Skip to content
GitLab
Menu
Projects
Groups
Snippets
Loading...
Help
Help
Support
Community forum
Keyboard shortcuts
?
Submit feedback
Contribute to GitLab
Sign in / Register
Toggle navigation
Menu
Open sidebar
gaoqiong
composable_kernel
Commits
b89a88b5
Commit
b89a88b5
authored
Sep 19, 2022
by
Adam Osewski
Browse files
Merge branch 'develop' into wavelet_model
parents
41d5fca7
43c898f6
Changes
261
Hide whitespace changes
Inline
Side-by-side
Showing
20 changed files
with
1918 additions
and
370 deletions
+1918
-370
example/10_convnd_fwd_multiple_d_multiple_reduce/common.hpp
example/10_convnd_fwd_multiple_d_multiple_reduce/common.hpp
+167
-0
example/10_convnd_fwd_multiple_d_multiple_reduce/convnd_fwd_max_xdl_bf16.cpp
...wd_multiple_d_multiple_reduce/convnd_fwd_max_xdl_bf16.cpp
+18
-0
example/10_convnd_fwd_multiple_d_multiple_reduce/convnd_fwd_max_xdl_fp16.cpp
...wd_multiple_d_multiple_reduce/convnd_fwd_max_xdl_fp16.cpp
+18
-0
example/10_convnd_fwd_multiple_d_multiple_reduce/convnd_fwd_max_xdl_fp32.cpp
...wd_multiple_d_multiple_reduce/convnd_fwd_max_xdl_fp32.cpp
+18
-0
example/10_convnd_fwd_multiple_d_multiple_reduce/convnd_fwd_max_xdl_int4.cpp
...wd_multiple_d_multiple_reduce/convnd_fwd_max_xdl_int4.cpp
+26
-0
example/10_convnd_fwd_multiple_d_multiple_reduce/convnd_fwd_max_xdl_int8.cpp
...wd_multiple_d_multiple_reduce/convnd_fwd_max_xdl_int8.cpp
+18
-0
example/10_convnd_fwd_multiple_d_multiple_reduce/run_convnd_fwd_max_example.inc
...multiple_d_multiple_reduce/run_convnd_fwd_max_example.inc
+313
-0
example/12_reduce/reduce_blockwise.cpp
example/12_reduce/reduce_blockwise.cpp
+31
-0
example/12_reduce/reduce_blockwise_impl.hpp
example/12_reduce/reduce_blockwise_impl.hpp
+73
-13
example/15_grouped_gemm/CMakeLists.txt
example/15_grouped_gemm/CMakeLists.txt
+16
-0
example/15_grouped_gemm/grouped_gemm_xdl_bfp16.cpp
example/15_grouped_gemm/grouped_gemm_xdl_bfp16.cpp
+61
-0
example/15_grouped_gemm/grouped_gemm_xdl_fp16.cpp
example/15_grouped_gemm/grouped_gemm_xdl_fp16.cpp
+2
-193
example/15_grouped_gemm/grouped_gemm_xdl_fp32.cpp
example/15_grouped_gemm/grouped_gemm_xdl_fp32.cpp
+61
-0
example/15_grouped_gemm/grouped_gemm_xdl_int4.cpp
example/15_grouped_gemm/grouped_gemm_xdl_int4.cpp
+101
-0
example/15_grouped_gemm/grouped_gemm_xdl_int8.cpp
example/15_grouped_gemm/grouped_gemm_xdl_int8.cpp
+58
-0
example/15_grouped_gemm/run_grouped_gemm_example.inc
example/15_grouped_gemm/run_grouped_gemm_example.inc
+265
-0
example/16_gemm_multi_d_multi_reduces/CMakeLists.txt
example/16_gemm_multi_d_multi_reduces/CMakeLists.txt
+37
-4
example/16_gemm_multi_d_multi_reduces/gemm_add_addsquare_xdl_int8.cpp
...emm_multi_d_multi_reduces/gemm_add_addsquare_xdl_int8.cpp
+368
-0
example/16_gemm_multi_d_multi_reduces/gemm_max_xdl_bf16.cpp
example/16_gemm_multi_d_multi_reduces/gemm_max_xdl_bf16.cpp
+167
-0
example/16_gemm_multi_d_multi_reduces/gemm_max_xdl_fp16.cpp
example/16_gemm_multi_d_multi_reduces/gemm_max_xdl_fp16.cpp
+100
-160
No files found.
example/10_convnd_fwd_multiple_d_multiple_reduce/common.hpp
0 → 100644
View file @
b89a88b5
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2022, Advanced Micro Devices, Inc. All rights reserved.
#include <algorithm>
#include <cassert>
#include <cstdint>
#include <cstdlib>
#include <iostream>
#include <iterator>
#include <numeric>
#include <type_traits>
#include <vector>
#include "ck/ck.hpp"
#include "ck/tensor_operation/gpu/device/device_grouped_conv_fwd_multiple_d_multiple_r_xdl_cshuffle.hpp"
#include "ck/tensor_operation/gpu/device/tensor_layout.hpp"
#include "ck/tensor_operation/gpu/element/element_wise_operation.hpp"
#include "ck/library/utility/check_err.hpp"
#include "ck/library/utility/convolution_parameter.hpp"
#include "ck/library/utility/convolution_host_tensor_descriptor_helper.hpp"
#include "ck/library/utility/device_memory.hpp"
#include "ck/library/utility/fill.hpp"
#include "ck/library/utility/host_tensor.hpp"
#include "ck/library/utility/host_tensor_generator.hpp"
#include "ck/library/reference_tensor_operation/cpu/reference_conv_fwd.hpp"
using
BF16
=
ck
::
bhalf_t
;
using
FP16
=
ck
::
half_t
;
using
FP32
=
float
;
#ifdef CK_EXPERIMENTAL_BIT_INT_EXTENSION_INT4
using
I4
=
ck
::
int4_t
;
#endif
using
I8
=
std
::
int8_t
;
using
I32
=
std
::
int32_t
;
template
<
typename
ALay
,
typename
BLay
,
typename
DELay
,
typename
RLay
>
struct
LayoutSetting
{
using
ALayout
=
ALay
;
using
BLayout
=
BLay
;
using
DELayout
=
DELay
;
using
RLayout
=
RLay
;
};
template
<
ck
::
index_t
NDimSpatial
>
struct
LayoutSettingSelector
;
namespace
ctl
=
ck
::
tensor_layout
::
convolution
;
template
<
>
struct
LayoutSettingSelector
<
1
>
final
:
LayoutSetting
<
ctl
::
GNWC
,
ctl
::
GKXC
,
ctl
::
GNWK
,
ctl
::
GNW
>
{
};
template
<
>
struct
LayoutSettingSelector
<
2
>
final
:
LayoutSetting
<
ctl
::
GNHWC
,
ctl
::
GKYXC
,
ctl
::
GNHWK
,
ctl
::
GNHW
>
{
};
template
<
>
struct
LayoutSettingSelector
<
3
>
final
:
LayoutSetting
<
ctl
::
GNDHWC
,
ctl
::
GKZYXC
,
ctl
::
GNDHWK
,
ctl
::
GNDHW
>
{
};
template
<
ck
::
index_t
NDimSpatial
>
using
ALayout
=
typename
LayoutSettingSelector
<
NDimSpatial
>::
ALayout
;
template
<
ck
::
index_t
NDimSpatial
>
using
BLayout
=
typename
LayoutSettingSelector
<
NDimSpatial
>::
BLayout
;
template
<
ck
::
index_t
NDimSpatial
>
using
DELayout
=
typename
LayoutSettingSelector
<
NDimSpatial
>::
DELayout
;
template
<
ck
::
index_t
NDimSpatial
>
using
RLayout
=
typename
LayoutSettingSelector
<
NDimSpatial
>::
RLayout
;
struct
ExecutionConfig
final
{
bool
do_verification
=
true
;
int
init_method
=
1
;
bool
time_kernel
=
false
;
};
inline
void
print_help_msg
()
{
std
::
cerr
<<
"arg1: verification (0=no, 1=yes)
\n
"
<<
"arg2: initialization (0=no init, 1=integer value, 2=decimal value)
\n
"
<<
"arg3: time kernel (0=no, 1=yes)
\n
"
<<
ck
::
utils
::
conv
::
get_conv_param_parser_helper_msg
()
<<
std
::
endl
;
}
inline
bool
parse_cmd_args
(
int
argc
,
char
*
argv
[],
ck
::
utils
::
conv
::
ConvParam
&
problem_size
,
ExecutionConfig
&
config
)
{
constexpr
int
num_execution_config_args
=
3
;
// arguments for do_verification, init_method, time_kernel
constexpr
int
num_conv_param_leading_args
=
5
;
// arguments for num_dim_spatial_, G_, N_, K_, C_
constexpr
int
threshold_to_catch_partial_args
=
1
+
num_execution_config_args
;
constexpr
int
threshold_to_catch_all_args
=
threshold_to_catch_partial_args
+
num_conv_param_leading_args
;
if
(
argc
==
1
)
{
// use default
}
// catch only ExecutionConfig arguments
else
if
(
argc
==
threshold_to_catch_partial_args
)
{
config
.
do_verification
=
std
::
stoi
(
argv
[
1
]);
config
.
init_method
=
std
::
stoi
(
argv
[
2
]);
config
.
time_kernel
=
std
::
stoi
(
argv
[
3
]);
}
// catch both ExecutionConfig & ConvParam arguments
else
if
(
threshold_to_catch_all_args
<
argc
&&
((
argc
-
threshold_to_catch_all_args
)
%
3
==
0
))
{
config
.
do_verification
=
std
::
stoi
(
argv
[
1
]);
config
.
init_method
=
std
::
stoi
(
argv
[
2
]);
config
.
time_kernel
=
std
::
stoi
(
argv
[
3
]);
const
ck
::
index_t
num_dim_spatial
=
std
::
stoi
(
argv
[
4
]);
problem_size
=
ck
::
utils
::
conv
::
parse_conv_param
(
num_dim_spatial
,
threshold_to_catch_partial_args
,
argv
);
}
else
{
print_help_msg
();
return
false
;
}
return
true
;
}
inline
HostTensorDescriptor
make_r0_host_tensor_descriptor
(
const
ck
::
utils
::
conv
::
ConvParam
&
problem_size
)
{
std
::
vector
<
ck
::
index_t
>
dimensions
{
problem_size
.
G_
,
problem_size
.
N_
};
std
::
copy
(
begin
(
problem_size
.
output_spatial_lengths_
),
end
(
problem_size
.
output_spatial_lengths_
),
std
::
back_inserter
(
dimensions
));
return
HostTensorDescriptor
(
dimensions
);
}
template
<
typename
Lengths
,
typename
Strides
>
void
unpack_host_tensor_descriptor
(
const
HostTensorDescriptor
&
descriptor
,
Lengths
&
lengths
,
Strides
&
strides
)
{
assert
(
size
(
descriptor
.
GetLengths
())
==
size
(
lengths
));
std
::
copy_n
(
begin
(
descriptor
.
GetLengths
()),
size
(
descriptor
.
GetLengths
()),
begin
(
lengths
));
assert
(
size
(
descriptor
.
GetStrides
())
==
size
(
strides
));
std
::
copy_n
(
begin
(
descriptor
.
GetStrides
()),
size
(
descriptor
.
GetStrides
()),
begin
(
strides
));
}
template
<
typename
Range
,
typename
OutputIterator
>
auto
copy
(
const
Range
&
range
,
OutputIterator
iter
)
->
decltype
(
std
::
copy
(
std
::
begin
(
range
),
std
::
end
(
range
),
iter
))
{
return
std
::
copy
(
std
::
begin
(
range
),
std
::
end
(
range
),
iter
);
}
example/10_convnd_fwd_multiple_d_multiple_reduce/convnd_fwd_max_xdl_bf16.cpp
0 → 100644
View file @
b89a88b5
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2022, Advanced Micro Devices, Inc. All rights reserved.
#include "common.hpp"
using
ADataType
=
BF16
;
using
BDataType
=
BF16
;
using
AccDataType
=
FP32
;
using
CShuffleDataType
=
FP32
;
using
DsDataType
=
ck
::
Tuple
<>
;
using
EDataType
=
BF16
;
using
ReduceAccDataType
=
FP32
;
using
R0DataType
=
FP32
;
using
RsDataType
=
ck
::
Tuple
<
R0DataType
>
;
#include "run_convnd_fwd_max_example.inc"
int
main
(
int
argc
,
char
*
argv
[])
{
return
!
run_convnd_fwd_max_example
(
argc
,
argv
);
}
example/10_convnd_fwd_multiple_d_multiple_reduce/convnd_fwd_max_xdl_fp16.cpp
0 → 100644
View file @
b89a88b5
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2022, Advanced Micro Devices, Inc. All rights reserved.
#include "common.hpp"
using
ADataType
=
FP16
;
using
BDataType
=
FP16
;
using
AccDataType
=
FP32
;
using
CShuffleDataType
=
FP32
;
using
DsDataType
=
ck
::
Tuple
<>
;
using
EDataType
=
FP16
;
using
ReduceAccDataType
=
FP32
;
using
R0DataType
=
FP32
;
using
RsDataType
=
ck
::
Tuple
<
R0DataType
>
;
#include "run_convnd_fwd_max_example.inc"
int
main
(
int
argc
,
char
*
argv
[])
{
return
!
run_convnd_fwd_max_example
(
argc
,
argv
);
}
example/10_convnd_fwd_multiple_d_multiple_reduce/convnd_fwd_max_xdl_fp32.cpp
0 → 100644
View file @
b89a88b5
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2022, Advanced Micro Devices, Inc. All rights reserved.
#include "common.hpp"
using
ADataType
=
FP32
;
using
BDataType
=
FP32
;
using
AccDataType
=
FP32
;
using
CShuffleDataType
=
FP32
;
using
DsDataType
=
ck
::
Tuple
<>
;
using
EDataType
=
FP32
;
using
ReduceAccDataType
=
FP32
;
using
R0DataType
=
FP32
;
using
RsDataType
=
ck
::
Tuple
<
R0DataType
>
;
#include "run_convnd_fwd_max_example.inc"
int
main
(
int
argc
,
char
*
argv
[])
{
return
!
run_convnd_fwd_max_example
(
argc
,
argv
);
}
example/10_convnd_fwd_multiple_d_multiple_reduce/convnd_fwd_max_xdl_int4.cpp
0 → 100644
View file @
b89a88b5
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2022, Advanced Micro Devices, Inc. All rights reserved.
#ifndef CK_EXPERIMENTAL_BIT_INT_EXTENSION_INT4
#error Should compile this file with ck::int4_t support
#endif
#define BUILD_INT4_EXAMPLE
#include "common.hpp"
using
ADataType
=
I4
;
using
BDataType
=
I4
;
using
KernelADataType
=
I8
;
using
KernelBDataType
=
I8
;
using
AccDataType
=
I32
;
using
CShuffleDataType
=
I32
;
using
DsDataType
=
ck
::
Tuple
<>
;
using
EDataType
=
I32
;
using
ReduceAccDataType
=
I32
;
using
R0DataType
=
I32
;
using
RsDataType
=
ck
::
Tuple
<
R0DataType
>
;
#include "run_convnd_fwd_max_example.inc"
int
main
(
int
argc
,
char
*
argv
[])
{
return
!
run_convnd_fwd_max_example
(
argc
,
argv
);
}
example/10_convnd_fwd_multiple_d_multiple_reduce/convnd_fwd_max_xdl_int8.cpp
0 → 100644
View file @
b89a88b5
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2022, Advanced Micro Devices, Inc. All rights reserved.
#include "common.hpp"
using
ADataType
=
I8
;
using
BDataType
=
I8
;
using
AccDataType
=
I32
;
using
CShuffleDataType
=
I32
;
using
DsDataType
=
ck
::
Tuple
<>
;
using
EDataType
=
I32
;
using
ReduceAccDataType
=
I32
;
using
R0DataType
=
I32
;
using
RsDataType
=
ck
::
Tuple
<
R0DataType
>
;
#include "run_convnd_fwd_max_example.inc"
int
main
(
int
argc
,
char
*
argv
[])
{
return
!
run_convnd_fwd_max_example
(
argc
,
argv
);
}
example/10_convnd_fwd_multiple_d_multiple_reduce/run_convnd_fwd_max_example.inc
0 → 100644
View file @
b89a88b5
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2022, Advanced Micro Devices, Inc. All rights reserved.
#pragma once
template
<
ck
::
index_t
...
Is
>
using
S
=
ck
::
Sequence
<
Is
...
>
;
using
PassThrough
=
ck
::
tensor_operation
::
element_wise
::
PassThrough
;
using
AElementOp
=
PassThrough
;
using
BElementOp
=
PassThrough
;
using
CDEElementOp
=
PassThrough
;
using
QsElementOp
=
ck
::
Tuple
<
PassThrough
>
;
using
RsElementOp
=
ck
::
Tuple
<
PassThrough
>
;
// ReduceOp
using
RsThreadReduceOp
=
ck
::
Tuple
<
ck
::
reduce
::
Max
>
;
using
RsGlobalReduceOp
=
ck
::
InMemoryDataOperationEnumSequence
<
ck
::
InMemoryDataOperationEnum
::
AtomicMax
>
;
static
constexpr
auto
ConvSpec
=
ck
::
tensor_operation
::
device
::
ConvolutionForwardSpecialization
::
Default
;
static
constexpr
auto
GemmDefault
=
ck
::
tensor_operation
::
device
::
GemmSpecialization
::
Default
;
// clang-format off
template
<
ck
::
index_t
NDimSpatial
>
using
DeviceInstance
=
ck
::
tensor_operation
::
device
::
DeviceGroupedConvFwdMultipleDMultipleR_Xdl_CShuffle
//######| NDimSpatial| ALayout| BLayout| DELayout| RLayout| AData| BData| AccData| CShuffle| DsData| EData| ReduceAccData| RsData| A| B| CDE| Qs| Rs| Thread| Global| Conv| GEMM| NumGemmK| Block| MPer| NPer| KPer| AK1| BK1| MPer| NPer| MXdl| NXdl| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockLds| BBlockTransfer| BBlockTransfer| BBlockTransfer| BlockTransfer| BBlockTransfer| BBlockTransfer| BBlockLds| CShuffle| CShuffle| CDRThreadTransfer| CDE| RThreadTransfer|
//######| | | | | | Type| Type| Type| DataType| Type| Type| Type| Type| Elementwise| Elementwise| Elementwise| Elementwise| Elementwise| Reduce| Reduce| Fwd|Spacialization| Prefetch| Size| Block| Block| Block| | | XDL| XDL| Per| Per| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| AddExtraM| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| AddExtraN| MXdlPerWave| NXdlPerWave| ClusterLengths| ReduceThreadTransfer| DstScalarPerVector|
//######| | | | | | | | | | | | | | Operation| Operation| Operation| Operation| Operation| Operation| Operation| Specialization| | Stage| | | | | | | | | Wave| Wave| Lengths_K0_M_K1| ArrangeOrder| | | PerVector| PerVector_K1| | Lengths_K0_N_K1| ArrangeOrder| | | PerVector| PerVector_K1| | PerShuffle| PerShuffle| _MPerBlock_NPerBlock| ScalarPerVector| _MPerBlock|
//######| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | _NPerBlock| |
#ifdef BUILD_INT4_EXAMPLE
<
NDimSpatial
,
ALayout
<
NDimSpatial
>
,
BLayout
<
NDimSpatial
>
,
DELayout
<
NDimSpatial
>
,
RLayout
<
NDimSpatial
>
,
KernelADataType
,
KernelBDataType
,
AccDataType
,
CShuffleDataType
,
DsDataType
,
EDataType
,
ReduceAccDataType
,
RsDataType
,
AElementOp
,
BElementOp
,
CDEElementOp
,
QsElementOp
,
RsElementOp
,
RsThreadReduceOp
,
RsGlobalReduceOp
,
ConvSpec
,
GemmDefault
,
1
,
256
,
256
,
128
,
32
,
8
,
8
,
32
,
32
,
4
,
2
,
S
<
4
,
64
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
8
,
8
,
1
,
S
<
4
,
64
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
8
,
8
,
1
,
1
,
1
,
S
<
64
,
4
>
,
4
,
1
>
;
#else
<
NDimSpatial
,
ALayout
<
NDimSpatial
>
,
BLayout
<
NDimSpatial
>
,
DELayout
<
NDimSpatial
>
,
RLayout
<
NDimSpatial
>
,
ADataType
,
BDataType
,
AccDataType
,
CShuffleDataType
,
DsDataType
,
EDataType
,
ReduceAccDataType
,
RsDataType
,
AElementOp
,
BElementOp
,
CDEElementOp
,
QsElementOp
,
RsElementOp
,
RsThreadReduceOp
,
RsGlobalReduceOp
,
ConvSpec
,
GemmDefault
,
1
,
256
,
256
,
128
,
32
,
8
,
8
,
32
,
32
,
4
,
2
,
S
<
4
,
64
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
8
,
8
,
1
,
S
<
4
,
64
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
8
,
8
,
1
,
1
,
1
,
S
<
64
,
4
>
,
4
,
1
>
;
#endif
template
<
ck
::
index_t
NDimSpatial
>
using
HostInstance
=
ck
::
tensor_operation
::
host
::
ReferenceConvFwd
<
NDimSpatial
,
ADataType
,
BDataType
,
EDataType
,
AElementOp
,
BElementOp
,
PassThrough
>
;
// clang-format on
template
<
ck
::
index_t
NDimSpatial
>
bool
run_convnd_fwd_max
(
const
ck
::
utils
::
conv
::
ConvParam
&
problem_size
,
const
ExecutionConfig
&
config
)
{
static_assert
(
1
<=
NDimSpatial
&&
NDimSpatial
<=
3
,
"Unsupported NDimSpatial"
);
#if defined(BUILD_INT4_EXAMPLE) && defined(CK_EXPERIMENTAL_BIT_INT_EXTENSION_INT4)
static_assert
(
sizeof
(
ck
::
int4_t
)
==
sizeof
(
int8_t
));
#endif
const
auto
conv_input_g_n_c_wis_desc
=
ck
::
utils
::
conv
::
make_input_host_tensor_descriptor_g_n_c_wis_packed
<
ALayout
<
NDimSpatial
>>
(
problem_size
);
const
auto
conv_weight_g_k_c_xs_desc
=
ck
::
utils
::
conv
::
make_weight_host_tensor_descriptor_g_k_c_xs_packed
<
BLayout
<
NDimSpatial
>>
(
problem_size
);
const
auto
conv_output_g_n_k_wos_desc
=
ck
::
utils
::
conv
::
make_output_host_tensor_descriptor_g_n_k_wos_packed
<
DELayout
<
NDimSpatial
>>
(
problem_size
);
const
auto
r0_desc
=
make_r0_host_tensor_descriptor
(
problem_size
);
Tensor
<
ADataType
>
conv_input
(
conv_input_g_n_c_wis_desc
);
Tensor
<
BDataType
>
conv_weight
(
conv_weight_g_k_c_xs_desc
);
Tensor
<
EDataType
>
conv_output_device
(
conv_output_g_n_k_wos_desc
);
Tensor
<
R0DataType
>
r0_device
(
r0_desc
);
switch
(
config
.
init_method
)
{
case
0
:
break
;
case
1
:
ck
::
utils
::
FillUniformDistributionIntegerValue
<
ADataType
>
{
-
8
,
7
}(
conv_input
.
begin
(),
conv_input
.
end
());
ck
::
utils
::
FillUniformDistributionIntegerValue
<
BDataType
>
{
-
8
,
7
}(
conv_weight
.
begin
(),
conv_weight
.
end
());
break
;
default
:
ck
::
utils
::
FillUniformDistribution
<
ADataType
>
{
-
5
,
5
}(
conv_input
.
begin
(),
conv_input
.
end
());
ck
::
utils
::
FillUniformDistribution
<
BDataType
>
{
-
5
,
5
}(
conv_weight
.
begin
(),
conv_weight
.
end
());
}
DeviceMem
conv_input_device_buf
(
sizeof
(
ADataType
)
*
conv_input
.
mDesc
.
GetElementSpaceSize
());
DeviceMem
conv_weight_device_buf
(
sizeof
(
BDataType
)
*
conv_weight
.
mDesc
.
GetElementSpaceSize
());
DeviceMem
conv_output_device_buf
(
sizeof
(
EDataType
)
*
conv_output_device
.
mDesc
.
GetElementSpaceSize
());
DeviceMem
r0_device_buf
(
sizeof
(
R0DataType
)
*
r0_device
.
mDesc
.
GetElementSpaceSize
());
#ifdef BUILD_INT4_EXAMPLE
const
Tensor
<
KernelADataType
>
conv_input_converted
(
conv_input
);
const
Tensor
<
KernelBDataType
>
conv_weight_converted
(
conv_weight
);
conv_input_device_buf
.
ToDevice
(
conv_input_converted
.
mData
.
data
());
conv_weight_device_buf
.
ToDevice
(
conv_weight_converted
.
mData
.
data
());
#else
conv_input_device_buf
.
ToDevice
(
conv_input
.
mData
.
data
());
conv_weight_device_buf
.
ToDevice
(
conv_weight
.
mData
.
data
());
#endif
std
::
array
<
ck
::
index_t
,
NDimSpatial
+
3
>
conv_input_g_n_c_wis_lengths
{},
conv_input_g_n_c_wis_strides
{};
std
::
array
<
ck
::
index_t
,
NDimSpatial
+
3
>
conv_weight_g_k_c_xs_lengths
{},
conv_weight_g_k_c_xs_strides
{};
std
::
array
<
ck
::
index_t
,
NDimSpatial
+
3
>
conv_output_g_n_k_wos_lengths
{},
conv_output_g_n_k_wos_strides
{};
std
::
array
<
ck
::
index_t
,
NDimSpatial
+
2
>
r0_lengths
{},
r0_strides
{};
std
::
array
<
ck
::
index_t
,
NDimSpatial
>
conv_filter_strides
{},
conv_filter_dilations
{};
std
::
array
<
ck
::
index_t
,
NDimSpatial
>
input_left_pads
{},
input_right_pads
{};
unpack_host_tensor_descriptor
(
conv_input_g_n_c_wis_desc
,
conv_input_g_n_c_wis_lengths
,
conv_input_g_n_c_wis_strides
);
unpack_host_tensor_descriptor
(
conv_weight_g_k_c_xs_desc
,
conv_weight_g_k_c_xs_lengths
,
conv_weight_g_k_c_xs_strides
);
unpack_host_tensor_descriptor
(
conv_output_g_n_k_wos_desc
,
conv_output_g_n_k_wos_lengths
,
conv_output_g_n_k_wos_strides
);
unpack_host_tensor_descriptor
(
r0_desc
,
r0_lengths
,
r0_strides
);
copy
(
problem_size
.
conv_filter_strides_
,
begin
(
conv_filter_strides
));
copy
(
problem_size
.
conv_filter_dilations_
,
begin
(
conv_filter_dilations
));
copy
(
problem_size
.
input_left_pads_
,
begin
(
input_left_pads
));
copy
(
problem_size
.
input_right_pads_
,
begin
(
input_right_pads
));
// run Conv + Reduction on device
auto
conv
=
DeviceInstance
<
NDimSpatial
>
{};
auto
invoker
=
conv
.
MakeInvoker
();
auto
argument
=
conv
.
MakeArgument
(
conv_input_device_buf
.
GetDeviceBuffer
(),
conv_weight_device_buf
.
GetDeviceBuffer
(),
std
::
array
<
const
void
*
,
0
>
{},
conv_output_device_buf
.
GetDeviceBuffer
(),
{
r0_device_buf
.
GetDeviceBuffer
()},
conv_input_g_n_c_wis_lengths
,
conv_input_g_n_c_wis_strides
,
conv_weight_g_k_c_xs_lengths
,
conv_weight_g_k_c_xs_strides
,
std
::
array
<
std
::
array
<
ck
::
index_t
,
NDimSpatial
+
3
>
,
0
>
{{}},
std
::
array
<
std
::
array
<
ck
::
index_t
,
NDimSpatial
+
3
>
,
0
>
{{}},
conv_output_g_n_k_wos_lengths
,
conv_output_g_n_k_wos_strides
,
r0_lengths
,
r0_strides
,
conv_filter_strides
,
conv_filter_dilations
,
input_left_pads
,
input_right_pads
,
AElementOp
{},
BElementOp
{},
CDEElementOp
{},
QsElementOp
{},
RsElementOp
{});
if
(
!
conv
.
IsSupportedArgument
(
argument
))
{
std
::
cerr
<<
"wrong! device_conv with the specified compilation parameters does "
"not support this Conv problem"
<<
std
::
endl
;
return
false
;
}
const
float
avg_time
=
invoker
.
Run
(
argument
,
StreamConfig
{
nullptr
,
config
.
time_kernel
});
const
std
::
size_t
flop
=
problem_size
.
GetFlops
();
const
std
::
size_t
num_btype
=
problem_size
.
GetByte
<
ADataType
,
BDataType
,
EDataType
>
();
const
float
tflops
=
static_cast
<
float
>
(
flop
)
/
1.E9
/
avg_time
;
const
float
gb_per_sec
=
num_btype
/
1.E6
/
avg_time
;
std
::
cout
<<
"Perf: "
<<
avg_time
<<
" ms, "
<<
tflops
<<
" TFlops, "
<<
gb_per_sec
<<
" GB/s, "
<<
conv
.
GetTypeString
()
<<
std
::
endl
;
if
(
config
.
do_verification
)
{
Tensor
<
EDataType
>
conv_output_host
(
conv_output_g_n_k_wos_desc
);
// run Conv + Reduction on host
auto
ref_conv
=
HostInstance
<
NDimSpatial
>
{};
auto
ref_invoker
=
ref_conv
.
MakeInvoker
();
auto
ref_argument
=
ref_conv
.
MakeArgument
(
conv_input
,
conv_weight
,
conv_output_host
,
problem_size
.
conv_filter_strides_
,
problem_size
.
conv_filter_dilations_
,
problem_size
.
input_left_pads_
,
problem_size
.
input_right_pads_
,
AElementOp
{},
BElementOp
{},
PassThrough
{});
ref_invoker
.
Run
(
ref_argument
);
Tensor
<
R0DataType
>
r0_host
(
r0_device
.
mDesc
);
auto
reduce0_op
=
RsThreadReduceOp
{}[
ck
::
Number
<
0
>
{}];
auto
&
output_dims
=
conv_output_g_n_k_wos_desc
.
GetLengths
();
if
constexpr
(
NDimSpatial
==
1
)
{
for
(
std
::
size_t
g
=
0
;
g
<
output_dims
[
0
];
++
g
)
{
for
(
std
::
size_t
n
=
0
;
n
<
output_dims
[
1
];
++
n
)
{
for
(
std
::
size_t
w
=
0
;
w
<
output_dims
[
3
];
++
w
)
{
auto
reduce0_acc
=
reduce0_op
.
GetIdentityValue
<
ReduceAccDataType
>
();
for
(
std
::
size_t
k
=
0
;
k
<
output_dims
[
2
];
++
k
)
{
auto
e_val
=
ck
::
type_convert
<
ReduceAccDataType
>
(
conv_output_host
(
g
,
n
,
k
,
w
));
reduce0_op
(
reduce0_acc
,
e_val
);
}
r0_host
(
g
,
n
,
w
)
=
ck
::
type_convert
<
R0DataType
>
(
reduce0_acc
);
}
}
}
}
else
if
constexpr
(
NDimSpatial
==
2
)
{
for
(
std
::
size_t
g
=
0
;
g
<
output_dims
[
0
];
++
g
)
{
for
(
std
::
size_t
n
=
0
;
n
<
output_dims
[
1
];
++
n
)
{
for
(
std
::
size_t
h
=
0
;
h
<
output_dims
[
3
];
++
h
)
{
for
(
std
::
size_t
w
=
0
;
w
<
output_dims
[
4
];
++
w
)
{
auto
reduce0_acc
=
reduce0_op
.
GetIdentityValue
<
ReduceAccDataType
>
();
for
(
std
::
size_t
k
=
0
;
k
<
output_dims
[
2
];
++
k
)
{
auto
e_val
=
ck
::
type_convert
<
ReduceAccDataType
>
(
conv_output_host
(
g
,
n
,
k
,
h
,
w
));
reduce0_op
(
reduce0_acc
,
e_val
);
}
r0_host
(
g
,
n
,
h
,
w
)
=
ck
::
type_convert
<
R0DataType
>
(
reduce0_acc
);
}
}
}
}
}
else
if
constexpr
(
NDimSpatial
==
3
)
{
for
(
std
::
size_t
g
=
0
;
g
<
output_dims
[
0
];
++
g
)
{
for
(
std
::
size_t
n
=
0
;
n
<
output_dims
[
1
];
++
n
)
{
for
(
std
::
size_t
d
=
0
;
d
<
output_dims
[
3
];
++
d
)
{
for
(
std
::
size_t
h
=
0
;
h
<
output_dims
[
4
];
++
h
)
{
for
(
std
::
size_t
w
=
0
;
w
<
output_dims
[
5
];
++
w
)
{
auto
reduce0_acc
=
reduce0_op
.
GetIdentityValue
<
ReduceAccDataType
>
();
for
(
std
::
size_t
k
=
0
;
k
<
output_dims
[
2
];
++
k
)
{
auto
e_val
=
ck
::
type_convert
<
ReduceAccDataType
>
(
conv_output_host
(
g
,
n
,
k
,
d
,
h
,
w
));
reduce0_op
(
reduce0_acc
,
e_val
);
}
r0_host
(
g
,
n
,
d
,
h
,
w
)
=
ck
::
type_convert
<
R0DataType
>
(
reduce0_acc
);
}
}
}
}
}
}
conv_output_device_buf
.
FromDevice
(
conv_output_device
.
mData
.
data
());
r0_device_buf
.
FromDevice
(
r0_device
.
mData
.
data
());
return
ck
::
utils
::
check_err
(
conv_output_device
.
mData
,
conv_output_host
.
mData
,
"Error: incorrect results! (Matrix E)"
,
1
e
-
5
f
,
1
e
-
4
f
)
&&
ck
::
utils
::
check_err
(
r0_device
.
mData
,
r0_host
.
mData
,
"Error: incorrect results! (Matrix R0)"
,
1
e
-
5
f
,
1
e
-
4
f
);
}
return
true
;
}
bool
run_convnd_fwd_max_example
(
int
argc
,
char
*
argv
[])
{
ck
::
utils
::
conv
::
ConvParam
problem_size
{
2
,
1
,
128
,
256
,
192
,
{
3
,
3
},
{
71
,
71
},
{
2
,
2
},
{
1
,
1
},
{
1
,
1
},
{
1
,
1
}};
ExecutionConfig
config
;
if
(
!
parse_cmd_args
(
argc
,
argv
,
problem_size
,
config
))
{
return
false
;
}
switch
(
problem_size
.
num_dim_spatial_
)
{
case
1
:
return
run_convnd_fwd_max
<
1
>
(
problem_size
,
config
);
case
2
:
return
run_convnd_fwd_max
<
2
>
(
problem_size
,
config
);
case
3
:
return
run_convnd_fwd_max
<
3
>
(
problem_size
,
config
);
}
return
false
;
}
example/12_reduce/reduce_blockwise.cpp
View file @
b89a88b5
...
...
@@ -225,6 +225,28 @@ int main(int argc, char* argv[])
arg
.
scales
[
0
],
arg
.
scales
[
1
]);
}
#ifdef CK_EXPERIMENTAL_BIT_INT_EXTENSION_INT4
else
if
(
arg
.
data_type
==
7
)
{
pass
=
reduce_blockwise_test
<
int4_t
,
int32_t
,
ReduceTensorOp
::
AVG
,
false
,
false
>
(
arg
.
do_verification
,
arg
.
init_method
,
arg
.
time_kernel
,
arg
.
inLengths
,
arg
.
reduceDims
,
arg
.
scales
[
0
],
arg
.
scales
[
1
]);
pass
=
pass
&&
reduce_blockwise_test
<
int4_t
,
int8_t
,
ReduceTensorOp
::
MAX
,
false
,
false
>
(
arg
.
do_verification
,
arg
.
init_method
,
arg
.
time_kernel
,
arg
.
inLengths
,
arg
.
reduceDims
,
arg
.
scales
[
0
],
arg
.
scales
[
1
]);
}
#endif
}
else
{
...
...
@@ -251,6 +273,15 @@ int main(int argc, char* argv[])
pass
&&
reduce_blockwise_test
<
int8_t
,
int32_t
,
ReduceOpId
,
PropagateNan
,
OutputIndex
>
(
true
,
2
,
true
,
{
16
,
64
,
32
,
960
},
{
0
,
1
,
2
},
1.0
f
,
0.0
f
);
#ifdef CK_EXPERIMENTAL_BIT_INT_EXTENSION_INT4
// for testing int4_t using AVG operation
pass
=
pass
&&
reduce_blockwise_test
<
int4_t
,
int32_t
,
ReduceTensorOp
::
AVG
,
false
,
false
>
(
true
,
2
,
true
,
{
16
,
64
,
32
,
960
},
{
0
,
1
,
2
},
1.0
f
,
0.0
f
);
// for testing int4_t using MAX operation
pass
=
pass
&&
reduce_blockwise_test
<
int4_t
,
int8_t
,
ReduceTensorOp
::
MAX
,
false
,
false
>
(
true
,
2
,
true
,
{
16
,
64
,
32
,
960
},
{
0
,
1
,
2
},
1.0
f
,
0.0
f
);
#endif
// for testing 3D input
pass
=
pass
&&
reduce_blockwise_test
<
float
,
float
,
ReduceOpId
,
PropagateNan
,
OutputIndex
>
(
true
,
2
,
true
,
{
16
,
64
,
960
},
{
0
,
1
},
1.0
f
,
0.0
f
);
...
...
example/12_reduce/reduce_blockwise_impl.hpp
View file @
b89a88b5
...
...
@@ -58,28 +58,47 @@ int reduce_blockwise_impl(bool do_verification,
std
::
is_same
<
InOutDataType
,
float
>::
value
&&
(
op_support_indices
&&
!
std
::
is_same
<
AccDataType
,
float
>::
value
);
// 1) If InOutDataType is int8_t, must use int8_t as AccDataType for indexable
reduction
// operations 2) If InOutDataType is int8_t, must use int32_t as AccDataType
for non-indexable
// reduction operations
// 1) If InOutDataType is int8_t
or int4_t
, must use int8_t as AccDataType for indexable
//
reduction
operations 2) If InOutDataType is int8_t
or int4_t
, must use int32_t as AccDataType
//
for non-indexable
reduction operations
constexpr
bool
invalid_reduce_4
=
std
::
is_same
<
InOutDataType
,
int8_t
>::
value
&&
((
!
op_support_indices
&&
!
std
::
is_same
<
AccDataType
,
int32_t
>::
value
)
||
(
op_support_indices
&&
!
std
::
is_same
<
AccDataType
,
int8_t
>::
value
));
// 1) If InOutDataType is int8_t, the supported operation must be either indexable operations or
// ADD/AVG
#ifdef CK_EXPERIMENTAL_BIT_INT_EXTENSION_INT4
constexpr
bool
invalid_reduce_4_2
=
std
::
is_same
<
InOutDataType
,
int4_t
>::
value
&&
((
!
op_support_indices
&&
!
std
::
is_same
<
AccDataType
,
int32_t
>::
value
)
||
(
op_support_indices
&&
!
std
::
is_same
<
AccDataType
,
int8_t
>::
value
));
#endif
// 1) If InOutDataType is int8_t or int4_t, the supported operation must be either indexable
// operations or ADD/AVG
constexpr
bool
invalid_reduce_5
=
std
::
is_same
<
InOutDataType
,
int8_t
>::
value
&&
(
!
op_support_indices
&&
ReduceOpId
!=
ReduceTensorOp
::
ADD
&&
ReduceOpId
!=
ReduceTensorOp
::
AVG
);
#ifdef CK_EXPERIMENTAL_BIT_INT_EXTENSION_INT4
constexpr
bool
invalid_reduce_5_2
=
std
::
is_same
<
InOutDataType
,
int4_t
>::
value
&&
(
!
op_support_indices
&&
ReduceOpId
!=
ReduceTensorOp
::
ADD
&&
ReduceOpId
!=
ReduceTensorOp
::
AVG
);
#endif
// 1) If InOutDataType is bhalf_t, must use float as AccDataType for all reduction operations
constexpr
bool
invalid_reduce_6
=
std
::
is_same
<
InOutDataType
,
bhalf_t
>::
value
&&
!
std
::
is_same
<
AccDataType
,
float
>::
value
;
#ifdef CK_EXPERIMENTAL_BIT_INT_EXTENSION_INT4
constexpr
bool
invalid_reduce
=
(
invalid_reduce_1
||
invalid_reduce_2
||
invalid_reduce_3
||
invalid_reduce_4
||
invalid_reduce_5
||
invalid_reduce_6
||
invalid_reduce_4_2
||
invalid_reduce_5_2
);
#else
constexpr
bool
invalid_reduce
=
(
invalid_reduce_1
||
invalid_reduce_2
||
invalid_reduce_3
||
invalid_reduce_4
||
invalid_reduce_5
||
invalid_reduce_6
);
#endif
if
(
invalid_reduce
)
if
constexpr
(
invalid_reduce
)
{
std
::
cerr
<<
"The reduction setting is invalid, exiting!"
<<
std
::
endl
;
return
(
-
1
);
...
...
@@ -91,10 +110,17 @@ int reduce_blockwise_impl(bool do_verification,
using
AccElementwiseOperation
=
typename
reduce_unary_operator
<
ReduceOpId
,
true
,
true
>::
AccElementwiseOperation
;
#ifdef CK_EXPERIMENTAL_BIT_INT_EXTENSION_INT4
using
InOutDataTypeInDevice
=
typename
std
::
conditional
<
std
::
is_same
<
InOutDataType
,
int4_t
>::
value
,
int8_t
,
InOutDataType
>::
type
;
#else
using
InOutDataTypeInDevice
=
InOutDataType
;
#endif
using
DeviceReduceInstance
=
ck
::
tensor_operation
::
device
::
DeviceReduceMultiBlock
<
InOutDataType
,
ck
::
tensor_operation
::
device
::
DeviceReduceMultiBlock
<
InOutDataType
InDevice
,
AccDataType
,
InOutDataType
,
InOutDataType
InDevice
,
Rank
,
NumReduceDim
,
ReduceOperation
,
...
...
@@ -166,13 +192,35 @@ int reduce_blockwise_impl(bool do_verification,
};
// these buffers are usually provided by the user application
DeviceMem
in_dev
(
sizeof
(
InOutDataType
)
*
in
.
mDesc
.
GetElementSpaceSize
());
DeviceMem
out_dev
(
sizeof
(
InOutDataType
)
*
out
.
mDesc
.
GetElementSpaceSize
());
DeviceMem
in_dev
(
sizeof
(
InOutDataType
InDevice
)
*
in
.
mDesc
.
GetElementSpaceSize
());
DeviceMem
out_dev
(
sizeof
(
InOutDataType
InDevice
)
*
out
.
mDesc
.
GetElementSpaceSize
());
in_dev
.
ToDevice
(
in
.
mData
.
data
());
#ifdef CK_EXPERIMENTAL_BIT_INT_EXTENSION_INT4
if
(
std
::
is_same
<
InOutDataType
,
int4_t
>::
value
)
{
std
::
vector
<
InOutDataTypeInDevice
>
tmp_buf
(
in
.
mData
.
size
());
std
::
copy_n
(
in
.
mData
.
data
(),
in
.
mData
.
size
(),
tmp_buf
.
data
());
in_dev
.
ToDevice
(
tmp_buf
.
data
());
}
else
#endif
in_dev
.
ToDevice
(
in
.
mData
.
data
());
if
(
beta
!=
0.0
f
)
out_dev
.
ToDevice
(
out
.
mData
.
data
());
{
#ifdef CK_EXPERIMENTAL_BIT_INT_EXTENSION_INT4
if
(
std
::
is_same
<
InOutDataType
,
int4_t
>::
value
)
{
std
::
vector
<
InOutDataTypeInDevice
>
tmp_buf
(
in
.
mData
.
size
());
std
::
copy_n
(
out
.
mData
.
data
(),
out
.
mData
.
size
(),
tmp_buf
.
data
());
out_dev
.
ToDevice
(
tmp_buf
.
data
());
}
else
#endif
out_dev
.
ToDevice
(
out
.
mData
.
data
());
};
size_t
indicesSizeInBytes
=
OutputIndex
?
out
.
mDesc
.
GetElementSize
()
*
sizeof
(
int32_t
)
:
0
;
...
...
@@ -261,7 +309,19 @@ int reduce_blockwise_impl(bool do_verification,
if
(
do_verification
)
{
out_dev
.
FromDevice
(
out
.
mData
.
data
());
#ifdef CK_EXPERIMENTAL_BIT_INT_EXTENSION_INT4
if
(
std
::
is_same
<
InOutDataType
,
int4_t
>::
value
)
{
std
::
vector
<
InOutDataTypeInDevice
>
tmp_buf
(
out
.
mData
.
size
());
out_dev
.
FromDevice
(
tmp_buf
.
data
());
std
::
copy_n
(
tmp_buf
.
data
(),
out
.
mData
.
size
(),
out
.
mData
.
data
());
}
else
#endif
out_dev
.
FromDevice
(
out
.
mData
.
data
());
pass
=
pass
&&
ck
::
utils
::
check_err
(
out
.
mData
,
out_ref
.
mData
);
if
(
OutputIndex
)
...
...
example/15_grouped_gemm/CMakeLists.txt
View file @
b89a88b5
add_custom_target
(
example_grouped_gemm_xdl
)
add_example_executable
(
example_grouped_gemm_xdl_fp32 grouped_gemm_xdl_fp32.cpp
)
add_example_executable
(
example_grouped_gemm_xdl_fp16 grouped_gemm_xdl_fp16.cpp
)
add_example_executable
(
example_grouped_gemm_xdl_bfp16 grouped_gemm_xdl_bfp16.cpp
)
add_example_executable
(
example_grouped_gemm_xdl_int8 grouped_gemm_xdl_int8.cpp
)
add_dependencies
(
example_grouped_gemm_xdl
example_grouped_gemm_xdl_fp32
example_grouped_gemm_xdl_fp16
example_grouped_gemm_xdl_bfp16
example_grouped_gemm_xdl_int8
)
if
(
USE_BITINT_EXTENSION_INT4
)
add_example_executable
(
example_grouped_gemm_xdl_int4 grouped_gemm_xdl_int4.cpp
)
add_dependencies
(
example_grouped_gemm_xdl example_grouped_gemm_xdl_int4
)
endif
()
example/15_grouped_gemm/grouped_gemm_xdl_bfp16.cpp
0 → 100644
View file @
b89a88b5
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2022, Advanced Micro Devices, Inc. All rights reserved.
#include <iostream>
#include <numeric>
#include <initializer_list>
#include <cstdlib>
#include "ck/ck.hpp"
#include "ck/tensor_operation/gpu/device/tensor_layout.hpp"
#include "ck/tensor_operation/gpu/device/gemm_specialization.hpp"
#include "ck/tensor_operation/gpu/device/device_grouped_gemm_xdl.hpp"
#include "ck/tensor_operation/gpu/element/element_wise_operation.hpp"
#include "ck/library/utility/check_err.hpp"
#include "ck/library/utility/device_memory.hpp"
#include "ck/library/utility/host_tensor.hpp"
#include "ck/library/utility/host_tensor_generator.hpp"
#include "ck/library/reference_tensor_operation/cpu/reference_gemm.hpp"
template
<
ck
::
index_t
...
Is
>
using
S
=
ck
::
Sequence
<
Is
...
>
;
using
BF16
=
ck
::
bhalf_t
;
using
F32
=
float
;
using
Row
=
ck
::
tensor_layout
::
gemm
::
RowMajor
;
using
Col
=
ck
::
tensor_layout
::
gemm
::
ColumnMajor
;
using
PassThrough
=
ck
::
tensor_operation
::
element_wise
::
PassThrough
;
using
ADataType
=
BF16
;
using
BDataType
=
BF16
;
using
AccDataType
=
F32
;
using
CShuffleDataType
=
BF16
;
using
DsDataType
=
ck
::
Tuple
<>
;
using
EDataType
=
BF16
;
using
ALayout
=
Row
;
using
BLayout
=
Col
;
using
DsLayout
=
ck
::
Tuple
<>
;
using
ELayout
=
Row
;
using
AElementOp
=
PassThrough
;
using
BElementOp
=
PassThrough
;
using
CDEElementOp
=
PassThrough
;
static
constexpr
auto
GemmDefault
=
ck
::
tensor_operation
::
device
::
GemmSpecialization
::
Default
;
using
DeviceGemmInstance
=
ck
::
tensor_operation
::
device
::
DeviceGroupedGemm_Xdl
// clang-format off
//######| ALayout| BLayout| DsLayout| ELayout| AData| BData| AccData| CShuffle| DsData| EData| A| B| CDE| GEMM| NumGemmK| Block| MPer| NPer| KPer| AK1| BK1| MPer| NPer| MXdl| NXdl| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockLds| BBlockTransfer| BBlockTransfer| BBlockTransfer| BlockTransfer| BBlockTransfer| BBlockTransfer| BBlockLds| CShuffle| CShuffle| CBlockTransferClusterLengths| CBlockTransfer|
//######| | | | | Type| Type| Type| DataType| Type| Type| Elementwise| Elementwise| Elementwise| Spacialization| Prefetch| Size| Block| Block| Block| | | XDL| XDL| Per| Per| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| AddExtraM| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| AddExtraN| MXdlPerWave| NXdlPerWave| _MBlock_MWaveMPerXdl| ScalarPerVector|
//######| | | | | | | | | | | Operation| Operation| Operation| | Stage| | | | | | | | | Wave| Wave| Lengths_K0_M_K1| ArrangeOrder| | | PerVector| PerVector_K1| | Lengths_K0_N_K1| ArrangeOrder| | | PerVector| PerVector_K1| | PerShuffle| PerShuffle| _NBlock_NWaveNPerXdl| _NWaveNPerXdl|
//######| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
<
ALayout
,
BLayout
,
DsLayout
,
ELayout
,
ADataType
,
BDataType
,
AccDataType
,
CShuffleDataType
,
DsDataType
,
EDataType
,
AElementOp
,
BElementOp
,
CDEElementOp
,
GemmDefault
,
1
,
256
,
256
,
128
,
32
,
8
,
8
,
32
,
32
,
4
,
2
,
S
<
4
,
64
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
8
,
8
,
1
,
S
<
4
,
64
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
8
,
8
,
1
,
1
,
1
,
S
<
1
,
32
,
1
,
8
>
,
8
>
;
// clang-format on
#include "run_grouped_gemm_example.inc"
int
main
(
int
argc
,
char
*
argv
[])
{
return
!
run_grouped_gemm_example
(
argc
,
argv
);
}
example/15_grouped_gemm/grouped_gemm_xdl_fp16.cpp
View file @
b89a88b5
...
...
@@ -56,197 +56,6 @@ using DeviceGemmInstance = ck::tensor_operation::device::DeviceGroupedGemm_Xdl
<
ALayout
,
BLayout
,
DsLayout
,
ELayout
,
ADataType
,
BDataType
,
AccDataType
,
CShuffleDataType
,
DsDataType
,
EDataType
,
AElementOp
,
BElementOp
,
CDEElementOp
,
GemmDefault
,
1
,
256
,
256
,
128
,
32
,
8
,
8
,
32
,
32
,
4
,
2
,
S
<
4
,
64
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
8
,
8
,
1
,
S
<
4
,
64
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
8
,
8
,
1
,
1
,
1
,
S
<
1
,
32
,
1
,
8
>
,
8
>
;
// clang-format on
using
ReferenceGemmInstance
=
ck
::
tensor_operation
::
host
::
ReferenceGemm
<
ADataType
,
BDataType
,
EDataType
,
AccDataType
,
AElementOp
,
BElementOp
,
CDEElementOp
>
;
#include "run_grouped_gemm_example.inc"
int
main
(
int
argc
,
char
*
argv
[])
{
bool
do_verification
=
true
;
int
init_method
=
1
;
bool
time_kernel
=
false
;
if
(
argc
==
4
)
{
do_verification
=
std
::
stoi
(
argv
[
1
]);
init_method
=
std
::
stoi
(
argv
[
2
]);
time_kernel
=
std
::
stoi
(
argv
[
3
]);
}
else
{
printf
(
"arg1: verification (0=no, 1=yes)
\n
"
);
printf
(
"arg2: initialization (0=no init, 1=integer value, 2=decimal value)
\n
"
);
printf
(
"arg3: time kernel (0=n0, 1=yes)
\n
"
);
exit
(
0
);
}
int
group_count
=
rand
()
%
16
+
1
;
// GEMM shape
std
::
vector
<
ck
::
tensor_operation
::
device
::
GemmDesc
>
gemm_descs
;
std
::
vector
<
const
void
*>
p_a
,
p_b
;
std
::
vector
<
void
*>
p_c
;
gemm_descs
.
reserve
(
group_count
);
for
(
int
i
=
0
;
i
<
group_count
;
i
++
)
{
int
M
=
256
+
256
*
i
;
int
N
=
128
+
128
*
i
;
int
K
=
64
+
64
*
i
;
int
stride_A
=
K
;
int
stride_B
=
K
;
int
stride_C
=
N
;
gemm_descs
.
push_back
({
M
,
N
,
K
,
stride_A
,
stride_B
,
stride_C
,
{}});
}
auto
f_host_tensor_descriptor
=
[](
std
::
size_t
row
,
std
::
size_t
col
,
std
::
size_t
stride
,
auto
layout
)
{
if
(
std
::
is_same
<
decltype
(
layout
),
ck
::
tensor_layout
::
gemm
::
RowMajor
>::
value
)
{
return
HostTensorDescriptor
(
std
::
vector
<
std
::
size_t
>
({
row
,
col
}),
std
::
vector
<
std
::
size_t
>
({
stride
,
1
}));
}
else
{
return
HostTensorDescriptor
(
std
::
vector
<
std
::
size_t
>
({
row
,
col
}),
std
::
vector
<
std
::
size_t
>
({
1
,
stride
}));
}
};
std
::
vector
<
Tensor
<
ADataType
>>
a_tensors
;
std
::
vector
<
Tensor
<
BDataType
>>
b_tensors
;
std
::
vector
<
Tensor
<
EDataType
>>
c_host_tensors
;
std
::
vector
<
Tensor
<
EDataType
>>
c_device_tensors
;
a_tensors
.
reserve
(
group_count
);
b_tensors
.
reserve
(
group_count
);
c_host_tensors
.
reserve
(
group_count
);
c_device_tensors
.
reserve
(
group_count
);
using
DeviceMemPtr
=
std
::
unique_ptr
<
DeviceMem
>
;
std
::
vector
<
DeviceMemPtr
>
a_tensors_device
,
b_tensors_device
,
c_tensors_device
;
a_tensors_device
.
reserve
(
group_count
);
b_tensors_device
.
reserve
(
group_count
);
c_tensors_device
.
reserve
(
group_count
);
std
::
size_t
flop
=
0
,
num_btype
=
0
;
for
(
std
::
size_t
i
=
0
;
i
<
gemm_descs
.
size
();
i
++
)
{
a_tensors
.
push_back
(
Tensor
<
ADataType
>
(
f_host_tensor_descriptor
(
gemm_descs
[
i
].
M_
,
gemm_descs
[
i
].
K_
,
gemm_descs
[
i
].
stride_A_
,
ALayout
{})));
b_tensors
.
push_back
(
Tensor
<
BDataType
>
(
f_host_tensor_descriptor
(
gemm_descs
[
i
].
K_
,
gemm_descs
[
i
].
N_
,
gemm_descs
[
i
].
stride_B_
,
BLayout
{})));
c_host_tensors
.
push_back
(
Tensor
<
EDataType
>
(
f_host_tensor_descriptor
(
gemm_descs
[
i
].
M_
,
gemm_descs
[
i
].
N_
,
gemm_descs
[
i
].
stride_C_
,
ELayout
{})));
c_device_tensors
.
push_back
(
Tensor
<
EDataType
>
(
f_host_tensor_descriptor
(
gemm_descs
[
i
].
M_
,
gemm_descs
[
i
].
N_
,
gemm_descs
[
i
].
stride_C_
,
ELayout
{})));
std
::
cout
<<
"gemm["
<<
i
<<
"] a_m_k: "
<<
a_tensors
[
i
].
mDesc
<<
" b_k_n: "
<<
b_tensors
[
i
].
mDesc
<<
" c_m_n: "
<<
c_device_tensors
[
i
].
mDesc
<<
std
::
endl
;
flop
+=
std
::
size_t
(
2
)
*
gemm_descs
[
i
].
M_
*
gemm_descs
[
i
].
K_
*
gemm_descs
[
i
].
N_
;
num_btype
+=
sizeof
(
ADataType
)
*
a_tensors
[
i
].
mDesc
.
GetElementSize
()
+
sizeof
(
BDataType
)
*
b_tensors
[
i
].
mDesc
.
GetElementSize
()
+
sizeof
(
EDataType
)
*
c_device_tensors
[
i
].
mDesc
.
GetElementSize
();
switch
(
init_method
)
{
case
0
:
break
;
case
1
:
a_tensors
[
i
].
GenerateTensorValue
(
GeneratorTensor_2
<
ADataType
>
{
-
5
,
5
});
b_tensors
[
i
].
GenerateTensorValue
(
GeneratorTensor_2
<
BDataType
>
{
-
5
,
5
});
break
;
case
2
:
a_tensors
[
i
].
GenerateTensorValue
(
GeneratorTensor_3
<
ADataType
>
{
0.0
,
1.0
});
b_tensors
[
i
].
GenerateTensorValue
(
GeneratorTensor_3
<
BDataType
>
{
-
0.5
,
0.5
});
break
;
default:
a_tensors
[
i
].
GenerateTensorValue
(
GeneratorTensor_Sequential
<
0
>
{});
b_tensors
[
i
].
GenerateTensorValue
(
GeneratorTensor_Sequential
<
1
>
{});
}
}
for
(
std
::
size_t
i
=
0
;
i
<
gemm_descs
.
size
();
i
++
)
{
a_tensors_device
.
emplace_back
(
std
::
make_unique
<
DeviceMem
>
(
sizeof
(
ADataType
)
*
a_tensors
[
i
].
mDesc
.
GetElementSpaceSize
()));
b_tensors_device
.
emplace_back
(
std
::
make_unique
<
DeviceMem
>
(
sizeof
(
BDataType
)
*
b_tensors
[
i
].
mDesc
.
GetElementSpaceSize
()));
c_tensors_device
.
emplace_back
(
std
::
make_unique
<
DeviceMem
>
(
sizeof
(
EDataType
)
*
c_device_tensors
[
i
].
mDesc
.
GetElementSpaceSize
()));
a_tensors_device
[
i
]
->
ToDevice
(
a_tensors
[
i
].
mData
.
data
());
b_tensors_device
[
i
]
->
ToDevice
(
b_tensors
[
i
].
mData
.
data
());
p_a
.
push_back
(
a_tensors_device
[
i
]
->
GetDeviceBuffer
());
p_b
.
push_back
(
b_tensors_device
[
i
]
->
GetDeviceBuffer
());
p_c
.
push_back
(
c_tensors_device
[
i
]
->
GetDeviceBuffer
());
}
auto
a_element_op
=
AElementOp
{};
auto
b_element_op
=
BElementOp
{};
auto
c_element_op
=
CDEElementOp
{};
auto
gemm
=
DeviceGemmInstance
{};
auto
invoker
=
gemm
.
MakeInvoker
();
std
::
vector
<
std
::
array
<
const
void
*
,
0
>>
p_Ds
=
{};
// do GEMM
auto
argument
=
gemm
.
MakeArgument
(
p_a
,
p_b
,
p_Ds
,
p_c
,
gemm_descs
,
a_element_op
,
b_element_op
,
c_element_op
);
DeviceMem
gemm_desc_workspace
(
gemm
.
GetWorkSpaceSize
(
&
argument
));
gemm
.
SetWorkSpacePointer
(
&
argument
,
gemm_desc_workspace
.
GetDeviceBuffer
());
if
(
!
gemm
.
IsSupportedArgument
(
argument
))
{
throw
std
::
runtime_error
(
"wrong! device_gemm with the specified compilation parameters does "
"not support this GEMM problem"
);
}
float
ave_time
=
invoker
.
Run
(
argument
,
StreamConfig
{
nullptr
,
time_kernel
});
float
tflops
=
static_cast
<
float
>
(
flop
)
/
1.E9
/
ave_time
;
float
gb_per_sec
=
num_btype
/
1.E6
/
ave_time
;
std
::
cout
<<
"Perf: "
<<
ave_time
<<
" ms, "
<<
tflops
<<
" TFlops, "
<<
gb_per_sec
<<
" GB/s, "
<<
gemm
.
GetTypeString
()
<<
std
::
endl
;
bool
pass
=
true
;
if
(
do_verification
)
{
for
(
std
::
size_t
i
=
0
;
i
<
gemm_descs
.
size
();
i
++
)
{
c_tensors_device
[
i
]
->
FromDevice
(
c_device_tensors
[
i
].
mData
.
data
());
auto
ref_gemm
=
ReferenceGemmInstance
{};
auto
ref_invoker
=
ref_gemm
.
MakeInvoker
();
auto
ref_argument
=
ref_gemm
.
MakeArgument
(
a_tensors
[
i
],
b_tensors
[
i
],
c_host_tensors
[
i
],
a_element_op
,
b_element_op
,
c_element_op
);
ref_invoker
.
Run
(
ref_argument
);
pass
&=
ck
::
utils
::
check_err
(
c_device_tensors
[
i
].
mData
,
c_host_tensors
[
i
].
mData
);
}
}
return
pass
?
0
:
1
;
}
int
main
(
int
argc
,
char
*
argv
[])
{
return
!
run_grouped_gemm_example
(
argc
,
argv
);
}
example/15_grouped_gemm/grouped_gemm_xdl_fp32.cpp
0 → 100644
View file @
b89a88b5
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2022, Advanced Micro Devices, Inc. All rights reserved.
#include <iostream>
#include <numeric>
#include <initializer_list>
#include <cstdlib>
#include "ck/ck.hpp"
#include "ck/tensor_operation/gpu/device/tensor_layout.hpp"
#include "ck/tensor_operation/gpu/device/gemm_specialization.hpp"
#include "ck/tensor_operation/gpu/device/device_grouped_gemm_xdl.hpp"
#include "ck/tensor_operation/gpu/element/element_wise_operation.hpp"
#include "ck/library/utility/check_err.hpp"
#include "ck/library/utility/device_memory.hpp"
#include "ck/library/utility/host_tensor.hpp"
#include "ck/library/utility/host_tensor_generator.hpp"
#include "ck/library/reference_tensor_operation/cpu/reference_gemm.hpp"
template
<
ck
::
index_t
...
Is
>
using
S
=
ck
::
Sequence
<
Is
...
>
;
using
F16
=
ck
::
half_t
;
using
F32
=
float
;
using
Row
=
ck
::
tensor_layout
::
gemm
::
RowMajor
;
using
Col
=
ck
::
tensor_layout
::
gemm
::
ColumnMajor
;
using
PassThrough
=
ck
::
tensor_operation
::
element_wise
::
PassThrough
;
using
ADataType
=
F32
;
using
BDataType
=
F32
;
using
AccDataType
=
F32
;
using
CShuffleDataType
=
F32
;
using
DsDataType
=
ck
::
Tuple
<>
;
using
EDataType
=
F32
;
using
ALayout
=
Row
;
using
BLayout
=
Col
;
using
DsLayout
=
ck
::
Tuple
<>
;
using
ELayout
=
Row
;
using
AElementOp
=
PassThrough
;
using
BElementOp
=
PassThrough
;
using
CDEElementOp
=
PassThrough
;
static
constexpr
auto
GemmDefault
=
ck
::
tensor_operation
::
device
::
GemmSpecialization
::
Default
;
using
DeviceGemmInstance
=
ck
::
tensor_operation
::
device
::
DeviceGroupedGemm_Xdl
// clang-format off
//######| ALayout| BLayout| DsLayout| ELayout| AData| BData| AccData| CShuffle| DsData| EData| A| B| CDE| GEMM| NumGemmK| Block| MPer| NPer| KPer| AK1| BK1| MPer| NPer| MXdl| NXdl| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockLds| BBlockTransfer| BBlockTransfer| BBlockTransfer| BlockTransfer| BBlockTransfer| BBlockTransfer| BBlockLds| CShuffle| CShuffle| CBlockTransferClusterLengths| CBlockTransfer|
//######| | | | | Type| Type| Type| DataType| Type| Type| Elementwise| Elementwise| Elementwise| Spacialization| Prefetch| Size| Block| Block| Block| | | XDL| XDL| Per| Per| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| AddExtraM| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| AddExtraN| MXdlPerWave| NXdlPerWave| _MBlock_MWaveMPerXdl| ScalarPerVector|
//######| | | | | | | | | | | Operation| Operation| Operation| | Stage| | | | | | | | | Wave| Wave| Lengths_K0_M_K1| ArrangeOrder| | | PerVector| PerVector_K1| | Lengths_K0_N_K1| ArrangeOrder| | | PerVector| PerVector_K1| | PerShuffle| PerShuffle| _NBlock_NWaveNPerXdl| _NWaveNPerXdl|
//######| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
<
ALayout
,
BLayout
,
DsLayout
,
ELayout
,
ADataType
,
BDataType
,
AccDataType
,
CShuffleDataType
,
DsDataType
,
EDataType
,
AElementOp
,
BElementOp
,
CDEElementOp
,
GemmDefault
,
1
,
256
,
256
,
128
,
16
,
4
,
4
,
32
,
32
,
4
,
2
,
S
<
4
,
64
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
4
,
4
,
1
,
S
<
4
,
64
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
4
,
4
,
1
,
1
,
1
,
S
<
1
,
32
,
1
,
8
>
,
4
>
;
// clang-format on
#include "run_grouped_gemm_example.inc"
int
main
(
int
argc
,
char
*
argv
[])
{
return
!
run_grouped_gemm_example
(
argc
,
argv
);
}
example/15_grouped_gemm/grouped_gemm_xdl_int4.cpp
0 → 100644
View file @
b89a88b5
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2022, Advanced Micro Devices, Inc. All rights reserved.
#include <iostream>
#include <numeric>
#include <initializer_list>
#include <cstdlib>
#include "ck/ck.hpp"
#include "ck/tensor_operation/gpu/device/tensor_layout.hpp"
#include "ck/tensor_operation/gpu/device/gemm_specialization.hpp"
#include "ck/tensor_operation/gpu/device/device_grouped_gemm_xdl.hpp"
#include "ck/tensor_operation/gpu/element/element_wise_operation.hpp"
#include "ck/library/utility/check_err.hpp"
#include "ck/library/utility/device_memory.hpp"
#include "ck/library/utility/host_tensor.hpp"
#include "ck/library/utility/host_tensor_generator.hpp"
#include "ck/library/reference_tensor_operation/cpu/reference_gemm.hpp"
template
<
ck
::
index_t
...
Is
>
using
S
=
ck
::
Sequence
<
Is
...
>
;
using
Row
=
ck
::
tensor_layout
::
gemm
::
RowMajor
;
using
Col
=
ck
::
tensor_layout
::
gemm
::
ColumnMajor
;
using
PassThrough
=
ck
::
tensor_operation
::
element_wise
::
PassThrough
;
using
ADataType
=
ck
::
int4_t
;
using
BDataType
=
ck
::
int4_t
;
using
AccDataType
=
int32_t
;
using
CShuffleDataType
=
int32_t
;
using
DsDataType
=
ck
::
Tuple
<>
;
using
EDataType
=
ck
::
int4_t
;
using
KernelADataType
=
int8_t
;
using
KernelBDataType
=
int8_t
;
using
KernelEDataType
=
int8_t
;
using
ALayout
=
Row
;
using
BLayout
=
Col
;
using
DsLayout
=
ck
::
Tuple
<>
;
using
ELayout
=
Row
;
using
AElementOp
=
PassThrough
;
using
BElementOp
=
PassThrough
;
using
CDEElementOp
=
PassThrough
;
static
constexpr
auto
GemmDefault
=
ck
::
tensor_operation
::
device
::
GemmSpecialization
::
Default
;
using
DeviceGemmInstance
=
ck
::
tensor_operation
::
device
::
DeviceGroupedGemm_Xdl
// clang-format off
<
ALayout
,
//ALayout
BLayout
,
//BLayout
DsLayout
,
//DsLayout
ELayout
,
//ELayout
KernelADataType
,
//ADataType
KernelBDataType
,
//BDataType
AccDataType
,
//AccDataType
CShuffleDataType
,
//CShuffleDataType
DsDataType
,
//DsDataType
KernelEDataType
,
//EDataType
AElementOp
,
//AElementwiseOperation
BElementOp
,
//BElementwiseOperation
CDEElementOp
,
//CDEElementwiseOperation
GemmDefault
,
//GEMMSpecialization
1
,
// NumGemmKPrefetchStage
256
,
// BlockSize
256
,
// MPerBlock
128
,
// NPerBlock
64
,
// KPerBlock
16
,
// AK1
16
,
// BK1
32
,
// MPerXdl
32
,
// NPerXdl
4
,
// MXdlPerWave
2
,
// NXdlPerWave
S
<
4
,
64
,
1
>
,
// ABlockTransfer ThreadCluster Lengths_K0_M_K1
S
<
1
,
0
,
2
>
,
// ABlockTransfer ThreadCluster ArrangeOrder
S
<
1
,
0
,
2
>
,
// ABlockTransfer SrcAccessOrder
2
,
// ABlockTransfer SrcVectorDim
16
,
// ABlockTransfer SrcScalarPerVector
16
,
// ABlockTransfer DstScalarPerVector_K1
1
,
// ABlockLdsExtraM
S
<
4
,
64
,
1
>
,
// BBlockTransfer ThreadCluster Lengths_K0_N_K1
S
<
1
,
0
,
2
>
,
// BBlockTransfer ThreadCluster ArrangeOrder
S
<
1
,
0
,
2
>
,
// BBlockTransfer SrcAccessOrder
2
,
// BBlockTransfer SrcVectorDim
16
,
// BBlockTransfer SrcScalarPerVector
16
,
// BBlockTransfer DstScalarPerVector_K1
1
,
// BBlockLdsExtraN
1
,
// CShuffleMXdlPerWavePerShuffle
1
,
// CShuffleNXdlPerWavePerShuffle
S
<
1
,
64
,
1
,
4
>
,
// CBlockTransferClusterLengths_MBlock_MWaveMPerXdl_NBlock_NWaveNPerXdl
16
>
;
// CBlockTransferScalarPerVector_NWaveNPerXdl
// clang-format on
#define BUILD_INT4_EXAMPLE
#include "run_grouped_gemm_example.inc"
int
main
(
int
argc
,
char
*
argv
[])
{
return
!
run_grouped_gemm_example
(
argc
,
argv
);
}
example/15_grouped_gemm/grouped_gemm_xdl_int8.cpp
0 → 100644
View file @
b89a88b5
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2022, Advanced Micro Devices, Inc. All rights reserved.
#include <iostream>
#include <numeric>
#include <initializer_list>
#include <cstdlib>
#include "ck/ck.hpp"
#include "ck/tensor_operation/gpu/device/tensor_layout.hpp"
#include "ck/tensor_operation/gpu/device/gemm_specialization.hpp"
#include "ck/tensor_operation/gpu/device/device_grouped_gemm_xdl.hpp"
#include "ck/tensor_operation/gpu/element/element_wise_operation.hpp"
#include "ck/library/utility/check_err.hpp"
#include "ck/library/utility/device_memory.hpp"
#include "ck/library/utility/host_tensor.hpp"
#include "ck/library/utility/host_tensor_generator.hpp"
#include "ck/library/reference_tensor_operation/cpu/reference_gemm.hpp"
template
<
ck
::
index_t
...
Is
>
using
S
=
ck
::
Sequence
<
Is
...
>
;
using
Row
=
ck
::
tensor_layout
::
gemm
::
RowMajor
;
using
Col
=
ck
::
tensor_layout
::
gemm
::
ColumnMajor
;
using
PassThrough
=
ck
::
tensor_operation
::
element_wise
::
PassThrough
;
using
ADataType
=
int8_t
;
using
BDataType
=
int8_t
;
using
AccDataType
=
int32_t
;
using
CShuffleDataType
=
int8_t
;
using
DsDataType
=
ck
::
Tuple
<>
;
using
EDataType
=
int8_t
;
using
ALayout
=
Row
;
using
BLayout
=
Col
;
using
DsLayout
=
ck
::
Tuple
<>
;
using
ELayout
=
Row
;
using
AElementOp
=
PassThrough
;
using
BElementOp
=
PassThrough
;
using
CDEElementOp
=
PassThrough
;
static
constexpr
auto
GemmDefault
=
ck
::
tensor_operation
::
device
::
GemmSpecialization
::
Default
;
using
DeviceGemmInstance
=
ck
::
tensor_operation
::
device
::
DeviceGroupedGemm_Xdl
// clang-format off
//######| ALayout| BLayout| DsLayout| ELayout| AData| BData| AccData| CShuffle| DsData| EData| A| B| CDE| GEMM| NumGemmK| Block| MPer| NPer| KPer| AK1| BK1| MPer| NPer| MXdl| NXdl| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockLds| BBlockTransfer| BBlockTransfer| BBlockTransfer| BlockTransfer| BBlockTransfer| BBlockTransfer| BBlockLds| CShuffle| CShuffle| CBlockTransferClusterLengths| CBlockTransfer|
//######| | | | | Type| Type| Type| DataType| Type| Type| Elementwise| Elementwise| Elementwise| Spacialization| Prefetch| Size| Block| Block| Block| | | XDL| XDL| Per| Per| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| AddExtraM| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| AddExtraN| MXdlPerWave| NXdlPerWave| _MBlock_MWaveMPerXdl| ScalarPerVector|
//######| | | | | | | | | | | Operation| Operation| Operation| | Stage| | | | | | | | | Wave| Wave| Lengths_K0_M_K1| ArrangeOrder| | | PerVector| PerVector_K1| | Lengths_K0_N_K1| ArrangeOrder| | | PerVector| PerVector_K1| | PerShuffle| PerShuffle| _NBlock_NWaveNPerXdl| _NWaveNPerXdl|
//######| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
<
ALayout
,
BLayout
,
DsLayout
,
ELayout
,
ADataType
,
BDataType
,
AccDataType
,
CShuffleDataType
,
DsDataType
,
EDataType
,
AElementOp
,
BElementOp
,
CDEElementOp
,
GemmDefault
,
1
,
256
,
256
,
128
,
64
,
16
,
16
,
32
,
32
,
4
,
2
,
S
<
4
,
64
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
16
,
16
,
1
,
S
<
4
,
64
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
16
,
16
,
1
,
1
,
1
,
S
<
1
,
64
,
1
,
4
>
,
16
>
;
// clang-format on
#include "run_grouped_gemm_example.inc"
int
main
(
int
argc
,
char
*
argv
[])
{
return
!
run_grouped_gemm_example
(
argc
,
argv
);
}
example/15_grouped_gemm/run_grouped_gemm_example.inc
0 → 100644
View file @
b89a88b5
#pragma once
struct
ProblemSize
final
{
std
::
vector
<
ck
::
index_t
>
Ms
;
std
::
vector
<
ck
::
index_t
>
Ns
;
std
::
vector
<
ck
::
index_t
>
Ks
;
std
::
vector
<
ck
::
index_t
>
stride_As
;
std
::
vector
<
ck
::
index_t
>
stride_Bs
;
std
::
vector
<
ck
::
index_t
>
stride_Cs
;
ck
::
index_t
group_count
;
};
struct
ExecutionConfig
final
{
bool
do_verification
=
true
;
int
init_method
=
1
;
bool
time_kernel
=
false
;
};
bool
run_grouped_gemm
(
const
ProblemSize
&
problem_size
,
const
ExecutionConfig
&
config
)
{
#if defined(BUILD_INT4_EXAMPLE) && defined(CK_EXPERIMENTAL_BIT_INT_EXTENSION_INT4)
static_assert
(
sizeof
(
ck
::
int4_t
)
==
sizeof
(
int8_t
));
static_assert
(
sizeof
(
ADataType
)
==
sizeof
(
KernelADataType
));
static_assert
(
sizeof
(
BDataType
)
==
sizeof
(
KernelBDataType
));
static_assert
(
sizeof
(
EDataType
)
==
sizeof
(
KernelEDataType
));
#endif
int
group_count
=
problem_size
.
group_count
;
// GEMM shape
std
::
vector
<
ck
::
tensor_operation
::
device
::
GemmDesc
>
gemm_descs
;
std
::
vector
<
const
void
*>
p_a
,
p_b
;
std
::
vector
<
void
*>
p_c
;
gemm_descs
.
reserve
(
group_count
);
for
(
int
i
=
0
;
i
<
group_count
;
i
++
)
{
int
M
=
problem_size
.
Ms
[
i
];
int
N
=
problem_size
.
Ns
[
i
];
int
K
=
problem_size
.
Ks
[
i
];
int
stride_A
=
problem_size
.
stride_As
[
i
];
int
stride_B
=
problem_size
.
stride_Bs
[
i
];
int
stride_C
=
problem_size
.
stride_Cs
[
i
];
gemm_descs
.
push_back
({
M
,
N
,
K
,
stride_A
,
stride_B
,
stride_C
,
{}});
}
auto
f_host_tensor_descriptor
=
[](
std
::
size_t
row
,
std
::
size_t
col
,
std
::
size_t
stride
,
auto
layout
)
{
if
(
std
::
is_same
<
decltype
(
layout
),
ck
::
tensor_layout
::
gemm
::
RowMajor
>::
value
)
{
return
HostTensorDescriptor
(
std
::
vector
<
std
::
size_t
>
({
row
,
col
}),
std
::
vector
<
std
::
size_t
>
({
stride
,
1
}));
}
else
{
return
HostTensorDescriptor
(
std
::
vector
<
std
::
size_t
>
({
row
,
col
}),
std
::
vector
<
std
::
size_t
>
({
1
,
stride
}));
}
};
std
::
vector
<
Tensor
<
ADataType
>>
a_tensors
;
std
::
vector
<
Tensor
<
BDataType
>>
b_tensors
;
std
::
vector
<
Tensor
<
EDataType
>>
c_host_tensors
;
#ifdef BUILD_INT4_EXAMPLE
std
::
vector
<
Tensor
<
KernelEDataType
>>
c_device_tensors
;
#else
std
::
vector
<
Tensor
<
EDataType
>>
c_device_tensors
;
#endif
a_tensors
.
reserve
(
group_count
);
b_tensors
.
reserve
(
group_count
);
c_host_tensors
.
reserve
(
group_count
);
c_device_tensors
.
reserve
(
group_count
);
using
DeviceMemPtr
=
std
::
unique_ptr
<
DeviceMem
>
;
std
::
vector
<
DeviceMemPtr
>
a_tensors_device
,
b_tensors_device
,
c_tensors_device
;
a_tensors_device
.
reserve
(
group_count
);
b_tensors_device
.
reserve
(
group_count
);
c_tensors_device
.
reserve
(
group_count
);
std
::
size_t
flop
=
0
,
num_btype
=
0
;
for
(
std
::
size_t
i
=
0
;
i
<
gemm_descs
.
size
();
i
++
)
{
a_tensors
.
push_back
(
Tensor
<
ADataType
>
(
f_host_tensor_descriptor
(
gemm_descs
[
i
]
.
M_
,
gemm_descs
[
i
]
.
K_
,
gemm_descs
[
i
]
.
stride_A_
,
ALayout
{})));
b_tensors
.
push_back
(
Tensor
<
BDataType
>
(
f_host_tensor_descriptor
(
gemm_descs
[
i
]
.
K_
,
gemm_descs
[
i
]
.
N_
,
gemm_descs
[
i
]
.
stride_B_
,
BLayout
{})));
c_host_tensors
.
push_back
(
Tensor
<
EDataType
>
(
f_host_tensor_descriptor
(
gemm_descs
[
i
]
.
M_
,
gemm_descs
[
i
]
.
N_
,
gemm_descs
[
i
]
.
stride_C_
,
ELayout
{})));
#ifdef BUILD_INT4_EXAMPLE
c_device_tensors
.
push_back
(
Tensor
<
KernelEDataType
>
(
f_host_tensor_descriptor
(
gemm_descs
[
i
]
.
M_
,
gemm_descs
[
i
]
.
N_
,
gemm_descs
[
i
]
.
stride_C_
,
ELayout
{})));
#else
c_device_tensors
.
push_back
(
Tensor
<
EDataType
>
(
f_host_tensor_descriptor
(
gemm_descs
[
i
]
.
M_
,
gemm_descs
[
i
]
.
N_
,
gemm_descs
[
i
]
.
stride_C_
,
ELayout
{})));
#endif
std
::
cout
<<
"gemm["
<<
i
<<
"] a_m_k: "
<<
a_tensors
[
i
]
.
mDesc
<<
" b_k_n: "
<<
b_tensors
[
i
]
.
mDesc
<<
" c_m_n: "
<<
c_device_tensors
[
i
]
.
mDesc
<<
std
::
endl
;
flop
+=
std
::
size_t
(
2
)
*
gemm_descs
[
i
]
.
M_
*
gemm_descs
[
i
]
.
K_
*
gemm_descs
[
i
]
.
N_
;
num_btype
+=
sizeof
(
ADataType
)
*
a_tensors
[
i
]
.
mDesc
.
GetElementSize
()
+
sizeof
(
BDataType
)
*
b_tensors
[
i
]
.
mDesc
.
GetElementSize
()
+
sizeof
(
EDataType
)
*
c_device_tensors
[
i
]
.
mDesc
.
GetElementSize
();
switch
(
config
.
init_method
)
{
case
0
:
break
;
case
1
:
a_tensors
[
i
]
.
GenerateTensorValue
(
GeneratorTensor_2
<
ADataType
>
{
-
5
,
5
});
b_tensors
[
i
]
.
GenerateTensorValue
(
GeneratorTensor_2
<
BDataType
>
{
-
5
,
5
});
break
;
case
2
:
a_tensors
[
i
]
.
GenerateTensorValue
(
GeneratorTensor_3
<
ADataType
>
{
0.0
,
1.0
});
b_tensors
[
i
]
.
GenerateTensorValue
(
GeneratorTensor_3
<
BDataType
>
{
-
0.5
,
0.5
});
break
;
default
:
a_tensors
[
i
]
.
GenerateTensorValue
(
GeneratorTensor_Sequential
<
0
>
{});
b_tensors
[
i
]
.
GenerateTensorValue
(
GeneratorTensor_Sequential
<
1
>
{});
}
}
for
(
std
::
size_t
i
=
0
;
i
<
gemm_descs
.
size
();
i
++
)
{
a_tensors_device
.
emplace_back
(
std
::
make_unique
<
DeviceMem
>
(
sizeof
(
ADataType
)
*
a_tensors
[
i
]
.
mDesc
.
GetElementSpaceSize
()));
b_tensors_device
.
emplace_back
(
std
::
make_unique
<
DeviceMem
>
(
sizeof
(
BDataType
)
*
b_tensors
[
i
]
.
mDesc
.
GetElementSpaceSize
()));
c_tensors_device
.
emplace_back
(
std
::
make_unique
<
DeviceMem
>
(
sizeof
(
EDataType
)
*
c_device_tensors
[
i
]
.
mDesc
.
GetElementSpaceSize
()));
#ifdef BUILD_INT4_EXAMPLE
const
Tensor
<
KernelADataType
>
a_converted
(
a_tensors
[
i
]);
const
Tensor
<
KernelBDataType
>
b_converted
(
b_tensors
[
i
]);
a_tensors_device
[
i
]
->
ToDevice
(
a_converted
.
mData
.
data
());
b_tensors_device
[
i
]
->
ToDevice
(
b_converted
.
mData
.
data
());
#else
a_tensors_device
[
i
]
->
ToDevice
(
a_tensors
[
i
]
.
mData
.
data
());
b_tensors_device
[
i
]
->
ToDevice
(
b_tensors
[
i
]
.
mData
.
data
());
#endif
p_a
.
push_back
(
a_tensors_device
[
i
]
->
GetDeviceBuffer
());
p_b
.
push_back
(
b_tensors_device
[
i
]
->
GetDeviceBuffer
());
p_c
.
push_back
(
c_tensors_device
[
i
]
->
GetDeviceBuffer
());
}
auto
a_element_op
=
AElementOp
{};
auto
b_element_op
=
BElementOp
{};
auto
c_element_op
=
CDEElementOp
{};
auto
gemm
=
DeviceGemmInstance
{};
auto
invoker
=
gemm
.
MakeInvoker
();
std
::
vector
<
std
::
array
<
const
void
*
,
0
>>
p_Ds
=
{};
// do GEMM
auto
argument
=
gemm
.
MakeArgument
(
p_a
,
p_b
,
p_Ds
,
p_c
,
gemm_descs
,
a_element_op
,
b_element_op
,
c_element_op
);
DeviceMem
gemm_desc_workspace
(
gemm
.
GetWorkSpaceSize
(
&
argument
));
gemm
.
SetWorkSpacePointer
(
&
argument
,
gemm_desc_workspace
.
GetDeviceBuffer
());
if
(
!
gemm
.
IsSupportedArgument
(
argument
))
{
throw
std
::
runtime_error
(
"wrong! device_gemm with the specified compilation parameters does "
"not support this GEMM problem"
);
}
invoker
.
Run
(
argument
,
StreamConfig
{
nullptr
,
false
});
bool
pass
=
true
;
if
(
config
.
do_verification
)
{
using
ReferenceGemmInstance
=
ck
::
tensor_operation
::
host
::
ReferenceGemm
<
ADataType
,
BDataType
,
EDataType
,
AccDataType
,
AElementOp
,
BElementOp
,
CDEElementOp
>
;
for
(
std
::
size_t
i
=
0
;
i
<
gemm_descs
.
size
();
i
++
)
{
c_tensors_device
[
i
]
->
FromDevice
(
c_device_tensors
[
i
]
.
mData
.
data
());
auto
ref_gemm
=
ReferenceGemmInstance
{};
auto
ref_invoker
=
ref_gemm
.
MakeInvoker
();
auto
ref_argument
=
ref_gemm
.
MakeArgument
(
a_tensors
[
i
],
b_tensors
[
i
],
c_host_tensors
[
i
],
a_element_op
,
b_element_op
,
c_element_op
);
ref_invoker
.
Run
(
ref_argument
);
#ifdef BUILD_INT4_EXAMPLE
const
Tensor
<
EDataType
>
c_device_result_converted
(
c_device_tensors
[
i
]);
pass
&=
ck
::
utils
::
check_err
(
c_device_result_converted
.
mData
,
c_host_tensors
[
i
]
.
mData
);
#else
pass
&=
ck
::
utils
::
check_err
(
c_device_tensors
[
i
]
.
mData
,
c_host_tensors
[
i
]
.
mData
);
#endif
}
}
if
(
config
.
time_kernel
)
{
float
ave_time
=
invoker
.
Run
(
argument
,
StreamConfig
{
nullptr
,
config
.
time_kernel
});
float
tflops
=
static_cast
<
float
>
(
flop
)
/
1.E9
/
ave_time
;
float
gb_per_sec
=
num_btype
/
1.E6
/
ave_time
;
std
::
cout
<<
"Perf: "
<<
ave_time
<<
" ms, "
<<
tflops
<<
" TFlops, "
<<
gb_per_sec
<<
" GB/s, "
<<
gemm
.
GetTypeString
()
<<
std
::
endl
;
}
return
pass
;
}
bool
run_grouped_gemm_example
(
int
argc
,
char
*
argv
[])
{
ProblemSize
problem_size
;
ExecutionConfig
config
;
problem_size
.
group_count
=
16
;
for
(
int
i
=
0
;
i
<
problem_size
.
group_count
;
i
++
)
{
problem_size
.
Ms
.
push_back
(
256
+
256
*
i
);
problem_size
.
Ns
.
push_back
(
128
+
128
*
i
);
problem_size
.
Ks
.
push_back
(
128
+
64
*
i
);
problem_size
.
stride_As
.
push_back
(
problem_size
.
Ks
[
i
]);
problem_size
.
stride_Bs
.
push_back
(
problem_size
.
Ks
[
i
]);
problem_size
.
stride_Cs
.
push_back
(
problem_size
.
Ns
[
i
]);
}
if
(
argc
==
4
)
{
config
.
do_verification
=
std
::
stoi
(
argv
[
1
]);
config
.
init_method
=
std
::
stoi
(
argv
[
2
]);
config
.
time_kernel
=
std
::
stoi
(
argv
[
3
]);
}
else
{
printf
(
"arg1: verification (0=no, 1=yes)
\n
"
);
printf
(
"arg2: initialization (0=no init, 1=integer value, 2=decimal value)
\n
"
);
printf
(
"arg3: time kernel (0=n0, 1=yes)
\n
"
);
exit
(
0
);
}
return
run_grouped_gemm
(
problem_size
,
config
);
}
example/16_gemm_multi_d_multi_reduces/CMakeLists.txt
View file @
b89a88b5
add_custom_target
(
example_gemm_reduce_xdl
)
add_custom_target
(
example_gemm_reduce_xdl_max
)
add_custom_target
(
example_gemm_reduce_xdl_mean_meansquare
)
add_custom_target
(
example_gemm_add_add_mean_meansquare_xdl
)
add_example_executable
(
example_gemm_max_xdl_fp16 gemm_max_xdl_fp16.cpp
)
add_example_executable
(
example_gemm_max_xdl_int8 gemm_max_xdl_int8.cpp
)
add_example_executable
(
example_gemm_max_xdl_fp32 gemm_max_xdl_fp32.cpp
)
add_example_executable
(
example_gemm_max_xdl_bf16 gemm_max_xdl_bf16.cpp
)
add_example_executable
(
example_gemm_add_add_mean_meansquare_xdl_fp16 gemm_add_add_mean_meansquare_xdl_fp16.cpp
)
add_example_executable
(
example_gemm_mean_meansquare_xdl_fp16 gemm_mean_meansquare_xdl_fp16.cpp
)
add_example_executable
(
example_gemm_mean_meansquare_xdl_fp32 gemm_mean_meansquare_xdl_fp32.cpp
)
add_example_executable
(
example_gemm_mean_meansquare_xdl_bf16 gemm_mean_meansquare_xdl_bf16.cpp
)
add_example_executable
(
example_gemm_add_addsquare_xdl_int8 gemm_add_addsquare_xdl_int8.cpp
)
add_dependencies
(
example_gemm_reduce_xdl_max
example_gemm_max_xdl_bf16
example_gemm_max_xdl_fp16
example_gemm_max_xdl_fp32
example_gemm_max_xdl_int8
)
add_dependencies
(
example_gemm_reduce_xdl_mean_meansquare
example_gemm_mean_meansquare_xdl_fp16
example_gemm_mean_meansquare_xdl_fp32
example_gemm_mean_meansquare_xdl_bf16
example_gemm_add_addsquare_xdl_int8
)
add_dependencies
(
example_gemm_add_add_mean_meansquare_xdl example_gemm_add_add_mean_meansquare_xdl_fp16
)
add_dependencies
(
example_gemm_reduce_xdl
example_gemm_reduce_xdl_mean_meansquare
example_gemm_reduce_xdl_max
example_gemm_add_add_mean_meansquare_xdl
)
#exclude GEMM+max exampe from testing, since there is random failure on gfx908
#https://github.com/ROCmSoftwarePlatform/composable_kernel/issues/358
#TODO: fix the failure and re-enable this test
add_example_executable_no_testing
(
example_gemm_max_xdl_fp16 gemm_max_xdl_fp16.cpp
)
if
(
USE_BITINT_EXTENSION_INT4
)
add_example_executable
(
example_gemm_max_xdl_int4 gemm_max_xdl_int4.cpp
)
add_dependencies
(
example_gemm_reduce_xdl_max example_gemm_max_xdl_int4
)
endif
(
)
example/16_gemm_multi_d_multi_reduces/gemm_add_addsquare_xdl_int8.cpp
0 → 100644
View file @
b89a88b5
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2022, Advanced Micro Devices, Inc. All rights reserved.
#include "gemm_reduce_xdl_common.hpp"
#include "ck/library/reference_tensor_operation/cpu/reference_gemm.hpp"
#include "ck/library/utility/literals.hpp"
#include "ck/tensor_operation/gpu/device/device_gemm_multiple_d_multiple_r_xdl_cshuffle.hpp"
#include "ck/tensor_operation/gpu/device/gemm_specialization.hpp"
// DataType
using
ADataType
=
INT8
;
using
BDataType
=
INT8
;
using
GemmAccDataType
=
INT32
;
using
CShuffleDataType
=
INT32
;
using
DsDataType
=
ck
::
Tuple
<>
;
using
EDataType
=
INT8
;
using
ReduceAccDataType
=
INT32
;
using
R0DataType
=
INT32
;
using
R1DataType
=
INT32
;
using
RsDataType
=
ck
::
Tuple
<
R0DataType
,
R1DataType
>
;
// Layout
using
ALayout
=
Row
;
using
BLayout
=
Col
;
using
ELayout
=
Row
;
// Elementwise op
using
Square
=
ck
::
tensor_operation
::
element_wise
::
UnarySquare
;
using
AElementOp
=
PassThrough
;
using
BElementOp
=
PassThrough
;
using
CDEElementOp
=
PassThrough
;
using
QsElementOp
=
ck
::
Tuple
<
PassThrough
,
Square
>
;
using
RsElementOp
=
ck
::
Tuple
<
PassThrough
,
PassThrough
>
;
// ReduceOp
using
R0ThreadReduceOp
=
ck
::
reduce
::
Add
;
using
R1ThreadReduceOp
=
ck
::
reduce
::
Add
;
using
RsThreadReduceOp
=
ck
::
Tuple
<
R0ThreadReduceOp
,
R1ThreadReduceOp
>
;
static
constexpr
auto
R0GlobalReduceOp
=
ck
::
InMemoryDataOperationEnum
::
AtomicAdd
;
static
constexpr
auto
R1GlobalReduceOp
=
ck
::
InMemoryDataOperationEnum
::
AtomicAdd
;
using
RsGlobalReduceOp
=
ck
::
InMemoryDataOperationEnumSequence
<
R0GlobalReduceOp
,
R1GlobalReduceOp
>
;
static
constexpr
auto
GemmDefault
=
ck
::
tensor_operation
::
device
::
GemmSpecialization
::
Default
;
// clang-format off
using
DeviceOpInstance
=
ck
::
tensor_operation
::
device
::
DeviceGemmMultipleDMultipleR_Xdl_CShuffle
<
ALayout
,
// ALayout
BLayout
,
// BLayout
ELayout
,
// ELayout
ADataType
,
// ADataType
BDataType
,
// BDataType
GemmAccDataType
,
// GemmAccDataType
CShuffleDataType
,
// CShuffleDataType
DsDataType
,
// DsDataType
EDataType
,
// EDataType
ReduceAccDataType
,
// ReduceAccDataType
RsDataType
,
// RsDataType
AElementOp
,
// AElementwiseOperation
BElementOp
,
// BElementwiseOperation
CDEElementOp
,
// CDE ElementwiseOperation
QsElementOp
,
// Qs Elementwise Operation
RsElementOp
,
// Rs Elementwise Operation
RsThreadReduceOp
,
// Thread Reduce Operation
RsGlobalReduceOp
,
// Global Reduce Operation
GemmDefault
,
// GEMM Specialization
1
,
// NumGemmKPrefetchStage
256
,
// BlockSize
256
,
// MPerBlock
128
,
// NPerBlock
64
,
// KPerBlock
16
,
// AK1
16
,
// BK1
32
,
// MPerXdl
32
,
// NPerXdl
4
,
// MXdlPerWave
2
,
// NXdlPerWave
S
<
4
,
64
,
1
>
,
// ABlockTransfer ThreadCluster Lengths_K0_M_K1
S
<
1
,
0
,
2
>
,
// ABlockTransfer ThreadCluster ArrangeOrder
S
<
1
,
0
,
2
>
,
// ABlockTransfer SrcAccessOrder
2
,
// ABlockTransfer SrcVectorDim
16
,
// ABlockTransfer SrcScalarPerVector
16
,
// ABlockTransfer DstScalarPerVector_K1
1
,
// ABlockLdsExtraM
S
<
4
,
64
,
1
>
,
// BBlockTransfer ThreadCluster Lengths_K0_N_K1
S
<
1
,
0
,
2
>
,
// BBlockTransfer ThreadCluster ArrangeOrder
S
<
1
,
0
,
2
>
,
// BBlockTransfer SrcAccessOrder
2
,
// BBlockTransfer SrcVectorDim
16
,
// BBlockTransfer SrcScalarPerVector
16
,
// BBlockTransfer DstScalarPerVector_K1
1
,
// BBlockLdsExtraN
1
,
// CShuffleMXdlPerWavePerShuffle
1
,
// CShuffleNXdlPerWavePerShuffle
S
<
64
,
4
>
,
// CD Reduce Thread Transfer ClusterLengths _MPerBlock_NPerBlock
4
,
// CDE ReduceThreadTransfer ScalarPerVector _NPerBlock
1
>
;
// RThread DstScalarPerVector _MPerBlock
// clang-format on
using
ReferenceGemmInstance
=
ck
::
tensor_operation
::
host
::
ReferenceGemm
<
ADataType
,
BDataType
,
ReduceAccDataType
,
GemmAccDataType
,
AElementOp
,
BElementOp
,
CDEElementOp
>
;
using
namespace
ck
::
literals
;
template
<
typename
ADataType
,
typename
BDataType
,
typename
EDataType
,
typename
R0DataType
,
typename
R1DataType
,
typename
ALayout
,
typename
BLayout
,
typename
ELayout
,
typename
AElementOp
,
typename
BElementOp
,
typename
CDEElementOp
,
typename
QsElementOp
,
typename
RsElementOp
,
typename
RsThreadReduceOp
,
typename
ReduceAccDataType
,
typename
DeviceOpInstance
,
typename
ReferenceGemmInstance
>
bool
run_gemm_reduce_add_addsquare_xdl
(
ck
::
index_t
M
,
ck
::
index_t
N
,
ck
::
index_t
K
,
ck
::
index_t
StrideA
,
ck
::
index_t
StrideB
,
ck
::
index_t
StrideE
,
bool
do_verification
,
int
init_method
,
bool
time_kernel
)
{
auto
f_host_tensor_descriptor1d
=
[](
std
::
size_t
len
,
std
::
size_t
stride
)
{
return
HostTensorDescriptor
({
len
},
{
stride
});
};
auto
f_host_tensor_descriptor2d
=
[](
std
::
size_t
row
,
std
::
size_t
col
,
std
::
size_t
stride
,
auto
layout
)
{
if
(
std
::
is_same
<
decltype
(
layout
),
ck
::
tensor_layout
::
gemm
::
RowMajor
>::
value
)
{
return
HostTensorDescriptor
({
row
,
col
},
{
stride
,
1
_uz
});
}
else
{
return
HostTensorDescriptor
({
row
,
col
},
{
1
_uz
,
stride
});
}
};
Tensor
<
ADataType
>
a_m_k
(
f_host_tensor_descriptor2d
(
M
,
K
,
StrideA
,
ALayout
{}));
Tensor
<
BDataType
>
b_k_n
(
f_host_tensor_descriptor2d
(
K
,
N
,
StrideB
,
BLayout
{}));
Tensor
<
EDataType
>
e_m_n
(
f_host_tensor_descriptor2d
(
M
,
N
,
StrideE
,
ELayout
{}));
Tensor
<
R0DataType
>
r0_m
(
f_host_tensor_descriptor1d
(
M
,
1
));
Tensor
<
R1DataType
>
r1_m
(
f_host_tensor_descriptor1d
(
M
,
1
));
switch
(
init_method
)
{
case
0
:
break
;
case
1
:
ck
::
utils
::
FillUniformDistributionIntegerValue
<
ADataType
>
{
-
5.
f
,
5.
f
}(
a_m_k
.
begin
(),
a_m_k
.
end
());
ck
::
utils
::
FillUniformDistributionIntegerValue
<
BDataType
>
{
-
5.
f
,
5.
f
}(
b_k_n
.
begin
(),
b_k_n
.
end
());
break
;
default:
ck
::
utils
::
FillUniformDistribution
<
ADataType
>
{
-
1.
f
,
1.
f
}(
a_m_k
.
begin
(),
a_m_k
.
end
());
ck
::
utils
::
FillUniformDistribution
<
BDataType
>
{
-
1.
f
,
1.
f
}(
b_k_n
.
begin
(),
b_k_n
.
end
());
break
;
}
DeviceMem
a_device_buf
(
sizeof
(
ADataType
)
*
a_m_k
.
mDesc
.
GetElementSpaceSize
());
DeviceMem
b_device_buf
(
sizeof
(
BDataType
)
*
b_k_n
.
mDesc
.
GetElementSpaceSize
());
DeviceMem
e_device_buf
(
sizeof
(
EDataType
)
*
e_m_n
.
mDesc
.
GetElementSpaceSize
());
DeviceMem
r0_device_buf
(
sizeof
(
R0DataType
)
*
r0_m
.
mDesc
.
GetElementSpaceSize
());
DeviceMem
r1_device_buf
(
sizeof
(
R1DataType
)
*
r1_m
.
mDesc
.
GetElementSpaceSize
());
a_device_buf
.
ToDevice
(
a_m_k
.
mData
.
data
());
b_device_buf
.
ToDevice
(
b_k_n
.
mData
.
data
());
auto
a_element_op
=
AElementOp
{};
auto
b_element_op
=
BElementOp
{};
auto
cde_element_op
=
CDEElementOp
{};
auto
qs_element_op
=
QsElementOp
{};
auto
rs_element_op
=
RsElementOp
{};
// Prepare GEMM, add, add_square
auto
device_op
=
DeviceOpInstance
{};
auto
invoker
=
device_op
.
MakeInvoker
();
auto
argument
=
device_op
.
MakeArgument
(
a_device_buf
.
GetDeviceBuffer
(),
b_device_buf
.
GetDeviceBuffer
(),
{},
e_device_buf
.
GetDeviceBuffer
(),
{
r0_device_buf
.
GetDeviceBuffer
(),
r1_device_buf
.
GetDeviceBuffer
()},
M
,
N
,
K
,
StrideA
,
StrideB
,
{},
StrideE
,
a_element_op
,
b_element_op
,
cde_element_op
,
qs_element_op
,
rs_element_op
);
if
(
!
device_op
.
IsSupportedArgument
(
argument
))
{
throw
std
::
runtime_error
(
"wrong! this device_op instance does not support this problem"
);
}
// init reducetion buffer to 0
r0_device_buf
.
SetZero
();
r1_device_buf
.
SetZero
();
invoker
.
Run
(
argument
,
StreamConfig
{
nullptr
,
false
});
bool
pass
=
true
;
if
(
do_verification
)
{
auto
I0
=
ck
::
Number
<
0
>
{};
auto
I1
=
ck
::
Number
<
1
>
{};
Tensor
<
ReduceAccDataType
>
e_m_n_host
(
e_m_n
.
mDesc
);
Tensor
<
R0DataType
>
r0_m_host
(
r0_m
.
mDesc
);
Tensor
<
R1DataType
>
r1_m_host
(
r1_m
.
mDesc
);
auto
ref_gemm
=
ReferenceGemmInstance
{};
auto
ref_invoker
=
ref_gemm
.
MakeInvoker
();
auto
ref_argument
=
ref_gemm
.
MakeArgument
(
a_m_k
,
b_k_n
,
e_m_n_host
,
a_element_op
,
b_element_op
,
PassThrough
{});
ref_invoker
.
Run
(
ref_argument
);
auto
reduce0_op
=
RsThreadReduceOp
{}[
I0
];
auto
reduce1_op
=
RsThreadReduceOp
{}[
I1
];
for
(
int
m
=
0
;
m
<
M
;
++
m
)
{
auto
reduce0_acc
=
reduce0_op
.
template
GetIdentityValue
<
ReduceAccDataType
>();
auto
reduce1_acc
=
reduce1_op
.
template
GetIdentityValue
<
ReduceAccDataType
>();
for
(
int
n
=
0
;
n
<
N
;
++
n
)
{
ReduceAccDataType
square_e_val
;
auto
e_val
=
ck
::
type_convert
<
ReduceAccDataType
>
(
e_m_n_host
(
m
,
n
));
qs_element_op
[
I1
](
square_e_val
,
e_val
);
reduce0_op
(
reduce0_acc
,
e_val
);
reduce1_op
(
reduce1_acc
,
square_e_val
);
}
r0_m_host
(
m
)
=
ck
::
type_convert
<
R0DataType
>
(
reduce0_acc
);
r1_m_host
(
m
)
=
ck
::
type_convert
<
R1DataType
>
(
reduce1_acc
);
}
e_device_buf
.
FromDevice
(
e_m_n
.
mData
.
data
());
Tensor
<
EDataType
>
e_m_n_host_converted
(
e_m_n_host
);
pass
=
ck
::
utils
::
check_err
(
e_m_n
.
mData
,
e_m_n_host_converted
.
mData
,
"Error: Incorrect results c"
,
1e-2
,
1e-2
);
r0_device_buf
.
FromDevice
(
r0_m
.
mData
.
data
());
r1_device_buf
.
FromDevice
(
r1_m
.
mData
.
data
());
pass
&=
ck
::
utils
::
check_err
(
r0_m
.
mData
,
r0_m_host
.
mData
,
"Error: Incorrect results d0"
,
1e-2
,
1e-2
);
pass
&=
ck
::
utils
::
check_err
(
r1_m
.
mData
,
r1_m_host
.
mData
,
"Error: Incorrect results d1"
,
1e-2
,
1e-2
);
if
(
pass
)
{
std
::
cout
<<
"Success!"
<<
std
::
endl
;
}
}
if
(
time_kernel
)
{
float
ave_time
=
invoker
.
Run
(
argument
,
StreamConfig
{
nullptr
,
time_kernel
});
std
::
size_t
flop
=
2
_uz
*
M
*
N
*
K
+
3
_uz
*
M
*
N
;
std
::
size_t
gemm_num_byte
=
sizeof
(
ADataType
)
*
M
*
K
+
sizeof
(
BDataType
)
*
K
*
N
+
sizeof
(
EDataType
)
*
M
*
N
+
sizeof
(
R0DataType
)
*
M
+
sizeof
(
R1DataType
)
*
M
;
float
tflops
=
static_cast
<
float
>
(
flop
)
/
1.E9
/
ave_time
;
float
gemm_gb_per_sec
=
gemm_num_byte
/
1.E6
/
ave_time
;
std
::
cout
<<
"Perf: "
<<
ave_time
<<
" ms, "
<<
tflops
<<
" TFlops, "
<<
gemm_gb_per_sec
<<
" GB/s, "
<<
std
::
endl
;
}
return
pass
;
}
int
main
(
int
argc
,
char
*
argv
[])
{
bool
do_verification
=
true
;
int
init_method
=
1
;
bool
time_kernel
=
true
;
// GEMM shape
ck
::
index_t
M
=
1024
;
ck
::
index_t
N
=
1152
;
ck
::
index_t
K
=
512
;
ck
::
index_t
StrideA
=
512
;
ck
::
index_t
StrideB
=
512
;
ck
::
index_t
StrideE
=
1152
;
if
(
argc
==
1
)
{
// do nothing
}
else
if
(
argc
==
4
)
{
do_verification
=
std
::
stoi
(
argv
[
1
]);
init_method
=
std
::
stoi
(
argv
[
2
]);
time_kernel
=
std
::
stoi
(
argv
[
3
]);
}
else
if
(
argc
==
10
)
{
do_verification
=
std
::
stoi
(
argv
[
1
]);
init_method
=
std
::
stoi
(
argv
[
2
]);
time_kernel
=
std
::
stoi
(
argv
[
3
]);
M
=
std
::
stoi
(
argv
[
4
]);
N
=
std
::
stoi
(
argv
[
5
]);
K
=
std
::
stoi
(
argv
[
6
]);
StrideA
=
std
::
stoi
(
argv
[
7
]);
StrideB
=
std
::
stoi
(
argv
[
8
]);
StrideE
=
std
::
stoi
(
argv
[
9
]);
}
else
{
std
::
cout
<<
"arg1: verification (0=no, 1=yes)
\n
"
<<
" arg2: initialization (0=no init, 1=integer value, 2=decimal value)
\n
"
<<
" arg3: Measure kernel execution time (1=ON, 0=Off)
\n
"
<<
" arg4 to 9: M (256x), N(128x), K(32x), StrideA, StrideB, StrideE
\n
"
<<
std
::
endl
;
exit
(
EXIT_SUCCESS
);
}
return
!
run_gemm_reduce_add_addsquare_xdl
<
ADataType
,
BDataType
,
EDataType
,
R0DataType
,
R1DataType
,
ALayout
,
BLayout
,
ELayout
,
AElementOp
,
BElementOp
,
CDEElementOp
,
QsElementOp
,
RsElementOp
,
RsThreadReduceOp
,
ReduceAccDataType
,
DeviceOpInstance
,
ReferenceGemmInstance
>
(
M
,
N
,
K
,
StrideA
,
StrideB
,
StrideE
,
do_verification
,
init_method
,
time_kernel
);
}
example/16_gemm_multi_d_multi_reduces/gemm_max_xdl_bf16.cpp
0 → 100644
View file @
b89a88b5
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2022, Advanced Micro Devices, Inc. All rights reserved.
#include "gemm_reduce_xdl_common.hpp"
#include "ck/library/reference_tensor_operation/cpu/reference_gemm.hpp"
#include "ck/tensor_operation/gpu/device/device_gemm_multiple_d_multiple_r_xdl_cshuffle.hpp"
#include "ck/tensor_operation/gpu/device/gemm_specialization.hpp"
// DataType
using
ADataType
=
BF16
;
using
BDataType
=
BF16
;
using
GemmAccDataType
=
F32
;
using
CShuffleDataType
=
F32
;
using
DsDataType
=
ck
::
Tuple
<>
;
using
EDataType
=
BF16
;
using
ReduceAccDataType
=
F32
;
using
R0DataType
=
F32
;
using
RsDataType
=
ck
::
Tuple
<
R0DataType
>
;
// Layout
using
ALayout
=
Row
;
using
BLayout
=
Col
;
using
ELayout
=
Row
;
// Elementwise op
using
AElementOp
=
PassThrough
;
using
BElementOp
=
PassThrough
;
using
CDEElementOp
=
PassThrough
;
using
QsElementOp
=
ck
::
Tuple
<
PassThrough
>
;
using
RsElementOp
=
ck
::
Tuple
<
PassThrough
>
;
// ReduceOp
using
RsThreadReduceOp
=
ck
::
Tuple
<
ck
::
reduce
::
Max
>
;
using
RsGlobalReduceOp
=
ck
::
InMemoryDataOperationEnumSequence
<
ck
::
InMemoryDataOperationEnum
::
AtomicMax
>
;
static
constexpr
auto
GemmDefault
=
ck
::
tensor_operation
::
device
::
GemmSpecialization
::
Default
;
// clang-format off
using
DeviceOpInstance
=
ck
::
tensor_operation
::
device
::
DeviceGemmMultipleDMultipleR_Xdl_CShuffle
<
ALayout
,
// ALayout
BLayout
,
// BLayout
ELayout
,
// ELayout
ADataType
,
// ADataType
BDataType
,
// BDataType
GemmAccDataType
,
// GemmAccDataType
CShuffleDataType
,
// CShuffleDataType
DsDataType
,
// DsDataType
EDataType
,
// EDataType
ReduceAccDataType
,
// ReduceAccDataType
RsDataType
,
// RsDataType
AElementOp
,
// AElementwiseOperation
BElementOp
,
// BElementwiseOperation
CDEElementOp
,
// CDE ElementwiseOperation
QsElementOp
,
// Qs Elementwise Operation
RsElementOp
,
// Rs Elementwise Operation
RsThreadReduceOp
,
// Thread Reduce Operation
RsGlobalReduceOp
,
// Global Reduce Operation
GemmDefault
,
// GEMM Specialization
1
,
// NumGemmKPrefetchStage
256
,
// BlockSize
256
,
// MPerBlock
128
,
// NPerBlock
32
,
// KPerBlock
8
,
// AK1
8
,
// BK1
32
,
// MPerXdl
32
,
// NPerXdl
4
,
// MXdlPerWave
2
,
// NXdlPerWave
S
<
4
,
64
,
1
>
,
// ABlockTransfer ThreadCluster Lengths_K0_M_K1
S
<
1
,
0
,
2
>
,
// ABlockTransfer ThreadCluster ArrangeOrder
S
<
1
,
0
,
2
>
,
// ABlockTransfer SrcAccessOrder
2
,
// ABlockTransfer SrcVectorDim
8
,
// ABlockTransfer SrcScalarPerVector
8
,
// ABlockTransfer DstScalarPerVector_K1
1
,
// ABlockLdsExtraM
S
<
4
,
64
,
1
>
,
// BBlockTransfer ThreadCluster Lengths_K0_N_K1
S
<
1
,
0
,
2
>
,
// BBlockTransfer ThreadCluster ArrangeOrder
S
<
1
,
0
,
2
>
,
// BBlockTransfer SrcAccessOrder
2
,
// BBlockTransfer SrcVectorDim
8
,
// BBlockTransfer SrcScalarPerVector
8
,
// BBlockTransfer DstScalarPerVector_K1
1
,
// BBlockLdsExtraN
1
,
// CShuffleMXdlPerWavePerShuffle
1
,
// CShuffleNXdlPerWavePerShuffle
S
<
64
,
4
>
,
// CD Reduce Thread Transfer ClusterLengths _MPerBlock_NPerBlock
4
,
// CDE ReduceThreadTransfer ScalarPerVector _NPerBlock
1
>
;
// RThread DstScalarPerVector _MPerBlock
// clang-format on
using
ReferenceGemmInstance
=
ck
::
tensor_operation
::
host
::
ReferenceGemm
<
ADataType
,
BDataType
,
ReduceAccDataType
,
GemmAccDataType
,
AElementOp
,
BElementOp
,
CDEElementOp
>
;
int
main
(
int
argc
,
char
*
argv
[])
{
bool
do_verification
=
true
;
int
init_method
=
1
;
bool
time_kernel
=
true
;
// GEMM shape
ck
::
index_t
M
=
1024
;
ck
::
index_t
N
=
1152
;
ck
::
index_t
K
=
256
;
ck
::
index_t
StrideA
=
256
;
ck
::
index_t
StrideB
=
256
;
ck
::
index_t
StrideE
=
1152
;
if
(
argc
==
1
)
{
// do nothing
}
else
if
(
argc
==
4
)
{
do_verification
=
std
::
stoi
(
argv
[
1
]);
init_method
=
std
::
stoi
(
argv
[
2
]);
time_kernel
=
std
::
stoi
(
argv
[
3
]);
}
else
if
(
argc
==
10
)
{
do_verification
=
std
::
stoi
(
argv
[
1
]);
init_method
=
std
::
stoi
(
argv
[
2
]);
time_kernel
=
std
::
stoi
(
argv
[
3
]);
M
=
std
::
stoi
(
argv
[
4
]);
N
=
std
::
stoi
(
argv
[
5
]);
K
=
std
::
stoi
(
argv
[
6
]);
StrideA
=
std
::
stoi
(
argv
[
7
]);
StrideB
=
std
::
stoi
(
argv
[
8
]);
StrideE
=
std
::
stoi
(
argv
[
9
]);
}
else
{
std
::
cout
<<
"arg1: verification (0=no, 1=yes)
\n
"
<<
" arg2: initialization (0=no init, 1=integer value, 2=decimal value)
\n
"
<<
" arg3: Measure kernel execution time (1=ON, 0=Off)
\n
"
<<
" arg4 to 9: M (256x), N(128x), K(32x), StrideA, StrideB, StrideE
\n
"
<<
std
::
endl
;
exit
(
EXIT_SUCCESS
);
}
return
run_gemm_reduce_max_xdl
<
ADataType
,
BDataType
,
EDataType
,
R0DataType
,
ALayout
,
BLayout
,
ELayout
,
AElementOp
,
BElementOp
,
CDEElementOp
,
QsElementOp
,
RsElementOp
,
RsThreadReduceOp
,
ReduceAccDataType
,
DeviceOpInstance
,
ReferenceGemmInstance
>
(
M
,
N
,
K
,
StrideA
,
StrideB
,
StrideE
,
do_verification
,
init_method
,
time_kernel
);
}
example/16_gemm_multi_d_multi_reduces/gemm_max_xdl_fp16.cpp
View file @
b89a88b5
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2022, Advanced Micro Devices, Inc. All rights reserved.
#include <iostream>
#include <numeric>
#include <initializer_list>
#include <cstdlib>
#include "gemm_reduce_xdl_common.hpp"
#include "ck/ck.hpp"
#include "ck/tensor_operation/gpu/device/tensor_layout.hpp"
#include "ck/tensor_operation/gpu/device/gemm_specialization.hpp"
#include "ck/tensor_operation/gpu/device/device_gemm_multiple_d_multiple_r_xdl_cshuffle.hpp"
#include "ck/tensor_operation/gpu/element/element_wise_operation.hpp"
#include "ck/library/utility/device_memory.hpp"
#include "ck/library/utility/host_tensor.hpp"
#include "ck/library/utility/host_tensor_generator.hpp"
#include "ck/library/reference_tensor_operation/cpu/reference_gemm.hpp"
#include "ck/library/utility/check_err.hpp"
template
<
ck
::
index_t
...
Is
>
using
S
=
ck
::
Sequence
<
Is
...
>
;
using
F16
=
ck
::
half_t
;
using
F32
=
float
;
using
F64
=
double
;
using
Row
=
ck
::
tensor_layout
::
gemm
::
RowMajor
;
using
Col
=
ck
::
tensor_layout
::
gemm
::
ColumnMajor
;
#include "ck/tensor_operation/gpu/device/device_gemm_multiple_d_multiple_r_xdl_cshuffle.hpp"
#include "ck/tensor_operation/gpu/device/gemm_specialization.hpp"
// DataType
using
ADataType
=
F16
;
...
...
@@ -45,7 +24,6 @@ using BLayout = Col;
using
ELayout
=
Row
;
// Elementwise op
using
PassThrough
=
ck
::
tensor_operation
::
element_wise
::
PassThrough
;
using
AElementOp
=
PassThrough
;
using
BElementOp
=
PassThrough
;
using
CDEElementOp
=
PassThrough
;
...
...
@@ -54,7 +32,6 @@ using RsElementOp = ck::Tuple<PassThrough>;
// ReduceOp
using
RsThreadReduceOp
=
ck
::
Tuple
<
ck
::
reduce
::
Max
>
;
using
RsGlobalReduceOp
=
ck
::
InMemoryDataOperationEnumSequence
<
ck
::
InMemoryDataOperationEnum
::
AtomicMax
>
;
...
...
@@ -62,56 +39,72 @@ static constexpr auto GemmDefault = ck::tensor_operation::device::GemmSpecializa
// clang-format off
using
DeviceOpInstance
=
ck
::
tensor_operation
::
device
::
DeviceGemmMultipleDMultipleR_Xdl_CShuffle
//######| ALayout| BLayout| ELayout| AData| BData| GemmAccData| CShuffle| DsData| EData| ReduceAccData| RsData| A| B| CDE| Qs| Rs| Thread| Global| GEMM| NumGemmK| Block| MPer| NPer| KPer| AK1| BK1| MPer| NPer| MXdl| NXdl| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockLds| BBlockTransfer| BBlockTransfer| BBlockTransfer| BlockTransfer| BBlockTransfer| BBlockTransfer| BBlockLds| CShuffle| CShuffle| CDRThreadTransfer| CDE| RThreadTransfer|
//######| | | | Type| Type| Type| DataType| Type| Type| Type| Type| Elementwise| Elementwise| Elementwise| Elementwise| Elementwise| Reduce| Reduce| Spacialization| Prefetch| Size| Block| Block| Block| | | XDL| XDL| Per| Per| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| AddExtraM| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| AddExtraN| MXdlPerWave| NXdlPerWave| ClusterLengths| ReduceThreadTransfer| DstScalarPerVector|
//######| | | | | | | | | | | | Operation| Operation| Operation| Operation| Operation| Operation| Operation| | Stage| | | | | | | | | Wave| Wave| Lengths_K0_M_K1| ArrangeOrder| | | PerVector| PerVector_K1| | Lengths_K0_N_K1| ArrangeOrder| | | PerVector| PerVector_K1| | PerShuffle| PerShuffle| _MPerBlock_NPerBlock| ScalarPerVector| _MPerBlock|
//######| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | _NPerBlock| |
<
ALayout
,
BLayout
,
ELayout
,
ADataType
,
BDataType
,
GemmAccDataType
,
CShuffleDataType
,
DsDataType
,
EDataType
,
ReduceAccDataType
,
RsDataType
,
AElementOp
,
BElementOp
,
CDEElementOp
,
QsElementOp
,
RsElementOp
,
RsThreadReduceOp
,
RsGlobalReduceOp
,
GemmDefault
,
1
,
256
,
256
,
128
,
32
,
8
,
8
,
32
,
32
,
4
,
2
,
S
<
4
,
64
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
8
,
8
,
1
,
S
<
4
,
64
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
8
,
8
,
1
,
1
,
1
,
S
<
64
,
4
>
,
4
,
1
>
;
<
ALayout
,
// ALayout
BLayout
,
// BLayout
ELayout
,
// ELayout
ADataType
,
// ADataType
BDataType
,
// BDataType
GemmAccDataType
,
// GemmAccDataType
CShuffleDataType
,
// CShuffleDataType
DsDataType
,
// DsDataType
EDataType
,
// EDataType
ReduceAccDataType
,
// ReduceAccDataType
RsDataType
,
// RsDataType
AElementOp
,
// AElementwiseOperation
BElementOp
,
// BElementwiseOperation
CDEElementOp
,
// CDE ElementwiseOperation
QsElementOp
,
// Qs Elementwise Operation
RsElementOp
,
// Rs Elementwise Operation
RsThreadReduceOp
,
// Thread Reduce Operation
RsGlobalReduceOp
,
// Global Reduce Operation
GemmDefault
,
// GEMM Specialization
1
,
// NumGemmKPrefetchStage
256
,
// BlockSize
256
,
// MPerBlock
128
,
// NPerBlock
32
,
// KPerBlock
8
,
// AK1
8
,
// BK1
32
,
// MPerXdl
32
,
// NPerXdl
4
,
// MXdlPerWave
2
,
// NXdlPerWave
S
<
4
,
64
,
1
>
,
// ABlockTransfer ThreadCluster Lengths_K0_M_K1
S
<
1
,
0
,
2
>
,
// ABlockTransfer ThreadCluster ArrangeOrder
S
<
1
,
0
,
2
>
,
// ABlockTransfer SrcAccessOrder
2
,
// ABlockTransfer SrcVectorDim
8
,
// ABlockTransfer SrcScalarPerVector
8
,
// ABlockTransfer DstScalarPerVector_K1
1
,
// ABlockLdsExtraM
S
<
4
,
64
,
1
>
,
// BBlockTransfer ThreadCluster Lengths_K0_N_K1
S
<
1
,
0
,
2
>
,
// BBlockTransfer ThreadCluster ArrangeOrder
S
<
1
,
0
,
2
>
,
// BBlockTransfer SrcAccessOrder
2
,
// BBlockTransfer SrcVectorDim
8
,
// BBlockTransfer SrcScalarPerVector
8
,
// BBlockTransfer DstScalarPerVector_K1
1
,
// BBlockLdsExtraN
1
,
// CShuffleMXdlPerWavePerShuffle
1
,
// CShuffleNXdlPerWavePerShuffle
S
<
64
,
4
>
,
// CD Reduce Thread Transfer ClusterLengths _MPerBlock_NPerBlock
4
,
// CDE ReduceThreadTransfer ScalarPerVector _NPerBlock
1
>
;
// RThread DstScalarPerVector _MPerBlock
// clang-format on
using
ReferenceGemmInstance
=
ck
::
tensor_operation
::
host
::
ReferenceGemm
<
ADataType
,
BDataType
,
E
DataType
,
ReduceAcc
DataType
,
GemmAccDataType
,
AElementOp
,
BElementOp
,
CDEElementOp
>
;
template
<
typename
ADataType
,
typename
BDataType
,
typename
EDataType
,
typename
R0DataType
>
void
DumpPerf
(
float
ave_time
,
int
M
,
int
N
,
int
K
)
int
main
(
int
argc
,
char
*
argv
[])
{
std
::
size_t
flop
=
std
::
size_t
(
2
)
*
M
*
N
*
K
;
std
::
size_t
gemm_num_byte
=
sizeof
(
ADataType
)
*
M
*
K
+
sizeof
(
BDataType
)
*
K
*
N
+
sizeof
(
EDataType
)
*
M
*
N
+
sizeof
(
R0DataType
)
*
M
;
float
tflops
=
static_cast
<
float
>
(
flop
)
/
1.E9
/
ave_time
;
float
gemm_gb_per_sec
=
gemm_num_byte
/
1.E6
/
ave_time
;
std
::
cout
<<
"Perf: "
<<
ave_time
<<
" ms, "
<<
tflops
<<
" TFlops, "
<<
gemm_gb_per_sec
<<
" GB/s, "
<<
std
::
endl
;
}
bool
do_verification
=
true
;
int
init_method
=
1
;
bool
time_kernel
=
true
;
auto
f_host_tensor_descriptor1d
=
[](
std
::
size_t
len
,
std
::
size_t
stride
)
{
return
HostTensorDescriptor
(
std
::
vector
<
std
::
size_t
>
({
len
}),
std
::
vector
<
std
::
size_t
>
({
stride
}));
};
auto
f_host_tensor_descriptor2d
=
[](
std
::
size_t
row
,
std
::
size_t
col
,
std
::
size_t
stride
,
auto
layout
)
{
if
(
std
::
is_same
<
decltype
(
layout
),
ck
::
tensor_layout
::
gemm
::
RowMajor
>::
value
)
{
return
HostTensorDescriptor
(
std
::
vector
<
std
::
size_t
>
({
row
,
col
}),
std
::
vector
<
std
::
size_t
>
({
stride
,
1
}));
}
else
{
return
HostTensorDescriptor
(
std
::
vector
<
std
::
size_t
>
({
row
,
col
}),
std
::
vector
<
std
::
size_t
>
({
1
,
stride
}));
}
};
int
main
()
{
// GEMM shape
ck
::
index_t
M
=
1024
;
ck
::
index_t
N
=
1024
;
ck
::
index_t
K
=
1024
;
...
...
@@ -120,108 +113,55 @@ int main()
ck
::
index_t
StrideB
=
1024
;
ck
::
index_t
StrideE
=
1024
;
Tensor
<
ADataType
>
a_m_k
(
f_host_tensor_descriptor2d
(
M
,
K
,
StrideA
,
ALayout
{}));
Tensor
<
BDataType
>
b_k_n
(
f_host_tensor_descriptor2d
(
K
,
N
,
StrideB
,
BLayout
{}));
Tensor
<
EDataType
>
e_m_n
(
f_host_tensor_descriptor2d
(
M
,
N
,
StrideE
,
ELayout
{}));
Tensor
<
R0DataType
>
r0_m
(
f_host_tensor_descriptor1d
(
M
,
1
));
a_m_k
.
GenerateTensorValue
(
GeneratorTensor_3
<
ADataType
>
{
-
1
,
1
});
b_k_n
.
GenerateTensorValue
(
GeneratorTensor_3
<
BDataType
>
{
-
1
,
1
});
DeviceMem
a_device_buf
(
sizeof
(
ADataType
)
*
a_m_k
.
mDesc
.
GetElementSpaceSize
());
DeviceMem
b_device_buf
(
sizeof
(
BDataType
)
*
b_k_n
.
mDesc
.
GetElementSpaceSize
());
DeviceMem
e_device_buf
(
sizeof
(
EDataType
)
*
e_m_n
.
mDesc
.
GetElementSpaceSize
());
DeviceMem
r0_device_buf
(
sizeof
(
R0DataType
)
*
r0_m
.
mDesc
.
GetElementSpaceSize
());
a_device_buf
.
ToDevice
(
a_m_k
.
mData
.
data
());
b_device_buf
.
ToDevice
(
b_k_n
.
mData
.
data
());
auto
a_element_op
=
AElementOp
{};
auto
b_element_op
=
BElementOp
{};
auto
cde_element_op
=
CDEElementOp
{};
auto
qs_element_op
=
QsElementOp
{};
auto
rs_element_op
=
RsElementOp
{};
// Prepare GEMM, max
auto
device_op
=
DeviceOpInstance
{};
auto
invoker
=
device_op
.
MakeInvoker
();
auto
argument
=
device_op
.
MakeArgument
(
a_device_buf
.
GetDeviceBuffer
(),
b_device_buf
.
GetDeviceBuffer
(),
{},
e_device_buf
.
GetDeviceBuffer
(),
{
r0_device_buf
.
GetDeviceBuffer
()},
M
,
N
,
K
,
StrideA
,
StrideB
,
{},
StrideE
,
a_element_op
,
b_element_op
,
cde_element_op
,
qs_element_op
,
rs_element_op
);
if
(
!
device_op
.
IsSupportedArgument
(
argument
))
if
(
argc
==
1
)
{
throw
std
::
runtime_error
(
"wrong! this device_op instance
do
es
not
support this problem"
);
//
do not
hing
}
// [CAUSION]: launch_and_time_kernel will not initialize D.
// If we evaluate kernel multiple time but without initialize D. Verification will fail
r0_device_buf
.
SetValue
(
ck
::
NumericLimits
<
R0DataType
>::
Lowest
());
invoker
.
Run
(
argument
,
StreamConfig
{
nullptr
,
false
});
bool
do_verification
=
true
;
bool
pass
=
true
;
if
(
do_verification
)
else
if
(
argc
==
4
)
{
auto
I0
=
ck
::
Number
<
0
>
{};
Tensor
<
EDataType
>
e_m_n_host
(
e_m_n
.
mDesc
);
Tensor
<
R0DataType
>
r0_m_host
(
r0_m
.
mDesc
);
auto
ref_gemm
=
ReferenceGemmInstance
{};
auto
ref_invoker
=
ref_gemm
.
MakeInvoker
();
auto
ref_argument
=
ref_gemm
.
MakeArgument
(
a_m_k
,
b_k_n
,
e_m_n_host
,
a_element_op
,
b_element_op
,
cde_element_op
);
ref_invoker
.
Run
(
ref_argument
);
auto
reduce0_op
=
RsThreadReduceOp
{}[
I0
];
for
(
int
m
=
0
;
m
<
M
;
++
m
)
{
auto
reduce0_acc
=
reduce0_op
.
GetIdentityValue
<
ReduceAccDataType
>
();
for
(
int
n
=
0
;
n
<
N
;
++
n
)
{
auto
e_val
=
ck
::
type_convert
<
ReduceAccDataType
>
(
e_m_n_host
(
m
,
n
));
reduce0_op
(
reduce0_acc
,
e_val
);
};
r0_m_host
(
m
)
=
ck
::
type_convert
<
R0DataType
>
(
reduce0_acc
);
}
do_verification
=
std
::
stoi
(
argv
[
1
]);
init_method
=
std
::
stoi
(
argv
[
2
]);
time_kernel
=
std
::
stoi
(
argv
[
3
]);
}
else
if
(
argc
==
10
)
{
do_verification
=
std
::
stoi
(
argv
[
1
]);
init_method
=
std
::
stoi
(
argv
[
2
]);
time_kernel
=
std
::
stoi
(
argv
[
3
]);
e_device_buf
.
FromDevice
(
e_m_n
.
mData
.
data
());
r0_device_buf
.
FromDevice
(
r0_m
.
mData
.
data
());
M
=
std
::
stoi
(
argv
[
4
]);
N
=
std
::
stoi
(
argv
[
5
]);
K
=
std
::
stoi
(
argv
[
6
]);
pass
=
ck
::
utils
::
check_err
(
e_m_n
.
mData
,
e_m_n_host
.
mData
,
"Error: Incorrect results c"
,
1e-2
,
1e-2
);
pass
&=
ck
::
utils
::
check_err
(
r0_m
.
mData
,
r0_m_host
.
mData
,
"Error: Incorrect results d0"
,
1e-2
,
1e-2
);
StrideA
=
std
::
stoi
(
argv
[
7
]);
StrideB
=
std
::
stoi
(
argv
[
8
]);
StrideE
=
std
::
stoi
(
argv
[
9
]);
}
bool
time_kernel
=
true
;
if
(
time_kernel
)
else
{
float
ave_time
=
invoker
.
Run
(
argument
,
StreamConfig
{
nullptr
,
time_kernel
});
DumpPerf
<
ADataType
,
BDataType
,
EDataType
,
R0DataType
>
(
ave_time
,
M
,
N
,
K
);
std
::
cout
<<
"arg1: verification (0=no, 1=yes)
\n
"
<<
" arg2: initialization (0=no init, 1=integer value, 2=decimal value)
\n
"
<<
" arg3: Measure kernel execution time (1=ON, 0=Off)
\n
"
<<
" arg4 to 9: M (256x), N(128x), K(32x), StrideA, StrideB, StrideE
\n
"
<<
std
::
endl
;
exit
(
EXIT_SUCCESS
);
}
return
pass
?
0
:
1
;
return
run_gemm_reduce_max_xdl
<
ADataType
,
BDataType
,
EDataType
,
R0DataType
,
ALayout
,
BLayout
,
ELayout
,
AElementOp
,
BElementOp
,
CDEElementOp
,
QsElementOp
,
RsElementOp
,
RsThreadReduceOp
,
ReduceAccDataType
,
DeviceOpInstance
,
ReferenceGemmInstance
>
(
M
,
N
,
K
,
StrideA
,
StrideB
,
StrideE
,
do_verification
,
init_method
,
time_kernel
);
}
Prev
1
2
3
4
5
6
7
…
14
Next
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
.
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment