Skip to content
GitLab
Menu
Projects
Groups
Snippets
Loading...
Help
Help
Support
Community forum
Keyboard shortcuts
?
Submit feedback
Contribute to GitLab
Sign in / Register
Toggle navigation
Menu
Open sidebar
gaoqiong
composable_kernel
Commits
b89a88b5
Commit
b89a88b5
authored
Sep 19, 2022
by
Adam Osewski
Browse files
Merge branch 'develop' into wavelet_model
parents
41d5fca7
43c898f6
Changes
261
Hide whitespace changes
Inline
Side-by-side
Showing
20 changed files
with
1939 additions
and
520 deletions
+1939
-520
example/16_gemm_multi_d_multi_reduces/gemm_max_xdl_fp32.cpp
example/16_gemm_multi_d_multi_reduces/gemm_max_xdl_fp32.cpp
+166
-0
example/16_gemm_multi_d_multi_reduces/gemm_max_xdl_int4.cpp
example/16_gemm_multi_d_multi_reduces/gemm_max_xdl_int4.cpp
+172
-0
example/16_gemm_multi_d_multi_reduces/gemm_max_xdl_int8.cpp
example/16_gemm_multi_d_multi_reduces/gemm_max_xdl_int8.cpp
+166
-0
example/16_gemm_multi_d_multi_reduces/gemm_mean_meansquare_xdl_bf16.cpp
...m_multi_d_multi_reduces/gemm_mean_meansquare_xdl_bf16.cpp
+174
-0
example/16_gemm_multi_d_multi_reduces/gemm_mean_meansquare_xdl_fp16.cpp
...m_multi_d_multi_reduces/gemm_mean_meansquare_xdl_fp16.cpp
+102
-182
example/16_gemm_multi_d_multi_reduces/gemm_mean_meansquare_xdl_fp32.cpp
...m_multi_d_multi_reduces/gemm_mean_meansquare_xdl_fp32.cpp
+174
-0
example/16_gemm_multi_d_multi_reduces/gemm_reduce_xdl_common.hpp
.../16_gemm_multi_d_multi_reduces/gemm_reduce_xdl_common.hpp
+498
-0
example/19_binary_elementwise/broadcast_add_2d_amn_bn.cpp
example/19_binary_elementwise/broadcast_add_2d_amn_bn.cpp
+24
-32
example/19_binary_elementwise/broadcast_add_3d_am_bmnk.cpp
example/19_binary_elementwise/broadcast_add_3d_am_bmnk.cpp
+32
-43
example/19_binary_elementwise/elementwise_add_1d.cpp
example/19_binary_elementwise/elementwise_add_1d.cpp
+25
-35
example/19_binary_elementwise/elementwise_add_4d.cpp
example/19_binary_elementwise/elementwise_add_4d.cpp
+31
-41
example/21_gemm_layernorm/gemm_bias_relu_add_layernorm_xdl_fp16.cpp
..._gemm_layernorm/gemm_bias_relu_add_layernorm_xdl_fp16.cpp
+34
-44
example/21_gemm_layernorm/gemm_layernorm_xdl_fp16.cpp
example/21_gemm_layernorm/gemm_layernorm_xdl_fp16.cpp
+36
-45
example/22_cgemm/CMakeLists.txt
example/22_cgemm/CMakeLists.txt
+10
-4
example/22_cgemm/cgemm_xdl_bf16.cpp
example/22_cgemm/cgemm_xdl_bf16.cpp
+11
-11
example/22_cgemm/cgemm_xdl_common.hpp
example/22_cgemm/cgemm_xdl_common.hpp
+111
-50
example/22_cgemm/cgemm_xdl_fp16.cpp
example/22_cgemm/cgemm_xdl_fp16.cpp
+11
-11
example/22_cgemm/cgemm_xdl_fp32.cpp
example/22_cgemm/cgemm_xdl_fp32.cpp
+11
-11
example/22_cgemm/cgemm_xdl_int4.cpp
example/22_cgemm/cgemm_xdl_int4.cpp
+140
-0
example/22_cgemm/cgemm_xdl_int8.cpp
example/22_cgemm/cgemm_xdl_int8.cpp
+11
-11
No files found.
example/16_gemm_multi_d_multi_reduces/gemm_max_xdl_fp32.cpp
0 → 100644
View file @
b89a88b5
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2022, Advanced Micro Devices, Inc. All rights reserved.
#include "gemm_reduce_xdl_common.hpp"
#include "ck/library/reference_tensor_operation/cpu/reference_gemm.hpp"
#include "ck/tensor_operation/gpu/device/device_gemm_multiple_d_multiple_r_xdl_cshuffle.hpp"
#include "ck/tensor_operation/gpu/device/gemm_specialization.hpp"
// DataType
using
ADataType
=
F32
;
using
BDataType
=
F32
;
using
GemmAccDataType
=
F32
;
using
CShuffleDataType
=
F32
;
using
DsDataType
=
ck
::
Tuple
<>
;
using
EDataType
=
F32
;
using
ReduceAccDataType
=
F32
;
using
R0DataType
=
F32
;
using
RsDataType
=
ck
::
Tuple
<
R0DataType
>
;
// Layout
using
ALayout
=
Row
;
using
BLayout
=
Col
;
using
ELayout
=
Row
;
// Elementwise op
using
AElementOp
=
PassThrough
;
using
BElementOp
=
PassThrough
;
using
CDEElementOp
=
PassThrough
;
using
QsElementOp
=
ck
::
Tuple
<
PassThrough
>
;
using
RsElementOp
=
ck
::
Tuple
<
PassThrough
>
;
// ReduceOp
using
RsThreadReduceOp
=
ck
::
Tuple
<
ck
::
reduce
::
Max
>
;
using
RsGlobalReduceOp
=
ck
::
InMemoryDataOperationEnumSequence
<
ck
::
InMemoryDataOperationEnum
::
AtomicMax
>
;
static
constexpr
auto
GemmDefault
=
ck
::
tensor_operation
::
device
::
GemmSpecialization
::
Default
;
// clang-format off
using
DeviceOpInstance
=
ck
::
tensor_operation
::
device
::
DeviceGemmMultipleDMultipleR_Xdl_CShuffle
<
ALayout
,
// ALayout
BLayout
,
// BLayout
ELayout
,
// ELayout
ADataType
,
// ADataType
BDataType
,
// BDataType
GemmAccDataType
,
// GemmAccDataType
CShuffleDataType
,
// CShuffleDataType
DsDataType
,
// DsDataType
EDataType
,
// EDataType
ReduceAccDataType
,
// ReduceAccDataType
RsDataType
,
// RsDataType
AElementOp
,
// AElementwiseOperation
BElementOp
,
// BElementwiseOperation
CDEElementOp
,
// CDE ElementwiseOperation
QsElementOp
,
// Qs Elementwise Operation
RsElementOp
,
// Rs Elementwise Operation
RsThreadReduceOp
,
// Thread Reduce Operation
RsGlobalReduceOp
,
// Global Reduce Operation
GemmDefault
,
// GEMM Specialization
1
,
// NumGemmKPrefetchStage
256
,
// BlockSize
256
,
// MPerBlock
128
,
// NPerBlock
16
,
// KPerBlock
4
,
// AK1
4
,
// BK1
32
,
// MPerXdl
32
,
// NPerXdl
4
,
// MXdlPerWave
2
,
// NXdlPerWave
S
<
4
,
64
,
1
>
,
// ABlockTransfer ThreadCluster Lengths_K0_M_K1
S
<
1
,
0
,
2
>
,
// ABlockTransfer ThreadCluster ArrangeOrder
S
<
1
,
0
,
2
>
,
// ABlockTransfer SrcAccessOrder
2
,
// ABlockTransfer SrcVectorDim
4
,
// ABlockTransfer SrcScalarPerVector
4
,
// ABlockTransfer DstScalarPerVector_K1
1
,
// ABlockLdsExtraM
S
<
4
,
64
,
1
>
,
// BBlockTransfer ThreadCluster Lengths_K0_N_K1
S
<
1
,
0
,
2
>
,
// BBlockTransfer ThreadCluster ArrangeOrder
S
<
1
,
0
,
2
>
,
// BBlockTransfer SrcAccessOrder
2
,
// BBlockTransfer SrcVectorDim
4
,
// BBlockTransfer SrcScalarPerVector
4
,
// BBlockTransfer DstScalarPerVector_K1
1
,
// BBlockLdsExtraN
1
,
// CShuffleMXdlPerWavePerShuffle
1
,
// CShuffleNXdlPerWavePerShuffle
S
<
64
,
4
>
,
// CD Reduce Thread Transfer ClusterLengths _MPerBlock_NPerBlock
4
,
// CDE ReduceThreadTransfer ScalarPerVector _NPerBlock
1
>
;
// RThread DstScalarPerVector _MPerBlock
// clang-format on
using
ReferenceGemmInstance
=
ck
::
tensor_operation
::
host
::
ReferenceGemm
<
ADataType
,
BDataType
,
ReduceAccDataType
,
GemmAccDataType
,
AElementOp
,
BElementOp
,
CDEElementOp
>
;
int
main
(
int
argc
,
char
*
argv
[])
{
bool
do_verification
=
true
;
int
init_method
=
1
;
bool
time_kernel
=
true
;
// GEMM shape
ck
::
index_t
M
=
1024
;
ck
::
index_t
N
=
1024
;
ck
::
index_t
K
=
1024
;
ck
::
index_t
StrideA
=
1024
;
ck
::
index_t
StrideB
=
1024
;
ck
::
index_t
StrideE
=
1024
;
if
(
argc
==
1
)
{
// do nothing
}
else
if
(
argc
==
4
)
{
do_verification
=
std
::
stoi
(
argv
[
1
]);
init_method
=
std
::
stoi
(
argv
[
2
]);
time_kernel
=
std
::
stoi
(
argv
[
3
]);
}
else
if
(
argc
==
10
)
{
do_verification
=
std
::
stoi
(
argv
[
1
]);
init_method
=
std
::
stoi
(
argv
[
2
]);
time_kernel
=
std
::
stoi
(
argv
[
3
]);
M
=
std
::
stoi
(
argv
[
4
]);
N
=
std
::
stoi
(
argv
[
5
]);
K
=
std
::
stoi
(
argv
[
6
]);
StrideA
=
std
::
stoi
(
argv
[
7
]);
StrideB
=
std
::
stoi
(
argv
[
8
]);
StrideE
=
std
::
stoi
(
argv
[
9
]);
}
else
{
printf
(
"arg1: verification (0=no, 1=yes)
\n
"
);
printf
(
"arg2: initialization (0=no init, 1=integer value, 2=decimal value)
\n
"
);
printf
(
"arg3: Measure kernel execution time (1=ON, 0=Off)
\n
"
);
printf
(
"arg4 to 9: M (256x), N(128x), K(32x), StrideA, StrideB, StrideE
\n
"
);
exit
(
0
);
}
return
run_gemm_reduce_max_xdl
<
ADataType
,
BDataType
,
EDataType
,
R0DataType
,
ALayout
,
BLayout
,
ELayout
,
AElementOp
,
BElementOp
,
CDEElementOp
,
QsElementOp
,
RsElementOp
,
RsThreadReduceOp
,
ReduceAccDataType
,
DeviceOpInstance
,
ReferenceGemmInstance
>
(
M
,
N
,
K
,
StrideA
,
StrideB
,
StrideE
,
do_verification
,
init_method
,
time_kernel
);
}
example/16_gemm_multi_d_multi_reduces/gemm_max_xdl_int4.cpp
0 → 100644
View file @
b89a88b5
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2022, Advanced Micro Devices, Inc. All rights reserved.
#include "gemm_reduce_xdl_common.hpp"
#include "ck/library/reference_tensor_operation/cpu/reference_gemm.hpp"
#include "ck/tensor_operation/gpu/device/device_gemm_multiple_d_multiple_r_xdl_cshuffle.hpp"
#include "ck/tensor_operation/gpu/device/gemm_specialization.hpp"
using
ADataType
=
INT4
;
using
ADataKernelType
=
INT8
;
using
BDataType
=
INT4
;
using
BDataKernelType
=
INT8
;
using
GemmAccDataType
=
INT32
;
using
CShuffleDataType
=
INT32
;
using
DsDataType
=
ck
::
Tuple
<>
;
using
EDataType
=
INT4
;
using
EDataKernelType
=
INT8
;
using
ReduceAccDataType
=
INT32
;
using
R0DataType
=
INT32
;
using
RsDataType
=
ck
::
Tuple
<
R0DataType
>
;
// Layout
using
ALayout
=
Row
;
using
BLayout
=
Col
;
using
ELayout
=
Row
;
// Elementwise op
using
AElementOp
=
PassThrough
;
using
BElementOp
=
PassThrough
;
using
CDEElementOp
=
PassThrough
;
using
QsElementOp
=
ck
::
Tuple
<
PassThrough
>
;
using
RsElementOp
=
ck
::
Tuple
<
PassThrough
>
;
// ReduceOp
using
RsThreadReduceOp
=
ck
::
Tuple
<
ck
::
reduce
::
Max
>
;
using
RsGlobalReduceOp
=
ck
::
InMemoryDataOperationEnumSequence
<
ck
::
InMemoryDataOperationEnum
::
AtomicMax
>
;
static
constexpr
auto
GemmDefault
=
ck
::
tensor_operation
::
device
::
GemmSpecialization
::
Default
;
// clang-format off
using
DeviceOpInstance
=
ck
::
tensor_operation
::
device
::
DeviceGemmMultipleDMultipleR_Xdl_CShuffle
<
ALayout
,
// ALayout
BLayout
,
// BLayout
ELayout
,
// ELayout
ADataKernelType
,
// ADataType
BDataKernelType
,
// BDataType
GemmAccDataType
,
// GemmAccDataType
CShuffleDataType
,
// CShuffleDataType
DsDataType
,
// DsDataType
EDataKernelType
,
// EDataType
ReduceAccDataType
,
// ReduceAccDataType
RsDataType
,
// RsDataType
AElementOp
,
// AElementwiseOperation
BElementOp
,
// BElementwiseOperation
CDEElementOp
,
// CDE ElementwiseOperation
QsElementOp
,
// Qs Elementwise Operation
RsElementOp
,
// Rs Elementwise Operation
RsThreadReduceOp
,
// Thread Reduce Operation
RsGlobalReduceOp
,
// Global Reduce Operation
GemmDefault
,
// GEMM Specialization
1
,
// NumGemmKPrefetchStage
256
,
// BlockSize
256
,
// MPerBlock
128
,
// NPerBlock
64
,
// KPerBlock
16
,
// AK1
16
,
// BK1
32
,
// MPerXdl
32
,
// NPerXdl
4
,
// MXdlPerWave
2
,
// NXdlPerWave
S
<
4
,
64
,
1
>
,
// ABlockTransfer ThreadCluster Lengths_K0_M_K1
S
<
1
,
0
,
2
>
,
// ABlockTransfer ThreadCluster ArrangeOrder
S
<
1
,
0
,
2
>
,
// ABlockTransfer SrcAccessOrder
2
,
// ABlockTransfer SrcVectorDim
16
,
// ABlockTransfer SrcScalarPerVector
16
,
// ABlockTransfer DstScalarPerVector_K1
1
,
// ABlockLdsExtraM
S
<
4
,
64
,
1
>
,
// BBlockTransfer ThreadCluster Lengths_K0_N_K1
S
<
1
,
0
,
2
>
,
// BBlockTransfer ThreadCluster ArrangeOrder
S
<
1
,
0
,
2
>
,
// BBlockTransfer SrcAccessOrder
2
,
// BBlockTransfer SrcVectorDim
16
,
// BBlockTransfer SrcScalarPerVector
16
,
// BBlockTransfer DstScalarPerVector_K1
1
,
// BBlockLdsExtraN
1
,
// CShuffleMXdlPerWavePerShuffle
1
,
// CShuffleNXdlPerWavePerShuffle
S
<
64
,
4
>
,
// CD Reduce Thread Transfer ClusterLengths _MPerBlock_NPerBlock
4
,
// CDE ReduceThreadTransfer ScalarPerVector _NPerBlock
1
>
;
// RThread DstScalarPerVector _MPerBlock
// clang-format on
using
ReferenceGemmInstance
=
ck
::
tensor_operation
::
host
::
ReferenceGemm
<
ADataType
,
BDataType
,
ReduceAccDataType
,
GemmAccDataType
,
AElementOp
,
BElementOp
,
CDEElementOp
>
;
int
main
(
int
argc
,
char
*
argv
[])
{
bool
do_verification
=
true
;
int
init_method
=
1
;
bool
time_kernel
=
true
;
// GEMM shape
ck
::
index_t
M
=
1024
;
ck
::
index_t
N
=
1152
;
ck
::
index_t
K
=
256
;
ck
::
index_t
StrideA
=
256
;
ck
::
index_t
StrideB
=
256
;
ck
::
index_t
StrideE
=
1152
;
if
(
argc
==
1
)
{
// do nothing
}
else
if
(
argc
==
4
)
{
do_verification
=
std
::
stoi
(
argv
[
1
]);
init_method
=
std
::
stoi
(
argv
[
2
]);
time_kernel
=
std
::
stoi
(
argv
[
3
]);
}
else
if
(
argc
==
10
)
{
do_verification
=
std
::
stoi
(
argv
[
1
]);
init_method
=
std
::
stoi
(
argv
[
2
]);
time_kernel
=
std
::
stoi
(
argv
[
3
]);
M
=
std
::
stoi
(
argv
[
4
]);
N
=
std
::
stoi
(
argv
[
5
]);
K
=
std
::
stoi
(
argv
[
6
]);
StrideA
=
std
::
stoi
(
argv
[
7
]);
StrideB
=
std
::
stoi
(
argv
[
8
]);
StrideE
=
std
::
stoi
(
argv
[
9
]);
}
else
{
std
::
cout
<<
"arg1: verification (0=no, 1=yes)
\n
"
<<
" arg2: initialization (0=no init, 1=integer value, 2=decimal value)
\n
"
<<
" arg3: Measure kernel execution time (1=ON, 0=Off)
\n
"
<<
" arg4 to 9: M (256x), N(128x), K(32x), StrideA, StrideB, StrideE
\n
"
<<
std
::
endl
;
exit
(
EXIT_SUCCESS
);
}
return
run_gemm_reduce_max_xdl
<
ADataType
,
BDataType
,
EDataType
,
R0DataType
,
ALayout
,
BLayout
,
ELayout
,
AElementOp
,
BElementOp
,
CDEElementOp
,
QsElementOp
,
RsElementOp
,
RsThreadReduceOp
,
ReduceAccDataType
,
DeviceOpInstance
,
ReferenceGemmInstance
,
ADataKernelType
,
BDataKernelType
,
EDataKernelType
>
(
M
,
N
,
K
,
StrideA
,
StrideB
,
StrideE
,
do_verification
,
init_method
,
time_kernel
);
}
example/16_gemm_multi_d_multi_reduces/gemm_max_xdl_int8.cpp
0 → 100644
View file @
b89a88b5
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2022, Advanced Micro Devices, Inc. All rights reserved.
#include "gemm_reduce_xdl_common.hpp"
#include "ck/library/reference_tensor_operation/cpu/reference_gemm.hpp"
#include "ck/tensor_operation/gpu/device/device_gemm_multiple_d_multiple_r_xdl_cshuffle.hpp"
#include "ck/tensor_operation/gpu/device/gemm_specialization.hpp"
using
ADataType
=
INT8
;
using
BDataType
=
INT8
;
using
GemmAccDataType
=
INT32
;
using
CShuffleDataType
=
INT32
;
using
DsDataType
=
ck
::
Tuple
<>
;
using
EDataType
=
INT8
;
using
ReduceAccDataType
=
INT32
;
using
R0DataType
=
INT32
;
using
RsDataType
=
ck
::
Tuple
<
R0DataType
>
;
// Layout
using
ALayout
=
Row
;
using
BLayout
=
Col
;
using
ELayout
=
Row
;
// Elementwise op
using
AElementOp
=
PassThrough
;
using
BElementOp
=
PassThrough
;
using
CDEElementOp
=
PassThrough
;
using
QsElementOp
=
ck
::
Tuple
<
PassThrough
>
;
using
RsElementOp
=
ck
::
Tuple
<
PassThrough
>
;
// ReduceOp
using
RsThreadReduceOp
=
ck
::
Tuple
<
ck
::
reduce
::
Max
>
;
using
RsGlobalReduceOp
=
ck
::
InMemoryDataOperationEnumSequence
<
ck
::
InMemoryDataOperationEnum
::
AtomicMax
>
;
static
constexpr
auto
GemmDefault
=
ck
::
tensor_operation
::
device
::
GemmSpecialization
::
Default
;
// clang-format off
using
DeviceOpInstance
=
ck
::
tensor_operation
::
device
::
DeviceGemmMultipleDMultipleR_Xdl_CShuffle
<
ALayout
,
// ALayout
BLayout
,
// BLayout
ELayout
,
// ELayout
ADataType
,
// ADataType
BDataType
,
// BDataType
GemmAccDataType
,
// GemmAccDataType
CShuffleDataType
,
// CShuffleDataType
DsDataType
,
// DsDataType
EDataType
,
// EDataType
ReduceAccDataType
,
// ReduceAccDataType
RsDataType
,
// RsDataType
AElementOp
,
// AElementwiseOperation
BElementOp
,
// BElementwiseOperation
CDEElementOp
,
// CDE ElementwiseOperation
QsElementOp
,
// Qs Elementwise Operation
RsElementOp
,
// Rs Elementwise Operation
RsThreadReduceOp
,
// Thread Reduce Operation
RsGlobalReduceOp
,
// Global Reduce Operation
GemmDefault
,
// GEMM Specialization
1
,
// NumGemmKPrefetchStage
256
,
// BlockSize
256
,
// MPerBlock
128
,
// NPerBlock
64
,
// KPerBlock
16
,
// AK1
16
,
// BK1
32
,
// MPerXdl
32
,
// NPerXdl
4
,
// MXdlPerWave
2
,
// NXdlPerWave
S
<
4
,
64
,
1
>
,
// ABlockTransfer ThreadCluster Lengths_K0_M_K1
S
<
1
,
0
,
2
>
,
// ABlockTransfer ThreadCluster ArrangeOrder
S
<
1
,
0
,
2
>
,
// ABlockTransfer SrcAccessOrder
2
,
// ABlockTransfer SrcVectorDim
16
,
// ABlockTransfer SrcScalarPerVector
16
,
// ABlockTransfer DstScalarPerVector_K1
1
,
// ABlockLdsExtraM
S
<
4
,
64
,
1
>
,
// BBlockTransfer ThreadCluster Lengths_K0_N_K1
S
<
1
,
0
,
2
>
,
// BBlockTransfer ThreadCluster ArrangeOrder
S
<
1
,
0
,
2
>
,
// BBlockTransfer SrcAccessOrder
2
,
// BBlockTransfer SrcVectorDim
16
,
// BBlockTransfer SrcScalarPerVector
16
,
// BBlockTransfer DstScalarPerVector_K1
1
,
// BBlockLdsExtraN
1
,
// CShuffleMXdlPerWavePerShuffle
1
,
// CShuffleNXdlPerWavePerShuffle
S
<
64
,
4
>
,
// CD Reduce Thread Transfer ClusterLengths _MPerBlock_NPerBlock
4
,
// CDE ReduceThreadTransfer ScalarPerVector _NPerBlock
1
>
;
// RThread DstScalarPerVector _MPerBlock
// clang-format on
using
ReferenceGemmInstance
=
ck
::
tensor_operation
::
host
::
ReferenceGemm
<
ADataType
,
BDataType
,
ReduceAccDataType
,
GemmAccDataType
,
AElementOp
,
BElementOp
,
CDEElementOp
>
;
int
main
(
int
argc
,
char
*
argv
[])
{
bool
do_verification
=
true
;
int
init_method
=
1
;
bool
time_kernel
=
true
;
// GEMM shape
ck
::
index_t
M
=
1024
;
ck
::
index_t
N
=
1152
;
ck
::
index_t
K
=
512
;
ck
::
index_t
StrideA
=
512
;
ck
::
index_t
StrideB
=
512
;
ck
::
index_t
StrideE
=
1152
;
if
(
argc
==
1
)
{
// do nothing
}
else
if
(
argc
==
4
)
{
do_verification
=
std
::
stoi
(
argv
[
1
]);
init_method
=
std
::
stoi
(
argv
[
2
]);
time_kernel
=
std
::
stoi
(
argv
[
3
]);
}
else
if
(
argc
==
10
)
{
do_verification
=
std
::
stoi
(
argv
[
1
]);
init_method
=
std
::
stoi
(
argv
[
2
]);
time_kernel
=
std
::
stoi
(
argv
[
3
]);
M
=
std
::
stoi
(
argv
[
4
]);
N
=
std
::
stoi
(
argv
[
5
]);
K
=
std
::
stoi
(
argv
[
6
]);
StrideA
=
std
::
stoi
(
argv
[
7
]);
StrideB
=
std
::
stoi
(
argv
[
8
]);
StrideE
=
std
::
stoi
(
argv
[
9
]);
}
else
{
std
::
cout
<<
"arg1: verification (0=no, 1=yes)
\n
"
<<
" arg2: initialization (0=no init, 1=integer value, 2=decimal value)
\n
"
<<
" arg3: Measure kernel execution time (1=ON, 0=Off)
\n
"
<<
" arg4 to 9: M (256x), N(128x), K(32x), StrideA, StrideB, StrideE
\n
"
<<
std
::
endl
;
exit
(
EXIT_SUCCESS
);
}
return
run_gemm_reduce_max_xdl
<
ADataType
,
BDataType
,
EDataType
,
R0DataType
,
ALayout
,
BLayout
,
ELayout
,
AElementOp
,
BElementOp
,
CDEElementOp
,
QsElementOp
,
RsElementOp
,
RsThreadReduceOp
,
ReduceAccDataType
,
DeviceOpInstance
,
ReferenceGemmInstance
>
(
M
,
N
,
K
,
StrideA
,
StrideB
,
StrideE
,
do_verification
,
init_method
,
time_kernel
);
}
example/16_gemm_multi_d_multi_reduces/gemm_mean_meansquare_xdl_bf16.cpp
0 → 100644
View file @
b89a88b5
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2022, Advanced Micro Devices, Inc. All rights reserved.
#include "gemm_reduce_xdl_common.hpp"
#include "ck/library/reference_tensor_operation/cpu/reference_gemm.hpp"
#include "ck/tensor_operation/gpu/device/device_gemm_multiple_d_multiple_r_xdl_cshuffle.hpp"
#include "ck/tensor_operation/gpu/device/gemm_specialization.hpp"
// DataType
using
ADataType
=
BF16
;
using
BDataType
=
BF16
;
using
GemmAccDataType
=
F32
;
using
CShuffleDataType
=
F32
;
using
DsDataType
=
ck
::
Tuple
<>
;
using
EDataType
=
BF16
;
using
ReduceAccDataType
=
F32
;
using
R0DataType
=
F32
;
using
R1DataType
=
F32
;
using
RsDataType
=
ck
::
Tuple
<
R0DataType
,
R1DataType
>
;
// Layout
using
ALayout
=
Row
;
using
BLayout
=
Col
;
using
ELayout
=
Row
;
// Elementwise op
using
Square
=
ck
::
tensor_operation
::
element_wise
::
UnarySquare
;
using
Div
=
ck
::
tensor_operation
::
element_wise
::
UnaryDivide
;
using
AElementOp
=
PassThrough
;
using
BElementOp
=
PassThrough
;
using
CDEElementOp
=
PassThrough
;
using
QsElementOp
=
ck
::
Tuple
<
PassThrough
,
Square
>
;
using
RsElementOp
=
ck
::
Tuple
<
Div
,
Div
>
;
// ReduceOp
using
R0ThreadReduceOp
=
ck
::
reduce
::
Add
;
using
R1ThreadReduceOp
=
ck
::
reduce
::
Add
;
using
RsThreadReduceOp
=
ck
::
Tuple
<
R0ThreadReduceOp
,
R1ThreadReduceOp
>
;
static
constexpr
auto
R0GlobalReduceOp
=
ck
::
InMemoryDataOperationEnum
::
AtomicAdd
;
static
constexpr
auto
R1GlobalReduceOp
=
ck
::
InMemoryDataOperationEnum
::
AtomicAdd
;
using
RsGlobalReduceOp
=
ck
::
InMemoryDataOperationEnumSequence
<
R0GlobalReduceOp
,
R1GlobalReduceOp
>
;
static
constexpr
auto
GemmDefault
=
ck
::
tensor_operation
::
device
::
GemmSpecialization
::
Default
;
// clang-format off
using
DeviceOpInstance
=
ck
::
tensor_operation
::
device
::
DeviceGemmMultipleDMultipleR_Xdl_CShuffle
<
ALayout
,
// ALayout
BLayout
,
// BLayout
ELayout
,
// ELayout
ADataType
,
// ADataType
BDataType
,
// BDataType
GemmAccDataType
,
// GemmAccDataType
CShuffleDataType
,
// CShuffleDataType
DsDataType
,
// DsDataType
EDataType
,
// EDataType
ReduceAccDataType
,
// ReduceAccDataType
RsDataType
,
// RsDataType
AElementOp
,
// AElementwiseOperation
BElementOp
,
// BElementwiseOperation
CDEElementOp
,
// CDE ElementwiseOperation
QsElementOp
,
// Qs Elementwise Operation
RsElementOp
,
// Rs Elementwise Operation
RsThreadReduceOp
,
// Thread Reduce Operation
RsGlobalReduceOp
,
// Global Reduce Operation
GemmDefault
,
// GEMM Specialization
1
,
// NumGemmKPrefetchStage
256
,
// BlockSize
256
,
// MPerBlock
128
,
// NPerBlock
32
,
// KPerBlock
8
,
// AK1
8
,
// BK1
32
,
// MPerXdl
32
,
// NPerXdl
4
,
// MXdlPerWave
2
,
// NXdlPerWave
S
<
4
,
64
,
1
>
,
// ABlockTransfer ThreadCluster Lengths_K0_M_K1
S
<
1
,
0
,
2
>
,
// ABlockTransfer ThreadCluster ArrangeOrder
S
<
1
,
0
,
2
>
,
// ABlockTransfer SrcAccessOrder
2
,
// ABlockTransfer SrcVectorDim
8
,
// ABlockTransfer SrcScalarPerVector
8
,
// ABlockTransfer DstScalarPerVector_K1
1
,
// ABlockLdsExtraM
S
<
4
,
64
,
1
>
,
// BBlockTransfer ThreadCluster Lengths_K0_N_K1
S
<
1
,
0
,
2
>
,
// BBlockTransfer ThreadCluster ArrangeOrder
S
<
1
,
0
,
2
>
,
// BBlockTransfer SrcAccessOrder
2
,
// BBlockTransfer SrcVectorDim
8
,
// BBlockTransfer SrcScalarPerVector
8
,
// BBlockTransfer DstScalarPerVector_K1
1
,
// BBlockLdsExtraN
1
,
// CShuffleMXdlPerWavePerShuffle
1
,
// CShuffleNXdlPerWavePerShuffle
S
<
64
,
4
>
,
// CD Reduce Thread Transfer ClusterLengths _MPerBlock_NPerBlock
4
,
// CDE ReduceThreadTransfer ScalarPerVector _NPerBlock
1
>
;
// RThread DstScalarPerVector _MPerBlock
// clang-format on
using
ReferenceGemmInstance
=
ck
::
tensor_operation
::
host
::
ReferenceGemm
<
ADataType
,
BDataType
,
ReduceAccDataType
,
GemmAccDataType
,
AElementOp
,
BElementOp
,
CDEElementOp
>
;
int
main
(
int
argc
,
char
*
argv
[])
{
bool
do_verification
=
true
;
int
init_method
=
1
;
bool
time_kernel
=
true
;
// GEMM shape
ck
::
index_t
M
=
1024
;
ck
::
index_t
N
=
1152
;
ck
::
index_t
K
=
192
;
ck
::
index_t
StrideA
=
192
;
ck
::
index_t
StrideB
=
192
;
ck
::
index_t
StrideE
=
1152
;
if
(
argc
==
1
)
{
// do nothing
}
else
if
(
argc
==
4
)
{
do_verification
=
std
::
stoi
(
argv
[
1
]);
init_method
=
std
::
stoi
(
argv
[
2
]);
time_kernel
=
std
::
stoi
(
argv
[
3
]);
}
else
if
(
argc
==
10
)
{
do_verification
=
std
::
stoi
(
argv
[
1
]);
init_method
=
std
::
stoi
(
argv
[
2
]);
time_kernel
=
std
::
stoi
(
argv
[
3
]);
M
=
std
::
stoi
(
argv
[
4
]);
N
=
std
::
stoi
(
argv
[
5
]);
K
=
std
::
stoi
(
argv
[
6
]);
StrideA
=
std
::
stoi
(
argv
[
7
]);
StrideB
=
std
::
stoi
(
argv
[
8
]);
StrideE
=
std
::
stoi
(
argv
[
9
]);
}
else
{
std
::
cout
<<
"arg1: verification (0=no, 1=yes)
\n
"
<<
" arg2: initialization (0=no init, 1=integer value, 2=decimal value)
\n
"
<<
" arg3: Measure kernel execution time (1=ON, 0=Off)
\n
"
<<
" arg4 to 9: M (256x), N(128x), K(32x), StrideA, StrideB, StrideE
\n
"
<<
std
::
endl
;
exit
(
EXIT_SUCCESS
);
}
return
!
run_gemm_reduce_mean_meansquare_xdl
<
ADataType
,
BDataType
,
EDataType
,
R0DataType
,
R1DataType
,
ALayout
,
BLayout
,
ELayout
,
AElementOp
,
BElementOp
,
CDEElementOp
,
QsElementOp
,
RsElementOp
,
RsThreadReduceOp
,
ReduceAccDataType
,
DeviceOpInstance
,
ReferenceGemmInstance
>
(
M
,
N
,
K
,
StrideA
,
StrideB
,
StrideE
,
do_verification
,
init_method
,
time_kernel
);
}
example/16_gemm_multi_d_multi_reduces/gemm_mean_meansquare_xdl_fp16.cpp
View file @
b89a88b5
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2022, Advanced Micro Devices, Inc. All rights reserved.
#include <iostream>
#include <numeric>
#include <initializer_list>
#include <cstdlib>
#include "gemm_reduce_xdl_common.hpp"
#include "ck/ck.hpp"
#include "ck/tensor_operation/gpu/device/tensor_layout.hpp"
#include "ck/tensor_operation/gpu/device/gemm_specialization.hpp"
#include "ck/tensor_operation/gpu/device/device_gemm_multiple_d_multiple_r_xdl_cshuffle.hpp"
#include "ck/tensor_operation/gpu/element/element_wise_operation.hpp"
#include "ck/library/utility/device_memory.hpp"
#include "ck/library/utility/host_tensor.hpp"
#include "ck/library/utility/host_tensor_generator.hpp"
#include "ck/library/reference_tensor_operation/cpu/reference_gemm.hpp"
#include "ck/library/utility/check_err.hpp"
template
<
ck
::
index_t
...
Is
>
using
S
=
ck
::
Sequence
<
Is
...
>
;
using
F16
=
ck
::
half_t
;
using
F32
=
float
;
using
Row
=
ck
::
tensor_layout
::
gemm
::
RowMajor
;
using
Col
=
ck
::
tensor_layout
::
gemm
::
ColumnMajor
;
#include "ck/tensor_operation/gpu/device/device_gemm_multiple_d_multiple_r_xdl_cshuffle.hpp"
#include "ck/tensor_operation/gpu/device/gemm_specialization.hpp"
// DataType
using
ADataType
=
F16
;
...
...
@@ -45,7 +25,6 @@ using BLayout = Col;
using
ELayout
=
Row
;
// Elementwise op
using
PassThrough
=
ck
::
tensor_operation
::
element_wise
::
PassThrough
;
using
Square
=
ck
::
tensor_operation
::
element_wise
::
UnarySquare
;
using
Div
=
ck
::
tensor_operation
::
element_wise
::
UnaryDivide
;
using
AElementOp
=
PassThrough
;
...
...
@@ -67,61 +46,71 @@ static constexpr auto GemmDefault = ck::tensor_operation::device::GemmSpecializa
// clang-format off
using
DeviceOpInstance
=
ck
::
tensor_operation
::
device
::
DeviceGemmMultipleDMultipleR_Xdl_CShuffle
//######| ALayout| BLayout| ELayout| AData| BData| GemmAccData| CShuffle| DsData| EData| ReduceAccData| RsData| A| B| CDE| Qs| Rs| Thread| Global| GEMM| NumGemmK| Block| MPer| NPer| KPer| AK1| BK1| MPer| NPer| MXdl| NXdl| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockLds| BBlockTransfer| BBlockTransfer| BBlockTransfer| BlockTransfer| BBlockTransfer| BBlockTransfer| BBlockLds| CShuffle| CShuffle| CDRThreadTransfer| CDE| RThreadTransfer|
//######| | | | Type| Type| Type| DataType| Type| Type| Type| Type| Elementwise| Elementwise| Elementwise| Elementwise| Elementwise| Reduce| Reduce| Spacialization| Prefetch| Size| Block| Block| Block| | | XDL| XDL| Per| Per| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| AddExtraM| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| AddExtraN| MXdlPerWave| NXdlPerWave| ClusterLengths| ReduceThreadTransfer| DstScalarPerVector|
//######| | | | | | | | | | | | Operation| Operation| Operation| Operation| Operation| Operation| Operation| | Stage| | | | | | | | | Wave| Wave| Lengths_K0_M_K1| ArrangeOrder| | | PerVector| PerVector_K1| | Lengths_K0_N_K1| ArrangeOrder| | | PerVector| PerVector_K1| | PerShuffle| PerShuffle| _MPerBlock_NPerBlock| ScalarPerVector| _MPerBlock|
//######| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | _NPerBlock| |
<
ALayout
,
BLayout
,
ELayout
,
ADataType
,
BDataType
,
GemmAccDataType
,
CShuffleDataType
,
DsDataType
,
EDataType
,
ReduceAccDataType
,
RsDataType
,
AElementOp
,
BElementOp
,
CDEElementOp
,
QsElementOp
,
RsElementOp
,
RsThreadReduceOp
,
RsGlobalReduceOp
,
GemmDefault
,
1
,
256
,
256
,
128
,
32
,
8
,
8
,
32
,
32
,
4
,
2
,
S
<
4
,
64
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
8
,
8
,
1
,
S
<
4
,
64
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
8
,
8
,
1
,
1
,
1
,
S
<
64
,
4
>
,
4
,
1
>
;
<
ALayout
,
// ALayout
BLayout
,
// BLayout
ELayout
,
// ELayout
ADataType
,
// ADataType
BDataType
,
// BDataType
GemmAccDataType
,
// GemmAccDataType
CShuffleDataType
,
// CShuffleDataType
DsDataType
,
// DsDataType
EDataType
,
// EDataType
ReduceAccDataType
,
// ReduceAccDataType
RsDataType
,
// RsDataType
AElementOp
,
// AElementwiseOperation
BElementOp
,
// BElementwiseOperation
CDEElementOp
,
// CDE ElementwiseOperation
QsElementOp
,
// Qs Elementwise Operation
RsElementOp
,
// Rs Elementwise Operation
RsThreadReduceOp
,
// Thread Reduce Operation
RsGlobalReduceOp
,
// Global Reduce Operation
GemmDefault
,
// GEMM Specialization
1
,
// NumGemmKPrefetchStage
256
,
// BlockSize
256
,
// MPerBlock
128
,
// NPerBlock
32
,
// KPerBlock
8
,
// AK1
8
,
// BK1
32
,
// MPerXdl
32
,
// NPerXdl
4
,
// MXdlPerWave
2
,
// NXdlPerWave
S
<
4
,
64
,
1
>
,
// ABlockTransfer ThreadCluster Lengths_K0_M_K1
S
<
1
,
0
,
2
>
,
// ABlockTransfer ThreadCluster ArrangeOrder
S
<
1
,
0
,
2
>
,
// ABlockTransfer SrcAccessOrder
2
,
// ABlockTransfer SrcVectorDim
8
,
// ABlockTransfer SrcScalarPerVector
8
,
// ABlockTransfer DstScalarPerVector_K1
1
,
// ABlockLdsExtraM
S
<
4
,
64
,
1
>
,
// BBlockTransfer ThreadCluster Lengths_K0_N_K1
S
<
1
,
0
,
2
>
,
// BBlockTransfer ThreadCluster ArrangeOrder
S
<
1
,
0
,
2
>
,
// BBlockTransfer SrcAccessOrder
2
,
// BBlockTransfer SrcVectorDim
8
,
// BBlockTransfer SrcScalarPerVector
8
,
// BBlockTransfer DstScalarPerVector_K1
1
,
// BBlockLdsExtraN
1
,
// CShuffleMXdlPerWavePerShuffle
1
,
// CShuffleNXdlPerWavePerShuffle
S
<
64
,
4
>
,
// CD Reduce Thread Transfer ClusterLengths _MPerBlock_NPerBlock
4
,
// CDE ReduceThreadTransfer ScalarPerVector _NPerBlock
1
>
;
// RThread DstScalarPerVector _MPerBlock
// clang-format on
using
ReferenceGemmInstance
=
ck
::
tensor_operation
::
host
::
ReferenceGemm
<
ADataType
,
BDataType
,
E
DataType
,
ReduceAcc
DataType
,
GemmAccDataType
,
AElementOp
,
BElementOp
,
CDEElementOp
>
;
template
<
typename
ADataType
,
typename
BDataType
,
typename
EDataType
,
typename
R0DataType
,
typename
R1DataType
>
void
DumpPerf
(
float
ave_time
,
int
M
,
int
N
,
int
K
)
int
main
(
int
argc
,
char
*
argv
[])
{
std
::
size_t
flop
=
std
::
size_t
(
2
)
*
M
*
N
*
K
;
std
::
size_t
gemm_num_byte
=
sizeof
(
ADataType
)
*
M
*
K
+
sizeof
(
BDataType
)
*
K
*
N
+
sizeof
(
EDataType
)
*
M
*
N
+
sizeof
(
R0DataType
)
*
M
+
sizeof
(
R1DataType
)
*
M
;
float
tflops
=
static_cast
<
float
>
(
flop
)
/
1.E9
/
ave_time
;
float
gemm_gb_per_sec
=
gemm_num_byte
/
1.E6
/
ave_time
;
std
::
cout
<<
"Perf: "
<<
ave_time
<<
" ms, "
<<
tflops
<<
" TFlops, "
<<
gemm_gb_per_sec
<<
" GB/s, "
<<
std
::
endl
;
}
bool
do_verification
=
true
;
int
init_method
=
1
;
bool
time_kernel
=
true
;
auto
f_host_tensor_descriptor1d
=
[](
std
::
size_t
len
,
std
::
size_t
stride
)
{
return
HostTensorDescriptor
(
std
::
vector
<
std
::
size_t
>
({
len
}),
std
::
vector
<
std
::
size_t
>
({
stride
}));
};
auto
f_host_tensor_descriptor2d
=
[](
std
::
size_t
row
,
std
::
size_t
col
,
std
::
size_t
stride
,
auto
layout
)
{
if
(
std
::
is_same
<
decltype
(
layout
),
ck
::
tensor_layout
::
gemm
::
RowMajor
>::
value
)
{
return
HostTensorDescriptor
(
std
::
vector
<
std
::
size_t
>
({
row
,
col
}),
std
::
vector
<
std
::
size_t
>
({
stride
,
1
}));
}
else
{
return
HostTensorDescriptor
(
std
::
vector
<
std
::
size_t
>
({
row
,
col
}),
std
::
vector
<
std
::
size_t
>
({
1
,
stride
}));
}
};
int
main
()
{
// GEMM shape
ck
::
index_t
M
=
1024
;
ck
::
index_t
N
=
1024
;
ck
::
index_t
K
=
1024
;
...
...
@@ -130,125 +119,56 @@ int main()
ck
::
index_t
StrideB
=
1024
;
ck
::
index_t
StrideE
=
1024
;
Tensor
<
ADataType
>
a_m_k
(
f_host_tensor_descriptor2d
(
M
,
K
,
StrideA
,
ALayout
{}));
Tensor
<
BDataType
>
b_k_n
(
f_host_tensor_descriptor2d
(
K
,
N
,
StrideB
,
BLayout
{}));
Tensor
<
EDataType
>
e_m_n
(
f_host_tensor_descriptor2d
(
M
,
N
,
StrideE
,
ELayout
{}));
Tensor
<
R0DataType
>
r0_m
(
f_host_tensor_descriptor1d
(
M
,
1
));
Tensor
<
R1DataType
>
r1_m
(
f_host_tensor_descriptor1d
(
M
,
1
));
a_m_k
.
GenerateTensorValue
(
GeneratorTensor_3
<
ADataType
>
{
-
1
,
1
});
b_k_n
.
GenerateTensorValue
(
GeneratorTensor_3
<
BDataType
>
{
-
1
,
1
});
DeviceMem
a_device_buf
(
sizeof
(
ADataType
)
*
a_m_k
.
mDesc
.
GetElementSpaceSize
());
DeviceMem
b_device_buf
(
sizeof
(
BDataType
)
*
b_k_n
.
mDesc
.
GetElementSpaceSize
());
DeviceMem
e_device_buf
(
sizeof
(
EDataType
)
*
e_m_n
.
mDesc
.
GetElementSpaceSize
());
DeviceMem
r0_device_buf
(
sizeof
(
R0DataType
)
*
r0_m
.
mDesc
.
GetElementSpaceSize
());
DeviceMem
r1_device_buf
(
sizeof
(
R1DataType
)
*
r1_m
.
mDesc
.
GetElementSpaceSize
());
a_device_buf
.
ToDevice
(
a_m_k
.
mData
.
data
());
b_device_buf
.
ToDevice
(
b_k_n
.
mData
.
data
());
auto
a_element_op
=
AElementOp
{};
auto
b_element_op
=
BElementOp
{};
auto
cde_element_op
=
CDEElementOp
{};
auto
qs_element_op
=
QsElementOp
{};
auto
rs_element_op
=
RsElementOp
{
N
,
N
};
// Prepare GEMM, mean, mean_square
auto
device_op
=
DeviceOpInstance
{};
auto
invoker
=
device_op
.
MakeInvoker
();
auto
argument
=
device_op
.
MakeArgument
(
a_device_buf
.
GetDeviceBuffer
(),
b_device_buf
.
GetDeviceBuffer
(),
{},
e_device_buf
.
GetDeviceBuffer
(),
{
r0_device_buf
.
GetDeviceBuffer
(),
r1_device_buf
.
GetDeviceBuffer
()},
M
,
N
,
K
,
StrideA
,
StrideB
,
{},
StrideE
,
a_element_op
,
b_element_op
,
cde_element_op
,
qs_element_op
,
rs_element_op
);
if
(
!
device_op
.
IsSupportedArgument
(
argument
))
if
(
argc
==
1
)
{
throw
std
::
runtime_error
(
"wrong! this device_op instance
do
es
not
support this problem"
);
//
do not
hing
}
// init reducetion buffer to 0
r0_device_buf
.
SetZero
();
r1_device_buf
.
SetZero
();
invoker
.
Run
(
argument
,
StreamConfig
{
nullptr
,
false
});
bool
do_verification
=
true
;
bool
pass
=
true
;
if
(
do_verification
)
else
if
(
argc
==
4
)
{
auto
I0
=
ck
::
Number
<
0
>
{};
auto
I1
=
ck
::
Number
<
1
>
{};
Tensor
<
EDataType
>
e_m_n_host
(
e_m_n
.
mDesc
);
Tensor
<
R0DataType
>
r0_m_host
(
r0_m
.
mDesc
);
Tensor
<
R1DataType
>
r1_m_host
(
r1_m
.
mDesc
);
auto
ref_gemm
=
ReferenceGemmInstance
{};
auto
ref_invoker
=
ref_gemm
.
MakeInvoker
();
auto
ref_argument
=
ref_gemm
.
MakeArgument
(
a_m_k
,
b_k_n
,
e_m_n_host
,
a_element_op
,
b_element_op
,
PassThrough
{});
ref_invoker
.
Run
(
ref_argument
);
auto
reduce0_op
=
R0ThreadReduceOp
{};
auto
reduce1_op
=
R1ThreadReduceOp
{};
for
(
int
m
=
0
;
m
<
M
;
++
m
)
{
auto
reduce0_acc
=
reduce0_op
.
GetIdentityValue
<
ReduceAccDataType
>
();
auto
reduce1_acc
=
reduce1_op
.
GetIdentityValue
<
ReduceAccDataType
>
();
for
(
int
n
=
0
;
n
<
N
;
++
n
)
{
ReduceAccDataType
square_e_val
;
auto
e_val
=
ck
::
type_convert
<
ReduceAccDataType
>
(
e_m_n_host
(
m
,
n
));
qs_element_op
[
I1
](
square_e_val
,
e_val
);
reduce0_op
(
reduce0_acc
,
e_val
);
reduce1_op
(
reduce1_acc
,
square_e_val
);
}
rs_element_op
[
I0
](
reduce0_acc
,
reduce0_acc
);
rs_element_op
[
I1
](
reduce1_acc
,
reduce1_acc
);
r0_m_host
(
m
)
=
ck
::
type_convert
<
R0DataType
>
(
reduce0_acc
);
r1_m_host
(
m
)
=
ck
::
type_convert
<
R1DataType
>
(
reduce1_acc
);
}
e_device_buf
.
FromDevice
(
e_m_n
.
mData
.
data
());
r0_device_buf
.
FromDevice
(
r0_m
.
mData
.
data
());
r1_device_buf
.
FromDevice
(
r1_m
.
mData
.
data
());
pass
=
ck
::
utils
::
check_err
(
e_m_n
.
mData
,
e_m_n_host
.
mData
,
"Error: Incorrect results c"
,
1e-2
,
1e-2
);
pass
&=
ck
::
utils
::
check_err
(
r0_m
.
mData
,
r0_m_host
.
mData
,
"Error: Incorrect results d0"
,
1e-2
,
1e-2
);
pass
&=
ck
::
utils
::
check_err
(
r1_m
.
mData
,
r1_m_host
.
mData
,
"Error: Incorrect results d1"
,
1e-2
,
1e-2
);
do_verification
=
std
::
stoi
(
argv
[
1
]);
init_method
=
std
::
stoi
(
argv
[
2
]);
time_kernel
=
std
::
stoi
(
argv
[
3
]);
}
else
if
(
argc
==
10
)
{
do_verification
=
std
::
stoi
(
argv
[
1
]);
init_method
=
std
::
stoi
(
argv
[
2
]);
time_kernel
=
std
::
stoi
(
argv
[
3
]);
bool
time_kernel
=
true
;
if
(
time_kernel
)
M
=
std
::
stoi
(
argv
[
4
]);
N
=
std
::
stoi
(
argv
[
5
]);
K
=
std
::
stoi
(
argv
[
6
]);
StrideA
=
std
::
stoi
(
argv
[
7
]);
StrideB
=
std
::
stoi
(
argv
[
8
]);
StrideE
=
std
::
stoi
(
argv
[
9
]);
}
else
{
float
ave_time
=
invoker
.
Run
(
argument
,
StreamConfig
{
nullptr
,
time_kernel
});
DumpPerf
<
ADataType
,
BDataType
,
EDataType
,
R0DataType
,
R1DataType
>
(
ave_time
,
M
,
N
,
K
);
std
::
cout
<<
"arg1: verification (0=no, 1=yes)
\n
"
<<
" arg2: initialization (0=no init, 1=integer value, 2=decimal value)
\n
"
<<
" arg3: Measure kernel execution time (1=ON, 0=Off)
\n
"
<<
" arg4 to 9: M (256x), N(128x), K(32x), StrideA, StrideB, StrideE
\n
"
<<
std
::
endl
;
exit
(
EXIT_SUCCESS
);
}
return
pass
?
0
:
1
;
return
!
run_gemm_reduce_mean_meansquare_xdl
<
ADataType
,
BDataType
,
EDataType
,
R0DataType
,
R1DataType
,
ALayout
,
BLayout
,
ELayout
,
AElementOp
,
BElementOp
,
CDEElementOp
,
QsElementOp
,
RsElementOp
,
RsThreadReduceOp
,
ReduceAccDataType
,
DeviceOpInstance
,
ReferenceGemmInstance
>
(
M
,
N
,
K
,
StrideA
,
StrideB
,
StrideE
,
do_verification
,
init_method
,
time_kernel
);
}
example/16_gemm_multi_d_multi_reduces/gemm_mean_meansquare_xdl_fp32.cpp
0 → 100644
View file @
b89a88b5
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2022, Advanced Micro Devices, Inc. All rights reserved.
#include "gemm_reduce_xdl_common.hpp"
#include "ck/library/reference_tensor_operation/cpu/reference_gemm.hpp"
#include "ck/tensor_operation/gpu/device/device_gemm_multiple_d_multiple_r_xdl_cshuffle.hpp"
#include "ck/tensor_operation/gpu/device/gemm_specialization.hpp"
// DataType
using
ADataType
=
F32
;
using
BDataType
=
F32
;
using
GemmAccDataType
=
F32
;
using
CShuffleDataType
=
F32
;
using
DsDataType
=
ck
::
Tuple
<>
;
using
EDataType
=
F32
;
using
ReduceAccDataType
=
F32
;
using
R0DataType
=
F32
;
using
R1DataType
=
F32
;
using
RsDataType
=
ck
::
Tuple
<
R0DataType
,
R1DataType
>
;
// Layout
using
ALayout
=
Row
;
using
BLayout
=
Col
;
using
ELayout
=
Row
;
// Elementwise op
using
Square
=
ck
::
tensor_operation
::
element_wise
::
UnarySquare
;
using
Div
=
ck
::
tensor_operation
::
element_wise
::
UnaryDivide
;
using
AElementOp
=
PassThrough
;
using
BElementOp
=
PassThrough
;
using
CDEElementOp
=
PassThrough
;
using
QsElementOp
=
ck
::
Tuple
<
PassThrough
,
Square
>
;
using
RsElementOp
=
ck
::
Tuple
<
Div
,
Div
>
;
// ReduceOp
using
R0ThreadReduceOp
=
ck
::
reduce
::
Add
;
using
R1ThreadReduceOp
=
ck
::
reduce
::
Add
;
using
RsThreadReduceOp
=
ck
::
Tuple
<
R0ThreadReduceOp
,
R1ThreadReduceOp
>
;
static
constexpr
auto
R0GlobalReduceOp
=
ck
::
InMemoryDataOperationEnum
::
AtomicAdd
;
static
constexpr
auto
R1GlobalReduceOp
=
ck
::
InMemoryDataOperationEnum
::
AtomicAdd
;
using
RsGlobalReduceOp
=
ck
::
InMemoryDataOperationEnumSequence
<
R0GlobalReduceOp
,
R1GlobalReduceOp
>
;
static
constexpr
auto
GemmDefault
=
ck
::
tensor_operation
::
device
::
GemmSpecialization
::
Default
;
// clang-format off
using
DeviceOpInstance
=
ck
::
tensor_operation
::
device
::
DeviceGemmMultipleDMultipleR_Xdl_CShuffle
<
ALayout
,
// ALayout
BLayout
,
// BLayout
ELayout
,
// ELayout
ADataType
,
// ADataType
BDataType
,
// BDataType
GemmAccDataType
,
// GemmAccDataType
CShuffleDataType
,
// CShuffleDataType
DsDataType
,
// DsDataType
EDataType
,
// EDataType
ReduceAccDataType
,
// ReduceAccDataType
RsDataType
,
// RsDataType
AElementOp
,
// AElementwiseOperation
BElementOp
,
// BElementwiseOperation
CDEElementOp
,
// CDE ElementwiseOperation
QsElementOp
,
// Qs Elementwise Operation
RsElementOp
,
// Rs Elementwise Operation
RsThreadReduceOp
,
// Thread Reduce Operation
RsGlobalReduceOp
,
// Global Reduce Operation
GemmDefault
,
// GEMM Specialization
1
,
// NumGemmKPrefetchStage
256
,
// BlockSize
256
,
// MPerBlock
128
,
// NPerBlock
16
,
// KPerBlock
4
,
// AK1
4
,
// BK1
32
,
// MPerXdl
32
,
// NPerXdl
4
,
// MXdlPerWave
2
,
// NXdlPerWave
S
<
4
,
64
,
1
>
,
// ABlockTransfer ThreadCluster Lengths_K0_M_K1
S
<
1
,
0
,
2
>
,
// ABlockTransfer ThreadCluster ArrangeOrder
S
<
1
,
0
,
2
>
,
// ABlockTransfer SrcAccessOrder
2
,
// ABlockTransfer SrcVectorDim
4
,
// ABlockTransfer SrcScalarPerVector
4
,
// ABlockTransfer DstScalarPerVector_K1
1
,
// ABlockLdsExtraM
S
<
4
,
64
,
1
>
,
// BBlockTransfer ThreadCluster Lengths_K0_N_K1
S
<
1
,
0
,
2
>
,
// BBlockTransfer ThreadCluster ArrangeOrder
S
<
1
,
0
,
2
>
,
// BBlockTransfer SrcAccessOrder
2
,
// BBlockTransfer SrcVectorDim
4
,
// BBlockTransfer SrcScalarPerVector
4
,
// BBlockTransfer DstScalarPerVector_K1
1
,
// BBlockLdsExtraN
1
,
// CShuffleMXdlPerWavePerShuffle
1
,
// CShuffleNXdlPerWavePerShuffle
S
<
64
,
4
>
,
// CD Reduce Thread Transfer ClusterLengths _MPerBlock_NPerBlock
4
,
// CDE ReduceThreadTransfer ScalarPerVector _NPerBlock
1
>
;
// RThread DstScalarPerVector _MPerBlock
// clang-format on
using
ReferenceGemmInstance
=
ck
::
tensor_operation
::
host
::
ReferenceGemm
<
ADataType
,
BDataType
,
ReduceAccDataType
,
GemmAccDataType
,
AElementOp
,
BElementOp
,
CDEElementOp
>
;
int
main
(
int
argc
,
char
*
argv
[])
{
bool
do_verification
=
true
;
int
init_method
=
1
;
bool
time_kernel
=
true
;
// GEMM shape
ck
::
index_t
M
=
1024
;
ck
::
index_t
N
=
1024
;
ck
::
index_t
K
=
1024
;
ck
::
index_t
StrideA
=
1024
;
ck
::
index_t
StrideB
=
1024
;
ck
::
index_t
StrideE
=
1024
;
if
(
argc
==
1
)
{
// do nothing
}
else
if
(
argc
==
4
)
{
do_verification
=
std
::
stoi
(
argv
[
1
]);
init_method
=
std
::
stoi
(
argv
[
2
]);
time_kernel
=
std
::
stoi
(
argv
[
3
]);
}
else
if
(
argc
==
10
)
{
do_verification
=
std
::
stoi
(
argv
[
1
]);
init_method
=
std
::
stoi
(
argv
[
2
]);
time_kernel
=
std
::
stoi
(
argv
[
3
]);
M
=
std
::
stoi
(
argv
[
4
]);
N
=
std
::
stoi
(
argv
[
5
]);
K
=
std
::
stoi
(
argv
[
6
]);
StrideA
=
std
::
stoi
(
argv
[
7
]);
StrideB
=
std
::
stoi
(
argv
[
8
]);
StrideE
=
std
::
stoi
(
argv
[
9
]);
}
else
{
std
::
cout
<<
"arg1: verification (0=no, 1=yes)
\n
"
<<
" arg2: initialization (0=no init, 1=integer value, 2=decimal value)
\n
"
<<
" arg3: Measure kernel execution time (1=ON, 0=Off)
\n
"
<<
" arg4 to 9: M (256x), N(128x), K(32x), StrideA, StrideB, StrideE
\n
"
<<
std
::
endl
;
exit
(
EXIT_SUCCESS
);
}
return
!
run_gemm_reduce_mean_meansquare_xdl
<
ADataType
,
BDataType
,
EDataType
,
R0DataType
,
R1DataType
,
ALayout
,
BLayout
,
ELayout
,
AElementOp
,
BElementOp
,
CDEElementOp
,
QsElementOp
,
RsElementOp
,
RsThreadReduceOp
,
ReduceAccDataType
,
DeviceOpInstance
,
ReferenceGemmInstance
>
(
M
,
N
,
K
,
StrideA
,
StrideB
,
StrideE
,
do_verification
,
init_method
,
time_kernel
);
}
example/16_gemm_multi_d_multi_reduces/gemm_reduce_xdl_common.hpp
0 → 100644
View file @
b89a88b5
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2022, Advanced Micro Devices, Inc. All rights reserved.
#include <numeric>
#include <initializer_list>
#include <cstdlib>
#include <iostream>
#include "ck/ck.hpp"
#include "ck/host_utility/io.hpp"
#include "ck/stream_config.hpp"
#include "ck/library/utility/check_err.hpp"
#include "ck/library/utility/device_memory.hpp"
#include "ck/library/utility/fill.hpp"
#include "ck/library/utility/host_tensor.hpp"
#include "ck/library/utility/literals.hpp"
#include "ck/tensor_operation/gpu/element/element_wise_operation.hpp"
#include "ck/tensor_operation/gpu/device/tensor_layout.hpp"
template
<
ck
::
index_t
...
Is
>
using
S
=
ck
::
Sequence
<
Is
...
>
;
using
Row
=
ck
::
tensor_layout
::
gemm
::
RowMajor
;
using
Col
=
ck
::
tensor_layout
::
gemm
::
ColumnMajor
;
using
PassThrough
=
ck
::
tensor_operation
::
element_wise
::
PassThrough
;
using
F16
=
ck
::
half_t
;
using
BF16
=
ck
::
bhalf_t
;
using
F32
=
float
;
using
F64
=
double
;
#ifdef CK_EXPERIMENTAL_BIT_INT_EXTENSION_INT4
using
INT4
=
ck
::
int4_t
;
#endif
using
INT8
=
std
::
int8_t
;
using
INT32
=
std
::
int32_t
;
template
<
typename
ADataType
,
typename
BDataType
,
typename
EDataType
,
typename
R0DataType
>
void
DumpGemmReduceMaxPerf
(
float
ave_time
,
int
M
,
int
N
,
int
K
)
{
using
namespace
ck
::
literals
;
std
::
size_t
flop
=
2
_uz
*
M
*
N
*
K
;
std
::
size_t
gemm_num_byte
=
sizeof
(
ADataType
)
*
M
*
K
+
sizeof
(
BDataType
)
*
K
*
N
+
sizeof
(
EDataType
)
*
M
*
N
+
sizeof
(
R0DataType
)
*
M
;
float
tflops
=
static_cast
<
float
>
(
flop
)
/
1.E9
/
ave_time
;
float
gemm_gb_per_sec
=
gemm_num_byte
/
1.E6
/
ave_time
;
std
::
cout
<<
"Perf: "
<<
ave_time
<<
" ms, "
<<
tflops
<<
" TFlops, "
<<
gemm_gb_per_sec
<<
" GB/s, "
<<
std
::
endl
;
}
template
<
typename
ADataType
,
typename
BDataType
,
typename
EDataType
,
typename
R0DataType
,
typename
R1DataType
>
void
DumpGemmReduceMeanSquareMeanPerf
(
float
ave_time
,
int
M
,
int
N
,
int
K
)
{
using
namespace
ck
::
literals
;
std
::
size_t
flop
=
2
_uz
*
M
*
N
*
K
+
M
*
(
3
_uz
*
N
+
2
_uz
);
std
::
size_t
gemm_num_byte
=
sizeof
(
ADataType
)
*
M
*
K
+
sizeof
(
BDataType
)
*
K
*
N
+
sizeof
(
EDataType
)
*
M
*
N
+
sizeof
(
R0DataType
)
*
M
+
sizeof
(
R1DataType
)
*
M
;
float
tflops
=
static_cast
<
float
>
(
flop
)
/
1.E9
/
ave_time
;
float
gemm_gb_per_sec
=
gemm_num_byte
/
1.E6
/
ave_time
;
std
::
cout
<<
"Perf: "
<<
ave_time
<<
" ms, "
<<
tflops
<<
" TFlops, "
<<
gemm_gb_per_sec
<<
" GB/s, "
<<
std
::
endl
;
}
template
<
typename
ADataType
,
typename
BDataType
,
typename
EDataType
,
typename
R0DataType
,
typename
ALayout
,
typename
BLayout
,
typename
ELayout
,
typename
AElementOp
,
typename
BElementOp
,
typename
CDEElementOp
,
typename
QsElementOp
,
typename
RsElementOp
,
typename
RsThreadReduceOp
,
typename
ReduceAccDataType
,
typename
DeviceOpInstance
,
typename
ReferenceGemmInstance
,
typename
ADataKernelType
=
ADataType
,
typename
BDataKernelType
=
BDataType
,
typename
EDataKernelType
=
EDataType
>
auto
run_gemm_reduce_max_xdl
(
ck
::
index_t
M
,
ck
::
index_t
N
,
ck
::
index_t
K
,
ck
::
index_t
StrideA
,
ck
::
index_t
StrideB
,
ck
::
index_t
StrideE
,
bool
do_verification
,
int
init_method
,
bool
time_kernel
)
{
#ifdef CK_EXPERIMENTAL_BIT_INT_EXTENSION_INT4
static_assert
(
sizeof
(
ck
::
int4_t
)
==
sizeof
(
int8_t
));
static_assert
(
sizeof
(
ADataType
)
==
sizeof
(
ADataKernelType
));
static_assert
(
sizeof
(
BDataType
)
==
sizeof
(
BDataKernelType
));
static_assert
(
sizeof
(
EDataType
)
==
sizeof
(
EDataKernelType
));
#endif
using
namespace
ck
::
literals
;
auto
f_host_tensor_descriptor1d
=
[](
std
::
size_t
len
,
std
::
size_t
stride
)
{
return
HostTensorDescriptor
({
len
},
{
stride
});
};
auto
f_host_tensor_descriptor2d
=
[](
std
::
size_t
row
,
std
::
size_t
col
,
std
::
size_t
stride
,
auto
layout
)
{
if
(
std
::
is_same
<
decltype
(
layout
),
ck
::
tensor_layout
::
gemm
::
RowMajor
>::
value
)
{
return
HostTensorDescriptor
({
row
,
col
},
{
stride
,
1
_uz
});
}
else
{
return
HostTensorDescriptor
({
row
,
col
},
{
1
_uz
,
stride
});
}
};
Tensor
<
ADataType
>
a_m_k
(
f_host_tensor_descriptor2d
(
M
,
K
,
StrideA
,
ALayout
{}));
Tensor
<
BDataType
>
b_k_n
(
f_host_tensor_descriptor2d
(
K
,
N
,
StrideB
,
BLayout
{}));
Tensor
<
EDataKernelType
>
e_m_n
(
f_host_tensor_descriptor2d
(
M
,
N
,
StrideE
,
ELayout
{}));
Tensor
<
R0DataType
>
r0_m
(
f_host_tensor_descriptor1d
(
M
,
1
));
switch
(
init_method
)
{
case
0
:
break
;
case
1
:
ck
::
utils
::
FillUniformDistributionIntegerValue
<
ADataType
>
{
-
5.
f
,
5.
f
}(
a_m_k
.
begin
(),
a_m_k
.
end
());
ck
::
utils
::
FillUniformDistributionIntegerValue
<
BDataType
>
{
-
5.
f
,
5.
f
}(
b_k_n
.
begin
(),
b_k_n
.
end
());
break
;
default:
ck
::
utils
::
FillUniformDistribution
<
ADataType
>
{
-
1.
f
,
1.
f
}(
a_m_k
.
begin
(),
a_m_k
.
end
());
ck
::
utils
::
FillUniformDistribution
<
BDataType
>
{
-
1.
f
,
1.
f
}(
b_k_n
.
begin
(),
b_k_n
.
end
());
break
;
}
DeviceMem
a_device_buf
(
sizeof
(
ADataKernelType
)
*
a_m_k
.
mDesc
.
GetElementSpaceSize
());
DeviceMem
b_device_buf
(
sizeof
(
BDataKernelType
)
*
b_k_n
.
mDesc
.
GetElementSpaceSize
());
DeviceMem
e_device_buf
(
sizeof
(
EDataKernelType
)
*
e_m_n
.
mDesc
.
GetElementSpaceSize
());
DeviceMem
r0_device_buf
(
sizeof
(
R0DataType
)
*
r0_m
.
mDesc
.
GetElementSpaceSize
());
#ifdef CK_EXPERIMENTAL_BIT_INT_EXTENSION_INT4
if
constexpr
(
std
::
is_same_v
<
ADataType
,
ck
::
int4_t
>
)
{
Tensor
<
ADataKernelType
>
a_m_k_converted
=
a_m_k
.
template
CopyAsType
<
ADataKernelType
>();
Tensor
<
BDataKernelType
>
b_k_n_converted
=
b_k_n
.
template
CopyAsType
<
BDataKernelType
>();
a_device_buf
.
ToDevice
(
a_m_k_converted
.
mData
.
data
());
b_device_buf
.
ToDevice
(
b_k_n_converted
.
mData
.
data
());
}
else
#endif // CK_EXPERIMENTAL_BIT_INT_EXTENSION_INT4
{
a_device_buf
.
ToDevice
(
a_m_k
.
mData
.
data
());
b_device_buf
.
ToDevice
(
b_k_n
.
mData
.
data
());
}
auto
a_element_op
=
AElementOp
{};
auto
b_element_op
=
BElementOp
{};
auto
cde_element_op
=
CDEElementOp
{};
auto
qs_element_op
=
QsElementOp
{};
auto
rs_element_op
=
RsElementOp
{};
// Prepare GEMM, max
auto
device_op
=
DeviceOpInstance
{};
auto
invoker
=
device_op
.
MakeInvoker
();
auto
argument
=
device_op
.
MakeArgument
(
a_device_buf
.
GetDeviceBuffer
(),
b_device_buf
.
GetDeviceBuffer
(),
{},
e_device_buf
.
GetDeviceBuffer
(),
{
r0_device_buf
.
GetDeviceBuffer
()},
M
,
N
,
K
,
StrideA
,
StrideB
,
{},
StrideE
,
a_element_op
,
b_element_op
,
cde_element_op
,
qs_element_op
,
rs_element_op
);
if
(
!
device_op
.
IsSupportedArgument
(
argument
))
{
throw
std
::
runtime_error
(
"wrong! this device_op instance does not support this problem"
);
}
// [CAUTION]: launch_and_time_kernel will not initialize D.
// If we evaluate kernel multiple time but without initialize D. Verification will fail
r0_device_buf
.
SetValue
(
ck
::
NumericLimits
<
R0DataType
>::
Lowest
());
invoker
.
Run
(
argument
,
StreamConfig
{
nullptr
,
false
});
bool
pass
=
true
;
if
(
do_verification
)
{
auto
I0
=
ck
::
Number
<
0
>
{};
Tensor
<
ReduceAccDataType
>
e_m_n_host
(
e_m_n
.
mDesc
);
Tensor
<
R0DataType
>
r0_m_host
(
r0_m
.
mDesc
);
auto
ref_gemm
=
ReferenceGemmInstance
{};
auto
ref_invoker
=
ref_gemm
.
MakeInvoker
();
auto
ref_argument
=
ref_gemm
.
MakeArgument
(
a_m_k
,
b_k_n
,
e_m_n_host
,
a_element_op
,
b_element_op
,
cde_element_op
);
ref_invoker
.
Run
(
ref_argument
);
auto
reduce0_op
=
RsThreadReduceOp
{}[
I0
];
for
(
int
m
=
0
;
m
<
M
;
++
m
)
{
auto
reduce0_acc
=
reduce0_op
.
template
GetIdentityValue
<
ReduceAccDataType
>();
for
(
int
n
=
0
;
n
<
N
;
++
n
)
{
auto
e_val
=
e_m_n_host
(
m
,
n
);
reduce0_op
(
reduce0_acc
,
e_val
);
};
r0_m_host
(
m
)
=
ck
::
type_convert
<
R0DataType
>
(
reduce0_acc
);
}
e_device_buf
.
FromDevice
(
e_m_n
.
mData
.
data
());
Tensor
<
EDataType
>
e_m_n_host_converted
(
e_m_n_host
);
#ifdef CK_EXPERIMENTAL_BIT_INT_EXTENSION_INT4
if
constexpr
(
std
::
is_same_v
<
ADataType
,
ck
::
int4_t
>
)
{
Tensor
<
EDataType
>
e_m_n_device_converted
(
e_m_n
);
pass
=
ck
::
utils
::
check_err
(
e_m_n_device_converted
.
mData
,
e_m_n_host_converted
.
mData
,
"Error: Incorrect results c"
,
1e-2
,
1e-2
);
}
else
#endif // CK_EXPERIMENTAL_BIT_INT_EXTENSION_INT4
{
pass
=
ck
::
utils
::
check_err
(
e_m_n
.
mData
,
e_m_n_host_converted
.
mData
,
"Error: Incorrect results c"
,
1e-2
,
1e-2
);
}
r0_device_buf
.
FromDevice
(
r0_m
.
mData
.
data
());
pass
&=
ck
::
utils
::
check_err
(
r0_m
.
mData
,
r0_m_host
.
mData
,
"Error: Incorrect results d0"
,
1e-2
,
1e-2
);
if
(
pass
)
{
std
::
cout
<<
"Success!"
<<
std
::
endl
;
}
}
if
(
time_kernel
)
{
float
ave_time
=
invoker
.
Run
(
argument
,
StreamConfig
{
nullptr
,
time_kernel
});
DumpGemmReduceMaxPerf
<
ADataType
,
BDataType
,
EDataType
,
R0DataType
>
(
ave_time
,
M
,
N
,
K
);
}
return
pass
?
0
:
1
;
}
template
<
typename
ADataType
,
typename
BDataType
,
typename
EDataType
,
typename
R0DataType
,
typename
R1DataType
,
typename
ALayout
,
typename
BLayout
,
typename
ELayout
,
typename
AElementOp
,
typename
BElementOp
,
typename
CDEElementOp
,
typename
QsElementOp
,
typename
RsElementOp
,
typename
RsThreadReduceOp
,
typename
ReduceAccDataType
,
typename
DeviceOpInstance
,
typename
ReferenceGemmInstance
,
typename
ADataKernelType
=
ADataType
,
typename
BDataKernelType
=
BDataType
,
typename
EDataKernelType
=
EDataType
>
bool
run_gemm_reduce_mean_meansquare_xdl
(
ck
::
index_t
M
,
ck
::
index_t
N
,
ck
::
index_t
K
,
ck
::
index_t
StrideA
,
ck
::
index_t
StrideB
,
ck
::
index_t
StrideE
,
bool
do_verification
,
int
init_method
,
bool
time_kernel
)
{
#ifdef CK_EXPERIMENTAL_BIT_INT_EXTENSION_INT4
static_assert
(
sizeof
(
ck
::
int4_t
)
==
sizeof
(
int8_t
));
static_assert
(
sizeof
(
ADataType
)
==
sizeof
(
ADataKernelType
));
static_assert
(
sizeof
(
BDataType
)
==
sizeof
(
BDataKernelType
));
static_assert
(
sizeof
(
EDataType
)
==
sizeof
(
EDataKernelType
));
#endif
using
namespace
ck
::
literals
;
auto
f_host_tensor_descriptor1d
=
[](
std
::
size_t
len
,
std
::
size_t
stride
)
{
return
HostTensorDescriptor
({
len
},
{
stride
});
};
auto
f_host_tensor_descriptor2d
=
[](
std
::
size_t
row
,
std
::
size_t
col
,
std
::
size_t
stride
,
auto
layout
)
{
if
(
std
::
is_same
<
decltype
(
layout
),
ck
::
tensor_layout
::
gemm
::
RowMajor
>::
value
)
{
return
HostTensorDescriptor
({
row
,
col
},
{
stride
,
1
_uz
});
}
else
{
return
HostTensorDescriptor
({
row
,
col
},
{
1
_uz
,
stride
});
}
};
Tensor
<
ADataType
>
a_m_k
(
f_host_tensor_descriptor2d
(
M
,
K
,
StrideA
,
ALayout
{}));
Tensor
<
BDataType
>
b_k_n
(
f_host_tensor_descriptor2d
(
K
,
N
,
StrideB
,
BLayout
{}));
Tensor
<
EDataKernelType
>
e_m_n
(
f_host_tensor_descriptor2d
(
M
,
N
,
StrideE
,
ELayout
{}));
Tensor
<
R0DataType
>
r0_m
(
f_host_tensor_descriptor1d
(
M
,
1
));
Tensor
<
R1DataType
>
r1_m
(
f_host_tensor_descriptor1d
(
M
,
1
));
switch
(
init_method
)
{
case
0
:
break
;
case
1
:
ck
::
utils
::
FillUniformDistributionIntegerValue
<
ADataType
>
{
-
5.
f
,
5.
f
}(
a_m_k
.
begin
(),
a_m_k
.
end
());
ck
::
utils
::
FillUniformDistributionIntegerValue
<
BDataType
>
{
-
5.
f
,
5.
f
}(
b_k_n
.
begin
(),
b_k_n
.
end
());
break
;
default:
ck
::
utils
::
FillUniformDistribution
<
ADataType
>
{
-
1.
f
,
1.
f
}(
a_m_k
.
begin
(),
a_m_k
.
end
());
ck
::
utils
::
FillUniformDistribution
<
BDataType
>
{
-
1.
f
,
1.
f
}(
b_k_n
.
begin
(),
b_k_n
.
end
());
break
;
}
DeviceMem
a_device_buf
(
sizeof
(
ADataKernelType
)
*
a_m_k
.
mDesc
.
GetElementSpaceSize
());
DeviceMem
b_device_buf
(
sizeof
(
BDataKernelType
)
*
b_k_n
.
mDesc
.
GetElementSpaceSize
());
DeviceMem
e_device_buf
(
sizeof
(
EDataKernelType
)
*
e_m_n
.
mDesc
.
GetElementSpaceSize
());
DeviceMem
r0_device_buf
(
sizeof
(
R0DataType
)
*
r0_m
.
mDesc
.
GetElementSpaceSize
());
DeviceMem
r1_device_buf
(
sizeof
(
R1DataType
)
*
r1_m
.
mDesc
.
GetElementSpaceSize
());
#ifdef CK_EXPERIMENTAL_BIT_INT_EXTENSION_INT4
if
constexpr
(
std
::
is_same_v
<
ADataType
,
ck
::
int4_t
>
)
{
Tensor
<
ADataKernelType
>
a_m_k_converted
=
a_m_k
.
template
CopyAsType
<
ADataKernelType
>();
Tensor
<
BDataKernelType
>
b_k_n_converted
=
b_k_n
.
template
CopyAsType
<
BDataKernelType
>();
a_device_buf
.
ToDevice
(
a_m_k_converted
.
mData
.
data
());
b_device_buf
.
ToDevice
(
b_k_n_converted
.
mData
.
data
());
}
else
#endif // CK_EXPERIMENTAL_BIT_INT_EXTENSION_INT4
{
a_device_buf
.
ToDevice
(
a_m_k
.
mData
.
data
());
b_device_buf
.
ToDevice
(
b_k_n
.
mData
.
data
());
}
auto
a_element_op
=
AElementOp
{};
auto
b_element_op
=
BElementOp
{};
auto
cde_element_op
=
CDEElementOp
{};
auto
qs_element_op
=
QsElementOp
{};
auto
rs_element_op
=
RsElementOp
{
N
,
N
};
// Prepare GEMM, mean, mean_square
auto
device_op
=
DeviceOpInstance
{};
auto
invoker
=
device_op
.
MakeInvoker
();
auto
argument
=
device_op
.
MakeArgument
(
a_device_buf
.
GetDeviceBuffer
(),
b_device_buf
.
GetDeviceBuffer
(),
{},
e_device_buf
.
GetDeviceBuffer
(),
{
r0_device_buf
.
GetDeviceBuffer
(),
r1_device_buf
.
GetDeviceBuffer
()},
M
,
N
,
K
,
StrideA
,
StrideB
,
{},
StrideE
,
a_element_op
,
b_element_op
,
cde_element_op
,
qs_element_op
,
rs_element_op
);
if
(
!
device_op
.
IsSupportedArgument
(
argument
))
{
throw
std
::
runtime_error
(
"wrong! this device_op instance does not support this problem"
);
}
// init reducetion buffer to 0
r0_device_buf
.
SetZero
();
r1_device_buf
.
SetZero
();
invoker
.
Run
(
argument
,
StreamConfig
{
nullptr
,
false
});
bool
pass
=
true
;
if
(
do_verification
)
{
auto
I0
=
ck
::
Number
<
0
>
{};
auto
I1
=
ck
::
Number
<
1
>
{};
Tensor
<
ReduceAccDataType
>
e_m_n_host
(
e_m_n
.
mDesc
);
Tensor
<
R0DataType
>
r0_m_host
(
r0_m
.
mDesc
);
Tensor
<
R1DataType
>
r1_m_host
(
r1_m
.
mDesc
);
auto
ref_gemm
=
ReferenceGemmInstance
{};
auto
ref_invoker
=
ref_gemm
.
MakeInvoker
();
auto
ref_argument
=
ref_gemm
.
MakeArgument
(
a_m_k
,
b_k_n
,
e_m_n_host
,
a_element_op
,
b_element_op
,
PassThrough
{});
ref_invoker
.
Run
(
ref_argument
);
auto
reduce0_op
=
RsThreadReduceOp
{}[
I0
];
auto
reduce1_op
=
RsThreadReduceOp
{}[
I1
];
for
(
int
m
=
0
;
m
<
M
;
++
m
)
{
auto
reduce0_acc
=
reduce0_op
.
template
GetIdentityValue
<
ReduceAccDataType
>();
auto
reduce1_acc
=
reduce1_op
.
template
GetIdentityValue
<
ReduceAccDataType
>();
for
(
int
n
=
0
;
n
<
N
;
++
n
)
{
ReduceAccDataType
square_e_val
;
auto
e_val
=
ck
::
type_convert
<
ReduceAccDataType
>
(
e_m_n_host
(
m
,
n
));
qs_element_op
[
I1
](
square_e_val
,
e_val
);
reduce0_op
(
reduce0_acc
,
e_val
);
reduce1_op
(
reduce1_acc
,
square_e_val
);
}
rs_element_op
[
I0
](
reduce0_acc
,
reduce0_acc
);
rs_element_op
[
I1
](
reduce1_acc
,
reduce1_acc
);
r0_m_host
(
m
)
=
ck
::
type_convert
<
R0DataType
>
(
reduce0_acc
);
r1_m_host
(
m
)
=
ck
::
type_convert
<
R1DataType
>
(
reduce1_acc
);
}
e_device_buf
.
FromDevice
(
e_m_n
.
mData
.
data
());
Tensor
<
EDataType
>
e_m_n_host_converted
(
e_m_n_host
);
#ifdef CK_EXPERIMENTAL_BIT_INT_EXTENSION_INT4
if
constexpr
(
std
::
is_same_v
<
ADataType
,
ck
::
int4_t
>
)
{
Tensor
<
EDataType
>
e_m_n_device_converted
(
e_m_n
);
pass
=
ck
::
utils
::
check_err
(
e_m_n_device_converted
.
mData
,
e_m_n_host_converted
.
mData
,
"Error: Incorrect results c"
,
1e-2
,
1e-2
);
}
else
#endif // CK_EXPERIMENTAL_BIT_INT_EXTENSION_INT4
{
pass
=
ck
::
utils
::
check_err
(
e_m_n
.
mData
,
e_m_n_host_converted
.
mData
,
"Error: Incorrect results c"
,
1e-2
,
1e-2
);
}
r0_device_buf
.
FromDevice
(
r0_m
.
mData
.
data
());
r1_device_buf
.
FromDevice
(
r1_m
.
mData
.
data
());
pass
&=
ck
::
utils
::
check_err
(
r0_m
.
mData
,
r0_m_host
.
mData
,
"Error: Incorrect results d0"
,
1e-2
,
1e-2
);
pass
&=
ck
::
utils
::
check_err
(
r1_m
.
mData
,
r1_m_host
.
mData
,
"Error: Incorrect results d1"
,
1e-2
,
1e-2
);
if
(
pass
)
{
std
::
cout
<<
"Success!"
<<
std
::
endl
;
}
}
if
(
time_kernel
)
{
float
ave_time
=
invoker
.
Run
(
argument
,
StreamConfig
{
nullptr
,
time_kernel
});
DumpGemmReduceMeanSquareMeanPerf
<
ADataType
,
BDataType
,
EDataType
,
R0DataType
,
R1DataType
>
(
ave_time
,
M
,
N
,
K
);
}
return
pass
;
}
example/19_binary_elementwise/broadcast_add_2d_amn_bn.cpp
View file @
b89a88b5
...
...
@@ -6,7 +6,7 @@
#include "ck/ck.hpp"
#include "ck/tensor_operation/gpu/element/binary_element_wise_operation.hpp"
#include "ck/tensor_operation/gpu/device/device_
binary_
elementwise.hpp"
#include "ck/tensor_operation/gpu/device/device_elementwise.hpp"
#include "ck/library/utility/check_err.hpp"
#include "ck/library/utility/device_memory.hpp"
...
...
@@ -16,28 +16,23 @@
using
F16
=
ck
::
half_t
;
using
F32
=
float
;
using
ABDataType
=
F16
;
using
CDataType
=
F16
;
using
EltwiseComputeDataType
=
F32
;
using
ABDataType
=
F16
;
using
CDataType
=
F16
;
using
Add
=
ck
::
tensor_operation
::
element_wise
::
Add
;
using
DeviceElementwiseAddInstance
=
ck
::
tensor_operation
::
device
::
DeviceBinaryElementwise
<
ABDataType
,
ABDataType
,
CDataType
,
EltwiseComputeDataType
,
Add
,
2
,
8
,
8
,
8
,
8
>
;
ck
::
tensor_operation
::
device
::
DeviceElementwise
<
ck
::
Tuple
<
ABDataType
,
ABDataType
>
,
ck
::
Tuple
<
CDataType
>
,
Add
,
2
,
8
,
ck
::
Sequence
<
8
,
8
>
,
ck
::
Sequence
<
8
>>
;
template
<
typename
HostTensorA
,
typename
HostTensorB
,
typename
HostTensorC
,
typename
ComputeDataType
,
typename
Functor
,
int
broadcastDim
>
void
host_broadcast2D
(
...
...
@@ -49,19 +44,19 @@ void host_broadcast2D(
{
for
(
int
n
=
0
;
n
<
N
;
++
n
)
{
ComputeDataType
Amn
=
ck
::
type_convert
<
ComputeDataType
>
(
A
(
m
,
n
)
)
;
ComputeDataT
ype
Cmn
=
0
;
auto
Amn
=
A
(
m
,
n
);
ct
ype
Cmn
=
0
;
if
constexpr
(
broadcastDim
==
0
)
{
ComputeDataType
Bn
=
ck
::
type_convert
<
ComputeDataType
>
(
B
(
n
)
)
;
auto
Bn
=
B
(
n
);
functor
(
Cmn
,
Amn
,
Bn
);
}
else
{
ComputeDataType
Bm
=
ck
::
type_convert
<
ComputeDataType
>
(
B
(
m
)
)
;
auto
Bm
=
B
(
m
);
functor
(
Cmn
,
Amn
,
Bm
);
}
C
(
m
,
n
)
=
ck
::
type_convert
<
ctype
>
(
Cmn
)
;
C
(
m
,
n
)
=
Cmn
;
}
}
}
...
...
@@ -103,18 +98,19 @@ int main()
b_n_device_buf
.
GetDeviceBuffer
()};
std
::
array
<
void
*
,
1
>
output
=
{
c_m_n_device_buf
.
GetDeviceBuffer
()};
std
::
vector
<
ck
::
index_t
>
a_strides
=
{
Stride
,
1
};
std
::
vector
<
ck
::
index_t
>
b_strides
=
{
0
,
1
};
std
::
vector
<
ck
::
index_t
>
c_strides
=
{
Stride
,
1
};
std
::
array
<
ck
::
index_t
,
2
>
abc_lengths
=
{
M
,
N
};
std
::
array
<
ck
::
index_t
,
2
>
a_strides
=
{
Stride
,
1
};
std
::
array
<
ck
::
index_t
,
2
>
b_strides
=
{
0
,
1
};
std
::
array
<
ck
::
index_t
,
2
>
c_strides
=
{
Stride
,
1
};
auto
broadcastAdd
=
DeviceElementwiseAddInstance
{};
auto
argument
=
broadcastAdd
.
MakeArgumentPointer
(
input
,
output
,
{
M
,
N
}
,
{
a_strides
,
b_strides
},
{
c_strides
},
Add
{});
abc_lengths
,
{
a_strides
,
b_strides
},
{
c_strides
},
input
,
output
,
Add
{});
if
(
!
broadcastAdd
.
IsSupportedArgument
(
argument
.
get
()))
{
throw
std
::
runtime_error
(
"The runtime parameters seems not supported by the "
"DeviceBinaryElementwis
e instance, exiting!"
);
throw
std
::
runtime_error
(
"The runtime parameters seems not supported by the devic
e instance, exiting!"
);
};
auto
broadcastAdd_invoker_ptr
=
broadcastAdd
.
MakeInvokerPointer
();
...
...
@@ -129,12 +125,8 @@ int main()
c_m_n_device_buf
.
FromDevice
(
c_m_n
.
mData
.
data
());
Tensor
<
CDataType
>
host_c_m_n
(
f_host_tensor_descriptor2d
(
M
,
N
,
Stride
));
host_broadcast2D
<
Tensor
<
ABDataType
>
,
Tensor
<
ABDataType
>
,
Tensor
<
CDataType
>
,
EltwiseComputeDataType
,
Add
,
0
>
(
host_c_m_n
,
a_m_n
,
b_n
,
M
,
N
,
Add
{});
host_broadcast2D
<
Tensor
<
ABDataType
>
,
Tensor
<
ABDataType
>
,
Tensor
<
CDataType
>
,
Add
,
0
>
(
host_c_m_n
,
a_m_n
,
b_n
,
M
,
N
,
Add
{});
pass
&=
ck
::
utils
::
check_err
(
c_m_n
.
mData
,
host_c_m_n
.
mData
,
"Error: Incorrect results c"
,
1e-3
,
1e-3
);
...
...
example/19_binary_elementwise/broadcast_add_3d_am_bmnk.cpp
View file @
b89a88b5
...
...
@@ -6,7 +6,7 @@
#include "ck/ck.hpp"
#include "ck/tensor_operation/gpu/element/binary_element_wise_operation.hpp"
#include "ck/tensor_operation/gpu/device/device_
binary_
elementwise.hpp"
#include "ck/tensor_operation/gpu/device/device_elementwise.hpp"
#include "ck/library/utility/check_err.hpp"
#include "ck/library/utility/device_memory.hpp"
...
...
@@ -16,29 +16,21 @@
using
F16
=
ck
::
half_t
;
using
F32
=
float
;
using
ABDataType
=
F16
;
using
CDataType
=
F16
;
using
EltwiseComputeDataType
=
F32
;
using
ABDataType
=
F16
;
using
CDataType
=
F16
;
using
Add
=
ck
::
tensor_operation
::
element_wise
::
Add
;
using
DeviceElementwiseAddInstance
=
ck
::
tensor_operation
::
device
::
DeviceBinaryElementwise
<
ABDataType
,
ABDataType
,
CDataType
,
EltwiseComputeDataType
,
Add
,
3
,
8
,
1
,
8
,
8
>
;
template
<
typename
HostTensorA
,
typename
HostTensorB
,
typename
HostTensorC
,
typename
ComputeDataType
,
typename
Functor
>
ck
::
tensor_operation
::
device
::
DeviceElementwise
<
ck
::
Tuple
<
ABDataType
,
ABDataType
>
,
ck
::
Tuple
<
CDataType
>
,
Add
,
3
,
8
,
ck
::
Sequence
<
1
,
8
>
,
ck
::
Sequence
<
8
>>
;
template
<
typename
HostTensorA
,
typename
HostTensorB
,
typename
HostTensorC
,
typename
Functor
>
void
host_broadcast3D_am_bmnk
(
HostTensorC
&
C
,
const
HostTensorA
&
A
,
const
HostTensorB
&
B
,
...
...
@@ -51,11 +43,11 @@ void host_broadcast3D_am_bmnk(HostTensorC& C,
for
(
std
::
size_t
n
=
0
;
n
<
shape
[
1
];
++
n
)
for
(
std
::
size_t
k
=
0
;
k
<
shape
[
2
];
++
k
)
{
ComputeDataType
a_val
=
ck
::
type_convert
<
ComputeDataType
>
(
A
(
m
)
)
;
ComputeDataType
b_val
=
ck
::
type_convert
<
ComputeDataType
>
(
B
(
m
,
n
,
k
)
)
;
ComputeDataT
ype
c_val
=
0
;
auto
a_val
=
A
(
m
);
auto
b_val
=
B
(
m
,
n
,
k
);
ct
ype
c_val
=
0
;
functor
(
c_val
,
a_val
,
b_val
);
C
(
m
,
n
,
k
)
=
ck
::
type_convert
<
ctype
>
(
c_val
)
;
C
(
m
,
n
,
k
)
=
c_val
;
}
}
...
...
@@ -85,25 +77,25 @@ int main()
b_m_n_k_device_buf
.
GetDeviceBuffer
()};
std
::
array
<
void
*
,
1
>
output
=
{
c_m_n_k_device_buf
.
GetDeviceBuffer
()};
std
::
vector
<
ck
::
index_t
>
a_strides
=
{
1
,
0
,
0
};
std
::
vector
<
ck
::
index_t
>
b_strides
{
b_m_n_k
.
mDesc
.
GetStrides
().
begin
(),
b_m_n_k
.
mDesc
.
GetStrides
().
end
()};
std
::
vector
<
ck
::
index_t
>
c_strides
{
c_m_n_k
.
mDesc
.
GetStrides
().
begin
(),
c_m_n_k
.
mDesc
.
GetStrides
().
end
()};
std
::
array
<
ck
::
index_t
,
3
>
abc_lengths
;
std
::
array
<
ck
::
index_t
,
3
>
a_strides
=
{
1
,
0
,
0
};
std
::
array
<
ck
::
index_t
,
3
>
b_strides
;
std
::
array
<
ck
::
index_t
,
3
>
c_strides
;
std
::
copy
(
mnk
.
begin
(),
mnk
.
end
(),
abc_lengths
.
begin
());
std
::
copy
(
b_m_n_k
.
mDesc
.
GetStrides
().
begin
(),
b_m_n_k
.
mDesc
.
GetStrides
().
end
(),
b_strides
.
begin
());
std
::
copy
(
c_m_n_k
.
mDesc
.
GetStrides
().
begin
(),
c_m_n_k
.
mDesc
.
GetStrides
().
end
(),
c_strides
.
begin
());
auto
broadcastAdd
=
DeviceElementwiseAddInstance
{};
auto
argument
=
broadcastAdd
.
MakeArgumentPointer
(
input
,
output
,
std
::
vector
<
ck
::
index_t
>
{
mnk
.
begin
(),
mnk
.
end
()},
{
a_strides
,
b_strides
},
{
c_strides
},
Add
{});
auto
argument
=
broadcastAdd
.
MakeArgumentPointer
(
abc_lengths
,
{
a_strides
,
b_strides
},
{
c_strides
},
input
,
output
,
Add
{});
if
(
!
broadcastAdd
.
IsSupportedArgument
(
argument
.
get
()))
{
throw
std
::
runtime_error
(
"The runtime parameters seems not supported by the "
"DeviceBinaryElementwis
e instance, exiting!"
);
throw
std
::
runtime_error
(
"The runtime parameters seems not supported by the devic
e instance, exiting!"
);
};
auto
broadcastAdd_invoker_ptr
=
broadcastAdd
.
MakeInvokerPointer
();
...
...
@@ -118,11 +110,8 @@ int main()
c_m_n_k_device_buf
.
FromDevice
(
c_m_n_k
.
mData
.
data
());
Tensor
<
CDataType
>
host_c_m_n_k
(
mnk
);
host_broadcast3D_am_bmnk
<
Tensor
<
ABDataType
>
,
Tensor
<
ABDataType
>
,
Tensor
<
CDataType
>
,
EltwiseComputeDataType
,
Add
>
(
host_c_m_n_k
,
a_m
,
b_m_n_k
,
mnk
,
Add
{});
host_broadcast3D_am_bmnk
<
Tensor
<
ABDataType
>
,
Tensor
<
ABDataType
>
,
Tensor
<
CDataType
>
,
Add
>
(
host_c_m_n_k
,
a_m
,
b_m_n_k
,
mnk
,
Add
{});
pass
&=
ck
::
utils
::
check_err
(
c_m_n_k
.
mData
,
host_c_m_n_k
.
mData
,
"Error: Incorrect results c"
,
1e-3
,
1e-3
);
...
...
example/19_binary_elementwise/elementwise_add_1d.cpp
View file @
b89a88b5
...
...
@@ -5,7 +5,7 @@
#include <cstdlib>
#include "ck/ck.hpp"
#include "ck/tensor_operation/gpu/device/device_
binary_
elementwise.hpp"
#include "ck/tensor_operation/gpu/device/device_elementwise.hpp"
#include "ck/tensor_operation/gpu/element/binary_element_wise_operation.hpp"
#include "ck/library/utility/check_err.hpp"
#include "ck/library/utility/device_memory.hpp"
...
...
@@ -15,29 +15,21 @@
using
F16
=
ck
::
half_t
;
using
F32
=
float
;
using
ABDataType
=
F16
;
using
CDataType
=
F16
;
using
EltwiseComputeDataType
=
F32
;
using
ABDataType
=
F16
;
using
CDataType
=
F16
;
using
Add
=
ck
::
tensor_operation
::
element_wise
::
Add
;
using
DeviceElementwiseAddInstance
=
ck
::
tensor_operation
::
device
::
DeviceBinaryElementwise
<
ABDataType
,
ABDataType
,
CDataType
,
EltwiseComputeDataType
,
Add
,
1
,
8
,
8
,
8
,
8
>
;
template
<
typename
HostTensorA
,
typename
HostTensorB
,
typename
HostTensorC
,
typename
ComputeDataType
,
typename
Functor
>
ck
::
tensor_operation
::
device
::
DeviceElementwise
<
ck
::
Tuple
<
ABDataType
,
ABDataType
>
,
ck
::
Tuple
<
CDataType
>
,
Add
,
1
,
8
,
ck
::
Sequence
<
8
,
8
>
,
ck
::
Sequence
<
8
>>
;
template
<
typename
HostTensorA
,
typename
HostTensorB
,
typename
HostTensorC
,
typename
Functor
>
void
host_elementwise1D
(
HostTensorC
&
C
,
const
HostTensorA
&
A
,
const
HostTensorB
&
B
,
int
M
,
Functor
functor
)
{
...
...
@@ -45,11 +37,11 @@ void host_elementwise1D(
for
(
int
m
=
0
;
m
<
M
;
++
m
)
{
ComputeDataType
Am
=
ck
::
type_convert
<
ComputeDataType
>
(
A
(
m
)
)
;
ComputeDataType
Bm
=
ck
::
type_convert
<
ComputeDataType
>
(
B
(
m
)
)
;
ComputeDataT
ype
Cm
=
0
;
auto
Am
=
A
(
m
);
auto
Bm
=
B
(
m
);
ct
ype
Cm
=
0
;
functor
(
Cm
,
Am
,
Bm
);
C
(
m
)
=
ck
::
type_convert
<
ctype
>
(
Cm
)
;
C
(
m
)
=
Cm
;
}
}
...
...
@@ -83,18 +75,19 @@ int main()
b_m_device_buf
.
GetDeviceBuffer
()};
std
::
array
<
void
*
,
1
>
output
=
{
c_m_device_buf
.
GetDeviceBuffer
()};
std
::
vector
<
ck
::
index_t
>
a_strides
=
{
1
};
std
::
vector
<
ck
::
index_t
>
b_strides
=
{
1
};
std
::
vector
<
ck
::
index_t
>
c_strides
=
{
1
};
std
::
array
<
ck
::
index_t
,
1
>
abc_lengths
=
{
M
};
std
::
array
<
ck
::
index_t
,
1
>
a_strides
=
{
1
};
std
::
array
<
ck
::
index_t
,
1
>
b_strides
=
{
1
};
std
::
array
<
ck
::
index_t
,
1
>
c_strides
=
{
1
};
auto
broadcastAdd
=
DeviceElementwiseAddInstance
{};
auto
argument
=
broadcastAdd
.
MakeArgumentPointer
(
input
,
output
,
{
M
}
,
{
{
a_strides
}
,
b_strides
},
{
c_strides
},
Add
{});
abc_lengths
,
{
a_strides
,
b_strides
},
{
c_strides
},
input
,
output
,
Add
{});
if
(
!
broadcastAdd
.
IsSupportedArgument
(
argument
.
get
()))
{
throw
std
::
runtime_error
(
"The runtime parameters seems not supported by the "
"DeviceBinaryElementwis
e instance, exiting!"
);
throw
std
::
runtime_error
(
"The runtime parameters seems not supported by the devic
e instance, exiting!"
);
};
auto
broadcastAdd_invoker_ptr
=
broadcastAdd
.
MakeInvokerPointer
();
...
...
@@ -109,11 +102,8 @@ int main()
c_m_device_buf
.
FromDevice
(
c_m
.
mData
.
data
());
Tensor
<
CDataType
>
host_c_m
(
f_host_tensor_descriptor1d
(
M
,
1
));
host_elementwise1D
<
Tensor
<
ABDataType
>
,
Tensor
<
ABDataType
>
,
Tensor
<
CDataType
>
,
EltwiseComputeDataType
,
Add
>
(
host_c_m
,
a_m
,
b_m
,
M
,
Add
{});
host_elementwise1D
<
Tensor
<
ABDataType
>
,
Tensor
<
ABDataType
>
,
Tensor
<
CDataType
>
,
Add
>
(
host_c_m
,
a_m
,
b_m
,
M
,
Add
{});
pass
&=
ck
::
utils
::
check_err
(
c_m
.
mData
,
host_c_m
.
mData
,
"Error: Incorrect results c"
,
1e-3
,
1e-3
);
...
...
example/19_binary_elementwise/elementwise_add_4d.cpp
View file @
b89a88b5
...
...
@@ -6,7 +6,7 @@
#include "ck/ck.hpp"
#include "ck/tensor_operation/gpu/element/binary_element_wise_operation.hpp"
#include "ck/tensor_operation/gpu/device/device_
binary_
elementwise.hpp"
#include "ck/tensor_operation/gpu/device/device_elementwise.hpp"
#include "ck/library/utility/check_err.hpp"
#include "ck/library/utility/device_memory.hpp"
...
...
@@ -16,29 +16,21 @@
using
F16
=
ck
::
half_t
;
using
F32
=
float
;
using
ABDataType
=
F16
;
using
CDataType
=
F16
;
using
EltwiseComputeDataType
=
F32
;
using
ABDataType
=
F16
;
using
CDataType
=
F16
;
using
Add
=
ck
::
tensor_operation
::
element_wise
::
Add
;
using
DeviceElementwiseAddInstance
=
ck
::
tensor_operation
::
device
::
DeviceBinaryElementwise
<
ABDataType
,
ABDataType
,
CDataType
,
EltwiseComputeDataType
,
Add
,
4
,
8
,
8
,
8
,
8
>
;
template
<
typename
HostTensorA
,
typename
HostTensorB
,
typename
HostTensorC
,
typename
ComputeDataType
,
typename
Functor
>
ck
::
tensor_operation
::
device
::
DeviceElementwise
<
ck
::
Tuple
<
ABDataType
,
ABDataType
>
,
ck
::
Tuple
<
CDataType
>
,
Add
,
4
,
8
,
ck
::
Sequence
<
8
,
8
>
,
ck
::
Sequence
<
8
>>
;
template
<
typename
HostTensorA
,
typename
HostTensorB
,
typename
HostTensorC
,
typename
Functor
>
void
host_elementwise4D
(
HostTensorC
&
C
,
const
HostTensorA
&
A
,
const
HostTensorB
&
B
,
...
...
@@ -52,11 +44,11 @@ void host_elementwise4D(HostTensorC& C,
for
(
std
::
size_t
h
=
0
;
h
<
shape
[
2
];
++
h
)
for
(
std
::
size_t
w
=
0
;
w
<
shape
[
3
];
++
w
)
{
ComputeDataType
a_val
=
ck
::
type_convert
<
ComputeDataType
>
(
A
(
n
,
c
,
h
,
w
)
)
;
ComputeDataType
b_val
=
ck
::
type_convert
<
ComputeDataType
>
(
B
(
n
,
c
,
h
,
w
)
)
;
ComputeDataT
ype
c_val
=
0
;
auto
a_val
=
A
(
n
,
c
,
h
,
w
);
auto
b_val
=
B
(
n
,
c
,
h
,
w
);
ct
ype
c_val
=
0
;
functor
(
c_val
,
a_val
,
b_val
);
C
(
n
,
c
,
h
,
w
)
=
ck
::
type_convert
<
ctype
>
(
c_val
)
;
C
(
n
,
c
,
h
,
w
)
=
c_val
;
}
}
...
...
@@ -85,23 +77,24 @@ int main()
b_device_buf
.
GetDeviceBuffer
()};
std
::
array
<
void
*
,
1
>
output
=
{
c_device_buf
.
GetDeviceBuffer
()};
std
::
vector
<
ck
::
index_t
>
a_strides
{
a
.
mDesc
.
GetStrides
().
begin
(),
a
.
mDesc
.
GetStrides
().
end
()};
std
::
vector
<
ck
::
index_t
>
b_strides
{
b
.
mDesc
.
GetStrides
().
begin
(),
b
.
mDesc
.
GetStrides
().
end
()};
std
::
vector
<
ck
::
index_t
>
c_strides
{
c
.
mDesc
.
GetStrides
().
begin
(),
c
.
mDesc
.
GetStrides
().
end
()};
std
::
array
<
ck
::
index_t
,
4
>
abc_lengths
;
std
::
array
<
ck
::
index_t
,
4
>
a_strides
;
std
::
array
<
ck
::
index_t
,
4
>
b_strides
;
std
::
array
<
ck
::
index_t
,
4
>
c_strides
;
std
::
copy
(
nchw
.
begin
(),
nchw
.
end
(),
abc_lengths
.
begin
());
std
::
copy
(
a
.
mDesc
.
GetStrides
().
begin
(),
a
.
mDesc
.
GetStrides
().
end
(),
a_strides
.
begin
());
std
::
copy
(
b
.
mDesc
.
GetStrides
().
begin
(),
b
.
mDesc
.
GetStrides
().
end
(),
b_strides
.
begin
());
std
::
copy
(
c
.
mDesc
.
GetStrides
().
begin
(),
c
.
mDesc
.
GetStrides
().
end
(),
c_strides
.
begin
());
auto
broadcastAdd
=
DeviceElementwiseAddInstance
{};
auto
argument
=
broadcastAdd
.
MakeArgumentPointer
(
input
,
output
,
std
::
vector
<
ck
::
index_t
>
{
nchw
.
begin
(),
nchw
.
end
()},
{{
a_strides
},
b_strides
},
{
c_strides
},
Add
{});
auto
argument
=
broadcastAdd
.
MakeArgumentPointer
(
abc_lengths
,
{
a_strides
,
b_strides
},
{
c_strides
},
input
,
output
,
Add
{});
if
(
!
broadcastAdd
.
IsSupportedArgument
(
argument
.
get
()))
{
throw
std
::
runtime_error
(
"The runtime parameters seems not supported by the "
"DeviceBinaryElementwis
e instance, exiting!"
);
throw
std
::
runtime_error
(
"The runtime parameters seems not supported by the devic
e instance, exiting!"
);
};
auto
broadcastAdd_invoker_ptr
=
broadcastAdd
.
MakeInvokerPointer
();
...
...
@@ -116,11 +109,8 @@ int main()
c_device_buf
.
FromDevice
(
c
.
mData
.
data
());
Tensor
<
CDataType
>
host_c
(
nchw
);
host_elementwise4D
<
Tensor
<
ABDataType
>
,
Tensor
<
ABDataType
>
,
Tensor
<
CDataType
>
,
EltwiseComputeDataType
,
Add
>
(
host_c
,
a
,
b
,
nchw
,
Add
{});
host_elementwise4D
<
Tensor
<
ABDataType
>
,
Tensor
<
ABDataType
>
,
Tensor
<
CDataType
>
,
Add
>
(
host_c
,
a
,
b
,
nchw
,
Add
{});
pass
&=
ck
::
utils
::
check_err
(
c
.
mData
,
host_c
.
mData
,
"Error: Incorrect results c"
,
1e-3
,
1e-3
);
...
...
example/21_gemm_layernorm/gemm_bias_relu_add_layernorm_xdl_fp16.cpp
View file @
b89a88b5
...
...
@@ -10,7 +10,7 @@
#include "ck/tensor_operation/gpu/device/tensor_layout.hpp"
#include "ck/tensor_operation/gpu/device/gemm_specialization.hpp"
#include "ck/tensor_operation/gpu/device/device_gemm_multiple_d_multiple_r_xdl_cshuffle.hpp"
#include "ck/tensor_operation/gpu/device/device_
5ary_
elementwise.hpp"
#include "ck/tensor_operation/gpu/device/device_elementwise.hpp"
#include "ck/tensor_operation/gpu/element/element_wise_operation.hpp"
#include "ck/library/utility/device_memory.hpp"
...
...
@@ -94,23 +94,18 @@ using ReferenceGemmInstance = ck::tensor_operation::host::ReferenceGemm<ADataTyp
using
NormalizeFunctor
=
ck
::
tensor_operation
::
element_wise
::
Normalize
;
// A:x, B:E[x], C:E[x^2], D:Gamma, E:Beta , F:y
using
DeviceNormalizeInstance
=
ck
::
tensor_operation
::
device
::
Device5AryElementwise
<
EDataType
,
R0DataType
,
R1DataType
,
GammaDataType
,
BetaDataType
,
LayerNormOutDataType
,
NormalizeComputeDataType
,
NormalizeFunctor
,
2
,
8
,
8
,
// scalarPerVector: gemm_out
1
,
// scalarPerVector: reduce_mean
1
,
// scalarPerVector: reduce_mean_square
8
,
// scalarPerVector: Gamma
8
,
// scalarPerVector: Beta
8
>
;
// scalarPerVector: LayerNorm_out
using
DeviceNormalizeInstance
=
ck
::
tensor_operation
::
device
::
DeviceElementwise
<
ck
::
Tuple
<
EDataType
,
R0DataType
,
R1DataType
,
GammaDataType
,
BetaDataType
>
,
// x(gemm_out), mean, meansquare, gamma, beta
ck
::
Tuple
<
LayerNormOutDataType
>
,
// y
NormalizeFunctor
,
2
,
8
,
// MPerthread
ck
::
Sequence
<
8
,
1
,
1
,
8
,
8
>
,
// scalarPerVector: x(gemm_out), mean, meansquare, gamma, beta
ck
::
Sequence
<
8
>>
;
// scalarPerVector: y(layerNorm_out)
auto
f_host_tensor_descriptor1d
=
[](
std
::
size_t
len
,
std
::
size_t
stride
)
{
return
HostTensorDescriptor
(
std
::
vector
<
std
::
size_t
>
({
len
}),
...
...
@@ -197,14 +192,9 @@ void host_gemm_layernorm(Tensor<LayerNormOutDataType>& out_m_n,
{
for
(
int
n
=
0
;
n
<
N
;
++
n
)
{
NormalizeComputeDataType
out_acc
=
0
;
layerNormInst
(
out_acc
,
ck
::
type_convert
<
NormalizeComputeDataType
>
(
e_m_n
(
m
,
n
)),
ck
::
type_convert
<
NormalizeComputeDataType
>
(
mean_m
(
m
)),
ck
::
type_convert
<
NormalizeComputeDataType
>
(
meanSquare_m
(
m
)),
ck
::
type_convert
<
NormalizeComputeDataType
>
(
gamma_n
(
n
)),
ck
::
type_convert
<
NormalizeComputeDataType
>
(
beta_n
(
n
)));
out_m_n
(
m
,
n
)
=
ck
::
type_convert
<
LayerNormOutDataType
>
(
out_acc
);
LayerNormOutDataType
out_val
=
0
;
layerNormInst
(
out_val
,
e_m_n
(
m
,
n
),
mean_m
(
m
),
meanSquare_m
(
m
),
gamma_n
(
n
),
beta_n
(
n
));
out_m_n
(
m
,
n
)
=
out_val
;
}
}
}
...
...
@@ -339,28 +329,28 @@ int main()
beta_device_buf
.
GetDeviceBuffer
()};
std
::
array
<
void
*
,
1
>
output
=
{
layerNorm_device_buf
.
GetDeviceBuffer
()};
auto
normalize
=
DeviceNormalizeInstance
{
};
auto
normalize_invoker
=
normalize
.
MakeInvoker
()
;
auto
normalize_argument
=
normalize
.
MakeArgument
(
input
,
output
,
{
M
,
N
},
{
StrideE
,
1
},
{
1
,
0
}
,
{
1
,
0
},
{
0
,
1
},
{
0
,
1
}
,
{
StrideE
,
1
}
,
NormalizeFunctor
{});
if
(
!
normalize
.
IsSupportedArgument
(
normalize_argument
))
std
::
array
<
ck
::
index_t
,
2
>
xyLengths
=
{
M
,
N
};
std
::
array
<
ck
::
index_t
,
2
>
xyStrides
=
{
StrideE
,
1
}
;
auto
normalize
=
DeviceNormalizeInstance
{};
auto
normalize_invoker
=
normalize
.
MakeInvoker
();
auto
normalize_argument_ptr
=
normalize
.
MakeArgumentPointer
(
xyLengths
,
{
xyStrides
,
{
1
,
0
},
{
1
,
0
},
{
0
,
1
},
{
0
,
1
}
},
{
xyStrides
},
input
,
output
,
NormalizeFunctor
{});
if
(
!
normalize
.
IsSupportedArgument
(
normalize_argument
_ptr
.
get
()
))
{
throw
std
::
runtime_error
(
"The runtime parameters seems not supported by the "
"Device5AryElementwise instan
ce, exiting!"
);
throw
std
::
runtime_error
(
"The runtime parameters seems not supported by the devi
ce, exiting!"
);
}
// run kernel
gemmReduce_invoker
.
Run
(
gemmReduce_argument
,
StreamConfig
{
nullptr
,
false
});
normalize_invoker
.
Run
(
normalize_argument
,
StreamConfig
{
nullptr
,
false
});
normalize_invoker
.
Run
(
normalize_argument
_ptr
.
get
()
,
StreamConfig
{
nullptr
,
false
});
bool
pass
=
true
;
{
...
...
@@ -396,7 +386,7 @@ int main()
float
gemm_reduce_mean_reduce_square_mean_ave_time
=
gemmReduce_invoker
.
Run
(
gemmReduce_argument
,
StreamConfig
{
nullptr
,
time_kernel
});
float
normalize_ave_time
=
normalize_invoker
.
Run
(
normalize_argument
,
StreamConfig
{
nullptr
,
time_kernel
});
normalize_invoker
.
Run
(
normalize_argument
_ptr
.
get
()
,
StreamConfig
{
nullptr
,
time_kernel
});
if
(
time_kernel
)
DumpGemmLayerNormPerf
<
ADataType
,
...
...
example/21_gemm_layernorm/gemm_layernorm_xdl_fp16.cpp
View file @
b89a88b5
...
...
@@ -10,7 +10,7 @@
#include "ck/tensor_operation/gpu/device/tensor_layout.hpp"
#include "ck/tensor_operation/gpu/device/gemm_specialization.hpp"
#include "ck/tensor_operation/gpu/device/device_gemm_multiple_d_multiple_r_xdl_cshuffle.hpp"
#include "ck/tensor_operation/gpu/device/device_
5ary_
elementwise.hpp"
#include "ck/tensor_operation/gpu/device/device_elementwise.hpp"
#include "ck/tensor_operation/gpu/element/element_wise_operation.hpp"
#include "ck/library/utility/device_memory.hpp"
...
...
@@ -91,23 +91,20 @@ using ReferenceGemmInstance = ck::tensor_operation::host::ReferenceGemm<ADataTyp
using
NormalizeFunctor
=
ck
::
tensor_operation
::
element_wise
::
Normalize
;
// A:x, B:E[x], C:E[x^2], D:Gamma, E:Beta , F:y
using
DeviceNormalizeInstance
=
ck
::
tensor_operation
::
device
::
Device5AryElementwise
<
EDataType
,
R0DataType
,
R1DataType
,
GammaDataType
,
BetaDataType
,
LayerNormOutDataType
,
NormalizeComputeDataType
,
NormalizeFunctor
,
2
,
8
,
8
,
// scalarPerVector: gemm_out
1
,
// scalarPerVector: reduce_mean
1
,
// scalarPerVector: reduce_mean_square
8
,
// scalarPerVector: Gamma
8
,
// scalarPerVector: Beta
8
>
;
// scalarPerVector: LayerNorm_out
using
DeviceNormalizeInstance
=
ck
::
tensor_operation
::
device
::
DeviceElementwise
<
ck
::
Tuple
<
EDataType
,
R0DataType
,
R1DataType
,
GammaDataType
,
BetaDataType
>
,
// x(gemm_out), mean,
// meansquare,
// gamma, beta
ck
::
Tuple
<
LayerNormOutDataType
>
,
// y
NormalizeFunctor
,
2
,
8
,
// MPerthread
ck
::
Sequence
<
8
,
1
,
1
,
8
,
8
>
,
// scalarPerVector: x(gemm_out), mean, meansquare, gamma, beta
ck
::
Sequence
<
8
>>
;
// scalarPerVector: y(layerNorm_out)
auto
f_host_tensor_descriptor1d
=
[](
std
::
size_t
len
,
std
::
size_t
stride
)
{
return
HostTensorDescriptor
(
std
::
vector
<
std
::
size_t
>
({
len
}),
...
...
@@ -139,7 +136,6 @@ void host_gemm_layernorm(Tensor<LayerNormOutDataType>& out_m_n,
int
M
,
int
N
)
{
int
StrideE
=
N
;
Tensor
<
EDataType
>
e_m_n
(
f_host_tensor_descriptor2d
(
M
,
N
,
StrideE
,
ELayout
{}));
Tensor
<
R0DataType
>
mean_m
(
f_host_tensor_descriptor1d
(
M
,
1
));
...
...
@@ -184,14 +180,9 @@ void host_gemm_layernorm(Tensor<LayerNormOutDataType>& out_m_n,
{
for
(
int
n
=
0
;
n
<
N
;
++
n
)
{
NormalizeComputeDataType
out_acc
=
0
;
layerNormInst
(
out_acc
,
ck
::
type_convert
<
NormalizeComputeDataType
>
(
e_m_n
(
m
,
n
)),
ck
::
type_convert
<
NormalizeComputeDataType
>
(
mean_m
(
m
)),
ck
::
type_convert
<
NormalizeComputeDataType
>
(
meanSquare_m
(
m
)),
ck
::
type_convert
<
NormalizeComputeDataType
>
(
gamma_n
(
n
)),
ck
::
type_convert
<
NormalizeComputeDataType
>
(
beta_n
(
n
)));
out_m_n
(
m
,
n
)
=
ck
::
type_convert
<
LayerNormOutDataType
>
(
out_acc
);
LayerNormOutDataType
out_val
=
0
;
layerNormInst
(
out_val
,
e_m_n
(
m
,
n
),
mean_m
(
m
),
meanSquare_m
(
m
),
gamma_n
(
n
),
beta_n
(
n
));
out_m_n
(
m
,
n
)
=
out_val
;
}
}
}
...
...
@@ -314,28 +305,28 @@ int main()
beta_device_buf
.
GetDeviceBuffer
()};
std
::
array
<
void
*
,
1
>
output
=
{
layerNorm_device_buf
.
GetDeviceBuffer
()};
auto
normalize
=
DeviceNormalizeInstance
{
};
auto
normalize_invoker
=
normalize
.
MakeInvoker
()
;
auto
normalize_argument
=
normalize
.
MakeArgument
(
input
,
output
,
{
M
,
N
},
{
StrideE
,
1
},
{
1
,
0
}
,
{
1
,
0
},
{
0
,
1
},
{
0
,
1
}
,
{
StrideE
,
1
}
,
NormalizeFunctor
{});
if
(
!
normalize
.
IsSupportedArgument
(
normalize_argument
))
std
::
array
<
ck
::
index_t
,
2
>
xyLengths
=
{
M
,
N
};
std
::
array
<
ck
::
index_t
,
2
>
xyStrides
=
{
StrideE
,
1
}
;
auto
normalize
=
DeviceNormalizeInstance
{};
auto
normalize_invoker
=
normalize
.
MakeInvoker
();
auto
normalize_argument_ptr
=
normalize
.
MakeArgumentPointer
(
xyLengths
,
{
xyStrides
,
{
1
,
0
},
{
1
,
0
},
{
0
,
1
},
{
0
,
1
}
},
{
xyStrides
},
input
,
output
,
NormalizeFunctor
{});
if
(
!
normalize
.
IsSupportedArgument
(
normalize_argument
_ptr
.
get
()
))
{
throw
std
::
runtime_error
(
"The runtime parameters seems not supported by the "
"Device5AryElementwise instan
ce, exiting
!
"
);
throw
std
::
runtime_error
(
"The runtime parameters seems not supported by the devi
ce, exiting"
);
}
// run kernel
gemmReduce_invoker
.
Run
(
gemmReduce_argument
,
StreamConfig
{
nullptr
,
false
});
normalize_invoker
.
Run
(
normalize_argument
,
StreamConfig
{
nullptr
,
false
});
normalize_invoker
.
Run
(
normalize_argument
_ptr
.
get
()
,
StreamConfig
{
nullptr
,
false
});
bool
pass
=
true
;
{
...
...
@@ -369,7 +360,7 @@ int main()
float
gemm_reduce_mean_reduce_square_mean_ave_time
=
gemmReduce_invoker
.
Run
(
gemmReduce_argument
,
StreamConfig
{
nullptr
,
time_kernel
});
float
normalize_ave_time
=
normalize_invoker
.
Run
(
normalize_argument
,
StreamConfig
{
nullptr
,
time_kernel
});
normalize_invoker
.
Run
(
normalize_argument
_ptr
.
get
()
,
StreamConfig
{
nullptr
,
time_kernel
});
if
(
time_kernel
)
DumpGemmLayerNormPerf
<
ADataType
,
...
...
example/22_cgemm/CMakeLists.txt
View file @
b89a88b5
...
...
@@ -5,7 +5,13 @@ add_example_executable(example_cgemm_xdl_fp16 cgemm_xdl_fp16.cpp)
add_example_executable
(
example_cgemm_xdl_fp32 cgemm_xdl_fp32.cpp
)
add_example_executable
(
example_cgemm_xdl_int8 cgemm_xdl_int8.cpp
)
add_dependencies
(
example_cgemm_xdl example_cgemm_xdl_bf16
)
add_dependencies
(
example_cgemm_xdl example_cgemm_xdl_fp16
)
add_dependencies
(
example_cgemm_xdl example_cgemm_xdl_fp32
)
add_dependencies
(
example_cgemm_xdl example_cgemm_xdl_int8
)
add_dependencies
(
example_cgemm_xdl
example_cgemm_xdl_bf16
example_cgemm_xdl_fp16
example_cgemm_xdl_fp32
example_cgemm_xdl_int8
)
if
(
USE_BITINT_EXTENSION_INT4
)
add_example_executable
(
example_cgemm_xdl_int4 cgemm_xdl_int4.cpp
)
add_dependencies
(
example_cgemm_xdl example_cgemm_xdl_int4
)
endif
()
example/22_cgemm/cgemm_xdl_bf16.cpp
View file @
b89a88b5
...
...
@@ -117,16 +117,16 @@ int main(int argc, char* argv[])
exit
(
0
);
}
return
run_cgemm_xdl
<
ADataType
,
BDataType
,
CDataType
,
ALayout
,
BLayout
,
CLayout
,
PassThrough
,
PassThrough
,
PassThrough
,
DeviceCGemmInstance
,
ReferenceCGemmInstance
>
(
return
!
run_cgemm_xdl
<
ADataType
,
BDataType
,
CDataType
,
ALayout
,
BLayout
,
CLayout
,
PassThrough
,
PassThrough
,
PassThrough
,
DeviceCGemmInstance
,
ReferenceCGemmInstance
>
(
M
,
N
,
K
,
StrideA
,
StrideB
,
StrideC
,
do_verification
,
init_method
,
time_kernel
);
}
example/22_cgemm/cgemm_xdl_common.hpp
View file @
b89a88b5
...
...
@@ -21,6 +21,9 @@ using F32 = float;
using
BF16
=
ck
::
bhalf_t
;
using
INT8
=
std
::
int8_t
;
using
INT32
=
std
::
int32_t
;
#ifdef CK_EXPERIMENTAL_BIT_INT_EXTENSION_INT4
using
INT4
=
ck
::
int4_t
;
#endif
template
<
typename
ADataType
,
typename
BDataType
,
...
...
@@ -32,17 +35,31 @@ template <typename ADataType,
typename
BElementwiseOperation
,
typename
CElementwiseOperation
,
typename
DeviceCGemmInstance
,
typename
ReferenceCGemmInstance
>
int
run_cgemm_xdl
(
ck
::
index_t
M
,
ck
::
index_t
N
,
ck
::
index_t
K
,
ck
::
index_t
StrideA
,
ck
::
index_t
StrideB
,
ck
::
index_t
StrideC
,
bool
do_verification
,
int
init_method
,
bool
time_kernel
)
typename
ReferenceCGemmInstance
,
typename
KernelADataType
=
ADataType
,
typename
KernelBDataType
=
BDataType
,
typename
KernelCDataType
=
CDataType
>
bool
run_cgemm_xdl
(
ck
::
index_t
M
,
ck
::
index_t
N
,
ck
::
index_t
K
,
ck
::
index_t
StrideA
,
ck
::
index_t
StrideB
,
ck
::
index_t
StrideC
,
bool
do_verification
,
int
init_method
,
bool
time_kernel
)
{
#ifdef CK_EXPERIMENTAL_BIT_INT_EXTENSION_INT4
static_assert
(
sizeof
(
ck
::
int4_t
)
==
sizeof
(
int8_t
),
"sizeof ck::int4_t and int8_t is different!"
);
static_assert
(
sizeof
(
ADataType
)
==
sizeof
(
KernelADataType
),
"sizeof ADataType and KernelADataType is different!"
);
static_assert
(
sizeof
(
BDataType
)
==
sizeof
(
KernelBDataType
),
"sizeof BDataType and KernelBDataType is different!"
);
static_assert
(
sizeof
(
CDataType
)
==
sizeof
(
KernelCDataType
),
"sizeof CDataType and KernelCDataType is different!"
);
#endif
auto
f_host_tensor_descriptor
=
[](
std
::
size_t
row
,
std
::
size_t
col
,
std
::
size_t
stride
,
auto
layout
)
{
if
(
std
::
is_same
<
decltype
(
layout
),
ck
::
tensor_layout
::
gemm
::
RowMajor
>::
value
)
...
...
@@ -61,8 +78,10 @@ int run_cgemm_xdl(ck::index_t M,
Tensor
<
ADataType
>
a_m_k_imag
(
f_host_tensor_descriptor
(
M
,
K
,
StrideA
,
ALayout
{}));
Tensor
<
BDataType
>
b_k_n_real
(
f_host_tensor_descriptor
(
K
,
N
,
StrideB
,
BLayout
{}));
Tensor
<
BDataType
>
b_k_n_imag
(
f_host_tensor_descriptor
(
K
,
N
,
StrideB
,
BLayout
{}));
Tensor
<
CDataType
>
c_m_n_real_device_result
(
f_host_tensor_descriptor
(
M
,
N
,
StrideC
,
CLayout
{}));
Tensor
<
CDataType
>
c_m_n_imag_device_result
(
f_host_tensor_descriptor
(
M
,
N
,
StrideC
,
CLayout
{}));
Tensor
<
KernelCDataType
>
c_m_n_real_device_result
(
f_host_tensor_descriptor
(
M
,
N
,
StrideC
,
CLayout
{}));
Tensor
<
KernelCDataType
>
c_m_n_imag_device_result
(
f_host_tensor_descriptor
(
M
,
N
,
StrideC
,
CLayout
{}));
std
::
cout
<<
"a_m_k_real: "
<<
a_m_k_real
.
mDesc
<<
std
::
endl
;
std
::
cout
<<
"a_m_k_imag: "
<<
a_m_k_imag
.
mDesc
<<
std
::
endl
;
...
...
@@ -89,20 +108,41 @@ int run_cgemm_xdl(ck::index_t M,
auto
cgemm
=
DeviceCGemmInstance
{};
DeviceMem
a_m_k_real_device_buf
(
sizeof
(
ADataType
)
*
a_m_k_real
.
mDesc
.
GetElementSpaceSize
());
DeviceMem
a_m_k_imag_device_buf
(
sizeof
(
ADataType
)
*
a_m_k_imag
.
mDesc
.
GetElementSpaceSize
());
DeviceMem
b_k_n_real_device_buf
(
sizeof
(
BDataType
)
*
b_k_n_real
.
mDesc
.
GetElementSpaceSize
());
DeviceMem
b_k_n_imag_device_buf
(
sizeof
(
BDataType
)
*
b_k_n_imag
.
mDesc
.
GetElementSpaceSize
());
DeviceMem
c_m_n_real_device_buf
(
sizeof
(
CDataType
)
*
DeviceMem
a_m_k_real_device_buf
(
sizeof
(
KernelADataType
)
*
a_m_k_real
.
mDesc
.
GetElementSpaceSize
());
DeviceMem
a_m_k_imag_device_buf
(
sizeof
(
KernelADataType
)
*
a_m_k_imag
.
mDesc
.
GetElementSpaceSize
());
DeviceMem
b_k_n_real_device_buf
(
sizeof
(
KernelBDataType
)
*
b_k_n_real
.
mDesc
.
GetElementSpaceSize
());
DeviceMem
b_k_n_imag_device_buf
(
sizeof
(
KernelBDataType
)
*
b_k_n_imag
.
mDesc
.
GetElementSpaceSize
());
DeviceMem
c_m_n_real_device_buf
(
sizeof
(
KernelCDataType
)
*
c_m_n_real_device_result
.
mDesc
.
GetElementSpaceSize
());
DeviceMem
c_m_n_imag_device_buf
(
sizeof
(
CDataType
)
*
DeviceMem
c_m_n_imag_device_buf
(
sizeof
(
Kernel
CDataType
)
*
c_m_n_imag_device_result
.
mDesc
.
GetElementSpaceSize
());
DeviceMem
workspace_device_buf
(
cgemm
.
GetWorkspaceSize
(
M
,
N
,
K
,
StrideA
,
StrideB
,
StrideC
));
a_m_k_real_device_buf
.
ToDevice
(
a_m_k_real
.
mData
.
data
());
a_m_k_imag_device_buf
.
ToDevice
(
a_m_k_imag
.
mData
.
data
());
b_k_n_real_device_buf
.
ToDevice
(
b_k_n_real
.
mData
.
data
());
b_k_n_imag_device_buf
.
ToDevice
(
b_k_n_imag
.
mData
.
data
());
#ifdef CK_EXPERIMENTAL_BIT_INT_EXTENSION_INT4
if
constexpr
(
std
::
is_same_v
<
ADataType
,
ck
::
int4_t
>
)
{
Tensor
<
KernelADataType
>
a_m_k_real_converted
(
a_m_k_real
);
Tensor
<
KernelADataType
>
a_m_k_imag_converted
(
a_m_k_imag
);
Tensor
<
KernelBDataType
>
b_k_n_real_converted
(
b_k_n_real
);
Tensor
<
KernelBDataType
>
b_k_n_imag_converted
(
b_k_n_imag
);
a_m_k_real_device_buf
.
ToDevice
(
a_m_k_real_converted
.
mData
.
data
());
a_m_k_imag_device_buf
.
ToDevice
(
a_m_k_imag_converted
.
mData
.
data
());
b_k_n_real_device_buf
.
ToDevice
(
b_k_n_real_converted
.
mData
.
data
());
b_k_n_imag_device_buf
.
ToDevice
(
b_k_n_imag_converted
.
mData
.
data
());
}
else
#endif // CK_EXPERIMENTAL_BIT_INT_EXTENSION_INT4
{
a_m_k_real_device_buf
.
ToDevice
(
a_m_k_real
.
mData
.
data
());
a_m_k_imag_device_buf
.
ToDevice
(
a_m_k_imag
.
mData
.
data
());
b_k_n_real_device_buf
.
ToDevice
(
b_k_n_real
.
mData
.
data
());
b_k_n_imag_device_buf
.
ToDevice
(
b_k_n_imag
.
mData
.
data
());
}
auto
a_element_op
=
AElementwiseOperation
{};
auto
b_element_op
=
BElementwiseOperation
{};
...
...
@@ -111,13 +151,13 @@ int run_cgemm_xdl(ck::index_t M,
// do GEMM
auto
invoker
=
cgemm
.
MakeInvoker
();
auto
argument
=
cgemm
.
MakeArgument
(
static_cast
<
ADataType
*>
(
a_m_k_real_device_buf
.
GetDeviceBuffer
()),
static_cast
<
ADataType
*>
(
a_m_k_imag_device_buf
.
GetDeviceBuffer
()),
static_cast
<
BDataType
*>
(
b_k_n_real_device_buf
.
GetDeviceBuffer
()),
static_cast
<
BDataType
*>
(
b_k_n_imag_device_buf
.
GetDeviceBuffer
()),
static_cast
<
CDataType
*>
(
c_m_n_real_device_buf
.
GetDeviceBuffer
()),
static_cast
<
CDataType
*>
(
c_m_n_imag_device_buf
.
GetDeviceBuffer
()),
static_cast
<
CDataType
*>
(
workspace_device_buf
.
GetDeviceBuffer
()),
cgemm
.
MakeArgument
(
static_cast
<
Kernel
ADataType
*>
(
a_m_k_real_device_buf
.
GetDeviceBuffer
()),
static_cast
<
Kernel
ADataType
*>
(
a_m_k_imag_device_buf
.
GetDeviceBuffer
()),
static_cast
<
Kernel
BDataType
*>
(
b_k_n_real_device_buf
.
GetDeviceBuffer
()),
static_cast
<
Kernel
BDataType
*>
(
b_k_n_imag_device_buf
.
GetDeviceBuffer
()),
static_cast
<
Kernel
CDataType
*>
(
c_m_n_real_device_buf
.
GetDeviceBuffer
()),
static_cast
<
Kernel
CDataType
*>
(
c_m_n_imag_device_buf
.
GetDeviceBuffer
()),
static_cast
<
Kernel
CDataType
*>
(
workspace_device_buf
.
GetDeviceBuffer
()),
M
,
N
,
K
,
...
...
@@ -142,16 +182,12 @@ int run_cgemm_xdl(ck::index_t M,
std
::
size_t
(
2
)
*
(
sizeof
(
ADataType
)
*
M
*
K
+
sizeof
(
BDataType
)
*
K
*
N
+
sizeof
(
CDataType
)
*
M
*
N
);
float
tflops
=
static_cast
<
float
>
(
flop
)
/
1.E9
/
ave_time
;
float
tflops
=
static_cast
<
float
>
(
flop
)
/
1.E9
/
ave_time
;
float
gb_per_sec
=
num_btype
/
1.E6
/
ave_time
;
std
::
cout
<<
"Perf: "
<<
ave_time
<<
" ms, "
<<
tflops
<<
" TFlops, "
<<
gb_per_sec
<<
" GB/s, "
<<
cgemm
.
GetTypeString
()
<<
std
::
endl
;
c_m_n_real_device_buf
.
FromDevice
(
c_m_n_real_device_result
.
mData
.
data
());
c_m_n_imag_device_buf
.
FromDevice
(
c_m_n_imag_device_result
.
mData
.
data
());
if
(
do_verification
)
{
Tensor
<
CDataType
>
c_m_n_real_host_result
(
...
...
@@ -159,9 +195,8 @@ int run_cgemm_xdl(ck::index_t M,
Tensor
<
CDataType
>
c_m_n_imag_host_result
(
f_host_tensor_descriptor
(
M
,
N
,
StrideC
,
CLayout
{}));
auto
ref_cgemm
=
ReferenceCGemmInstance
{};
auto
ref_invoker
=
ref_cgemm
.
MakeInvoker
();
auto
ref_cgemm
=
ReferenceCGemmInstance
{};
auto
ref_invoker
=
ref_cgemm
.
MakeInvoker
();
auto
ref_argument
=
ref_cgemm
.
MakeArgument
(
a_m_k_real
,
a_m_k_imag
,
b_k_n_real
,
...
...
@@ -174,19 +209,45 @@ int run_cgemm_xdl(ck::index_t M,
ref_invoker
.
Run
(
ref_argument
);
c_m_n_real_device_buf
.
FromDevice
(
c_m_n_real_device_result
.
mData
.
data
());
c_m_n_imag_device_buf
.
FromDevice
(
c_m_n_imag_device_result
.
mData
.
data
());
bool
result
=
true
;
result
=
ck
::
utils
::
check_err
(
c_m_n_real_device_result
.
mData
,
c_m_n_real_host_result
.
mData
,
"Verification error: incorrect results in real part!"
,
1e-2
f
,
1e-1
f
);
result
=
result
&&
ck
::
utils
::
check_err
(
c_m_n_imag_device_result
.
mData
,
c_m_n_imag_host_result
.
mData
,
"Verification error: incorrect results in imaginary part!"
,
1e-2
f
,
1e-1
f
);
return
result
?
0
:
1
;
#ifdef CK_EXPERIMENTAL_BIT_INT_EXTENSION_INT4
if
constexpr
(
std
::
is_same_v
<
ADataType
,
ck
::
int4_t
>
)
{
const
Tensor
<
CDataType
>
c_m_n_real_device_result_converted
(
c_m_n_real_device_result
);
const
Tensor
<
CDataType
>
c_m_n_imag_device_result_converted
(
c_m_n_imag_device_result
);
result
=
ck
::
utils
::
check_err
(
c_m_n_real_device_result_converted
.
mData
,
c_m_n_real_host_result
.
mData
,
"Verification error: incorrect results in real part!"
,
1e-2
f
,
1e-1
f
);
result
=
result
&&
ck
::
utils
::
check_err
(
c_m_n_imag_device_result_converted
.
mData
,
c_m_n_imag_host_result
.
mData
,
"Verification error: incorrect results in imaginary part!"
,
1e-2
f
,
1e-1
f
);
}
else
#endif // CK_EXPERIMENTAL_BIT_INT_EXTENSION_INT4
{
result
=
ck
::
utils
::
check_err
(
c_m_n_real_device_result
.
mData
,
c_m_n_real_host_result
.
mData
,
"Verification error: incorrect results in real part!"
,
1e-2
f
,
1e-1
f
);
result
=
result
&&
ck
::
utils
::
check_err
(
c_m_n_imag_device_result
.
mData
,
c_m_n_imag_host_result
.
mData
,
"Verification error: incorrect results in imaginary part!"
,
1e-2
f
,
1e-1
f
);
}
return
result
;
}
return
0
;
return
true
;
}
example/22_cgemm/cgemm_xdl_fp16.cpp
View file @
b89a88b5
...
...
@@ -116,16 +116,16 @@ int main(int argc, char* argv[])
exit
(
0
);
}
return
run_cgemm_xdl
<
ADataType
,
BDataType
,
CDataType
,
ALayout
,
BLayout
,
CLayout
,
PassThrough
,
PassThrough
,
PassThrough
,
DeviceCGemmInstance
,
ReferenceCGemmInstance
>
(
return
!
run_cgemm_xdl
<
ADataType
,
BDataType
,
CDataType
,
ALayout
,
BLayout
,
CLayout
,
PassThrough
,
PassThrough
,
PassThrough
,
DeviceCGemmInstance
,
ReferenceCGemmInstance
>
(
M
,
N
,
K
,
StrideA
,
StrideB
,
StrideC
,
do_verification
,
init_method
,
time_kernel
);
}
example/22_cgemm/cgemm_xdl_fp32.cpp
View file @
b89a88b5
...
...
@@ -117,16 +117,16 @@ int main(int argc, char* argv[])
exit
(
0
);
}
return
run_cgemm_xdl
<
ADataType
,
BDataType
,
CDataType
,
ALayout
,
BLayout
,
CLayout
,
PassThrough
,
PassThrough
,
PassThrough
,
DeviceCGemmInstance
,
ReferenceCGemmInstance
>
(
return
!
run_cgemm_xdl
<
ADataType
,
BDataType
,
CDataType
,
ALayout
,
BLayout
,
CLayout
,
PassThrough
,
PassThrough
,
PassThrough
,
DeviceCGemmInstance
,
ReferenceCGemmInstance
>
(
M
,
N
,
K
,
StrideA
,
StrideB
,
StrideC
,
do_verification
,
init_method
,
time_kernel
);
}
example/22_cgemm/cgemm_xdl_int4.cpp
0 → 100644
View file @
b89a88b5
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2022, Advanced Micro Devices, Inc. All rights reserved.
#include <iostream>
#include "cgemm_xdl_common.hpp"
#include "ck/library/reference_tensor_operation/cpu/reference_cgemm.hpp"
#include "ck/tensor_operation/gpu/element/element_wise_operation.hpp"
#include "ck/tensor_operation/gpu/device/device_cgemm_4gemm_xdl_cshuffle.hpp"
#include "ck/tensor_operation/gpu/device/gemm_specialization.hpp"
using
ADataType
=
INT4
;
using
BDataType
=
INT4
;
using
CDataType
=
INT4
;
using
AccDataType
=
INT32
;
using
CShuffleDataType
=
INT32
;
using
KernelADataType
=
INT8
;
using
KernelBDataType
=
INT8
;
using
KernelCDataType
=
INT8
;
using
ALayout
=
ck
::
tensor_layout
::
gemm
::
RowMajor
;
using
BLayout
=
ck
::
tensor_layout
::
gemm
::
ColumnMajor
;
using
CLayout
=
ck
::
tensor_layout
::
gemm
::
RowMajor
;
using
PassThrough
=
ck
::
tensor_operation
::
element_wise
::
PassThrough
;
static
constexpr
auto
GemmDefault
=
ck
::
tensor_operation
::
device
::
GemmSpecialization
::
Default
;
using
ReferenceCGemmInstance
=
ck
::
tensor_operation
::
host
::
ReferenceCGemm
<
ADataType
,
BDataType
,
CDataType
,
PassThrough
,
PassThrough
,
PassThrough
>
;
// clang-format off
using
DeviceCGemmInstance
=
ck
::
tensor_operation
::
device
::
DeviceCGemm_4Gemm_Xdl_CShuffle
<
ALayout
,
// typename ALayout
BLayout
,
// typename BLayout
CLayout
,
// typename CLayout
KernelADataType
,
// typename ADataType
KernelBDataType
,
// typename BDataType
KernelCDataType
,
// typename CDataType
AccDataType
,
// typename GemmAccDataType
CShuffleDataType
,
// typename CShuffleDataType
PassThrough
,
// typename AElementwiseOperation
PassThrough
,
// typename BElementwiseOperation
PassThrough
,
// typename CElementwiseOperation
GemmDefault
,
// GemmSpecialization GemmSpec
1
,
// index_t NumGemmKPrefetchStage
256
,
// index_t BlockSize
256
,
// index_t MPerBlock
128
,
// index_t NPerBlock
64
,
// index_t KPerBlock
16
,
// index_t AK1
16
,
// index_t BK1
32
,
// index_t MPerXDL
32
,
// index_t NPerXDL
4
,
// index_t MXdlPerWave
2
,
// index_t NXdlPerWave
S
<
4
,
64
,
1
>
,
// typename ABlockTransferThreadClusterLengths_AK0_M_AK1
S
<
1
,
0
,
2
>
,
// typename ABlockTransferThreadClusterArrangeOrder
S
<
1
,
0
,
2
>
,
// typename ABlockTransferSrcAccessOrder
2
,
// index_t ABlockTransferSrcVectorDim
16
,
// index_t ABlockTransferSrcScalarPerVector
16
,
// index_t ABlockTransferDstScalarPerVector_AK1
1
,
// index_t ABlockLdsExtraM
S
<
4
,
64
,
1
>
,
// typename BBlockTransferThreadClusterLengths_BK0_N_BK1
S
<
1
,
0
,
2
>
,
// typename BBlockTransferThreadClusterArrangeOrder
S
<
1
,
0
,
2
>
,
// typename BBlockTransferSrcAccessOrder
2
,
// index_t BBlockTransferSrcVectorDim
8
,
// index_t BBlockTransferSrcScalarPerVector
8
,
// index_t BBlockTransferDstScalarPerVector_BK1
1
,
// index_t BBlockLdsExtraN
1
,
// index_t CShuffleMXdlPerWavePerShuffle
1
,
// index_t CShuffleNXdlPerWavePerShuffle
S
<
1
,
64
,
1
,
4
>
,
// typename CShuffleBlockTransferClusterLengths_MBlock_MPerBlock_NBlock_NPerBlock
16
>
;
// index_t CShuffleBlockTransferScalarPerVector_NPerBlock
// clang-format on
int
main
(
int
argc
,
char
*
argv
[])
{
bool
do_verification
=
true
;
int
init_method
=
1
;
bool
time_kernel
=
true
;
// CGEMM shape
ck
::
index_t
M
=
1024
;
ck
::
index_t
N
=
1152
;
ck
::
index_t
K
=
512
;
ck
::
index_t
StrideA
=
K
;
ck
::
index_t
StrideB
=
K
;
ck
::
index_t
StrideC
=
N
;
if
(
argc
==
4
)
{
do_verification
=
std
::
stoi
(
argv
[
1
]);
init_method
=
std
::
stoi
(
argv
[
2
]);
time_kernel
=
std
::
stoi
(
argv
[
3
]);
}
else
if
(
argc
==
10
)
{
do_verification
=
std
::
stoi
(
argv
[
1
]);
init_method
=
std
::
stoi
(
argv
[
2
]);
time_kernel
=
std
::
stoi
(
argv
[
3
]);
M
=
std
::
stoi
(
argv
[
4
]);
N
=
std
::
stoi
(
argv
[
5
]);
K
=
std
::
stoi
(
argv
[
6
]);
StrideA
=
std
::
stoi
(
argv
[
7
]);
StrideB
=
std
::
stoi
(
argv
[
8
]);
StrideC
=
std
::
stoi
(
argv
[
9
]);
}
else
{
std
::
cout
<<
"arg1: verification (0=no, 1=yes)
\n
"
<<
"arg2: initialization (0=no init, 1=integer value, 2=decimal value)
\n
"
<<
"arg3: time kernel (0=no, 1=yes)
\n
"
<<
"arg4 to 9: M (256x), N(128x), K(32x), StrideA, StrideB, StrideC
\n
"
<<
std
::
endl
;
exit
(
EXIT_SUCCESS
);
}
return
!
run_cgemm_xdl
<
ADataType
,
BDataType
,
CDataType
,
ALayout
,
BLayout
,
CLayout
,
PassThrough
,
PassThrough
,
PassThrough
,
DeviceCGemmInstance
,
ReferenceCGemmInstance
,
KernelADataType
,
KernelBDataType
,
KernelCDataType
>
(
M
,
N
,
K
,
StrideA
,
StrideB
,
StrideC
,
do_verification
,
init_method
,
time_kernel
);
}
example/22_cgemm/cgemm_xdl_int8.cpp
View file @
b89a88b5
...
...
@@ -117,16 +117,16 @@ int main(int argc, char* argv[])
exit
(
0
);
}
return
run_cgemm_xdl
<
ADataType
,
BDataType
,
CDataType
,
ALayout
,
BLayout
,
CLayout
,
PassThrough
,
PassThrough
,
PassThrough
,
DeviceCGemmInstance
,
ReferenceCGemmInstance
>
(
return
!
run_cgemm_xdl
<
ADataType
,
BDataType
,
CDataType
,
ALayout
,
BLayout
,
CLayout
,
PassThrough
,
PassThrough
,
PassThrough
,
DeviceCGemmInstance
,
ReferenceCGemmInstance
>
(
M
,
N
,
K
,
StrideA
,
StrideB
,
StrideC
,
do_verification
,
init_method
,
time_kernel
);
}
Prev
1
2
3
4
5
6
7
8
…
14
Next
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
.
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment