"sgl-router/src/vscode:/vscode.git/clone" did not exist on "9209b209be1ffed21300621c5645abb693ef3b46"
Commit b7f500f0 authored by rocking5566's avatar rocking5566 Committed by rocking
Browse files

Merge branch 'develop' into gemm_layernorm_welford

parents 694057a7 4e6a5575
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2022, Advanced Micro Devices, Inc. All rights reserved.
#pragma once
#include <iomanip>
#include <stdexcept>
#include "ck/ck.hpp"
#include "ck/tensor_operation/gpu/element/element_wise_operation.hpp"
#include "ck/library/utility/check_err.hpp"
#include "ck/library/utility/device_memory.hpp"
#include "ck/library/utility/host_tensor.hpp"
#include "ck/library/utility/host_tensor_generator.hpp"
#include "ck/library/tensor_operation_instance/gpu/batchnorm_forward.hpp"
#include "ck/library/reference_tensor_operation/cpu/reference_batchnorm_forward.hpp"
namespace ck {
namespace profiler {
template <typename XDataType,
typename YDataType,
typename AccDataType,
typename ScaleDataType,
typename BiasDataType,
typename MeanVarDataType,
index_t Rank,
index_t NumBatchNormReduceDim>
bool profile_batchnorm_forward_impl(int do_verification,
int init_method,
bool do_dumpout,
bool time_kernel,
const std::vector<size_t> inOutLengths,
const std::vector<int> reduceDims,
bool updateMovingAverage,
bool saveMeanAndInvVariance,
double averageFactor,
double epsilon)
{
if(inOutLengths.size() != Rank || reduceDims.size() != NumBatchNormReduceDim)
{
throw std::runtime_error("Invalid tensor lengths or number of reduce dimensions!");
};
std::vector<size_t> scaleBiasMeanVarLengths;
// used for calculating the effective transferred bytes by each operation
size_t total_length;
size_t invariant_length = 1;
total_length =
std::accumulate(inOutLengths.begin(), inOutLengths.end(), 1, std::multiplies<size_t>{});
if(std::any_of(reduceDims.begin(), reduceDims.end(), [](int d) { return d < 0 || d >= Rank; }))
throw std::runtime_error("Invalid reduce dimensions!");
for(int dim = 0; dim < Rank; dim++)
{
if(std::none_of(reduceDims.begin(), reduceDims.end(), [&](int d) { return dim == d; }))
{
scaleBiasMeanVarLengths.push_back(inOutLengths[dim]);
invariant_length *= inOutLengths[dim];
};
}
// input data of the batchnorm forward algorithm
Tensor<XDataType> x(inOutLengths);
Tensor<ScaleDataType> bnScale(scaleBiasMeanVarLengths);
Tensor<BiasDataType> bnBias(scaleBiasMeanVarLengths);
// output data of the batchnorm forward algorithm
Tensor<YDataType> y_ref(inOutLengths);
Tensor<YDataType> y(inOutLengths);
Tensor<MeanVarDataType> resultSaveMean_ref(scaleBiasMeanVarLengths);
Tensor<MeanVarDataType> resultSaveInvVariance_ref(scaleBiasMeanVarLengths);
Tensor<MeanVarDataType> resultRunningMean_ref(scaleBiasMeanVarLengths);
Tensor<MeanVarDataType> resultRunningVariance_ref(scaleBiasMeanVarLengths);
auto inOutStrides = x.mDesc.GetStrides();
auto scaleBiasMeanVarStrides = bnScale.mDesc.GetStrides();
std::size_t num_thread = std::thread::hardware_concurrency();
if(updateMovingAverage)
{
if constexpr(ck::is_same_v<XDataType, int8_t>)
{
x.GenerateTensorValue(GeneratorTensor_2<XDataType>{-5, 5}, num_thread);
const float x_mean = 0.0f;
const float x_stddev = 2.5f;
const float noise_stddev = 0.04f;
resultRunningMean_ref.GenerateTensorValue(
GeneratorTensor_4<MeanVarDataType>{x_mean, noise_stddev}, num_thread);
resultRunningVariance_ref.GenerateTensorValue(
GeneratorTensor_4<MeanVarDataType>{x_stddev * x_stddev, noise_stddev}, num_thread);
}
else
{
const float x_mean = 0.0f;
const float x_stddev = 1.0f;
const float noise_stddev = 0.04f;
// input data in normal distribution
x.GenerateTensorValue(GeneratorTensor_4<XDataType>{x_mean, x_stddev}, num_thread);
// initialize the runningMean to be values with tiny variation to the mean of the x
// values
resultRunningMean_ref.GenerateTensorValue(
GeneratorTensor_4<MeanVarDataType>{x_mean, noise_stddev}, num_thread);
// initialize the runningVariance to be values with tiny variation to the variance of
// the x values
resultRunningVariance_ref.GenerateTensorValue(
GeneratorTensor_4<MeanVarDataType>{x_stddev * x_stddev, noise_stddev}, num_thread);
};
}
else
{
if constexpr(ck::is_same_v<XDataType, int8_t>)
x.GenerateTensorValue(GeneratorTensor_2<XDataType>{-5, 5}, num_thread);
else
x.GenerateTensorValue(GeneratorTensor_3<XDataType>{-1.0f, 1.0f}, num_thread);
};
if(do_verification)
{
if constexpr(ck::is_same_v<ScaleDataType, int8_t> && ck::is_same_v<BiasDataType, int8_t>)
{
bnScale.GenerateTensorValue(GeneratorTensor_2<ScaleDataType>{-5, 5}, num_thread);
bnBias.GenerateTensorValue(GeneratorTensor_2<BiasDataType>{-5, 5}, num_thread);
}
else
{
switch(init_method)
{
case 0:
bnScale.GenerateTensorValue(GeneratorTensor_0<ScaleDataType>{}, num_thread);
bnBias.GenerateTensorValue(GeneratorTensor_0<BiasDataType>{}, num_thread);
break;
case 1:
bnScale.GenerateTensorValue(GeneratorTensor_1<ScaleDataType>{1}, num_thread);
bnBias.GenerateTensorValue(GeneratorTensor_1<BiasDataType>{0}, num_thread);
break;
case 2:
bnScale.GenerateTensorValue(GeneratorTensor_2<ScaleDataType>{-5, 5}, num_thread);
bnBias.GenerateTensorValue(GeneratorTensor_2<BiasDataType>{-5, 5}, num_thread);
break;
default:
bnScale.GenerateTensorValue(GeneratorTensor_3<ScaleDataType>{-1.0f, 1.0f},
num_thread);
bnBias.GenerateTensorValue(GeneratorTensor_3<BiasDataType>{-1.0f, 1.0f},
num_thread);
}
};
};
// these buffers are usually provided by the user application
DeviceMem x_dev(sizeof(XDataType) * x.mDesc.GetElementSpaceSize());
DeviceMem y_dev(sizeof(XDataType) * y.mDesc.GetElementSpaceSize());
DeviceMem bnScale_dev(sizeof(ScaleDataType) * bnScale.mDesc.GetElementSpaceSize());
DeviceMem bnBias_dev(sizeof(BiasDataType) * bnBias.mDesc.GetElementSpaceSize());
// mean_dev or resultSaveMean_dev
DeviceMem resultSaveMean_dev(sizeof(MeanVarDataType) *
resultSaveMean_ref.mDesc.GetElementSpaceSize());
// meansquare_dev or resultSaveInvVariance_dev
DeviceMem resultSaveInvVariance_dev(sizeof(MeanVarDataType) *
resultSaveInvVariance_ref.mDesc.GetElementSpaceSize());
// resultRunningMean_dev
DeviceMem resultRunningMean_dev(sizeof(MeanVarDataType) *
resultRunningMean_ref.mDesc.GetElementSpaceSize());
// resultRunningVariance_dev
DeviceMem resultRunningVariance_dev(sizeof(MeanVarDataType) *
resultRunningVariance_ref.mDesc.GetElementSpaceSize());
x_dev.ToDevice(x.mData.data());
bnScale_dev.ToDevice(bnScale.mData.data());
bnBias_dev.ToDevice(bnBias.mData.data());
if(updateMovingAverage)
{
resultRunningMean_dev.ToDevice(resultRunningMean_ref.mData.data());
resultRunningVariance_dev.ToDevice(resultRunningVariance_ref.mData.data());
};
// used for storing the device result for verification when updateMovingAverage is enabled
Tensor<MeanVarDataType> resultRunningMean(scaleBiasMeanVarLengths);
Tensor<MeanVarDataType> resultRunningVariance(scaleBiasMeanVarLengths);
// used for storing the device result for verification when saveMeanAndInvVariance is enabled
Tensor<MeanVarDataType> resultSaveMean(scaleBiasMeanVarLengths);
Tensor<MeanVarDataType> resultSaveInvVariance(scaleBiasMeanVarLengths);
std::array<index_t, Rank> arrInOutLengths;
std::array<index_t, Rank> arrInOutStrides;
std::array<index_t, Rank - NumBatchNormReduceDim> arrScaleBiasMeanVarLengths;
std::array<index_t, Rank - NumBatchNormReduceDim> arrScaleBiasMeanVarStrides;
std::array<int, NumBatchNormReduceDim> arrReduceDims;
std::copy(inOutLengths.begin(), inOutLengths.end(), arrInOutLengths.begin());
std::copy(inOutStrides.begin(), inOutStrides.end(), arrInOutStrides.begin());
std::copy(scaleBiasMeanVarLengths.begin(),
scaleBiasMeanVarLengths.end(),
arrScaleBiasMeanVarLengths.begin());
std::copy(scaleBiasMeanVarStrides.begin(),
scaleBiasMeanVarStrides.end(),
arrScaleBiasMeanVarStrides.begin());
std::copy(reduceDims.begin(), reduceDims.end(), arrReduceDims.begin());
using PassThroughOp = ck::tensor_operation::element_wise::PassThrough;
// add device batchnorm-forward instances
using DeviceOp = ck::tensor_operation::device::DeviceBatchNormFwd<XDataType,
YDataType,
AccDataType,
ScaleDataType,
BiasDataType,
MeanVarDataType,
PassThroughOp,
Rank,
NumBatchNormReduceDim>;
// get device op instances
const auto instance_ptrs =
ck::tensor_operation::device::instance::DeviceOperationInstanceFactory<
DeviceOp>::GetInstances();
std::cout << "found " << instance_ptrs.size() << " instances" << std::endl;
std::string best_instance_name;
float best_avg_time = std::numeric_limits<float>::max();
float best_gb_per_sec = 0;
if(do_verification)
{
using ReferenceBatchNormFwdInstance =
ck::tensor_operation::host::ReferenceBatchNormFwd<XDataType,
YDataType,
AccDataType,
ScaleDataType,
BiasDataType,
MeanVarDataType,
PassThroughOp,
Rank,
NumBatchNormReduceDim>;
auto batchNormFwd_ref = ReferenceBatchNormFwdInstance{};
auto argument_ptr_ref = batchNormFwd_ref.MakeArgumentPointer(
arrInOutLengths,
arrInOutStrides,
arrInOutStrides,
arrReduceDims,
arrScaleBiasMeanVarLengths,
arrScaleBiasMeanVarStrides,
arrScaleBiasMeanVarStrides,
arrScaleBiasMeanVarStrides,
x.mData.data(),
bnScale.mData.data(),
bnBias.mData.data(),
epsilon,
PassThroughOp{},
y_ref.mData.data(),
saveMeanAndInvVariance ? resultSaveMean_ref.mData.data() : nullptr,
saveMeanAndInvVariance ? resultSaveInvVariance_ref.mData.data() : nullptr,
averageFactor,
updateMovingAverage ? resultRunningMean_ref.mData.data() : nullptr,
updateMovingAverage ? resultRunningVariance_ref.mData.data() : nullptr);
if(!batchNormFwd_ref.IsSupportedArgument(argument_ptr_ref.get()))
{
std::cout << "The runtime parameters not supported by the reference instance, exiting!"
<< std::endl;
return (false);
};
auto invoker_ptr_ref = batchNormFwd_ref.MakeInvokerPointer();
(void)invoker_ptr_ref->Run(argument_ptr_ref.get());
}
int num_kernel = 0;
bool pass = true;
for(auto& inst_ptr : instance_ptrs)
{
auto argument_ptr = inst_ptr->MakeArgumentPointer(
arrInOutLengths,
arrInOutStrides,
arrInOutStrides,
arrReduceDims,
arrScaleBiasMeanVarLengths,
arrScaleBiasMeanVarStrides,
arrScaleBiasMeanVarStrides,
arrScaleBiasMeanVarStrides,
x_dev.GetDeviceBuffer(),
bnScale_dev.GetDeviceBuffer(),
bnBias_dev.GetDeviceBuffer(),
epsilon,
PassThroughOp{},
y_dev.GetDeviceBuffer(),
saveMeanAndInvVariance ? resultSaveMean_dev.GetDeviceBuffer() : nullptr,
saveMeanAndInvVariance ? resultSaveInvVariance_dev.GetDeviceBuffer() : nullptr,
averageFactor,
updateMovingAverage ? resultRunningMean_dev.GetDeviceBuffer() : nullptr,
updateMovingAverage ? resultRunningVariance_dev.GetDeviceBuffer() : nullptr);
if(inst_ptr->IsSupportedArgument(argument_ptr.get()))
{
num_kernel++;
}
else
{
if(time_kernel)
{
std::cout << inst_ptr->GetTypeString()
<< " skipped due to unsupported argument: " << std::endl;
}
continue;
};
size_t workspace_sz = inst_ptr->GetWorkSpaceSize(argument_ptr.get());
DeviceMem workspace_dev(workspace_sz);
inst_ptr->SetWorkSpacePointer(argument_ptr.get(), workspace_dev.GetDeviceBuffer());
auto invoker_ptr = inst_ptr->MakeInvokerPointer();
float avg_time = invoker_ptr->Run(argument_ptr.get(), StreamConfig{nullptr, time_kernel});
size_t num_bytes = 0;
// inputing of x, scale, bias, outputing of y
num_bytes += total_length * (sizeof(XDataType) + sizeof(YDataType)) +
invariant_length * (sizeof(ScaleDataType) + sizeof(BiasDataType));
// outputing of mean, inv-variance
num_bytes += saveMeanAndInvVariance ? invariant_length * sizeof(MeanVarDataType) * 2 : 0;
// updating of moving mean, variance
num_bytes += updateMovingAverage ? invariant_length * sizeof(MeanVarDataType) * 4 : 0;
float gb_per_sec = num_bytes / 1.E6 / avg_time;
if(time_kernel)
std::cout << "Perf: " << avg_time << " ms, " << gb_per_sec << " GB/s, "
<< inst_ptr->GetTypeString() << std::endl;
if(avg_time < best_avg_time)
{
best_instance_name = inst_ptr->GetTypeString();
best_avg_time = avg_time;
best_gb_per_sec = gb_per_sec;
}
if(do_verification)
{
using ck::utils::check_err;
bool single_pass;
y_dev.FromDevice(y.mData.data());
if constexpr(ck::is_same_v<YDataType, ck::bhalf_t>)
single_pass = check_err(y.mData, y_ref.mData, "y results", 1e-2, 1e-2);
else
single_pass = check_err(y.mData, y_ref.mData, "y results", 4e-3, 4e-3);
if(updateMovingAverage)
{
resultRunningMean_dev.FromDevice(resultRunningMean.mData.data());
resultRunningVariance_dev.FromDevice(resultRunningVariance.mData.data());
// clang-format off
single_pass = single_pass && check_err(resultRunningMean.mData, resultRunningMean_ref.mData, "average mean results", 1.5e-5, 1.5e-5);
single_pass = single_pass && check_err(resultRunningVariance.mData, resultRunningVariance_ref.mData, "average variance results", 1e-5, 1e-5);
// clang-format on
};
if(saveMeanAndInvVariance)
{
resultSaveMean_dev.FromDevice(resultSaveMean.mData.data());
resultSaveInvVariance_dev.FromDevice(resultSaveInvVariance.mData.data());
// clang-format off
single_pass = single_pass && check_err(resultSaveMean.mData, resultSaveMean_ref.mData, "mean results", 3e-5, 3e-5);
single_pass = single_pass && check_err(resultSaveInvVariance.mData, resultSaveInvVariance_ref.mData, "inv-variance results", 7e-5, 7e-5);
// clang-format on
};
pass = pass && single_pass;
};
if(do_dumpout)
{
using ck::host_common::dumpBufferToFile;
// clang-format off
dumpBufferToFile("dump_x.bin", x.mData.data(), x.mDesc.GetElementSize());
dumpBufferToFile("dump_y.bin", y.mData.data(), y.mDesc.GetElementSize());
dumpBufferToFile("dump_y_ref.bin", y_ref.mData.data(), y_ref.mDesc.GetElementSize());
// clang-format off
if(saveMeanAndInvVariance)
{
// clang-format off
dumpBufferToFile("dump_mean.bin", resultSaveMean.mData.data(), resultSaveMean.mDesc.GetElementSize());
dumpBufferToFile("dump_mean_ref.bin", resultSaveMean_ref.mData.data(), resultSaveMean_ref.mDesc.GetElementSize());
dumpBufferToFile("dump_invvar.bin", resultSaveInvVariance.mData.data(), resultSaveInvVariance.mDesc.GetElementSize());
dumpBufferToFile("dump_invvar_ref.bin", resultSaveInvVariance_ref.mData.data(), resultSaveInvVariance_ref.mDesc.GetElementSize());
// clang-format on
};
};
}
if(time_kernel)
{
std::cout << "best perf = " << best_avg_time << " ms, " << best_gb_per_sec << " GB/s, "
<< best_instance_name << std::endl;
}
if(num_kernel == 0)
{
std::cout << "Error: No kernel is applicable" << std::endl;
return false;
}
return pass;
}
} // namespace profiler
} // namespace ck
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2022, Advanced Micro Devices, Inc. All rights reserved.
#include <iostream>
#include <vector>
#include <getopt.h>
#include "ck/library/utility/host_common_util.hpp"
#include "profiler/include/profile_batchnorm_forward_impl.hpp"
using ck::index_t;
using namespace std;
static const struct option long_options[] = {{"inOutLengths", required_argument, nullptr, 'D'},
{"reduceDims", required_argument, nullptr, 'R'},
{"dumpout", required_argument, nullptr, 'o'},
{"verify", required_argument, nullptr, 'v'},
{"help", no_argument, nullptr, '?'},
{nullptr, 0, nullptr, 0}};
class BatchnormFwdArgParser
{
private:
int option_index = 0;
public:
std::vector<size_t> inLengths;
std::vector<int> reduceDims;
bool do_verification = false;
bool do_dumpout = false;
bool updateMovingAverage;
bool saveMeanAndInvVariance;
int data_type = 0;
int init_method = 2;
bool time_kernel = false;
BatchnormFwdArgParser() = default;
~BatchnormFwdArgParser() = default;
void show_usage(const char* cmd)
{
// clang-format off
std::cout << "Usage of " << cmd << std::endl;
std::cout << "--inOutLengths or -D, comma separated list of input tensor dimension lengths, must have 4 integers for nhwc" << std::endl;
std::cout << "--reduceDims or -R, comma separated list of dimensions to reduce on" << std::endl;
std::cout << "--verify or -v, 1/0 to indicate whether to verify the result by comparing with the host-based batch-normalization" << std::endl;
std::cout << "Arg1: data type (0: fp16, 1: fp32, 3: int8, 5: bp16, 6: fp64)" << std::endl;
std::cout << "Arg2: 1/0 to indicate whether to update the moving average and variance (0=no, 1=yes)" << std::endl;
std::cout << "Arg3: 1/0 to indicate whether to save the calculated mean and invVariance (0=no, 1=yes)" << std::endl;
std::cout << "Arg4: init method used for bnScale and bnBias (0=no init, 1=single integer value, 2=scope integer value, 3=decimal value)" << std::endl;
std::cout << "Arg5: time kernel (0=no, 1=yes)" << std::endl;
// clang-format on
};
int operator()(int argc, char* argv[])
{
using ck::host_common::getTypeValuesFromString;
int ch;
optind++; // to skip the module name
while(1)
{
ch = getopt_long(argc, argv, "D:R:v:o:", long_options, &option_index);
if(ch == -1)
break;
switch(ch)
{
case 'D':
if(!optarg)
throw std::runtime_error("Invalid option format!");
inLengths = getTypeValuesFromString<size_t>(optarg);
break;
case 'R':
if(!optarg)
throw std::runtime_error("Invalid option format!");
reduceDims = getTypeValuesFromString<int>(optarg);
break;
case 'v':
if(!optarg)
throw std::runtime_error("Invalid option format!");
do_verification = static_cast<bool>(std::atoi(optarg));
break;
case 'o':
if(!optarg)
throw std::runtime_error("Invalid option format!");
do_dumpout = static_cast<bool>(std::atoi(optarg));
break;
case '?':
if(std::string(long_options[option_index].name) == "help")
{
show_usage(argv[0]);
return -1;
};
break;
default:
show_usage(argv[0]);
std::cerr << "Invalid cmd-line options!" << std::endl;
return -1;
};
};
if(optind + 5 > argc)
throw std::runtime_error("Invalid cmd-line arguments, more argumetns are needed!");
data_type = std::atoi(argv[optind++]);
updateMovingAverage = std::atoi(argv[optind++]);
saveMeanAndInvVariance = std::atoi(argv[optind++]);
init_method = std::atoi(argv[optind++]);
time_kernel = static_cast<bool>(std::atoi(argv[optind++]));
if(data_type != 0 && data_type != 1 && data_type != 3 && data_type != 5 && data_type != 6)
return -1;
return 0;
};
}; // end of class AppArgs
static const double epsilon = std::numeric_limits<float>::epsilon();
static const double averageFactor = 0.1;
int profile_batchnorm_forward(int argc, char* argv[])
{
using ck::profiler::profile_batchnorm_forward_impl;
BatchnormFwdArgParser arg_parser;
if(arg_parser(argc, argv) != 0)
return -1;
using F16 = ck::half_t;
using F32 = float;
using BF16 = ck::bhalf_t;
using I8 = int8_t;
using F64 = double;
if(arg_parser.data_type == 0)
{
if(arg_parser.inLengths.size() == 4 && arg_parser.reduceDims.size() == 3)
{
profile_batchnorm_forward_impl<F16, F16, F32, F16, F16, F16, 4, 3>(
arg_parser.do_verification,
arg_parser.init_method,
arg_parser.do_dumpout,
arg_parser.time_kernel,
arg_parser.inLengths,
arg_parser.reduceDims,
arg_parser.updateMovingAverage,
arg_parser.saveMeanAndInvVariance,
epsilon,
averageFactor);
};
}
else if(arg_parser.data_type == 1)
{
if(arg_parser.inLengths.size() == 4 && arg_parser.reduceDims.size() == 3)
{
profile_batchnorm_forward_impl<F32, F32, F32, F32, F32, F32, 4, 3>(
arg_parser.do_verification,
arg_parser.init_method,
arg_parser.do_dumpout,
arg_parser.time_kernel,
arg_parser.inLengths,
arg_parser.reduceDims,
arg_parser.updateMovingAverage,
arg_parser.saveMeanAndInvVariance,
epsilon,
averageFactor);
};
}
else if(arg_parser.data_type == 3)
{
if(arg_parser.inLengths.size() == 4 && arg_parser.reduceDims.size() == 3)
{
profile_batchnorm_forward_impl<I8, I8, F32, I8, I8, F32, 4, 3>(
arg_parser.do_verification,
arg_parser.init_method,
arg_parser.do_dumpout,
arg_parser.time_kernel,
arg_parser.inLengths,
arg_parser.reduceDims,
arg_parser.updateMovingAverage,
arg_parser.saveMeanAndInvVariance,
epsilon,
averageFactor);
};
}
else if(arg_parser.data_type == 5)
{
if(arg_parser.inLengths.size() == 4 && arg_parser.reduceDims.size() == 3)
{
profile_batchnorm_forward_impl<BF16, BF16, F32, BF16, BF16, F32, 4, 3>(
arg_parser.do_verification,
arg_parser.init_method,
arg_parser.do_dumpout,
arg_parser.time_kernel,
arg_parser.inLengths,
arg_parser.reduceDims,
arg_parser.updateMovingAverage,
arg_parser.saveMeanAndInvVariance,
epsilon,
averageFactor);
};
}
else if(arg_parser.data_type == 6)
{
if(arg_parser.inLengths.size() == 4 && arg_parser.reduceDims.size() == 3)
{
profile_batchnorm_forward_impl<F64, F64, F64, F64, F64, F64, 4, 3>(
arg_parser.do_verification,
arg_parser.init_method,
arg_parser.do_dumpout,
arg_parser.time_kernel,
arg_parser.inLengths,
arg_parser.reduceDims,
arg_parser.updateMovingAverage,
arg_parser.saveMeanAndInvVariance,
epsilon,
averageFactor);
};
}
return 0;
}
......@@ -24,6 +24,7 @@ int profile_softmax(int, char*[]);
int profile_layernorm(int, char*[]);
int profile_groupnorm(int, char*[]);
int profile_reduce(int, char*[]);
int profile_batchnorm_forward(int, char*[]);
static void print_helper_message()
{
......@@ -46,7 +47,8 @@ static void print_helper_message()
" grouped_conv_fwd: Grouped Convolution Forward\n"
" grouped_conv_bwd_weight: Grouped Convolution Backward Weight\n"
" softmax: Softmax\n"
" reduce: Reduce\n");
" reduce: Reduce\n"
" bnorm_fwd: Batchnorm forward\n");
// clang-format on
}
......@@ -142,6 +144,10 @@ int main(int argc, char* argv[])
{
return profile_groupnorm(argc, argv);
}
else if(strcmp(argv[1], "bnorm_fwd") == 0)
{
return profile_batchnorm_forward(argc, argv);
}
else
{
print_helper_message();
......
......@@ -53,3 +53,4 @@ add_subdirectory(softmax)
add_subdirectory(normalization)
add_subdirectory(data_type)
add_subdirectory(elementwise_normalization)
add_subdirectory(batchnorm_fwd)
add_gtest_executable(test_batchnorm_fwd_rank_4 batchnorm_fwd_rank_4.cpp)
target_link_libraries(test_batchnorm_fwd_rank_4 PRIVATE utility device_batchnorm_instance)
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2022, Advanced Micro Devices, Inc. All rights reserved.
#include <cstdlib>
#include <iostream>
#include <initializer_list>
#include <vector>
#include <tuple>
#include <gtest/gtest.h>
#include "profiler/include/profile_batchnorm_forward_impl.hpp"
using F16 = ck::half_t;
using F32 = float;
using BF16 = ck::bhalf_t;
using I8 = int8_t;
using F64 = double;
template <typename Tuple>
class TestBatchNormFwdRank4 : public ::testing::Test
{
private:
const double epsilon = std::numeric_limits<float>::epsilon();
const double averageFactor = 0.1;
protected:
using XDataType = std::tuple_element_t<0, Tuple>;
using YDataType = std::tuple_element_t<1, Tuple>;
using AccDataType = std::tuple_element_t<2, Tuple>;
using ScaleDataType = std::tuple_element_t<3, Tuple>;
using BiasDataType = std::tuple_element_t<4, Tuple>;
using MeanVarDataType = std::tuple_element_t<5, Tuple>;
std::vector<std::vector<size_t>> list_of_lengths = {
{128, 16, 3, 1024}, {128, 16, 6, 512}, {1, 1, 1, 1}, {4, 4, 4, 4}, {32, 32, 32, 32}};
std::vector<int> reduceDims;
template <int NumReduceDim>
void Run()
{
for(auto& inOutLengths : list_of_lengths)
{
bool pass = true;
EXPECT_FALSE(reduceDims.size() != NumReduceDim);
pass =
pass && ck::profiler::profile_batchnorm_forward_impl<XDataType,
YDataType,
AccDataType,
ScaleDataType,
BiasDataType,
MeanVarDataType,
4,
NumReduceDim>(true,
3,
false,
false,
inOutLengths,
reduceDims,
true,
true,
epsilon,
averageFactor);
pass =
pass && ck::profiler::profile_batchnorm_forward_impl<XDataType,
YDataType,
AccDataType,
ScaleDataType,
BiasDataType,
MeanVarDataType,
4,
NumReduceDim>(true,
3,
false,
false,
inOutLengths,
reduceDims,
false,
false,
epsilon,
averageFactor);
EXPECT_TRUE(pass);
}
}
};
using KernelTypes = ::testing::Types<std::tuple<F16, F16, F32, F16, F16, F32>,
std::tuple<F32, F32, F32, F32, F32, F32>,
std::tuple<BF16, BF16, F32, BF16, BF16, F32>,
std::tuple<I8, I8, F32, I8, I8, F32>,
std::tuple<F64, F64, F64, F64, F64, F64>>;
TYPED_TEST_SUITE(TestBatchNormFwdRank4, KernelTypes);
// nhwc
TYPED_TEST(TestBatchNormFwdRank4, nhwc)
{
this->reduceDims = {0, 1, 2};
this->template Run<3>();
}
// nchw
TYPED_TEST(TestBatchNormFwdRank4, nchw)
{
this->reduceDims = {0, 2, 3};
this->template Run<3>();
}
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment