGemm_Xdl_CShuffle
<<
MPerBlock
<<
", "
<<
MPerBlock
<<
", "
<<
Gemm1NPerBlock
<<
", "
<<
Gemm1NPerBlock
<<
", "
<<
Gemm1KPerBlock
<<
", "
<<
Gemm1KPerBlock
<<
", "
<<
B1K1
<<
">"
;
<<
B1K1
<<
", "
<<
getGemmSpecializationString
(
GemmSpec
)
<<
">"
;
// clang-format on
// clang-format on
return
str
.
str
();
return
str
.
str
();
...
...
include/ck/tensor_operation/gpu/device/device_batchnorm_forward.hpp
0 → 100644
View file @
b89a88b5
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2022, Advanced Micro Devices, Inc. All rights reserved.
#pragma once
#include <array>
#include <memory>
#include "ck/ck.hpp"
#include "ck/tensor_operation/gpu/device/device_base.hpp"
namespace
ck
{
namespace
tensor_operation
{
namespace
device
{
template
<
index_t
Rank
,
index_t
NumBatchNormReduceDim
>
struct
DeviceBatchNormFwd
:
public
BaseOperator
{
virtual
std
::
unique_ptr
<
BaseArgument
>
MakeArgumentPointer
(
const
std
::
array
<
index_t
,
Rank
>
xyLengths
,
const
std
::
array
<
index_t
,
Rank
>
xStrides
,
const
std
::
array
<
index_t
,
Rank
>
yStrides
,
const
std
::
array
<
index_t
,
Rank
-
NumBatchNormReduceDim
>
bnScaleBiasMeanVarLengths
,
const
std
::
array
<
index_t
,
Rank
-
NumBatchNormReduceDim
>
bnScaleBiasMeanVarStrides
,
const
void
*
p_x
,
const
void
*
bnScale
,
const
void
*
bnBias
,
void
*
p_y
,
double
exponentialAverageFactor
,
void
*
resultRunningMean
,
void
*
resultRunningVariance
,
double
epsilon
,
void
*
resultSaveMean
,
void
*
resultSaveInvVariance
)
=
0
;
virtual
std
::
unique_ptr
<
BaseInvoker
>
MakeInvokerPointer
()
=
0
;
};
template
<
index_t
Rank
,
index_t
NumBatchNormReduceDim
>
using
DeviceBatchNormFwdPtr
=
std
::
unique_ptr
<
DeviceBatchNormFwd
<
Rank
,
NumBatchNormReduceDim
>>
;
}
// namespace device
}
// namespace tensor_operation
}
// namespace ck
include/ck/tensor_operation/gpu/device/device_batchnorm_infer.hpp
0 → 100644
View file @
b89a88b5
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2022, Advanced Micro Devices, Inc. All rights reserved.
#pragma once
#include <array>
#include <memory>
#include "ck/ck.hpp"
#include "ck/tensor_operation/gpu/device/device_base.hpp"
namespace
ck
{
namespace
tensor_operation
{
namespace
device
{
template
<
index_t
Rank
,
index_t
NumBatchNormReduceDim
>
struct
DeviceBatchNormInfer
:
public
BaseOperator
{
virtual
std
::
unique_ptr
<
BaseArgument
>
MakeArgumentPointer
(
const
std
::
array
<
index_t
,
Rank
>
xyLengths
,
const
std
::
array
<
index_t
,
Rank
>
xStrides
,
const
std
::
array
<
index_t
,
Rank
>
yStrides
,
const
std
::
array
<
index_t
,
Rank
-
NumBatchNormReduceDim
>
bnScaleBiasMeanVarLengths
,
const
std
::
array
<
index_t
,
Rank
-
NumBatchNormReduceDim
>
bnScaleBiasMeanVarStrides
,
const
void
*
p_x
,
const
void
*
bnScale
,
const
void
*
bnBias
,
double
epsilon
,
const
void
*
estimatedMean
,
const
void
*
estimatedInvVariance
,
void
*
p_y
)
=
0
;
virtual
std
::
unique_ptr
<
BaseInvoker
>
MakeInvokerPointer
()
=
0
;
};
template
<
index_t
Rank
,
index_t
NumBatchNormReduceDim
>
using
DeviceBatchNormInferPtr
=
std
::
unique_ptr
<
DeviceBatchNormInfer
<
Rank
,
NumBatchNormReduceDim
>>
;
}
// namespace device
}
// namespace tensor_operation
}
// namespace ck
include/ck/tensor_operation/gpu/device/device_binary_elementwise.hpp
deleted
100644 → 0
View file @
41d5fca7
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2022, Advanced Micro Devices, Inc. All rights reserved.
#pragma once
#include <iostream>
#include <vector>
#include "ck/host_utility/device_prop.hpp"
#include "ck/host_utility/kernel_launch.hpp"
#include "ck/tensor_operation/gpu/device/device_base.hpp"
#include "ck/tensor_operation/gpu/device/device_elementwise.hpp"
#include "ck/tensor_operation/gpu/grid/gridwise_binary_elementwise_1d.hpp"
namespace
ck
{
namespace
tensor_operation
{
namespace
device
{
template
<
typename
ADataType
,
typename
BDataType
,
typename
CDataType
,
typename
ComputeDataType
,
typename
ElementwiseFunctor
,
index_t
NDim
,
index_t
MPerThread
,
index_t
AScalarPerVector
,
index_t
BScalarPerVector
,
index_t
CScalarPerVector
>
struct
DeviceBinaryElementwise
:
public
DeviceElementwise
<
2
,
1
,
NDim
,
ElementwiseFunctor
>
{
static
constexpr
auto
I0
=
Number
<
0
>
{};
template
<
typename
Desc_M
>
static
auto
PadDescriptor_M_1d
(
Desc_M
desc_m
,
index_t
gridSize
,
index_t
blockSize
)
{
const
auto
M
=
desc_m
.
GetLength
(
I0
);
const
index_t
loop_step
=
gridSize
*
blockSize
*
MPerThread
;
const
auto
pad
=
math
::
integer_least_multiple
(
M
,
loop_step
)
-
M
;
const
auto
desc_m_pad
=
transform_tensor_descriptor
(
desc_m
,
make_tuple
(
make_right_pad_transform
(
M
,
pad
)),
make_tuple
(
Sequence
<
0
>
{}),
make_tuple
(
Sequence
<
0
>
{}));
return
desc_m_pad
;
}
static
auto
MakeDescriptor_M
(
const
std
::
vector
<
index_t
>&
lengths
,
const
std
::
vector
<
index_t
>&
strides
,
index_t
gridSize
,
index_t
blockSize
)
{
auto
tupleOfShape
=
generate_tuple
([
&
](
auto
I
)
{
return
lengths
[
I
];
},
Number
<
NDim
>
{});
auto
tupleOfStride
=
generate_tuple
([
&
](
auto
I
)
{
return
strides
[
I
];
},
Number
<
NDim
>
{});
// nd desc - [s0, s1, s2, ...]
const
auto
desc
=
make_naive_tensor_descriptor
(
tupleOfShape
,
tupleOfStride
);
// merge nd to 1d desc - [s0 * s1 * ...]
if
constexpr
(
NDim
>
1
)
{
const
auto
desc_m
=
transform_tensor_descriptor
(
desc
,
make_tuple
(
make_merge_transform
(
tupleOfShape
)),
make_tuple
(
generate_sequence_v2
([
&
](
auto
I
)
{
return
I
;
},
Number
<
NDim
>
{})),
make_tuple
(
Sequence
<
0
>
{}));
return
PadDescriptor_M_1d
(
desc_m
,
gridSize
,
blockSize
);
}
else
return
PadDescriptor_M_1d
(
desc
,
gridSize
,
blockSize
);
}
using
AGridDesc_M
=
decltype
(
MakeDescriptor_M
({
1
,
1
},
{
1
,
1
},
1
,
1
));
using
BGridDesc_M
=
decltype
(
MakeDescriptor_M
({
1
,
1
},
{
1
,
1
},
1
,
1
));
using
CGridDesc_M
=
decltype
(
MakeDescriptor_M
({
1
,
1
},
{
1
,
1
},
1
,
1
));
using
GridwiseBinEltwise
=
GridwiseBinaryElementwise_1D
<
ADataType
,
BDataType
,
CDataType
,
ComputeDataType
,
AGridDesc_M
,
BGridDesc_M
,
CGridDesc_M
,
ElementwiseFunctor
,
MPerThread
,
AScalarPerVector
,
BScalarPerVector
,
CScalarPerVector
>
;
struct
Argument
:
public
BaseArgument
{
Argument
(
const
ADataType
*
p_a
,
const
BDataType
*
p_b
,
CDataType
*
p_c
,
const
std
::
vector
<
index_t
>&
lengths
,
const
std
::
vector
<
index_t
>&
a_strides
,
const
std
::
vector
<
index_t
>&
b_strides
,
const
std
::
vector
<
index_t
>&
c_strides
,
ElementwiseFunctor
functor
)
:
p_a_
(
p_a
),
p_b_
(
p_b
),
p_c_
(
p_c
),
lengths_
(
lengths
),
a_strides_
(
a_strides
),
b_strides_
(
b_strides
),
c_strides_
(
c_strides
),
functor_
(
functor
),
blockSize_
(
256
),
gridSize_
(
120
)
// FIXME - Calculate the grid size by number of CU in the future
{
a_grid_desc_m_
=
MakeDescriptor_M
(
lengths
,
a_strides
,
gridSize_
,
blockSize_
);
b_grid_desc_m_
=
MakeDescriptor_M
(
lengths
,
b_strides
,
gridSize_
,
blockSize_
);
c_grid_desc_m_
=
MakeDescriptor_M
(
lengths
,
c_strides
,
gridSize_
,
blockSize_
);
}
const
ADataType
*
p_a_
;
const
BDataType
*
p_b_
;
CDataType
*
p_c_
;
std
::
vector
<
int
>
lengths_
;
AGridDesc_M
a_grid_desc_m_
;
BGridDesc_M
b_grid_desc_m_
;
CGridDesc_M
c_grid_desc_m_
;
std
::
vector
<
index_t
>
a_strides_
;
std
::
vector
<
index_t
>
b_strides_
;
std
::
vector
<
index_t
>
c_strides_
;
ElementwiseFunctor
functor_
;
index_t
blockSize_
;
index_t
gridSize_
;
};
struct
Invoker
:
public
BaseInvoker
{
float
Run
(
const
Argument
&
arg
,
const
StreamConfig
&
stream_config
=
StreamConfig
{})
{
const
auto
kernel
=
kernel_binary_elementwise_1d
<
GridwiseBinEltwise
,
ADataType
,
BDataType
,
CDataType
,
AGridDesc_M
,
BGridDesc_M
,
CGridDesc_M
,
ElementwiseFunctor
>
;
float
elapsed_time
=
launch_and_time_kernel
(
stream_config
,
kernel
,
dim3
(
arg
.
gridSize_
),
dim3
(
arg
.
blockSize_
),
0
,
arg
.
p_a_
,
arg
.
p_b_
,
arg
.
p_c_
,
arg
.
a_grid_desc_m_
,
arg
.
b_grid_desc_m_
,
arg
.
c_grid_desc_m_
,
arg
.
functor_
);
return
elapsed_time
;
}
// polymorphic
float
Run
(
const
BaseArgument
*
p_arg
,
const
StreamConfig
&
stream_config
=
StreamConfig
{})
override
{
return
Run
(
*
dynamic_cast
<
const
Argument
*>
(
p_arg
),
stream_config
);
}
};
bool
IsSupportedArgument
(
const
BaseArgument
*
p_arg
)
override
{
const
Argument
*
pArg
=
dynamic_cast
<
const
Argument
*>
(
p_arg
);
if
(
pArg
==
nullptr
)
return
false
;
if
(
pArg
->
lengths_
.
size
()
!=
NDim
)
return
false
;
if
(
pArg
->
lengths_
.
back
()
%
MPerThread
!=
0
)
return
false
;
auto
IsScalarPerVectorValid
=
[](
bool
isLastDimensionCoalesced
,
int
scalarPerVector
)
{
bool
ret
=
true
;
if
(
!
isLastDimensionCoalesced
)
ret
=
scalarPerVector
==
1
;
else
ret
=
MPerThread
%
scalarPerVector
==
0
;
return
ret
;
};
if
(
!
IsScalarPerVectorValid
(
pArg
->
a_strides_
.
back
()
==
1
,
AScalarPerVector
))
return
false
;
if
(
!
IsScalarPerVectorValid
(
pArg
->
b_strides_
.
back
()
==
1
,
BScalarPerVector
))
return
false
;
if
(
!
IsScalarPerVectorValid
(
pArg
->
c_strides_
.
back
()
==
1
,
CScalarPerVector
))
return
false
;
return
true
;
};
virtual
std
::
unique_ptr
<
BaseArgument
>
MakeArgumentPointer
(
std
::
array
<
const
void
*
,
2
>
p_inputs
,
std
::
array
<
void
*
,
1
>
p_outputs
,
std
::
vector
<
index_t
>
lengths
,
std
::
vector
<
std
::
vector
<
index_t
>>
input_strides
,
std
::
vector
<
std
::
vector
<
index_t
>>
output_strides
,
ElementwiseFunctor
functor
)
override
{
return
std
::
make_unique
<
Argument
>
(
static_cast
<
const
ADataType
*>
(
p_inputs
[
0
]),
static_cast
<
const
BDataType
*>
(
p_inputs
[
1
]),
static_cast
<
CDataType
*>
(
p_outputs
[
0
]),
lengths
,
input_strides
[
0
],
input_strides
[
1
],
output_strides
[
0
],
functor
);
}
std
::
unique_ptr
<
BaseInvoker
>
MakeInvokerPointer
()
override
{
return
std
::
make_unique
<
Invoker
>
();
}
// polymorphic
std
::
string
GetTypeString
()
const
override
{
auto
str
=
std
::
stringstream
();
// clang-format off
str
<<
"DeviceBinaryElementwise"
<<
"<"
<<
"NDim = "
<<
NDim
<<
"MPerThread = "
<<
MPerThread
<<
"AScalarPerVector = "
<<
AScalarPerVector
<<
"BScalarPerVector = "
<<
BScalarPerVector
<<
"CScalarPerVector = "
<<
CScalarPerVector
<<
">"
;
// clang-format on
return
str
.
str
();
}
};
}
// namespace device
}
// namespace tensor_operation
}
// namespace ck
include/ck/tensor_operation/gpu/device/device_cgemm_4gemm_xdl_cshuffle.hpp
View file @
b89a88b5
...
@@ -14,7 +14,7 @@
...
@@ -14,7 +14,7 @@
#include "ck/tensor_operation/gpu/device/device_cgemm.hpp"
#include "ck/tensor_operation/gpu/device/device_cgemm.hpp"
#include "ck/tensor_operation/gpu/device/gemm_specialization.hpp"
#include "ck/tensor_operation/gpu/device/gemm_specialization.hpp"
#include "ck/tensor_operation/gpu/grid/gridwise_gemm_xdl_cshuffle_v1.hpp"
#include "ck/tensor_operation/gpu/grid/gridwise_gemm_xdl_cshuffle_v1.hpp"
#include "ck/tensor_operation/gpu/grid/gridwise_
binary_
elementwise_1d.hpp"
#include "ck/tensor_operation/gpu/grid/gridwise_elementwise_1d.hpp"
#include "ck/tensor_operation/gpu/element/binary_element_wise_operation.hpp"
#include "ck/tensor_operation/gpu/element/binary_element_wise_operation.hpp"
#include "ck/host_utility/device_prop.hpp"
#include "ck/host_utility/device_prop.hpp"
#include "ck/host_utility/kernel_launch.hpp"
#include "ck/host_utility/kernel_launch.hpp"
...
@@ -538,48 +538,43 @@ struct DeviceCGemm_4Gemm_Xdl_CShuffle
...
@@ -538,48 +538,43 @@ struct DeviceCGemm_4Gemm_Xdl_CShuffle
float
ave_time
=
0
;
float
ave_time
=
0
;
using
Add
=
ck
::
tensor_operation
::
element_wise
::
Add
;
using
Add
=
ck
::
tensor_operation
::
element_wise
::
Add
;
using
Subtract
=
ck
::
tensor_operation
::
element_wise
::
Subtract
;
using
Subtract
=
ck
::
tensor_operation
::
element_wise
::
Subtract
;
using
GridwiseBinAdd
=
GridwiseBinaryElementwise_1D
<
CDataType
,
CDataType
,
using
GridwiseBinAdd
=
CDataType
,
GridwiseElementwise_1D
<
Tuple
<
CGridDesc_M
,
CGridDesc_M
>
,
CDataType
,
Tuple
<
CGridDesc_M
>
,
CGridDesc_M
,
Tuple
<
const
CDataType
*
,
const
CDataType
*>
,
CGridDesc_M
,
Tuple
<
CDataType
*>
,
CGridDesc_M
,
Add
,
Add
,
MPerThread
,
MPerThread
,
Sequence
<
AScalarPerVector
,
BScalarPerVector
>
,
AScalarPerVector
,
Sequence
<
CScalarPerVector
>>
;
BScalarPerVector
,
CScalarPerVector
>
;
using
GridwiseBinSubtract
=
using
GridwiseBinSubtract
=
GridwiseBinaryElementwise_1D
<
CDataType
,
GridwiseElementwise_1D
<
Tuple
<
CGridDesc_M
,
CGridDesc_M
>
,
CDataType
,
Tuple
<
CGridDesc_M
>
,
CDataType
,
Tuple
<
const
CDataType
*
,
const
CDataType
*>
,
CDataType
,
Tuple
<
CDataType
*>
,
CGridDesc_M
,
Subtract
,
CGridDesc_M
,
MPerThread
,
CGridDesc_M
,
Sequence
<
AScalarPerVector
,
BScalarPerVector
>
,
Subtract
,
Sequence
<
CScalarPerVector
>>
;
MPerThread
,
AScalarPerVector
,
const
auto
add_kernel
=
kernel_elementwise_1d
<
GridwiseBinAdd
,
BScalarPerVector
,
Tuple
<
CGridDesc_M
,
CGridDesc_M
>
,
CScalarPerVector
>
;
Tuple
<
CGridDesc_M
>
,
const
auto
add_kernel
=
kernel_binary_elementwise_1d
<
GridwiseBinAdd
,
Tuple
<
const
CDataType
*
,
const
CDataType
*>
,
CDataType
,
Tuple
<
CDataType
*>
,
CDataType
,
Add
>
;
CDataType
,
CGridDesc_M
,
const
auto
subtract_kernel
=
CGridDesc_M
,
kernel_elementwise_1d
<
GridwiseBinSubtract
,
CGridDesc_M
,
Tuple
<
CGridDesc_M
,
CGridDesc_M
>
,
Add
>
;
Tuple
<
CGridDesc_M
>
,
const
auto
subtract_kernel
=
kernel_binary_elementwise_1d
<
GridwiseBinSubtract
,
Tuple
<
const
CDataType
*
,
const
CDataType
*>
,
CDataType
,
Tuple
<
CDataType
*>
,
CDataType
,
Subtract
>
;
CDataType
,
CGridDesc_M
,
CGridDesc_M
,
CGridDesc_M
,
Subtract
>
;
if
(
GridwiseGemm
::
CalculateHasMainKBlockLoop
(
K
))
if
(
GridwiseGemm
::
CalculateHasMainKBlockLoop
(
K
))
{
{
...
@@ -631,18 +626,18 @@ struct DeviceCGemm_4Gemm_Xdl_CShuffle
...
@@ -631,18 +626,18 @@ struct DeviceCGemm_4Gemm_Xdl_CShuffle
arg
.
block_2_ctile_map_
);
arg
.
block_2_ctile_map_
);
// c_real = aux - aux_2
// c_real = aux - aux_2
ave_time
+=
launch_and_time_kernel
(
stream_config
,
ave_time
+=
launch_and_time_kernel
(
s
ubtract_kernel
,
s
tream_config
,
dim3
(
grid_size
)
,
subtract_kernel
,
dim3
(
BlockS
ize
),
dim3
(
grid_s
ize
),
0
,
dim3
(
BlockSize
)
,
arg
.
p_aux_grid_
,
0
,
arg
.
p_aux_2_grid_
,
make_tuple
(
arg
.
c_grid_desc_m_
,
arg
.
c_grid_desc_m_
)
,
arg
.
p_
c_grid_
real_
,
make_tuple
(
arg
.
c_grid_
desc_m_
)
,
arg
.
c_grid_desc_m_
,
make_tuple
(
const_cast
<
const
CDataType
*>
(
arg
.
p_aux_grid_
)
,
arg
.
c_grid_desc_m_
,
const_cast
<
const
CDataType
*>
(
arg
.
p_aux_2_grid_
))
,
arg
.
c_grid_
desc_m_
,
make_tuple
(
arg
.
p_
c_grid_
real_
)
,
Subtract
{});
Subtract
{});
ave_time
+=
ave_time
+=
launch_and_time_kernel
(
stream_config
,
launch_and_time_kernel
(
stream_config
,
...
@@ -679,18 +674,18 @@ struct DeviceCGemm_4Gemm_Xdl_CShuffle
...
@@ -679,18 +674,18 @@ struct DeviceCGemm_4Gemm_Xdl_CShuffle
arg
.
block_2_ctile_map_
);
arg
.
block_2_ctile_map_
);
// c_imag = aux + aux_2
// c_imag = aux + aux_2
ave_time
+=
launch_and_time_kernel
(
stream_config
,
ave_time
+=
launch_and_time_kernel
(
add_kernel
,
stream_config
,
dim3
(
grid_size
)
,
add_kernel
,
dim3
(
BlockS
ize
),
dim3
(
grid_s
ize
),
0
,
dim3
(
BlockSize
)
,
arg
.
p_aux_grid_
,
0
,
arg
.
p_aux_2_grid_
,
make_tuple
(
arg
.
c_grid_desc_m_
,
arg
.
c_grid_desc_m_
)
,
arg
.
p_
c_grid_
imag_
,
make_tuple
(
arg
.
c_grid_
desc_m_
)
,
arg
.
c_grid_desc_m_
,
make_tuple
(
const_cast
<
const
CDataType
*>
(
arg
.
p_aux_grid_
)
,
arg
.
c_grid_desc_m_
,
const_cast
<
const
CDataType
*>
(
arg
.
p_aux_2_grid_
))
,
arg
.
c_grid_
desc_m_
,
make_tuple
(
arg
.
p_
c_grid_
imag_
)
,
Add
{});
Add
{});
}
}
else
else
{
{
...
@@ -742,18 +737,18 @@ struct DeviceCGemm_4Gemm_Xdl_CShuffle
...
@@ -742,18 +737,18 @@ struct DeviceCGemm_4Gemm_Xdl_CShuffle
arg
.
block_2_ctile_map_
);
arg
.
block_2_ctile_map_
);
// c_real = aux - aux_2
// c_real = aux - aux_2
ave_time
+=
launch_and_time_kernel
(
stream_config
,
ave_time
+=
launch_and_time_kernel
(
s
ubtract_kernel
,
s
tream_config
,
dim3
(
grid_size
)
,
subtract_kernel
,
dim3
(
BlockS
ize
),
dim3
(
grid_s
ize
),
0
,
dim3
(
BlockSize
)
,
arg
.
p_aux_grid_
,
0
,
arg
.
p_aux_2_grid_
,
make_tuple
(
arg
.
c_grid_desc_m_
,
arg
.
c_grid_desc_m_
)
,
arg
.
p_
c_grid_
real_
,
make_tuple
(
arg
.
c_grid_
desc_m_
)
,
arg
.
c_grid_desc_m_
,
make_tuple
(
const_cast
<
const
CDataType
*>
(
arg
.
p_aux_grid_
)
,
arg
.
c_grid_desc_m_
,
const_cast
<
const
CDataType
*>
(
arg
.
p_aux_2_grid_
))
,
arg
.
c_grid_
desc_m_
,
make_tuple
(
arg
.
p_
c_grid_
real_
)
,
Subtract
{});
Subtract
{});
ave_time
+=
ave_time
+=
launch_and_time_kernel
(
stream_config
,
launch_and_time_kernel
(
stream_config
,
...
@@ -790,18 +785,18 @@ struct DeviceCGemm_4Gemm_Xdl_CShuffle
...
@@ -790,18 +785,18 @@ struct DeviceCGemm_4Gemm_Xdl_CShuffle
arg
.
block_2_ctile_map_
);
arg
.
block_2_ctile_map_
);
// c_imag = aux + aux_2
// c_imag = aux + aux_2
ave_time
+=
launch_and_time_kernel
(
stream_config
,
ave_time
+=
launch_and_time_kernel
(
add_kernel
,
stream_config
,
dim3
(
grid_size
)
,
add_kernel
,
dim3
(
BlockS
ize
),
dim3
(
grid_s
ize
),
0
,
dim3
(
BlockSize
)
,
arg
.
p_aux_grid_
,
0
,
arg
.
p_aux_2_grid_
,
make_tuple
(
arg
.
c_grid_desc_m_
,
arg
.
c_grid_desc_m_
)
,
arg
.
p_
c_grid_
imag_
,
make_tuple
(
arg
.
c_grid_
desc_m_
)
,
arg
.
c_grid_desc_m_
,
make_tuple
(
const_cast
<
const
CDataType
*>
(
arg
.
p_aux_grid_
)
,
arg
.
c_grid_desc_m_
,
const_cast
<
const
CDataType
*>
(
arg
.
p_aux_2_grid_
))
,
arg
.
c_grid_
desc_m_
,
make_tuple
(
arg
.
p_
c_grid_
imag_
)
,
Add
{});
Add
{});
}
}
return
ave_time
;
return
ave_time
;
...
...
include/ck/tensor_operation/gpu/device/device_conv2d_backward_weight_xdl_c_shuffle_nhwc_kyxc_nhwk.hpp
View file @
b89a88b5
...
@@ -13,7 +13,6 @@
...
@@ -13,7 +13,6 @@
#include "ck/tensor_operation/gpu/device/device_conv_bwd_weight.hpp"
#include "ck/tensor_operation/gpu/device/device_conv_bwd_weight.hpp"
#include "ck/tensor_operation/gpu/device/convolution_backward_weight_specialization.hpp"
#include "ck/tensor_operation/gpu/device/convolution_backward_weight_specialization.hpp"
#include "ck/tensor_operation/gpu/grid/gridwise_gemm_xdlops_bwd_weight.hpp"
#include "ck/tensor_operation/gpu/grid/gridwise_gemm_xdlops_bwd_weight.hpp"
#include "ck/tensor_operation/gpu/grid/gridwise_unary_elementwise_1d.hpp"
#include "ck/host_utility/device_prop.hpp"
#include "ck/host_utility/device_prop.hpp"
#include "ck/host_utility/kernel_launch.hpp"
#include "ck/host_utility/kernel_launch.hpp"
...
...
include/ck/tensor_operation/gpu/device/device_convnd_bwd_weight_nwc_kxc_nwk_xdl_cshuffle.hpp
View file @
b89a88b5
...
@@ -13,7 +13,6 @@
...
@@ -13,7 +13,6 @@
#include "ck/tensor_operation/gpu/device/device_conv_bwd_weight.hpp"
#include "ck/tensor_operation/gpu/device/device_conv_bwd_weight.hpp"
#include "ck/tensor_operation/gpu/device/convolution_backward_weight_specialization.hpp"
#include "ck/tensor_operation/gpu/device/convolution_backward_weight_specialization.hpp"
#include "ck/tensor_operation/gpu/grid/gridwise_gemm_xdlops_bwd_weight.hpp"
#include "ck/tensor_operation/gpu/grid/gridwise_gemm_xdlops_bwd_weight.hpp"
#include "ck/tensor_operation/gpu/grid/gridwise_unary_elementwise_1d.hpp"
#include "ck/host_utility/device_prop.hpp"
#include "ck/host_utility/device_prop.hpp"
#include "ck/host_utility/kernel_launch.hpp"
#include "ck/host_utility/kernel_launch.hpp"
...
...
Prev
1
…
4
5
6
7
8
9
10
11
12
…
14
Next
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
.
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment