Skip to content
GitLab
Menu
Projects
Groups
Snippets
Loading...
Help
Help
Support
Community forum
Keyboard shortcuts
?
Submit feedback
Contribute to GitLab
Sign in / Register
Toggle navigation
Menu
Open sidebar
gaoqiong
composable_kernel
Commits
b89a88b5
"vscode:/vscode.git/clone" did not exist on "97dcc7b23428dd744d50ae1dc8c8973b8071c48c"
Commit
b89a88b5
authored
Sep 19, 2022
by
Adam Osewski
Browse files
Merge branch 'develop' into wavelet_model
parents
41d5fca7
43c898f6
Changes
261
Hide whitespace changes
Inline
Side-by-side
Showing
20 changed files
with
1547 additions
and
369 deletions
+1547
-369
example/23_softmax/softmax_blockwise.cpp
example/23_softmax/softmax_blockwise.cpp
+23
-17
example/24_batched_gemm/CMakeLists.txt
example/24_batched_gemm/CMakeLists.txt
+17
-0
example/24_batched_gemm/batched_gemm_xdl_bfp16.cpp
example/24_batched_gemm/batched_gemm_xdl_bfp16.cpp
+59
-0
example/24_batched_gemm/batched_gemm_xdl_fp16.cpp
example/24_batched_gemm/batched_gemm_xdl_fp16.cpp
+59
-0
example/24_batched_gemm/batched_gemm_xdl_fp32.cpp
example/24_batched_gemm/batched_gemm_xdl_fp32.cpp
+58
-0
example/24_batched_gemm/batched_gemm_xdl_int4.cpp
example/24_batched_gemm/batched_gemm_xdl_int4.cpp
+99
-0
example/24_batched_gemm/batched_gemm_xdl_int8.cpp
example/24_batched_gemm/batched_gemm_xdl_int8.cpp
+56
-0
example/24_batched_gemm/run_batched_gemm_example.inc
example/24_batched_gemm/run_batched_gemm_example.inc
+240
-0
example/24_batched_gemm_e_permute/CMakeLists.txt
example/24_batched_gemm_e_permute/CMakeLists.txt
+0
-2
example/30_grouped_convnd_fwd_bias_relu_add/CMakeLists.txt
example/30_grouped_convnd_fwd_bias_relu_add/CMakeLists.txt
+4
-4
example/30_grouped_convnd_fwd_bias_relu_add/grouped_convnd_fwd_bias_relu_add_common.hpp
...bias_relu_add/grouped_convnd_fwd_bias_relu_add_common.hpp
+51
-24
example/30_grouped_convnd_fwd_bias_relu_add/grouped_convnd_fwd_bias_relu_add_xdl_bf16.cpp
...as_relu_add/grouped_convnd_fwd_bias_relu_add_xdl_bf16.cpp
+35
-20
example/30_grouped_convnd_fwd_bias_relu_add/grouped_convnd_fwd_bias_relu_add_xdl_fp16.cpp
...as_relu_add/grouped_convnd_fwd_bias_relu_add_xdl_fp16.cpp
+38
-23
example/30_grouped_convnd_fwd_bias_relu_add/grouped_convnd_fwd_bias_relu_add_xdl_fp32.cpp
...as_relu_add/grouped_convnd_fwd_bias_relu_add_xdl_fp32.cpp
+35
-20
example/30_grouped_convnd_fwd_bias_relu_add/grouped_convnd_fwd_bias_relu_add_xdl_int4.cpp
...as_relu_add/grouped_convnd_fwd_bias_relu_add_xdl_int4.cpp
+459
-0
example/30_grouped_convnd_fwd_bias_relu_add/grouped_convnd_fwd_bias_relu_add_xdl_int8.cpp
...as_relu_add/grouped_convnd_fwd_bias_relu_add_xdl_int8.cpp
+35
-20
example/31_batched_gemm_gemm/CMakeLists.txt
example/31_batched_gemm_gemm/CMakeLists.txt
+7
-0
example/31_batched_gemm_gemm/batched_gemm_gemm_xdl_bf16.cpp
example/31_batched_gemm_gemm/batched_gemm_gemm_xdl_bf16.cpp
+135
-0
example/31_batched_gemm_gemm/batched_gemm_gemm_xdl_fp16.cpp
example/31_batched_gemm_gemm/batched_gemm_gemm_xdl_fp16.cpp
+3
-239
example/31_batched_gemm_gemm/batched_gemm_gemm_xdl_fp32.cpp
example/31_batched_gemm_gemm/batched_gemm_gemm_xdl_fp32.cpp
+134
-0
No files found.
example/23_softmax/softmax_blockwise.cpp
View file @
b89a88b5
...
...
@@ -9,37 +9,41 @@
#include "ck/ck.hpp"
#include "ck/utility/reduction_enums.hpp"
#include "ck/tensor_operation/gpu/device/device_softmax.hpp"
#include "ck/tensor_operation/gpu/device/
impl/
device_softmax
_impl
.hpp"
#include "ck/tensor_operation/gpu/device/reduction_operator_mapping.hpp"
#include "ck/tensor_operation/gpu/element/element_wise_operation.hpp"
#include "ck/library/utility/check_err.hpp"
#include "ck/library/utility/device_memory.hpp"
#include "ck/library/utility/host_common_util.hpp"
#include "ck/library/reference_tensor_operation/cpu/reference_softmax.hpp"
using
namespace
ck
;
using
namespace
ck
::
tensor_operation
::
device
;
using
InDataType
=
ck
::
half_t
;
using
OutDataType
=
ck
::
half_t
;
using
AccDataType
=
float
;
using
PassThrough
=
ck
::
tensor_operation
::
element_wise
::
PassThrough
;
constexpr
int
Rank
=
3
;
constexpr
int
NumReduceDim
=
1
;
using
DeviceInstance
=
DeviceSoftmax
<
InDataType
,
AccDataType
,
OutDataType
,
Rank
,
NumReduceDim
,
256
,
// BlockSize
8
,
// ClusterM
32
,
// ClusterK
1
,
// SliceM
8
,
// SliceK
1
,
// SrcVecDim (0=M, 1=K)
8
,
// SrcScalarPerVector
8
>
;
// OutScalarPerVector
using
DeviceInstance
=
DeviceSoftmaxImpl
<
InDataType
,
AccDataType
,
OutDataType
,
PassThrough
,
// InElementwiseOperation
PassThrough
,
// AccElementwiseOperation
Rank
,
NumReduceDim
,
256
,
// BlockSize
8
,
// ClusterM
32
,
// ClusterK
1
,
// SliceM
8
,
// SliceK
1
,
// SrcVecDim (0=M, 1=K)
8
,
// SrcScalarPerVector
8
>
;
// OutScalarPerVector
static
struct
option
long_options
[]
=
{{
"inLengths"
,
required_argument
,
nullptr
,
'D'
},
{
"verify"
,
required_argument
,
nullptr
,
'v'
},
...
...
@@ -196,7 +200,7 @@ int main(int argc, char* argv[])
if
(
args
.
do_verification
)
{
using
ReferenceInstance
=
tensor_operation
::
host
::
ReferenceSoftmax
<
InDataType
,
OutDataType
,
AccDataType
>
;
ck
::
tensor_operation
::
host
::
ReferenceSoftmax
<
InDataType
,
OutDataType
,
AccDataType
>
;
ReferenceInstance
ref
;
auto
ref_arg
=
ref
.
MakeArgument
(
in
,
out_ref
,
alpha
,
beta
,
reduceDims
);
auto
invoker
=
ref
.
MakeInvoker
();
...
...
@@ -220,7 +224,9 @@ int main(int argc, char* argv[])
&
alpha
,
&
beta
,
in_dev
.
GetDeviceBuffer
(),
out_dev
.
GetDeviceBuffer
());
out_dev
.
GetDeviceBuffer
(),
PassThrough
{},
PassThrough
{});
if
(
!
device_instance
.
IsSupportedArgument
(
argument_ptr
.
get
()))
{
...
...
example/24_batched_gemm/CMakeLists.txt
0 → 100644
View file @
b89a88b5
add_custom_target
(
example_batched_gemm_xdl
)
add_example_executable
(
example_batched_gemm_xdl_fp32 batched_gemm_xdl_fp32.cpp
)
add_example_executable
(
example_batched_gemm_xdl_fp16 batched_gemm_xdl_fp16.cpp
)
add_example_executable
(
example_batched_gemm_xdl_bfp16 batched_gemm_xdl_bfp16.cpp
)
add_example_executable
(
example_batched_gemm_xdl_int8 batched_gemm_xdl_int8.cpp
)
add_dependencies
(
example_batched_gemm_xdl
example_batched_gemm_xdl_fp32
example_batched_gemm_xdl_fp16
example_batched_gemm_xdl_bfp16
example_batched_gemm_xdl_int8
)
if
(
USE_BITINT_EXTENSION_INT4
)
add_example_executable
(
example_batched_gemm_xdl_int4 batched_gemm_xdl_int4.cpp
)
add_dependencies
(
example_batched_gemm_xdl example_batched_gemm_xdl_int4
)
endif
()
example/24_batched_gemm/batched_gemm_xdl_bfp16.cpp
0 → 100644
View file @
b89a88b5
#include <iostream>
#include <numeric>
#include <initializer_list>
#include <cstdlib>
#include "ck/ck.hpp"
#include "ck/tensor_operation/gpu/device/tensor_layout.hpp"
#include "ck/tensor_operation/gpu/device/gemm_specialization.hpp"
#include "ck/tensor_operation/gpu/device/device_batched_gemm_multi_d_xdl.hpp"
#include "ck/tensor_operation/gpu/element/element_wise_operation.hpp"
#include "ck/library/utility/check_err.hpp"
#include "ck/library/utility/device_memory.hpp"
#include "ck/library/utility/host_tensor.hpp"
#include "ck/library/utility/host_tensor_generator.hpp"
#include "ck/library/reference_tensor_operation/cpu/reference_batched_gemm.hpp"
#include "ck/library/utility/literals.hpp"
template
<
ck
::
index_t
...
Is
>
using
S
=
ck
::
Sequence
<
Is
...
>
;
using
BF16
=
ck
::
bhalf_t
;
using
F32
=
float
;
using
Row
=
ck
::
tensor_layout
::
gemm
::
RowMajor
;
using
Col
=
ck
::
tensor_layout
::
gemm
::
ColumnMajor
;
using
PassThrough
=
ck
::
tensor_operation
::
element_wise
::
PassThrough
;
using
ADataType
=
BF16
;
using
BDataType
=
BF16
;
using
AccDataType
=
F32
;
using
CShuffleDataType
=
BF16
;
using
DsDataType
=
ck
::
Tuple
<>
;
using
EDataType
=
BF16
;
using
ALayout
=
Row
;
using
BLayout
=
Col
;
using
DsLayout
=
ck
::
Tuple
<>
;
using
ELayout
=
Row
;
using
AElementOp
=
PassThrough
;
using
BElementOp
=
PassThrough
;
using
CDEElementOp
=
PassThrough
;
static
constexpr
auto
GemmDefault
=
ck
::
tensor_operation
::
device
::
GemmSpecialization
::
Default
;
// clang-format off
using
DeviceGemmInstance
=
ck
::
tensor_operation
::
device
::
DeviceBatchedGemmMultiD_Xdl
//######| ALayout| BLayout| DsLayout| ELayout| AData| BData| AccData| CShuffle| DsData| EData| A| B| CDE| GEMM| NumGemmK| Block| MPer| NPer| KPer| AK1| BK1| MPer| NPer| MXdl| NXdl| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockLds| BBlockTransfer| BBlockTransfer| BBlockTransfer| BlockTransfer| BBlockTransfer| BBlockTransfer| BBlockLds| CShuffle| CShuffle| CBlockTransferClusterLengths| CBlockTransfer|
//######| | | | | Type| Type| Type| DataType| Type| Type| Elementwise| Elementwise| Elementwise| Spacialization| Prefetch| Size| Block| Block| Block| | | XDL| XDL| Per| Per| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| AddExtraM| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| AddExtraN| MXdlPerWave| NXdlPerWave| _MBlock_MWaveMPerXdl| ScalarPerVector|
//######| | | | | | | | | | | Operation| Operation| Operation| | Stage| | | | | | | | | Wave| Wave| Lengths_K0_M_K1| ArrangeOrder| | | PerVector| PerVector_K1| | Lengths_K0_N_K1| ArrangeOrder| | | PerVector| PerVector_K1| | PerShuffle| PerShuffle| _NBlock_NWaveNPerXdl| _NWaveNPerXdl|
//######| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
<
ALayout
,
BLayout
,
DsLayout
,
ELayout
,
ADataType
,
BDataType
,
AccDataType
,
CShuffleDataType
,
DsDataType
,
EDataType
,
AElementOp
,
BElementOp
,
CDEElementOp
,
GemmDefault
,
1
,
256
,
256
,
128
,
32
,
8
,
8
,
32
,
32
,
4
,
2
,
S
<
4
,
64
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
8
,
8
,
1
,
S
<
4
,
64
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
8
,
8
,
1
,
1
,
1
,
S
<
1
,
32
,
1
,
8
>
,
8
>
;
// clang-format on
#include "run_batched_gemm_example.inc"
int
main
(
int
argc
,
char
*
argv
[])
{
return
!
run_batched_gemm_example
(
argc
,
argv
);
}
example/24_batched_gemm/batched_gemm_xdl_fp16.cpp
0 → 100644
View file @
b89a88b5
#include <iostream>
#include <numeric>
#include <initializer_list>
#include <cstdlib>
#include "ck/ck.hpp"
#include "ck/tensor_operation/gpu/device/tensor_layout.hpp"
#include "ck/tensor_operation/gpu/device/gemm_specialization.hpp"
#include "ck/tensor_operation/gpu/device/device_batched_gemm_multi_d_xdl.hpp"
#include "ck/tensor_operation/gpu/element/element_wise_operation.hpp"
#include "ck/library/utility/check_err.hpp"
#include "ck/library/utility/device_memory.hpp"
#include "ck/library/utility/host_tensor.hpp"
#include "ck/library/utility/host_tensor_generator.hpp"
#include "ck/library/reference_tensor_operation/cpu/reference_batched_gemm.hpp"
#include "ck/library/utility/literals.hpp"
template
<
ck
::
index_t
...
Is
>
using
S
=
ck
::
Sequence
<
Is
...
>
;
using
F16
=
ck
::
half_t
;
using
F32
=
float
;
using
Row
=
ck
::
tensor_layout
::
gemm
::
RowMajor
;
using
Col
=
ck
::
tensor_layout
::
gemm
::
ColumnMajor
;
using
PassThrough
=
ck
::
tensor_operation
::
element_wise
::
PassThrough
;
using
ADataType
=
F16
;
using
BDataType
=
F16
;
using
AccDataType
=
F32
;
using
CShuffleDataType
=
F16
;
using
DsDataType
=
ck
::
Tuple
<>
;
using
EDataType
=
F16
;
using
ALayout
=
Row
;
using
BLayout
=
Col
;
using
DsLayout
=
ck
::
Tuple
<>
;
using
ELayout
=
Row
;
using
AElementOp
=
PassThrough
;
using
BElementOp
=
PassThrough
;
using
CDEElementOp
=
PassThrough
;
static
constexpr
auto
GemmDefault
=
ck
::
tensor_operation
::
device
::
GemmSpecialization
::
Default
;
// clang-format off
using
DeviceGemmInstance
=
ck
::
tensor_operation
::
device
::
DeviceBatchedGemmMultiD_Xdl
//######| ALayout| BLayout| DsLayout| ELayout| AData| BData| AccData| CShuffle| DsData| EData| A| B| CDE| GEMM| NumGemmK| Block| MPer| NPer| KPer| AK1| BK1| MPer| NPer| MXdl| NXdl| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockLds| BBlockTransfer| BBlockTransfer| BBlockTransfer| BlockTransfer| BBlockTransfer| BBlockTransfer| BBlockLds| CShuffle| CShuffle| CBlockTransferClusterLengths| CBlockTransfer|
//######| | | | | Type| Type| Type| DataType| Type| Type| Elementwise| Elementwise| Elementwise| Spacialization| Prefetch| Size| Block| Block| Block| | | XDL| XDL| Per| Per| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| AddExtraM| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| AddExtraN| MXdlPerWave| NXdlPerWave| _MBlock_MWaveMPerXdl| ScalarPerVector|
//######| | | | | | | | | | | Operation| Operation| Operation| | Stage| | | | | | | | | Wave| Wave| Lengths_K0_M_K1| ArrangeOrder| | | PerVector| PerVector_K1| | Lengths_K0_N_K1| ArrangeOrder| | | PerVector| PerVector_K1| | PerShuffle| PerShuffle| _NBlock_NWaveNPerXdl| _NWaveNPerXdl|
//######| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
<
ALayout
,
BLayout
,
DsLayout
,
ELayout
,
ADataType
,
BDataType
,
AccDataType
,
CShuffleDataType
,
DsDataType
,
EDataType
,
AElementOp
,
BElementOp
,
CDEElementOp
,
GemmDefault
,
1
,
256
,
256
,
128
,
32
,
8
,
8
,
32
,
32
,
4
,
2
,
S
<
4
,
64
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
8
,
8
,
1
,
S
<
4
,
64
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
8
,
8
,
1
,
1
,
1
,
S
<
1
,
32
,
1
,
8
>
,
8
>
;
// clang-format on
#include "run_batched_gemm_example.inc"
int
main
(
int
argc
,
char
*
argv
[])
{
return
!
run_batched_gemm_example
(
argc
,
argv
);
}
example/24_batched_gemm/batched_gemm_xdl_fp32.cpp
0 → 100644
View file @
b89a88b5
#include <iostream>
#include <numeric>
#include <initializer_list>
#include <cstdlib>
#include "ck/ck.hpp"
#include "ck/tensor_operation/gpu/device/tensor_layout.hpp"
#include "ck/tensor_operation/gpu/device/gemm_specialization.hpp"
#include "ck/tensor_operation/gpu/device/device_batched_gemm_multi_d_xdl.hpp"
#include "ck/tensor_operation/gpu/element/element_wise_operation.hpp"
#include "ck/library/utility/check_err.hpp"
#include "ck/library/utility/device_memory.hpp"
#include "ck/library/utility/host_tensor.hpp"
#include "ck/library/utility/host_tensor_generator.hpp"
#include "ck/library/reference_tensor_operation/cpu/reference_batched_gemm.hpp"
#include "ck/library/utility/literals.hpp"
template
<
ck
::
index_t
...
Is
>
using
S
=
ck
::
Sequence
<
Is
...
>
;
using
F32
=
float
;
using
Row
=
ck
::
tensor_layout
::
gemm
::
RowMajor
;
using
Col
=
ck
::
tensor_layout
::
gemm
::
ColumnMajor
;
using
PassThrough
=
ck
::
tensor_operation
::
element_wise
::
PassThrough
;
using
ADataType
=
F32
;
using
BDataType
=
F32
;
using
AccDataType
=
F32
;
using
CShuffleDataType
=
F32
;
using
DsDataType
=
ck
::
Tuple
<>
;
using
EDataType
=
F32
;
using
ALayout
=
Row
;
using
BLayout
=
Col
;
using
DsLayout
=
ck
::
Tuple
<>
;
using
ELayout
=
Row
;
using
AElementOp
=
PassThrough
;
using
BElementOp
=
PassThrough
;
using
CDEElementOp
=
PassThrough
;
static
constexpr
auto
GemmDefault
=
ck
::
tensor_operation
::
device
::
GemmSpecialization
::
Default
;
// clang-format off
using
DeviceGemmInstance
=
ck
::
tensor_operation
::
device
::
DeviceBatchedGemmMultiD_Xdl
//######| ALayout| BLayout| DsLayout| ELayout| AData| BData| AccData| CShuffle| DsData| EData| A| B| CDE| GEMM| NumGemmK| Block| MPer| NPer| KPer| AK1| BK1| MPer| NPer| MXdl| NXdl| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockLds| BBlockTransfer| BBlockTransfer| BBlockTransfer| BlockTransfer| BBlockTransfer| BBlockTransfer| BBlockLds| CShuffle| CShuffle| CBlockTransferClusterLengths| CBlockTransfer|
//######| | | | | Type| Type| Type| DataType| Type| Type| Elementwise| Elementwise| Elementwise| Spacialization| Prefetch| Size| Block| Block| Block| | | XDL| XDL| Per| Per| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| AddExtraM| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| AddExtraN| MXdlPerWave| NXdlPerWave| _MBlock_MWaveMPerXdl| ScalarPerVector|
//######| | | | | | | | | | | Operation| Operation| Operation| | Stage| | | | | | | | | Wave| Wave| Lengths_K0_M_K1| ArrangeOrder| | | PerVector| PerVector_K1| | Lengths_K0_N_K1| ArrangeOrder| | | PerVector| PerVector_K1| | PerShuffle| PerShuffle| _NBlock_NWaveNPerXdl| _NWaveNPerXdl|
//######| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
<
ALayout
,
BLayout
,
DsLayout
,
ELayout
,
ADataType
,
BDataType
,
AccDataType
,
CShuffleDataType
,
DsDataType
,
EDataType
,
AElementOp
,
BElementOp
,
CDEElementOp
,
GemmDefault
,
1
,
256
,
256
,
128
,
16
,
4
,
4
,
32
,
32
,
4
,
2
,
S
<
4
,
64
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
4
,
4
,
1
,
S
<
4
,
64
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
4
,
4
,
1
,
1
,
1
,
S
<
1
,
32
,
1
,
8
>
,
4
>
;
// clang-format on
#include "run_batched_gemm_example.inc"
int
main
(
int
argc
,
char
*
argv
[])
{
return
!
run_batched_gemm_example
(
argc
,
argv
);
}
example/24_batched_gemm/batched_gemm_xdl_int4.cpp
0 → 100644
View file @
b89a88b5
#include <iostream>
#include <numeric>
#include <initializer_list>
#include <cstdlib>
#include "ck/ck.hpp"
#include "ck/tensor_operation/gpu/device/tensor_layout.hpp"
#include "ck/tensor_operation/gpu/device/gemm_specialization.hpp"
#include "ck/tensor_operation/gpu/device/device_batched_gemm_multi_d_xdl.hpp"
#include "ck/tensor_operation/gpu/element/element_wise_operation.hpp"
#include "ck/library/utility/check_err.hpp"
#include "ck/library/utility/device_memory.hpp"
#include "ck/library/utility/host_tensor.hpp"
#include "ck/library/utility/host_tensor_generator.hpp"
#include "ck/library/reference_tensor_operation/cpu/reference_batched_gemm.hpp"
#include "ck/library/utility/literals.hpp"
template
<
ck
::
index_t
...
Is
>
using
S
=
ck
::
Sequence
<
Is
...
>
;
using
Row
=
ck
::
tensor_layout
::
gemm
::
RowMajor
;
using
Col
=
ck
::
tensor_layout
::
gemm
::
ColumnMajor
;
using
PassThrough
=
ck
::
tensor_operation
::
element_wise
::
PassThrough
;
using
ADataType
=
ck
::
int4_t
;
using
BDataType
=
ck
::
int4_t
;
using
AccDataType
=
int32_t
;
using
CShuffleDataType
=
int32_t
;
using
DsDataType
=
ck
::
Tuple
<>
;
using
EDataType
=
ck
::
int4_t
;
using
KernelADataType
=
int8_t
;
using
KernelBDataType
=
int8_t
;
using
KernelEDataType
=
int8_t
;
using
ALayout
=
Row
;
using
BLayout
=
Col
;
using
DsLayout
=
ck
::
Tuple
<>
;
using
ELayout
=
Row
;
using
AElementOp
=
PassThrough
;
using
BElementOp
=
PassThrough
;
using
CDEElementOp
=
PassThrough
;
static
constexpr
auto
GemmDefault
=
ck
::
tensor_operation
::
device
::
GemmSpecialization
::
Default
;
using
DeviceGemmInstance
=
ck
::
tensor_operation
::
device
::
DeviceBatchedGemmMultiD_Xdl
// clang-format off
<
ALayout
,
//ALayout
BLayout
,
//BLayout
DsLayout
,
//DsLayout
ELayout
,
//ELayout
KernelADataType
,
//ADataType
KernelBDataType
,
//BDataType
AccDataType
,
//AccDataType
CShuffleDataType
,
//CShuffleDataType
DsDataType
,
//DsDataType
KernelEDataType
,
//EDataType
AElementOp
,
//AElementwiseOperation
BElementOp
,
//BElementwiseOperation
CDEElementOp
,
//CDEElementwiseOperation
GemmDefault
,
//GEMMSpecialization
1
,
// NumGemmKPrefetchStage
256
,
// BlockSize
256
,
// MPerBlock
128
,
// NPerBlock
64
,
// KPerBlock
16
,
// AK1
16
,
// BK1
32
,
// MPerXdl
32
,
// NPerXdl
4
,
// MXdlPerWave
2
,
// NXdlPerWave
S
<
4
,
64
,
1
>
,
// ABlockTransfer ThreadCluster Lengths_K0_M_K1
S
<
1
,
0
,
2
>
,
// ABlockTransfer ThreadCluster ArrangeOrder
S
<
1
,
0
,
2
>
,
// ABlockTransfer SrcAccessOrder
2
,
// ABlockTransfer SrcVectorDim
16
,
// ABlockTransfer SrcScalarPerVector
16
,
// ABlockTransfer DstScalarPerVector_K1
1
,
// ABlockLdsExtraM
S
<
4
,
64
,
1
>
,
// BBlockTransfer ThreadCluster Lengths_K0_N_K1
S
<
1
,
0
,
2
>
,
// BBlockTransfer ThreadCluster ArrangeOrder
S
<
1
,
0
,
2
>
,
// BBlockTransfer SrcAccessOrder
2
,
// BBlockTransfer SrcVectorDim
16
,
// BBlockTransfer SrcScalarPerVector
16
,
// BBlockTransfer DstScalarPerVector_K1
1
,
// BBlockLdsExtraN
1
,
// CShuffleMXdlPerWavePerShuffle
1
,
// CShuffleNXdlPerWavePerShuffle
S
<
1
,
64
,
1
,
4
>
,
// CBlockTransferClusterLengths_MBlock_MWaveMPerXdl_NBlock_NWaveNPerXdl
16
>
;
// CBlockTransferScalarPerVector_NWaveNPerXdl
// clang-format on
#define BUILD_INT4_EXAMPLE
#include "run_batched_gemm_example.inc"
int
main
(
int
argc
,
char
*
argv
[])
{
return
!
run_batched_gemm_example
(
argc
,
argv
);
}
example/24_batched_gemm/batched_gemm_xdl_int8.cpp
0 → 100644
View file @
b89a88b5
#include <iostream>
#include <numeric>
#include <initializer_list>
#include <cstdlib>
#include "ck/ck.hpp"
#include "ck/tensor_operation/gpu/device/tensor_layout.hpp"
#include "ck/tensor_operation/gpu/device/gemm_specialization.hpp"
#include "ck/tensor_operation/gpu/device/device_batched_gemm_multi_d_xdl.hpp"
#include "ck/tensor_operation/gpu/element/element_wise_operation.hpp"
#include "ck/library/utility/check_err.hpp"
#include "ck/library/utility/device_memory.hpp"
#include "ck/library/utility/host_tensor.hpp"
#include "ck/library/utility/host_tensor_generator.hpp"
#include "ck/library/reference_tensor_operation/cpu/reference_batched_gemm.hpp"
#include "ck/library/utility/literals.hpp"
template
<
ck
::
index_t
...
Is
>
using
S
=
ck
::
Sequence
<
Is
...
>
;
using
Row
=
ck
::
tensor_layout
::
gemm
::
RowMajor
;
using
Col
=
ck
::
tensor_layout
::
gemm
::
ColumnMajor
;
using
PassThrough
=
ck
::
tensor_operation
::
element_wise
::
PassThrough
;
using
ADataType
=
int8_t
;
using
BDataType
=
int8_t
;
using
AccDataType
=
int32_t
;
using
CShuffleDataType
=
int8_t
;
using
DsDataType
=
ck
::
Tuple
<>
;
using
EDataType
=
int8_t
;
using
ALayout
=
Row
;
using
BLayout
=
Col
;
using
DsLayout
=
ck
::
Tuple
<>
;
using
ELayout
=
Row
;
using
AElementOp
=
PassThrough
;
using
BElementOp
=
PassThrough
;
using
CDEElementOp
=
PassThrough
;
static
constexpr
auto
GemmDefault
=
ck
::
tensor_operation
::
device
::
GemmSpecialization
::
Default
;
// clang-format off
using
DeviceGemmInstance
=
ck
::
tensor_operation
::
device
::
DeviceBatchedGemmMultiD_Xdl
//######| ALayout| BLayout| DsLayout| ELayout| AData| BData| AccData| CShuffle| DsData| EData| A| B| CDE| GEMM| NumGemmK| Block| MPer| NPer| KPer| AK1| BK1| MPer| NPer| MXdl| NXdl| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockLds| BBlockTransfer| BBlockTransfer| BBlockTransfer| BlockTransfer| BBlockTransfer| BBlockTransfer| BBlockLds| CShuffle| CShuffle| CBlockTransferClusterLengths| CBlockTransfer|
//######| | | | | Type| Type| Type| DataType| Type| Type| Elementwise| Elementwise| Elementwise| Spacialization| Prefetch| Size| Block| Block| Block| | | XDL| XDL| Per| Per| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| AddExtraM| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| AddExtraN| MXdlPerWave| NXdlPerWave| _MBlock_MWaveMPerXdl| ScalarPerVector|
//######| | | | | | | | | | | Operation| Operation| Operation| | Stage| | | | | | | | | Wave| Wave| Lengths_K0_M_K1| ArrangeOrder| | | PerVector| PerVector_K1| | Lengths_K0_N_K1| ArrangeOrder| | | PerVector| PerVector_K1| | PerShuffle| PerShuffle| _NBlock_NWaveNPerXdl| _NWaveNPerXdl|
//######| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
<
ALayout
,
BLayout
,
DsLayout
,
ELayout
,
ADataType
,
BDataType
,
AccDataType
,
CShuffleDataType
,
DsDataType
,
EDataType
,
AElementOp
,
BElementOp
,
CDEElementOp
,
GemmDefault
,
1
,
256
,
256
,
128
,
64
,
16
,
16
,
32
,
32
,
4
,
2
,
S
<
4
,
64
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
16
,
16
,
1
,
S
<
4
,
64
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
16
,
16
,
1
,
1
,
1
,
S
<
1
,
64
,
1
,
4
>
,
16
>
;
// clang-format on
#include "run_batched_gemm_example.inc"
int
main
(
int
argc
,
char
*
argv
[])
{
return
!
run_batched_gemm_example
(
argc
,
argv
);
}
example/24_batched_gemm/run_batched_gemm_example.inc
0 → 100644
View file @
b89a88b5
#include <random>
#pragma once
struct
ProblemSize
final
{
ck
::
index_t
M
=
3840
;
ck
::
index_t
N
=
4096
;
ck
::
index_t
K
=
4096
;
ck
::
index_t
stride_A
=
K
;
ck
::
index_t
stride_B
=
K
;
ck
::
index_t
stride_C
=
N
;
ck
::
index_t
batch_stride_A
=
M
*
K
;
ck
::
index_t
batch_stride_B
=
K
*
N
;
ck
::
index_t
batch_stride_C
=
M
*
N
;
ck
::
index_t
batch_count
=
16
;
};
struct
ExecutionConfig
final
{
bool
do_verification
=
true
;
int
init_method
=
1
;
bool
time_kernel
=
false
;
};
bool
run_batched_gemm
(
const
ProblemSize
&
problem_size
,
const
ExecutionConfig
&
config
)
{
using
namespace
ck
::
literals
;
#if defined(BUILD_INT4_EXAMPLE) && defined(CK_EXPERIMENTAL_BIT_INT_EXTENSION_INT4)
static_assert
(
sizeof
(
ck
::
int4_t
)
==
sizeof
(
int8_t
));
static_assert
(
sizeof
(
ADataType
)
==
sizeof
(
KernelADataType
));
static_assert
(
sizeof
(
BDataType
)
==
sizeof
(
KernelBDataType
));
static_assert
(
sizeof
(
EDataType
)
==
sizeof
(
KernelEDataType
));
#endif
auto
&
[
M
,
N
,
K
,
stride_A
,
stride_B
,
stride_C
,
batch_stride_A
,
batch_stride_B
,
batch_stride_C
,
batch_count
]
=
problem_size
;
// GEMM shape
auto
f_host_tensor_descriptor
=
[](
std
::
size_t
batch_count_
,
std
::
size_t
row
,
std
::
size_t
col
,
std
::
size_t
stride
,
std
::
size_t
batch_stride
,
auto
layout
)
{
if
(
std
::
is_same
<
decltype
(
layout
),
ck
::
tensor_layout
::
gemm
::
RowMajor
>::
value
)
{
return
HostTensorDescriptor
(
std
::
vector
<
std
::
size_t
>
({
batch_count_
,
row
,
col
}),
std
::
vector
<
std
::
size_t
>
({
batch_stride
,
stride
,
1
}));
}
else
{
return
HostTensorDescriptor
(
std
::
vector
<
std
::
size_t
>
({
batch_count_
,
row
,
col
}),
std
::
vector
<
std
::
size_t
>
({
batch_stride
,
1
,
stride
}));
}
};
Tensor
<
ADataType
>
a_g_m_k
(
f_host_tensor_descriptor
(
batch_count
,
M
,
K
,
stride_A
,
batch_stride_A
,
ALayout
{}));
Tensor
<
BDataType
>
b_g_k_n
(
f_host_tensor_descriptor
(
batch_count
,
K
,
N
,
stride_B
,
batch_stride_B
,
BLayout
{}));
#ifdef BUILD_INT4_EXAMPLE
Tensor
<
KernelEDataType
>
e_g_m_n_device_result
(
f_host_tensor_descriptor
(
batch_count
,
M
,
N
,
stride_C
,
batch_stride_C
,
ELayout
{}));
#else
Tensor
<
EDataType
>
e_g_m_n_device_result
(
f_host_tensor_descriptor
(
batch_count
,
M
,
N
,
stride_C
,
batch_stride_C
,
ELayout
{}));
#endif
std
::
cout
<<
"a_g_m_k: "
<<
a_g_m_k
.
mDesc
<<
std
::
endl
;
std
::
cout
<<
"b_g_k_n: "
<<
b_g_k_n
.
mDesc
<<
std
::
endl
;
std
::
cout
<<
"e_g_m_n: "
<<
e_g_m_n_device_result
.
mDesc
<<
std
::
endl
;
switch
(
config
.
init_method
)
{
case
0
:
break
;
case
1
:
a_g_m_k
.
GenerateTensorValue
(
GeneratorTensor_2
<
ADataType
>
{
-
5
,
5
});
b_g_k_n
.
GenerateTensorValue
(
GeneratorTensor_2
<
BDataType
>
{
-
5
,
5
});
break
;
default
:
a_g_m_k
.
GenerateTensorValue
(
GeneratorTensor_3
<
ADataType
>
{
0.0
,
1.0
});
b_g_k_n
.
GenerateTensorValue
(
GeneratorTensor_3
<
BDataType
>
{
-
0.5
,
0.5
});
break
;
}
DeviceMem
a_device_buf
(
sizeof
(
ADataType
)
*
a_g_m_k
.
mDesc
.
GetElementSpaceSize
());
DeviceMem
b_device_buf
(
sizeof
(
BDataType
)
*
b_g_k_n
.
mDesc
.
GetElementSpaceSize
());
DeviceMem
c_device_buf
(
sizeof
(
EDataType
)
*
e_g_m_n_device_result
.
mDesc
.
GetElementSpaceSize
());
#ifdef BUILD_INT4_EXAMPLE
const
Tensor
<
KernelADataType
>
a_g_m_k_converted
(
a_g_m_k
);
const
Tensor
<
KernelBDataType
>
b_g_k_n_converted
(
b_g_k_n
);
a_device_buf
.
ToDevice
(
a_g_m_k_converted
.
mData
.
data
());
b_device_buf
.
ToDevice
(
b_g_k_n_converted
.
mData
.
data
());
#else
a_device_buf
.
ToDevice
(
a_g_m_k
.
mData
.
data
());
b_device_buf
.
ToDevice
(
b_g_k_n
.
mData
.
data
());
#endif
auto
a_element_op
=
AElementOp
{};
auto
b_element_op
=
BElementOp
{};
auto
cde_element_op
=
CDEElementOp
{};
auto
gemm
=
DeviceGemmInstance
{};
auto
invoker
=
gemm
.
MakeInvoker
();
// do GEMM
auto
argument
=
gemm
.
MakeArgument
(
a_device_buf
.
GetDeviceBuffer
(),
b_device_buf
.
GetDeviceBuffer
(),
{},
c_device_buf
.
GetDeviceBuffer
(),
M
,
N
,
K
,
batch_count
,
stride_A
,
stride_B
,
{},
stride_C
,
batch_stride_A
,
batch_stride_B
,
{},
batch_stride_C
,
a_element_op
,
b_element_op
,
cde_element_op
);
if
(
!
gemm
.
IsSupportedArgument
(
argument
))
{
throw
std
::
runtime_error
(
"wrong! device_gemm with the specified compilation parameters does "
"not support this GEMM problem"
);
}
invoker
.
Run
(
argument
,
StreamConfig
{
nullptr
,
false
});
bool
pass
=
true
;
if
(
config
.
do_verification
)
{
c_device_buf
.
FromDevice
(
e_g_m_n_device_result
.
mData
.
data
());
using
ReferenceBatchedGemmInstance
=
ck
::
tensor_operation
::
host
::
ReferenceBatchedGemm
<
ADataType
,
BDataType
,
EDataType
,
AccDataType
,
AElementOp
,
BElementOp
,
CDEElementOp
>
;
auto
ref_batched_gemm
=
ReferenceBatchedGemmInstance
{};
auto
ref_invoker
=
ref_batched_gemm
.
MakeInvoker
();
Tensor
<
EDataType
>
e_g_m_n_host_result
(
f_host_tensor_descriptor
(
batch_count
,
M
,
N
,
stride_C
,
batch_stride_C
,
ELayout
{}));
auto
ref_argument
=
ref_batched_gemm
.
MakeArgument
(
a_g_m_k
,
b_g_k_n
,
e_g_m_n_host_result
,
a_element_op
,
b_element_op
,
cde_element_op
);
ref_invoker
.
Run
(
ref_argument
);
#ifdef BUILD_INT4_EXAMPLE
const
Tensor
<
EDataType
>
e_device_result_converted
(
e_g_m_n_device_result
);
pass
&=
ck
::
utils
::
check_err
(
e_device_result_converted
.
mData
,
e_g_m_n_host_result
.
mData
);
#else
pass
=
ck
::
utils
::
check_err
(
e_g_m_n_device_result
.
mData
,
e_g_m_n_host_result
.
mData
,
"Error: Incorrect results c"
);
#endif
}
if
(
config
.
time_kernel
)
{
float
ave_time
=
invoker
.
Run
(
argument
,
StreamConfig
{
nullptr
,
config
.
time_kernel
});
std
::
size_t
flop
=
std
::
size_t
(
2
)
*
batch_count
*
M
*
N
*
K
;
std
::
size_t
num_btype
=
sizeof
(
ADataType
)
*
batch_count
*
M
*
K
+
sizeof
(
BDataType
)
*
batch_count
*
K
*
N
+
sizeof
(
EDataType
)
*
batch_count
*
M
*
N
;
float
tflops
=
static_cast
<
float
>
(
flop
)
/
1.E9
/
ave_time
;
float
gb_per_sec
=
num_btype
/
1.E6
/
ave_time
;
std
::
cout
<<
"Perf: "
<<
ave_time
<<
" ms, "
<<
tflops
<<
" TFlops, "
<<
gb_per_sec
<<
" GB/s, "
<<
gemm
.
GetTypeString
()
<<
std
::
endl
;
}
return
pass
?
0
:
1
;
}
bool
run_batched_gemm_example
(
int
argc
,
char
*
argv
[])
{
ProblemSize
problem_size
;
ExecutionConfig
config
;
std
::
mt19937
gen
(
11939
);
std
::
uniform_int_distribution
<
int
>
dis
(
0
,
15
);
problem_size
.
M
=
256
*
(
dis
(
gen
)
+
1
);
problem_size
.
N
=
128
*
(
dis
(
gen
)
+
1
);
problem_size
.
K
=
64
*
(
dis
(
gen
)
+
2
);
problem_size
.
stride_A
=
problem_size
.
K
;
problem_size
.
stride_B
=
problem_size
.
K
;
problem_size
.
stride_C
=
problem_size
.
N
;
problem_size
.
batch_stride_A
=
problem_size
.
M
*
problem_size
.
K
;
problem_size
.
batch_stride_B
=
problem_size
.
K
*
problem_size
.
N
;
problem_size
.
batch_stride_C
=
problem_size
.
M
*
problem_size
.
N
;
problem_size
.
batch_count
=
16
;
if
(
argc
==
4
)
{
config
.
do_verification
=
std
::
stoi
(
argv
[
1
]);
config
.
init_method
=
std
::
stoi
(
argv
[
2
]);
config
.
time_kernel
=
std
::
stoi
(
argv
[
3
]);
}
else
{
printf
(
"arg1: verification (0=no, 1=yes)
\n
"
);
printf
(
"arg2: initialization (0=no init, 1=integer value, 2=decimal value)
\n
"
);
printf
(
"arg3: time kernel (0=n0, 1=yes)
\n
"
);
exit
(
0
);
}
return
run_batched_gemm
(
problem_size
,
config
);
}
example/24_batched_gemm_e_permute/CMakeLists.txt
deleted
100644 → 0
View file @
41d5fca7
add_example_executable
(
example_batched_gemm_e_permute_xdl_fp16 batched_gemm_e_permute_xdl_fp16.cpp
)
example/30_grouped_convnd_fwd_bias_relu_add/CMakeLists.txt
View file @
b89a88b5
add_example_executable
(
example_grouped_convnd_fwd_bias_relu_add_xdl_fp16 grouped_convnd_fwd_bias_relu_add_xdl_fp16.cpp
)
target_link_libraries
(
example_grouped_convnd_fwd_bias_relu_add_xdl_fp16 PRIVATE utility
)
add_example_executable
(
example_grouped_convnd_fwd_bias_relu_add_xdl_fp32 grouped_convnd_fwd_bias_relu_add_xdl_fp32.cpp
)
target_link_libraries
(
example_grouped_convnd_fwd_bias_relu_add_xdl_fp32 PRIVATE utility
)
add_example_executable
(
example_grouped_convnd_fwd_bias_relu_add_xdl_bf16 grouped_convnd_fwd_bias_relu_add_xdl_bf16.cpp
)
target_link_libraries
(
example_grouped_convnd_fwd_bias_relu_add_xdl_bf16 PRIVATE utility
)
add_example_executable
(
example_grouped_convnd_fwd_bias_relu_add_xdl_int8 grouped_convnd_fwd_bias_relu_add_xdl_int8.cpp
)
target_link_libraries
(
example_grouped_convnd_fwd_bias_relu_add_xdl_int8 PRIVATE utility
)
\ No newline at end of file
if
(
USE_BITINT_EXTENSION_INT4
)
add_example_executable
(
example_grouped_convnd_fwd_bias_relu_add_xdl_int4 grouped_convnd_fwd_bias_relu_add_xdl_int4.cpp
)
endif
()
# USE_BITINT_EXTENSION_INT4
example/30_grouped_convnd_fwd_bias_relu_add/grouped_convnd_fwd_bias_relu_add_common.hpp
View file @
b89a88b5
...
...
@@ -26,13 +26,16 @@ void print_helper_msg()
}
template
<
ck
::
index_t
NDimSpatial
,
typename
InDataType
,
typename
WeiDataType
,
typename
In
Kernel
DataType
,
typename
Wei
Kernel
DataType
,
typename
CShuffleDataType
,
typename
OutDataType
,
typename
Out
Kernel
DataType
,
typename
InElementOp
,
typename
WeiElementOp
,
typename
OutElementOp
,
typename
InUserDataType
,
typename
WeiUserDataType
,
typename
OutUserDataType
,
typename
DeviceConvNDFwdInstance
>
int
run_grouped_conv_fwd_bias_relu_add
(
bool
do_verification
,
int
init_method
,
...
...
@@ -47,12 +50,12 @@ int run_grouped_conv_fwd_bias_relu_add(bool do_verification,
const
WeiElementOp
&
wei_element_op
,
const
OutElementOp
&
out_element_op
)
{
Tensor
<
InDataType
>
in
(
in_g_n_c_wis_desc
);
Tensor
<
WeiDataType
>
wei
(
wei_g_k_c_xs_desc
);
Tensor
<
OutDataType
>
bias
(
bias_g_n_k_wos_desc
);
Tensor
<
OutDataType
>
residual
(
residual_g_n_k_wos_desc
);
Tensor
<
OutDataType
>
out_host
(
out_g_n_k_wos_desc
);
Tensor
<
OutDataType
>
out_device
(
out_g_n_k_wos_desc
);
Tensor
<
In
User
DataType
>
in
(
in_g_n_c_wis_desc
);
Tensor
<
Wei
User
DataType
>
wei
(
wei_g_k_c_xs_desc
);
Tensor
<
Out
User
DataType
>
bias
(
bias_g_n_k_wos_desc
);
Tensor
<
Out
User
DataType
>
residual
(
residual_g_n_k_wos_desc
);
Tensor
<
Out
User
DataType
>
out_host
(
out_g_n_k_wos_desc
);
Tensor
<
Out
Kernel
DataType
>
out_device
(
out_g_n_k_wos_desc
);
std
::
cout
<<
"in: "
<<
in
.
mDesc
<<
std
::
endl
;
std
::
cout
<<
"wei: "
<<
wei
.
mDesc
<<
std
::
endl
;
...
...
@@ -64,26 +67,38 @@ int run_grouped_conv_fwd_bias_relu_add(bool do_verification,
{
case
0
:
break
;
case
1
:
in
.
GenerateTensorValue
(
GeneratorTensor_2
<
InDataType
>
{
-
5
,
5
});
wei
.
GenerateTensorValue
(
GeneratorTensor_2
<
WeiDataType
>
{
-
5
,
5
});
bias
.
GenerateTensorValue
(
GeneratorTensor_2
<
OutDataType
>
{
-
5
,
5
});
in
.
GenerateTensorValue
(
GeneratorTensor_2
<
In
User
DataType
>
{
-
5
,
5
});
wei
.
GenerateTensorValue
(
GeneratorTensor_2
<
Wei
User
DataType
>
{
-
5
,
5
});
bias
.
GenerateTensorValue
(
GeneratorTensor_2
<
Out
User
DataType
>
{
-
5
,
5
});
break
;
default:
in
.
GenerateTensorValue
(
GeneratorTensor_3
<
InDataType
>
{
0.0
,
1.0
});
wei
.
GenerateTensorValue
(
GeneratorTensor_3
<
WeiDataType
>
{
-
0.5
,
0.5
});
bias
.
GenerateTensorValue
(
GeneratorTensor_3
<
OutDataType
>
{
-
0.5
,
0.5
});
in
.
GenerateTensorValue
(
GeneratorTensor_3
<
In
User
DataType
>
{
0.0
,
1.0
});
wei
.
GenerateTensorValue
(
GeneratorTensor_3
<
Wei
User
DataType
>
{
-
0.5
,
0.5
});
bias
.
GenerateTensorValue
(
GeneratorTensor_3
<
Out
User
DataType
>
{
-
0.5
,
0.5
});
}
DeviceMem
in_device_buf
(
sizeof
(
InDataType
)
*
in
.
mDesc
.
GetElementSpaceSize
());
DeviceMem
wei_device_buf
(
sizeof
(
WeiDataType
)
*
wei
.
mDesc
.
GetElementSpaceSize
());
DeviceMem
bias_device_buf
(
sizeof
(
OutDataType
)
*
bias
.
mDesc
.
GetElementSpaceSize
());
DeviceMem
residual_device_buf
(
sizeof
(
OutDataType
)
*
residual
.
mDesc
.
GetElementSpaceSize
());
DeviceMem
out_device_buf
(
sizeof
(
OutDataType
)
*
out_device
.
mDesc
.
GetElementSpaceSize
());
DeviceMem
in_device_buf
(
sizeof
(
InKernelDataType
)
*
in
.
mDesc
.
GetElementSpaceSize
());
DeviceMem
wei_device_buf
(
sizeof
(
WeiKernelDataType
)
*
wei
.
mDesc
.
GetElementSpaceSize
());
DeviceMem
bias_device_buf
(
sizeof
(
OutKernelDataType
)
*
bias
.
mDesc
.
GetElementSpaceSize
());
DeviceMem
residual_device_buf
(
sizeof
(
OutKernelDataType
)
*
residual
.
mDesc
.
GetElementSpaceSize
());
DeviceMem
out_device_buf
(
sizeof
(
OutKernelDataType
)
*
out_device
.
mDesc
.
GetElementSpaceSize
());
#ifdef CK_EXPERIMENTAL_BIT_INT_EXTENSION_INT4
const
Tensor
<
InKernelDataType
>
in_converted
(
in
);
const
Tensor
<
WeiKernelDataType
>
wei_converted
(
wei
);
const
Tensor
<
OutKernelDataType
>
bias_converted
(
bias
);
const
Tensor
<
OutKernelDataType
>
residual_converted
(
residual
);
in_device_buf
.
ToDevice
(
in_converted
.
mData
.
data
());
wei_device_buf
.
ToDevice
(
wei_converted
.
mData
.
data
());
bias_device_buf
.
ToDevice
(
bias_converted
.
mData
.
data
());
residual_device_buf
.
ToDevice
(
residual_converted
.
mData
.
data
());
#else // CK_EXPERIMENTAL_BIT_INT_EXTENSION_INT4
in_device_buf
.
ToDevice
(
in
.
mData
.
data
());
wei_device_buf
.
ToDevice
(
wei
.
mData
.
data
());
bias_device_buf
.
ToDevice
(
bias
.
mData
.
data
());
residual_device_buf
.
ToDevice
(
residual
.
mData
.
data
());
#endif // CK_EXPERIMENTAL_BIT_INT_EXTENSION_INT4
std
::
array
<
ck
::
index_t
,
NDimSpatial
+
3
>
a_g_n_c_wis_lengths
{};
std
::
array
<
ck
::
index_t
,
NDimSpatial
+
3
>
a_g_n_c_wis_strides
{};
...
...
@@ -154,7 +169,7 @@ int run_grouped_conv_fwd_bias_relu_add(bool do_verification,
float
avg_time
=
invoker
.
Run
(
argument
,
StreamConfig
{
nullptr
,
time_kernel
});
std
::
size_t
flop
=
conv_param
.
GetFlops
();
std
::
size_t
num_btype
=
conv_param
.
GetByte
<
InDataType
,
WeiDataType
,
OutDataType
>
();
std
::
size_t
num_btype
=
conv_param
.
GetByte
<
In
User
DataType
,
Wei
User
DataType
,
Out
User
DataType
>
();
float
tflops
=
static_cast
<
float
>
(
flop
)
/
1.E9
/
avg_time
;
float
gb_per_sec
=
num_btype
/
1.E6
/
avg_time
;
...
...
@@ -168,8 +183,8 @@ int run_grouped_conv_fwd_bias_relu_add(bool do_verification,
Tensor
<
CShuffleDataType
>
c_host
(
out_g_n_k_wos_desc
);
auto
ref_conv
=
ck
::
tensor_operation
::
host
::
ReferenceConvFwd
<
NDimSpatial
,
InDataType
,
WeiDataType
,
In
User
DataType
,
Wei
User
DataType
,
CShuffleDataType
,
InElementOp
,
WeiElementOp
,
...
...
@@ -196,10 +211,22 @@ int run_grouped_conv_fwd_bias_relu_add(bool do_verification,
out_device_buf
.
FromDevice
(
out_device
.
mData
.
data
());
#ifdef CK_EXPERIMENTAL_BIT_INT_EXTENSION_INT4
const
Tensor
<
OutUserDataType
>
out_device_converted
(
out_device
);
return
ck
::
utils
::
check_err
(
out_device_converted
.
mData
,
out_host
.
mData
,
"Error: incorrect results!"
,
1e-5
f
,
1e-4
f
)
?
0
:
1
;
#else // CK_EXPERIMENTAL_BIT_INT_EXTENSION_INT4
return
ck
::
utils
::
check_err
(
out_device
.
mData
,
out_host
.
mData
,
"Error: incorrect results!"
,
1e-5
f
,
1e-4
f
)
?
0
:
1
;
#endif // CK_EXPERIMENTAL_BIT_INT_EXTENSION_INT4
}
return
0
;
...
...
example/30_grouped_convnd_fwd_bias_relu_add/grouped_convnd_fwd_bias_relu_add_xdl_bf16.cpp
View file @
b89a88b5
...
...
@@ -7,13 +7,19 @@
#include "ck/library/utility/convolution_host_tensor_descriptor_helper.hpp"
using
InDataType
=
ck
::
bhalf_t
;
using
WeiDataType
=
ck
::
bhalf_t
;
using
AccDataType
=
float
;
using
CShuffleDataType
=
float
;
using
BiasDataType
=
ck
::
bhalf_t
;
using
ResidualDataType
=
ck
::
bhalf_t
;
using
OutDataType
=
ck
::
bhalf_t
;
// kernel data types
using
InKernelDataType
=
ck
::
bhalf_t
;
using
WeiKernelDataType
=
ck
::
bhalf_t
;
using
AccDataType
=
float
;
using
CShuffleDataType
=
float
;
using
BiasKernelDataType
=
ck
::
bhalf_t
;
using
ResidualKernelDataType
=
ck
::
bhalf_t
;
using
OutKernelDataType
=
ck
::
bhalf_t
;
// tensor data types
using
InUserDataType
=
InKernelDataType
;
using
WeiUserDataType
=
WeiKernelDataType
;
using
OutUserDataType
=
OutKernelDataType
;
template
<
ck
::
index_t
...
Is
>
using
S
=
ck
::
Sequence
<
Is
...
>
;
...
...
@@ -40,12 +46,12 @@ using DeviceGroupedConvNDFwdInstance =
WeiLayout
,
ck
::
Tuple
<
BiasLayout
,
ResidualLayout
>
,
OutLayout
,
InDataType
,
WeiDataType
,
In
Kernel
DataType
,
Wei
Kernel
DataType
,
AccDataType
,
CShuffleDataType
,
ck
::
Tuple
<
BiasDataType
,
ResidualDataType
>
,
OutDataType
,
ck
::
Tuple
<
Bias
Kernel
DataType
,
Residual
Kernel
DataType
>
,
Out
Kernel
DataType
,
InElementOp
,
WeiElementOp
,
OutElementOp
,
...
...
@@ -181,13 +187,16 @@ int main(int argc, char* argv[])
});
return
run_grouped_conv_fwd_bias_relu_add
<
1
,
InDataType
,
WeiDataType
,
In
Kernel
DataType
,
Wei
Kernel
DataType
,
CShuffleDataType
,
OutDataType
,
Out
Kernel
DataType
,
InElementOp
,
WeiElementOp
,
OutElementOp
,
InUserDataType
,
WeiUserDataType
,
OutUserDataType
,
DeviceGroupedConvNDFwdInstance
<
1
,
InLayout
,
WeiLayout
,
...
...
@@ -290,13 +299,16 @@ int main(int argc, char* argv[])
});
return
run_grouped_conv_fwd_bias_relu_add
<
2
,
InDataType
,
WeiDataType
,
In
Kernel
DataType
,
Wei
Kernel
DataType
,
CShuffleDataType
,
OutDataType
,
Out
Kernel
DataType
,
InElementOp
,
WeiElementOp
,
OutElementOp
,
InUserDataType
,
WeiUserDataType
,
OutUserDataType
,
DeviceGroupedConvNDFwdInstance
<
2
,
InLayout
,
WeiLayout
,
...
...
@@ -413,13 +425,16 @@ int main(int argc, char* argv[])
});
return
run_grouped_conv_fwd_bias_relu_add
<
3
,
InDataType
,
WeiDataType
,
In
Kernel
DataType
,
Wei
Kernel
DataType
,
CShuffleDataType
,
OutDataType
,
Out
Kernel
DataType
,
InElementOp
,
WeiElementOp
,
OutElementOp
,
InUserDataType
,
WeiUserDataType
,
OutUserDataType
,
DeviceGroupedConvNDFwdInstance
<
3
,
InLayout
,
WeiLayout
,
...
...
example/30_grouped_convnd_fwd_bias_relu_add/grouped_convnd_fwd_bias_relu_add_xdl_fp16.cpp
View file @
b89a88b5
...
...
@@ -7,13 +7,19 @@
#include "ck/library/utility/convolution_host_tensor_descriptor_helper.hpp"
using
InDataType
=
ck
::
half_t
;
using
WeiDataType
=
ck
::
half_t
;
using
AccDataType
=
float
;
using
CShuffleDataType
=
ck
::
half_t
;
using
BiasDataType
=
ck
::
half_t
;
using
ResidualDataType
=
ck
::
half_t
;
using
OutDataType
=
ck
::
half_t
;
// kernel data types
using
InKernelDataType
=
ck
::
half_t
;
using
WeiKernelDataType
=
ck
::
half_t
;
using
AccDataType
=
float
;
using
CShuffleDataType
=
ck
::
half_t
;
using
BiasKernelDataType
=
ck
::
half_t
;
using
ResidualKernelDataType
=
ck
::
half_t
;
using
OutKernelDataType
=
ck
::
half_t
;
// tensor data types
using
InUserDataType
=
InKernelDataType
;
using
WeiUserDataType
=
WeiKernelDataType
;
using
OutUserDataType
=
OutKernelDataType
;
template
<
ck
::
index_t
...
Is
>
using
S
=
ck
::
Sequence
<
Is
...
>
;
...
...
@@ -40,12 +46,12 @@ using DeviceGroupedConvNDFwdInstance =
WeiLayout
,
ck
::
Tuple
<
BiasLayout
,
ResidualLayout
>
,
OutLayout
,
InDataType
,
WeiDataType
,
In
Kernel
DataType
,
Wei
Kernel
DataType
,
AccDataType
,
CShuffleDataType
,
ck
::
Tuple
<
BiasDataType
,
ResidualDataType
>
,
OutDataType
,
ck
::
Tuple
<
Bias
Kernel
DataType
,
Residual
Kernel
DataType
>
,
Out
Kernel
DataType
,
InElementOp
,
WeiElementOp
,
OutElementOp
,
...
...
@@ -157,9 +163,9 @@ int main(int argc, char* argv[])
{
conv_param
.
G_
,
conv_param
.
N_
,
conv_param
.
K_
,
conv_param
.
output_spatial_lengths_
[
0
]},
{
conv_param
.
K_
,
// g
0
,
//
k
1
,
//
c
0
//
x
0
,
//
n
1
,
//
k
0
//
wo
});
const
auto
residual_g_n_k_wos_desc
=
HostTensorDescriptor
(
...
...
@@ -181,13 +187,16 @@ int main(int argc, char* argv[])
});
return
run_grouped_conv_fwd_bias_relu_add
<
1
,
InDataType
,
WeiDataType
,
In
Kernel
DataType
,
Wei
Kernel
DataType
,
CShuffleDataType
,
OutDataType
,
Out
Kernel
DataType
,
InElementOp
,
WeiElementOp
,
OutElementOp
,
InUserDataType
,
WeiUserDataType
,
OutUserDataType
,
DeviceGroupedConvNDFwdInstance
<
1
,
InLayout
,
WeiLayout
,
...
...
@@ -290,13 +299,16 @@ int main(int argc, char* argv[])
});
return
run_grouped_conv_fwd_bias_relu_add
<
2
,
InDataType
,
WeiDataType
,
In
Kernel
DataType
,
Wei
Kernel
DataType
,
CShuffleDataType
,
OutDataType
,
Out
Kernel
DataType
,
InElementOp
,
WeiElementOp
,
OutElementOp
,
InUserDataType
,
WeiUserDataType
,
OutUserDataType
,
DeviceGroupedConvNDFwdInstance
<
2
,
InLayout
,
WeiLayout
,
...
...
@@ -413,13 +425,16 @@ int main(int argc, char* argv[])
});
return
run_grouped_conv_fwd_bias_relu_add
<
3
,
InDataType
,
WeiDataType
,
In
Kernel
DataType
,
Wei
Kernel
DataType
,
CShuffleDataType
,
OutDataType
,
Out
Kernel
DataType
,
InElementOp
,
WeiElementOp
,
OutElementOp
,
InUserDataType
,
WeiUserDataType
,
OutUserDataType
,
DeviceGroupedConvNDFwdInstance
<
3
,
InLayout
,
WeiLayout
,
...
...
example/30_grouped_convnd_fwd_bias_relu_add/grouped_convnd_fwd_bias_relu_add_xdl_fp32.cpp
View file @
b89a88b5
...
...
@@ -7,13 +7,19 @@
#include "ck/library/utility/convolution_host_tensor_descriptor_helper.hpp"
using
InDataType
=
float
;
using
WeiDataType
=
float
;
using
AccDataType
=
float
;
using
CShuffleDataType
=
float
;
using
BiasDataType
=
float
;
using
ResidualDataType
=
float
;
using
OutDataType
=
float
;
// kernel data types
using
InKernelDataType
=
float
;
using
WeiKernelDataType
=
float
;
using
AccDataType
=
float
;
using
CShuffleDataType
=
float
;
using
BiasKernelDataType
=
float
;
using
ResidualKernelDataType
=
float
;
using
OutKernelDataType
=
float
;
// tensor data types
using
InUserDataType
=
InKernelDataType
;
using
WeiUserDataType
=
WeiKernelDataType
;
using
OutUserDataType
=
OutKernelDataType
;
template
<
ck
::
index_t
...
Is
>
using
S
=
ck
::
Sequence
<
Is
...
>
;
...
...
@@ -40,12 +46,12 @@ using DeviceGroupedConvNDFwdInstance =
WeiLayout
,
ck
::
Tuple
<
BiasLayout
,
ResidualLayout
>
,
OutLayout
,
InDataType
,
WeiDataType
,
In
Kernel
DataType
,
Wei
Kernel
DataType
,
AccDataType
,
CShuffleDataType
,
ck
::
Tuple
<
BiasDataType
,
ResidualDataType
>
,
OutDataType
,
ck
::
Tuple
<
Bias
Kernel
DataType
,
Residual
Kernel
DataType
>
,
Out
Kernel
DataType
,
InElementOp
,
WeiElementOp
,
OutElementOp
,
...
...
@@ -181,13 +187,16 @@ int main(int argc, char* argv[])
});
return
run_grouped_conv_fwd_bias_relu_add
<
1
,
InDataType
,
WeiDataType
,
In
Kernel
DataType
,
Wei
Kernel
DataType
,
CShuffleDataType
,
OutDataType
,
Out
Kernel
DataType
,
InElementOp
,
WeiElementOp
,
OutElementOp
,
InUserDataType
,
WeiUserDataType
,
OutUserDataType
,
DeviceGroupedConvNDFwdInstance
<
1
,
InLayout
,
WeiLayout
,
...
...
@@ -290,13 +299,16 @@ int main(int argc, char* argv[])
});
return
run_grouped_conv_fwd_bias_relu_add
<
2
,
InDataType
,
WeiDataType
,
In
Kernel
DataType
,
Wei
Kernel
DataType
,
CShuffleDataType
,
OutDataType
,
Out
Kernel
DataType
,
InElementOp
,
WeiElementOp
,
OutElementOp
,
InUserDataType
,
WeiUserDataType
,
OutUserDataType
,
DeviceGroupedConvNDFwdInstance
<
2
,
InLayout
,
WeiLayout
,
...
...
@@ -413,13 +425,16 @@ int main(int argc, char* argv[])
});
return
run_grouped_conv_fwd_bias_relu_add
<
3
,
InDataType
,
WeiDataType
,
In
Kernel
DataType
,
Wei
Kernel
DataType
,
CShuffleDataType
,
OutDataType
,
Out
Kernel
DataType
,
InElementOp
,
WeiElementOp
,
OutElementOp
,
InUserDataType
,
WeiUserDataType
,
OutUserDataType
,
DeviceGroupedConvNDFwdInstance
<
3
,
InLayout
,
WeiLayout
,
...
...
example/30_grouped_convnd_fwd_bias_relu_add/grouped_convnd_fwd_bias_relu_add_xdl_int4.cpp
0 → 100644
View file @
b89a88b5
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2022, Advanced Micro Devices, Inc. All rights reserved.
#include "grouped_convnd_fwd_bias_relu_add_common.hpp"
#include "ck/tensor_operation/gpu/device/device_grouped_conv_fwd_multiple_d_xdl_cshuffle.hpp"
#include "ck/library/utility/convolution_host_tensor_descriptor_helper.hpp"
// kernel data types
using
InKernelDataType
=
int8_t
;
using
WeiKernelDataType
=
int8_t
;
using
AccDataType
=
int32_t
;
using
CShuffleDataType
=
int8_t
;
using
BiasKernelDataType
=
int8_t
;
using
ResidualKernelDataType
=
int8_t
;
using
OutKernelDataType
=
int8_t
;
// tensor data types
using
InUserDataType
=
ck
::
int4_t
;
using
WeiUserDataType
=
ck
::
int4_t
;
using
OutUserDataType
=
ck
::
int4_t
;
template
<
ck
::
index_t
...
Is
>
using
S
=
ck
::
Sequence
<
Is
...
>
;
using
InElementOp
=
ck
::
tensor_operation
::
element_wise
::
PassThrough
;
using
WeiElementOp
=
ck
::
tensor_operation
::
element_wise
::
PassThrough
;
using
OutElementOp
=
ck
::
tensor_operation
::
element_wise
::
AddReluAdd
;
static
constexpr
auto
ConvSpec
=
ck
::
tensor_operation
::
device
::
ConvolutionForwardSpecialization
::
Default
;
static
constexpr
auto
GemmSpec
=
ck
::
tensor_operation
::
device
::
GemmSpecialization
::
MNKPadding
;
template
<
ck
::
index_t
NDimSpatial
,
typename
InLayout
,
typename
WeiLayout
,
typename
BiasLayout
,
typename
ResidualLayout
,
typename
OutLayout
>
using
DeviceGroupedConvNDFwdInstance
=
ck
::
tensor_operation
::
device
::
DeviceGroupedConvFwdMultipleD_Xdl_CShuffle
<
NDimSpatial
,
InLayout
,
WeiLayout
,
ck
::
Tuple
<
BiasLayout
,
ResidualLayout
>
,
OutLayout
,
InKernelDataType
,
WeiKernelDataType
,
AccDataType
,
CShuffleDataType
,
ck
::
Tuple
<
BiasKernelDataType
,
ResidualKernelDataType
>
,
OutKernelDataType
,
InElementOp
,
WeiElementOp
,
OutElementOp
,
ConvSpec
,
// ConvForwardSpecialization
GemmSpec
,
// GemmSpecialization
1
,
//
256
,
// BlockSize
128
,
// MPerBlock
256
,
// NPerBlock
64
,
// KPerBlock
16
,
// AK1
16
,
// BK1
32
,
// MPerXdl
32
,
// NPerXdl
2
,
// MXdlPerWave
4
,
// NXdlPerWave
S
<
4
,
64
,
1
>
,
// ABlockTransferThreadClusterLengths_AK0_M_AK1
S
<
1
,
0
,
2
>
,
// ABlockTransferThreadClusterArrangeOrder
S
<
1
,
0
,
2
>
,
// ABlockTransferSrcAccessOrder
2
,
// ABlockTransferSrcVectorDim
16
,
// ABlockTransferSrcScalarPerVector
16
,
// ABlockTransferDstScalarPerVector_AK1
1
,
// ABlockLdsExtraM
S
<
4
,
64
,
1
>
,
// BBlockTransferThreadClusterLengths_BK0_N_BK1
S
<
1
,
0
,
2
>
,
// BBlockTransferThreadClusterArrangeOrder
S
<
1
,
0
,
2
>
,
// BBlockTransferSrcAccessOrder
2
,
// BBlockTransferSrcVectorDim
16
,
// BBlockTransferSrcScalarPerVector
16
,
// BBlockTransferDstScalarPerVector_BK1
1
,
// BBlockLdsExtraN
1
,
1
,
S
<
1
,
64
,
1
,
4
>
,
16
>
;
int
main
(
int
argc
,
char
*
argv
[])
{
namespace
ctc
=
ck
::
tensor_layout
::
convolution
;
print_helper_msg
();
bool
do_verification
=
true
;
int
init_method
=
1
;
bool
time_kernel
=
false
;
// conventional group conv definition
// G = 2
// [N, C, Hi, Wi] = [128, 384, 71, 71]
// [K, C, Y, X] = [512, 192, 3, 3]
// [N, K, Ho, Wo] = [128, 512, 36, 36]
// CK group conv definition
// [G, N, C, Hi, Wi] = [2, 128, 192, 71, 71]
// [G, K, C, Y, X] = [2, 256, 192, 3, 3]
// [G, N, K, Ho, Wo] = [2, 128, 256, 36, 36]
ck
::
utils
::
conv
::
ConvParam
conv_param
{
2
,
2
,
128
,
256
,
192
,
{
3
,
3
},
{
71
,
71
},
{
2
,
2
},
{
1
,
1
},
{
1
,
1
},
{
1
,
1
}};
if
(
argc
==
1
)
{
// use default
}
else
if
(
argc
==
4
)
{
do_verification
=
std
::
stoi
(
argv
[
1
]);
init_method
=
std
::
stoi
(
argv
[
2
]);
time_kernel
=
std
::
stoi
(
argv
[
3
]);
}
else
{
do_verification
=
std
::
stoi
(
argv
[
1
]);
init_method
=
std
::
stoi
(
argv
[
2
]);
time_kernel
=
std
::
stoi
(
argv
[
3
]);
const
ck
::
index_t
num_dim_spatial
=
std
::
stoi
(
argv
[
4
]);
conv_param
=
ck
::
utils
::
conv
::
parse_conv_param
(
num_dim_spatial
,
5
,
argv
);
}
const
auto
in_element_op
=
InElementOp
{};
const
auto
wei_element_op
=
WeiElementOp
{};
const
auto
out_element_op
=
OutElementOp
{};
if
(
conv_param
.
num_dim_spatial_
==
1
)
{
using
InLayout
=
ctc
::
G_NW_C
;
using
WeiLayout
=
ctc
::
G_K_X_C
;
using
BiasLayout
=
ctc
::
G_NW_K
;
using
ResidualLayout
=
ctc
::
G_NW_K
;
using
OutLayout
=
ctc
::
G_NW_K
;
const
auto
in_g_n_c_wis_desc
=
HostTensorDescriptor
(
{
conv_param
.
G_
,
conv_param
.
N_
,
conv_param
.
C_
,
conv_param
.
input_spatial_lengths_
[
0
]},
{
conv_param
.
C_
,
// g
conv_param
.
input_spatial_lengths_
[
0
]
*
conv_param
.
G_
*
conv_param
.
C_
,
// n
1
,
// c
conv_param
.
G_
*
conv_param
.
C_
// wi
});
const
auto
wei_g_k_c_xs_desc
=
HostTensorDescriptor
(
{
conv_param
.
G_
,
conv_param
.
K_
,
conv_param
.
C_
,
conv_param
.
filter_spatial_lengths_
[
0
]},
{
conv_param
.
K_
*
conv_param
.
filter_spatial_lengths_
[
0
]
*
conv_param
.
C_
,
// g
conv_param
.
filter_spatial_lengths_
[
0
]
*
conv_param
.
C_
,
// k
1
,
// c
conv_param
.
C_
// x
});
const
auto
bias_g_n_k_wos_desc
=
HostTensorDescriptor
(
{
conv_param
.
G_
,
conv_param
.
N_
,
conv_param
.
K_
,
conv_param
.
output_spatial_lengths_
[
0
]},
{
conv_param
.
K_
,
// g
0
,
// k
1
,
// c
0
// x
});
const
auto
residual_g_n_k_wos_desc
=
HostTensorDescriptor
(
{
conv_param
.
G_
,
conv_param
.
N_
,
conv_param
.
K_
,
conv_param
.
output_spatial_lengths_
[
0
]},
{
conv_param
.
K_
,
// g
0
,
// k
1
,
// c
0
// x
});
const
auto
out_g_n_k_wos_desc
=
HostTensorDescriptor
(
{
conv_param
.
G_
,
conv_param
.
N_
,
conv_param
.
K_
,
conv_param
.
output_spatial_lengths_
[
0
]},
{
conv_param
.
K_
,
// g
conv_param
.
output_spatial_lengths_
[
0
]
*
conv_param
.
G_
*
conv_param
.
K_
,
// n
1
,
// k
conv_param
.
G_
*
conv_param
.
K_
// wo
});
return
run_grouped_conv_fwd_bias_relu_add
<
1
,
InKernelDataType
,
WeiKernelDataType
,
CShuffleDataType
,
OutKernelDataType
,
InElementOp
,
WeiElementOp
,
OutElementOp
,
InUserDataType
,
WeiUserDataType
,
OutUserDataType
,
DeviceGroupedConvNDFwdInstance
<
1
,
InLayout
,
WeiLayout
,
BiasLayout
,
ResidualLayout
,
OutLayout
>>
(
do_verification
,
init_method
,
time_kernel
,
conv_param
,
in_g_n_c_wis_desc
,
wei_g_k_c_xs_desc
,
bias_g_n_k_wos_desc
,
residual_g_n_k_wos_desc
,
out_g_n_k_wos_desc
,
in_element_op
,
wei_element_op
,
out_element_op
);
}
else
if
(
conv_param
.
num_dim_spatial_
==
2
)
{
using
InLayout
=
ctc
::
G_NHW_C
;
using
WeiLayout
=
ctc
::
G_K_YX_C
;
using
BiasLayout
=
ctc
::
G_NHW_K
;
using
ResidualLayout
=
ctc
::
G_NHW_K
;
using
OutLayout
=
ctc
::
G_NHW_K
;
const
auto
in_g_n_c_wis_desc
=
HostTensorDescriptor
(
{
conv_param
.
G_
,
conv_param
.
N_
,
conv_param
.
C_
,
conv_param
.
input_spatial_lengths_
[
0
],
conv_param
.
input_spatial_lengths_
[
1
]},
{
conv_param
.
C_
,
// g
conv_param
.
input_spatial_lengths_
[
0
]
*
conv_param
.
input_spatial_lengths_
[
1
]
*
conv_param
.
G_
*
conv_param
.
C_
,
// n
1
,
// c
conv_param
.
input_spatial_lengths_
[
1
]
*
conv_param
.
G_
*
conv_param
.
C_
,
// hi
conv_param
.
G_
*
conv_param
.
C_
// wi
});
const
auto
wei_g_k_c_xs_desc
=
HostTensorDescriptor
({
conv_param
.
G_
,
conv_param
.
K_
,
conv_param
.
C_
,
conv_param
.
filter_spatial_lengths_
[
0
],
conv_param
.
filter_spatial_lengths_
[
1
]},
{
conv_param
.
K_
*
conv_param
.
filter_spatial_lengths_
[
0
]
*
conv_param
.
filter_spatial_lengths_
[
1
]
*
conv_param
.
C_
,
// g
conv_param
.
filter_spatial_lengths_
[
0
]
*
conv_param
.
filter_spatial_lengths_
[
1
]
*
conv_param
.
C_
,
// k
1
,
// c
conv_param
.
filter_spatial_lengths_
[
1
]
*
conv_param
.
C_
,
// y
conv_param
.
C_
// x
});
const
auto
bias_g_n_k_wos_desc
=
HostTensorDescriptor
({
conv_param
.
G_
,
conv_param
.
N_
,
conv_param
.
K_
,
conv_param
.
output_spatial_lengths_
[
0
],
conv_param
.
output_spatial_lengths_
[
1
]},
{
conv_param
.
K_
,
// g
0
,
// n
1
,
// k
0
,
// ho
0
// wo
});
const
auto
residual_g_n_k_wos_desc
=
HostTensorDescriptor
({
conv_param
.
G_
,
conv_param
.
N_
,
conv_param
.
K_
,
conv_param
.
output_spatial_lengths_
[
0
],
conv_param
.
output_spatial_lengths_
[
1
]},
{
conv_param
.
K_
,
// g
0
,
// n
1
,
// k
0
,
// ho
0
// wo
});
const
auto
out_g_n_k_wos_desc
=
HostTensorDescriptor
(
{
conv_param
.
G_
,
conv_param
.
N_
,
conv_param
.
K_
,
conv_param
.
output_spatial_lengths_
[
0
],
conv_param
.
output_spatial_lengths_
[
1
]},
{
conv_param
.
K_
,
// g
conv_param
.
output_spatial_lengths_
[
0
]
*
conv_param
.
output_spatial_lengths_
[
1
]
*
conv_param
.
G_
*
conv_param
.
K_
,
// n
1
,
// k
conv_param
.
output_spatial_lengths_
[
1
]
*
conv_param
.
G_
*
conv_param
.
K_
,
// ho
conv_param
.
G_
*
conv_param
.
K_
// wo
});
return
run_grouped_conv_fwd_bias_relu_add
<
2
,
InKernelDataType
,
WeiKernelDataType
,
CShuffleDataType
,
OutKernelDataType
,
InElementOp
,
WeiElementOp
,
OutElementOp
,
InUserDataType
,
WeiUserDataType
,
OutUserDataType
,
DeviceGroupedConvNDFwdInstance
<
2
,
InLayout
,
WeiLayout
,
BiasLayout
,
ResidualLayout
,
OutLayout
>>
(
do_verification
,
init_method
,
time_kernel
,
conv_param
,
in_g_n_c_wis_desc
,
wei_g_k_c_xs_desc
,
bias_g_n_k_wos_desc
,
residual_g_n_k_wos_desc
,
out_g_n_k_wos_desc
,
in_element_op
,
wei_element_op
,
out_element_op
);
}
else
if
(
conv_param
.
num_dim_spatial_
==
3
)
{
using
InLayout
=
ctc
::
G_NDHW_C
;
using
WeiLayout
=
ctc
::
G_K_ZYX_C
;
using
BiasLayout
=
ctc
::
G_NDHW_K
;
using
ResidualLayout
=
ctc
::
G_NDHW_K
;
using
OutLayout
=
ctc
::
G_NDHW_K
;
const
auto
in_g_n_c_wis_desc
=
HostTensorDescriptor
(
{
conv_param
.
G_
,
conv_param
.
N_
,
conv_param
.
C_
,
conv_param
.
input_spatial_lengths_
[
0
],
conv_param
.
input_spatial_lengths_
[
1
],
conv_param
.
input_spatial_lengths_
[
2
]},
{
conv_param
.
C_
,
// g
conv_param
.
input_spatial_lengths_
[
0
]
*
conv_param
.
input_spatial_lengths_
[
1
]
*
conv_param
.
input_spatial_lengths_
[
2
]
*
conv_param
.
G_
*
conv_param
.
C_
,
// n
1
,
// c
conv_param
.
input_spatial_lengths_
[
1
]
*
conv_param
.
input_spatial_lengths_
[
2
]
*
conv_param
.
G_
*
conv_param
.
C_
,
// di
conv_param
.
input_spatial_lengths_
[
2
]
*
conv_param
.
G_
*
conv_param
.
C_
,
// hi
conv_param
.
G_
*
conv_param
.
C_
// wi
});
const
auto
wei_g_k_c_xs_desc
=
HostTensorDescriptor
(
{
conv_param
.
G_
,
conv_param
.
K_
,
conv_param
.
C_
,
conv_param
.
filter_spatial_lengths_
[
0
],
conv_param
.
filter_spatial_lengths_
[
1
],
conv_param
.
filter_spatial_lengths_
[
2
]},
{
conv_param
.
K_
*
conv_param
.
filter_spatial_lengths_
[
0
]
*
conv_param
.
filter_spatial_lengths_
[
1
]
*
conv_param
.
filter_spatial_lengths_
[
2
]
*
conv_param
.
C_
,
// g
conv_param
.
filter_spatial_lengths_
[
0
]
*
conv_param
.
filter_spatial_lengths_
[
1
]
*
conv_param
.
filter_spatial_lengths_
[
2
]
*
conv_param
.
C_
,
// k
1
,
// c
conv_param
.
filter_spatial_lengths_
[
1
]
*
conv_param
.
filter_spatial_lengths_
[
2
]
*
conv_param
.
C_
,
// z
conv_param
.
filter_spatial_lengths_
[
2
]
*
conv_param
.
C_
,
// y
conv_param
.
C_
// x
});
const
auto
bias_g_n_k_wos_desc
=
HostTensorDescriptor
({
conv_param
.
G_
,
conv_param
.
N_
,
conv_param
.
K_
,
conv_param
.
output_spatial_lengths_
[
0
],
conv_param
.
output_spatial_lengths_
[
1
],
conv_param
.
output_spatial_lengths_
[
2
]},
{
conv_param
.
K_
,
// g
0
,
// n
1
,
// k
0
,
// z
0
,
// y
0
// x
});
const
auto
residual_g_n_k_wos_desc
=
HostTensorDescriptor
({
conv_param
.
G_
,
conv_param
.
N_
,
conv_param
.
K_
,
conv_param
.
output_spatial_lengths_
[
0
],
conv_param
.
output_spatial_lengths_
[
1
],
conv_param
.
output_spatial_lengths_
[
2
]},
{
conv_param
.
K_
,
// g
0
,
// n
1
,
// k
0
,
// z
0
,
// y
0
// x
});
const
auto
out_g_n_k_wos_desc
=
HostTensorDescriptor
(
{
conv_param
.
G_
,
conv_param
.
N_
,
conv_param
.
K_
,
conv_param
.
output_spatial_lengths_
[
0
],
conv_param
.
output_spatial_lengths_
[
1
],
conv_param
.
output_spatial_lengths_
[
2
]},
{
conv_param
.
K_
,
// g
conv_param
.
output_spatial_lengths_
[
0
]
*
conv_param
.
output_spatial_lengths_
[
1
]
*
conv_param
.
output_spatial_lengths_
[
2
]
*
conv_param
.
G_
*
conv_param
.
K_
,
// n
1
,
// k
conv_param
.
output_spatial_lengths_
[
1
]
*
conv_param
.
output_spatial_lengths_
[
2
]
*
conv_param
.
G_
*
conv_param
.
K_
,
// do
conv_param
.
output_spatial_lengths_
[
2
]
*
conv_param
.
G_
*
conv_param
.
K_
,
// ho
conv_param
.
G_
*
conv_param
.
K_
// wo
});
return
run_grouped_conv_fwd_bias_relu_add
<
3
,
InKernelDataType
,
WeiKernelDataType
,
CShuffleDataType
,
OutKernelDataType
,
InElementOp
,
WeiElementOp
,
OutElementOp
,
InUserDataType
,
WeiUserDataType
,
OutUserDataType
,
DeviceGroupedConvNDFwdInstance
<
3
,
InLayout
,
WeiLayout
,
BiasLayout
,
ResidualLayout
,
OutLayout
>>
(
do_verification
,
init_method
,
time_kernel
,
conv_param
,
in_g_n_c_wis_desc
,
wei_g_k_c_xs_desc
,
bias_g_n_k_wos_desc
,
residual_g_n_k_wos_desc
,
out_g_n_k_wos_desc
,
in_element_op
,
wei_element_op
,
out_element_op
);
}
return
0
;
}
example/30_grouped_convnd_fwd_bias_relu_add/grouped_convnd_fwd_bias_relu_add_xdl_int8.cpp
View file @
b89a88b5
...
...
@@ -7,13 +7,19 @@
#include "ck/library/utility/convolution_host_tensor_descriptor_helper.hpp"
using
InDataType
=
int8_t
;
using
WeiDataType
=
int8_t
;
using
AccDataType
=
int32_t
;
using
CShuffleDataType
=
int8_t
;
using
BiasDataType
=
int8_t
;
using
ResidualDataType
=
int8_t
;
using
OutDataType
=
int8_t
;
// kernel data types
using
InKernelDataType
=
int8_t
;
using
WeiKernelDataType
=
int8_t
;
using
AccDataType
=
int32_t
;
using
CShuffleDataType
=
int8_t
;
using
BiasKernelDataType
=
int8_t
;
using
ResidualKernelDataType
=
int8_t
;
using
OutKernelDataType
=
int8_t
;
// tensor data types
using
InUserDataType
=
InKernelDataType
;
using
WeiUserDataType
=
WeiKernelDataType
;
using
OutUserDataType
=
OutKernelDataType
;
template
<
ck
::
index_t
...
Is
>
using
S
=
ck
::
Sequence
<
Is
...
>
;
...
...
@@ -40,12 +46,12 @@ using DeviceGroupedConvNDFwdInstance =
WeiLayout
,
ck
::
Tuple
<
BiasLayout
,
ResidualLayout
>
,
OutLayout
,
InDataType
,
WeiDataType
,
In
Kernel
DataType
,
Wei
Kernel
DataType
,
AccDataType
,
CShuffleDataType
,
ck
::
Tuple
<
BiasDataType
,
ResidualDataType
>
,
OutDataType
,
ck
::
Tuple
<
Bias
Kernel
DataType
,
Residual
Kernel
DataType
>
,
Out
Kernel
DataType
,
InElementOp
,
WeiElementOp
,
OutElementOp
,
...
...
@@ -181,13 +187,16 @@ int main(int argc, char* argv[])
});
return
run_grouped_conv_fwd_bias_relu_add
<
1
,
InDataType
,
WeiDataType
,
In
Kernel
DataType
,
Wei
Kernel
DataType
,
CShuffleDataType
,
OutDataType
,
Out
Kernel
DataType
,
InElementOp
,
WeiElementOp
,
OutElementOp
,
InUserDataType
,
WeiUserDataType
,
OutUserDataType
,
DeviceGroupedConvNDFwdInstance
<
1
,
InLayout
,
WeiLayout
,
...
...
@@ -290,13 +299,16 @@ int main(int argc, char* argv[])
});
return
run_grouped_conv_fwd_bias_relu_add
<
2
,
InDataType
,
WeiDataType
,
In
Kernel
DataType
,
Wei
Kernel
DataType
,
CShuffleDataType
,
OutDataType
,
Out
Kernel
DataType
,
InElementOp
,
WeiElementOp
,
OutElementOp
,
InUserDataType
,
WeiUserDataType
,
OutUserDataType
,
DeviceGroupedConvNDFwdInstance
<
2
,
InLayout
,
WeiLayout
,
...
...
@@ -413,13 +425,16 @@ int main(int argc, char* argv[])
});
return
run_grouped_conv_fwd_bias_relu_add
<
3
,
InDataType
,
WeiDataType
,
In
Kernel
DataType
,
Wei
Kernel
DataType
,
CShuffleDataType
,
OutDataType
,
Out
Kernel
DataType
,
InElementOp
,
WeiElementOp
,
OutElementOp
,
InUserDataType
,
WeiUserDataType
,
OutUserDataType
,
DeviceGroupedConvNDFwdInstance
<
3
,
InLayout
,
WeiLayout
,
...
...
example/31_batched_gemm_gemm/CMakeLists.txt
View file @
b89a88b5
add_example_executable
(
example_batched_gemm_gemm_xdl_fp32 batched_gemm_gemm_xdl_fp32.cpp
)
add_example_executable
(
example_batched_gemm_gemm_xdl_fp16 batched_gemm_gemm_xdl_fp16.cpp
)
add_example_executable
(
example_batched_gemm_gemm_xdl_bf16 batched_gemm_gemm_xdl_bf16.cpp
)
add_example_executable
(
example_batched_gemm_gemm_xdl_int8 batched_gemm_gemm_xdl_int8.cpp
)
if
(
USE_BITINT_EXTENSION_INT4
)
add_example_executable
(
example_batched_gemm_gemm_xdl_int4 batched_gemm_gemm_xdl_int4.cpp
)
endif
(
USE_BITINT_EXTENSION_INT4
)
example/31_batched_gemm_gemm/batched_gemm_gemm_xdl_bf16.cpp
0 → 100644
View file @
b89a88b5
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2022, Advanced Micro Devices, Inc. All rights reserved.
/*
Gemm + Gemm fused operation. Computes C_m_o = A_m_k * B0_k_n * B1_n_o
|------------|
Gemm0
|---------------------|
Gemm1
*/
#include <iostream>
#include <numeric>
#include <initializer_list>
#include <cstdlib>
#include "ck/ck.hpp"
#include "ck/tensor_operation/gpu/device/gemm_specialization.hpp"
#include "ck/tensor_operation/gpu/device/device_batched_gemm_gemm_xdl_cshuffle.hpp"
#include "ck/tensor_operation/gpu/element/element_wise_operation.hpp"
#include "ck/library/utility/check_err.hpp"
#include "ck/library/utility/device_memory.hpp"
#include "ck/library/utility/host_tensor.hpp"
#include "ck/library/utility/host_tensor_generator.hpp"
#include "ck/library/reference_tensor_operation/cpu/reference_batched_gemm.hpp"
template
<
ck
::
index_t
...
Is
>
using
S
=
ck
::
Sequence
<
Is
...
>
;
using
BF16
=
ck
::
bhalf_t
;
using
F32
=
float
;
using
Row
=
ck
::
tensor_layout
::
gemm
::
RowMajor
;
using
Col
=
ck
::
tensor_layout
::
gemm
::
ColumnMajor
;
using
PassThrough
=
ck
::
tensor_operation
::
element_wise
::
PassThrough
;
using
ADataType
=
BF16
;
using
B0DataType
=
BF16
;
using
B1DataType
=
BF16
;
using
AccDataType
=
F32
;
using
CShuffleDataType
=
F32
;
using
CDataType
=
BF16
;
using
ALayout
=
Row
;
using
B0Layout
=
Col
;
using
B1Layout
=
Row
;
using
CLayout
=
Row
;
using
AElementOp
=
PassThrough
;
using
B0ElementOp
=
PassThrough
;
using
Acc0ElementOp
=
PassThrough
;
using
B1ElementOp
=
PassThrough
;
using
CElementOp
=
PassThrough
;
static
constexpr
auto
GemmDefault
=
ck
::
tensor_operation
::
device
::
GemmSpecialization
::
Default
;
using
DeviceGemmInstance
=
ck
::
tensor_operation
::
device
::
DeviceBatchedGemmGemm_Xdl_CShuffle
<
ALayout
,
B0Layout
,
B1Layout
,
CLayout
,
ADataType
,
B0DataType
,
B1DataType
,
CDataType
,
AccDataType
,
CShuffleDataType
,
AElementOp
,
B0ElementOp
,
Acc0ElementOp
,
B1ElementOp
,
CElementOp
,
GemmDefault
,
1
,
256
,
128
,
// MPerBlock
128
,
// NPerBlock
32
,
// KPerBlock
128
,
// Gemm1NPerBlock
32
,
// Gemm1KPerBlock
8
,
// AK1
8
,
// BK1
2
,
// B1K1
32
,
// MPerXDL
32
,
// NPerXDL
1
,
// MXdlPerWave
4
,
// NXdlPerWave
4
,
// Gemm1NXdlPerWave
S
<
4
,
64
,
1
>
,
// ABlockTransfer
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
8
,
8
,
true
,
S
<
4
,
64
,
1
>
,
// BBlockTransfer
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
8
,
8
,
true
,
S
<
8
,
32
,
1
>
,
// B1BlockTransfer
S
<
0
,
2
,
1
>
,
S
<
0
,
2
,
1
>
,
1
,
4
,
2
,
false
,
1
,
// CShuffleMXdlPerWavePerShuffle
2
,
// CShuffleNXdlPerWavePerShuffle
S
<
1
,
32
,
1
,
8
>
,
// CShuffleBlockTransferClusterLengths_MBlock_MPerBlock_NBlock_NPerBlock
8
>
;
// CShuffleBlockTransferScalarPerVector_NPerBlock
using
ReferenceGemm0Instance
=
ck
::
tensor_operation
::
host
::
ReferenceBatchedGemm
<
ADataType
,
B0DataType
,
ADataType
,
AccDataType
,
AElementOp
,
B0ElementOp
,
CElementOp
>
;
using
ReferenceGemm1Instance
=
ck
::
tensor_operation
::
host
::
ReferenceBatchedGemm
<
ADataType
,
B1DataType
,
CDataType
,
AccDataType
,
AElementOp
,
B1ElementOp
,
CElementOp
>
;
#include "run_batched_gemm_gemm_example.inc"
int
main
(
int
argc
,
char
*
argv
[])
{
return
run_batched_gemm_gemm_example
(
argc
,
argv
)
?
0
:
1
;
}
example/31_batched_gemm_gemm/batched_gemm_gemm_xdl_fp16.cpp
View file @
b89a88b5
...
...
@@ -121,6 +121,7 @@ using ReferenceGemm0Instance = ck::tensor_operation::host::ReferenceBatchedGemm<
AElementOp
,
B0ElementOp
,
CElementOp
>
;
using
ReferenceGemm1Instance
=
ck
::
tensor_operation
::
host
::
ReferenceBatchedGemm
<
ADataType
,
B1DataType
,
CDataType
,
...
...
@@ -129,243 +130,6 @@ using ReferenceGemm1Instance = ck::tensor_operation::host::ReferenceBatchedGemm<
B1ElementOp
,
CElementOp
>
;
int
main
(
int
argc
,
char
*
argv
[])
{
bool
do_verification
=
true
;
int
init_method
=
1
;
bool
time_kernel
=
false
;
// GEMM shape
ck
::
index_t
M
=
1024
;
ck
::
index_t
N
=
1024
;
ck
::
index_t
K
=
64
;
ck
::
index_t
O
=
128
;
ck
::
index_t
BatchCount
=
4
;
ck
::
index_t
StrideA
=
-
1
;
ck
::
index_t
StrideB0
=
-
1
;
ck
::
index_t
StrideB1
=
-
1
;
ck
::
index_t
StrideC
=
-
1
;
ck
::
index_t
BatchStrideA
=
-
1
;
ck
::
index_t
BatchStrideB0
=
-
1
;
ck
::
index_t
BatchStrideB1
=
-
1
;
ck
::
index_t
BatchStrideC
=
-
1
;
if
(
argc
==
1
)
{
// use default case
}
else
if
(
argc
==
4
)
{
do_verification
=
std
::
stoi
(
argv
[
1
]);
init_method
=
std
::
stoi
(
argv
[
2
]);
time_kernel
=
std
::
stoi
(
argv
[
3
]);
}
else
if
(
argc
==
9
)
{
do_verification
=
std
::
stoi
(
argv
[
1
]);
init_method
=
std
::
stoi
(
argv
[
2
]);
time_kernel
=
std
::
stoi
(
argv
[
3
]);
M
=
std
::
stoi
(
argv
[
4
]);
N
=
std
::
stoi
(
argv
[
5
]);
K
=
std
::
stoi
(
argv
[
6
]);
O
=
std
::
stoi
(
argv
[
7
]);
BatchCount
=
std
::
stoi
(
argv
[
8
]);
}
else
if
(
argc
==
17
)
{
do_verification
=
std
::
stoi
(
argv
[
1
]);
init_method
=
std
::
stoi
(
argv
[
2
]);
time_kernel
=
std
::
stoi
(
argv
[
3
]);
M
=
std
::
stoi
(
argv
[
4
]);
N
=
std
::
stoi
(
argv
[
5
]);
K
=
std
::
stoi
(
argv
[
6
]);
O
=
std
::
stoi
(
argv
[
7
]);
BatchCount
=
std
::
stoi
(
argv
[
8
]);
StrideA
=
std
::
stoi
(
argv
[
9
]);
StrideB0
=
std
::
stoi
(
argv
[
10
]);
StrideB1
=
std
::
stoi
(
argv
[
11
]);
StrideC
=
std
::
stoi
(
argv
[
12
]);
BatchStrideA
=
std
::
stoi
(
argv
[
13
]);
BatchStrideB0
=
std
::
stoi
(
argv
[
14
]);
BatchStrideB1
=
std
::
stoi
(
argv
[
15
]);
BatchStrideC
=
std
::
stoi
(
argv
[
16
]);
}
else
{
printf
(
"arg1: verification (0=no, 1=yes)
\n
"
);
printf
(
"arg2: initialization (0=no init, 1=integer value, 2=decimal value)
\n
"
);
printf
(
"arg3: time kernel (0=no, 1=yes)
\n
"
);
printf
(
"arg4 to 17: M, N, K, O, Batch, StrideA, StrideB0, StrideB1, StrideC, BatchStrideA, "
"BatchStrideB0, BatchStrideB1, BatchStrideC
\n
"
);
exit
(
0
);
}
const
int
DefaultStrideA
=
ck
::
is_same_v
<
ALayout
,
Row
>
?
K
:
M
;
const
int
DefaultStrideB0
=
ck
::
is_same_v
<
B0Layout
,
Row
>
?
N
:
K
;
const
int
DefaultStrideB1
=
ck
::
is_same_v
<
B1Layout
,
Row
>
?
O
:
N
;
const
int
DefaultStrideC
=
ck
::
is_same_v
<
CLayout
,
Row
>
?
O
:
M
;
StrideA
=
(
StrideA
<
0
)
?
DefaultStrideA
:
StrideA
;
StrideB0
=
(
StrideB0
<
0
)
?
DefaultStrideB0
:
StrideB0
;
StrideB1
=
(
StrideB1
<
0
)
?
DefaultStrideB1
:
StrideB1
;
StrideC
=
(
StrideC
<
0
)
?
DefaultStrideC
:
StrideC
;
const
int
DefaultBatchStrideA
=
(
ck
::
is_same_v
<
ALayout
,
Col
>
?
K
:
M
)
*
StrideA
;
const
int
DefaultBatchStrideB0
=
(
ck
::
is_same_v
<
B0Layout
,
Col
>
?
N
:
K
)
*
StrideB0
;
const
int
DefaultBatchStrideB1
=
(
ck
::
is_same_v
<
B1Layout
,
Col
>
?
O
:
N
)
*
StrideB1
;
const
int
DefaultBatchStrideC
=
(
ck
::
is_same_v
<
CLayout
,
Col
>
?
O
:
M
)
*
StrideC
;
BatchStrideA
=
BatchStrideA
<
0
?
DefaultBatchStrideA
:
BatchStrideA
;
BatchStrideB0
=
BatchStrideB0
<
0
?
DefaultBatchStrideB0
:
BatchStrideB0
;
BatchStrideB1
=
BatchStrideB1
<
0
?
DefaultBatchStrideB1
:
BatchStrideB1
;
BatchStrideC
=
BatchStrideC
<
0
?
DefaultBatchStrideC
:
BatchStrideC
;
auto
f_host_tensor_descriptor
=
[](
std
::
size_t
batch_count
,
std
::
size_t
row
,
std
::
size_t
col
,
std
::
size_t
stride
,
std
::
size_t
batch_stride
,
auto
layout
)
{
if
(
std
::
is_same
<
decltype
(
layout
),
Row
>::
value
)
{
return
HostTensorDescriptor
(
std
::
vector
<
std
::
size_t
>
({
batch_count
,
row
,
col
}),
std
::
vector
<
std
::
size_t
>
({
batch_stride
,
stride
,
1
}));
}
else
{
return
HostTensorDescriptor
(
std
::
vector
<
std
::
size_t
>
({
batch_count
,
row
,
col
}),
std
::
vector
<
std
::
size_t
>
({
batch_stride
,
1
,
stride
}));
}
};
// C_m_o = A_m_k * B0_k_n * B1_n_o
Tensor
<
ADataType
>
a_g_m_k
(
f_host_tensor_descriptor
(
BatchCount
,
M
,
K
,
StrideA
,
BatchStrideA
,
ALayout
{}));
Tensor
<
B0DataType
>
b0_g_k_n
(
f_host_tensor_descriptor
(
BatchCount
,
K
,
N
,
StrideB0
,
BatchStrideB0
,
B0Layout
{}));
Tensor
<
B1DataType
>
b1_g_n_o
(
f_host_tensor_descriptor
(
BatchCount
,
N
,
O
,
StrideB1
,
BatchStrideB1
,
B1Layout
{}));
Tensor
<
CDataType
>
c_g_m_o_host_result
(
f_host_tensor_descriptor
(
BatchCount
,
M
,
O
,
StrideC
,
BatchStrideC
,
CLayout
{}));
Tensor
<
CDataType
>
c_g_m_o_device_result
(
f_host_tensor_descriptor
(
BatchCount
,
M
,
O
,
StrideC
,
BatchStrideC
,
CLayout
{}));
std
::
cout
<<
"a_g_m_k: "
<<
a_g_m_k
.
mDesc
<<
std
::
endl
;
std
::
cout
<<
"b0_g_k_n: "
<<
b0_g_k_n
.
mDesc
<<
std
::
endl
;
std
::
cout
<<
"b1_g_n_o: "
<<
b1_g_n_o
.
mDesc
<<
std
::
endl
;
std
::
cout
<<
"c_g_m_o: "
<<
c_g_m_o_host_result
.
mDesc
<<
std
::
endl
;
switch
(
init_method
)
{
case
0
:
break
;
case
1
:
a_g_m_k
.
GenerateTensorValue
(
GeneratorTensor_2
<
ADataType
>
{
-
5
,
5
});
b0_g_k_n
.
GenerateTensorValue
(
GeneratorTensor_2
<
B0DataType
>
{
-
5
,
5
});
b1_g_n_o
.
GenerateTensorValue
(
GeneratorTensor_2
<
B1DataType
>
{
-
5
,
5
});
break
;
case
2
:
a_g_m_k
.
GenerateTensorValue
(
GeneratorTensor_3
<
ADataType
>
{
0.0
,
1.0
});
b0_g_k_n
.
GenerateTensorValue
(
GeneratorTensor_3
<
B0DataType
>
{
0.0
,
1.0
});
b1_g_n_o
.
GenerateTensorValue
(
GeneratorTensor_3
<
B1DataType
>
{
-
0.5
,
0.5
});
break
;
default:
a_g_m_k
.
GenerateTensorValue
(
GeneratorTensor_1
<
ADataType
>
{
1
});
b0_g_k_n
.
GenerateTensorValue
(
GeneratorTensor_Sequential
<
1
>
{});
b1_g_n_o
.
GenerateTensorValue
(
GeneratorTensor_Diagonal
<
B1DataType
>
{});
}
DeviceMem
a_g_m_k_device_buf
(
sizeof
(
ADataType
)
*
a_g_m_k
.
mDesc
.
GetElementSize
());
DeviceMem
b0_g_k_n_device_buf
(
sizeof
(
B0DataType
)
*
b0_g_k_n
.
mDesc
.
GetElementSize
());
DeviceMem
b1_g_n_o_device_buf
(
sizeof
(
B1DataType
)
*
b1_g_n_o
.
mDesc
.
GetElementSize
());
DeviceMem
c_g_m_o_device_buf
(
sizeof
(
CDataType
)
*
c_g_m_o_device_result
.
mDesc
.
GetElementSize
());
a_g_m_k_device_buf
.
ToDevice
(
a_g_m_k
.
mData
.
data
());
b0_g_k_n_device_buf
.
ToDevice
(
b0_g_k_n
.
mData
.
data
());
b1_g_n_o_device_buf
.
ToDevice
(
b1_g_n_o
.
mData
.
data
());
auto
a_element_op
=
AElementOp
{};
auto
b0_element_op
=
B0ElementOp
{};
auto
acc0_element_op
=
Acc0ElementOp
{};
auto
b1_element_op
=
B1ElementOp
{};
auto
c_element_op
=
CElementOp
{};
// do GEMM
auto
gemm
=
DeviceGemmInstance
{};
auto
invoker
=
gemm
.
MakeInvoker
();
auto
argument
=
gemm
.
MakeArgument
(
static_cast
<
ADataType
*>
(
a_g_m_k_device_buf
.
GetDeviceBuffer
()),
static_cast
<
B0DataType
*>
(
b0_g_k_n_device_buf
.
GetDeviceBuffer
()),
static_cast
<
B1DataType
*>
(
b1_g_n_o_device_buf
.
GetDeviceBuffer
()),
static_cast
<
CDataType
*>
(
c_g_m_o_device_buf
.
GetDeviceBuffer
()),
M
,
N
,
K
,
O
,
BatchCount
,
StrideA
,
StrideB0
,
StrideB1
,
StrideC
,
BatchStrideA
,
BatchStrideB0
,
BatchStrideB1
,
BatchStrideC
,
a_element_op
,
b0_element_op
,
acc0_element_op
,
b1_element_op
,
c_element_op
);
if
(
!
gemm
.
IsSupportedArgument
(
argument
))
{
std
::
cout
<<
gemm
.
GetTypeString
()
<<
" does not support this problem"
<<
std
::
endl
;
return
0
;
}
float
ave_time
=
invoker
.
Run
(
argument
,
StreamConfig
{
nullptr
,
time_kernel
});
std
::
size_t
flop
=
(
size_t
(
M
)
*
N
*
K
*
2
+
size_t
(
M
)
*
N
*
O
*
2
)
*
BatchCount
;
std
::
size_t
num_btype
=
(
sizeof
(
ADataType
)
*
M
*
K
+
sizeof
(
B0DataType
)
*
K
*
N
+
sizeof
(
B1DataType
)
*
N
*
O
+
sizeof
(
CDataType
)
*
M
*
O
)
*
BatchCount
;
float
tflops
=
static_cast
<
float
>
(
flop
)
/
1.E9
/
ave_time
;
float
gb_per_sec
=
num_btype
/
1.E6
/
ave_time
;
std
::
cout
<<
"Perf: "
<<
ave_time
<<
" ms, "
<<
tflops
<<
" TFlops, "
<<
gb_per_sec
<<
" GB/s, "
<<
gemm
.
GetTypeString
()
<<
std
::
endl
;
c_g_m_o_device_buf
.
FromDevice
(
c_g_m_o_device_result
.
mData
.
data
());
if
(
do_verification
)
{
// Output of Gemm0 is input A of Gemm1
Tensor
<
ADataType
>
a1_g_m_n
(
f_host_tensor_descriptor
(
BatchCount
,
M
,
N
,
N
,
M
*
N
,
Row
{}));
auto
ref_gemm0
=
ReferenceGemm0Instance
{};
auto
ref_gemm0_invoker
=
ref_gemm0
.
MakeInvoker
();
auto
ref_gemm0_argument
=
ref_gemm0
.
MakeArgument
(
a_g_m_k
,
b0_g_k_n
,
a1_g_m_n
,
a_element_op
,
b0_element_op
,
PassThrough
{});
ref_gemm0_invoker
.
Run
(
ref_gemm0_argument
);
auto
ref_gemm1
=
ReferenceGemm1Instance
{};
auto
ref_gemm1_invoker
=
ref_gemm1
.
MakeInvoker
();
auto
ref_gemm1_argument
=
ref_gemm1
.
MakeArgument
(
a1_g_m_n
,
b1_g_n_o
,
c_g_m_o_host_result
,
PassThrough
{},
b1_element_op
,
c_element_op
);
ref_gemm1_invoker
.
Run
(
ref_gemm1_argument
);
return
ck
::
utils
::
check_err
(
c_g_m_o_device_result
.
mData
,
c_g_m_o_host_result
.
mData
)
?
0
:
1
;
}
#include "run_batched_gemm_gemm_example.inc"
return
0
;
}
int
main
(
int
argc
,
char
*
argv
[])
{
return
run_batched_gemm_gemm_example
(
argc
,
argv
)
?
0
:
1
;
}
example/31_batched_gemm_gemm/batched_gemm_gemm_xdl_fp32.cpp
0 → 100644
View file @
b89a88b5
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2022, Advanced Micro Devices, Inc. All rights reserved.
/*
Gemm + Gemm fused operation. Computes C_m_o = A_m_k * B0_k_n * B1_n_o
|------------|
Gemm0
|---------------------|
Gemm1
*/
#include <iostream>
#include <numeric>
#include <initializer_list>
#include <cstdlib>
#include "ck/ck.hpp"
#include "ck/tensor_operation/gpu/device/gemm_specialization.hpp"
#include "ck/tensor_operation/gpu/device/device_batched_gemm_gemm_xdl_cshuffle.hpp"
#include "ck/tensor_operation/gpu/element/element_wise_operation.hpp"
#include "ck/library/utility/check_err.hpp"
#include "ck/library/utility/device_memory.hpp"
#include "ck/library/utility/host_tensor.hpp"
#include "ck/library/utility/host_tensor_generator.hpp"
#include "ck/library/reference_tensor_operation/cpu/reference_batched_gemm.hpp"
template
<
ck
::
index_t
...
Is
>
using
S
=
ck
::
Sequence
<
Is
...
>
;
using
F32
=
float
;
using
Row
=
ck
::
tensor_layout
::
gemm
::
RowMajor
;
using
Col
=
ck
::
tensor_layout
::
gemm
::
ColumnMajor
;
using
PassThrough
=
ck
::
tensor_operation
::
element_wise
::
PassThrough
;
using
ADataType
=
F32
;
using
B0DataType
=
F32
;
using
B1DataType
=
F32
;
using
AccDataType
=
F32
;
using
CShuffleDataType
=
F32
;
using
CDataType
=
F32
;
using
ALayout
=
Row
;
using
B0Layout
=
Col
;
using
B1Layout
=
Row
;
using
CLayout
=
Row
;
using
AElementOp
=
PassThrough
;
using
B0ElementOp
=
PassThrough
;
using
Acc0ElementOp
=
PassThrough
;
using
B1ElementOp
=
PassThrough
;
using
CElementOp
=
PassThrough
;
static
constexpr
auto
GemmDefault
=
ck
::
tensor_operation
::
device
::
GemmSpecialization
::
Default
;
using
DeviceGemmInstance
=
ck
::
tensor_operation
::
device
::
DeviceBatchedGemmGemm_Xdl_CShuffle
<
ALayout
,
B0Layout
,
B1Layout
,
CLayout
,
ADataType
,
B0DataType
,
B1DataType
,
CDataType
,
AccDataType
,
CShuffleDataType
,
AElementOp
,
B0ElementOp
,
Acc0ElementOp
,
B1ElementOp
,
CElementOp
,
GemmDefault
,
1
,
256
,
128
,
// MPerBlock
128
,
// NPerBlock
16
,
// KPerBlock
128
,
// Gemm1NPerBlock
16
,
// Gemm1KPerBlock
4
,
// AK1
4
,
// BK1
1
,
// B1K1
32
,
// MPerXDL
32
,
// NPerXDL
1
,
// MXdlPerWave
4
,
// NXdlPerWave
4
,
// Gemm1NXdlPerWave
S
<
4
,
64
,
1
>
,
// ABlockTransfer
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
4
,
4
,
true
,
S
<
4
,
64
,
1
>
,
// BBlockTransfer
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
4
,
4
,
true
,
S
<
8
,
32
,
1
>
,
// B1BlockTransfer
S
<
0
,
2
,
1
>
,
S
<
0
,
2
,
1
>
,
1
,
4
,
1
,
false
,
1
,
// CShuffleMXdlPerWavePerShuffle
2
,
// CShuffleNXdlPerWavePerShuffle
S
<
1
,
16
,
1
,
16
>
,
// CShuffleBlockTransferClusterLengths_MBlock_MPerBlock_NBlock_NPerBlock
4
>
;
// CShuffleBlockTransferScalarPerVector_NPerBlock
using
ReferenceGemm0Instance
=
ck
::
tensor_operation
::
host
::
ReferenceBatchedGemm
<
ADataType
,
B0DataType
,
ADataType
,
AccDataType
,
AElementOp
,
B0ElementOp
,
CElementOp
>
;
using
ReferenceGemm1Instance
=
ck
::
tensor_operation
::
host
::
ReferenceBatchedGemm
<
ADataType
,
B1DataType
,
CDataType
,
AccDataType
,
AElementOp
,
B1ElementOp
,
CElementOp
>
;
#include "run_batched_gemm_gemm_example.inc"
int
main
(
int
argc
,
char
*
argv
[])
{
return
run_batched_gemm_gemm_example
(
argc
,
argv
)
?
0
:
1
;
}
Prev
1
2
3
4
5
6
7
8
9
…
14
Next
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
.
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment