Commit b89a88b5 authored by Adam Osewski's avatar Adam Osewski
Browse files

Merge branch 'develop' into wavelet_model

parents 41d5fca7 43c898f6
add_custom_target(example_splitK_gemm_xdl)
add_example_executable(example_splitK_gemm_xdl_fp32 splitK_gemm_xdl_fp32.cpp)
add_example_executable(example_splitK_gemm_xdl_fp16 splitK_gemm_xdl_fp16.cpp)
add_example_executable(example_splitK_gemm_xdl_bfp16 splitK_gemm_xdl_bfp16.cpp)
add_example_executable(example_splitK_gemm_xdl_int8 splitK_gemm_xdl_int8.cpp)
add_dependencies(example_splitK_gemm_xdl
example_splitK_gemm_xdl_fp32
example_splitK_gemm_xdl_fp16
example_splitK_gemm_xdl_bfp16
example_splitK_gemm_xdl_int8)
if(USE_BITINT_EXTENSION_INT4)
add_example_executable(example_splitK_gemm_xdl_int4 splitK_gemm_xdl_int4.cpp)
add_dependencies(example_splitK_gemm_xdl example_splitK_gemm_xdl_int4)
endif()
#pragma once
struct ProblemSize final
{
ck::index_t M = 3840;
ck::index_t N = 4096;
ck::index_t K = 4096;
ck::index_t stride_A = K;
ck::index_t stride_B = K;
ck::index_t stride_C = N;
ck::index_t k_batch = 4;
};
struct ExecutionConfig final
{
bool do_verification = true;
int init_method = 1;
bool time_kernel = false;
};
bool run_splitK_gemm(const ProblemSize& problem_size, const ExecutionConfig& config)
{
using namespace ck::literals;
#if defined(BUILD_INT4_EXAMPLE) && defined(CK_EXPERIMENTAL_BIT_INT_EXTENSION_INT4)
static_assert(sizeof(ck::int4_t) == sizeof(int8_t));
static_assert(sizeof(ADataType) == sizeof(KernelADataType));
static_assert(sizeof(BDataType) == sizeof(KernelBDataType));
#endif
auto& [M, N, K, StrideA, StrideB, StrideC, KBatch] = problem_size;
auto f_host_tensor_descriptor =
[](std::size_t row, std::size_t col, std::size_t stride, auto layout) {
if(std::is_same<decltype(layout), ck::tensor_layout::gemm::RowMajor>::value)
{
return HostTensorDescriptor(std::vector<std::size_t>({row, col}),
std::vector<std::size_t>({stride, 1}));
}
else
{
return HostTensorDescriptor(std::vector<std::size_t>({row, col}),
std::vector<std::size_t>({1, stride}));
}
};
Tensor<ADataType> a_m_k(f_host_tensor_descriptor(M, K, StrideA, ALayout{}));
Tensor<BDataType> b_k_n(f_host_tensor_descriptor(K, N, StrideB, BLayout{}));
Tensor<CDataType> c_m_n_device_result(f_host_tensor_descriptor(M, N, StrideC, CLayout{}));
std::cout << "a_m_k: " << a_m_k.mDesc << std::endl;
std::cout << "b_k_n: " << b_k_n.mDesc << std::endl;
std::cout << "c_m_n: " << c_m_n_device_result.mDesc << std::endl;
switch(config.init_method)
{
case 0: break;
case 1:
a_m_k.GenerateTensorValue(GeneratorTensor_2<ADataType>{-5, 5});
b_k_n.GenerateTensorValue(GeneratorTensor_2<BDataType>{-5, 5});
break;
case 2:
a_m_k.GenerateTensorValue(GeneratorTensor_3<ADataType>{0.0, 1.0});
b_k_n.GenerateTensorValue(GeneratorTensor_3<BDataType>{-0.5, 0.5});
break;
default:
a_m_k.GenerateTensorValue(GeneratorTensor_Sequential<0>{});
b_k_n.GenerateTensorValue(GeneratorTensor_Sequential<1>{});
}
DeviceMem a_m_k_device_buf(sizeof(ADataType) * a_m_k.mDesc.GetElementSpaceSize());
DeviceMem b_k_n_device_buf(sizeof(BDataType) * b_k_n.mDesc.GetElementSpaceSize());
DeviceMem c_m_n_device_buf(sizeof(CDataType) * c_m_n_device_result.mDesc.GetElementSpaceSize());
#ifdef BUILD_INT4_EXAMPLE
const Tensor<KernelADataType> a_m_k_converted(a_m_k);
const Tensor<KernelBDataType> b_k_n_converted(b_k_n);
a_m_k_device_buf.ToDevice(a_m_k_converted.mData.data());
b_k_n_device_buf.ToDevice(b_k_n_converted.mData.data());
#else
a_m_k_device_buf.ToDevice(a_m_k.mData.data());
b_k_n_device_buf.ToDevice(b_k_n.mData.data());
#endif
c_m_n_device_buf.SetZero();
auto a_element_op = AElementOp{};
auto b_element_op = BElementOp{};
auto c_element_op = CElementOp{};
// do GEMM
auto gemm = DeviceGemmInstance{};
auto invoker = gemm.MakeInvoker();
auto argument = gemm.MakeArgument(
#ifdef BUILD_INT4_EXAMPLE
static_cast<KernelADataType*>(a_m_k_device_buf.GetDeviceBuffer()),
static_cast<KernelBDataType*>(b_k_n_device_buf.GetDeviceBuffer()),
#else
static_cast<ADataType*>(a_m_k_device_buf.GetDeviceBuffer()),
static_cast<BDataType*>(b_k_n_device_buf.GetDeviceBuffer()),
#endif
static_cast<CDataType*>(c_m_n_device_buf.GetDeviceBuffer()),
M,
N,
K,
StrideA,
StrideB,
StrideC,
a_element_op,
b_element_op,
c_element_op,
KBatch);
if(!gemm.IsSupportedArgument(argument))
{
std::cout << gemm.GetTypeString() << " does not support this problem" << std::endl;
return 0;
}
invoker.Run(argument, StreamConfig{nullptr, false});
bool pass = true;
if(config.do_verification)
{
c_m_n_device_buf.FromDevice(c_m_n_device_result.mData.data());
using ReferenceGemmInstance = ck::tensor_operation::host::ReferenceGemm<ADataType,
BDataType,
CDataType,
AccDataType,
AElementOp,
BElementOp,
CElementOp>;
auto ref_gemm = ReferenceGemmInstance{};
auto ref_invoker = ref_gemm.MakeInvoker();
Tensor<CDataType> c_m_n_host_result(f_host_tensor_descriptor(M, N, StrideC, CLayout{}));
auto ref_argument = ref_gemm.MakeArgument(
a_m_k, b_k_n, c_m_n_host_result, a_element_op, b_element_op, c_element_op);
ref_invoker.Run(ref_argument);
if(std::is_same<CDataType, ck::half_t>::value)
{
pass &= ck::utils::check_err(c_m_n_device_result.mData,
c_m_n_host_result.mData,
"fp16 incorrect result",
3e-3,
1e-3);
}
else
{
pass &= ck::utils::check_err(c_m_n_device_result.mData, c_m_n_host_result.mData);
}
}
if(config.time_kernel)
{
float ave_time = invoker.Run(argument, StreamConfig{nullptr, config.time_kernel});
std::size_t flop = std::size_t(2) * M * N * K;
std::size_t num_btype =
sizeof(ADataType) * M * K + sizeof(BDataType) * K * N + sizeof(CDataType) * M * N;
float tflops = static_cast<float>(flop) / 1.E9 / ave_time;
float gb_per_sec = num_btype / 1.E6 / ave_time;
std::cout << "Perf: " << ave_time << " ms, " << tflops << " TFlops, " << gb_per_sec
<< " GB/s, " << gemm.GetTypeString() << std::endl;
}
return pass;
}
bool run_splitK_gemm_example(int argc, char* argv[])
{
ProblemSize problem_size;
ExecutionConfig config;
if(argc == 1)
{
// use default case
}
else if(argc == 5)
{
config.do_verification = std::stoi(argv[1]);
config.init_method = std::stoi(argv[2]);
config.time_kernel = std::stoi(argv[3]);
problem_size.k_batch = std::stoi(argv[4]);
}
else if(argc == 11)
{
config.do_verification = std::stoi(argv[1]);
config.init_method = std::stoi(argv[2]);
config.time_kernel = std::stoi(argv[3]);
problem_size.k_batch = std::stoi(argv[4]);
problem_size.M = std::stoi(argv[5]);
problem_size.N = std::stoi(argv[6]);
problem_size.K = std::stoi(argv[7]);
problem_size.stride_A = std::stoi(argv[8]);
problem_size.stride_B = std::stoi(argv[9]);
problem_size.stride_C = std::stoi(argv[10]);
}
else
{
printf("arg1: verification (0=no, 1=yes)\n");
printf("arg2: initialization (0=no init, 1=integer value, 2=decimal value)\n");
printf("arg3: time kernel (0=no, 1=yes)\n");
printf("arg4: KBatch\n");
printf("arg5 to 11: M (256x), N(128x), K(32x), StrideA, StrideB, StrideC\n");
exit(0);
}
return run_splitK_gemm(problem_size, config);
}
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2022, Advanced Micro Devices, Inc. All rights reserved.
#include <iostream>
#include <numeric>
#include <initializer_list>
#include <cstdlib>
#include "ck/ck.hpp"
#include "ck/tensor_operation/gpu/device/gemm_specialization.hpp"
#include "ck/tensor_operation/gpu/device/device_gemm_xdl_splitk_c_shuffle.hpp"
#include "ck/tensor_operation/gpu/element/element_wise_operation.hpp"
#include "ck/library/utility/check_err.hpp"
#include "ck/library/utility/device_memory.hpp"
#include "ck/library/utility/host_tensor.hpp"
#include "ck/library/utility/host_tensor_generator.hpp"
#include "ck/library/reference_tensor_operation/cpu/reference_gemm.hpp"
#include "ck/library/utility/literals.hpp"
template <ck::index_t... Is>
using S = ck::Sequence<Is...>;
using BF16 = ck::bhalf_t;
using F32 = float;
using Row = ck::tensor_layout::gemm::RowMajor;
using Col = ck::tensor_layout::gemm::ColumnMajor;
using PassThrough = ck::tensor_operation::element_wise::PassThrough;
using ADataType = BF16;
using BDataType = BF16;
using AccDataType = F32;
using CDataType = F32;
using ALayout = Row;
using BLayout = Col;
using CLayout = Row;
using AElementOp = PassThrough;
using BElementOp = PassThrough;
using CElementOp = PassThrough;
static constexpr auto GemmDefault = ck::tensor_operation::device::GemmSpecialization::Default;
using DeviceGemmInstance = ck::tensor_operation::device::DeviceGemmXdlSplitKCShuffle
// clang-format off
//######| AData| BData| CData| AccData| ALayout| BLayout| CLayout| A| B| C| GEMM| Block| MPer| NPer| KPer| K1| MPer| NPer| MXdl| NXdl| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockLds| BBlockTransfer| BBlockTransfer| BBlockTransfer| BlockTransfer| BBlockTransfer| BBlockTransfer| BBlockLds| CShuffle| CShuffle| CBlockTransferClusterLengths| CBlockTransfer|
//######| Type| Type| Type| Type| | | | Elementwise| Elementwise| Elementwise| Spacialization| Size| Block| Block| Block| | XDL| XDL| Per| Per| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| AddExtraM| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| AddExtraN| MXdlPerWave| NXdlPerWave| _MBlock_MXdlPerWave_MWaveMPerXdl| ScalarPerVector|
//######| | | | | | | | Operation| Operation| Operation| | | | | | | | | Wave| Wave| Lengths_K0_M_K1| ArrangeOrder| | | PerVector| PerVector_K1| | Lengths_K0_N_K1| ArrangeOrder| | | PerVector| PerVector_K1| | PerShuffle| PerShuffle| _NBlock_NXdlPerWave_NWaveNPerXdl| _NWaveNPerXdl|
//######| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
< ADataType, BDataType, CDataType, AccDataType, ALayout, BLayout, CLayout, AElementOp, BElementOp, CElementOp, GemmDefault, 256, 256, 128, 4, 8, 32, 32, 4, 2, S<1, 4, 64, 1>, S<0, 2, 1, 3>, S<0, 2, 1, 3>, 3, 8, 8, true, S<1, 4, 64, 1>, S<0, 1, 3, 2>, S<0, 1, 3, 2>, 3, 8, 8, true, 1, 1, S<1, 32, 1, 8>, 4>;
// clang-format on
#include "run_splitK_gemm_example.inc"
int main(int argc, char* argv[]) { return !run_splitK_gemm_example(argc, argv); }
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2022, Advanced Micro Devices, Inc. All rights reserved.
#include <iostream>
#include <numeric>
#include <initializer_list>
#include <cstdlib>
#include "ck/ck.hpp"
#include "ck/tensor_operation/gpu/device/gemm_specialization.hpp"
#include "ck/tensor_operation/gpu/device/device_gemm_xdl_splitk_c_shuffle.hpp"
#include "ck/tensor_operation/gpu/element/element_wise_operation.hpp"
#include "ck/library/utility/check_err.hpp"
#include "ck/library/utility/device_memory.hpp"
#include "ck/library/utility/host_tensor.hpp"
#include "ck/library/utility/host_tensor_generator.hpp"
#include "ck/library/reference_tensor_operation/cpu/reference_gemm.hpp"
#include "ck/library/utility/literals.hpp"
template <ck::index_t... Is>
using S = ck::Sequence<Is...>;
using F16 = ck::half_t;
using F32 = float;
using Row = ck::tensor_layout::gemm::RowMajor;
using Col = ck::tensor_layout::gemm::ColumnMajor;
using PassThrough = ck::tensor_operation::element_wise::PassThrough;
using ADataType = F16;
using BDataType = F16;
using AccDataType = F32;
using CDataType = F16;
using ALayout = Row;
using BLayout = Col;
using CLayout = Row;
using AElementOp = PassThrough;
using BElementOp = PassThrough;
using CElementOp = PassThrough;
static constexpr auto GemmDefault = ck::tensor_operation::device::GemmSpecialization::Default;
using DeviceGemmInstance = ck::tensor_operation::device::DeviceGemmXdlSplitKCShuffle
// clang-format off
//######| AData| BData| CData| AccData| ALayout| BLayout| CLayout| A| B| C| GEMM| Block| MPer| NPer| KPer| K1| MPer| NPer| MXdl| NXdl| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockLds| BBlockTransfer| BBlockTransfer| BBlockTransfer| BlockTransfer| BBlockTransfer| BBlockTransfer| BBlockLds| CShuffle| CShuffle| CBlockTransferClusterLengths| CBlockTransfer|
//######| Type| Type| Type| Type| | | | Elementwise| Elementwise| Elementwise| Spacialization| Size| Block| Block| Block| | XDL| XDL| Per| Per| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| AddExtraM| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| AddExtraN| MXdlPerWave| NXdlPerWave| _MBlock_MXdlPerWave_MWaveMPerXdl| ScalarPerVector|
//######| | | | | | | | Operation| Operation| Operation| | | | | | | | | Wave| Wave| Lengths_K0_M_K1| ArrangeOrder| | | PerVector| PerVector_K1| | Lengths_K0_N_K1| ArrangeOrder| | | PerVector| PerVector_K1| | PerShuffle| PerShuffle| _NBlock_NXdlPerWave_NWaveNPerXdl| _NWaveNPerXdl|
//######| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
< ADataType, BDataType, CDataType, AccDataType, ALayout, BLayout, CLayout, AElementOp, BElementOp, CElementOp, GemmDefault, 256, 256, 128, 4, 8, 32, 32, 4, 2, S<1, 4, 64, 1>, S<0, 2, 1, 3>, S<0, 2, 1, 3>, 3, 8, 8, true, S<1, 4, 64, 1>, S<0, 1, 3, 2>, S<0, 1, 3, 2>, 3, 8, 8, true, 1, 1, S<1, 32, 1, 8>, 8>;
// clang-format on
#include "run_splitK_gemm_example.inc"
int main(int argc, char* argv[]) { return !run_splitK_gemm_example(argc, argv); }
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2022, Advanced Micro Devices, Inc. All rights reserved.
#include <iostream>
#include <numeric>
#include <initializer_list>
#include <cstdlib>
#include "ck/ck.hpp"
#include "ck/tensor_operation/gpu/device/gemm_specialization.hpp"
#include "ck/tensor_operation/gpu/device/device_gemm_xdl_splitk_c_shuffle.hpp"
#include "ck/tensor_operation/gpu/element/element_wise_operation.hpp"
#include "ck/library/utility/check_err.hpp"
#include "ck/library/utility/device_memory.hpp"
#include "ck/library/utility/host_tensor.hpp"
#include "ck/library/utility/host_tensor_generator.hpp"
#include "ck/library/reference_tensor_operation/cpu/reference_gemm.hpp"
#include "ck/library/utility/literals.hpp"
template <ck::index_t... Is>
using S = ck::Sequence<Is...>;
using F16 = ck::half_t;
using F32 = float;
using Row = ck::tensor_layout::gemm::RowMajor;
using Col = ck::tensor_layout::gemm::ColumnMajor;
using PassThrough = ck::tensor_operation::element_wise::PassThrough;
using ADataType = F32;
using BDataType = F32;
using AccDataType = F32;
using CDataType = F32;
using ALayout = Row;
using BLayout = Col;
using CLayout = Row;
using AElementOp = PassThrough;
using BElementOp = PassThrough;
using CElementOp = PassThrough;
static constexpr auto GemmDefault = ck::tensor_operation::device::GemmSpecialization::Default;
using DeviceGemmInstance = ck::tensor_operation::device::DeviceGemmXdlSplitKCShuffle
// clang-format off
//######| AData| BData| CData| AccData| ALayout| BLayout| CLayout| A| B| C| GEMM| Block| MPer| NPer| KPer| K1| MPer| NPer| MXdl| NXdl| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockLds| BBlockTransfer| BBlockTransfer| BBlockTransfer| BlockTransfer| BBlockTransfer| BBlockTransfer| BBlockLds| CShuffle| CShuffle| CBlockTransferClusterLengths| CBlockTransfer|
//######| Type| Type| Type| Type| | | | Elementwise| Elementwise| Elementwise| Spacialization| Size| Block| Block| Block| | XDL| XDL| Per| Per| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| AddExtraM| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| AddExtraN| MXdlPerWave| NXdlPerWave| _MBlock_MXdlPerWave_MWaveMPerXdl| ScalarPerVector|
//######| | | | | | | | Operation| Operation| Operation| | | | | | | | | Wave| Wave| Lengths_K0_M_K1| ArrangeOrder| | | PerVector| PerVector_K1| | Lengths_K0_N_K1| ArrangeOrder| | | PerVector| PerVector_K1| | PerShuffle| PerShuffle| _NBlock_NXdlPerWave_NWaveNPerXdl| _NWaveNPerXdl|
//######| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
< ADataType, BDataType, CDataType, AccDataType, ALayout, BLayout, CLayout, AElementOp, BElementOp, CElementOp, GemmDefault, 256, 256, 128, 4, 4, 32, 32, 4, 2, S<1, 4, 64, 1>, S<0, 2, 1, 3>, S<0, 2, 1, 3>, 3, 4, 4, true, S<1, 4, 64, 1>, S<0, 1, 3, 2>, S<0, 1, 3, 2>, 3, 4, 4, true, 1, 1, S<1, 32, 1, 8>, 4>;
// clang-format on
#include "run_splitK_gemm_example.inc"
int main(int argc, char* argv[]) { return !run_splitK_gemm_example(argc, argv); }
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2022, Advanced Micro Devices, Inc. All rights reserved.
#include <iostream>
#include <numeric>
#include <initializer_list>
#include <cstdlib>
#include "ck/ck.hpp"
#include "ck/tensor_operation/gpu/device/gemm_specialization.hpp"
#include "ck/tensor_operation/gpu/device/device_gemm_xdl_splitk_c_shuffle.hpp"
#include "ck/tensor_operation/gpu/element/element_wise_operation.hpp"
#include "ck/library/utility/check_err.hpp"
#include "ck/library/utility/device_memory.hpp"
#include "ck/library/utility/host_tensor.hpp"
#include "ck/library/utility/host_tensor_generator.hpp"
#include "ck/library/reference_tensor_operation/cpu/reference_gemm.hpp"
#include "ck/library/utility/literals.hpp"
template <ck::index_t... Is>
using S = ck::Sequence<Is...>;
using Row = ck::tensor_layout::gemm::RowMajor;
using Col = ck::tensor_layout::gemm::ColumnMajor;
using PassThrough = ck::tensor_operation::element_wise::PassThrough;
using ADataType = ck::int4_t;
using BDataType = ck::int4_t;
using AccDataType = int32_t;
using CDataType = int32_t;
using KernelADataType = int8_t;
using KernelBDataType = int8_t;
using ALayout = Row;
using BLayout = Col;
using CLayout = Row;
using AElementOp = PassThrough;
using BElementOp = PassThrough;
using CElementOp = PassThrough;
static constexpr auto GemmDefault = ck::tensor_operation::device::GemmSpecialization::Default;
using DeviceGemmInstance = ck::tensor_operation::device::DeviceGemmXdlSplitKCShuffle
// clang-format off
<KernelADataType, //ADataType
KernelBDataType, //BDataType
CDataType, //EDataType
AccDataType, //AccDataType
ALayout, //ALayout
BLayout, //BLayout
CLayout, //ELayout
AElementOp, //AElementwiseOperation
BElementOp, //BElementwiseOperation
CElementOp, //CElementwiseOperation
GemmDefault, //GEMMSpecialization
256, // BlockSize
256, // MPerBlock
128, // NPerBlock
4, // KPerBlock
16, // K1
32, // MPerXdl
32, // NPerXdl
4, // MXdlPerWave
2, // NXdlPerWave
S<1, 4, 64, 1>, // ABlockTransfer ThreadCluster Lengths_K0_M_K1
S<0, 2, 1, 3>, // ABlockTransfer ThreadCluster ArrangeOrder
S<0, 2, 1, 3>, // ABlockTransfer SrcAccessOrder
3, // ABlockTransfer SrcVectorDim
16, // ABlockTransfer SrcScalarPerVector
16, // ABlockTransfer DstScalarPerVector_K1
true, // ABlockLdsExtraM
S<1, 4, 64, 1>, // BBlockTransfer ThreadCluster Lengths_K0_N_K1
S<0, 1, 3, 2>, // BBlockTransfer ThreadCluster ArrangeOrder
S<0, 1, 3, 2>, // BBlockTransfer SrcAccessOrder
3, // BBlockTransfer SrcVectorDim
16, // BBlockTransfer SrcScalarPerVector
16, // BBlockTransfer DstScalarPerVector_K1
true, // BBlockLdsExtraN
1, // CShuffleMXdlPerWavePerShuffle
1, // CShuffleNXdlPerWavePerShuffle
S<1, 32, 1, 8>, // CBlockTransferClusterLengths _MBlock_MXdlPerWave_MWaveMPerXdl_NBlock_NXdlPerWave_NWaveNPerXdl
4>; // CBlockTransferScalarPerVector_NWaveNPerXdl
// clang-format on
#define BUILD_INT4_EXAMPLE
#include "run_splitK_gemm_example.inc"
int main(int argc, char* argv[]) { return !run_splitK_gemm_example(argc, argv); }
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2022, Advanced Micro Devices, Inc. All rights reserved.
#include <iostream>
#include <numeric>
#include <initializer_list>
#include <cstdlib>
#include "ck/ck.hpp"
#include "ck/tensor_operation/gpu/device/gemm_specialization.hpp"
#include "ck/tensor_operation/gpu/device/device_gemm_xdl_splitk_c_shuffle.hpp"
#include "ck/tensor_operation/gpu/element/element_wise_operation.hpp"
#include "ck/library/utility/check_err.hpp"
#include "ck/library/utility/device_memory.hpp"
#include "ck/library/utility/host_tensor.hpp"
#include "ck/library/utility/host_tensor_generator.hpp"
#include "ck/library/reference_tensor_operation/cpu/reference_gemm.hpp"
#include "ck/library/utility/literals.hpp"
template <ck::index_t... Is>
using S = ck::Sequence<Is...>;
using Row = ck::tensor_layout::gemm::RowMajor;
using Col = ck::tensor_layout::gemm::ColumnMajor;
using PassThrough = ck::tensor_operation::element_wise::PassThrough;
using ADataType = int8_t;
using BDataType = int8_t;
using AccDataType = int32_t;
using CDataType = int32_t;
using ALayout = Row;
using BLayout = Col;
using CLayout = Row;
using AElementOp = PassThrough;
using BElementOp = PassThrough;
using CElementOp = PassThrough;
static constexpr auto GemmDefault = ck::tensor_operation::device::GemmSpecialization::Default;
using DeviceGemmInstance = ck::tensor_operation::device::DeviceGemmXdlSplitKCShuffle
// clang-format off
//######| AData| BData| CData| AccData| ALayout| BLayout| CLayout| A| B| C| GEMM| Block| MPer| NPer| KPer| K1| MPer| NPer| MXdl| NXdl| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockLds| BBlockTransfer| BBlockTransfer| BBlockTransfer| BlockTransfer| BBlockTransfer| BBlockTransfer| BBlockLds| CShuffle| CShuffle| CBlockTransferClusterLengths| CBlockTransfer|
//######| Type| Type| Type| Type| | | | Elementwise| Elementwise| Elementwise| Spacialization| Size| Block| Block| Block| | XDL| XDL| Per| Per| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| AddExtraM| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| AddExtraN| MXdlPerWave| NXdlPerWave| _MBlock_MXdlPerWave_MWaveMPerXdl| ScalarPerVector|
//######| | | | | | | | Operation| Operation| Operation| | | | | | | | | Wave| Wave| Lengths_K0_M_K1| ArrangeOrder| | | PerVector| PerVector_K1| | Lengths_K0_N_K1| ArrangeOrder| | | PerVector| PerVector_K1| | PerShuffle| PerShuffle| _NBlock_NXdlPerWave_NWaveNPerXdl| _NWaveNPerXdl|
//######| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
< ADataType, BDataType, CDataType, AccDataType, ALayout, BLayout, CLayout, AElementOp, BElementOp, CElementOp, GemmDefault, 256, 256, 128, 4, 16, 32, 32, 4, 2, S<1, 4, 64, 1>, S<0, 2, 1, 3>, S<0, 2, 1, 3>, 3, 16, 16, true, S<1, 4, 64, 1>, S<0, 1, 3, 2>, S<0, 1, 3, 2>, 3, 16, 16, true, 1, 1, S<1, 32, 1, 8>, 4>;
// clang-format on
#include "run_splitK_gemm_example.inc"
int main(int argc, char* argv[]) { return !run_splitK_gemm_example(argc, argv); }
add_example_executable(example_sparse_embedding3_forward_layernorm sparse_embedding3_forward_layernorm.cpp)
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2022, Advanced Micro Devices, Inc. All rights reserved.
#include <iostream>
#include <numeric>
#include <initializer_list>
#include <cstdlib>
#include <getopt.h>
#include <ctime>
#include "ck/ck.hpp"
#include "ck/tensor_operation/gpu/device/device_sparse_embedding3_forward_layernorm.hpp"
#include "ck/library/utility/check_err.hpp"
#include "ck/library/utility/device_memory.hpp"
#include "ck/library/utility/host_common_util.hpp"
#include "ck/library/utility/host_tensor.hpp"
#include "ck/library/utility/host_tensor_generator.hpp"
#include "ck/library/reference_tensor_operation/cpu/reference_sparse_embedding3_forward_layernorm.hpp"
// using EmbType = float;
// using IndexType = int64_t;
// using GammaDataType = float;
// using BetaDataType = float;
// using AccDataType = float;
// using OutType = float;
using EmbType = ck::half_t;
using IndexType = int64_t;
using GammaDataType = ck::half_t;
using BetaDataType = ck::half_t;
using AccDataType = float;
using OutType = ck::half_t;
// clang-format off
// BlockSize, DimClusterSize, RowClusterSize, DimPerBlock, RowPerBlock, DimThreadSize, RowVectorSize
using DeviceInstance_fp32_e256 = ck::tensor_operation::device::DeviceSparseEmbedding3ForwardLayernorm<EmbType, IndexType, GammaDataType, BetaDataType, AccDataType, OutType, 256, 1, 256, 1, 256, 1, 1>;
using DeviceInstance_fp32_e512 = ck::tensor_operation::device::DeviceSparseEmbedding3ForwardLayernorm<EmbType, IndexType, GammaDataType, BetaDataType, AccDataType, OutType, 256, 1, 256, 1, 512, 1, 1>;
using DeviceInstance_fp32_e768 = ck::tensor_operation::device::DeviceSparseEmbedding3ForwardLayernorm<EmbType, IndexType, GammaDataType, BetaDataType, AccDataType, OutType, 256, 1, 256, 1, 768, 1, 1>;
using DeviceInstance_fp32_e1024 = ck::tensor_operation::device::DeviceSparseEmbedding3ForwardLayernorm<EmbType, IndexType, GammaDataType, BetaDataType, AccDataType, OutType, 256, 1, 256, 1, 1024, 1, 1>;
using DeviceInstance_fp32_e1536 = ck::tensor_operation::device::DeviceSparseEmbedding3ForwardLayernorm<EmbType, IndexType, GammaDataType, BetaDataType, AccDataType, OutType, 256, 1, 256, 1, 1536, 1, 1>;
using DeviceInstance_fp32_e2048 = ck::tensor_operation::device::DeviceSparseEmbedding3ForwardLayernorm<EmbType, IndexType, GammaDataType, BetaDataType, AccDataType, OutType, 256, 1, 256, 1, 2048, 1, 4>;
using DeviceInstance_fp32_e4096 = ck::tensor_operation::device::DeviceSparseEmbedding3ForwardLayernorm<EmbType, IndexType, GammaDataType, BetaDataType, AccDataType, OutType, 256, 1, 256, 1, 4096, 1, 4>;
using DeviceInstance_fp32_e8192 = ck::tensor_operation::device::DeviceSparseEmbedding3ForwardLayernorm<EmbType, IndexType, GammaDataType, BetaDataType, AccDataType, OutType, 256, 1, 256, 1, 8192, 1, 4>;
using DeviceInstance_fp32_e16384 = ck::tensor_operation::device::DeviceSparseEmbedding3ForwardLayernorm<EmbType, IndexType, GammaDataType, BetaDataType, AccDataType, OutType, 256, 1, 256, 1, 16384, 1, 4>;
using DeviceInstance_fp16_e256 = ck::tensor_operation::device::DeviceSparseEmbedding3ForwardLayernorm<EmbType, IndexType, GammaDataType, BetaDataType, AccDataType, OutType, 256, 1, 256, 1, 256, 1, 1>;
using DeviceInstance_fp16_e512 = ck::tensor_operation::device::DeviceSparseEmbedding3ForwardLayernorm<EmbType, IndexType, GammaDataType, BetaDataType, AccDataType, OutType, 256, 1, 256, 1, 512, 1, 2>;
using DeviceInstance_fp16_e768 = ck::tensor_operation::device::DeviceSparseEmbedding3ForwardLayernorm<EmbType, IndexType, GammaDataType, BetaDataType, AccDataType, OutType, 256, 1, 256, 1, 768, 1, 1>;
using DeviceInstance_fp16_e1024 = ck::tensor_operation::device::DeviceSparseEmbedding3ForwardLayernorm<EmbType, IndexType, GammaDataType, BetaDataType, AccDataType, OutType, 256, 1, 256, 1, 1024, 1, 2>;
using DeviceInstance_fp16_e1536 = ck::tensor_operation::device::DeviceSparseEmbedding3ForwardLayernorm<EmbType, IndexType, GammaDataType, BetaDataType, AccDataType, OutType, 256, 1, 256, 1, 1536, 1, 2>;
using DeviceInstance_fp16_e2048 = ck::tensor_operation::device::DeviceSparseEmbedding3ForwardLayernorm<EmbType, IndexType, GammaDataType, BetaDataType, AccDataType, OutType, 256, 1, 256, 1, 2048, 1, 2>;
using DeviceInstance_fp16_e4096 = ck::tensor_operation::device::DeviceSparseEmbedding3ForwardLayernorm<EmbType, IndexType, GammaDataType, BetaDataType, AccDataType, OutType, 256, 1, 256, 1, 4096, 1, 8>;
using DeviceInstance_fp16_e8192 = ck::tensor_operation::device::DeviceSparseEmbedding3ForwardLayernorm<EmbType, IndexType, GammaDataType, BetaDataType, AccDataType, OutType, 256, 1, 256, 1, 8192, 1, 8>;
template<typename emb_type, ck::index_t dim> struct emb_kernel{};
template<> struct emb_kernel<float, 256> { using kernel_type = DeviceInstance_fp32_e256; };
template<> struct emb_kernel<float, 512> { using kernel_type = DeviceInstance_fp32_e512; };
template<> struct emb_kernel<float, 768> { using kernel_type = DeviceInstance_fp32_e768; };
template<> struct emb_kernel<float, 1024> { using kernel_type = DeviceInstance_fp32_e1024;};
template<> struct emb_kernel<float, 1536> { using kernel_type = DeviceInstance_fp32_e1536;};
template<> struct emb_kernel<float, 2048> { using kernel_type = DeviceInstance_fp32_e2048;};
template<> struct emb_kernel<float, 4096> { using kernel_type = DeviceInstance_fp32_e4096;};
template<> struct emb_kernel<float, 8192> { using kernel_type = DeviceInstance_fp32_e8192;};
template<> struct emb_kernel<float, 16384>{ using kernel_type = DeviceInstance_fp32_e16384;};
template<> struct emb_kernel<ck::half_t, 256> { using kernel_type = DeviceInstance_fp16_e256; };
template<> struct emb_kernel<ck::half_t, 512> { using kernel_type = DeviceInstance_fp16_e512; };
template<> struct emb_kernel<ck::half_t, 768> { using kernel_type = DeviceInstance_fp16_e768; };
template<> struct emb_kernel<ck::half_t, 1024> { using kernel_type = DeviceInstance_fp16_e1024; };
template<> struct emb_kernel<ck::half_t, 1536> { using kernel_type = DeviceInstance_fp16_e1536; };
template<> struct emb_kernel<ck::half_t, 2048> { using kernel_type = DeviceInstance_fp16_e2048; };
template<> struct emb_kernel<ck::half_t, 4096> { using kernel_type = DeviceInstance_fp16_e4096; };
template<> struct emb_kernel<ck::half_t, 8192> { using kernel_type = DeviceInstance_fp16_e8192; };
// clang-format on
int main()
{
bool time_kernel = true;
constexpr auto num_rows = 65536;
constexpr auto dims = ck::Sequence<256, 512, 768, 1024, 1536, 2048, 4096, 8192>{};
// constexpr auto dims = ck::Sequence<256, 512>{};
constexpr auto index_length = 2048;
constexpr AccDataType epsilon = 1e-4;
auto f_host_tensor_desc_1d = [](std::size_t len_) {
return HostTensorDescriptor(std::vector<std::size_t>({len_}));
};
auto f_host_tensor_desc_2d = [](std::size_t rows_, std::size_t cols_) {
return HostTensorDescriptor(std::vector<std::size_t>({rows_, cols_}));
};
using ReferenceInstance =
ck::tensor_operation::host::ReferenceSparseEmbedding3ForwardLayernorm<EmbType,
IndexType,
GammaDataType,
BetaDataType,
AccDataType,
OutType>;
ck::static_for<0, dims.Size(), 1>{}([&](auto I) {
std::srand(std::time(nullptr));
constexpr auto current_dim = dims.At(I);
Tensor<EmbType> emb_a(f_host_tensor_desc_2d(num_rows, current_dim));
Tensor<EmbType> emb_b(f_host_tensor_desc_2d(num_rows, current_dim));
Tensor<EmbType> emb_c(f_host_tensor_desc_2d(num_rows, current_dim));
Tensor<IndexType> index_a(f_host_tensor_desc_1d(index_length));
Tensor<IndexType> index_b(f_host_tensor_desc_1d(index_length));
Tensor<IndexType> index_c(f_host_tensor_desc_1d(index_length));
Tensor<GammaDataType> gamma(f_host_tensor_desc_1d(current_dim));
Tensor<BetaDataType> beta(f_host_tensor_desc_1d(current_dim));
Tensor<OutType> out(f_host_tensor_desc_2d(index_length, current_dim));
emb_a.GenerateTensorValue(GeneratorTensor_3<EmbType>{0.0, 1.0});
emb_b.GenerateTensorValue(GeneratorTensor_3<EmbType>{0.0, 1.0});
emb_c.GenerateTensorValue(GeneratorTensor_3<EmbType>{0.0, 1.0});
index_a.GenerateTensorValue(GeneratorTensor_2<IndexType>{0, num_rows});
index_b.GenerateTensorValue(GeneratorTensor_2<IndexType>{0, num_rows});
index_c.GenerateTensorValue(GeneratorTensor_2<IndexType>{0, num_rows});
gamma.GenerateTensorValue(GeneratorTensor_3<GammaDataType>{0.0, 1.0});
beta.GenerateTensorValue(GeneratorTensor_3<BetaDataType>{0.0, 1.0});
DeviceMem emb_a_dev(sizeof(EmbType) * emb_a.mDesc.GetElementSpaceSize());
DeviceMem emb_b_dev(sizeof(EmbType) * emb_b.mDesc.GetElementSpaceSize());
DeviceMem emb_c_dev(sizeof(EmbType) * emb_c.mDesc.GetElementSpaceSize());
DeviceMem index_a_dev(sizeof(IndexType) * index_a.mDesc.GetElementSpaceSize());
DeviceMem index_b_dev(sizeof(IndexType) * index_b.mDesc.GetElementSpaceSize());
DeviceMem index_c_dev(sizeof(IndexType) * index_c.mDesc.GetElementSpaceSize());
DeviceMem gamma_dev(sizeof(GammaDataType) * gamma.mDesc.GetElementSpaceSize());
DeviceMem beta_dev(sizeof(BetaDataType) * beta.mDesc.GetElementSpaceSize());
DeviceMem out_dev(sizeof(OutType) * out.mDesc.GetElementSpaceSize());
emb_a_dev.ToDevice(emb_a.mData.data());
emb_b_dev.ToDevice(emb_b.mData.data());
emb_c_dev.ToDevice(emb_c.mData.data());
index_a_dev.ToDevice(index_a.mData.data());
index_b_dev.ToDevice(index_b.mData.data());
index_c_dev.ToDevice(index_c.mData.data());
gamma_dev.ToDevice(gamma.mData.data());
beta_dev.ToDevice(beta.mData.data());
auto device_instance = typename emb_kernel<EmbType, current_dim>::kernel_type{};
auto argument_ptr = device_instance.MakeArgumentPointer(out_dev.GetDeviceBuffer(),
emb_a_dev.GetDeviceBuffer(),
emb_b_dev.GetDeviceBuffer(),
emb_c_dev.GetDeviceBuffer(),
index_a_dev.GetDeviceBuffer(),
index_b_dev.GetDeviceBuffer(),
index_c_dev.GetDeviceBuffer(),
gamma_dev.GetDeviceBuffer(),
beta_dev.GetDeviceBuffer(),
num_rows,
current_dim,
index_length,
epsilon);
std::cout << "Dim:" << current_dim << ", kernel:" << device_instance.GetTypeString()
<< std::endl
<< std::flush;
bool is_supported = device_instance.IsSupportedArgument(argument_ptr.get());
if(!is_supported)
{
std::cout << "Runtime parameters are not supported" << std::endl;
return;
}
auto invoker_ptr = device_instance.MakeInvokerPointer();
float time_ms = invoker_ptr->Run(argument_ptr.get(), StreamConfig{nullptr, time_kernel});
bool pass = true;
{
Tensor<OutType> out_from_dev(f_host_tensor_desc_2d(index_length, current_dim));
ReferenceInstance ref;
auto ref_argument = ref.MakeArgument(out,
emb_a,
emb_b,
emb_c,
index_a,
index_b,
index_c,
gamma,
beta,
num_rows,
current_dim,
index_length,
epsilon);
auto ref_invoker = ref.MakeInvoker();
ref_invoker.Run(ref_argument);
out_dev.FromDevice(out_from_dev.mData.data());
pass &= ck::utils::check_err(
out_from_dev.mData, out.mData, "Error: Incorrect results", 1e-3, 1e-3);
}
double total_read = current_dim * index_length * 3 * sizeof(EmbType) +
current_dim * sizeof(GammaDataType) +
current_dim * sizeof(BetaDataType);
double total_write = current_dim * index_length * sizeof(OutType);
double gbps = (total_read + total_write) / time_ms / 1e6;
std::cout << ", total bytes:" << (total_read + total_write) << ", time:" << time_ms
<< ", gbps:" << gbps << ", valid:" << (pass ? "y" : "n") << std::endl
<< std::flush;
});
return 0;
}
add_example_executable(example_batched_gemm_add_add_relu_gemm_add_xdl_fp16 batched_gemm_add_add_relu_gemm_add_xdl_fp16.cpp)
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2022, Advanced Micro Devices, Inc. All rights reserved.
/*
Computes C_m_o = Relu(A0[m, k] * B0[n, k] + D00[m, n] + D01[mn]) * B1[n, o] + D1[m, o]
*/
#include <iostream>
#include <numeric>
#include <initializer_list>
#include <cstdlib>
#include "ck/ck.hpp"
#include "ck/tensor_operation/gpu/device/gemm_specialization.hpp"
#include "ck/tensor_operation/gpu/device/device_batched_gemm_multiple_d_gemm_multiple_d_xdl_cshuffle.hpp"
#include "ck/tensor_operation/gpu/element/binary_element_wise_operation.hpp"
#include "ck/library/utility/check_err.hpp"
#include "ck/library/utility/device_memory.hpp"
#include "ck/library/utility/host_tensor.hpp"
#include "ck/library/utility/host_tensor_generator.hpp"
#include "ck/library/reference_tensor_operation/cpu/reference_batched_gemm.hpp"
template <ck::index_t... Is>
using S = ck::Sequence<Is...>;
using F16 = ck::half_t;
using F32 = float;
using Row = ck::tensor_layout::gemm::RowMajor;
using Col = ck::tensor_layout::gemm::ColumnMajor;
using PassThrough = ck::tensor_operation::element_wise::PassThrough;
using A0DataType = F16;
using B0DataType = F16;
using Acc0DataType = F32;
using D00DataType = F16;
using D01DataType = F16;
using B1DataType = F16;
using Acc1DataType = F32;
using C1ShuffleDataType = F32;
using D1DataType = F16;
using E1DataType = F16;
using A0Layout = Row;
using B0Layout = Col;
using D00Layout = Row;
using D01Layout = Row;
using B1Layout = Row;
using D1Layout = Row;
using E1Layout = Row;
// E = Relu(C + D0 + D1)
struct AddAddRelu
{
__host__ __device__ void
operator()(ck::half_t& e, const ck::half_t& c, const ck::half_t& d0, const ck::half_t& d1) const
{
const ck::half_t x = c + d0 + d1;
ck::tensor_operation::element_wise::Relu{}.template operator()<ck::half_t>(e, x);
}
__host__ __device__ void
operator()(float& e, const float& c, const ck::half_t& d0, const ck::half_t& d1) const
{
const float x = c + (d0 + d1);
ck::tensor_operation::element_wise::Relu{}.template operator()<float>(e, x);
}
};
// E = Gelu(C + D0 + D1)
struct AddAddGelu
{
__host__ __device__ void
operator()(ck::half_t& e, const ck::half_t& c, const ck::half_t& d0, const ck::half_t& d1) const
{
const ck::half_t x = c + d0 + d1;
ck::tensor_operation::element_wise::Gelu{}.template operator()<ck::half_t, ck::half_t>(e,
x);
}
__host__ __device__ void
operator()(float& e, const float& c, const ck::half_t& d0, const ck::half_t& d1) const
{
const float x = c + (d0 + d1);
ck::tensor_operation::element_wise::Gelu{}.template operator()<float, float>(e, x);
}
};
// E = FastGelu(C + D0 + D1)
struct AddAddFastGelu
{
__host__ __device__ void
operator()(float& e, const float& c, const ck::half_t& d0, const ck::half_t& d1) const
{
const float x = c + (d0 + d1);
ck::tensor_operation::element_wise::FastGelu{}.template operator()<float, float>(e, x);
}
};
using A0ElementOp = PassThrough;
using B0ElementOp = PassThrough;
using CDE0ElementOp = AddAddRelu;
using A1ElementOp = PassThrough;
using B1ElementOp = PassThrough;
using CDE1ElementOp = ck::tensor_operation::element_wise::Add;
static constexpr bool PadGemm0M = false;
static constexpr bool PadGemm0N = false;
static constexpr bool PadGemm0K = false;
static constexpr bool PadGemm1N = false;
static constexpr bool PadGemm1K = false;
using DeviceGemmInstance =
ck::tensor_operation::device::DeviceBatchedGemmMultipleDGemmMultipleD_Xdl_CShuffle<
A0Layout,
B0Layout,
ck::Tuple<D00Layout, D01Layout>,
B1Layout,
ck::Tuple<D1Layout>,
E1Layout,
A0DataType,
B0DataType,
Acc0DataType,
ck::Tuple<D00DataType, D01DataType>,
B1DataType,
Acc1DataType,
C1ShuffleDataType,
ck::Tuple<D1DataType>,
E1DataType,
A0ElementOp,
B0ElementOp,
CDE0ElementOp,
B1ElementOp,
CDE1ElementOp,
PadGemm0M,
PadGemm0N,
PadGemm0K,
PadGemm1N,
PadGemm1K,
1,
256,
128, // MPerBlock
128, // NPerBlock
32, // KPerBlock
128, // Gemm1NPerBlock
32, // Gemm1KPerBlock
8, // AK1
8, // BK1
2, // B1K1
32, // MPerXDL
32, // NPerXDL
1, // MXdlPerWave
4, // NXdlPerWave
4, // Gemm1NXdlPerWave
S<4, 64, 1>, // ABlockTransfer
S<1, 0, 2>,
S<1, 0, 2>,
2,
8,
8,
true,
S<4, 64, 1>, // BBlockTransfer
S<1, 0, 2>,
S<1, 0, 2>,
2,
8,
8,
true,
S<8, 32, 1>, // B1BlockTransfer
S<0, 2, 1>,
S<0, 2, 1>,
1,
4,
2,
false,
1, // CShuffleMXdlPerWavePerShuffle
2, // CShuffleNXdlPerWavePerShuffle
S<1, 32, 1, 8>, // CShuffleBlockTransferClusterLengths_MBlock_MPerBlock_NBlock_NPerBlock
8>; // CShuffleBlockTransferScalarPerVector_NPerBlock
int main(int argc, char* argv[])
{
bool do_verification = true;
int init_method = 1;
bool time_kernel = false;
// GEMM shape
ck::index_t M = 1024;
ck::index_t N = 1024;
ck::index_t K = 64;
ck::index_t O = 128;
ck::index_t BatchCount = 4;
ck::index_t StrideA0 = -1;
ck::index_t StrideB0 = -1;
ck::index_t StrideD00 = -1;
ck::index_t StrideD01 = -1;
ck::index_t StrideB1 = -1;
ck::index_t StrideD1 = -1;
ck::index_t StrideE1 = -1;
ck::index_t BatchStrideA0 = -1;
ck::index_t BatchStrideB0 = -1;
ck::index_t BatchStrideD00 = -1;
ck::index_t BatchStrideD01 = -1;
ck::index_t BatchStrideB1 = -1;
ck::index_t BatchStrideD1 = -1;
ck::index_t BatchStrideE1 = -1;
if(argc == 1)
{
// use default case
}
else if(argc == 4)
{
do_verification = std::stoi(argv[1]);
init_method = std::stoi(argv[2]);
time_kernel = std::stoi(argv[3]);
}
else if(argc == 9)
{
do_verification = std::stoi(argv[1]);
init_method = std::stoi(argv[2]);
time_kernel = std::stoi(argv[3]);
M = std::stoi(argv[4]);
N = std::stoi(argv[5]);
K = std::stoi(argv[6]);
O = std::stoi(argv[7]);
BatchCount = std::stoi(argv[8]);
}
else if(argc == 23)
{
do_verification = std::stoi(argv[1]);
init_method = std::stoi(argv[2]);
time_kernel = std::stoi(argv[3]);
M = std::stoi(argv[4]);
N = std::stoi(argv[5]);
K = std::stoi(argv[6]);
O = std::stoi(argv[7]);
BatchCount = std::stoi(argv[8]);
StrideA0 = std::stoi(argv[9]);
StrideB0 = std::stoi(argv[10]);
StrideD00 = std::stoi(argv[11]);
StrideD01 = std::stoi(argv[12]);
StrideB1 = std::stoi(argv[13]);
StrideD1 = std::stoi(argv[14]);
StrideE1 = std::stoi(argv[15]);
BatchStrideA0 = std::stoi(argv[16]);
BatchStrideB0 = std::stoi(argv[17]);
BatchStrideD00 = std::stoi(argv[18]);
BatchStrideD01 = std::stoi(argv[19]);
BatchStrideB1 = std::stoi(argv[20]);
BatchStrideD1 = std::stoi(argv[21]);
BatchStrideE1 = std::stoi(argv[22]);
}
else
{
printf("arg1: verification (0=no, 1=yes)\n");
printf("arg2: initialization (0=no init, 1=integer value, 2=decimal value)\n");
printf("arg3: time kernel (0=no, 1=yes)\n");
printf("arg4 to 8: M, N, K, O, Batch\n");
printf(
"arg9 to 15: StrideA0, StrideB0, StrideD00, StrideD01, StrideB1, StrideD1, StrideE1\n");
printf("arg16 to 22: BatchStrideA0, BatchStrideB0, BatchStrideD00, BatchStrideD01, "
"BatchStrideB1, BatchStrideD1, BatchStrideE1 \n");
exit(0);
}
const int DefaultStrideA0 = ck::is_same_v<A0Layout, Row> ? K : M;
const int DefaultStrideB0 = ck::is_same_v<B0Layout, Row> ? N : K;
const int DefaultStrideD00 = ck::is_same_v<D00Layout, Row> ? N : M;
const int DefaultStrideD01 = ck::is_same_v<D01Layout, Row> ? N : M;
const int DefaultStrideB1 = ck::is_same_v<B1Layout, Row> ? O : N;
const int DefaultStrideD1 = ck::is_same_v<D1Layout, Row> ? O : M;
const int DefaultStrideE1 = ck::is_same_v<E1Layout, Row> ? O : M;
StrideA0 = (StrideA0 < 0) ? DefaultStrideA0 : StrideA0;
StrideB0 = (StrideB0 < 0) ? DefaultStrideB0 : StrideB0;
StrideD00 = (StrideD00 < 0) ? DefaultStrideD00 : StrideD00;
StrideD01 = (StrideD01 < 0) ? DefaultStrideD01 : StrideD01;
StrideB1 = (StrideB1 < 0) ? DefaultStrideB1 : StrideB1;
StrideD1 = (StrideD1 < 0) ? DefaultStrideD1 : StrideD1;
StrideE1 = (StrideE1 < 0) ? DefaultStrideE1 : StrideE1;
const int DefaultBatchStrideA0 = (ck::is_same_v<A0Layout, Col> ? K : M) * StrideA0;
const int DefaultBatchStrideB0 = (ck::is_same_v<B0Layout, Col> ? N : K) * StrideB0;
const int DefaultBatchStrideD00 = (ck::is_same_v<D00Layout, Col> ? N : M) * StrideD00;
const int DefaultBatchStrideD01 = (ck::is_same_v<D01Layout, Col> ? N : M) * StrideD01;
const int DefaultBatchStrideB1 = (ck::is_same_v<B1Layout, Col> ? O : N) * StrideB1;
const int DefaultBatchStrideD1 = (ck::is_same_v<D1Layout, Col> ? O : M) * StrideD1;
const int DefaultBatchStrideE1 = (ck::is_same_v<E1Layout, Col> ? O : M) * StrideE1;
BatchStrideA0 = BatchStrideA0 < 0 ? DefaultBatchStrideA0 : BatchStrideA0;
BatchStrideB0 = BatchStrideB0 < 0 ? DefaultBatchStrideB0 : BatchStrideB0;
BatchStrideD00 = BatchStrideD00 < 0 ? DefaultBatchStrideD00 : BatchStrideD00;
BatchStrideD01 = BatchStrideD01 < 0 ? DefaultBatchStrideD01 : BatchStrideD01;
BatchStrideB1 = BatchStrideB1 < 0 ? DefaultBatchStrideB1 : BatchStrideB1;
BatchStrideD1 = BatchStrideD1 < 0 ? DefaultBatchStrideD1 : BatchStrideD1;
BatchStrideE1 = BatchStrideE1 < 0 ? DefaultBatchStrideE1 : BatchStrideE1;
auto f_host_tensor_descriptor = [](std::size_t batch_count,
std::size_t row,
std::size_t col,
std::size_t stride,
std::size_t batch_stride,
auto layout) {
if(std::is_same<decltype(layout), Row>::value)
{
return HostTensorDescriptor(std::vector<std::size_t>({batch_count, row, col}),
std::vector<std::size_t>({batch_stride, stride, 1}));
}
else
{
return HostTensorDescriptor(std::vector<std::size_t>({batch_count, row, col}),
std::vector<std::size_t>({batch_stride, 1, stride}));
}
};
// E_m_o = A_m_k * B0_k_n * B1_n_o
Tensor<A0DataType> a0_g_m_k(
f_host_tensor_descriptor(BatchCount, M, K, StrideA0, BatchStrideA0, A0Layout{}));
Tensor<B0DataType> b0_g_k_n(
f_host_tensor_descriptor(BatchCount, K, N, StrideB0, BatchStrideB0, B0Layout{}));
Tensor<D00DataType> d00_g_m_n(
f_host_tensor_descriptor(BatchCount, M, N, StrideD00, BatchStrideD00, D00Layout{}));
Tensor<D01DataType> d01_g_m_n(
f_host_tensor_descriptor(BatchCount, M, N, StrideD01, BatchStrideD01, D01Layout{}));
Tensor<B1DataType> b1_g_n_o(
f_host_tensor_descriptor(BatchCount, N, O, StrideB1, BatchStrideB1, B1Layout{}));
Tensor<D1DataType> d1_g_m_o(
f_host_tensor_descriptor(BatchCount, M, O, StrideD1, BatchStrideD1, D1Layout{}));
Tensor<E1DataType> e1_g_m_o_host_result(
f_host_tensor_descriptor(BatchCount, M, O, StrideE1, BatchStrideE1, E1Layout{}));
Tensor<E1DataType> e1_g_m_o_device_result(
f_host_tensor_descriptor(BatchCount, M, O, StrideE1, BatchStrideE1, E1Layout{}));
std::cout << "a0_g_m_k: " << a0_g_m_k.mDesc << std::endl;
std::cout << "b0_g_k_n: " << b0_g_k_n.mDesc << std::endl;
std::cout << "d00_g_m_n: " << d00_g_m_n.mDesc
<< " size: " << d00_g_m_n.mDesc.GetElementSpaceSize() << std::endl;
std::cout << "d01_g_m_n: " << d01_g_m_n.mDesc
<< " size: " << d01_g_m_n.mDesc.GetElementSpaceSize() << std::endl;
std::cout << "b1_g_n_o: " << b1_g_n_o.mDesc << std::endl;
std::cout << "e1_g_m_o: " << e1_g_m_o_host_result.mDesc << std::endl;
switch(init_method)
{
case 0: break;
case 1:
a0_g_m_k.GenerateTensorValue(GeneratorTensor_2<A0DataType>{-2, 3});
b0_g_k_n.GenerateTensorValue(GeneratorTensor_2<B0DataType>{-2, 3});
d00_g_m_n.GenerateTensorValue(GeneratorTensor_2<D00DataType>{-2, 3});
d01_g_m_n.GenerateTensorValue(GeneratorTensor_2<D01DataType>{-2, 3});
b1_g_n_o.GenerateTensorValue(GeneratorTensor_2<B1DataType>{-2, 3});
d1_g_m_o.GenerateTensorValue(GeneratorTensor_2<D1DataType>{-2, 3});
break;
case 2:
a0_g_m_k.GenerateTensorValue(GeneratorTensor_3<A0DataType>{0.0, 1.0});
b0_g_k_n.GenerateTensorValue(GeneratorTensor_3<B0DataType>{0.0, 1.0});
d00_g_m_n.GenerateTensorValue(GeneratorTensor_3<D00DataType>{0.0, 1.0});
d01_g_m_n.GenerateTensorValue(GeneratorTensor_3<D01DataType>{0.0, 1.0});
b1_g_n_o.GenerateTensorValue(GeneratorTensor_3<B1DataType>{-0.5, 0.5});
d1_g_m_o.GenerateTensorValue(GeneratorTensor_3<D1DataType>{0.0, 1.0});
break;
default:
a0_g_m_k.GenerateTensorValue(GeneratorTensor_1<A0DataType>{1});
b0_g_k_n.GenerateTensorValue(GeneratorTensor_Sequential<1>{});
d00_g_m_n.GenerateTensorValue(GeneratorTensor_1<D00DataType>{1});
d01_g_m_n.GenerateTensorValue(GeneratorTensor_1<D01DataType>{1});
b1_g_n_o.GenerateTensorValue(GeneratorTensor_Diagonal<B1DataType>{});
d1_g_m_o.GenerateTensorValue(GeneratorTensor_1<D1DataType>{1});
}
DeviceMem a0_g_m_k_device_buf(sizeof(A0DataType) * a0_g_m_k.mDesc.GetElementSize());
DeviceMem b0_g_k_n_device_buf(sizeof(B0DataType) * b0_g_k_n.mDesc.GetElementSize());
DeviceMem d00_g_m_n_device_buf(sizeof(D00DataType) * d00_g_m_n.mDesc.GetElementSpaceSize());
DeviceMem d01_g_m_n_device_buf(sizeof(D01DataType) * d01_g_m_n.mDesc.GetElementSpaceSize());
DeviceMem b1_g_n_o_device_buf(sizeof(B1DataType) * b1_g_n_o.mDesc.GetElementSize());
DeviceMem e1_g_m_o_device_buf(sizeof(E1DataType) *
e1_g_m_o_device_result.mDesc.GetElementSize());
DeviceMem d1_g_m_o_device_buf(sizeof(D1DataType) * d1_g_m_o.mDesc.GetElementSpaceSize());
a0_g_m_k_device_buf.ToDevice(a0_g_m_k.mData.data());
b0_g_k_n_device_buf.ToDevice(b0_g_k_n.mData.data());
d00_g_m_n_device_buf.ToDevice(d00_g_m_n.mData.data());
d01_g_m_n_device_buf.ToDevice(d01_g_m_n.mData.data());
b1_g_n_o_device_buf.ToDevice(b1_g_n_o.mData.data());
d1_g_m_o_device_buf.ToDevice(d1_g_m_o.mData.data());
auto a0_element_op = A0ElementOp{};
auto b0_element_op = B0ElementOp{};
auto cde0_element_op = CDE0ElementOp{};
auto b1_element_op = B1ElementOp{};
auto cde1_element_op = CDE1ElementOp{};
// do GEMM
auto gemm = DeviceGemmInstance{};
auto invoker = gemm.MakeInvoker();
auto argument =
gemm.MakeArgument(static_cast<A0DataType*>(a0_g_m_k_device_buf.GetDeviceBuffer()),
static_cast<B0DataType*>(b0_g_k_n_device_buf.GetDeviceBuffer()),
std::array<const void*, 2>{d00_g_m_n_device_buf.GetDeviceBuffer(),
d01_g_m_n_device_buf.GetDeviceBuffer()},
static_cast<B1DataType*>(b1_g_n_o_device_buf.GetDeviceBuffer()),
std::array<const void*, 1>{d1_g_m_o_device_buf.GetDeviceBuffer()},
static_cast<E1DataType*>(e1_g_m_o_device_buf.GetDeviceBuffer()),
M,
N,
K,
O,
BatchCount,
StrideA0,
StrideB0,
std::array<ck::index_t, 2>{StrideD00, StrideD01},
StrideB1,
std::array<ck::index_t, 1>{StrideD1},
StrideE1,
BatchStrideA0,
BatchStrideB0,
std::array<ck::index_t, 2>{BatchStrideD00, BatchStrideD01},
BatchStrideB1,
std::array<ck::index_t, 1>{BatchStrideD1},
BatchStrideE1,
a0_element_op,
b0_element_op,
cde0_element_op,
b1_element_op,
cde1_element_op);
if(!gemm.IsSupportedArgument(argument))
{
std::cout << gemm.GetTypeString() << " does not support this problem" << std::endl;
return 0;
}
float ave_time = invoker.Run(argument, StreamConfig{nullptr, time_kernel});
std::size_t flop = (size_t(M) * N * K * 2 + size_t(M) * N * O * 2) * BatchCount;
std::size_t num_btype =
(sizeof(A0DataType) * M * K + sizeof(B0DataType) * K * N + sizeof(D00DataType) * N +
sizeof(D01DataType) * N + sizeof(B1DataType) * N * O + sizeof(E1DataType) * M * O +
sizeof(D1DataType) * O) *
BatchCount;
float tflops = static_cast<float>(flop) / 1.E9 / ave_time;
float gb_per_sec = num_btype / 1.E6 / ave_time;
std::cout << "Perf: " << ave_time << " ms, " << tflops << " TFlops, " << gb_per_sec << " GB/s, "
<< gemm.GetTypeString() << std::endl;
e1_g_m_o_device_buf.FromDevice(e1_g_m_o_device_result.mData.data());
if(do_verification)
{
using ReferenceGemm0Instance =
ck::tensor_operation::host::ReferenceBatchedGemm<A0DataType,
B0DataType,
Acc0DataType,
Acc0DataType,
A0ElementOp,
B0ElementOp,
PassThrough>;
using ReferenceGemm1Instance =
ck::tensor_operation::host::ReferenceBatchedGemm<Acc0DataType,
B1DataType,
Acc1DataType,
Acc1DataType,
PassThrough,
B1ElementOp,
PassThrough>;
// Output of Gemm0 is input A of Gemm1
Tensor<Acc0DataType> c0_g_m_n(f_host_tensor_descriptor(BatchCount, M, N, N, M * N, Row{}));
Tensor<Acc0DataType> e0_g_m_n(f_host_tensor_descriptor(BatchCount, M, N, N, M * N, Row{}));
Tensor<Acc1DataType> c1_g_m_o(f_host_tensor_descriptor(BatchCount, M, O, O, M * O, Row{}));
auto ref_gemm0 = ReferenceGemm0Instance{};
auto ref_gemm0_invoker = ref_gemm0.MakeInvoker();
auto ref_gemm0_argument = ref_gemm0.MakeArgument(
a0_g_m_k, b0_g_k_n, c0_g_m_n, a0_element_op, b0_element_op, PassThrough{});
ref_gemm0_invoker.Run(ref_gemm0_argument);
// bias+bias+relu
e0_g_m_n.ForEach([&](auto&, auto idx) {
cde0_element_op(e0_g_m_n(idx), c0_g_m_n(idx), d00_g_m_n(idx), d01_g_m_n(idx));
});
auto ref_gemm1 = ReferenceGemm1Instance{};
auto ref_gemm1_invoker = ref_gemm1.MakeInvoker();
auto ref_gemm1_argument = ref_gemm1.MakeArgument(
e0_g_m_n, b1_g_n_o, c1_g_m_o, PassThrough{}, b1_element_op, PassThrough{});
ref_gemm1_invoker.Run(ref_gemm1_argument);
// bias
e1_g_m_o_host_result.ForEach([&](auto&, auto idx) {
cde1_element_op(e1_g_m_o_host_result(idx), c1_g_m_o(idx), d1_g_m_o(idx));
});
return ck::utils::check_err(e1_g_m_o_device_result.mData, e1_g_m_o_host_result.mData) ? 0
: 1;
}
return 0;
}
add_example_executable(example_grouped_conv_conv_fwd_xdl_fp32 grouped_conv_conv_fwd_xdl_fp32.cpp)
add_example_executable(example_grouped_conv_conv_fwd_xdl_fp16 grouped_conv_conv_fwd_xdl_fp16.cpp)
add_example_executable(example_grouped_conv_conv_fwd_xdl_bf16 grouped_conv_conv_fwd_xdl_bf16.cpp)
add_example_executable(example_grouped_conv_conv_fwd_xdl_int8 grouped_conv_conv_fwd_xdl_int8.cpp)
if(USE_BITINT_EXTENSION_INT4)
add_example_executable(example_grouped_conv_conv_fwd_xdl_int4 grouped_conv_conv_fwd_xdl_int4.cpp)
endif(USE_BITINT_EXTENSION_INT4)
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2022, Advanced Micro Devices, Inc. All rights reserved.
#include <cstdlib>
#include <iostream>
#include <numeric>
#include <type_traits>
#include "ck/ck.hpp"
#include "ck/tensor_operation/gpu/device/tensor_layout.hpp"
#include "ck/tensor_operation/gpu/device/device_batched_gemm_gemm_xdl_cshuffle.hpp"
#include "ck/tensor_operation/gpu/element/element_wise_operation.hpp"
#include "ck/library/utility/check_err.hpp"
#include "ck/library/utility/device_memory.hpp"
#include "ck/library/utility/host_tensor.hpp"
#include "ck/library/utility/host_tensor_generator.hpp"
#include "ck/library/utility/convolution_parameter.hpp"
#include "ck/library/utility/convolution_host_tensor_descriptor_helper.hpp"
#include "ck/library/reference_tensor_operation/cpu/reference_conv_fwd.hpp"
using In0DataType = ck::bhalf_t;
using Wei0DataType = ck::bhalf_t;
using Acc0DataType = float;
using Wei1DataType = ck::bhalf_t;
using Acc1DataType = float;
using C1ShuffleDataType = float;
using Out1DataType = ck::bhalf_t;
// This is used for reference code
using Out0DataType = ck::bhalf_t;
template <ck::index_t... Is>
using S = ck::Sequence<Is...>;
using In0ElementOp = ck::tensor_operation::element_wise::PassThrough;
using Wei0ElementOp = ck::tensor_operation::element_wise::PassThrough;
using Wei1ElementOp = ck::tensor_operation::element_wise::PassThrough;
using Out0ElementOp = ck::tensor_operation::element_wise::PassThrough;
using Out1ElementOp = ck::tensor_operation::element_wise::UnaryConvert;
using Row = ck::tensor_layout::gemm::RowMajor;
using Col = ck::tensor_layout::gemm::ColumnMajor;
static constexpr auto GemmDefault = ck::tensor_operation::device::GemmSpecialization::Default;
using DeviceBatchedGemmGemmInstance =
ck::tensor_operation::device::DeviceBatchedGemmGemm_Xdl_CShuffle<
Row, // ALayout
Col, // B0Layout
Col, // B1Layout
Row, // CLayout
In0DataType, // ADataType,
Wei0DataType, // B0DataType,
Wei1DataType, // B1DataType,
Out1DataType, // CDataType,
Acc0DataType, // AccDataType,
C1ShuffleDataType, // CShuffleDataType,
In0ElementOp, // AElementOp,
Wei0ElementOp, // B0ElementOp,
Out0ElementOp, // Acc0ElementOp,
Wei1ElementOp, // B1ElementOp,
Out1ElementOp, // CElementOp,
GemmDefault,
1,
256,
128, // MPerBlock
128, // NPerBlock
32, // KPerBlock
128, // Gemm1NPerBlock
32, // Gemm1KPerBlock
8, // AK1
8, // BK1
4, // B1K1
32, // MPerXDL
32, // NPerXDL
1, // MXdlPerWave
4, // NXdlPerWave
4, // Gemm1NXdlPerWave
S<4, 64, 1>, // ABlockTransfer
S<1, 0, 2>,
S<1, 0, 2>,
2,
8,
8,
true,
S<4, 64, 1>, // BBlockTransfer
S<1, 0, 2>,
S<1, 0, 2>,
2,
8,
8,
true,
S<4, 64, 1>, // B1BlockTransfer
S<1, 0, 2>,
S<1, 0, 2>,
2,
4,
4,
true,
1, // CShuffleMXdlPerWavePerShuffle
2, // CShuffleNXdlPerWavePerShuffle
S<1, 32, 1, 8>, // CShuffleBlockTransferClusterLengths_MBlock_MPerBlock_NBlock_NPerBlock
8>; // CShuffleBlockTransferScalarPerVector_NPerBlock
#include "run_grouped_conv_conv_fwd_example.inc"
int main(int argc, char* argv[]) { return run_grouped_conv_conv_fwd_example(argc, argv) ? 0 : 1; }
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2022, Advanced Micro Devices, Inc. All rights reserved.
#include <cstdlib>
#include <iostream>
#include <numeric>
#include <type_traits>
#include "ck/ck.hpp"
#include "ck/tensor_operation/gpu/device/tensor_layout.hpp"
#include "ck/tensor_operation/gpu/device/device_batched_gemm_gemm_xdl_cshuffle.hpp"
#include "ck/tensor_operation/gpu/element/element_wise_operation.hpp"
#include "ck/library/utility/check_err.hpp"
#include "ck/library/utility/device_memory.hpp"
#include "ck/library/utility/host_tensor.hpp"
#include "ck/library/utility/host_tensor_generator.hpp"
#include "ck/library/utility/convolution_parameter.hpp"
#include "ck/library/utility/convolution_host_tensor_descriptor_helper.hpp"
#include "ck/library/reference_tensor_operation/cpu/reference_conv_fwd.hpp"
using In0DataType = ck::half_t;
using Wei0DataType = ck::half_t;
using Acc0DataType = float;
using Wei1DataType = ck::half_t;
using Acc1DataType = float;
using C1ShuffleDataType = float;
using Out1DataType = ck::half_t;
// This is used for reference code
using Out0DataType = ck::half_t;
template <ck::index_t... Is>
using S = ck::Sequence<Is...>;
using In0ElementOp = ck::tensor_operation::element_wise::PassThrough;
using Wei0ElementOp = ck::tensor_operation::element_wise::PassThrough;
using Wei1ElementOp = ck::tensor_operation::element_wise::PassThrough;
using Out0ElementOp = ck::tensor_operation::element_wise::PassThrough;
using Out1ElementOp = ck::tensor_operation::element_wise::UnaryConvert;
using Row = ck::tensor_layout::gemm::RowMajor;
using Col = ck::tensor_layout::gemm::ColumnMajor;
static constexpr auto GemmDefault = ck::tensor_operation::device::GemmSpecialization::Default;
using DeviceBatchedGemmGemmInstance =
ck::tensor_operation::device::DeviceBatchedGemmGemm_Xdl_CShuffle<
Row, // ALayout
Col, // B0Layout
Col, // B1Layout
Row, // CLayout
In0DataType, // ADataType,
Wei0DataType, // B0DataType,
Wei1DataType, // B1DataType,
Out1DataType, // CDataType,
Acc0DataType, // AccDataType,
C1ShuffleDataType, // CShuffleDataType,
In0ElementOp, // AElementOp,
Wei0ElementOp, // B0ElementOp,
Out0ElementOp, // Acc0ElementOp,
Wei1ElementOp, // B1ElementOp,
Out1ElementOp, // CElementOp,
GemmDefault,
1,
256,
128, // MPerBlock
128, // NPerBlock
32, // KPerBlock
128, // Gemm1NPerBlock
32, // Gemm1KPerBlock
8, // AK1
8, // BK1
4, // B1K1
32, // MPerXDL
32, // NPerXDL
1, // MXdlPerWave
4, // NXdlPerWave
4, // Gemm1NXdlPerWave
S<4, 64, 1>, // ABlockTransfer
S<1, 0, 2>,
S<1, 0, 2>,
2,
8,
8,
true,
S<4, 64, 1>, // BBlockTransfer
S<1, 0, 2>,
S<1, 0, 2>,
2,
8,
8,
true,
S<4, 64, 1>, // B1BlockTransfer
S<1, 0, 2>,
S<1, 0, 2>,
2,
4,
4,
true,
1, // CShuffleMXdlPerWavePerShuffle
2, // CShuffleNXdlPerWavePerShuffle
S<1, 32, 1, 8>, // CShuffleBlockTransferClusterLengths_MBlock_MPerBlock_NBlock_NPerBlock
8>; // CShuffleBlockTransferScalarPerVector_NPerBlock
#include "run_grouped_conv_conv_fwd_example.inc"
int main(int argc, char* argv[]) { return run_grouped_conv_conv_fwd_example(argc, argv) ? 0 : 1; }
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2022, Advanced Micro Devices, Inc. All rights reserved.
#include <cstdlib>
#include <iostream>
#include <numeric>
#include <type_traits>
#include "ck/ck.hpp"
#include "ck/tensor_operation/gpu/device/tensor_layout.hpp"
#include "ck/tensor_operation/gpu/device/device_batched_gemm_gemm_xdl_cshuffle.hpp"
#include "ck/tensor_operation/gpu/element/element_wise_operation.hpp"
#include "ck/library/utility/check_err.hpp"
#include "ck/library/utility/device_memory.hpp"
#include "ck/library/utility/host_tensor.hpp"
#include "ck/library/utility/host_tensor_generator.hpp"
#include "ck/library/utility/convolution_parameter.hpp"
#include "ck/library/utility/convolution_host_tensor_descriptor_helper.hpp"
#include "ck/library/reference_tensor_operation/cpu/reference_conv_fwd.hpp"
using In0DataType = float;
using Wei0DataType = float;
using Acc0DataType = float;
using Wei1DataType = float;
using Acc1DataType = float;
using C1ShuffleDataType = float;
using Out1DataType = float;
// This is used for reference code
using Out0DataType = float;
template <ck::index_t... Is>
using S = ck::Sequence<Is...>;
using In0ElementOp = ck::tensor_operation::element_wise::PassThrough;
using Wei0ElementOp = ck::tensor_operation::element_wise::PassThrough;
using Wei1ElementOp = ck::tensor_operation::element_wise::PassThrough;
using Out0ElementOp = ck::tensor_operation::element_wise::PassThrough;
using Out1ElementOp = ck::tensor_operation::element_wise::UnaryConvert;
using Row = ck::tensor_layout::gemm::RowMajor;
using Col = ck::tensor_layout::gemm::ColumnMajor;
static constexpr auto GemmDefault = ck::tensor_operation::device::GemmSpecialization::Default;
using DeviceBatchedGemmGemmInstance =
ck::tensor_operation::device::DeviceBatchedGemmGemm_Xdl_CShuffle<
Row, // ALayout
Col, // B0Layout
Col, // B1Layout
Row, // CLayout
In0DataType, // ADataType,
Wei0DataType, // B0DataType,
Wei1DataType, // B1DataType,
Out1DataType, // CDataType,
Acc0DataType, // AccDataType,
C1ShuffleDataType, // CShuffleDataType,
In0ElementOp, // AElementOp,
Wei0ElementOp, // B0ElementOp,
Out0ElementOp, // Acc0ElementOp,
Wei1ElementOp, // B1ElementOp,
Out1ElementOp, // CElementOp,
GemmDefault,
1,
256,
128, // MPerBlock
128, // NPerBlock
16, // KPerBlock
128, // Gemm1NPerBlock
16, // Gemm1KPerBlock
4, // AK1
4, // BK1
2, // B1K1
32, // MPerXDL
32, // NPerXDL
1, // MXdlPerWave
4, // NXdlPerWave
4, // Gemm1NXdlPerWave
S<4, 64, 1>, // ABlockTransfer
S<1, 0, 2>,
S<1, 0, 2>,
2,
4,
4,
true,
S<4, 64, 1>, // BBlockTransfer
S<1, 0, 2>,
S<1, 0, 2>,
2,
4,
4,
true,
S<4, 64, 1>, // B1BlockTransfer
S<1, 0, 2>,
S<1, 0, 2>,
2,
2,
2,
true,
1, // CShuffleMXdlPerWavePerShuffle
2, // CShuffleNXdlPerWavePerShuffle
S<1, 16, 1, 16>, // CShuffleBlockTransferClusterLengths_MBlock_MPerBlock_NBlock_NPerBlock
4>; // CShuffleBlockTransferScalarPerVector_NPerBlock
#include "run_grouped_conv_conv_fwd_example.inc"
int main(int argc, char* argv[]) { return run_grouped_conv_conv_fwd_example(argc, argv) ? 0 : 1; }
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2022, Advanced Micro Devices, Inc. All rights reserved.
#ifndef CK_EXPERIMENTAL_BIT_INT_EXTENSION_INT4
#error Should compile this file with ck::int4_t support
#endif
#include <cstdlib>
#include <iostream>
#include <numeric>
#include <type_traits>
#include "ck/ck.hpp"
#include "ck/tensor_operation/gpu/device/tensor_layout.hpp"
#include "ck/tensor_operation/gpu/device/device_batched_gemm_gemm_xdl_cshuffle.hpp"
#include "ck/tensor_operation/gpu/element/element_wise_operation.hpp"
#include "ck/library/utility/check_err.hpp"
#include "ck/library/utility/device_memory.hpp"
#include "ck/library/utility/host_tensor.hpp"
#include "ck/library/utility/host_tensor_generator.hpp"
#include "ck/library/utility/convolution_parameter.hpp"
#include "ck/library/utility/convolution_host_tensor_descriptor_helper.hpp"
#include "ck/library/reference_tensor_operation/cpu/reference_conv_fwd.hpp"
using In0DataType = ck::int4_t;
using Wei0DataType = ck::int4_t;
using KernelIn0DataType = int8_t;
using KernelWei0DataType = int8_t;
using Acc0DataType = int32_t;
using Wei1DataType = ck::int4_t;
using KernelWei1DataType = int8_t;
using Acc1DataType = int32_t;
using C1ShuffleDataType = int32_t;
using Out1DataType = ck::int4_t;
using KernelOut1DataType = int8_t;
// This is used for reference code
using Out0DataType = ck::int4_t;
template <ck::index_t... Is>
using S = ck::Sequence<Is...>;
using In0ElementOp = ck::tensor_operation::element_wise::PassThrough;
using Wei0ElementOp = ck::tensor_operation::element_wise::PassThrough;
using Wei1ElementOp = ck::tensor_operation::element_wise::PassThrough;
using Out0ElementOp = ck::tensor_operation::element_wise::PassThrough;
using Out1ElementOp = ck::tensor_operation::element_wise::UnaryConvert;
using Row = ck::tensor_layout::gemm::RowMajor;
using Col = ck::tensor_layout::gemm::ColumnMajor;
static constexpr auto GemmDefault = ck::tensor_operation::device::GemmSpecialization::Default;
using DeviceBatchedGemmGemmInstance =
ck::tensor_operation::device::DeviceBatchedGemmGemm_Xdl_CShuffle<
Row, // ALayout
Col, // B0Layout
Col, // B1Layout
Row, // CLayout
KernelIn0DataType, // ADataType,
KernelWei0DataType, // B0DataType,
KernelWei1DataType, // B1DataType,
KernelOut1DataType, // CDataType,
Acc0DataType, // AccDataType,
C1ShuffleDataType, // CShuffleDataType,
In0ElementOp, // AElementOp,
Wei0ElementOp, // B0ElementOp,
Out0ElementOp, // Acc0ElementOp,
Wei1ElementOp, // B1ElementOp,
Out1ElementOp, // CElementOp,
GemmDefault,
1,
256,
128, // MPerBlock
128, // NPerBlock
64, // KPerBlock
128, // Gemm1NPerBlock
64, // Gemm1KPerBlock
16, // AK1
16, // BK1
4, // B1K1
32, // MPerXDL
32, // NPerXDL
1, // MXdlPerWave
4, // NXdlPerWave
4, // Gemm1NXdlPerWave
S<4, 64, 1>, // ABlockTransfer
S<1, 0, 2>,
S<1, 0, 2>,
2,
16,
16,
true,
S<4, 64, 1>, // BBlockTransfer
S<1, 0, 2>,
S<1, 0, 2>,
2,
16,
16,
true,
S<4, 64, 1>, // B1BlockTransfer
S<1, 0, 2>,
S<1, 0, 2>,
2,
4,
4,
true,
1, // CShuffleMXdlPerWavePerShuffle
2, // CShuffleNXdlPerWavePerShuffle
S<1, 32, 1, 8>, // CShuffleBlockTransferClusterLengths_MBlock_MPerBlock_NBlock_NPerBlock
8>; // CShuffleBlockTransferScalarPerVector_NPerBlock
#define BUILD_INT4_EXAMPLE
#include "run_grouped_conv_conv_fwd_example.inc"
#if defined(BUILD_INT4_EXAMPLE) && defined(CK_EXPERIMENTAL_BIT_INT_EXTENSION_INT4)
static_assert(sizeof(ck::int4_t) == sizeof(int8_t));
#endif
int main(int argc, char* argv[]) { return run_grouped_conv_conv_fwd_example(argc, argv) ? 0 : 1; }
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2022, Advanced Micro Devices, Inc. All rights reserved.
#include <cstdlib>
#include <iostream>
#include <numeric>
#include <type_traits>
#include "ck/ck.hpp"
#include "ck/tensor_operation/gpu/device/tensor_layout.hpp"
#include "ck/tensor_operation/gpu/device/device_batched_gemm_gemm_xdl_cshuffle.hpp"
#include "ck/tensor_operation/gpu/element/element_wise_operation.hpp"
#include "ck/library/utility/check_err.hpp"
#include "ck/library/utility/device_memory.hpp"
#include "ck/library/utility/host_tensor.hpp"
#include "ck/library/utility/host_tensor_generator.hpp"
#include "ck/library/utility/convolution_parameter.hpp"
#include "ck/library/utility/convolution_host_tensor_descriptor_helper.hpp"
#include "ck/library/reference_tensor_operation/cpu/reference_conv_fwd.hpp"
using In0DataType = int8_t;
using Wei0DataType = int8_t;
using Acc0DataType = int32_t;
using Wei1DataType = int8_t;
using Acc1DataType = int32_t;
using C1ShuffleDataType = int32_t;
using Out1DataType = int8_t;
// This is used for reference code
using Out0DataType = int8_t;
template <ck::index_t... Is>
using S = ck::Sequence<Is...>;
using In0ElementOp = ck::tensor_operation::element_wise::PassThrough;
using Wei0ElementOp = ck::tensor_operation::element_wise::PassThrough;
using Wei1ElementOp = ck::tensor_operation::element_wise::PassThrough;
using Out0ElementOp = ck::tensor_operation::element_wise::PassThrough;
using Out1ElementOp = ck::tensor_operation::element_wise::UnaryConvert;
using Row = ck::tensor_layout::gemm::RowMajor;
using Col = ck::tensor_layout::gemm::ColumnMajor;
static constexpr auto GemmDefault = ck::tensor_operation::device::GemmSpecialization::Default;
using DeviceBatchedGemmGemmInstance =
ck::tensor_operation::device::DeviceBatchedGemmGemm_Xdl_CShuffle<
Row, // ALayout
Col, // B0Layout
Col, // B1Layout
Row, // CLayout
In0DataType, // ADataType,
Wei0DataType, // B0DataType,
Wei1DataType, // B1DataType,
Out1DataType, // CDataType,
Acc0DataType, // AccDataType,
C1ShuffleDataType, // CShuffleDataType,
In0ElementOp, // AElementOp,
Wei0ElementOp, // B0ElementOp,
Out0ElementOp, // Acc0ElementOp,
Wei1ElementOp, // B1ElementOp,
Out1ElementOp, // CElementOp,
GemmDefault,
1,
256,
128, // MPerBlock
128, // NPerBlock
64, // KPerBlock
128, // Gemm1NPerBlock
64, // Gemm1KPerBlock
16, // AK1
16, // BK1
4, // B1K1
32, // MPerXDL
32, // NPerXDL
1, // MXdlPerWave
4, // NXdlPerWave
4, // Gemm1NXdlPerWave
S<4, 64, 1>, // ABlockTransfer
S<1, 0, 2>,
S<1, 0, 2>,
2,
16,
16,
true,
S<4, 64, 1>, // BBlockTransfer
S<1, 0, 2>,
S<1, 0, 2>,
2,
16,
16,
true,
S<4, 64, 1>, // B1BlockTransfer
S<1, 0, 2>,
S<1, 0, 2>,
2,
4,
4,
true,
1, // CShuffleMXdlPerWavePerShuffle
2, // CShuffleNXdlPerWavePerShuffle
S<1, 32, 1, 8>, // CShuffleBlockTransferClusterLengths_MBlock_MPerBlock_NBlock_NPerBlock
8>; // CShuffleBlockTransferScalarPerVector_NPerBlock
#include "run_grouped_conv_conv_fwd_example.inc"
int main(int argc, char* argv[]) { return run_grouped_conv_conv_fwd_example(argc, argv) ? 0 : 1; }
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2022, Advanced Micro Devices, Inc. All rights reserved.
#pragma once
template <ck::index_t NDimSpatial,
typename In0DataType,
typename Wei0DataType,
typename Out0DataType,
typename Wei1DataType,
typename Out1DataType,
typename In0ElementOp,
typename Wei0ElementOp,
typename Out0ElementOp,
typename Wei1ElementOp,
typename Out1ElementOp,
typename DeviceOpInstance>
bool run_grouped_conv_conv_fwd(bool do_verification,
int init_method,
bool time_kernel,
const ck::utils::conv::ConvParam& conv0_param,
const ck::utils::conv::ConvParam& conv1_param,
const HostTensorDescriptor& in0_g_n_c_wis_desc,
const HostTensorDescriptor& wei0_g_k_c_xs_desc,
const HostTensorDescriptor& out0_g_n_k_wos_desc,
const HostTensorDescriptor& wei1_g_k_c_xs_desc,
const HostTensorDescriptor& out1_g_n_k_wos_desc,
const In0ElementOp& in0_element_op,
const Wei0ElementOp& wei0_element_op,
const Wei1ElementOp& wei1_element_op,
const Out0ElementOp& out0_element_op,
const Out1ElementOp& out1_element_op)
{
Tensor<In0DataType> in0(in0_g_n_c_wis_desc);
Tensor<Wei0DataType> wei0(wei0_g_k_c_xs_desc);
Tensor<Wei1DataType> wei1(wei1_g_k_c_xs_desc);
Tensor<Out1DataType> out1_host(out1_g_n_k_wos_desc);
Tensor<Out1DataType> out1_device(out1_g_n_k_wos_desc);
std::cout << "in0: " << in0.mDesc << std::endl;
std::cout << "wei0: " << wei0.mDesc << std::endl;
std::cout << "wei1: " << wei1.mDesc << std::endl;
std::cout << "out1: " << out1_host.mDesc << std::endl;
switch(init_method)
{
case 0: break;
case 1:
in0.GenerateTensorValue(GeneratorTensor_2<In0DataType>{-5, 5});
wei0.GenerateTensorValue(GeneratorTensor_2<Wei0DataType>{-5, 5});
wei1.GenerateTensorValue(GeneratorTensor_2<Wei1DataType>{-5, 5});
break;
default:
in0.GenerateTensorValue(GeneratorTensor_3<In0DataType>{0.0, 1.0});
wei0.GenerateTensorValue(GeneratorTensor_3<Wei0DataType>{-0.5, 0.5});
wei1.GenerateTensorValue(GeneratorTensor_3<Wei1DataType>{-0.5, 0.5});
}
#ifdef BUILD_INT4_EXAMPLE
DeviceMem in0_device_buf(sizeof(KernelIn0DataType) * in0.mDesc.GetElementSpaceSize());
DeviceMem wei0_device_buf(sizeof(KernelWei0DataType) * wei0.mDesc.GetElementSpaceSize());
DeviceMem wei1_device_buf(sizeof(KernelWei1DataType) * wei1.mDesc.GetElementSpaceSize());
DeviceMem out1_device_buf(sizeof(KernelOut1DataType) * out1_device.mDesc.GetElementSpaceSize());
const Tensor<KernelIn0DataType> in0_converted(in0);
const Tensor<KernelWei0DataType> wei0_converted(wei0);
const Tensor<KernelWei1DataType> wei1_converted(wei1);
in0_device_buf.ToDevice(in0_converted.mData.data());
wei0_device_buf.ToDevice(wei0_converted.mData.data());
wei1_device_buf.ToDevice(wei1_converted.mData.data());
#else
DeviceMem in0_device_buf(sizeof(In0DataType) * in0.mDesc.GetElementSpaceSize());
DeviceMem wei0_device_buf(sizeof(Wei0DataType) * wei0.mDesc.GetElementSpaceSize());
DeviceMem wei1_device_buf(sizeof(Wei1DataType) * wei1.mDesc.GetElementSpaceSize());
DeviceMem out1_device_buf(sizeof(Out1DataType) * out1_device.mDesc.GetElementSpaceSize());
in0_device_buf.ToDevice(in0.mData.data());
wei0_device_buf.ToDevice(wei0.mData.data());
wei1_device_buf.ToDevice(wei1.mData.data());
#endif
std::array<ck::index_t, NDimSpatial + 3> a0_g_n_c_wis_lengths{};
std::array<ck::index_t, NDimSpatial + 3> a0_g_n_c_wis_strides{};
std::array<ck::index_t, NDimSpatial + 3> b0_g_k_c_xs_lengths{};
std::array<ck::index_t, NDimSpatial + 3> b0_g_k_c_xs_strides{};
std::array<ck::index_t, NDimSpatial + 3> b1_g_k_c_xs_lengths{};
std::array<ck::index_t, NDimSpatial + 3> b1_g_k_c_xs_strides{};
std::array<ck::index_t, NDimSpatial + 3> e1_g_n_k_wos_lengths{};
std::array<ck::index_t, NDimSpatial + 3> e1_g_n_k_wos_strides{};
std::array<ck::index_t, NDimSpatial> conv0_filter_strides{};
std::array<ck::index_t, NDimSpatial> conv0_filter_dilations{};
std::array<ck::index_t, NDimSpatial> input0_left_pads{};
std::array<ck::index_t, NDimSpatial> input0_right_pads{};
std::array<ck::index_t, NDimSpatial> conv1_filter_strides{};
std::array<ck::index_t, NDimSpatial> conv1_filter_dilations{};
std::array<ck::index_t, NDimSpatial> input1_left_pads{};
std::array<ck::index_t, NDimSpatial> input1_right_pads{};
auto copy = [](auto& x, auto& y) { std::copy(x.begin(), x.end(), y.begin()); };
copy(in0_g_n_c_wis_desc.GetLengths(), a0_g_n_c_wis_lengths);
copy(in0_g_n_c_wis_desc.GetStrides(), a0_g_n_c_wis_strides);
copy(wei0_g_k_c_xs_desc.GetLengths(), b0_g_k_c_xs_lengths);
copy(wei0_g_k_c_xs_desc.GetStrides(), b0_g_k_c_xs_strides);
copy(wei1_g_k_c_xs_desc.GetLengths(), b1_g_k_c_xs_lengths);
copy(wei1_g_k_c_xs_desc.GetStrides(), b1_g_k_c_xs_strides);
copy(out1_g_n_k_wos_desc.GetLengths(), e1_g_n_k_wos_lengths);
copy(out1_g_n_k_wos_desc.GetStrides(), e1_g_n_k_wos_strides);
copy(conv0_param.conv_filter_strides_, conv0_filter_strides);
copy(conv0_param.conv_filter_dilations_, conv0_filter_dilations);
copy(conv0_param.input_left_pads_, input0_left_pads);
copy(conv0_param.input_right_pads_, input0_right_pads);
copy(conv1_param.conv_filter_strides_, conv1_filter_strides);
copy(conv1_param.conv_filter_dilations_, conv1_filter_dilations);
copy(conv1_param.input_left_pads_, input1_left_pads);
copy(conv1_param.input_right_pads_, input1_right_pads);
// do Conv using GEMM, only works for 1x1 conv for now
const ck::index_t gemm_batch = a0_g_n_c_wis_lengths[0];
const ck::index_t gemm0_m_length =
e1_g_n_k_wos_lengths[1] * std::accumulate(e1_g_n_k_wos_lengths.begin() + 3,
e1_g_n_k_wos_lengths.begin() + 3 + NDimSpatial,
ck::index_t{1},
std::multiplies<ck::index_t>{});
const ck::index_t gemm0_n_length = b0_g_k_c_xs_lengths[1];
const ck::index_t gemm0_k_length =
std::accumulate(b0_g_k_c_xs_lengths.begin() + 2,
b0_g_k_c_xs_lengths.begin() + 2 + NDimSpatial + 1,
ck::index_t{1},
std::multiplies<ck::index_t>{});
const ck::index_t gemm1_n_length = b1_g_k_c_xs_lengths[1];
//
const ck::index_t a0_stride = a0_g_n_c_wis_strides[2 + NDimSpatial];
const ck::index_t b0_stride = b0_g_k_c_xs_strides[2 + NDimSpatial];
const ck::index_t b1_stride = b1_g_k_c_xs_strides[2 + NDimSpatial];
const ck::index_t e1_stride = e1_g_n_k_wos_strides[2 + NDimSpatial];
//
const ck::index_t a0_batch_stride = a0_g_n_c_wis_strides[0];
const ck::index_t b0_batch_stride = b0_g_k_c_xs_strides[0];
const ck::index_t b1_batch_stride = b1_g_k_c_xs_strides[0];
const ck::index_t e1_batch_stride = e1_g_n_k_wos_strides[0];
auto device_op = DeviceOpInstance{};
auto invoker = device_op.MakeInvoker();
auto argument = device_op.MakeArgument(
#ifdef BUILD_INT4_EXAMPLE
static_cast<KernelIn0DataType*>(in0_device_buf.GetDeviceBuffer()),
static_cast<KernelWei0DataType*>(wei0_device_buf.GetDeviceBuffer()),
static_cast<KernelWei1DataType*>(wei1_device_buf.GetDeviceBuffer()),
static_cast<KernelOut1DataType*>(out1_device_buf.GetDeviceBuffer()),
#else
static_cast<In0DataType*>(in0_device_buf.GetDeviceBuffer()),
static_cast<Wei0DataType*>(wei0_device_buf.GetDeviceBuffer()),
static_cast<Wei1DataType*>(wei1_device_buf.GetDeviceBuffer()),
static_cast<Out1DataType*>(out1_device_buf.GetDeviceBuffer()),
#endif
gemm0_m_length,
gemm0_n_length,
gemm0_k_length,
gemm1_n_length,
gemm_batch,
a0_stride,
b0_stride,
b1_stride,
e1_stride,
a0_batch_stride,
b0_batch_stride,
b1_batch_stride,
e1_batch_stride,
in0_element_op,
wei0_element_op,
out0_element_op,
wei1_element_op,
out1_element_op);
if(!device_op.IsSupportedArgument(argument))
{
throw std::runtime_error(
"wrong! device_conv with the specified compilation parameters does "
"not support this Conv problem");
}
float avg_time = invoker.Run(argument, StreamConfig{nullptr, time_kernel});
std::size_t flop = conv0_param.GetFlops() + conv1_param.GetFlops();
std::size_t num_btype = conv0_param.template GetInputByte<In0DataType>() +
conv0_param.template GetWeightByte<Wei0DataType>() +
conv1_param.template GetWeightByte<Wei1DataType>() +
conv1_param.template GetOutputByte<Out1DataType>();
float tflops = static_cast<float>(flop) / 1.E9 / avg_time;
float gb_per_sec = num_btype / 1.E6 / avg_time;
std::cout << "Perf: " << avg_time << " ms, " << tflops << " TFlops, " << gb_per_sec << " GB/s, "
<< device_op.GetTypeString() << std::endl;
if(do_verification)
{
using PassThrough = ck::tensor_operation::element_wise::PassThrough;
Tensor<Out0DataType> out0_host(out0_g_n_k_wos_desc);
auto ref_conv0 = ck::tensor_operation::host::ReferenceConvFwd<NDimSpatial,
In0DataType,
Wei0DataType,
Out0DataType,
In0ElementOp,
Wei0ElementOp,
Out0ElementOp>();
auto ref_conv1 = ck::tensor_operation::host::ReferenceConvFwd<NDimSpatial,
Out0DataType,
Wei1DataType,
Out1DataType,
PassThrough,
Wei1ElementOp,
Out1ElementOp>();
auto ref_conv0_invoker = ref_conv0.MakeInvoker();
auto ref_conv1_invoker = ref_conv1.MakeInvoker();
auto ref_conv0_argument = ref_conv0.MakeArgument(in0,
wei0,
out0_host,
conv0_param.conv_filter_strides_,
conv0_param.conv_filter_dilations_,
conv0_param.input_left_pads_,
conv0_param.input_right_pads_,
in0_element_op,
wei0_element_op,
out0_element_op);
auto ref_conv1_argument = ref_conv1.MakeArgument(out0_host,
wei1,
out1_host,
conv1_param.conv_filter_strides_,
conv1_param.conv_filter_dilations_,
conv1_param.input_left_pads_,
conv1_param.input_right_pads_,
out0_element_op,
wei1_element_op,
out1_element_op);
ref_conv0_invoker.Run(ref_conv0_argument);
ref_conv1_invoker.Run(ref_conv1_argument);
#ifdef BUILD_INT4_EXAMPLE
Tensor<KernelOut1DataType> out1_device_converted(out1_host.mDesc);
out1_device_buf.FromDevice(out1_device_converted.mData.data());
out1_device = out1_device_converted.CopyAsType<Out1DataType>();
#else
out1_device_buf.FromDevice(out1_device.mData.data());
#endif
return ck::utils::check_err(
out1_device.mData, out1_host.mData, "Error: incorrect results!", 1e-5f, 1e-4f);
}
return true;
}
bool run_grouped_conv_conv_fwd_example(int argc, char* argv[])
{
bool do_verification = true;
int init_method = 1;
bool time_kernel = false;
ck::utils::conv::ConvParam conv0_param{
2, 1, 128, 512, 128, {1, 1}, {28, 28}, {1, 1}, {1, 1}, {0, 0}, {0, 0}};
ck::utils::conv::ConvParam conv1_param{
2, 1, 128, 128, 512, {1, 1}, {28, 28}, {1, 1}, {1, 1}, {0, 0}, {0, 0}};
if(argc == 1)
{
// use default case
}
else if(argc == 4)
{
do_verification = std::stoi(argv[1]);
init_method = std::stoi(argv[2]);
time_kernel = std::stoi(argv[3]);
}
else
{
printf("arg1: verification (0=no, 1=yes)\n");
printf("arg2: initialization (0=no init, 1=integer value, 2=decimal value)\n");
printf("arg3: time kernel (0=no, 1=yes)\n");
exit(0);
}
const auto in0_element_op = In0ElementOp{};
const auto wei0_element_op = Wei0ElementOp{};
const auto wei1_element_op = Wei1ElementOp{};
const auto out0_element_op = Out0ElementOp{};
const auto out1_element_op = Out1ElementOp{};
const auto run = [&](auto ndim_spatial,
auto in0_layout,
auto wei0_layout,
auto wei1_layout,
auto out1_layout) {
constexpr ck::index_t ndim_spatial_value = ndim_spatial.value;
using In0Layout = decltype(in0_layout);
using Wei0Layout = decltype(wei0_layout);
using Wei1Layout = decltype(wei1_layout);
using Out1Layout = decltype(out1_layout);
const auto in0_g_n_c_wis_desc =
ck::utils::conv::make_input_host_tensor_descriptor_g_n_c_wis_packed<In0Layout>(
conv0_param);
const auto wei0_g_k_c_xs_desc =
ck::utils::conv::make_weight_host_tensor_descriptor_g_k_c_xs_packed<Wei0Layout>(
conv0_param);
// out0 doesn't physical exist, any layout for host verification is OK
const auto out0_g_n_k_wos_desc =
ck::utils::conv::make_output_host_tensor_descriptor_g_n_k_wos_packed<Out1Layout>(
conv0_param);
const auto wei1_g_k_c_xs_desc =
ck::utils::conv::make_weight_host_tensor_descriptor_g_k_c_xs_packed<Wei1Layout>(
conv1_param);
const auto out1_g_n_k_wos_desc =
ck::utils::conv::make_output_host_tensor_descriptor_g_n_k_wos_packed<Out1Layout>(
conv1_param);
return run_grouped_conv_conv_fwd<ndim_spatial_value,
In0DataType,
Wei0DataType,
Out0DataType,
Wei1DataType,
Out1DataType,
In0ElementOp,
Wei0ElementOp,
Out0ElementOp,
Wei1ElementOp,
Out1ElementOp,
DeviceBatchedGemmGemmInstance>(do_verification,
init_method,
time_kernel,
conv0_param,
conv1_param,
in0_g_n_c_wis_desc,
wei0_g_k_c_xs_desc,
out0_g_n_k_wos_desc,
wei1_g_k_c_xs_desc,
out1_g_n_k_wos_desc,
in0_element_op,
wei0_element_op,
wei1_element_op,
out0_element_op,
out1_element_op);
};
namespace ctc = ck::tensor_layout::convolution;
if(conv0_param.num_dim_spatial_ == 1)
{
return run(ck::Number<1>{}, ctc::GNWC{}, ctc::GKXC{}, ctc::GKXC{}, ctc::GNWK{});
}
else if(conv0_param.num_dim_spatial_ == 2)
{
return run(ck::Number<2>{}, ctc::GNHWC{}, ctc::GKYXC{}, ctc::GKYXC{}, ctc::GNHWK{});
}
else if(conv0_param.num_dim_spatial_ == 3)
{
return run(ck::Number<3>{}, ctc::GNDHWC{}, ctc::GKZYXC{}, ctc::GKZYXC{}, ctc::GNDHWK{});
}
return true;
}
......@@ -26,6 +26,7 @@ add_subdirectory(02_gemm_bilinear)
add_subdirectory(03_gemm_bias_relu)
add_subdirectory(04_gemm_add_add_fastgelu)
add_subdirectory(09_convnd_fwd)
add_subdirectory(10_convnd_fwd_multiple_d_multiple_reduce)
add_subdirectory(12_reduce)
add_subdirectory(13_pool2d_fwd)
add_subdirectory(14_gemm_xdl_requant_relu_requant)
......@@ -38,7 +39,7 @@ add_subdirectory(20_convnd_bwd_weight)
add_subdirectory(21_gemm_layernorm)
add_subdirectory(22_cgemm)
add_subdirectory(23_softmax)
add_subdirectory(24_batched_gemm_e_permute)
add_subdirectory(24_batched_gemm)
add_subdirectory(25_gemm_bias_e_permute)
add_subdirectory(26_contraction)
add_subdirectory(27_layernorm)
......@@ -46,4 +47,10 @@ add_subdirectory(28_grouped_gemm_bias_e_permute)
add_subdirectory(29_batched_gemm_bias_e_permute)
add_subdirectory(30_grouped_convnd_fwd_bias_relu_add)
add_subdirectory(31_batched_gemm_gemm)
add_subdirectory(32_batched_gemm_softmax_gemm)
add_subdirectory(32_batched_gemm_scale_softmax_gemm)
add_subdirectory(33_multiple_reduce)
add_subdirectory(34_batchnorm)
add_subdirectory(35_splitK_gemm)
add_subdirectory(36_sparse_embedding)
add_subdirectory(37_batched_gemm_add_add_relu_gemm_add)
add_subdirectory(41_grouped_conv_conv_fwd)
......@@ -149,6 +149,17 @@
// workaround: compiler gnerating inefficient ds_write instructions
#define CK_WORKAROUND_SWDEV_XXXXXX_INT8_DS_WRITE_ISSUE 1
// (gfx908 only) workaround: compiler crash in fused kernels on mainline #9110; #10738 seems ok
// error message was "fatal error: error in backend: Error while trying to spill VGPR0 from class
// VGPR_32: Cannot scavenge register without an emergency spill slot!"
// this fall back to less ideal way of handle NPadding in fused attention kernel
#ifdef __gfx908__
#define CK_WORKAROUND_SWDEV_XXXXXX_ATTN_KERNEL_CLANG_CANNOT_SCAVENGE_REGISTER 1
#else
// for __gfx90a__, ...
#define CK_WORKAROUND_SWDEV_XXXXXX_ATTN_KERNEL_CLANG_CANNOT_SCAVENGE_REGISTER 0
#endif // __gfx908__
// workaround: verifaction failure, due to compiler regression, for conv bwd-data fp16 using some
// tuning parameter
#define CK_WORKAROUND_SWDEV_325164 0
......
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment