"experiments/vscode:/vscode.git/clone" did not exist on "d743d2a16f044bf2bcd2379ec0727728f7f0bb5e"
Commit b89a88b5 authored by Adam Osewski's avatar Adam Osewski
Browse files

Merge branch 'develop' into wavelet_model

parents 41d5fca7 43c898f6
...@@ -9,37 +9,41 @@ ...@@ -9,37 +9,41 @@
#include "ck/ck.hpp" #include "ck/ck.hpp"
#include "ck/utility/reduction_enums.hpp" #include "ck/utility/reduction_enums.hpp"
#include "ck/tensor_operation/gpu/device/device_softmax.hpp" #include "ck/tensor_operation/gpu/device/impl/device_softmax_impl.hpp"
#include "ck/tensor_operation/gpu/device/reduction_operator_mapping.hpp" #include "ck/tensor_operation/gpu/device/reduction_operator_mapping.hpp"
#include "ck/tensor_operation/gpu/element/element_wise_operation.hpp"
#include "ck/library/utility/check_err.hpp" #include "ck/library/utility/check_err.hpp"
#include "ck/library/utility/device_memory.hpp" #include "ck/library/utility/device_memory.hpp"
#include "ck/library/utility/host_common_util.hpp" #include "ck/library/utility/host_common_util.hpp"
#include "ck/library/reference_tensor_operation/cpu/reference_softmax.hpp" #include "ck/library/reference_tensor_operation/cpu/reference_softmax.hpp"
using namespace ck;
using namespace ck::tensor_operation::device; using namespace ck::tensor_operation::device;
using InDataType = ck::half_t; using InDataType = ck::half_t;
using OutDataType = ck::half_t; using OutDataType = ck::half_t;
using AccDataType = float; using AccDataType = float;
using PassThrough = ck::tensor_operation::element_wise::PassThrough;
constexpr int Rank = 3; constexpr int Rank = 3;
constexpr int NumReduceDim = 1; constexpr int NumReduceDim = 1;
using DeviceInstance = DeviceSoftmax<InDataType, using DeviceInstance = DeviceSoftmaxImpl<InDataType,
AccDataType, AccDataType,
OutDataType, OutDataType,
Rank, PassThrough, // InElementwiseOperation
NumReduceDim, PassThrough, // AccElementwiseOperation
256, // BlockSize Rank,
8, // ClusterM NumReduceDim,
32, // ClusterK 256, // BlockSize
1, // SliceM 8, // ClusterM
8, // SliceK 32, // ClusterK
1, // SrcVecDim (0=M, 1=K) 1, // SliceM
8, // SrcScalarPerVector 8, // SliceK
8>; // OutScalarPerVector 1, // SrcVecDim (0=M, 1=K)
8, // SrcScalarPerVector
8>; // OutScalarPerVector
static struct option long_options[] = {{"inLengths", required_argument, nullptr, 'D'}, static struct option long_options[] = {{"inLengths", required_argument, nullptr, 'D'},
{"verify", required_argument, nullptr, 'v'}, {"verify", required_argument, nullptr, 'v'},
...@@ -196,7 +200,7 @@ int main(int argc, char* argv[]) ...@@ -196,7 +200,7 @@ int main(int argc, char* argv[])
if(args.do_verification) if(args.do_verification)
{ {
using ReferenceInstance = using ReferenceInstance =
tensor_operation::host::ReferenceSoftmax<InDataType, OutDataType, AccDataType>; ck::tensor_operation::host::ReferenceSoftmax<InDataType, OutDataType, AccDataType>;
ReferenceInstance ref; ReferenceInstance ref;
auto ref_arg = ref.MakeArgument(in, out_ref, alpha, beta, reduceDims); auto ref_arg = ref.MakeArgument(in, out_ref, alpha, beta, reduceDims);
auto invoker = ref.MakeInvoker(); auto invoker = ref.MakeInvoker();
...@@ -220,7 +224,9 @@ int main(int argc, char* argv[]) ...@@ -220,7 +224,9 @@ int main(int argc, char* argv[])
&alpha, &alpha,
&beta, &beta,
in_dev.GetDeviceBuffer(), in_dev.GetDeviceBuffer(),
out_dev.GetDeviceBuffer()); out_dev.GetDeviceBuffer(),
PassThrough{},
PassThrough{});
if(!device_instance.IsSupportedArgument(argument_ptr.get())) if(!device_instance.IsSupportedArgument(argument_ptr.get()))
{ {
......
add_custom_target(example_batched_gemm_xdl)
add_example_executable(example_batched_gemm_xdl_fp32 batched_gemm_xdl_fp32.cpp)
add_example_executable(example_batched_gemm_xdl_fp16 batched_gemm_xdl_fp16.cpp)
add_example_executable(example_batched_gemm_xdl_bfp16 batched_gemm_xdl_bfp16.cpp)
add_example_executable(example_batched_gemm_xdl_int8 batched_gemm_xdl_int8.cpp)
add_dependencies(example_batched_gemm_xdl
example_batched_gemm_xdl_fp32
example_batched_gemm_xdl_fp16
example_batched_gemm_xdl_bfp16
example_batched_gemm_xdl_int8)
if(USE_BITINT_EXTENSION_INT4)
add_example_executable(example_batched_gemm_xdl_int4 batched_gemm_xdl_int4.cpp)
add_dependencies(example_batched_gemm_xdl example_batched_gemm_xdl_int4)
endif()
#include <iostream>
#include <numeric>
#include <initializer_list>
#include <cstdlib>
#include "ck/ck.hpp"
#include "ck/tensor_operation/gpu/device/tensor_layout.hpp"
#include "ck/tensor_operation/gpu/device/gemm_specialization.hpp"
#include "ck/tensor_operation/gpu/device/device_batched_gemm_multi_d_xdl.hpp"
#include "ck/tensor_operation/gpu/element/element_wise_operation.hpp"
#include "ck/library/utility/check_err.hpp"
#include "ck/library/utility/device_memory.hpp"
#include "ck/library/utility/host_tensor.hpp"
#include "ck/library/utility/host_tensor_generator.hpp"
#include "ck/library/reference_tensor_operation/cpu/reference_batched_gemm.hpp"
#include "ck/library/utility/literals.hpp"
template <ck::index_t... Is>
using S = ck::Sequence<Is...>;
using BF16 = ck::bhalf_t;
using F32 = float;
using Row = ck::tensor_layout::gemm::RowMajor;
using Col = ck::tensor_layout::gemm::ColumnMajor;
using PassThrough = ck::tensor_operation::element_wise::PassThrough;
using ADataType = BF16;
using BDataType = BF16;
using AccDataType = F32;
using CShuffleDataType = BF16;
using DsDataType = ck::Tuple<>;
using EDataType = BF16;
using ALayout = Row;
using BLayout = Col;
using DsLayout = ck::Tuple<>;
using ELayout = Row;
using AElementOp = PassThrough;
using BElementOp = PassThrough;
using CDEElementOp = PassThrough;
static constexpr auto GemmDefault = ck::tensor_operation::device::GemmSpecialization::Default;
// clang-format off
using DeviceGemmInstance = ck::tensor_operation::device::DeviceBatchedGemmMultiD_Xdl
//######| ALayout| BLayout| DsLayout| ELayout| AData| BData| AccData| CShuffle| DsData| EData| A| B| CDE| GEMM| NumGemmK| Block| MPer| NPer| KPer| AK1| BK1| MPer| NPer| MXdl| NXdl| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockLds| BBlockTransfer| BBlockTransfer| BBlockTransfer| BlockTransfer| BBlockTransfer| BBlockTransfer| BBlockLds| CShuffle| CShuffle| CBlockTransferClusterLengths| CBlockTransfer|
//######| | | | | Type| Type| Type| DataType| Type| Type| Elementwise| Elementwise| Elementwise| Spacialization| Prefetch| Size| Block| Block| Block| | | XDL| XDL| Per| Per| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| AddExtraM| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| AddExtraN| MXdlPerWave| NXdlPerWave| _MBlock_MWaveMPerXdl| ScalarPerVector|
//######| | | | | | | | | | | Operation| Operation| Operation| | Stage| | | | | | | | | Wave| Wave| Lengths_K0_M_K1| ArrangeOrder| | | PerVector| PerVector_K1| | Lengths_K0_N_K1| ArrangeOrder| | | PerVector| PerVector_K1| | PerShuffle| PerShuffle| _NBlock_NWaveNPerXdl| _NWaveNPerXdl|
//######| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
< ALayout, BLayout, DsLayout, ELayout, ADataType, BDataType, AccDataType, CShuffleDataType, DsDataType, EDataType, AElementOp, BElementOp, CDEElementOp, GemmDefault, 1, 256, 256, 128, 32, 8, 8, 32, 32, 4, 2, S<4, 64, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, 1, S<4, 64, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, 1, 1, 1, S<1, 32, 1, 8>, 8>;
// clang-format on
#include "run_batched_gemm_example.inc"
int main(int argc, char* argv[]) { return !run_batched_gemm_example(argc, argv); }
#include <iostream>
#include <numeric>
#include <initializer_list>
#include <cstdlib>
#include "ck/ck.hpp"
#include "ck/tensor_operation/gpu/device/tensor_layout.hpp"
#include "ck/tensor_operation/gpu/device/gemm_specialization.hpp"
#include "ck/tensor_operation/gpu/device/device_batched_gemm_multi_d_xdl.hpp"
#include "ck/tensor_operation/gpu/element/element_wise_operation.hpp"
#include "ck/library/utility/check_err.hpp"
#include "ck/library/utility/device_memory.hpp"
#include "ck/library/utility/host_tensor.hpp"
#include "ck/library/utility/host_tensor_generator.hpp"
#include "ck/library/reference_tensor_operation/cpu/reference_batched_gemm.hpp"
#include "ck/library/utility/literals.hpp"
template <ck::index_t... Is>
using S = ck::Sequence<Is...>;
using F16 = ck::half_t;
using F32 = float;
using Row = ck::tensor_layout::gemm::RowMajor;
using Col = ck::tensor_layout::gemm::ColumnMajor;
using PassThrough = ck::tensor_operation::element_wise::PassThrough;
using ADataType = F16;
using BDataType = F16;
using AccDataType = F32;
using CShuffleDataType = F16;
using DsDataType = ck::Tuple<>;
using EDataType = F16;
using ALayout = Row;
using BLayout = Col;
using DsLayout = ck::Tuple<>;
using ELayout = Row;
using AElementOp = PassThrough;
using BElementOp = PassThrough;
using CDEElementOp = PassThrough;
static constexpr auto GemmDefault = ck::tensor_operation::device::GemmSpecialization::Default;
// clang-format off
using DeviceGemmInstance = ck::tensor_operation::device::DeviceBatchedGemmMultiD_Xdl
//######| ALayout| BLayout| DsLayout| ELayout| AData| BData| AccData| CShuffle| DsData| EData| A| B| CDE| GEMM| NumGemmK| Block| MPer| NPer| KPer| AK1| BK1| MPer| NPer| MXdl| NXdl| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockLds| BBlockTransfer| BBlockTransfer| BBlockTransfer| BlockTransfer| BBlockTransfer| BBlockTransfer| BBlockLds| CShuffle| CShuffle| CBlockTransferClusterLengths| CBlockTransfer|
//######| | | | | Type| Type| Type| DataType| Type| Type| Elementwise| Elementwise| Elementwise| Spacialization| Prefetch| Size| Block| Block| Block| | | XDL| XDL| Per| Per| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| AddExtraM| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| AddExtraN| MXdlPerWave| NXdlPerWave| _MBlock_MWaveMPerXdl| ScalarPerVector|
//######| | | | | | | | | | | Operation| Operation| Operation| | Stage| | | | | | | | | Wave| Wave| Lengths_K0_M_K1| ArrangeOrder| | | PerVector| PerVector_K1| | Lengths_K0_N_K1| ArrangeOrder| | | PerVector| PerVector_K1| | PerShuffle| PerShuffle| _NBlock_NWaveNPerXdl| _NWaveNPerXdl|
//######| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
< ALayout, BLayout, DsLayout, ELayout, ADataType, BDataType, AccDataType, CShuffleDataType, DsDataType, EDataType, AElementOp, BElementOp, CDEElementOp, GemmDefault, 1, 256, 256, 128, 32, 8, 8, 32, 32, 4, 2, S<4, 64, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, 1, S<4, 64, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, 1, 1, 1, S<1, 32, 1, 8>, 8>;
// clang-format on
#include "run_batched_gemm_example.inc"
int main(int argc, char* argv[]) { return !run_batched_gemm_example(argc, argv); }
#include <iostream>
#include <numeric>
#include <initializer_list>
#include <cstdlib>
#include "ck/ck.hpp"
#include "ck/tensor_operation/gpu/device/tensor_layout.hpp"
#include "ck/tensor_operation/gpu/device/gemm_specialization.hpp"
#include "ck/tensor_operation/gpu/device/device_batched_gemm_multi_d_xdl.hpp"
#include "ck/tensor_operation/gpu/element/element_wise_operation.hpp"
#include "ck/library/utility/check_err.hpp"
#include "ck/library/utility/device_memory.hpp"
#include "ck/library/utility/host_tensor.hpp"
#include "ck/library/utility/host_tensor_generator.hpp"
#include "ck/library/reference_tensor_operation/cpu/reference_batched_gemm.hpp"
#include "ck/library/utility/literals.hpp"
template <ck::index_t... Is>
using S = ck::Sequence<Is...>;
using F32 = float;
using Row = ck::tensor_layout::gemm::RowMajor;
using Col = ck::tensor_layout::gemm::ColumnMajor;
using PassThrough = ck::tensor_operation::element_wise::PassThrough;
using ADataType = F32;
using BDataType = F32;
using AccDataType = F32;
using CShuffleDataType = F32;
using DsDataType = ck::Tuple<>;
using EDataType = F32;
using ALayout = Row;
using BLayout = Col;
using DsLayout = ck::Tuple<>;
using ELayout = Row;
using AElementOp = PassThrough;
using BElementOp = PassThrough;
using CDEElementOp = PassThrough;
static constexpr auto GemmDefault = ck::tensor_operation::device::GemmSpecialization::Default;
// clang-format off
using DeviceGemmInstance = ck::tensor_operation::device::DeviceBatchedGemmMultiD_Xdl
//######| ALayout| BLayout| DsLayout| ELayout| AData| BData| AccData| CShuffle| DsData| EData| A| B| CDE| GEMM| NumGemmK| Block| MPer| NPer| KPer| AK1| BK1| MPer| NPer| MXdl| NXdl| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockLds| BBlockTransfer| BBlockTransfer| BBlockTransfer| BlockTransfer| BBlockTransfer| BBlockTransfer| BBlockLds| CShuffle| CShuffle| CBlockTransferClusterLengths| CBlockTransfer|
//######| | | | | Type| Type| Type| DataType| Type| Type| Elementwise| Elementwise| Elementwise| Spacialization| Prefetch| Size| Block| Block| Block| | | XDL| XDL| Per| Per| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| AddExtraM| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| AddExtraN| MXdlPerWave| NXdlPerWave| _MBlock_MWaveMPerXdl| ScalarPerVector|
//######| | | | | | | | | | | Operation| Operation| Operation| | Stage| | | | | | | | | Wave| Wave| Lengths_K0_M_K1| ArrangeOrder| | | PerVector| PerVector_K1| | Lengths_K0_N_K1| ArrangeOrder| | | PerVector| PerVector_K1| | PerShuffle| PerShuffle| _NBlock_NWaveNPerXdl| _NWaveNPerXdl|
//######| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
< ALayout, BLayout, DsLayout, ELayout, ADataType, BDataType, AccDataType, CShuffleDataType, DsDataType, EDataType, AElementOp, BElementOp, CDEElementOp, GemmDefault, 1, 256, 256, 128, 16, 4, 4, 32, 32, 4, 2, S<4, 64, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 4, 4, 1, S<4, 64, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 4, 4, 1, 1, 1, S<1, 32, 1, 8>, 4>;
// clang-format on
#include "run_batched_gemm_example.inc"
int main(int argc, char* argv[]) { return !run_batched_gemm_example(argc, argv); }
#include <iostream>
#include <numeric>
#include <initializer_list>
#include <cstdlib>
#include "ck/ck.hpp"
#include "ck/tensor_operation/gpu/device/tensor_layout.hpp"
#include "ck/tensor_operation/gpu/device/gemm_specialization.hpp"
#include "ck/tensor_operation/gpu/device/device_batched_gemm_multi_d_xdl.hpp"
#include "ck/tensor_operation/gpu/element/element_wise_operation.hpp"
#include "ck/library/utility/check_err.hpp"
#include "ck/library/utility/device_memory.hpp"
#include "ck/library/utility/host_tensor.hpp"
#include "ck/library/utility/host_tensor_generator.hpp"
#include "ck/library/reference_tensor_operation/cpu/reference_batched_gemm.hpp"
#include "ck/library/utility/literals.hpp"
template <ck::index_t... Is>
using S = ck::Sequence<Is...>;
using Row = ck::tensor_layout::gemm::RowMajor;
using Col = ck::tensor_layout::gemm::ColumnMajor;
using PassThrough = ck::tensor_operation::element_wise::PassThrough;
using ADataType = ck::int4_t;
using BDataType = ck::int4_t;
using AccDataType = int32_t;
using CShuffleDataType = int32_t;
using DsDataType = ck::Tuple<>;
using EDataType = ck::int4_t;
using KernelADataType = int8_t;
using KernelBDataType = int8_t;
using KernelEDataType = int8_t;
using ALayout = Row;
using BLayout = Col;
using DsLayout = ck::Tuple<>;
using ELayout = Row;
using AElementOp = PassThrough;
using BElementOp = PassThrough;
using CDEElementOp = PassThrough;
static constexpr auto GemmDefault = ck::tensor_operation::device::GemmSpecialization::Default;
using DeviceGemmInstance = ck::tensor_operation::device::DeviceBatchedGemmMultiD_Xdl
// clang-format off
< ALayout, //ALayout
BLayout, //BLayout
DsLayout, //DsLayout
ELayout, //ELayout
KernelADataType, //ADataType
KernelBDataType, //BDataType
AccDataType, //AccDataType
CShuffleDataType, //CShuffleDataType
DsDataType, //DsDataType
KernelEDataType, //EDataType
AElementOp, //AElementwiseOperation
BElementOp, //BElementwiseOperation
CDEElementOp, //CDEElementwiseOperation
GemmDefault, //GEMMSpecialization
1, // NumGemmKPrefetchStage
256, // BlockSize
256, // MPerBlock
128, // NPerBlock
64, // KPerBlock
16, // AK1
16, // BK1
32, // MPerXdl
32, // NPerXdl
4, // MXdlPerWave
2, // NXdlPerWave
S<4, 64, 1>, // ABlockTransfer ThreadCluster Lengths_K0_M_K1
S<1, 0, 2>, // ABlockTransfer ThreadCluster ArrangeOrder
S<1, 0, 2>, // ABlockTransfer SrcAccessOrder
2, // ABlockTransfer SrcVectorDim
16, // ABlockTransfer SrcScalarPerVector
16, // ABlockTransfer DstScalarPerVector_K1
1, // ABlockLdsExtraM
S<4, 64, 1>, // BBlockTransfer ThreadCluster Lengths_K0_N_K1
S<1, 0, 2>, // BBlockTransfer ThreadCluster ArrangeOrder
S<1, 0, 2>, // BBlockTransfer SrcAccessOrder
2, // BBlockTransfer SrcVectorDim
16, // BBlockTransfer SrcScalarPerVector
16, // BBlockTransfer DstScalarPerVector_K1
1, // BBlockLdsExtraN
1, // CShuffleMXdlPerWavePerShuffle
1, // CShuffleNXdlPerWavePerShuffle
S<1, 64, 1, 4>, // CBlockTransferClusterLengths_MBlock_MWaveMPerXdl_NBlock_NWaveNPerXdl
16>; // CBlockTransferScalarPerVector_NWaveNPerXdl
// clang-format on
#define BUILD_INT4_EXAMPLE
#include "run_batched_gemm_example.inc"
int main(int argc, char* argv[]) { return !run_batched_gemm_example(argc, argv); }
#include <iostream>
#include <numeric>
#include <initializer_list>
#include <cstdlib>
#include "ck/ck.hpp"
#include "ck/tensor_operation/gpu/device/tensor_layout.hpp"
#include "ck/tensor_operation/gpu/device/gemm_specialization.hpp"
#include "ck/tensor_operation/gpu/device/device_batched_gemm_multi_d_xdl.hpp"
#include "ck/tensor_operation/gpu/element/element_wise_operation.hpp"
#include "ck/library/utility/check_err.hpp"
#include "ck/library/utility/device_memory.hpp"
#include "ck/library/utility/host_tensor.hpp"
#include "ck/library/utility/host_tensor_generator.hpp"
#include "ck/library/reference_tensor_operation/cpu/reference_batched_gemm.hpp"
#include "ck/library/utility/literals.hpp"
template <ck::index_t... Is>
using S = ck::Sequence<Is...>;
using Row = ck::tensor_layout::gemm::RowMajor;
using Col = ck::tensor_layout::gemm::ColumnMajor;
using PassThrough = ck::tensor_operation::element_wise::PassThrough;
using ADataType = int8_t;
using BDataType = int8_t;
using AccDataType = int32_t;
using CShuffleDataType = int8_t;
using DsDataType = ck::Tuple<>;
using EDataType = int8_t;
using ALayout = Row;
using BLayout = Col;
using DsLayout = ck::Tuple<>;
using ELayout = Row;
using AElementOp = PassThrough;
using BElementOp = PassThrough;
using CDEElementOp = PassThrough;
static constexpr auto GemmDefault = ck::tensor_operation::device::GemmSpecialization::Default;
// clang-format off
using DeviceGemmInstance = ck::tensor_operation::device::DeviceBatchedGemmMultiD_Xdl
//######| ALayout| BLayout| DsLayout| ELayout| AData| BData| AccData| CShuffle| DsData| EData| A| B| CDE| GEMM| NumGemmK| Block| MPer| NPer| KPer| AK1| BK1| MPer| NPer| MXdl| NXdl| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockLds| BBlockTransfer| BBlockTransfer| BBlockTransfer| BlockTransfer| BBlockTransfer| BBlockTransfer| BBlockLds| CShuffle| CShuffle| CBlockTransferClusterLengths| CBlockTransfer|
//######| | | | | Type| Type| Type| DataType| Type| Type| Elementwise| Elementwise| Elementwise| Spacialization| Prefetch| Size| Block| Block| Block| | | XDL| XDL| Per| Per| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| AddExtraM| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| AddExtraN| MXdlPerWave| NXdlPerWave| _MBlock_MWaveMPerXdl| ScalarPerVector|
//######| | | | | | | | | | | Operation| Operation| Operation| | Stage| | | | | | | | | Wave| Wave| Lengths_K0_M_K1| ArrangeOrder| | | PerVector| PerVector_K1| | Lengths_K0_N_K1| ArrangeOrder| | | PerVector| PerVector_K1| | PerShuffle| PerShuffle| _NBlock_NWaveNPerXdl| _NWaveNPerXdl|
//######| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
< ALayout, BLayout, DsLayout, ELayout, ADataType, BDataType, AccDataType, CShuffleDataType, DsDataType, EDataType, AElementOp, BElementOp, CDEElementOp, GemmDefault, 1, 256, 256, 128, 64, 16, 16, 32, 32, 4, 2, S<4, 64, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 16, 16, 1, S<4, 64, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 16, 16, 1, 1, 1, S<1, 64, 1, 4>, 16>;
// clang-format on
#include "run_batched_gemm_example.inc"
int main(int argc, char* argv[]) { return !run_batched_gemm_example(argc, argv); }
#include <random>
#pragma once
struct ProblemSize final
{
ck::index_t M = 3840;
ck::index_t N = 4096;
ck::index_t K = 4096;
ck::index_t stride_A = K;
ck::index_t stride_B = K;
ck::index_t stride_C = N;
ck::index_t batch_stride_A = M * K;
ck::index_t batch_stride_B = K * N;
ck::index_t batch_stride_C = M * N;
ck::index_t batch_count = 16;
};
struct ExecutionConfig final
{
bool do_verification = true;
int init_method = 1;
bool time_kernel = false;
};
bool run_batched_gemm(const ProblemSize& problem_size, const ExecutionConfig& config)
{
using namespace ck::literals;
#if defined(BUILD_INT4_EXAMPLE) && defined(CK_EXPERIMENTAL_BIT_INT_EXTENSION_INT4)
static_assert(sizeof(ck::int4_t) == sizeof(int8_t));
static_assert(sizeof(ADataType) == sizeof(KernelADataType));
static_assert(sizeof(BDataType) == sizeof(KernelBDataType));
static_assert(sizeof(EDataType) == sizeof(KernelEDataType));
#endif
auto& [M,
N,
K,
stride_A,
stride_B,
stride_C,
batch_stride_A,
batch_stride_B,
batch_stride_C,
batch_count] = problem_size;
// GEMM shape
auto f_host_tensor_descriptor = [](std::size_t batch_count_,
std::size_t row,
std::size_t col,
std::size_t stride,
std::size_t batch_stride,
auto layout) {
if(std::is_same<decltype(layout), ck::tensor_layout::gemm::RowMajor>::value)
{
return HostTensorDescriptor(std::vector<std::size_t>({batch_count_, row, col}),
std::vector<std::size_t>({batch_stride, stride, 1}));
}
else
{
return HostTensorDescriptor(std::vector<std::size_t>({batch_count_, row, col}),
std::vector<std::size_t>({batch_stride, 1, stride}));
}
};
Tensor<ADataType> a_g_m_k(
f_host_tensor_descriptor(batch_count, M, K, stride_A, batch_stride_A, ALayout{}));
Tensor<BDataType> b_g_k_n(
f_host_tensor_descriptor(batch_count, K, N, stride_B, batch_stride_B, BLayout{}));
#ifdef BUILD_INT4_EXAMPLE
Tensor<KernelEDataType> e_g_m_n_device_result(
f_host_tensor_descriptor(batch_count, M, N, stride_C, batch_stride_C, ELayout{}));
#else
Tensor<EDataType> e_g_m_n_device_result(
f_host_tensor_descriptor(batch_count, M, N, stride_C, batch_stride_C, ELayout{}));
#endif
std::cout << "a_g_m_k: " << a_g_m_k.mDesc << std::endl;
std::cout << "b_g_k_n: " << b_g_k_n.mDesc << std::endl;
std::cout << "e_g_m_n: " << e_g_m_n_device_result.mDesc << std::endl;
switch(config.init_method)
{
case 0: break;
case 1:
a_g_m_k.GenerateTensorValue(GeneratorTensor_2<ADataType>{-5, 5});
b_g_k_n.GenerateTensorValue(GeneratorTensor_2<BDataType>{-5, 5});
break;
default:
a_g_m_k.GenerateTensorValue(GeneratorTensor_3<ADataType>{0.0, 1.0});
b_g_k_n.GenerateTensorValue(GeneratorTensor_3<BDataType>{-0.5, 0.5});
break;
}
DeviceMem a_device_buf(sizeof(ADataType) * a_g_m_k.mDesc.GetElementSpaceSize());
DeviceMem b_device_buf(sizeof(BDataType) * b_g_k_n.mDesc.GetElementSpaceSize());
DeviceMem c_device_buf(sizeof(EDataType) * e_g_m_n_device_result.mDesc.GetElementSpaceSize());
#ifdef BUILD_INT4_EXAMPLE
const Tensor<KernelADataType> a_g_m_k_converted(a_g_m_k);
const Tensor<KernelBDataType> b_g_k_n_converted(b_g_k_n);
a_device_buf.ToDevice(a_g_m_k_converted.mData.data());
b_device_buf.ToDevice(b_g_k_n_converted.mData.data());
#else
a_device_buf.ToDevice(a_g_m_k.mData.data());
b_device_buf.ToDevice(b_g_k_n.mData.data());
#endif
auto a_element_op = AElementOp{};
auto b_element_op = BElementOp{};
auto cde_element_op = CDEElementOp{};
auto gemm = DeviceGemmInstance{};
auto invoker = gemm.MakeInvoker();
// do GEMM
auto argument = gemm.MakeArgument(a_device_buf.GetDeviceBuffer(),
b_device_buf.GetDeviceBuffer(),
{},
c_device_buf.GetDeviceBuffer(),
M,
N,
K,
batch_count,
stride_A,
stride_B,
{},
stride_C,
batch_stride_A,
batch_stride_B,
{},
batch_stride_C,
a_element_op,
b_element_op,
cde_element_op);
if(!gemm.IsSupportedArgument(argument))
{
throw std::runtime_error(
"wrong! device_gemm with the specified compilation parameters does "
"not support this GEMM problem");
}
invoker.Run(argument, StreamConfig{nullptr, false});
bool pass = true;
if(config.do_verification)
{
c_device_buf.FromDevice(e_g_m_n_device_result.mData.data());
using ReferenceBatchedGemmInstance =
ck::tensor_operation::host::ReferenceBatchedGemm<ADataType,
BDataType,
EDataType,
AccDataType,
AElementOp,
BElementOp,
CDEElementOp>;
auto ref_batched_gemm = ReferenceBatchedGemmInstance{};
auto ref_invoker = ref_batched_gemm.MakeInvoker();
Tensor<EDataType> e_g_m_n_host_result(
f_host_tensor_descriptor(batch_count, M, N, stride_C, batch_stride_C, ELayout{}));
auto ref_argument = ref_batched_gemm.MakeArgument(
a_g_m_k, b_g_k_n, e_g_m_n_host_result, a_element_op, b_element_op, cde_element_op);
ref_invoker.Run(ref_argument);
#ifdef BUILD_INT4_EXAMPLE
const Tensor<EDataType> e_device_result_converted(e_g_m_n_device_result);
pass &= ck::utils::check_err(e_device_result_converted.mData, e_g_m_n_host_result.mData);
#else
pass = ck::utils::check_err(
e_g_m_n_device_result.mData, e_g_m_n_host_result.mData, "Error: Incorrect results c");
#endif
}
if(config.time_kernel)
{
float ave_time = invoker.Run(argument, StreamConfig{nullptr, config.time_kernel});
std::size_t flop = std::size_t(2) * batch_count * M * N * K;
std::size_t num_btype = sizeof(ADataType) * batch_count * M * K +
sizeof(BDataType) * batch_count * K * N +
sizeof(EDataType) * batch_count * M * N;
float tflops = static_cast<float>(flop) / 1.E9 / ave_time;
float gb_per_sec = num_btype / 1.E6 / ave_time;
std::cout << "Perf: " << ave_time << " ms, " << tflops << " TFlops, " << gb_per_sec
<< " GB/s, " << gemm.GetTypeString() << std::endl;
}
return pass ? 0 : 1;
}
bool run_batched_gemm_example(int argc, char* argv[])
{
ProblemSize problem_size;
ExecutionConfig config;
std::mt19937 gen(11939);
std::uniform_int_distribution<int> dis(0, 15);
problem_size.M = 256 * (dis(gen) + 1);
problem_size.N = 128 * (dis(gen) + 1);
problem_size.K = 64 * (dis(gen) + 2);
problem_size.stride_A = problem_size.K;
problem_size.stride_B = problem_size.K;
problem_size.stride_C = problem_size.N;
problem_size.batch_stride_A = problem_size.M * problem_size.K;
problem_size.batch_stride_B = problem_size.K * problem_size.N;
problem_size.batch_stride_C = problem_size.M * problem_size.N;
problem_size.batch_count = 16;
if(argc == 4)
{
config.do_verification = std::stoi(argv[1]);
config.init_method = std::stoi(argv[2]);
config.time_kernel = std::stoi(argv[3]);
}
else
{
printf("arg1: verification (0=no, 1=yes)\n");
printf("arg2: initialization (0=no init, 1=integer value, 2=decimal value)\n");
printf("arg3: time kernel (0=n0, 1=yes)\n");
exit(0);
}
return run_batched_gemm(problem_size, config);
}
add_example_executable(example_batched_gemm_e_permute_xdl_fp16 batched_gemm_e_permute_xdl_fp16.cpp)
add_example_executable(example_grouped_convnd_fwd_bias_relu_add_xdl_fp16 grouped_convnd_fwd_bias_relu_add_xdl_fp16.cpp) add_example_executable(example_grouped_convnd_fwd_bias_relu_add_xdl_fp16 grouped_convnd_fwd_bias_relu_add_xdl_fp16.cpp)
target_link_libraries(example_grouped_convnd_fwd_bias_relu_add_xdl_fp16 PRIVATE utility)
add_example_executable(example_grouped_convnd_fwd_bias_relu_add_xdl_fp32 grouped_convnd_fwd_bias_relu_add_xdl_fp32.cpp) add_example_executable(example_grouped_convnd_fwd_bias_relu_add_xdl_fp32 grouped_convnd_fwd_bias_relu_add_xdl_fp32.cpp)
target_link_libraries(example_grouped_convnd_fwd_bias_relu_add_xdl_fp32 PRIVATE utility)
add_example_executable(example_grouped_convnd_fwd_bias_relu_add_xdl_bf16 grouped_convnd_fwd_bias_relu_add_xdl_bf16.cpp) add_example_executable(example_grouped_convnd_fwd_bias_relu_add_xdl_bf16 grouped_convnd_fwd_bias_relu_add_xdl_bf16.cpp)
target_link_libraries(example_grouped_convnd_fwd_bias_relu_add_xdl_bf16 PRIVATE utility)
add_example_executable(example_grouped_convnd_fwd_bias_relu_add_xdl_int8 grouped_convnd_fwd_bias_relu_add_xdl_int8.cpp) add_example_executable(example_grouped_convnd_fwd_bias_relu_add_xdl_int8 grouped_convnd_fwd_bias_relu_add_xdl_int8.cpp)
target_link_libraries(example_grouped_convnd_fwd_bias_relu_add_xdl_int8 PRIVATE utility)
\ No newline at end of file if(USE_BITINT_EXTENSION_INT4)
add_example_executable(example_grouped_convnd_fwd_bias_relu_add_xdl_int4 grouped_convnd_fwd_bias_relu_add_xdl_int4.cpp)
endif() # USE_BITINT_EXTENSION_INT4
...@@ -26,13 +26,16 @@ void print_helper_msg() ...@@ -26,13 +26,16 @@ void print_helper_msg()
} }
template <ck::index_t NDimSpatial, template <ck::index_t NDimSpatial,
typename InDataType, typename InKernelDataType,
typename WeiDataType, typename WeiKernelDataType,
typename CShuffleDataType, typename CShuffleDataType,
typename OutDataType, typename OutKernelDataType,
typename InElementOp, typename InElementOp,
typename WeiElementOp, typename WeiElementOp,
typename OutElementOp, typename OutElementOp,
typename InUserDataType,
typename WeiUserDataType,
typename OutUserDataType,
typename DeviceConvNDFwdInstance> typename DeviceConvNDFwdInstance>
int run_grouped_conv_fwd_bias_relu_add(bool do_verification, int run_grouped_conv_fwd_bias_relu_add(bool do_verification,
int init_method, int init_method,
...@@ -47,12 +50,12 @@ int run_grouped_conv_fwd_bias_relu_add(bool do_verification, ...@@ -47,12 +50,12 @@ int run_grouped_conv_fwd_bias_relu_add(bool do_verification,
const WeiElementOp& wei_element_op, const WeiElementOp& wei_element_op,
const OutElementOp& out_element_op) const OutElementOp& out_element_op)
{ {
Tensor<InDataType> in(in_g_n_c_wis_desc); Tensor<InUserDataType> in(in_g_n_c_wis_desc);
Tensor<WeiDataType> wei(wei_g_k_c_xs_desc); Tensor<WeiUserDataType> wei(wei_g_k_c_xs_desc);
Tensor<OutDataType> bias(bias_g_n_k_wos_desc); Tensor<OutUserDataType> bias(bias_g_n_k_wos_desc);
Tensor<OutDataType> residual(residual_g_n_k_wos_desc); Tensor<OutUserDataType> residual(residual_g_n_k_wos_desc);
Tensor<OutDataType> out_host(out_g_n_k_wos_desc); Tensor<OutUserDataType> out_host(out_g_n_k_wos_desc);
Tensor<OutDataType> out_device(out_g_n_k_wos_desc); Tensor<OutKernelDataType> out_device(out_g_n_k_wos_desc);
std::cout << "in: " << in.mDesc << std::endl; std::cout << "in: " << in.mDesc << std::endl;
std::cout << "wei: " << wei.mDesc << std::endl; std::cout << "wei: " << wei.mDesc << std::endl;
...@@ -64,26 +67,38 @@ int run_grouped_conv_fwd_bias_relu_add(bool do_verification, ...@@ -64,26 +67,38 @@ int run_grouped_conv_fwd_bias_relu_add(bool do_verification,
{ {
case 0: break; case 0: break;
case 1: case 1:
in.GenerateTensorValue(GeneratorTensor_2<InDataType>{-5, 5}); in.GenerateTensorValue(GeneratorTensor_2<InUserDataType>{-5, 5});
wei.GenerateTensorValue(GeneratorTensor_2<WeiDataType>{-5, 5}); wei.GenerateTensorValue(GeneratorTensor_2<WeiUserDataType>{-5, 5});
bias.GenerateTensorValue(GeneratorTensor_2<OutDataType>{-5, 5}); bias.GenerateTensorValue(GeneratorTensor_2<OutUserDataType>{-5, 5});
break; break;
default: default:
in.GenerateTensorValue(GeneratorTensor_3<InDataType>{0.0, 1.0}); in.GenerateTensorValue(GeneratorTensor_3<InUserDataType>{0.0, 1.0});
wei.GenerateTensorValue(GeneratorTensor_3<WeiDataType>{-0.5, 0.5}); wei.GenerateTensorValue(GeneratorTensor_3<WeiUserDataType>{-0.5, 0.5});
bias.GenerateTensorValue(GeneratorTensor_3<OutDataType>{-0.5, 0.5}); bias.GenerateTensorValue(GeneratorTensor_3<OutUserDataType>{-0.5, 0.5});
} }
DeviceMem in_device_buf(sizeof(InDataType) * in.mDesc.GetElementSpaceSize()); DeviceMem in_device_buf(sizeof(InKernelDataType) * in.mDesc.GetElementSpaceSize());
DeviceMem wei_device_buf(sizeof(WeiDataType) * wei.mDesc.GetElementSpaceSize()); DeviceMem wei_device_buf(sizeof(WeiKernelDataType) * wei.mDesc.GetElementSpaceSize());
DeviceMem bias_device_buf(sizeof(OutDataType) * bias.mDesc.GetElementSpaceSize()); DeviceMem bias_device_buf(sizeof(OutKernelDataType) * bias.mDesc.GetElementSpaceSize());
DeviceMem residual_device_buf(sizeof(OutDataType) * residual.mDesc.GetElementSpaceSize()); DeviceMem residual_device_buf(sizeof(OutKernelDataType) * residual.mDesc.GetElementSpaceSize());
DeviceMem out_device_buf(sizeof(OutDataType) * out_device.mDesc.GetElementSpaceSize()); DeviceMem out_device_buf(sizeof(OutKernelDataType) * out_device.mDesc.GetElementSpaceSize());
#ifdef CK_EXPERIMENTAL_BIT_INT_EXTENSION_INT4
const Tensor<InKernelDataType> in_converted(in);
const Tensor<WeiKernelDataType> wei_converted(wei);
const Tensor<OutKernelDataType> bias_converted(bias);
const Tensor<OutKernelDataType> residual_converted(residual);
in_device_buf.ToDevice(in_converted.mData.data());
wei_device_buf.ToDevice(wei_converted.mData.data());
bias_device_buf.ToDevice(bias_converted.mData.data());
residual_device_buf.ToDevice(residual_converted.mData.data());
#else // CK_EXPERIMENTAL_BIT_INT_EXTENSION_INT4
in_device_buf.ToDevice(in.mData.data()); in_device_buf.ToDevice(in.mData.data());
wei_device_buf.ToDevice(wei.mData.data()); wei_device_buf.ToDevice(wei.mData.data());
bias_device_buf.ToDevice(bias.mData.data()); bias_device_buf.ToDevice(bias.mData.data());
residual_device_buf.ToDevice(residual.mData.data()); residual_device_buf.ToDevice(residual.mData.data());
#endif // CK_EXPERIMENTAL_BIT_INT_EXTENSION_INT4
std::array<ck::index_t, NDimSpatial + 3> a_g_n_c_wis_lengths{}; std::array<ck::index_t, NDimSpatial + 3> a_g_n_c_wis_lengths{};
std::array<ck::index_t, NDimSpatial + 3> a_g_n_c_wis_strides{}; std::array<ck::index_t, NDimSpatial + 3> a_g_n_c_wis_strides{};
...@@ -154,7 +169,7 @@ int run_grouped_conv_fwd_bias_relu_add(bool do_verification, ...@@ -154,7 +169,7 @@ int run_grouped_conv_fwd_bias_relu_add(bool do_verification,
float avg_time = invoker.Run(argument, StreamConfig{nullptr, time_kernel}); float avg_time = invoker.Run(argument, StreamConfig{nullptr, time_kernel});
std::size_t flop = conv_param.GetFlops(); std::size_t flop = conv_param.GetFlops();
std::size_t num_btype = conv_param.GetByte<InDataType, WeiDataType, OutDataType>(); std::size_t num_btype = conv_param.GetByte<InUserDataType, WeiUserDataType, OutUserDataType>();
float tflops = static_cast<float>(flop) / 1.E9 / avg_time; float tflops = static_cast<float>(flop) / 1.E9 / avg_time;
float gb_per_sec = num_btype / 1.E6 / avg_time; float gb_per_sec = num_btype / 1.E6 / avg_time;
...@@ -168,8 +183,8 @@ int run_grouped_conv_fwd_bias_relu_add(bool do_verification, ...@@ -168,8 +183,8 @@ int run_grouped_conv_fwd_bias_relu_add(bool do_verification,
Tensor<CShuffleDataType> c_host(out_g_n_k_wos_desc); Tensor<CShuffleDataType> c_host(out_g_n_k_wos_desc);
auto ref_conv = ck::tensor_operation::host::ReferenceConvFwd<NDimSpatial, auto ref_conv = ck::tensor_operation::host::ReferenceConvFwd<NDimSpatial,
InDataType, InUserDataType,
WeiDataType, WeiUserDataType,
CShuffleDataType, CShuffleDataType,
InElementOp, InElementOp,
WeiElementOp, WeiElementOp,
...@@ -196,10 +211,22 @@ int run_grouped_conv_fwd_bias_relu_add(bool do_verification, ...@@ -196,10 +211,22 @@ int run_grouped_conv_fwd_bias_relu_add(bool do_verification,
out_device_buf.FromDevice(out_device.mData.data()); out_device_buf.FromDevice(out_device.mData.data());
#ifdef CK_EXPERIMENTAL_BIT_INT_EXTENSION_INT4
const Tensor<OutUserDataType> out_device_converted(out_device);
return ck::utils::check_err(out_device_converted.mData,
out_host.mData,
"Error: incorrect results!",
1e-5f,
1e-4f)
? 0
: 1;
#else // CK_EXPERIMENTAL_BIT_INT_EXTENSION_INT4
return ck::utils::check_err( return ck::utils::check_err(
out_device.mData, out_host.mData, "Error: incorrect results!", 1e-5f, 1e-4f) out_device.mData, out_host.mData, "Error: incorrect results!", 1e-5f, 1e-4f)
? 0 ? 0
: 1; : 1;
#endif // CK_EXPERIMENTAL_BIT_INT_EXTENSION_INT4
} }
return 0; return 0;
......
...@@ -7,13 +7,19 @@ ...@@ -7,13 +7,19 @@
#include "ck/library/utility/convolution_host_tensor_descriptor_helper.hpp" #include "ck/library/utility/convolution_host_tensor_descriptor_helper.hpp"
using InDataType = ck::bhalf_t; // kernel data types
using WeiDataType = ck::bhalf_t; using InKernelDataType = ck::bhalf_t;
using AccDataType = float; using WeiKernelDataType = ck::bhalf_t;
using CShuffleDataType = float; using AccDataType = float;
using BiasDataType = ck::bhalf_t; using CShuffleDataType = float;
using ResidualDataType = ck::bhalf_t; using BiasKernelDataType = ck::bhalf_t;
using OutDataType = ck::bhalf_t; using ResidualKernelDataType = ck::bhalf_t;
using OutKernelDataType = ck::bhalf_t;
// tensor data types
using InUserDataType = InKernelDataType;
using WeiUserDataType = WeiKernelDataType;
using OutUserDataType = OutKernelDataType;
template <ck::index_t... Is> template <ck::index_t... Is>
using S = ck::Sequence<Is...>; using S = ck::Sequence<Is...>;
...@@ -40,12 +46,12 @@ using DeviceGroupedConvNDFwdInstance = ...@@ -40,12 +46,12 @@ using DeviceGroupedConvNDFwdInstance =
WeiLayout, WeiLayout,
ck::Tuple<BiasLayout, ResidualLayout>, ck::Tuple<BiasLayout, ResidualLayout>,
OutLayout, OutLayout,
InDataType, InKernelDataType,
WeiDataType, WeiKernelDataType,
AccDataType, AccDataType,
CShuffleDataType, CShuffleDataType,
ck::Tuple<BiasDataType, ResidualDataType>, ck::Tuple<BiasKernelDataType, ResidualKernelDataType>,
OutDataType, OutKernelDataType,
InElementOp, InElementOp,
WeiElementOp, WeiElementOp,
OutElementOp, OutElementOp,
...@@ -181,13 +187,16 @@ int main(int argc, char* argv[]) ...@@ -181,13 +187,16 @@ int main(int argc, char* argv[])
}); });
return run_grouped_conv_fwd_bias_relu_add<1, return run_grouped_conv_fwd_bias_relu_add<1,
InDataType, InKernelDataType,
WeiDataType, WeiKernelDataType,
CShuffleDataType, CShuffleDataType,
OutDataType, OutKernelDataType,
InElementOp, InElementOp,
WeiElementOp, WeiElementOp,
OutElementOp, OutElementOp,
InUserDataType,
WeiUserDataType,
OutUserDataType,
DeviceGroupedConvNDFwdInstance<1, DeviceGroupedConvNDFwdInstance<1,
InLayout, InLayout,
WeiLayout, WeiLayout,
...@@ -290,13 +299,16 @@ int main(int argc, char* argv[]) ...@@ -290,13 +299,16 @@ int main(int argc, char* argv[])
}); });
return run_grouped_conv_fwd_bias_relu_add<2, return run_grouped_conv_fwd_bias_relu_add<2,
InDataType, InKernelDataType,
WeiDataType, WeiKernelDataType,
CShuffleDataType, CShuffleDataType,
OutDataType, OutKernelDataType,
InElementOp, InElementOp,
WeiElementOp, WeiElementOp,
OutElementOp, OutElementOp,
InUserDataType,
WeiUserDataType,
OutUserDataType,
DeviceGroupedConvNDFwdInstance<2, DeviceGroupedConvNDFwdInstance<2,
InLayout, InLayout,
WeiLayout, WeiLayout,
...@@ -413,13 +425,16 @@ int main(int argc, char* argv[]) ...@@ -413,13 +425,16 @@ int main(int argc, char* argv[])
}); });
return run_grouped_conv_fwd_bias_relu_add<3, return run_grouped_conv_fwd_bias_relu_add<3,
InDataType, InKernelDataType,
WeiDataType, WeiKernelDataType,
CShuffleDataType, CShuffleDataType,
OutDataType, OutKernelDataType,
InElementOp, InElementOp,
WeiElementOp, WeiElementOp,
OutElementOp, OutElementOp,
InUserDataType,
WeiUserDataType,
OutUserDataType,
DeviceGroupedConvNDFwdInstance<3, DeviceGroupedConvNDFwdInstance<3,
InLayout, InLayout,
WeiLayout, WeiLayout,
......
...@@ -7,13 +7,19 @@ ...@@ -7,13 +7,19 @@
#include "ck/library/utility/convolution_host_tensor_descriptor_helper.hpp" #include "ck/library/utility/convolution_host_tensor_descriptor_helper.hpp"
using InDataType = ck::half_t; // kernel data types
using WeiDataType = ck::half_t; using InKernelDataType = ck::half_t;
using AccDataType = float; using WeiKernelDataType = ck::half_t;
using CShuffleDataType = ck::half_t; using AccDataType = float;
using BiasDataType = ck::half_t; using CShuffleDataType = ck::half_t;
using ResidualDataType = ck::half_t; using BiasKernelDataType = ck::half_t;
using OutDataType = ck::half_t; using ResidualKernelDataType = ck::half_t;
using OutKernelDataType = ck::half_t;
// tensor data types
using InUserDataType = InKernelDataType;
using WeiUserDataType = WeiKernelDataType;
using OutUserDataType = OutKernelDataType;
template <ck::index_t... Is> template <ck::index_t... Is>
using S = ck::Sequence<Is...>; using S = ck::Sequence<Is...>;
...@@ -40,12 +46,12 @@ using DeviceGroupedConvNDFwdInstance = ...@@ -40,12 +46,12 @@ using DeviceGroupedConvNDFwdInstance =
WeiLayout, WeiLayout,
ck::Tuple<BiasLayout, ResidualLayout>, ck::Tuple<BiasLayout, ResidualLayout>,
OutLayout, OutLayout,
InDataType, InKernelDataType,
WeiDataType, WeiKernelDataType,
AccDataType, AccDataType,
CShuffleDataType, CShuffleDataType,
ck::Tuple<BiasDataType, ResidualDataType>, ck::Tuple<BiasKernelDataType, ResidualKernelDataType>,
OutDataType, OutKernelDataType,
InElementOp, InElementOp,
WeiElementOp, WeiElementOp,
OutElementOp, OutElementOp,
...@@ -157,9 +163,9 @@ int main(int argc, char* argv[]) ...@@ -157,9 +163,9 @@ int main(int argc, char* argv[])
{conv_param.G_, conv_param.N_, conv_param.K_, conv_param.output_spatial_lengths_[0]}, {conv_param.G_, conv_param.N_, conv_param.K_, conv_param.output_spatial_lengths_[0]},
{ {
conv_param.K_, // g conv_param.K_, // g
0, // k 0, // n
1, // c 1, // k
0 // x 0 // wo
}); });
const auto residual_g_n_k_wos_desc = HostTensorDescriptor( const auto residual_g_n_k_wos_desc = HostTensorDescriptor(
...@@ -181,13 +187,16 @@ int main(int argc, char* argv[]) ...@@ -181,13 +187,16 @@ int main(int argc, char* argv[])
}); });
return run_grouped_conv_fwd_bias_relu_add<1, return run_grouped_conv_fwd_bias_relu_add<1,
InDataType, InKernelDataType,
WeiDataType, WeiKernelDataType,
CShuffleDataType, CShuffleDataType,
OutDataType, OutKernelDataType,
InElementOp, InElementOp,
WeiElementOp, WeiElementOp,
OutElementOp, OutElementOp,
InUserDataType,
WeiUserDataType,
OutUserDataType,
DeviceGroupedConvNDFwdInstance<1, DeviceGroupedConvNDFwdInstance<1,
InLayout, InLayout,
WeiLayout, WeiLayout,
...@@ -290,13 +299,16 @@ int main(int argc, char* argv[]) ...@@ -290,13 +299,16 @@ int main(int argc, char* argv[])
}); });
return run_grouped_conv_fwd_bias_relu_add<2, return run_grouped_conv_fwd_bias_relu_add<2,
InDataType, InKernelDataType,
WeiDataType, WeiKernelDataType,
CShuffleDataType, CShuffleDataType,
OutDataType, OutKernelDataType,
InElementOp, InElementOp,
WeiElementOp, WeiElementOp,
OutElementOp, OutElementOp,
InUserDataType,
WeiUserDataType,
OutUserDataType,
DeviceGroupedConvNDFwdInstance<2, DeviceGroupedConvNDFwdInstance<2,
InLayout, InLayout,
WeiLayout, WeiLayout,
...@@ -413,13 +425,16 @@ int main(int argc, char* argv[]) ...@@ -413,13 +425,16 @@ int main(int argc, char* argv[])
}); });
return run_grouped_conv_fwd_bias_relu_add<3, return run_grouped_conv_fwd_bias_relu_add<3,
InDataType, InKernelDataType,
WeiDataType, WeiKernelDataType,
CShuffleDataType, CShuffleDataType,
OutDataType, OutKernelDataType,
InElementOp, InElementOp,
WeiElementOp, WeiElementOp,
OutElementOp, OutElementOp,
InUserDataType,
WeiUserDataType,
OutUserDataType,
DeviceGroupedConvNDFwdInstance<3, DeviceGroupedConvNDFwdInstance<3,
InLayout, InLayout,
WeiLayout, WeiLayout,
......
...@@ -7,13 +7,19 @@ ...@@ -7,13 +7,19 @@
#include "ck/library/utility/convolution_host_tensor_descriptor_helper.hpp" #include "ck/library/utility/convolution_host_tensor_descriptor_helper.hpp"
using InDataType = float; // kernel data types
using WeiDataType = float; using InKernelDataType = float;
using AccDataType = float; using WeiKernelDataType = float;
using CShuffleDataType = float; using AccDataType = float;
using BiasDataType = float; using CShuffleDataType = float;
using ResidualDataType = float; using BiasKernelDataType = float;
using OutDataType = float; using ResidualKernelDataType = float;
using OutKernelDataType = float;
// tensor data types
using InUserDataType = InKernelDataType;
using WeiUserDataType = WeiKernelDataType;
using OutUserDataType = OutKernelDataType;
template <ck::index_t... Is> template <ck::index_t... Is>
using S = ck::Sequence<Is...>; using S = ck::Sequence<Is...>;
...@@ -40,12 +46,12 @@ using DeviceGroupedConvNDFwdInstance = ...@@ -40,12 +46,12 @@ using DeviceGroupedConvNDFwdInstance =
WeiLayout, WeiLayout,
ck::Tuple<BiasLayout, ResidualLayout>, ck::Tuple<BiasLayout, ResidualLayout>,
OutLayout, OutLayout,
InDataType, InKernelDataType,
WeiDataType, WeiKernelDataType,
AccDataType, AccDataType,
CShuffleDataType, CShuffleDataType,
ck::Tuple<BiasDataType, ResidualDataType>, ck::Tuple<BiasKernelDataType, ResidualKernelDataType>,
OutDataType, OutKernelDataType,
InElementOp, InElementOp,
WeiElementOp, WeiElementOp,
OutElementOp, OutElementOp,
...@@ -181,13 +187,16 @@ int main(int argc, char* argv[]) ...@@ -181,13 +187,16 @@ int main(int argc, char* argv[])
}); });
return run_grouped_conv_fwd_bias_relu_add<1, return run_grouped_conv_fwd_bias_relu_add<1,
InDataType, InKernelDataType,
WeiDataType, WeiKernelDataType,
CShuffleDataType, CShuffleDataType,
OutDataType, OutKernelDataType,
InElementOp, InElementOp,
WeiElementOp, WeiElementOp,
OutElementOp, OutElementOp,
InUserDataType,
WeiUserDataType,
OutUserDataType,
DeviceGroupedConvNDFwdInstance<1, DeviceGroupedConvNDFwdInstance<1,
InLayout, InLayout,
WeiLayout, WeiLayout,
...@@ -290,13 +299,16 @@ int main(int argc, char* argv[]) ...@@ -290,13 +299,16 @@ int main(int argc, char* argv[])
}); });
return run_grouped_conv_fwd_bias_relu_add<2, return run_grouped_conv_fwd_bias_relu_add<2,
InDataType, InKernelDataType,
WeiDataType, WeiKernelDataType,
CShuffleDataType, CShuffleDataType,
OutDataType, OutKernelDataType,
InElementOp, InElementOp,
WeiElementOp, WeiElementOp,
OutElementOp, OutElementOp,
InUserDataType,
WeiUserDataType,
OutUserDataType,
DeviceGroupedConvNDFwdInstance<2, DeviceGroupedConvNDFwdInstance<2,
InLayout, InLayout,
WeiLayout, WeiLayout,
...@@ -413,13 +425,16 @@ int main(int argc, char* argv[]) ...@@ -413,13 +425,16 @@ int main(int argc, char* argv[])
}); });
return run_grouped_conv_fwd_bias_relu_add<3, return run_grouped_conv_fwd_bias_relu_add<3,
InDataType, InKernelDataType,
WeiDataType, WeiKernelDataType,
CShuffleDataType, CShuffleDataType,
OutDataType, OutKernelDataType,
InElementOp, InElementOp,
WeiElementOp, WeiElementOp,
OutElementOp, OutElementOp,
InUserDataType,
WeiUserDataType,
OutUserDataType,
DeviceGroupedConvNDFwdInstance<3, DeviceGroupedConvNDFwdInstance<3,
InLayout, InLayout,
WeiLayout, WeiLayout,
......
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2022, Advanced Micro Devices, Inc. All rights reserved.
#include "grouped_convnd_fwd_bias_relu_add_common.hpp"
#include "ck/tensor_operation/gpu/device/device_grouped_conv_fwd_multiple_d_xdl_cshuffle.hpp"
#include "ck/library/utility/convolution_host_tensor_descriptor_helper.hpp"
// kernel data types
using InKernelDataType = int8_t;
using WeiKernelDataType = int8_t;
using AccDataType = int32_t;
using CShuffleDataType = int8_t;
using BiasKernelDataType = int8_t;
using ResidualKernelDataType = int8_t;
using OutKernelDataType = int8_t;
// tensor data types
using InUserDataType = ck::int4_t;
using WeiUserDataType = ck::int4_t;
using OutUserDataType = ck::int4_t;
template <ck::index_t... Is>
using S = ck::Sequence<Is...>;
using InElementOp = ck::tensor_operation::element_wise::PassThrough;
using WeiElementOp = ck::tensor_operation::element_wise::PassThrough;
using OutElementOp = ck::tensor_operation::element_wise::AddReluAdd;
static constexpr auto ConvSpec =
ck::tensor_operation::device::ConvolutionForwardSpecialization::Default;
static constexpr auto GemmSpec = ck::tensor_operation::device::GemmSpecialization::MNKPadding;
template <ck::index_t NDimSpatial,
typename InLayout,
typename WeiLayout,
typename BiasLayout,
typename ResidualLayout,
typename OutLayout>
using DeviceGroupedConvNDFwdInstance =
ck::tensor_operation::device::DeviceGroupedConvFwdMultipleD_Xdl_CShuffle<
NDimSpatial,
InLayout,
WeiLayout,
ck::Tuple<BiasLayout, ResidualLayout>,
OutLayout,
InKernelDataType,
WeiKernelDataType,
AccDataType,
CShuffleDataType,
ck::Tuple<BiasKernelDataType, ResidualKernelDataType>,
OutKernelDataType,
InElementOp,
WeiElementOp,
OutElementOp,
ConvSpec, // ConvForwardSpecialization
GemmSpec, // GemmSpecialization
1, //
256, // BlockSize
128, // MPerBlock
256, // NPerBlock
64, // KPerBlock
16, // AK1
16, // BK1
32, // MPerXdl
32, // NPerXdl
2, // MXdlPerWave
4, // NXdlPerWave
S<4, 64, 1>, // ABlockTransferThreadClusterLengths_AK0_M_AK1
S<1, 0, 2>, // ABlockTransferThreadClusterArrangeOrder
S<1, 0, 2>, // ABlockTransferSrcAccessOrder
2, // ABlockTransferSrcVectorDim
16, // ABlockTransferSrcScalarPerVector
16, // ABlockTransferDstScalarPerVector_AK1
1, // ABlockLdsExtraM
S<4, 64, 1>, // BBlockTransferThreadClusterLengths_BK0_N_BK1
S<1, 0, 2>, // BBlockTransferThreadClusterArrangeOrder
S<1, 0, 2>, // BBlockTransferSrcAccessOrder
2, // BBlockTransferSrcVectorDim
16, // BBlockTransferSrcScalarPerVector
16, // BBlockTransferDstScalarPerVector_BK1
1, // BBlockLdsExtraN
1,
1,
S<1, 64, 1, 4>,
16>;
int main(int argc, char* argv[])
{
namespace ctc = ck::tensor_layout::convolution;
print_helper_msg();
bool do_verification = true;
int init_method = 1;
bool time_kernel = false;
// conventional group conv definition
// G = 2
// [N, C, Hi, Wi] = [128, 384, 71, 71]
// [K, C, Y, X] = [512, 192, 3, 3]
// [N, K, Ho, Wo] = [128, 512, 36, 36]
// CK group conv definition
// [G, N, C, Hi, Wi] = [2, 128, 192, 71, 71]
// [G, K, C, Y, X] = [2, 256, 192, 3, 3]
// [G, N, K, Ho, Wo] = [2, 128, 256, 36, 36]
ck::utils::conv::ConvParam conv_param{
2, 2, 128, 256, 192, {3, 3}, {71, 71}, {2, 2}, {1, 1}, {1, 1}, {1, 1}};
if(argc == 1)
{
// use default
}
else if(argc == 4)
{
do_verification = std::stoi(argv[1]);
init_method = std::stoi(argv[2]);
time_kernel = std::stoi(argv[3]);
}
else
{
do_verification = std::stoi(argv[1]);
init_method = std::stoi(argv[2]);
time_kernel = std::stoi(argv[3]);
const ck::index_t num_dim_spatial = std::stoi(argv[4]);
conv_param = ck::utils::conv::parse_conv_param(num_dim_spatial, 5, argv);
}
const auto in_element_op = InElementOp{};
const auto wei_element_op = WeiElementOp{};
const auto out_element_op = OutElementOp{};
if(conv_param.num_dim_spatial_ == 1)
{
using InLayout = ctc::G_NW_C;
using WeiLayout = ctc::G_K_X_C;
using BiasLayout = ctc::G_NW_K;
using ResidualLayout = ctc::G_NW_K;
using OutLayout = ctc::G_NW_K;
const auto in_g_n_c_wis_desc = HostTensorDescriptor(
{conv_param.G_, conv_param.N_, conv_param.C_, conv_param.input_spatial_lengths_[0]},
{
conv_param.C_, // g
conv_param.input_spatial_lengths_[0] * conv_param.G_ * conv_param.C_, // n
1, // c
conv_param.G_ * conv_param.C_ // wi
});
const auto wei_g_k_c_xs_desc = HostTensorDescriptor(
{conv_param.G_, conv_param.K_, conv_param.C_, conv_param.filter_spatial_lengths_[0]},
{
conv_param.K_ * conv_param.filter_spatial_lengths_[0] * conv_param.C_, // g
conv_param.filter_spatial_lengths_[0] * conv_param.C_, // k
1, // c
conv_param.C_ // x
});
const auto bias_g_n_k_wos_desc = HostTensorDescriptor(
{conv_param.G_, conv_param.N_, conv_param.K_, conv_param.output_spatial_lengths_[0]},
{
conv_param.K_, // g
0, // k
1, // c
0 // x
});
const auto residual_g_n_k_wos_desc = HostTensorDescriptor(
{conv_param.G_, conv_param.N_, conv_param.K_, conv_param.output_spatial_lengths_[0]},
{
conv_param.K_, // g
0, // k
1, // c
0 // x
});
const auto out_g_n_k_wos_desc = HostTensorDescriptor(
{conv_param.G_, conv_param.N_, conv_param.K_, conv_param.output_spatial_lengths_[0]},
{
conv_param.K_, // g
conv_param.output_spatial_lengths_[0] * conv_param.G_ * conv_param.K_, // n
1, // k
conv_param.G_ * conv_param.K_ // wo
});
return run_grouped_conv_fwd_bias_relu_add<1,
InKernelDataType,
WeiKernelDataType,
CShuffleDataType,
OutKernelDataType,
InElementOp,
WeiElementOp,
OutElementOp,
InUserDataType,
WeiUserDataType,
OutUserDataType,
DeviceGroupedConvNDFwdInstance<1,
InLayout,
WeiLayout,
BiasLayout,
ResidualLayout,
OutLayout>>(
do_verification,
init_method,
time_kernel,
conv_param,
in_g_n_c_wis_desc,
wei_g_k_c_xs_desc,
bias_g_n_k_wos_desc,
residual_g_n_k_wos_desc,
out_g_n_k_wos_desc,
in_element_op,
wei_element_op,
out_element_op);
}
else if(conv_param.num_dim_spatial_ == 2)
{
using InLayout = ctc::G_NHW_C;
using WeiLayout = ctc::G_K_YX_C;
using BiasLayout = ctc::G_NHW_K;
using ResidualLayout = ctc::G_NHW_K;
using OutLayout = ctc::G_NHW_K;
const auto in_g_n_c_wis_desc = HostTensorDescriptor(
{conv_param.G_,
conv_param.N_,
conv_param.C_,
conv_param.input_spatial_lengths_[0],
conv_param.input_spatial_lengths_[1]},
{
conv_param.C_, // g
conv_param.input_spatial_lengths_[0] * conv_param.input_spatial_lengths_[1] *
conv_param.G_ * conv_param.C_, // n
1, // c
conv_param.input_spatial_lengths_[1] * conv_param.G_ * conv_param.C_, // hi
conv_param.G_ * conv_param.C_ // wi
});
const auto wei_g_k_c_xs_desc =
HostTensorDescriptor({conv_param.G_,
conv_param.K_,
conv_param.C_,
conv_param.filter_spatial_lengths_[0],
conv_param.filter_spatial_lengths_[1]},
{
conv_param.K_ * conv_param.filter_spatial_lengths_[0] *
conv_param.filter_spatial_lengths_[1] * conv_param.C_, // g
conv_param.filter_spatial_lengths_[0] *
conv_param.filter_spatial_lengths_[1] * conv_param.C_, // k
1, // c
conv_param.filter_spatial_lengths_[1] * conv_param.C_, // y
conv_param.C_ // x
});
const auto bias_g_n_k_wos_desc =
HostTensorDescriptor({conv_param.G_,
conv_param.N_,
conv_param.K_,
conv_param.output_spatial_lengths_[0],
conv_param.output_spatial_lengths_[1]},
{
conv_param.K_, // g
0, // n
1, // k
0, // ho
0 // wo
});
const auto residual_g_n_k_wos_desc =
HostTensorDescriptor({conv_param.G_,
conv_param.N_,
conv_param.K_,
conv_param.output_spatial_lengths_[0],
conv_param.output_spatial_lengths_[1]},
{
conv_param.K_, // g
0, // n
1, // k
0, // ho
0 // wo
});
const auto out_g_n_k_wos_desc = HostTensorDescriptor(
{conv_param.G_,
conv_param.N_,
conv_param.K_,
conv_param.output_spatial_lengths_[0],
conv_param.output_spatial_lengths_[1]},
{
conv_param.K_, // g
conv_param.output_spatial_lengths_[0] * conv_param.output_spatial_lengths_[1] *
conv_param.G_ * conv_param.K_, // n
1, // k
conv_param.output_spatial_lengths_[1] * conv_param.G_ * conv_param.K_, // ho
conv_param.G_ * conv_param.K_ // wo
});
return run_grouped_conv_fwd_bias_relu_add<2,
InKernelDataType,
WeiKernelDataType,
CShuffleDataType,
OutKernelDataType,
InElementOp,
WeiElementOp,
OutElementOp,
InUserDataType,
WeiUserDataType,
OutUserDataType,
DeviceGroupedConvNDFwdInstance<2,
InLayout,
WeiLayout,
BiasLayout,
ResidualLayout,
OutLayout>>(
do_verification,
init_method,
time_kernel,
conv_param,
in_g_n_c_wis_desc,
wei_g_k_c_xs_desc,
bias_g_n_k_wos_desc,
residual_g_n_k_wos_desc,
out_g_n_k_wos_desc,
in_element_op,
wei_element_op,
out_element_op);
}
else if(conv_param.num_dim_spatial_ == 3)
{
using InLayout = ctc::G_NDHW_C;
using WeiLayout = ctc::G_K_ZYX_C;
using BiasLayout = ctc::G_NDHW_K;
using ResidualLayout = ctc::G_NDHW_K;
using OutLayout = ctc::G_NDHW_K;
const auto in_g_n_c_wis_desc = HostTensorDescriptor(
{conv_param.G_,
conv_param.N_,
conv_param.C_,
conv_param.input_spatial_lengths_[0],
conv_param.input_spatial_lengths_[1],
conv_param.input_spatial_lengths_[2]},
{
conv_param.C_, // g
conv_param.input_spatial_lengths_[0] * conv_param.input_spatial_lengths_[1] *
conv_param.input_spatial_lengths_[2] * conv_param.G_ * conv_param.C_, // n
1, // c
conv_param.input_spatial_lengths_[1] * conv_param.input_spatial_lengths_[2] *
conv_param.G_ * conv_param.C_, // di
conv_param.input_spatial_lengths_[2] * conv_param.G_ * conv_param.C_, // hi
conv_param.G_ * conv_param.C_ // wi
});
const auto wei_g_k_c_xs_desc = HostTensorDescriptor(
{conv_param.G_,
conv_param.K_,
conv_param.C_,
conv_param.filter_spatial_lengths_[0],
conv_param.filter_spatial_lengths_[1],
conv_param.filter_spatial_lengths_[2]},
{
conv_param.K_ * conv_param.filter_spatial_lengths_[0] *
conv_param.filter_spatial_lengths_[1] * conv_param.filter_spatial_lengths_[2] *
conv_param.C_, // g
conv_param.filter_spatial_lengths_[0] * conv_param.filter_spatial_lengths_[1] *
conv_param.filter_spatial_lengths_[2] * conv_param.C_, // k
1, // c
conv_param.filter_spatial_lengths_[1] * conv_param.filter_spatial_lengths_[2] *
conv_param.C_, // z
conv_param.filter_spatial_lengths_[2] * conv_param.C_, // y
conv_param.C_ // x
});
const auto bias_g_n_k_wos_desc =
HostTensorDescriptor({conv_param.G_,
conv_param.N_,
conv_param.K_,
conv_param.output_spatial_lengths_[0],
conv_param.output_spatial_lengths_[1],
conv_param.output_spatial_lengths_[2]},
{
conv_param.K_, // g
0, // n
1, // k
0, // z
0, // y
0 // x
});
const auto residual_g_n_k_wos_desc =
HostTensorDescriptor({conv_param.G_,
conv_param.N_,
conv_param.K_,
conv_param.output_spatial_lengths_[0],
conv_param.output_spatial_lengths_[1],
conv_param.output_spatial_lengths_[2]},
{
conv_param.K_, // g
0, // n
1, // k
0, // z
0, // y
0 // x
});
const auto out_g_n_k_wos_desc = HostTensorDescriptor(
{conv_param.G_,
conv_param.N_,
conv_param.K_,
conv_param.output_spatial_lengths_[0],
conv_param.output_spatial_lengths_[1],
conv_param.output_spatial_lengths_[2]},
{
conv_param.K_, // g
conv_param.output_spatial_lengths_[0] * conv_param.output_spatial_lengths_[1] *
conv_param.output_spatial_lengths_[2] * conv_param.G_ * conv_param.K_, // n
1, // k
conv_param.output_spatial_lengths_[1] * conv_param.output_spatial_lengths_[2] *
conv_param.G_ * conv_param.K_, // do
conv_param.output_spatial_lengths_[2] * conv_param.G_ * conv_param.K_, // ho
conv_param.G_ * conv_param.K_ // wo
});
return run_grouped_conv_fwd_bias_relu_add<3,
InKernelDataType,
WeiKernelDataType,
CShuffleDataType,
OutKernelDataType,
InElementOp,
WeiElementOp,
OutElementOp,
InUserDataType,
WeiUserDataType,
OutUserDataType,
DeviceGroupedConvNDFwdInstance<3,
InLayout,
WeiLayout,
BiasLayout,
ResidualLayout,
OutLayout>>(
do_verification,
init_method,
time_kernel,
conv_param,
in_g_n_c_wis_desc,
wei_g_k_c_xs_desc,
bias_g_n_k_wos_desc,
residual_g_n_k_wos_desc,
out_g_n_k_wos_desc,
in_element_op,
wei_element_op,
out_element_op);
}
return 0;
}
...@@ -7,13 +7,19 @@ ...@@ -7,13 +7,19 @@
#include "ck/library/utility/convolution_host_tensor_descriptor_helper.hpp" #include "ck/library/utility/convolution_host_tensor_descriptor_helper.hpp"
using InDataType = int8_t; // kernel data types
using WeiDataType = int8_t; using InKernelDataType = int8_t;
using AccDataType = int32_t; using WeiKernelDataType = int8_t;
using CShuffleDataType = int8_t; using AccDataType = int32_t;
using BiasDataType = int8_t; using CShuffleDataType = int8_t;
using ResidualDataType = int8_t; using BiasKernelDataType = int8_t;
using OutDataType = int8_t; using ResidualKernelDataType = int8_t;
using OutKernelDataType = int8_t;
// tensor data types
using InUserDataType = InKernelDataType;
using WeiUserDataType = WeiKernelDataType;
using OutUserDataType = OutKernelDataType;
template <ck::index_t... Is> template <ck::index_t... Is>
using S = ck::Sequence<Is...>; using S = ck::Sequence<Is...>;
...@@ -40,12 +46,12 @@ using DeviceGroupedConvNDFwdInstance = ...@@ -40,12 +46,12 @@ using DeviceGroupedConvNDFwdInstance =
WeiLayout, WeiLayout,
ck::Tuple<BiasLayout, ResidualLayout>, ck::Tuple<BiasLayout, ResidualLayout>,
OutLayout, OutLayout,
InDataType, InKernelDataType,
WeiDataType, WeiKernelDataType,
AccDataType, AccDataType,
CShuffleDataType, CShuffleDataType,
ck::Tuple<BiasDataType, ResidualDataType>, ck::Tuple<BiasKernelDataType, ResidualKernelDataType>,
OutDataType, OutKernelDataType,
InElementOp, InElementOp,
WeiElementOp, WeiElementOp,
OutElementOp, OutElementOp,
...@@ -181,13 +187,16 @@ int main(int argc, char* argv[]) ...@@ -181,13 +187,16 @@ int main(int argc, char* argv[])
}); });
return run_grouped_conv_fwd_bias_relu_add<1, return run_grouped_conv_fwd_bias_relu_add<1,
InDataType, InKernelDataType,
WeiDataType, WeiKernelDataType,
CShuffleDataType, CShuffleDataType,
OutDataType, OutKernelDataType,
InElementOp, InElementOp,
WeiElementOp, WeiElementOp,
OutElementOp, OutElementOp,
InUserDataType,
WeiUserDataType,
OutUserDataType,
DeviceGroupedConvNDFwdInstance<1, DeviceGroupedConvNDFwdInstance<1,
InLayout, InLayout,
WeiLayout, WeiLayout,
...@@ -290,13 +299,16 @@ int main(int argc, char* argv[]) ...@@ -290,13 +299,16 @@ int main(int argc, char* argv[])
}); });
return run_grouped_conv_fwd_bias_relu_add<2, return run_grouped_conv_fwd_bias_relu_add<2,
InDataType, InKernelDataType,
WeiDataType, WeiKernelDataType,
CShuffleDataType, CShuffleDataType,
OutDataType, OutKernelDataType,
InElementOp, InElementOp,
WeiElementOp, WeiElementOp,
OutElementOp, OutElementOp,
InUserDataType,
WeiUserDataType,
OutUserDataType,
DeviceGroupedConvNDFwdInstance<2, DeviceGroupedConvNDFwdInstance<2,
InLayout, InLayout,
WeiLayout, WeiLayout,
...@@ -413,13 +425,16 @@ int main(int argc, char* argv[]) ...@@ -413,13 +425,16 @@ int main(int argc, char* argv[])
}); });
return run_grouped_conv_fwd_bias_relu_add<3, return run_grouped_conv_fwd_bias_relu_add<3,
InDataType, InKernelDataType,
WeiDataType, WeiKernelDataType,
CShuffleDataType, CShuffleDataType,
OutDataType, OutKernelDataType,
InElementOp, InElementOp,
WeiElementOp, WeiElementOp,
OutElementOp, OutElementOp,
InUserDataType,
WeiUserDataType,
OutUserDataType,
DeviceGroupedConvNDFwdInstance<3, DeviceGroupedConvNDFwdInstance<3,
InLayout, InLayout,
WeiLayout, WeiLayout,
......
add_example_executable(example_batched_gemm_gemm_xdl_fp32 batched_gemm_gemm_xdl_fp32.cpp)
add_example_executable(example_batched_gemm_gemm_xdl_fp16 batched_gemm_gemm_xdl_fp16.cpp) add_example_executable(example_batched_gemm_gemm_xdl_fp16 batched_gemm_gemm_xdl_fp16.cpp)
add_example_executable(example_batched_gemm_gemm_xdl_bf16 batched_gemm_gemm_xdl_bf16.cpp)
add_example_executable(example_batched_gemm_gemm_xdl_int8 batched_gemm_gemm_xdl_int8.cpp)
if(USE_BITINT_EXTENSION_INT4)
add_example_executable(example_batched_gemm_gemm_xdl_int4 batched_gemm_gemm_xdl_int4.cpp)
endif(USE_BITINT_EXTENSION_INT4)
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2022, Advanced Micro Devices, Inc. All rights reserved.
/*
Gemm + Gemm fused operation. Computes C_m_o = A_m_k * B0_k_n * B1_n_o
|------------|
Gemm0
|---------------------|
Gemm1
*/
#include <iostream>
#include <numeric>
#include <initializer_list>
#include <cstdlib>
#include "ck/ck.hpp"
#include "ck/tensor_operation/gpu/device/gemm_specialization.hpp"
#include "ck/tensor_operation/gpu/device/device_batched_gemm_gemm_xdl_cshuffle.hpp"
#include "ck/tensor_operation/gpu/element/element_wise_operation.hpp"
#include "ck/library/utility/check_err.hpp"
#include "ck/library/utility/device_memory.hpp"
#include "ck/library/utility/host_tensor.hpp"
#include "ck/library/utility/host_tensor_generator.hpp"
#include "ck/library/reference_tensor_operation/cpu/reference_batched_gemm.hpp"
template <ck::index_t... Is>
using S = ck::Sequence<Is...>;
using BF16 = ck::bhalf_t;
using F32 = float;
using Row = ck::tensor_layout::gemm::RowMajor;
using Col = ck::tensor_layout::gemm::ColumnMajor;
using PassThrough = ck::tensor_operation::element_wise::PassThrough;
using ADataType = BF16;
using B0DataType = BF16;
using B1DataType = BF16;
using AccDataType = F32;
using CShuffleDataType = F32;
using CDataType = BF16;
using ALayout = Row;
using B0Layout = Col;
using B1Layout = Row;
using CLayout = Row;
using AElementOp = PassThrough;
using B0ElementOp = PassThrough;
using Acc0ElementOp = PassThrough;
using B1ElementOp = PassThrough;
using CElementOp = PassThrough;
static constexpr auto GemmDefault = ck::tensor_operation::device::GemmSpecialization::Default;
using DeviceGemmInstance = ck::tensor_operation::device::DeviceBatchedGemmGemm_Xdl_CShuffle<
ALayout,
B0Layout,
B1Layout,
CLayout,
ADataType,
B0DataType,
B1DataType,
CDataType,
AccDataType,
CShuffleDataType,
AElementOp,
B0ElementOp,
Acc0ElementOp,
B1ElementOp,
CElementOp,
GemmDefault,
1,
256,
128, // MPerBlock
128, // NPerBlock
32, // KPerBlock
128, // Gemm1NPerBlock
32, // Gemm1KPerBlock
8, // AK1
8, // BK1
2, // B1K1
32, // MPerXDL
32, // NPerXDL
1, // MXdlPerWave
4, // NXdlPerWave
4, // Gemm1NXdlPerWave
S<4, 64, 1>, // ABlockTransfer
S<1, 0, 2>,
S<1, 0, 2>,
2,
8,
8,
true,
S<4, 64, 1>, // BBlockTransfer
S<1, 0, 2>,
S<1, 0, 2>,
2,
8,
8,
true,
S<8, 32, 1>, // B1BlockTransfer
S<0, 2, 1>,
S<0, 2, 1>,
1,
4,
2,
false,
1, // CShuffleMXdlPerWavePerShuffle
2, // CShuffleNXdlPerWavePerShuffle
S<1, 32, 1, 8>, // CShuffleBlockTransferClusterLengths_MBlock_MPerBlock_NBlock_NPerBlock
8>; // CShuffleBlockTransferScalarPerVector_NPerBlock
using ReferenceGemm0Instance = ck::tensor_operation::host::ReferenceBatchedGemm<ADataType,
B0DataType,
ADataType,
AccDataType,
AElementOp,
B0ElementOp,
CElementOp>;
using ReferenceGemm1Instance = ck::tensor_operation::host::ReferenceBatchedGemm<ADataType,
B1DataType,
CDataType,
AccDataType,
AElementOp,
B1ElementOp,
CElementOp>;
#include "run_batched_gemm_gemm_example.inc"
int main(int argc, char* argv[]) { return run_batched_gemm_gemm_example(argc, argv) ? 0 : 1; }
...@@ -121,6 +121,7 @@ using ReferenceGemm0Instance = ck::tensor_operation::host::ReferenceBatchedGemm< ...@@ -121,6 +121,7 @@ using ReferenceGemm0Instance = ck::tensor_operation::host::ReferenceBatchedGemm<
AElementOp, AElementOp,
B0ElementOp, B0ElementOp,
CElementOp>; CElementOp>;
using ReferenceGemm1Instance = ck::tensor_operation::host::ReferenceBatchedGemm<ADataType, using ReferenceGemm1Instance = ck::tensor_operation::host::ReferenceBatchedGemm<ADataType,
B1DataType, B1DataType,
CDataType, CDataType,
...@@ -129,243 +130,6 @@ using ReferenceGemm1Instance = ck::tensor_operation::host::ReferenceBatchedGemm< ...@@ -129,243 +130,6 @@ using ReferenceGemm1Instance = ck::tensor_operation::host::ReferenceBatchedGemm<
B1ElementOp, B1ElementOp,
CElementOp>; CElementOp>;
int main(int argc, char* argv[]) #include "run_batched_gemm_gemm_example.inc"
{
bool do_verification = true;
int init_method = 1;
bool time_kernel = false;
// GEMM shape
ck::index_t M = 1024;
ck::index_t N = 1024;
ck::index_t K = 64;
ck::index_t O = 128;
ck::index_t BatchCount = 4;
ck::index_t StrideA = -1;
ck::index_t StrideB0 = -1;
ck::index_t StrideB1 = -1;
ck::index_t StrideC = -1;
ck::index_t BatchStrideA = -1;
ck::index_t BatchStrideB0 = -1;
ck::index_t BatchStrideB1 = -1;
ck::index_t BatchStrideC = -1;
if(argc == 1)
{
// use default case
}
else if(argc == 4)
{
do_verification = std::stoi(argv[1]);
init_method = std::stoi(argv[2]);
time_kernel = std::stoi(argv[3]);
}
else if(argc == 9)
{
do_verification = std::stoi(argv[1]);
init_method = std::stoi(argv[2]);
time_kernel = std::stoi(argv[3]);
M = std::stoi(argv[4]);
N = std::stoi(argv[5]);
K = std::stoi(argv[6]);
O = std::stoi(argv[7]);
BatchCount = std::stoi(argv[8]);
}
else if(argc == 17)
{
do_verification = std::stoi(argv[1]);
init_method = std::stoi(argv[2]);
time_kernel = std::stoi(argv[3]);
M = std::stoi(argv[4]);
N = std::stoi(argv[5]);
K = std::stoi(argv[6]);
O = std::stoi(argv[7]);
BatchCount = std::stoi(argv[8]);
StrideA = std::stoi(argv[9]);
StrideB0 = std::stoi(argv[10]);
StrideB1 = std::stoi(argv[11]);
StrideC = std::stoi(argv[12]);
BatchStrideA = std::stoi(argv[13]);
BatchStrideB0 = std::stoi(argv[14]);
BatchStrideB1 = std::stoi(argv[15]);
BatchStrideC = std::stoi(argv[16]);
}
else
{
printf("arg1: verification (0=no, 1=yes)\n");
printf("arg2: initialization (0=no init, 1=integer value, 2=decimal value)\n");
printf("arg3: time kernel (0=no, 1=yes)\n");
printf("arg4 to 17: M, N, K, O, Batch, StrideA, StrideB0, StrideB1, StrideC, BatchStrideA, "
"BatchStrideB0, BatchStrideB1, BatchStrideC\n");
exit(0);
}
const int DefaultStrideA = ck::is_same_v<ALayout, Row> ? K : M;
const int DefaultStrideB0 = ck::is_same_v<B0Layout, Row> ? N : K;
const int DefaultStrideB1 = ck::is_same_v<B1Layout, Row> ? O : N;
const int DefaultStrideC = ck::is_same_v<CLayout, Row> ? O : M;
StrideA = (StrideA < 0) ? DefaultStrideA : StrideA;
StrideB0 = (StrideB0 < 0) ? DefaultStrideB0 : StrideB0;
StrideB1 = (StrideB1 < 0) ? DefaultStrideB1 : StrideB1;
StrideC = (StrideC < 0) ? DefaultStrideC : StrideC;
const int DefaultBatchStrideA = (ck::is_same_v<ALayout, Col> ? K : M) * StrideA;
const int DefaultBatchStrideB0 = (ck::is_same_v<B0Layout, Col> ? N : K) * StrideB0;
const int DefaultBatchStrideB1 = (ck::is_same_v<B1Layout, Col> ? O : N) * StrideB1;
const int DefaultBatchStrideC = (ck::is_same_v<CLayout, Col> ? O : M) * StrideC;
BatchStrideA = BatchStrideA < 0 ? DefaultBatchStrideA : BatchStrideA;
BatchStrideB0 = BatchStrideB0 < 0 ? DefaultBatchStrideB0 : BatchStrideB0;
BatchStrideB1 = BatchStrideB1 < 0 ? DefaultBatchStrideB1 : BatchStrideB1;
BatchStrideC = BatchStrideC < 0 ? DefaultBatchStrideC : BatchStrideC;
auto f_host_tensor_descriptor = [](std::size_t batch_count,
std::size_t row,
std::size_t col,
std::size_t stride,
std::size_t batch_stride,
auto layout) {
if(std::is_same<decltype(layout), Row>::value)
{
return HostTensorDescriptor(std::vector<std::size_t>({batch_count, row, col}),
std::vector<std::size_t>({batch_stride, stride, 1}));
}
else
{
return HostTensorDescriptor(std::vector<std::size_t>({batch_count, row, col}),
std::vector<std::size_t>({batch_stride, 1, stride}));
}
};
// C_m_o = A_m_k * B0_k_n * B1_n_o
Tensor<ADataType> a_g_m_k(
f_host_tensor_descriptor(BatchCount, M, K, StrideA, BatchStrideA, ALayout{}));
Tensor<B0DataType> b0_g_k_n(
f_host_tensor_descriptor(BatchCount, K, N, StrideB0, BatchStrideB0, B0Layout{}));
Tensor<B1DataType> b1_g_n_o(
f_host_tensor_descriptor(BatchCount, N, O, StrideB1, BatchStrideB1, B1Layout{}));
Tensor<CDataType> c_g_m_o_host_result(
f_host_tensor_descriptor(BatchCount, M, O, StrideC, BatchStrideC, CLayout{}));
Tensor<CDataType> c_g_m_o_device_result(
f_host_tensor_descriptor(BatchCount, M, O, StrideC, BatchStrideC, CLayout{}));
std::cout << "a_g_m_k: " << a_g_m_k.mDesc << std::endl;
std::cout << "b0_g_k_n: " << b0_g_k_n.mDesc << std::endl;
std::cout << "b1_g_n_o: " << b1_g_n_o.mDesc << std::endl;
std::cout << "c_g_m_o: " << c_g_m_o_host_result.mDesc << std::endl;
switch(init_method)
{
case 0: break;
case 1:
a_g_m_k.GenerateTensorValue(GeneratorTensor_2<ADataType>{-5, 5});
b0_g_k_n.GenerateTensorValue(GeneratorTensor_2<B0DataType>{-5, 5});
b1_g_n_o.GenerateTensorValue(GeneratorTensor_2<B1DataType>{-5, 5});
break;
case 2:
a_g_m_k.GenerateTensorValue(GeneratorTensor_3<ADataType>{0.0, 1.0});
b0_g_k_n.GenerateTensorValue(GeneratorTensor_3<B0DataType>{0.0, 1.0});
b1_g_n_o.GenerateTensorValue(GeneratorTensor_3<B1DataType>{-0.5, 0.5});
break;
default:
a_g_m_k.GenerateTensorValue(GeneratorTensor_1<ADataType>{1});
b0_g_k_n.GenerateTensorValue(GeneratorTensor_Sequential<1>{});
b1_g_n_o.GenerateTensorValue(GeneratorTensor_Diagonal<B1DataType>{});
}
DeviceMem a_g_m_k_device_buf(sizeof(ADataType) * a_g_m_k.mDesc.GetElementSize());
DeviceMem b0_g_k_n_device_buf(sizeof(B0DataType) * b0_g_k_n.mDesc.GetElementSize());
DeviceMem b1_g_n_o_device_buf(sizeof(B1DataType) * b1_g_n_o.mDesc.GetElementSize());
DeviceMem c_g_m_o_device_buf(sizeof(CDataType) * c_g_m_o_device_result.mDesc.GetElementSize());
a_g_m_k_device_buf.ToDevice(a_g_m_k.mData.data());
b0_g_k_n_device_buf.ToDevice(b0_g_k_n.mData.data());
b1_g_n_o_device_buf.ToDevice(b1_g_n_o.mData.data());
auto a_element_op = AElementOp{};
auto b0_element_op = B0ElementOp{};
auto acc0_element_op = Acc0ElementOp{};
auto b1_element_op = B1ElementOp{};
auto c_element_op = CElementOp{};
// do GEMM
auto gemm = DeviceGemmInstance{};
auto invoker = gemm.MakeInvoker();
auto argument =
gemm.MakeArgument(static_cast<ADataType*>(a_g_m_k_device_buf.GetDeviceBuffer()),
static_cast<B0DataType*>(b0_g_k_n_device_buf.GetDeviceBuffer()),
static_cast<B1DataType*>(b1_g_n_o_device_buf.GetDeviceBuffer()),
static_cast<CDataType*>(c_g_m_o_device_buf.GetDeviceBuffer()),
M,
N,
K,
O,
BatchCount,
StrideA,
StrideB0,
StrideB1,
StrideC,
BatchStrideA,
BatchStrideB0,
BatchStrideB1,
BatchStrideC,
a_element_op,
b0_element_op,
acc0_element_op,
b1_element_op,
c_element_op);
if(!gemm.IsSupportedArgument(argument))
{
std::cout << gemm.GetTypeString() << " does not support this problem" << std::endl;
return 0;
}
float ave_time = invoker.Run(argument, StreamConfig{nullptr, time_kernel});
std::size_t flop = (size_t(M) * N * K * 2 + size_t(M) * N * O * 2) * BatchCount;
std::size_t num_btype = (sizeof(ADataType) * M * K + sizeof(B0DataType) * K * N +
sizeof(B1DataType) * N * O + sizeof(CDataType) * M * O) *
BatchCount;
float tflops = static_cast<float>(flop) / 1.E9 / ave_time;
float gb_per_sec = num_btype / 1.E6 / ave_time;
std::cout << "Perf: " << ave_time << " ms, " << tflops << " TFlops, " << gb_per_sec << " GB/s, "
<< gemm.GetTypeString() << std::endl;
c_g_m_o_device_buf.FromDevice(c_g_m_o_device_result.mData.data());
if(do_verification)
{
// Output of Gemm0 is input A of Gemm1
Tensor<ADataType> a1_g_m_n(f_host_tensor_descriptor(BatchCount, M, N, N, M * N, Row{}));
auto ref_gemm0 = ReferenceGemm0Instance{};
auto ref_gemm0_invoker = ref_gemm0.MakeInvoker();
auto ref_gemm0_argument = ref_gemm0.MakeArgument(
a_g_m_k, b0_g_k_n, a1_g_m_n, a_element_op, b0_element_op, PassThrough{});
ref_gemm0_invoker.Run(ref_gemm0_argument);
auto ref_gemm1 = ReferenceGemm1Instance{};
auto ref_gemm1_invoker = ref_gemm1.MakeInvoker();
auto ref_gemm1_argument = ref_gemm1.MakeArgument(
a1_g_m_n, b1_g_n_o, c_g_m_o_host_result, PassThrough{}, b1_element_op, c_element_op);
ref_gemm1_invoker.Run(ref_gemm1_argument);
return ck::utils::check_err(c_g_m_o_device_result.mData, c_g_m_o_host_result.mData) ? 0 : 1;
}
return 0; int main(int argc, char* argv[]) { return run_batched_gemm_gemm_example(argc, argv) ? 0 : 1; }
}
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2022, Advanced Micro Devices, Inc. All rights reserved.
/*
Gemm + Gemm fused operation. Computes C_m_o = A_m_k * B0_k_n * B1_n_o
|------------|
Gemm0
|---------------------|
Gemm1
*/
#include <iostream>
#include <numeric>
#include <initializer_list>
#include <cstdlib>
#include "ck/ck.hpp"
#include "ck/tensor_operation/gpu/device/gemm_specialization.hpp"
#include "ck/tensor_operation/gpu/device/device_batched_gemm_gemm_xdl_cshuffle.hpp"
#include "ck/tensor_operation/gpu/element/element_wise_operation.hpp"
#include "ck/library/utility/check_err.hpp"
#include "ck/library/utility/device_memory.hpp"
#include "ck/library/utility/host_tensor.hpp"
#include "ck/library/utility/host_tensor_generator.hpp"
#include "ck/library/reference_tensor_operation/cpu/reference_batched_gemm.hpp"
template <ck::index_t... Is>
using S = ck::Sequence<Is...>;
using F32 = float;
using Row = ck::tensor_layout::gemm::RowMajor;
using Col = ck::tensor_layout::gemm::ColumnMajor;
using PassThrough = ck::tensor_operation::element_wise::PassThrough;
using ADataType = F32;
using B0DataType = F32;
using B1DataType = F32;
using AccDataType = F32;
using CShuffleDataType = F32;
using CDataType = F32;
using ALayout = Row;
using B0Layout = Col;
using B1Layout = Row;
using CLayout = Row;
using AElementOp = PassThrough;
using B0ElementOp = PassThrough;
using Acc0ElementOp = PassThrough;
using B1ElementOp = PassThrough;
using CElementOp = PassThrough;
static constexpr auto GemmDefault = ck::tensor_operation::device::GemmSpecialization::Default;
using DeviceGemmInstance = ck::tensor_operation::device::DeviceBatchedGemmGemm_Xdl_CShuffle<
ALayout,
B0Layout,
B1Layout,
CLayout,
ADataType,
B0DataType,
B1DataType,
CDataType,
AccDataType,
CShuffleDataType,
AElementOp,
B0ElementOp,
Acc0ElementOp,
B1ElementOp,
CElementOp,
GemmDefault,
1,
256,
128, // MPerBlock
128, // NPerBlock
16, // KPerBlock
128, // Gemm1NPerBlock
16, // Gemm1KPerBlock
4, // AK1
4, // BK1
1, // B1K1
32, // MPerXDL
32, // NPerXDL
1, // MXdlPerWave
4, // NXdlPerWave
4, // Gemm1NXdlPerWave
S<4, 64, 1>, // ABlockTransfer
S<1, 0, 2>,
S<1, 0, 2>,
2,
4,
4,
true,
S<4, 64, 1>, // BBlockTransfer
S<1, 0, 2>,
S<1, 0, 2>,
2,
4,
4,
true,
S<8, 32, 1>, // B1BlockTransfer
S<0, 2, 1>,
S<0, 2, 1>,
1,
4,
1,
false,
1, // CShuffleMXdlPerWavePerShuffle
2, // CShuffleNXdlPerWavePerShuffle
S<1, 16, 1, 16>, // CShuffleBlockTransferClusterLengths_MBlock_MPerBlock_NBlock_NPerBlock
4>; // CShuffleBlockTransferScalarPerVector_NPerBlock
using ReferenceGemm0Instance = ck::tensor_operation::host::ReferenceBatchedGemm<ADataType,
B0DataType,
ADataType,
AccDataType,
AElementOp,
B0ElementOp,
CElementOp>;
using ReferenceGemm1Instance = ck::tensor_operation::host::ReferenceBatchedGemm<ADataType,
B1DataType,
CDataType,
AccDataType,
AElementOp,
B1ElementOp,
CElementOp>;
#include "run_batched_gemm_gemm_example.inc"
int main(int argc, char* argv[]) { return run_batched_gemm_gemm_example(argc, argv) ? 0 : 1; }
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment