Commit b79df771 authored by carlushuang's avatar carlushuang
Browse files

Merge remote-tracking branch 'origin/develop' into cpu_avx2

parents 05d38218 63914743
/******************************************************************************* // SPDX-License-Identifier: MIT
* // Copyright (c) 2018-2022, Advanced Micro Devices, Inc. All rights reserved.
* MIT License
*
* Copyright (c) 2020 Advanced Micro Devices, Inc.
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in all
* copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
* SOFTWARE.
*
*******************************************************************************/
#include <iostream> #include <iostream>
#include <cstdlib> #include <cstdlib>
#include "check_err.hpp"
#include "config.hpp"
#include "device.hpp"
#include "host_tensor.hpp"
#include "host_tensor_generator.hpp"
#include "device_tensor.hpp" #include "ck/ck.hpp"
#include "binary_element_wise_operation.hpp" #include "ck/tensor_operation/gpu/element/binary_element_wise_operation.hpp"
#include "device_binary_elementwise.hpp" #include "ck/tensor_operation/gpu/device/device_binary_elementwise.hpp"
#include "ck/library/utility/check_err.hpp"
#include "ck/library/host_tensor/device_memory.hpp"
#include "ck/library/host_tensor/host_tensor.hpp"
#include "ck/library/host_tensor/host_tensor_generator.hpp"
using F16 = ck::half_t; using F16 = ck::half_t;
using F32 = float; using F32 = float;
...@@ -42,8 +20,7 @@ using ABDataType = F16; ...@@ -42,8 +20,7 @@ using ABDataType = F16;
using CDataType = F16; using CDataType = F16;
using EltwiseComputeDataType = F32; using EltwiseComputeDataType = F32;
using Add = ck::tensor_operation::binary_element_wise:: using Add = ck::tensor_operation::element_wise::Add;
Add<EltwiseComputeDataType, EltwiseComputeDataType, EltwiseComputeDataType>;
using DeviceElementwiseAddInstance = using DeviceElementwiseAddInstance =
ck::tensor_operation::device::DeviceBinaryElementwise<ABDataType, ck::tensor_operation::device::DeviceBinaryElementwise<ABDataType,
...@@ -104,16 +81,22 @@ int main() ...@@ -104,16 +81,22 @@ int main()
a_device_buf.ToDevice(a.mData.data()); a_device_buf.ToDevice(a.mData.data());
b_device_buf.ToDevice(b.mData.data()); b_device_buf.ToDevice(b.mData.data());
std::array<const void*, 2> input = {a_device_buf.GetDeviceBuffer(),
b_device_buf.GetDeviceBuffer()};
std::array<void*, 1> output = {c_device_buf.GetDeviceBuffer()};
std::vector<ck::index_t> a_strides{a.mDesc.GetStrides().begin(), a.mDesc.GetStrides().end()};
std::vector<ck::index_t> b_strides{b.mDesc.GetStrides().begin(), b.mDesc.GetStrides().end()};
std::vector<ck::index_t> c_strides{c.mDesc.GetStrides().begin(), c.mDesc.GetStrides().end()};
auto broadcastAdd = DeviceElementwiseAddInstance{}; auto broadcastAdd = DeviceElementwiseAddInstance{};
auto argument = broadcastAdd.MakeArgumentPointer( auto argument =
a_device_buf.GetDeviceBuffer(), broadcastAdd.MakeArgumentPointer(input,
b_device_buf.GetDeviceBuffer(), output,
c_device_buf.GetDeviceBuffer(), std::vector<ck::index_t>{nchw.begin(), nchw.end()},
std::vector<ck::index_t>{nchw.begin(), nchw.end()}, {{a_strides}, b_strides},
std::vector<ck::index_t>{a.mDesc.GetStrides().begin(), a.mDesc.GetStrides().end()}, {c_strides},
std::vector<ck::index_t>{b.mDesc.GetStrides().begin(), b.mDesc.GetStrides().end()}, Add{});
std::vector<ck::index_t>{c.mDesc.GetStrides().begin(), c.mDesc.GetStrides().end()},
Add{});
if(!broadcastAdd.IsSupportedArgument(argument.get())) if(!broadcastAdd.IsSupportedArgument(argument.get()))
{ {
......
add_example_executable(example_convnd_bwd_weight_xdl convnd_bwd_weight_xdl.cpp) add_example_executable(example_convnd_bwd_weight_xdl convnd_bwd_weight_xdl.cpp)
target_link_libraries(example_convnd_bwd_weight_xdl PRIVATE conv_util) add_example_executable(example_convnd_bwd_weight_xdl_bf16_splitk convnd_bwd_weight_xdl_bf16_splitk.cpp)
\ No newline at end of file target_link_libraries(example_convnd_bwd_weight_xdl PRIVATE conv_util)
target_link_libraries(example_convnd_bwd_weight_xdl_bf16_splitk PRIVATE conv_util)
\ No newline at end of file
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2022, Advanced Micro Devices, Inc. All rights reserved.
#include <iostream> #include <iostream>
#include <numeric> #include <numeric>
#include <initializer_list> #include <initializer_list>
#include <cstdlib> #include <cstdlib>
#include <stdlib.h>
#include <half.hpp> #include "ck/ck.hpp"
#include "ck/tensor_operation/gpu/device/tensor_layout.hpp"
#include "check_err.hpp" #include "ck/tensor_operation/gpu/device/device_convnd_backward_weight_xdl_c_shuffle_nhwc_kyxc_nhwk.hpp"
#include "conv_util.hpp" #include "ck/tensor_operation/gpu/element/element_wise_operation.hpp"
#include "config.hpp"
#include "print.hpp" #include "ck/library/utility/check_err.hpp"
#include "device.hpp" #include "ck/library/utility/conv_util.hpp"
#include "host_tensor.hpp" #include "ck/library/host_tensor/device_memory.hpp"
#include "host_tensor_generator.hpp" #include "ck/library/host_tensor/host_tensor.hpp"
#include "device_tensor.hpp" #include "ck/library/host_tensor/host_tensor_generator.hpp"
#include "tensor_layout.hpp" #include "ck/library/reference_tensor_operation/cpu/reference_conv_backward_weight.hpp"
#include "element_wise_operation.hpp"
#include "device_convnd_backward_weight_xdl_c_shuffle_nhwc_kyxc_nhwk.hpp"
#include "reference_conv_backward_weight.hpp"
using InDataType = ck::half_t; using InDataType = ck::half_t;
using WeiDataType = ck::half_t; using WeiDataType = ck::half_t;
...@@ -297,52 +297,15 @@ int main(int argc, char* argv[]) ...@@ -297,52 +297,15 @@ int main(int argc, char* argv[])
split_k); split_k);
// alloc work space // alloc work space
size_t bwd_weight_workspace_size = conv->GetWorkSpaceSize(argument.get()); float ave_time = 0.f;
float ave_time = 0.f; if(!conv->IsSupportedArgument(argument.get()))
if(std::is_same<InDataType, ck::bhalf_t>::value && split_k > 1)
{
DeviceMem wei_work_space_device_buf(bwd_weight_workspace_size);
wei_work_space_device_buf.SetZero();
argument = conv->MakeArgumentPointer(
static_cast<InDataType*>(in_device_buf.GetDeviceBuffer()),
static_cast<AccDataType*>(wei_work_space_device_buf.GetDeviceBuffer()),
static_cast<OutDataType*>(out_device_buf.GetDeviceBuffer()),
params.N_,
params.K_,
params.C_,
params.input_spatial_lengths_,
params.filter_spatial_lengths_,
output_spatial_lengths,
params.conv_filter_strides_,
params.conv_filter_dilations_,
params.input_left_pads_,
params.input_right_pads_,
InElementOp{},
WeiElementOp{},
OutElementOp{},
split_k);
if(!conv->IsSupportedArgument(argument.get()))
{
std::cout << "wrong! device_conv with the specified compilation parameters does "
"not support this Conv problem"
<< std::endl;
return 1;
}
ave_time = invoker->Run(argument.get(), StreamConfig{nullptr, time_kernel});
}
else
{ {
if(!conv->IsSupportedArgument(argument.get())) std::cout << "wrong! device_conv with the specified compilation parameters does "
{ "not support this Conv problem"
std::cout << "wrong! device_conv with the specified compilation parameters does " << std::endl;
"not support this Conv problem" return 1;
<< std::endl;
return 1;
}
ave_time = invoker->Run(argument.get(), StreamConfig{nullptr, time_kernel});
} }
ave_time = invoker->Run(argument.get(), StreamConfig{nullptr, time_kernel});
std::size_t flop = ck::utils::conv::get_flops( std::size_t flop = ck::utils::conv::get_flops(
params.N_, params.C_, params.K_, params.filter_spatial_lengths_, output_spatial_lengths); params.N_, params.C_, params.K_, params.filter_spatial_lengths_, output_spatial_lengths);
......
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2022, Advanced Micro Devices, Inc. All rights reserved.
#include <iostream>
#include <numeric>
#include <initializer_list>
#include <cstdlib>
#include "ck/ck.hpp"
#include "ck/tensor_operation/gpu/device/tensor_layout.hpp"
#include "ck/tensor_operation/gpu/device/device_convnd_backward_weight_xdl_c_shuffle_nhwc_kyxc_nhwk.hpp"
#include "ck/tensor_operation/gpu/device/device_unary_elementwise.hpp"
#include "ck/tensor_operation/gpu/element/element_wise_operation.hpp"
#include "ck/library/utility/check_err.hpp"
#include "ck/library/utility/conv_util.hpp"
#include "ck/library/host_tensor/device_memory.hpp"
#include "ck/library/host_tensor/host_tensor.hpp"
#include "ck/library/host_tensor/host_tensor_generator.hpp"
#include "ck/library/reference_tensor_operation/cpu/reference_conv_backward_weight.hpp"
using InDataType = ck::bhalf_t;
using WeiDataType = ck::bhalf_t;
using OutDataType = ck::bhalf_t;
using AccDataType = float;
template <ck::index_t... Is>
using S = ck::Sequence<Is...>;
using InElementOp = ck::tensor_operation::element_wise::PassThrough;
using WeiElementOp = ck::tensor_operation::element_wise::PassThrough;
using OutElementOp = ck::tensor_operation::element_wise::PassThrough;
using UnaryTypeConvert = ck::tensor_operation::element_wise::UnaryTypeConvert<ck::bhalf_t, float>;
using DeviceUnaryElementwiseTypeConvertInstance = ck::tensor_operation::device::
DeviceUnaryElementwise<AccDataType, WeiDataType, UnaryTypeConvert, 1, 4>;
static constexpr auto ConvBwdWeightDefault =
ck::tensor_operation::device::ConvolutionBackwardWeightSpecialization::Default;
using DeviceConvBwdWeightBasePtr =
ck::tensor_operation::device::DeviceConvBwdWeightPtr<InElementOp, WeiElementOp, OutElementOp>;
// clang-format off
template <ck::index_t NumDimSpatial>
using DeviceConvndBwdWeightInstance_bf16_splitk = ck::tensor_operation::device::
DeviceConvndBwdWeightXdl_C_Shuffle_Input_N_Hi_Wi_C_Weight_K_Y_X_C_Output_N_Ho_Wo_K<
InDataType, // InDataType
AccDataType, // WeiDataType
OutDataType, // OutDataType
AccDataType, // AccDataType
InElementOp, // InElementwiseOperation
WeiElementOp, // WeiElementwiseOperation
OutElementOp, // OutElementwiseOperation
ConvBwdWeightDefault, // ConvolutionBackwardWeightSpecialization
NumDimSpatial, // NumDimSpatial
256, // BlockSize
128, // MPerBlock
128, // NPerBlock
4, // K0PerBlock
8, // K1
32, // MPerXdl
32, // NPerXdl
2, // MXdlPerWave
2, // NXdlPerWave
S<1, 4, 16, 4>, // ABlockTransferThreadClusterLengths_K0_M_K1
S<0, 3, 1, 2>, // ABlockTransferThreadClusterArrangeOrder
S<0, 2, 1, 3>, // ABlockTransferSrcAccessOrder
2, // ABlockTransferSrcVectorDim
8, // ABlockTransferSrcScalarPerVector
2, // ABlockTransferDstScalarPerVector_K1
true, // ABlockLdsAddExtraM
S<1, 4, 16, 4>, // BBlockTransferThreadClusterLengths_K0_N_K1
S<0, 3, 1, 2>, // BBlockTransferThreadClusterArrangeOrder
S<0, 2, 1, 3>, // BBlockTransferSrcAccessOrder
2, // BBlockTransferSrcVectorDim
8, // BBlockTransferSrcScalarPerVector
2, // BBlockTransferDstScalarPerVector_K1
true, // BBlockLdsAddExtraN
1, // CShuffleMXdlPerWavePerShuffle
1, // CShuffleNXdlPerWavePerShuffle
S<1, 32, 1, 4>, // CBlockTransferClusterLengths_MBlock_MPerBlock_NBlock_NPerBlock
4>; // CBlockTransferScalarPerVector_NWaveNPerXdl
// clang-format on
template <ck::index_t NumDimSpatial>
using ReferenceConvBwdWeightInstance =
ck::tensor_operation::host::ReferenceConvBwdWeight<InDataType,
WeiDataType,
OutDataType,
InElementOp,
WeiElementOp,
OutElementOp,
NumDimSpatial>;
template <typename HostTensorB, typename HostTensorA, typename Functor>
void host_elementwise(HostTensorB& B,
const HostTensorA& A,
const std::vector<std::size_t>& shape,
Functor functor)
{
size_t tensor_size = std::accumulate(shape.begin(), shape.end(), 1, std::multiplies<int>{});
std::cout << __LINE__ << ":" << tensor_size << ", " << A.mData[0] << std::endl;
for(std::size_t n = 0; n < tensor_size; ++n)
{
B.mData[n] = functor(A.mData[n]);
}
}
void print_use_msg()
{
std::cout << "arg1: verification (0=no, 1=yes)\n"
<< "arg2: initialization (0=no init, 1=random value, 2= init to 1 )\n"
<< "arg3: time kernel (0=n0, 1=yes)\n"
<< "arg4: is show log (0=no, 1=yes)\n"
<< "arg5: split-k : in this example split-k must be larger than 1\n"
<< "arg6: N spatial dimensions (default 2)\n"
<< "Following arguments (depending on number of spatial dims):\n"
<< " N, K, C, \n"
<< " <filter spatial dimensions>, (ie Y, X for 2D)\n"
<< " <input image spatial dimensions>, (ie Hi, Wi for 2D)\n"
<< " <strides>, (ie Sy, Sx for 2D)\n"
<< " <dilations>, (ie Dy, Dx for 2D)\n"
<< " <left padding>, (ie LeftPy, LeftPx for 2D)\n"
<< " <right padding>, (ie RightPy, RightPx for 2D)\n"
<< std::endl;
}
ck::utils::conv::ConvParams parse_conv_params(int num_dim_spatial, char* argv[])
{
// (N, K, C) + num_dim_spatial * 6 (filter, input, strides, dilations, pad left, pad right)
ck::utils::conv::ConvParams params;
int arg_idx = 7;
params.num_dim_spatial_ = num_dim_spatial;
params.N_ = std::stoi(argv[arg_idx++]);
params.K_ = std::stoi(argv[arg_idx++]);
params.C_ = std::stoi(argv[arg_idx++]);
params.filter_spatial_lengths_.resize(num_dim_spatial);
for(int i = 0; i < num_dim_spatial; ++i)
{
params.filter_spatial_lengths_[i] = std::stoi(argv[arg_idx++]);
}
params.input_spatial_lengths_.resize(num_dim_spatial);
for(int i = 0; i < num_dim_spatial; ++i)
{
params.input_spatial_lengths_[i] = std::stoi(argv[arg_idx++]);
}
params.conv_filter_strides_.resize(num_dim_spatial);
for(int i = 0; i < num_dim_spatial; ++i)
{
params.conv_filter_strides_[i] = std::stoi(argv[arg_idx++]);
}
params.conv_filter_dilations_.resize(num_dim_spatial);
for(int i = 0; i < num_dim_spatial; ++i)
{
params.conv_filter_dilations_[i] = std::stoi(argv[arg_idx++]);
}
params.input_left_pads_.resize(num_dim_spatial);
for(int i = 0; i < num_dim_spatial; ++i)
{
params.input_left_pads_[i] = std::stoi(argv[arg_idx++]);
}
params.input_right_pads_.resize(num_dim_spatial);
for(int i = 0; i < num_dim_spatial; ++i)
{
params.input_right_pads_[i] = std::stoi(argv[arg_idx++]);
}
return params;
}
DeviceConvBwdWeightBasePtr get_conv_instance(int num_dim_spatial)
{
switch(num_dim_spatial)
{
case 3: {
return std::make_unique<DeviceConvndBwdWeightInstance_bf16_splitk<3>>();
}
case 2: {
return std::make_unique<DeviceConvndBwdWeightInstance_bf16_splitk<2>>();
}
case 1: {
return std::make_unique<DeviceConvndBwdWeightInstance_bf16_splitk<1>>();
}
default: {
throw std::runtime_error("Unsupported number of spatial dimensions provided!");
}
}
}
int main(int argc, char* argv[])
{
bool do_verification = true;
int init_method = 1;
bool time_kernel = false;
int num_dim_spatial = 2;
int do_log = 0;
int split_k = 2;
ck::utils::conv::ConvParams params;
params.C_ = 128;
if(argc == 6)
{
do_verification = std::stoi(argv[1]);
init_method = std::stoi(argv[2]);
time_kernel = std::stoi(argv[3]);
do_log = std::stoi(argv[4]);
split_k = std::stoi(argv[5]);
}
else if(argc > 6)
{
do_verification = std::stoi(argv[1]);
init_method = std::stoi(argv[2]);
time_kernel = std::stoi(argv[3]);
do_log = std::stoi(argv[4]);
split_k = std::stoi(argv[5]);
num_dim_spatial = std::stoi(argv[6]);
// check args number
int conv_args = 3 + num_dim_spatial * 6;
int cmdline_nargs = conv_args + 7;
if(cmdline_nargs != argc)
{
print_use_msg();
exit(1);
}
params = parse_conv_params(num_dim_spatial, argv);
}
else if(argc != 1)
{
print_use_msg();
exit(1);
}
if(split_k <= 1)
{
print_use_msg();
exit(1);
}
std::vector<std::size_t> input_dims{static_cast<std::size_t>(params.N_),
static_cast<std::size_t>(params.C_)};
input_dims.insert(std::end(input_dims),
std::begin(params.input_spatial_lengths_),
std::end(params.input_spatial_lengths_));
std::vector<std::size_t> filter_dims{static_cast<std::size_t>(params.K_),
static_cast<std::size_t>(params.C_)};
filter_dims.insert(std::end(filter_dims),
std::begin(params.filter_spatial_lengths_),
std::end(params.filter_spatial_lengths_));
const std::vector<ck::index_t>& output_spatial_lengths = params.GetOutputSpatialLengths();
std::vector<std::size_t> output_dims{static_cast<std::size_t>(params.N_),
static_cast<std::size_t>(params.K_)};
output_dims.insert(std::end(output_dims),
std::begin(output_spatial_lengths),
std::end(output_spatial_lengths));
Tensor<InDataType> in_n_c_hi_wi(
ck::utils::conv::get_input_host_tensor_descriptor(input_dims, num_dim_spatial));
Tensor<WeiDataType> wei_k_c_y_x_host_result(
ck::utils::conv::get_filters_host_tensor_descriptor(filter_dims, num_dim_spatial));
Tensor<WeiDataType> wei_k_c_y_x_device_result(
ck::utils::conv::get_filters_host_tensor_descriptor(filter_dims, num_dim_spatial));
Tensor<OutDataType> out_n_k_ho_wo(
ck::utils::conv::get_output_host_tensor_descriptor(output_dims, num_dim_spatial));
std::cout << "in_n_c_hi_wi: " << in_n_c_hi_wi.mDesc << std::endl;
std::cout << "wei_k_c_y_x: " << wei_k_c_y_x_device_result.mDesc << std::endl;
std::cout << "out_n_k_ho_wo: " << out_n_k_ho_wo.mDesc << std::endl;
std::cout << "in_n_c_hi_wi: " << in_n_c_hi_wi.mDesc << std::endl;
std::cout << "wei_k_c_y_x: " << wei_k_c_y_x_host_result.mDesc << std::endl;
std::cout << "out_n_k_ho_wo: " << out_n_k_ho_wo.mDesc << std::endl;
switch(init_method)
{
case 0: break;
case 1:
out_n_k_ho_wo.GenerateTensorValue(GeneratorTensor_2<OutDataType>{-2, 2});
in_n_c_hi_wi.GenerateTensorValue(GeneratorTensor_2<InDataType>{-2, 2});
break;
default:
out_n_k_ho_wo.GenerateTensorValue(GeneratorTensor_1<OutDataType>{1});
in_n_c_hi_wi.GenerateTensorValue(GeneratorTensor_1<InDataType>{1});
}
DeviceMem in_device_buf(sizeof(InDataType) * in_n_c_hi_wi.mDesc.GetElementSpace());
DeviceMem wei_device_buf(sizeof(WeiDataType) *
wei_k_c_y_x_device_result.mDesc.GetElementSpace());
DeviceMem out_device_buf(sizeof(OutDataType) * out_n_k_ho_wo.mDesc.GetElementSpace());
in_device_buf.ToDevice(in_n_c_hi_wi.mData.data());
out_device_buf.ToDevice(out_n_k_ho_wo.mData.data());
// reset input to zero
wei_device_buf.SetZero();
// do GEMM
auto conv = get_conv_instance(num_dim_spatial);
auto invoker = conv->MakeInvokerPointer();
auto argument =
conv->MakeArgumentPointer(static_cast<InDataType*>(in_device_buf.GetDeviceBuffer()),
static_cast<WeiDataType*>(wei_device_buf.GetDeviceBuffer()),
static_cast<OutDataType*>(out_device_buf.GetDeviceBuffer()),
params.N_,
params.K_,
params.C_,
params.input_spatial_lengths_,
params.filter_spatial_lengths_,
output_spatial_lengths,
params.conv_filter_strides_,
params.conv_filter_dilations_,
params.input_left_pads_,
params.input_right_pads_,
InElementOp{},
WeiElementOp{},
OutElementOp{},
split_k);
// alloc work space
size_t bwd_weight_workspace_size = conv->GetWorkSpaceSize(argument.get());
if(bwd_weight_workspace_size <= 0)
{
print_use_msg();
exit(1);
}
float conv_ave_time = 0.f;
DeviceMem wei_work_space_device_buf(bwd_weight_workspace_size);
wei_work_space_device_buf.SetZero();
conv->SetWorkSpacePointer(argument.get(), wei_work_space_device_buf.GetDeviceBuffer());
if(!conv->IsSupportedArgument(argument.get()))
{
std::cout << "wrong! device_conv with the specified compilation parameters does "
"not support this Conv problem"
<< std::endl;
return 1;
}
conv_ave_time = invoker->Run(argument.get(), StreamConfig{nullptr, time_kernel});
std::size_t flop = ck::utils::conv::get_flops(
params.N_, params.C_, params.K_, params.filter_spatial_lengths_, output_spatial_lengths);
std::size_t num_btype = ck::utils::conv::get_btype<InDataType, WeiDataType, OutDataType>(
params.N_,
params.C_,
params.K_,
params.input_spatial_lengths_,
params.filter_spatial_lengths_,
output_spatial_lengths);
float tflops = static_cast<float>(flop) / 1.E9 / conv_ave_time;
float gb_per_sec = num_btype / 1.E6 / conv_ave_time;
std::cout << "Perf: conv: " << conv_ave_time << " ms, " << tflops << " TFlops, " << gb_per_sec
<< " GB/s" << std::endl;
if(do_verification)
{
auto verify_f = [&](const auto& ref_conv) {
auto ref_invoker = ref_conv.MakeInvoker();
auto ref_argument = ref_conv.MakeArgument(in_n_c_hi_wi,
wei_k_c_y_x_host_result,
out_n_k_ho_wo,
params.conv_filter_strides_,
params.conv_filter_dilations_,
params.input_left_pads_,
params.input_right_pads_,
InElementOp{},
WeiElementOp{},
OutElementOp{});
ref_invoker.Run(ref_argument);
wei_device_buf.FromDevice(wei_k_c_y_x_device_result.mData.data());
if(do_log)
{
LogRangeAsType<float>(std::cout << "out: ", out_n_k_ho_wo.mData, ",") << std::endl;
LogRangeAsType<float>(std::cout << "in : ", in_n_c_hi_wi.mData, ",") << std::endl;
LogRangeAsType<float>(
std::cout << "wei_device(after): ", wei_k_c_y_x_device_result.mData, ",")
<< std::endl;
LogRangeAsType<float>(
std::cout << "wei_host : ", wei_k_c_y_x_host_result.mData, ",")
<< std::endl;
}
return ck::utils::check_err(wei_k_c_y_x_device_result.mData,
wei_k_c_y_x_host_result.mData)
? 0
: 1;
};
switch(num_dim_spatial)
{
case 3: {
auto ref_conv = ReferenceConvBwdWeightInstance<3>();
verify_f(ref_conv);
break;
}
case 2: {
auto ref_conv = ReferenceConvBwdWeightInstance<2>();
verify_f(ref_conv);
break;
}
case 1: {
auto ref_conv = ReferenceConvBwdWeightInstance<1>();
verify_f(ref_conv);
break;
}
default: {
throw std::runtime_error("Unsupported number of spatial dimensions provided!");
}
}
}
return 0;
}
add_example_executable(example_gemm_bias_relu_add_layernorm_xdl_fp16 gemm_bias_relu_add_layernorm_xdl_fp16.cpp)
add_example_executable(example_gemm_layernorm_xdl_fp16 gemm_layernorm_xdl_fp16.cpp) add_example_executable(example_gemm_layernorm_xdl_fp16 gemm_layernorm_xdl_fp16.cpp)
add_example_executable(example_gemm_xdl_layernorm_single_kernel_fp16 gemm_xdl_layernorm_single_kernel_fp16.cpp)
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2022, Advanced Micro Devices, Inc. All rights reserved.
#include <iostream>
#include <numeric>
#include <initializer_list>
#include <cstdlib>
#include "ck/ck.hpp"
#include "ck/tensor_operation/gpu/device/tensor_layout.hpp"
#include "ck/tensor_operation/gpu/device/gemm_specialization.hpp"
#include "ck/tensor_operation/gpu/device/device_gemm_bias_add_reduce_xdl_cshuffle.hpp"
#include "ck/tensor_operation/gpu/device/device_5ary_elementwise.hpp"
#include "ck/tensor_operation/gpu/element/element_wise_operation.hpp"
#include "ck/library/host_tensor/device_memory.hpp"
#include "ck/library/host_tensor/host_tensor.hpp"
#include "ck/library/host_tensor/host_tensor_generator.hpp"
#include "ck/library/reference_tensor_operation/cpu/reference_gemm.hpp"
#include "ck/library/utility/check_err.hpp"
template <ck::index_t... Is>
using S = ck::Sequence<Is...>;
using F16 = ck::half_t;
using F32 = float;
using Row = ck::tensor_layout::gemm::RowMajor;
using Col = ck::tensor_layout::gemm::ColumnMajor;
using ADataType = F16;
using BDataType = F16;
using CDataType = F16;
using BiasDataType = F32;
using D0DataType = F16;
using GemmAccDataType = F32;
using ReduceAccDataType = F32;
using ReduceDataType = F32;
using ReducePtrsGlobal = ck::Tuple<ReduceDataType*, ReduceDataType*>;
using GammaDataType = F16;
using BetaDataType = F16;
using LayerNormOutDataType = F16;
using NormalizeComputeDataType = F32;
using ALayout = ck::tensor_layout::gemm::RowMajor;
using BLayout = ck::tensor_layout::gemm::ColumnMajor;
using CLayout = ck::tensor_layout::gemm::RowMajor;
using PassThrough = ck::tensor_operation::element_wise::PassThrough;
using AElementOp = PassThrough;
using BElementOp = PassThrough;
using CElementOp = ck::tensor_operation::element_wise::Relu;
using D0ElementOp = PassThrough;
using ReduceSumOp = ck::reduce::Add;
using ReduceOps = ck::Tuple<ReduceSumOp, ReduceSumOp>;
using UnaryIdenticElementOp = ck::tensor_operation::element_wise::PassThrough;
using UnaryDivElementOp = ck::tensor_operation::element_wise::UnaryDivide;
using UnarySquareElementOp = ck::tensor_operation::element_wise::UnarySquare;
using ReduceInElementOps = ck::Tuple<UnaryIdenticElementOp, UnarySquareElementOp>;
using ReduceOutElementOps = ck::Tuple<UnaryDivElementOp, UnaryDivElementOp>;
using ReduceGlobalMemOps =
ck::InMemoryDataOperationEnumSequence<ck::InMemoryDataOperationEnum::AtomicAdd,
ck::InMemoryDataOperationEnum::AtomicAdd>;
static constexpr auto GemmSpecialization =
ck::tensor_operation::device::GemmSpecialization::Default;
// clang-format off
using DeviceGemmBiasAddReduceInstance = ck::tensor_operation::device::DeviceGemmBiasAddReduce_Xdl_CShuffle
//######| ALayout| BLayout| CLayout|AData| BData| CData|C0Data|C1Data| GemmAcc| CShuffle| ReduceAcc| ReduceData| A| B| C| C1| Reduce| ReduceInEleOp| ReduceAccEleOp| Reduce| GEMM| NumGemmK| Block| MPer| NPer| KPer| AK1| BK1| MPer| NPer| MXdl| NXdl| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockLds| BBlockTransfer| BBlockTransfer| BBlockTransfer| BlockTransfer| BBlockTransfer| BBlockTransfer| BBlockLds| CShuffle| CShuffle| CBlockTransferClusterLengths| CBlockTransfer| CReduce| CReduceThreadLds2VGprCopy| CReduceThreadVgpr2GlobalCopy|
//######| | | | Type| Type| Type| Type| Type| DataType| DataType| DataType| Type Tuple| Elementwise| Elementwise| Elementwise| Elementwise| Operation| | | MemoryData| Spacialization| Prefetch| Size| Block| Block| Block| | | XDL| XDL| Per| Per| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| ExtraM| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| ExtraN| MXdlPerWave| NXdlPerWave| _MBlock_MPerBlock| ScalarPerVector| ThreadClusterLengths| SrcDstScalarPerVector| SrcDstScalarPerVector|
//######| | | | | | | | | | | | | Operation| Operation| Operation| Operation| | | | Operation| | Stage| | | | | | | | | Wave| Wave| Lengths_K0_M_K1| ArrangeOrder| | | PerVector| PerVector_K1| | Lengths_K0_N_K1| ArrangeOrder| | | PerVector| PerVector_K1| | PerShuffle| PerShuffle| _NBlock_NPerBlock| _NPerBlock| _MPerBlock_NPerBlock| _NPerBlock| _MPerBlock|
//######| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
< Row, Col, Row, F16, F16, F16, F32, F16, F32, F32, F32, ReducePtrsGlobal, AElementOp, BElementOp, CElementOp, D0ElementOp, ReduceOps,ReduceInElementOps, ReduceOutElementOps, ReduceGlobalMemOps, GemmSpecialization, 1, 256, 256, 128, 32, 8, 8, 32, 32, 4, 2, S<4, 64, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, 1, S<4, 64, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, 1, 1, 1, S<1, 32, 1, 8>, 8, S<64, 4>, 4, 1>;
// clang-format on
using ReferenceGemmInstance = ck::tensor_operation::host::ReferenceGemm<ADataType,
BDataType,
CDataType,
GemmAccDataType,
AElementOp,
BElementOp,
PassThrough>;
using NormalizeFunctor = ck::tensor_operation::element_wise::Normalize;
// A:x, B:E[x], C:E[x^2], D:Gamma, E:Beta , F:y
using DeviceNormalizeInstance =
ck::tensor_operation::device::Device5AryElementwise<CDataType,
ReduceDataType,
ReduceDataType,
GammaDataType,
BetaDataType,
LayerNormOutDataType,
NormalizeComputeDataType,
NormalizeFunctor,
2,
8,
8, // scalarPerVector: gemm_out
1, // scalarPerVector: reduce_mean
1, // scalarPerVector: reduce_mean_square
8, // scalarPerVector: Gamma
8, // scalarPerVector: Beta
8>; // scalarPerVector: LayerNorm_out
auto f_host_tensor_descriptor1d = [](std::size_t len, std::size_t stride) {
return HostTensorDescriptor(std::vector<std::size_t>({len}),
std::vector<std::size_t>({stride}));
};
auto f_host_tensor_descriptor2d =
[](std::size_t row, std::size_t col, std::size_t stride, auto layout) {
if(std::is_same<decltype(layout), ck::tensor_layout::gemm::RowMajor>::value)
{
return HostTensorDescriptor(std::vector<std::size_t>({row, col}),
std::vector<std::size_t>({stride, 1}));
}
else
{
return HostTensorDescriptor(std::vector<std::size_t>({row, col}),
std::vector<std::size_t>({1, stride}));
}
};
template <typename CDataType,
typename ReduceDataType,
typename AccDataType,
typename BiasDataType,
typename D0DataType,
typename A_functor,
typename B_functor,
typename C_functor,
typename C1_functor>
void host_gemm_layernorm(Tensor<LayerNormOutDataType>& out_m_n,
const Tensor<ADataType>& a_m_k,
const Tensor<ADataType>& b_k_n,
const Tensor<BiasDataType>& bias_n,
const Tensor<D0DataType>& c1_m_n,
const Tensor<GammaDataType>& gamma_n,
const Tensor<GammaDataType>& beta_n,
A_functor a_element_op,
B_functor b_element_op,
C_functor c_element_op,
C1_functor c1_element_op,
int M,
int N)
{
int StrideC = N;
Tensor<CDataType> c_m_n(f_host_tensor_descriptor2d(M, N, StrideC, CLayout{}));
Tensor<ReduceDataType> mean_m(f_host_tensor_descriptor1d(M, 1));
Tensor<ReduceDataType> meanSquare_m(f_host_tensor_descriptor1d(M, 1));
auto averageOpInst = UnaryDivElementOp{N};
auto ref_gemm = ReferenceGemmInstance{};
auto ref_invoker = ref_gemm.MakeInvoker();
auto ref_argument =
ref_gemm.MakeArgument(a_m_k, b_k_n, c_m_n, a_element_op, b_element_op, PassThrough{});
ref_invoker.Run(ref_argument);
// c = activation(c + bias) + c1_functor(c1)
for(int m = 0; m < M; ++m)
for(int n = 0; n < N; ++n)
{
AccDataType acc = ck::type_convert<AccDataType>(c_m_n(m, n)) +
ck::type_convert<AccDataType>(bias_n(n));
AccDataType c1 = ck::type_convert<AccDataType>(c1_m_n(m, n));
c_element_op(acc, acc);
c1_element_op(c1, c1);
acc += c1;
c_m_n(m, n) = ck::type_convert<CDataType>(acc);
}
// reduce_mean and reduce_square_mean
auto reduceSumOpInst = ReduceSumOp{};
for(int m = 0; m < M; ++m)
{
auto mean_acc = reduceSumOpInst.GetIdentityValue<AccDataType>();
auto square_mean_acc = reduceSumOpInst.GetIdentityValue<AccDataType>();
for(int n = 0; n < N; ++n)
{
AccDataType c_val = ck::type_convert<AccDataType>(c_m_n(m, n));
AccDataType square_c_val = 0;
UnarySquareElementOp{}(square_c_val, c_val);
reduceSumOpInst(mean_acc, c_val);
reduceSumOpInst(square_mean_acc, square_c_val);
}
averageOpInst(mean_acc, mean_acc);
averageOpInst(square_mean_acc, square_mean_acc);
mean_m(m) = ck::type_convert<ReduceDataType>(mean_acc);
meanSquare_m(m) = ck::type_convert<ReduceDataType>(square_mean_acc);
}
// LayerNorm
auto layerNormInst = NormalizeFunctor{};
for(int m = 0; m < M; ++m)
{
for(int n = 0; n < N; ++n)
{
AccDataType out_acc = 0;
layerNormInst(out_acc,
ck::type_convert<AccDataType>(c_m_n(m, n)),
ck::type_convert<AccDataType>(mean_m(m)),
ck::type_convert<AccDataType>(meanSquare_m(m)),
ck::type_convert<AccDataType>(gamma_n(n)),
ck::type_convert<AccDataType>(beta_n(n)));
out_m_n(m, n) = ck::type_convert<ReduceDataType>(out_acc);
}
}
}
template <typename ADataType,
typename BDataType,
typename CDataType,
typename BiasDataType,
typename D0DataType,
typename ReduceDataType,
typename GammaDataType,
typename BetaDataType,
typename NormalizeDataType>
void DumpGemmLayerNormPerf(float gemm_reduce_time, float normalize_time, int M, int N, int K)
{
std::size_t gemm_flop = std::size_t(2) * M * N * K + std::size_t(2) * M * N;
std::size_t gemm_num_byte = sizeof(ADataType) * M * K + sizeof(BDataType) * K * N +
sizeof(CDataType) * M * N + sizeof(BiasDataType) * M * N +
sizeof(D0DataType) * M * N + sizeof(ReduceDataType) * M +
sizeof(ReduceDataType) * M;
std::size_t normalize_num_byte = sizeof(CDataType) * M * N + sizeof(ReduceDataType) * M +
sizeof(ReduceDataType) * M + sizeof(GammaDataType) * N +
sizeof(BetaDataType) * N + sizeof(NormalizeDataType) * M * N;
float tflops = static_cast<float>(gemm_flop) / 1.E9 / gemm_reduce_time;
float gemm_gb_per_sec = gemm_num_byte / 1.E6 / gemm_reduce_time;
float normalize_gb_per_sec = normalize_num_byte / 1.E6 / normalize_time;
std::cout << "gemm + reduce_mean + reduce_square_mean Perf: " << gemm_reduce_time << " ms, "
<< tflops << " TFlops, " << gemm_gb_per_sec << " GB/s, " << std::endl;
std::cout << "5-ary elementwise Perf: " << normalize_time << " ms, " << normalize_gb_per_sec
<< " GB/s, " << std::endl;
}
int main()
{
// GEMM shape
ck::index_t M = 1024;
ck::index_t N = 1024;
ck::index_t K = 1024;
ck::index_t StrideA = 1024;
ck::index_t StrideB = 1024;
ck::index_t StrideC = 1024;
ck::index_t StrideD0 = 1024;
Tensor<ADataType> a_m_k(f_host_tensor_descriptor2d(M, K, StrideA, ALayout{}));
Tensor<BDataType> b_k_n(f_host_tensor_descriptor2d(K, N, StrideB, BLayout{}));
Tensor<CDataType> c_m_n(f_host_tensor_descriptor2d(M, N, StrideC, CLayout{}));
Tensor<BiasDataType> bias_n(f_host_tensor_descriptor1d(N, 1));
Tensor<D0DataType> c1_m_n(f_host_tensor_descriptor2d(M, N, StrideC, CLayout{}));
Tensor<ReduceDataType> reduceMean_m(f_host_tensor_descriptor1d(M, 1));
Tensor<ReduceDataType> reduceMeanSquare_m(f_host_tensor_descriptor1d(M, 1));
Tensor<GammaDataType> gamma_n(f_host_tensor_descriptor1d(N, 1));
Tensor<BetaDataType> beta_n(f_host_tensor_descriptor1d(N, 1));
Tensor<LayerNormOutDataType> layerNorm_m_n(
f_host_tensor_descriptor2d(M, N, StrideC, CLayout{}));
a_m_k.GenerateTensorValue(GeneratorTensor_3<ADataType>{-1, 1});
b_k_n.GenerateTensorValue(GeneratorTensor_3<BDataType>{-1, 1});
bias_n.GenerateTensorValue(GeneratorTensor_3<BiasDataType>{-1, 1});
c1_m_n.GenerateTensorValue(GeneratorTensor_3<D0DataType>{-5, 5});
gamma_n.GenerateTensorValue(GeneratorTensor_3<GammaDataType>{-1, 1});
beta_n.GenerateTensorValue(GeneratorTensor_3<BetaDataType>{-1, 1});
DeviceMem a_device_buf(sizeof(ADataType) * a_m_k.mDesc.GetElementSpace());
DeviceMem b_device_buf(sizeof(BDataType) * b_k_n.mDesc.GetElementSpace());
DeviceMem c_device_buf(sizeof(CDataType) * c_m_n.mDesc.GetElementSpace());
DeviceMem bias_device_buf(sizeof(BiasDataType) * bias_n.mDesc.GetElementSpace());
DeviceMem d0_device_buf(sizeof(D0DataType) * c1_m_n.mDesc.GetElementSpace());
DeviceMem reduceMean_device_buf(sizeof(ReduceDataType) * reduceMean_m.mDesc.GetElementSpace());
DeviceMem reduceMeanSquare_device_buf(sizeof(ReduceDataType) *
reduceMeanSquare_m.mDesc.GetElementSpace());
DeviceMem gamma_device_buf(sizeof(GammaDataType) * gamma_n.mDesc.GetElementSpace());
DeviceMem beta_device_buf(sizeof(BetaDataType) * beta_n.mDesc.GetElementSpace());
DeviceMem layerNorm_device_buf(sizeof(LayerNormOutDataType) *
layerNorm_m_n.mDesc.GetElementSpace());
a_device_buf.ToDevice(a_m_k.mData.data());
b_device_buf.ToDevice(b_k_n.mData.data());
bias_device_buf.ToDevice(bias_n.mData.data());
d0_device_buf.ToDevice(c1_m_n.mData.data());
gamma_device_buf.ToDevice(gamma_n.mData.data());
beta_device_buf.ToDevice(beta_n.mData.data());
auto a_element_op = AElementOp{};
auto b_element_op = BElementOp{};
auto c_element_op = CElementOp{};
auto d_element_op = D0ElementOp{};
std::array<void*, 3> gemm_element_ops = {&a_element_op, &b_element_op, &c_element_op};
auto passthrough = UnaryIdenticElementOp{};
auto square = UnarySquareElementOp{};
auto div = UnaryDivElementOp{N};
std::array<void*, 2> reduce_in_element_ops = {&passthrough, &square};
std::array<void*, 2> reduce_out_element_ops = {&div, &div};
std::array<void*, 2> p_reduces = {reduceMean_device_buf.GetDeviceBuffer(),
reduceMeanSquare_device_buf.GetDeviceBuffer()};
// Prepare GEMM, reduce_mean, reduce_mean_square
auto gemmReduce = DeviceGemmBiasAddReduceInstance{};
auto gemmReduce_invoker = gemmReduce.MakeInvoker();
auto gemmReduce_argument = gemmReduce.MakeArgument(a_device_buf.GetDeviceBuffer(),
b_device_buf.GetDeviceBuffer(),
bias_device_buf.GetDeviceBuffer(),
{d0_device_buf.GetDeviceBuffer()},
c_device_buf.GetDeviceBuffer(),
p_reduces,
M,
N,
K,
StrideA,
StrideB,
StrideC,
{StrideD0},
gemm_element_ops,
{&d_element_op},
reduce_in_element_ops,
reduce_out_element_ops);
if(!gemmReduce.IsSupportedArgument(gemmReduce_argument))
{
throw std::runtime_error(
"wrong! device_gemm with the specified compilation parameters does "
"not support this GEMM problem");
}
reduceMean_device_buf.SetZero();
reduceMeanSquare_device_buf.SetZero();
// Prepare LayerNorm
std::array<const void*, 5> input = {c_device_buf.GetDeviceBuffer(),
reduceMean_device_buf.GetDeviceBuffer(),
reduceMeanSquare_device_buf.GetDeviceBuffer(),
gamma_device_buf.GetDeviceBuffer(),
beta_device_buf.GetDeviceBuffer()};
std::array<void*, 1> output = {layerNorm_device_buf.GetDeviceBuffer()};
auto normalize = DeviceNormalizeInstance{};
auto normalize_invoker = normalize.MakeInvoker();
auto normalize_argument = normalize.MakeArgument(input,
output,
{M, N},
{StrideC, 1},
{1, 0},
{1, 0},
{0, 1},
{0, 1},
{StrideC, 1},
NormalizeFunctor{});
if(!normalize.IsSupportedArgument(normalize_argument))
{
throw std::runtime_error("The runtime parameters seems not supported by the "
"Device5AryElementwise instance, exiting!");
}
// run kernel
gemmReduce_invoker.Run(gemmReduce_argument, StreamConfig{nullptr, false});
normalize_invoker.Run(normalize_argument, StreamConfig{nullptr, false});
bool pass = true;
{
// verification
Tensor<LayerNormOutDataType> host_layerNorm_m_n(
f_host_tensor_descriptor2d(M, N, StrideC, CLayout{}));
host_gemm_layernorm<CDataType, ReduceDataType, ReduceAccDataType>(host_layerNorm_m_n,
a_m_k,
b_k_n,
bias_n,
c1_m_n,
gamma_n,
beta_n,
a_element_op,
b_element_op,
c_element_op,
d_element_op,
M,
N);
layerNorm_device_buf.FromDevice(layerNorm_m_n.mData.data());
pass &= ck::utils::check_err(layerNorm_m_n.mData,
host_layerNorm_m_n.mData,
"Error: Incorrect results layerNorm_m_n",
1e-2,
1e-2);
}
{
// evaluate kernel perf
bool time_kernel = true;
float gemm_reduce_mean_reduce_square_mean_ave_time =
gemmReduce_invoker.Run(gemmReduce_argument, StreamConfig{nullptr, time_kernel});
float normalize_ave_time =
normalize_invoker.Run(normalize_argument, StreamConfig{nullptr, time_kernel});
if(time_kernel)
DumpGemmLayerNormPerf<ADataType,
BDataType,
CDataType,
BiasDataType,
D0DataType,
ReduceDataType,
GammaDataType,
BetaDataType,
LayerNormOutDataType>(
gemm_reduce_mean_reduce_square_mean_ave_time, normalize_ave_time, M, N, K);
}
return pass ? 0 : 1;
}
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2022, Advanced Micro Devices, Inc. All rights reserved.
#include <iostream> #include <iostream>
#include <numeric> #include <numeric>
#include <initializer_list> #include <initializer_list>
#include <cstdlib> #include <cstdlib>
#include <stdlib.h>
#include "ck/ck.hpp"
#include "check_err.hpp" #include "ck/tensor_operation/gpu/device/tensor_layout.hpp"
#include "config.hpp" #include "ck/tensor_operation/gpu/device/gemm_specialization.hpp"
#include "device.hpp" #include "ck/tensor_operation/gpu/device/device_gemm_reduce_xdl_cshuffle.hpp"
#include "host_tensor.hpp" #include "ck/tensor_operation/gpu/device/device_5ary_elementwise.hpp"
#include "host_tensor_generator.hpp" #include "ck/tensor_operation/gpu/element/element_wise_operation.hpp"
#include "device_tensor.hpp"
#include "device_5ary_elementwise.hpp" #include "ck/library/host_tensor/device_memory.hpp"
#include "device_gemm_reduce_xdl_cshuffle.hpp" #include "ck/library/host_tensor/host_tensor.hpp"
#include "element_wise_operation.hpp" #include "ck/library/host_tensor/host_tensor_generator.hpp"
#include "reference_gemm.hpp" #include "ck/library/reference_tensor_operation/cpu/reference_gemm.hpp"
#include "gemm_specialization.hpp" #include "ck/library/utility/check_err.hpp"
#include "element_wise_reduce_operation.hpp"
template <ck::index_t... Is> template <ck::index_t... Is>
using S = ck::Sequence<Is...>; using S = ck::Sequence<Is...>;
...@@ -31,8 +33,8 @@ using BDataType = F16; ...@@ -31,8 +33,8 @@ using BDataType = F16;
using CDataType = F16; using CDataType = F16;
using GemmAccDataType = F32; using GemmAccDataType = F32;
using ReduceAccDataType = F32; using ReduceAccDataType = F32;
using DDataType = F32; using ReduceDataType = F32;
using DPtrsGlobal = ck::Tuple<DDataType*, DDataType*>; using ReducePtrsGlobal = ck::Tuple<ReduceDataType*, ReduceDataType*>;
using GammaDataType = F16; using GammaDataType = F16;
using BetaDataType = F16; using BetaDataType = F16;
using LayerNormOutDataType = F16; using LayerNormOutDataType = F16;
...@@ -45,19 +47,16 @@ using CLayout = ck::tensor_layout::gemm::RowMajor; ...@@ -45,19 +47,16 @@ using CLayout = ck::tensor_layout::gemm::RowMajor;
using AElementOp = ck::tensor_operation::element_wise::PassThrough; using AElementOp = ck::tensor_operation::element_wise::PassThrough;
using BElementOp = ck::tensor_operation::element_wise::PassThrough; using BElementOp = ck::tensor_operation::element_wise::PassThrough;
using CElementOp = ck::tensor_operation::element_wise::PassThrough; using CElementOp = ck::tensor_operation::element_wise::PassThrough;
using ReduceSumOp = ck::reduce::Add<ReduceAccDataType>; using ReduceSumOp = ck::reduce::Add;
using DxsReduceOp = ck::Tuple<ReduceSumOp, ReduceSumOp>; using ReduceOps = ck::Tuple<ReduceSumOp, ReduceSumOp>;
using UnaryIdenticElementOp = using UnaryIdenticElementOp = ck::tensor_operation::element_wise::PassThrough;
ck::tensor_operation::element_wise::UnaryIdentic<ReduceAccDataType, ReduceAccDataType, false>; using UnaryDivElementOp = ck::tensor_operation::element_wise::UnaryDivide;
using UnaryDivElementOp = using UnarySquareElementOp = ck::tensor_operation::element_wise::UnarySquare;
ck::tensor_operation::element_wise::UnaryIdentic<ReduceAccDataType, ReduceAccDataType, true>; using ReduceInElementOps = ck::Tuple<UnaryIdenticElementOp, UnarySquareElementOp>;
using UnarySquareElementOp = using ReduceOutElementOps = ck::Tuple<UnaryDivElementOp, UnaryDivElementOp>;
ck::tensor_operation::element_wise::UnarySquare<ReduceAccDataType, ReduceAccDataType, false>;
using DxsInElementOp = ck::Tuple<UnaryIdenticElementOp, UnarySquareElementOp>; using ReduceGlobalMemOps =
using DxsOutElementOp = ck::Tuple<UnaryDivElementOp, UnaryDivElementOp>;
using DxsGlobalMemOp =
ck::InMemoryDataOperationEnumSequence<ck::InMemoryDataOperationEnum::AtomicAdd, ck::InMemoryDataOperationEnumSequence<ck::InMemoryDataOperationEnum::AtomicAdd,
ck::InMemoryDataOperationEnum::AtomicAdd>; ck::InMemoryDataOperationEnum::AtomicAdd>;
...@@ -66,11 +65,11 @@ static constexpr auto GemmSpecialization = ...@@ -66,11 +65,11 @@ static constexpr auto GemmSpecialization =
// clang-format off // clang-format off
using DeviceGemmReduceInstance = ck::tensor_operation::device::DeviceGemmReduce_Xdl_CShuffle using DeviceGemmReduceInstance = ck::tensor_operation::device::DeviceGemmReduce_Xdl_CShuffle
//######| ALayout| BLayout| CLayout|AData| BData| CData| GemmAcc| CShuffle| ReduceAcc| DData| A| B| C| Dxs| DxsInEleOp| DxsAccEleOp| D| GEMM| NumGemmK| Block| MPer| NPer| KPer| AK1| BK1| MPer| NPer| MXdl| NXdl| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockLds| BBlockTransfer| BBlockTransfer| BBlockTransfer| BlockTransfer| BBlockTransfer| BBlockTransfer| BBlockLds| CShuffle| CShuffle| CBlockTransferClusterLengths| CBlockTransfer| CReduce| CReduceThreadLds2VGprCopy| CReduceThreadVgpr2GlobalCopy| //######| ALayout| BLayout| CLayout|AData| BData| CData| GemmAcc| CShuffle| ReduceAcc| ReduceData| A| B| C| Reduce| ReduceInEleOp| ReduceAccEleOp| Reduce| GEMM| NumGemmK| Block| MPer| NPer| KPer| AK1| BK1| MPer| NPer| MXdl| NXdl| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockLds| BBlockTransfer| BBlockTransfer| BBlockTransfer| BlockTransfer| BBlockTransfer| BBlockTransfer| BBlockLds| CShuffle| CShuffle| CBlockTransferClusterLengths| CBlockTransfer| CReduce| CReduceThreadLds2VGprCopy| CReduceThreadVgpr2GlobalCopy|
//######| | | | Type| Type| Type| DataType| DataType| DataType| Type Tuple| Elementwise| Elementwise| Elementwise| Reduce| | | MemoryData| Spacialization| Prefetch| Size| Block| Block| Block| | | XDL| XDL| Per| Per| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| ExtraM| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| ExtraN| MXdlPerWave| NXdlPerWave| _MBlock_MPerBlock| ScalarPerVector| ThreadClusterLengths| SrcDstScalarPerVector| SrcDstScalarPerVector| //######| | | | Type| Type| Type| DataType| DataType| DataType| Type Tuple| Elementwise| Elementwise| Elementwise| Operation| | | MemoryData| Spacialization| Prefetch| Size| Block| Block| Block| | | XDL| XDL| Per| Per| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| ExtraM| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| ExtraN| MXdlPerWave| NXdlPerWave| _MBlock_MPerBlock| ScalarPerVector| ThreadClusterLengths| SrcDstScalarPerVector| SrcDstScalarPerVector|
//######| | | | | | | | | | | Operation| Operation| Operation| Operation| | | Operation| | Stage| | | | | | | | | Wave| Wave| Lengths_K0_M_K1| ArrangeOrder| | | PerVector| PerVector_K1| | Lengths_K0_N_K1| ArrangeOrder| | | PerVector| PerVector_K1| | PerShuffle| PerShuffle| _NBlock_NPerBlock| _NPerBlock| _MPerBlock_NPerBlock| _NPerBlock| _MPerBlock| //######| | | | | | | | | | | Operation| Operation| Operation| | | | Operation| | Stage| | | | | | | | | Wave| Wave| Lengths_K0_M_K1| ArrangeOrder| | | PerVector| PerVector_K1| | Lengths_K0_N_K1| ArrangeOrder| | | PerVector| PerVector_K1| | PerShuffle| PerShuffle| _NBlock_NPerBlock| _NPerBlock| _MPerBlock_NPerBlock| _NPerBlock| _MPerBlock|
//######| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | //######| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
< Row, Col, Row, F16, F16, F16, F32, F32, F32, DPtrsGlobal, AElementOp, BElementOp, CElementOp, DxsReduceOp, DxsInElementOp, DxsOutElementOp, DxsGlobalMemOp, GemmSpecialization, 1, 256, 256, 128, 32, 8, 8, 32, 32, 4, 2, S<4, 64, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, 1, S<4, 64, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, 1, 1, 1, S<1, 32, 1, 8>, 8, S<64, 4>, 4, 1>; < Row, Col, Row, F16, F16, F16, F32, F32, F32, ReducePtrsGlobal, AElementOp, BElementOp, CElementOp, ReduceOps,ReduceInElementOps, ReduceOutElementOps, ReduceGlobalMemOps, GemmSpecialization, 1, 256, 256, 128, 32, 8, 8, 32, 32, 4, 2, S<4, 64, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, 1, S<4, 64, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, 1, 1, 1, S<1, 32, 1, 8>, 8, S<64, 4>, 4, 1>;
// clang-format on // clang-format on
using ReferenceGemmInstance = ck::tensor_operation::host::ReferenceGemm<ADataType, using ReferenceGemmInstance = ck::tensor_operation::host::ReferenceGemm<ADataType,
...@@ -86,8 +85,8 @@ using NormalizeFunctor = ck::tensor_operation::element_wise::Normalize; ...@@ -86,8 +85,8 @@ using NormalizeFunctor = ck::tensor_operation::element_wise::Normalize;
// A:x, B:E[x], C:E[x^2], D:Gamma, E:Beta , F:y // A:x, B:E[x], C:E[x^2], D:Gamma, E:Beta , F:y
using DeviceNormalizeInstance = using DeviceNormalizeInstance =
ck::tensor_operation::device::Device5AryElementwise<CDataType, ck::tensor_operation::device::Device5AryElementwise<CDataType,
DDataType, ReduceDataType,
DDataType, ReduceDataType,
GammaDataType, GammaDataType,
BetaDataType, BetaDataType,
LayerNormOutDataType, LayerNormOutDataType,
...@@ -122,7 +121,7 @@ auto f_host_tensor_descriptor2d = ...@@ -122,7 +121,7 @@ auto f_host_tensor_descriptor2d =
}; };
template <typename CDataType, template <typename CDataType,
typename DDataType, typename ReduceDataType,
typename A_functor, typename A_functor,
typename B_functor, typename B_functor,
typename C_functor> typename C_functor>
...@@ -141,9 +140,9 @@ void host_gemm_layernorm(Tensor<LayerNormOutDataType>& out_m_n, ...@@ -141,9 +140,9 @@ void host_gemm_layernorm(Tensor<LayerNormOutDataType>& out_m_n,
int StrideC = N; int StrideC = N;
Tensor<CDataType> c_m_n(f_host_tensor_descriptor2d(M, N, StrideC, CLayout{})); Tensor<CDataType> c_m_n(f_host_tensor_descriptor2d(M, N, StrideC, CLayout{}));
Tensor<DDataType> mean_m(f_host_tensor_descriptor1d(M, 1)); Tensor<ReduceDataType> mean_m(f_host_tensor_descriptor1d(M, 1));
Tensor<DDataType> meanSquare_m(f_host_tensor_descriptor1d(M, 1)); Tensor<ReduceDataType> meanSquare_m(f_host_tensor_descriptor1d(M, 1));
auto averageOpInst = UnaryDivElementOp{M}; auto averageOpInst = UnaryDivElementOp{N};
auto ref_gemm = ReferenceGemmInstance{}; auto ref_gemm = ReferenceGemmInstance{};
auto ref_invoker = ref_gemm.MakeInvoker(); auto ref_invoker = ref_gemm.MakeInvoker();
...@@ -157,13 +156,14 @@ void host_gemm_layernorm(Tensor<LayerNormOutDataType>& out_m_n, ...@@ -157,13 +156,14 @@ void host_gemm_layernorm(Tensor<LayerNormOutDataType>& out_m_n,
auto reduceSumOpInst = ReduceSumOp{}; auto reduceSumOpInst = ReduceSumOp{};
for(int m = 0; m < M; ++m) for(int m = 0; m < M; ++m)
{ {
float mean_acc = reduceSumOpInst.GetIdentityValue(); auto mean_acc = reduceSumOpInst.GetIdentityValue<ReduceAccDataType>();
float square_mean_acc = reduceSumOpInst.GetIdentityValue(); auto square_mean_acc = reduceSumOpInst.GetIdentityValue<ReduceAccDataType>();
for(int n = 0; n < N; ++n) for(int n = 0; n < N; ++n)
{ {
ReduceAccDataType c_val = ck::type_convert<float>(c_m_n(m, n)); auto c_val = ck::type_convert<ReduceAccDataType>(c_m_n(m, n));
ReduceAccDataType square_c_val = 0; auto square_c_val = reduceSumOpInst.GetIdentityValue<ReduceAccDataType>();
UnarySquareElementOp{}(square_c_val, c_val); UnarySquareElementOp{}(square_c_val, c_val);
reduceSumOpInst(mean_acc, c_val); reduceSumOpInst(mean_acc, c_val);
...@@ -172,8 +172,8 @@ void host_gemm_layernorm(Tensor<LayerNormOutDataType>& out_m_n, ...@@ -172,8 +172,8 @@ void host_gemm_layernorm(Tensor<LayerNormOutDataType>& out_m_n,
averageOpInst(mean_acc, mean_acc); averageOpInst(mean_acc, mean_acc);
averageOpInst(square_mean_acc, square_mean_acc); averageOpInst(square_mean_acc, square_mean_acc);
mean_m(m) = ck::type_convert<DDataType>(mean_acc); mean_m(m) = ck::type_convert<ReduceDataType>(mean_acc);
meanSquare_m(m) = ck::type_convert<DDataType>(square_mean_acc); meanSquare_m(m) = ck::type_convert<ReduceDataType>(square_mean_acc);
} }
// LayerNorm // LayerNorm
...@@ -183,7 +183,12 @@ void host_gemm_layernorm(Tensor<LayerNormOutDataType>& out_m_n, ...@@ -183,7 +183,12 @@ void host_gemm_layernorm(Tensor<LayerNormOutDataType>& out_m_n,
for(int n = 0; n < N; ++n) for(int n = 0; n < N; ++n)
{ {
float out_f32 = 0; float out_f32 = 0;
layerNormInst(out_f32, c_m_n(m, n), mean_m(m), meanSquare_m(m), gamma_n(n), beta_n(n)); layerNormInst(out_f32,
static_cast<float>(c_m_n(m, n)),
static_cast<float>(mean_m(m)),
static_cast<float>(meanSquare_m(m)),
static_cast<float>(gamma_n(n)),
static_cast<float>(beta_n(n)));
out_m_n(m, n) = static_cast<out_type>(out_f32); out_m_n(m, n) = static_cast<out_type>(out_f32);
} }
} }
...@@ -192,7 +197,7 @@ void host_gemm_layernorm(Tensor<LayerNormOutDataType>& out_m_n, ...@@ -192,7 +197,7 @@ void host_gemm_layernorm(Tensor<LayerNormOutDataType>& out_m_n,
template <typename ADataType, template <typename ADataType,
typename BDataType, typename BDataType,
typename CDataType, typename CDataType,
typename DDataType, typename ReduceDataType,
typename GammaDataType, typename GammaDataType,
typename BetaDataType, typename BetaDataType,
typename NormalizeDataType> typename NormalizeDataType>
...@@ -200,11 +205,11 @@ void DumpGemmLayerNormPerf(float gemm_reduce_time, float normalize_time, int M, ...@@ -200,11 +205,11 @@ void DumpGemmLayerNormPerf(float gemm_reduce_time, float normalize_time, int M,
{ {
std::size_t gemm_flop = std::size_t(2) * M * N * K; std::size_t gemm_flop = std::size_t(2) * M * N * K;
std::size_t gemm_num_byte = sizeof(ADataType) * M * K + sizeof(BDataType) * K * N + std::size_t gemm_num_byte = sizeof(ADataType) * M * K + sizeof(BDataType) * K * N +
sizeof(CDataType) * M * N + sizeof(DDataType) * M + sizeof(CDataType) * M * N + sizeof(ReduceDataType) * M +
sizeof(DDataType) * M; sizeof(ReduceDataType) * M;
std::size_t normalize_num_btye = sizeof(CDataType) * M * N + sizeof(DDataType) * M + std::size_t normalize_num_btye = sizeof(CDataType) * M * N + sizeof(ReduceDataType) * M +
sizeof(DDataType) * M + sizeof(GammaDataType) * N + sizeof(ReduceDataType) * M + sizeof(GammaDataType) * N +
sizeof(BetaDataType) * N + sizeof(NormalizeDataType) * M * N; sizeof(BetaDataType) * N + sizeof(NormalizeDataType) * M * N;
float tflops = static_cast<float>(gemm_flop) / 1.E9 / gemm_reduce_time; float tflops = static_cast<float>(gemm_flop) / 1.E9 / gemm_reduce_time;
...@@ -232,8 +237,8 @@ int main() ...@@ -232,8 +237,8 @@ int main()
Tensor<ADataType> a_m_k(f_host_tensor_descriptor2d(M, K, StrideA, ALayout{})); Tensor<ADataType> a_m_k(f_host_tensor_descriptor2d(M, K, StrideA, ALayout{}));
Tensor<BDataType> b_k_n(f_host_tensor_descriptor2d(K, N, StrideB, BLayout{})); Tensor<BDataType> b_k_n(f_host_tensor_descriptor2d(K, N, StrideB, BLayout{}));
Tensor<CDataType> c_m_n(f_host_tensor_descriptor2d(M, N, StrideC, CLayout{})); Tensor<CDataType> c_m_n(f_host_tensor_descriptor2d(M, N, StrideC, CLayout{}));
Tensor<DDataType> reduceMean_m(f_host_tensor_descriptor1d(M, 1)); Tensor<ReduceDataType> reduceMean_m(f_host_tensor_descriptor1d(M, 1));
Tensor<DDataType> reduceMeanSquare_m(f_host_tensor_descriptor1d(M, 1)); Tensor<ReduceDataType> reduceMeanSquare_m(f_host_tensor_descriptor1d(M, 1));
Tensor<GammaDataType> gamma_n(f_host_tensor_descriptor1d(N, 1)); Tensor<GammaDataType> gamma_n(f_host_tensor_descriptor1d(N, 1));
Tensor<BetaDataType> beta_n(f_host_tensor_descriptor1d(N, 1)); Tensor<BetaDataType> beta_n(f_host_tensor_descriptor1d(N, 1));
Tensor<LayerNormOutDataType> layerNorm_m_n( Tensor<LayerNormOutDataType> layerNorm_m_n(
...@@ -247,8 +252,8 @@ int main() ...@@ -247,8 +252,8 @@ int main()
DeviceMem a_device_buf(sizeof(ADataType) * a_m_k.mDesc.GetElementSpace()); DeviceMem a_device_buf(sizeof(ADataType) * a_m_k.mDesc.GetElementSpace());
DeviceMem b_device_buf(sizeof(BDataType) * b_k_n.mDesc.GetElementSpace()); DeviceMem b_device_buf(sizeof(BDataType) * b_k_n.mDesc.GetElementSpace());
DeviceMem c_device_buf(sizeof(CDataType) * c_m_n.mDesc.GetElementSpace()); DeviceMem c_device_buf(sizeof(CDataType) * c_m_n.mDesc.GetElementSpace());
DeviceMem reduceMean_device_buf(sizeof(DDataType) * reduceMean_m.mDesc.GetElementSpace()); DeviceMem reduceMean_device_buf(sizeof(ReduceDataType) * reduceMean_m.mDesc.GetElementSpace());
DeviceMem reduceMeanSquare_device_buf(sizeof(DDataType) * DeviceMem reduceMeanSquare_device_buf(sizeof(ReduceDataType) *
reduceMeanSquare_m.mDesc.GetElementSpace()); reduceMeanSquare_m.mDesc.GetElementSpace());
DeviceMem gamma_device_buf(sizeof(GammaDataType) * gamma_n.mDesc.GetElementSpace()); DeviceMem gamma_device_buf(sizeof(GammaDataType) * gamma_n.mDesc.GetElementSpace());
DeviceMem beta_device_buf(sizeof(BetaDataType) * beta_n.mDesc.GetElementSpace()); DeviceMem beta_device_buf(sizeof(BetaDataType) * beta_n.mDesc.GetElementSpace());
...@@ -260,35 +265,40 @@ int main() ...@@ -260,35 +265,40 @@ int main()
gamma_device_buf.ToDevice(gamma_n.mData.data()); gamma_device_buf.ToDevice(gamma_n.mData.data());
beta_device_buf.ToDevice(beta_n.mData.data()); beta_device_buf.ToDevice(beta_n.mData.data());
auto a_element_op = AElementOp{}; auto a_element_op = AElementOp{};
auto b_element_op = BElementOp{}; auto b_element_op = BElementOp{};
auto c_element_op = CElementOp{}; auto c_element_op = CElementOp{};
auto dxs_global = std::array<void*, 3> gemm_element_ops = {&a_element_op, &b_element_op, &c_element_op};
ck::make_tuple(static_cast<DDataType*>(reduceMean_device_buf.GetDeviceBuffer()),
static_cast<DDataType*>(reduceMeanSquare_device_buf.GetDeviceBuffer()));
auto dxs_in_element_op = DxsInElementOp{}; auto passthrough = UnaryIdenticElementOp{};
auto dxs_out_element_op = DxsOutElementOp{M, M}; auto square = UnarySquareElementOp{};
auto div = UnaryDivElementOp{N};
std::array<void*, 2> reduce_in_element_ops = {&passthrough, &square};
std::array<void*, 2> reduce_out_element_ops = {&div, &div};
std::array<void*, 2> p_reduces = {reduceMean_device_buf.GetDeviceBuffer(),
reduceMeanSquare_device_buf.GetDeviceBuffer()};
// Prepare GEMM, reduce_mean, reduce_mean_square // Prepare GEMM, reduce_mean, reduce_mean_square
auto gemmReduce = DeviceGemmReduceInstance{}; auto gemmReduce = DeviceGemmReduceInstance{};
auto gemmReduce_invoker = gemmReduce.MakeInvoker(); auto gemmReduce_invoker = gemmReduce.MakeInvoker();
auto gemmReduce_argument = auto gemmReduce_argument = gemmReduce.MakeArgument(a_device_buf.GetDeviceBuffer(),
gemmReduce.MakeArgument(static_cast<ADataType*>(a_device_buf.GetDeviceBuffer()), b_device_buf.GetDeviceBuffer(),
static_cast<BDataType*>(b_device_buf.GetDeviceBuffer()), nullptr,
static_cast<CDataType*>(c_device_buf.GetDeviceBuffer()), {},
dxs_global, c_device_buf.GetDeviceBuffer(),
M, p_reduces,
N, M,
K, N,
StrideA, K,
StrideB, StrideA,
StrideC, StrideB,
a_element_op, StrideC,
b_element_op, {},
c_element_op, gemm_element_ops,
dxs_in_element_op, {},
dxs_out_element_op); reduce_in_element_ops,
reduce_out_element_ops);
if(!gemmReduce.IsSupportedArgument(gemmReduce_argument)) if(!gemmReduce.IsSupportedArgument(gemmReduce_argument))
{ {
...@@ -301,23 +311,25 @@ int main() ...@@ -301,23 +311,25 @@ int main()
reduceMeanSquare_device_buf.SetZero(); reduceMeanSquare_device_buf.SetZero();
// Prepare LayerNorm // Prepare LayerNorm
std::array<const void*, 5> input = {c_device_buf.GetDeviceBuffer(),
reduceMean_device_buf.GetDeviceBuffer(),
reduceMeanSquare_device_buf.GetDeviceBuffer(),
gamma_device_buf.GetDeviceBuffer(),
beta_device_buf.GetDeviceBuffer()};
std::array<void*, 1> output = {layerNorm_device_buf.GetDeviceBuffer()};
auto normalize = DeviceNormalizeInstance{}; auto normalize = DeviceNormalizeInstance{};
auto normalize_invoker = normalize.MakeInvoker(); auto normalize_invoker = normalize.MakeInvoker();
auto normalize_argument = normalize.MakeArgument( auto normalize_argument = normalize.MakeArgument(input,
static_cast<CDataType*>(c_device_buf.GetDeviceBuffer()), output,
static_cast<DDataType*>(reduceMean_device_buf.GetDeviceBuffer()), {M, N},
static_cast<DDataType*>(reduceMeanSquare_device_buf.GetDeviceBuffer()), {StrideC, 1},
static_cast<GammaDataType*>(gamma_device_buf.GetDeviceBuffer()), {1, 0},
static_cast<BetaDataType*>(beta_device_buf.GetDeviceBuffer()), {1, 0},
static_cast<LayerNormOutDataType*>(layerNorm_device_buf.GetDeviceBuffer()), {0, 1},
{M, N}, {0, 1},
{StrideC, 1}, {StrideC, 1},
{1, 0}, NormalizeFunctor{});
{1, 0},
{0, 1},
{0, 1},
{StrideC, 1},
NormalizeFunctor{});
if(!normalize.IsSupportedArgument(normalize_argument)) if(!normalize.IsSupportedArgument(normalize_argument))
{ {
...@@ -335,16 +347,16 @@ int main() ...@@ -335,16 +347,16 @@ int main()
Tensor<LayerNormOutDataType> host_layerNorm_m_n( Tensor<LayerNormOutDataType> host_layerNorm_m_n(
f_host_tensor_descriptor2d(M, N, StrideC, CLayout{})); f_host_tensor_descriptor2d(M, N, StrideC, CLayout{}));
host_gemm_layernorm<CDataType, DDataType>(host_layerNorm_m_n, host_gemm_layernorm<CDataType, ReduceDataType>(host_layerNorm_m_n,
a_m_k, a_m_k,
b_k_n, b_k_n,
gamma_n, gamma_n,
beta_n, beta_n,
a_element_op, a_element_op,
b_element_op, b_element_op,
c_element_op, c_element_op,
M, M,
N); N);
layerNorm_device_buf.FromDevice(layerNorm_m_n.mData.data()); layerNorm_device_buf.FromDevice(layerNorm_m_n.mData.data());
pass &= ck::utils::check_err(layerNorm_m_n.mData, pass &= ck::utils::check_err(layerNorm_m_n.mData,
...@@ -367,7 +379,7 @@ int main() ...@@ -367,7 +379,7 @@ int main()
DumpGemmLayerNormPerf<ADataType, DumpGemmLayerNormPerf<ADataType,
BDataType, BDataType,
CDataType, CDataType,
DDataType, ReduceDataType,
GammaDataType, GammaDataType,
BetaDataType, BetaDataType,
LayerNormOutDataType>( LayerNormOutDataType>(
......
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2022, Advanced Micro Devices, Inc. All rights reserved.
#include <iostream> #include <iostream>
#include <numeric> #include <numeric>
#include <initializer_list> #include <initializer_list>
#include <cstdlib>
#include <stdlib.h>
#include <half.hpp>
#include "check_err.hpp"
#include "config.hpp"
#include "print.hpp"
#include "device.hpp"
#include "host_tensor.hpp"
#include "host_tensor_generator.hpp"
#include "host_gemm.hpp"
#include "device_tensor.hpp"
#include "device_base.hpp"
#include "device_gemm_xdl_c_shuffle_bias_2d.hpp"
#include "element_wise_operation.hpp"
#include "reference_gemm_bias_2d.hpp"
#include "ck/ck.hpp"
#include "ck/library/utility/check_err.hpp"
#include "ck/library/host_tensor/device_memory.hpp"
#include "ck/library/host_tensor/host_tensor.hpp"
#include "ck/library/host_tensor/host_tensor_generator.hpp"
#include "ck/tensor_operation/gpu/device/tensor_layout.hpp"
#include "ck/tensor_operation/gpu/device/device_gemm_xdl_layernorm_cshuffle.hpp"
#include "ck/tensor_operation/gpu/element/element_wise_operation.hpp"
#include "ck/utility/reduction_operator.hpp"
#include "ck/library/reference_tensor_operation/cpu/reference_gemm_layernorm.hpp"
#include "ck/tensor_operation/gpu/device/gemm_specialization.hpp"
// This example demonstrate a single kernel that runs GEMM layer and laynorm in one fused kernel
//
// The GEMM + Layernorm implementation is a specialized kernel which allows fusing both layers
// together given the condition GEMM extents N of MNK is spanned by a single workgroup. For example,
// a kernel configured with NPerBlock = 128 allows to operate on all GEMM sizes if N <= 128
//
// D = Layernorm(acc_element_op(A * B + broadcast(bias)) + add) * broadcast(gamma) + broadcast(beta)
template <ck::index_t... Is> template <ck::index_t... Is>
using S = ck::Sequence<Is...>; using S = ck::Sequence<Is...>;
using ADataType = ck::half_t; using F16 = ck::half_t;
using BDataType = ck::half_t; using F32 = float;
using CDataType = ck::half_t;
using AccDataType = float; using Row = ck::tensor_layout::gemm::RowMajor;
using Col = ck::tensor_layout::gemm::ColumnMajor;
using ADataType = F16;
using BDataType = F16;
using CDataType = F16;
using C0DataType = F16;
using AccDataType = F32;
using CShuffleDataType = F16;
using ALayout = ck::tensor_layout::gemm::RowMajor; using ALayout = ck::tensor_layout::gemm::RowMajor;
using BLayout = ck::tensor_layout::gemm::ColumnMajor; using BLayout = ck::tensor_layout::gemm::ColumnMajor;
using CLayout = ck::tensor_layout::gemm::RowMajor; using CLayout = ck::tensor_layout::gemm::RowMajor;
struct Relu
{
template <typename OutT, typename InT>
__host__ __device__ void operator()(OutT& y, const InT& x) const
{
y = x > 0 ? x : 0;
}
};
using AElementOp = ck::tensor_operation::element_wise::PassThrough; using AElementOp = ck::tensor_operation::element_wise::PassThrough;
using BElementOp = ck::tensor_operation::element_wise::PassThrough; using BElementOp = ck::tensor_operation::element_wise::PassThrough;
using CElementOp = ck::tensor_operation::element_wise::AlphaBetaAdd; // Elementwise operation that operates on the output of matrix multiplication
// i.e., AccElementOp(A * B + bias)
using AccElementOp = Relu;
// Elementwise operation that operates on the output of layer normalization
using CElementOp = Relu;
static constexpr auto GemmDefault = ck::tensor_operation::device::GemmSpecialization::Default;
// clang-format off // clang-format off
using DeviceGemmInstance = ck::tensor_operation::device::DeviceGemmXdl_C_Shuffle_Bias_2d< using DeviceGemmInstance = ck::tensor_operation::device::DeviceGemmLayerNorm_Xdl_CShuffle
ADataType, // ADataType //######| ALayout| BLayout| CLayout| AData| BData| CData| C0Data| GemmAcc| CShuffle| ReduceAcc| A| B| Acc| C| GEMM| NumGemmK| Block| MPer| NPer| KPer| AK1| BK1| MPer| NPer| MXdl| NXdl| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockLds| BBlockTransfer| BBlockTransfer| BBlockTransfer| BlockTransfer| BBlockTransfer| BBlockTransfer| BBlockLds| CShuffle| CShuffle| CBlockTransferClusterLengths| CBlockTransfer| CReduce| CReduceThreadCopy|
BDataType, // BDataType //######| | | | Type| Type| Type| Type| DataType| DataType| DataType| Elementwise| Elementwise| Elementwise| Elementwise| Spacialization| Prefetch| Size| Block| Block| Block| | | XDL| XDL| Per| Per| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| ExtraM| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| ExtraN| MXdlPerWave| NXdlPerWave| _MBlock_MPerBlock| ScalarPerVector| ThreadClusterLengths| SrcDstScalarPerVector|
CDataType, // CDataType //######| | | | | | | | | | | Operation| Operation| Operation| Operation| | Stage| | | | | | | | | Wave| Wave| Lengths_K0_M_K1| ArrangeOrder| | | PerVector| PerVector_K1| | Lengths_K0_N_K1| ArrangeOrder| | | PerVector| PerVector_K1| | PerShuffle| PerShuffle| _NBlock_NPerBlock| _NPerBlock| _MPerBlock_NPerBlock| _NPerBlock|
AccDataType, // AccDataType //######| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
ALayout, // ALayout < Row, Col, Row, ADataType, BDataType, CDataType, C0DataType, AccDataType, CShuffleDataType, AccDataType, AElementOp, BElementOp, AccElementOp, CElementOp, GemmDefault, 1, 256, 256, 128, 32, 8, 8, 32, 32, 4, 2, S<4, 64, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, 1, S<4, 64, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, 1, 1, 2, S<1, 32, 1, 8>, 8, S<64, 4>, 4>;
BLayout, // BLayout
CLayout, // CLayout
AElementOp, // AElementwiseOperation
BElementOp, // BElementwiseOperation
CElementOp, // CElementwiseOperation
256, // BlockSize
256, // MPerBlock
128, // NPerBlock
4, // K0PerBlock
8, // K1
32, // MPerXDL
32, // NPerXDL
4, // MXdlPerWave
2, // NXdlPerWave
S<4, 64, 1>, // ABlockTransferThreadClusterLengths_K0_M_K1
S<1, 0, 2>, // ABlockTransferThreadClusterArrangeOrder
S<1, 0, 2>, // ABlockTransferSrcAccessOrder
2, // ABlockTransferSrcVectorDim
8, // ABlockTransferSrcScalarPerVector
8, // ABlockTransferDstScalarPerVector_K1
true, // ABlockLdsAddExtraM
S<4, 64, 1>, // BBlockTransferThreadClusterLengths_K0_N_K1
S<1, 0, 2>, // BBlockTransferThreadClusterArrangeOrder
S<1, 0, 2>, // BBlockTransferSrcAccessOrder
2, // BBlockTransferSrcVectorDim
8, // BBlockTransferSrcScalarPerVector
8, // BBlockTransferDstScalarPerVector_K1
true, // BBlockLdsAddExtraN
1, // CShuffleMXdlPerWavePerShuffle
1, // CShuffleNXdlPerWavePerShuffle
S<1, 1, 32, 1, 1, 8>, // CBlockTransferClusterLengths_MBlock_MXdlPerWave_MWaveMPerXdl_NBlock_NXdlPerWave_NWaveNPerXdl
8>; // CBlockTransferScalarPerVector_NWaveNPerXdl
// clang-format on // clang-format on
using ReferenceGemmInstance = ck::tensor_operation::host::ReferenceGemmBias2D<ADataType, using ReferenceInstance = ck::tensor_operation::host::ReferenceGemmLayernorm<ADataType,
BDataType, BDataType,
CDataType, CDataType,
CDataType, C0DataType,
AccDataType, AccDataType,
AElementOp, AElementOp,
BElementOp, BElementOp,
CElementOp>; AccElementOp,
CElementOp>;
int main(int argc, char* argv[]) int main(int argc, char* argv[])
{ {
...@@ -92,32 +90,24 @@ int main(int argc, char* argv[]) ...@@ -92,32 +90,24 @@ int main(int argc, char* argv[])
// GEMM shape // GEMM shape
ck::index_t M = 3840; ck::index_t M = 3840;
ck::index_t N = 4096; ck::index_t N = 128;
ck::index_t K = 4096; ck::index_t K = 4096;
ck::index_t StrideA = 4096; ck::index_t StrideA = 4096;
ck::index_t StrideB = 4096; ck::index_t StrideB = 4096;
ck::index_t StrideC = 4096; ck::index_t StrideC = 128;
float alpha = 1.0f;
float beta = 1.0f;
if(argc == 4) if(argc == 1)
{ {
do_verification = std::stoi(argv[1]); // do nothing
init_method = std::stoi(argv[2]);
time_kernel = std::stoi(argv[3]);
} }
else if(argc == 6) else if(argc == 4)
{ {
do_verification = std::stoi(argv[1]); do_verification = std::stoi(argv[1]);
init_method = std::stoi(argv[2]); init_method = std::stoi(argv[2]);
time_kernel = std::stoi(argv[3]); time_kernel = std::stoi(argv[3]);
alpha = std::stof(argv[4]);
beta = std::stof(argv[5]);
} }
else if(argc == 12) else if(argc == 10)
{ {
do_verification = std::stoi(argv[1]); do_verification = std::stoi(argv[1]);
init_method = std::stoi(argv[2]); init_method = std::stoi(argv[2]);
...@@ -130,16 +120,13 @@ int main(int argc, char* argv[]) ...@@ -130,16 +120,13 @@ int main(int argc, char* argv[])
StrideA = std::stoi(argv[7]); StrideA = std::stoi(argv[7]);
StrideB = std::stoi(argv[8]); StrideB = std::stoi(argv[8]);
StrideC = std::stoi(argv[9]); StrideC = std::stoi(argv[9]);
alpha = std::stof(argv[10]);
beta = std::stof(argv[11]);
} }
else else
{ {
printf("arg1: verification (0=no, 1=yes)\n"); printf("arg1: verification (0=no, 1=yes)\n");
printf("arg2: initialization (0=no init, 1=integer value, 2=decimal value)\n"); printf("arg2: initialization (0=no init, 1=integer value, 2=decimal value)\n");
printf("arg3: time kernel (0=n0, 1=yes)\n"); printf("arg3: time kernel (0=n0, 1=yes)\n");
printf("arg4 to 9: M (256x), N(128x), K(32x), StrideA, StrideB, StrideC, alpha, beta\n"); printf("arg4 to 9: M (256x), N(128x), K(32x), StrideA, StrideB, StrideC\n");
exit(0); exit(0);
} }
...@@ -159,14 +146,21 @@ int main(int argc, char* argv[]) ...@@ -159,14 +146,21 @@ int main(int argc, char* argv[])
Tensor<ADataType> a_m_k(f_host_tensor_descriptor(M, K, StrideA, ALayout{})); Tensor<ADataType> a_m_k(f_host_tensor_descriptor(M, K, StrideA, ALayout{}));
Tensor<BDataType> b_k_n(f_host_tensor_descriptor(K, N, StrideB, BLayout{})); Tensor<BDataType> b_k_n(f_host_tensor_descriptor(K, N, StrideB, BLayout{}));
Tensor<CDataType> c0_m_n(f_host_tensor_descriptor(M, N, StrideC, CLayout{}));
Tensor<CDataType> c_m_n_host_result(f_host_tensor_descriptor(M, N, StrideC, CLayout{})); Tensor<CDataType> c_m_n_host_result(f_host_tensor_descriptor(M, N, StrideC, CLayout{}));
Tensor<CDataType> c_m_n_device_result(f_host_tensor_descriptor(M, N, StrideC, CLayout{})); Tensor<CDataType> c_m_n_device_result(f_host_tensor_descriptor(M, N, StrideC, CLayout{}));
Tensor<AccDataType> acc_m_n_host_result(f_host_tensor_descriptor(M, N, StrideC, CLayout{}));
Tensor<C0DataType> c0_n_bias(HostTensorDescriptor(std::vector<size_t>({size_t(N)})));
Tensor<C0DataType> c0_m_n_add(f_host_tensor_descriptor(M, N, StrideC, CLayout{}));
Tensor<C0DataType> c0_n_gamma(HostTensorDescriptor(std::vector<size_t>({size_t(N)})));
Tensor<C0DataType> c0_n_beta(HostTensorDescriptor(std::vector<size_t>({size_t(N)})));
std::cout << "a_m_k: " << a_m_k.mDesc << std::endl; std::cout << "a_m_k: " << a_m_k.mDesc << std::endl;
std::cout << "b_k_n: " << b_k_n.mDesc << std::endl; std::cout << "b_k_n: " << b_k_n.mDesc << std::endl;
std::cout << "c0_m_n: " << c0_m_n.mDesc << std::endl;
std::cout << "c_m_n: " << c_m_n_host_result.mDesc << std::endl; std::cout << "c_m_n: " << c_m_n_host_result.mDesc << std::endl;
std::cout << "c0_n_bias: " << c0_n_bias.mDesc << std::endl;
std::cout << "c0_m_n_add: " << c0_m_n_add.mDesc << std::endl;
std::cout << "c0_n_gamma: " << c0_n_gamma.mDesc << std::endl;
std::cout << "c0_n_beta: " << c0_n_beta.mDesc << std::endl;
switch(init_method) switch(init_method)
{ {
...@@ -174,40 +168,63 @@ int main(int argc, char* argv[]) ...@@ -174,40 +168,63 @@ int main(int argc, char* argv[])
case 1: case 1:
a_m_k.GenerateTensorValue(GeneratorTensor_2<ADataType>{-5, 5}); a_m_k.GenerateTensorValue(GeneratorTensor_2<ADataType>{-5, 5});
b_k_n.GenerateTensorValue(GeneratorTensor_2<BDataType>{-5, 5}); b_k_n.GenerateTensorValue(GeneratorTensor_2<BDataType>{-5, 5});
c0_m_n.GenerateTensorValue(GeneratorTensor_2<CDataType>{-5, 5});
break; break;
default: case 2:
a_m_k.GenerateTensorValue(GeneratorTensor_3<ADataType>{0.0, 1.0}); a_m_k.GenerateTensorValue(GeneratorTensor_3<ADataType>{0.0, 1.0});
b_k_n.GenerateTensorValue(GeneratorTensor_3<BDataType>{-0.5, 0.5}); b_k_n.GenerateTensorValue(GeneratorTensor_3<BDataType>{-0.5, 0.5});
c0_m_n.GenerateTensorValue(GeneratorTensor_3<CDataType>{-0.5, 0.5}); break;
default:
a_m_k.GenerateTensorValue(GeneratorTensor_Sequential<0>{});
b_k_n.GenerateTensorValue(GeneratorTensor_Sequential<1>{});
} }
DeviceMem a_m_k_device_buf(sizeof(ADataType) * a_m_k.mDesc.GetElementSpace()); c0_n_bias.GenerateTensorValue(GeneratorTensor_2<C0DataType>{-5, 5});
DeviceMem b_k_n_device_buf(sizeof(BDataType) * b_k_n.mDesc.GetElementSpace()); c0_m_n_add.GenerateTensorValue(GeneratorTensor_2<C0DataType>{-5, 5});
DeviceMem c0_m_n_device_buf(sizeof(CDataType) * c0_m_n.mDesc.GetElementSpace()); c0_n_gamma.GenerateTensorValue(GeneratorTensor_2<C0DataType>{0, 2});
DeviceMem c_m_n_device_buf(sizeof(CDataType) * c_m_n_device_result.mDesc.GetElementSpace()); c0_n_beta.GenerateTensorValue(GeneratorTensor_2<C0DataType>{0, 5});
c_m_n_host_result.GenerateTensorValue(GeneratorTensor_1<CDataType>{0});
a_m_k_device_buf.ToDevice(a_m_k.mData.data()); acc_m_n_host_result.GenerateTensorValue(GeneratorTensor_1<AccDataType>{0});
b_k_n_device_buf.ToDevice(b_k_n.mData.data());
c0_m_n_device_buf.ToDevice(c0_m_n.mData.data()); DeviceMem a_device_buf(sizeof(ADataType) * a_m_k.mDesc.GetElementSpace());
c_m_n_device_buf.ToDevice(c_m_n_device_result.mData.data()); DeviceMem b_device_buf(sizeof(BDataType) * b_k_n.mDesc.GetElementSpace());
DeviceMem c_device_buf(sizeof(CDataType) * c_m_n_device_result.mDesc.GetElementSpace());
DeviceMem c0_bias_buf(sizeof(C0DataType) * c0_n_bias.mDesc.GetElementSpace());
DeviceMem c0_add_buf(sizeof(C0DataType) * c0_m_n_add.mDesc.GetElementSpace());
DeviceMem c0_gamma_buf(sizeof(C0DataType) * c0_n_gamma.mDesc.GetElementSpace());
DeviceMem c0_beta_buf(sizeof(C0DataType) * c0_n_beta.mDesc.GetElementSpace());
a_device_buf.ToDevice(a_m_k.mData.data());
b_device_buf.ToDevice(b_k_n.mData.data());
c0_bias_buf.ToDevice(c0_n_bias.mData.data());
c0_add_buf.ToDevice(c0_m_n_add.mData.data());
c0_gamma_buf.ToDevice(c0_n_gamma.mData.data());
c0_beta_buf.ToDevice(c0_n_beta.mData.data());
auto a_element_op = AElementOp{};
auto b_element_op = BElementOp{};
auto acc_element_op = AccElementOp{};
auto c_element_op = CElementOp{};
// do GEMM // do GEMM
auto gemm = DeviceGemmInstance{}; auto gemm = DeviceGemmInstance{};
auto invoker = gemm.MakeInvoker(); auto invoker = gemm.MakeInvoker();
auto argument = gemm.MakeArgument(static_cast<ADataType*>(a_m_k_device_buf.GetDeviceBuffer()), auto argument = gemm.MakeArgument(static_cast<ADataType*>(a_device_buf.GetDeviceBuffer()),
static_cast<BDataType*>(b_k_n_device_buf.GetDeviceBuffer()), static_cast<BDataType*>(b_device_buf.GetDeviceBuffer()),
static_cast<CDataType*>(c0_m_n_device_buf.GetDeviceBuffer()), static_cast<CDataType*>(c_device_buf.GetDeviceBuffer()),
static_cast<CDataType*>(c_m_n_device_buf.GetDeviceBuffer()), static_cast<C0DataType*>(c0_add_buf.GetDeviceBuffer()),
static_cast<C0DataType*>(c0_bias_buf.GetDeviceBuffer()),
static_cast<C0DataType*>(c0_gamma_buf.GetDeviceBuffer()),
static_cast<C0DataType*>(c0_beta_buf.GetDeviceBuffer()),
M, M,
N, N,
K, K,
StrideA, StrideA,
StrideB, StrideB,
StrideC, StrideC,
AElementOp{}, a_element_op,
BElementOp{}, b_element_op,
CElementOp{alpha, beta}); acc_element_op,
c_element_op);
if(!gemm.IsSupportedArgument(argument)) if(!gemm.IsSupportedArgument(argument))
{ {
...@@ -218,36 +235,55 @@ int main(int argc, char* argv[]) ...@@ -218,36 +235,55 @@ int main(int argc, char* argv[])
float ave_time = invoker.Run(argument, StreamConfig{nullptr, time_kernel}); float ave_time = invoker.Run(argument, StreamConfig{nullptr, time_kernel});
std::size_t flop = std::size_t(2) * M * N * K; // extra 6MN flops due to: bias + add + gamma + beta + norm_sub + norm_div,
std::size_t num_btype = // excluding reduction steps
sizeof(ADataType) * M * K + sizeof(BDataType) * K * N + sizeof(CDataType) * M * N; std::size_t flop = std::size_t(2) * M * N * K + std::size_t(6) * M * N;
// extra MN and 3N due to c0_add (MxN), bias (1xN), gamma (1xN), beta (1xN)
std::size_t bytes = sizeof(ADataType) * M * K + sizeof(BDataType) * K * N +
sizeof(CDataType) * 2 * M * N + sizeof(C0DataType) * 3 * N;
float tflops = static_cast<float>(flop) / 1.E9 / ave_time; float tflops = static_cast<float>(flop) / 1.E9 / ave_time;
float gb_per_sec = num_btype / 1.E6 / ave_time; float gb_per_sec = bytes / 1.E6 / ave_time;
std::cout << "Perf: " << ave_time << " ms, " << tflops << " TFlops, " << gb_per_sec << " GB/s"
<< std::endl;
c_m_n_device_buf.FromDevice(c_m_n_device_result.mData.data()); std::cout << "Perf: " << ave_time << " ms, " << tflops << " TFlops, " << gb_per_sec << " GB/s, "
<< gemm.GetTypeString() << std::endl;
bool pass = true;
if(do_verification) if(do_verification)
{ {
auto ref_gemm = ReferenceGemmInstance{}; c_device_buf.FromDevice(c_m_n_device_result.mData.data());
auto ref_gemm = ReferenceInstance{};
auto ref_invoker = ref_gemm.MakeInvoker(); auto ref_invoker = ref_gemm.MakeInvoker();
auto ref_argument = ref_gemm.MakeArgument(a_m_k, auto ref_argument = ref_gemm.MakeArgument(a_m_k,
b_k_n, b_k_n,
c0_m_n,
c_m_n_host_result, c_m_n_host_result,
AElementOp{}, c0_n_bias,
BElementOp{}, c0_m_n_add,
CElementOp{alpha, beta}); c0_n_gamma,
c0_n_beta,
a_element_op,
b_element_op,
acc_element_op,
c_element_op);
ref_invoker.Run(ref_argument); ref_invoker.Run(ref_argument);
return ck::utils::check_err(c_m_n_device_result.mData, c_m_n_host_result.mData) ? 0 : 1; if constexpr(std::is_same<CShuffleDataType, F32>::value)
{
pass &= ck::utils::check_err(
c_m_n_device_result.mData, c_m_n_host_result.mData, "Error: Incorrect results c");
}
else if constexpr(std::is_same<CShuffleDataType, F16>::value)
{
pass &= ck::utils::check_err(c_m_n_device_result.mData,
c_m_n_host_result.mData,
"Error: Incorrect results c",
1e-2,
1e-2);
}
} }
return pass ? 0 : 1;
return 0;
} }
/******************************************************************************* // SPDX-License-Identifier: MIT
* // Copyright (c) 2018-2022, Advanced Micro Devices, Inc. All rights reserved.
* MIT License
*
* Copyright (c) 2022 Advanced Micro Devices, Inc.
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in all
* copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
* SOFTWARE.
*
*******************************************************************************/
#include <iostream> #include <iostream>
#include <numeric> #include <numeric>
#include <initializer_list> #include <initializer_list>
#include <cstdlib> #include <cstdlib>
#include <stdlib.h>
#include <half.hpp> #include "ck/ck.hpp"
#include "ck/tensor_operation/gpu/element/element_wise_operation.hpp"
#include "check_err.hpp" #include "ck/tensor_operation/gpu/device/gemm_specialization.hpp"
#include "config.hpp" #include "ck/tensor_operation/gpu/device/device_cgemm_4gemm_xdl_cshuffle.hpp"
#include "device.hpp"
#include "host_tensor.hpp" #include "ck/library/utility/check_err.hpp"
#include "host_tensor_generator.hpp" #include "ck/library/host_tensor/device_memory.hpp"
#include "device_tensor.hpp" #include "ck/library/host_tensor/host_tensor.hpp"
#include "device_cgemm_4gemm_xdl_cshuffle.hpp" #include "ck/library/host_tensor/host_tensor_generator.hpp"
#include "element_wise_operation.hpp" #include "ck/library/reference_tensor_operation/cpu/reference_cgemm.hpp"
#include "reference_cgemm.hpp"
#include "gemm_specialization.hpp"
template <ck::index_t... Is> template <ck::index_t... Is>
using S = ck::Sequence<Is...>; using S = ck::Sequence<Is...>;
......
add_example_executable(example_softmax_blockwise softmax_blockwise.cpp)
\ No newline at end of file
# Instructions for ```example_softmax_blockwise```
## Run ```example_softmax_blockwise```
```bash
# -D <xxx> : input 3-d tensor lengths
# -v <x> : verification (0=no, 1=yes)
#arg1: initialization (0=no init, 1=single integer value, 2=scope integer value, 3=decimal value)
#arg2: time kernel (0=no, 1=yes)
example_softmax_blockwise -D 4,128,2048 -v 1 1 1
```
Result
```
launch_and_time_kernel: grid_dim {64, 1, 1}, block_dim {256, 1, 1}
Warm up 1 time
Start running 10 times...
Perf: 0.0242877 ms, 259.039 GB/s, DeviceReduceSoftmax<256,M_C8_S1,K_C32_S8,InSrcVectorDim_1_InSrcVectorSize_8_OutDstVectorSize_8>
```
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2022, Advanced Micro Devices, Inc. All rights reserved.
#include <iostream>
#include <numeric>
#include <initializer_list>
#include <cstdlib>
#include <getopt.h>
#include "ck/ck.hpp"
#include "ck/utility/reduction_enums.hpp"
#include "ck/tensor_operation/gpu/device/device_softmax.hpp"
#include "ck/tensor_operation/gpu/device/reduction_operator_mapping.hpp"
#include "ck/library/utility/check_err.hpp"
#include "ck/library/host_tensor/device_memory.hpp"
#include "ck/library/host_tensor/host_common_util.hpp"
#include "ck/library/reference_tensor_operation/cpu/reference_softmax.hpp"
using namespace ck;
using namespace ck::tensor_operation::device;
using InDataType = ck::half_t;
using OutDataType = ck::half_t;
using AccDataType = float;
constexpr int Rank = 3;
constexpr int NumReduceDim = 1;
using DeviceInstance = DeviceSoftmax<InDataType,
AccDataType,
OutDataType,
Rank,
NumReduceDim,
256, // BlockSize
8, // ClusterM
32, // ClusterK
1, // SliceM
8, // SliceK
1, // SrcVecDim (0=M, 1=K)
8, // SrcScalarPerVector
8>; // OutScalarPerVector
static struct option long_options[] = {{"inLengths", required_argument, nullptr, 'D'},
{"verify", required_argument, nullptr, 'v'},
{"help", no_argument, nullptr, '?'},
{nullptr, 0, nullptr, 0}};
class SimpleAppArgs
{
private:
int option_index = 0;
public:
std::vector<size_t> inLengths = {8, 128, 2048};
std::vector<AccDataType> scales = {2.0f, 2.0f};
bool do_verification = true;
int init_method = 2;
bool time_kernel = true;
public:
void show_usage(const char* cmd)
{
std::cout << "Usage of " << cmd << std::endl;
std::cout << "--inLengths or -D, comma separated list of input tensor dimension lengths"
<< std::endl;
std::cout << "--verify or -v, 1/0 to indicate whether to verify the reduction result by "
"comparing with the host-based reduction"
<< std::endl;
std::cout << "Arg1 -- init method (0=no init, 1=single integer value, 2=scope integer "
"value, 3=decimal value)"
<< std::endl;
std::cout << "Arg2 -- time kernel (0=no, 1=yes)" << std::endl;
};
int processArgs(int argc, char* argv[])
{
using ck::host_common::getTypeValuesFromString;
int ch;
while(1)
{
ch = getopt_long(argc, argv, "D:v:l:", long_options, &option_index);
if(ch == -1)
break;
switch(ch)
{
case 'D':
if(!optarg)
throw std::runtime_error("Invalid option format!");
inLengths = getTypeValuesFromString<size_t>(optarg);
break;
case 'v':
if(!optarg)
throw std::runtime_error("Invalid option format!");
do_verification = static_cast<bool>(std::atoi(optarg));
break;
case '?':
if(std::string(long_options[option_index].name) == "help")
{
show_usage(argv[0]);
return (-1);
};
break;
default: show_usage(argv[0]); return (-1);
};
};
if(optind + 2 > argc)
throw std::runtime_error("Invalid cmd-line arguments, more argumetns are needed!");
init_method = std::atoi(argv[optind++]);
time_kernel = static_cast<bool>(std::atoi(argv[optind]));
if(scales.empty())
{
scales.push_back(1.0f);
scales.push_back(0.0f);
};
return (0);
};
};
int main(int argc, char* argv[])
{
// Example: batched gemm C[G, M, N] applies max/sum reduction along N internally
const std::vector<int> invariantDims{0, 1};
const std::vector<int> reduceDims{2};
SimpleAppArgs args;
if(argc > 1)
{
if(args.processArgs(argc, argv) < 0)
return (-1);
};
Tensor<InDataType> in(args.inLengths);
Tensor<OutDataType> out_ref(args.inLengths);
Tensor<OutDataType> out(args.inLengths);
auto inStrides = in.mDesc.GetStrides();
auto outStrides = out.mDesc.GetStrides();
AccDataType alpha = args.scales[0];
AccDataType beta = args.scales[1];
std::cout << "in: " << in.mDesc << std::endl;
std::cout << "out: " << out.mDesc << std::endl;
std::size_t num_thread = 1;
if(args.do_verification)
{
switch(args.init_method)
{
case 0: break;
case 1:
in.GenerateTensorValue(GeneratorTensor_1<InDataType>{1}, num_thread);
if(beta != 0.0f)
out_ref.GenerateTensorValue(GeneratorTensor_1<OutDataType>{1}, num_thread);
break;
case 2:
in.GenerateTensorValue(GeneratorTensor_2<InDataType>{-5, 5}, num_thread);
if(beta != 0.0f)
out_ref.GenerateTensorValue(GeneratorTensor_2<OutDataType>{-5, 5}, num_thread);
break;
default:
in.GenerateTensorValue(GeneratorTensor_3<InDataType>{-5.0, 5.0}, num_thread);
if(beta != 0.0f)
out_ref.GenerateTensorValue(GeneratorTensor_3<OutDataType>{-5.0, 5.0}, num_thread);
}
if(beta != 0.0f)
for(size_t i = 0; i < out_ref.mDesc.GetElementSpace(); i++)
out.mData[i] = out_ref.mData[i];
};
// std::cout << "beta = " << beta << std::endl;
// LogRangeAsType<float>(std::cout << "tensor in: " , in.mData, ",") << std::endl;
// LogRangeAsType<float>(std::cout << "tensor prior out: " , out.mData, ",") << std::endl;
// these buffers are usually provided by the user application
DeviceMem in_dev(sizeof(InDataType) * in.mDesc.GetElementSpace());
DeviceMem out_dev(sizeof(OutDataType) * out.mDesc.GetElementSpace());
in_dev.ToDevice(in.mData.data());
if(beta != 0.0f)
out_dev.ToDevice(out.mData.data());
if(args.do_verification)
{
using ReferenceInstance =
tensor_operation::host::ReferenceSoftmax<InDataType, OutDataType, AccDataType>;
ReferenceInstance ref;
auto ref_arg = ref.MakeArgument(in, out_ref, alpha, beta, reduceDims);
auto invoker = ref.MakeInvoker();
invoker.Run(ref_arg);
// LogRangeAsType<float>(std::cout << "tensor out_ref: ", out_ref.mData, ",") << std::endl;
};
std::vector<ck::index_t> i_inLengths;
std::vector<ck::index_t> i_inStrides;
i_inLengths.assign(args.inLengths.begin(), args.inLengths.end());
i_inStrides.assign(inStrides.begin(), inStrides.end());
auto device_instance = DeviceInstance{};
auto argument_ptr = device_instance.MakeArgumentPointer(i_inLengths,
i_inStrides,
reduceDims,
&alpha,
&beta,
in_dev.GetDeviceBuffer(),
out_dev.GetDeviceBuffer());
if(!device_instance.IsSupportedArgument(argument_ptr.get()))
{
std::cout
<< "The runtime parameters seems not supported by the DeviceReduce instance, exiting!"
<< std::endl;
return 1;
};
std::string instance_name = device_instance.GetTypeString();
auto invoker_ptr = device_instance.MakeInvokerPointer();
bool pass = true;
if(args.do_verification)
{
invoker_ptr->Run(argument_ptr.get(), StreamConfig{nullptr, false});
out_dev.FromDevice(out.mData.data());
// LogRangeAsType<float>(std::cout << "tensor out: " , out.mData, ",") << std::endl;
pass = pass && ck::utils::check_err(out.mData, out_ref.mData);
};
float avg_time = invoker_ptr->Run(argument_ptr.get(), StreamConfig{nullptr, args.time_kernel});
std::size_t num_bytes =
in.mDesc.GetElementSize() * sizeof(InDataType) +
(beta == 0.0f ? 1 : 2) * out.mDesc.GetElementSize() * sizeof(OutDataType);
float gb_per_sec = num_bytes / 1.E6 / avg_time;
std::cout << "Perf: " << avg_time << " ms, " << gb_per_sec << " GB/s, " << instance_name
<< std::endl;
return (pass ? 0 : 1);
}
add_example_executable(example_batched_gemm_c_permute_xdl_fp16 batched_gemm_c_permute_xdl_fp16.cpp)
#include <iostream>
#include <numeric>
#include <initializer_list>
#include <cstdlib>
#include "ck/ck.hpp"
#include "ck/tensor_operation/gpu/device/tensor_layout.hpp"
#include "ck/tensor_operation/gpu/device/gemm_specialization.hpp"
#include "ck/tensor_operation/gpu/device/device_batched_gemm_c_permute_xdl.hpp"
#include "ck/tensor_operation/gpu/element/element_wise_operation.hpp"
#include "ck/library/utility/check_err.hpp"
#include "ck/library/host_tensor/device_memory.hpp"
#include "ck/library/host_tensor/host_tensor.hpp"
#include "ck/library/host_tensor/host_tensor_generator.hpp"
#include "ck/library/reference_tensor_operation/cpu/reference_batched_gemm.hpp"
template <ck::index_t... Is>
using S = ck::Sequence<Is...>;
using F16 = ck::half_t;
using F32 = float;
using Row = ck::tensor_layout::gemm::RowMajor;
using Col = ck::tensor_layout::gemm::ColumnMajor;
using PassThrough = ck::tensor_operation::element_wise::PassThrough;
using ADataType = ck::half_t;
using BDataType = ck::half_t;
using CDataType = ck::half_t;
using AccDataType = float;
using ALayout = ck::tensor_layout::gemm::RowMajor;
using BLayout = ck::tensor_layout::gemm::ColumnMajor;
using CLayout = ck::tensor_layout::gemm::RowMajor;
using AElementOp = ck::tensor_operation::element_wise::PassThrough;
using BElementOp = ck::tensor_operation::element_wise::PassThrough;
using CElementOp = ck::tensor_operation::element_wise::PassThrough;
// static constexpr auto GemmDefault = ck::tensor_operation::device::GemmSpecialization::Default;
// static constexpr auto MNPadding = ck::tensor_operation::device::GemmSpecialization::MNPadding;
static constexpr auto MNKPadding = ck::tensor_operation::device::GemmSpecialization::MNKPadding;
// clang-format off
using DeviceGemmInstance = ck::tensor_operation::device::DeviceBatchedGemmCPermuteXdl
//######| ALayout| BLayout| AData| BData| CData| AccData| A| B| C| GEMM| Num| Block| MPer| NPer| KPer| AK1| BK1| MPer| NPer| MXdl| NXdl| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockLds| BBlockTransfer| BBlockTransfer| BBlockTransfer| BlockTransfer| BBlockTransfer| BBlockTransfer| BBlockLds| CShuffle| CShuffle| CBlockTransferClusterLengths| CBlockTransfer|
//######| | | Type| Type| Type| Type| Elementwise| Elementwise| Elementwise|Spacialization| Prefetch| Size| Block| Block| Block| | | XDL| XDL| Per| Per| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| AddExtraM| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| AddExtraN| MXdlPerWave| NXdlPerWave| _MBlock_MWaveMPerXdl| ScalarPerVector|
//######| | | | | | | Operation| Operation| Operation| | | | | | | | | | | Wave| Wave| Lengths_K0_M_K1| ArrangeOrder| | | PerVector| PerVector_K1| | Lengths_K0_N_K1| ArrangeOrder| | | PerVector| PerVector_K1| | PerShuffle| PerShuffle| _NBlock_NWaveNPerXdl| _NWaveNPerXdl|
//######| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
// < Row, Col, F16, F16, F16, F32, PassThrough, PassThrough, PassThrough, MNPadding, 1, 256, 256, 128, 32, 8, 8, 32, 32, 4, 2, S<4, 64, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, true, S<4, 64, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, true, 1, 1, S<1, 32, 1, 8>, 8>;
< Row, Col, F16, F16, F16, F32, PassThrough, PassThrough, PassThrough, MNKPadding, 1, 256, 128, 64, 32, 8, 8, 32, 32, 2, 1, S<4, 64, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, true, S<4, 32, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, true, 1, 1, S<1, 32, 1, 8>, 8>;
// clang-format on
using ReferenceBatchedGemmInstance = ck::tensor_operation::host::
ReferenceBatchedGemm<ADataType, BDataType, CDataType, AElementOp, BElementOp, CElementOp>;
int main(int argc, char* argv[])
{
bool do_verification = true;
int init_method = 1;
bool time_kernel = false;
const int M = 88;
const int N = 64;
const int K = 88;
const int stride_A = K;
const int stride_B = K;
const int G0 = 1024;
const int G1 = 10;
const int batch_count = G0 * G1;
// output layout - [G0, M, G1, N]
const int stride_G0 = M * G1 * N;
const int stride_G1 = N;
const int stride_M = G1 * N;
const int stride_N = 1;
if(argc == 4)
{
do_verification = std::stoi(argv[1]);
init_method = std::stoi(argv[2]);
time_kernel = std::stoi(argv[3]);
}
else
{
printf("arg1: verification (0=no, 1=yes)\n");
printf("arg2: initialization (0=no init, 1=integer value, 2=decimal value)\n");
printf("arg3: time kernel (0=n0, 1=yes)\n");
exit(0);
}
// GEMM shape
ck::tensor_operation::device::BatchedGemmCPermuteDesc batched_gemm_c_permute_desc{
G0, G1, M, N, stride_G0, stride_G1, stride_M, stride_N};
auto f_host_tensor_descriptor = [](std::size_t batch_count_,
std::size_t row,
std::size_t col,
std::size_t stride,
auto layout) {
if(std::is_same<decltype(layout), ck::tensor_layout::gemm::RowMajor>::value)
{
return HostTensorDescriptor(std::vector<std::size_t>({batch_count_, row, col}),
std::vector<std::size_t>({row * stride, stride, 1}));
}
else
{
return HostTensorDescriptor(std::vector<std::size_t>({batch_count_, row, col}),
std::vector<std::size_t>({col * stride, 1, stride}));
}
};
Tensor<ADataType> a_g_m_k(f_host_tensor_descriptor(batch_count, M, K, stride_A, ALayout{}));
Tensor<BDataType> b_g_k_n(f_host_tensor_descriptor(batch_count, K, N, stride_B, BLayout{}));
auto f_host_c_tensor_descriptor = [](std::size_t G0_,
std::size_t G1_,
std::size_t M_,
std::size_t N_,
std::size_t stride_G0_,
std::size_t stride_G1_,
std::size_t stride_M_,
std::size_t stride_N_) {
return HostTensorDescriptor(
std::vector<std::size_t>({G0_, G1_, M_, N_}),
std::vector<std::size_t>({stride_G0_, stride_G1_, stride_M_, stride_N_}));
};
Tensor<CDataType> c_g0_g1_m_n_host_result(
f_host_c_tensor_descriptor(G0, G1, M, N, stride_G0, stride_G1, stride_M, stride_N));
Tensor<CDataType> c_g0_g1_m_n_device_result(
f_host_c_tensor_descriptor(G0, G1, M, N, stride_G0, stride_G1, stride_M, stride_N));
std::cout << "a_g_m_k: " << a_g_m_k.mDesc << std::endl;
std::cout << "b_g_k_n: " << b_g_k_n.mDesc << std::endl;
std::cout << "c_g0_g1_m_n: " << c_g0_g1_m_n_host_result.mDesc << std::endl;
switch(init_method)
{
case 0: break;
case 1:
a_g_m_k.GenerateTensorValue(GeneratorTensor_2<ADataType>{-5, 5});
b_g_k_n.GenerateTensorValue(GeneratorTensor_2<BDataType>{-5, 5});
break;
default:
a_g_m_k.GenerateTensorValue(GeneratorTensor_3<ADataType>{0.0, 1.0});
b_g_k_n.GenerateTensorValue(GeneratorTensor_3<BDataType>{-0.5, 0.5});
break;
}
DeviceMem a_device_buf(sizeof(ADataType) * a_g_m_k.mDesc.GetElementSpace());
DeviceMem b_device_buf(sizeof(BDataType) * b_g_k_n.mDesc.GetElementSpace());
DeviceMem c_device_buf(sizeof(CDataType) * c_g0_g1_m_n_device_result.mDesc.GetElementSpace());
a_device_buf.ToDevice(a_g_m_k.mData.data());
b_device_buf.ToDevice(b_g_k_n.mData.data());
auto a_element_op = AElementOp{};
auto b_element_op = BElementOp{};
auto c_element_op = CElementOp{};
auto gemm = DeviceGemmInstance{};
auto invoker = gemm.MakeInvoker();
// do GEMM
auto argument = gemm.MakeArgument(static_cast<ADataType*>(a_device_buf.GetDeviceBuffer()),
static_cast<BDataType*>(b_device_buf.GetDeviceBuffer()),
static_cast<CDataType*>(c_device_buf.GetDeviceBuffer()),
M,
N,
K,
stride_A,
stride_B,
batched_gemm_c_permute_desc,
a_element_op,
b_element_op,
c_element_op,
batch_count);
if(!gemm.IsSupportedArgument(argument))
{
throw std::runtime_error(
"wrong! device_gemm with the specified compilation parameters does "
"not support this GEMM problem");
}
float ave_time = invoker.Run(argument, StreamConfig{nullptr, time_kernel});
std::size_t flop = std::size_t(2) * batch_count * M * N * K;
std::size_t num_btype = sizeof(ADataType) * batch_count * M * K +
sizeof(BDataType) * batch_count * K * N +
sizeof(CDataType) * batch_count * M * N;
float tflops = static_cast<float>(flop) / 1.E9 / ave_time;
float gb_per_sec = num_btype / 1.E6 / ave_time;
std::cout << "Perf: " << ave_time << " ms, " << tflops << " TFlops, " << gb_per_sec << " GB/s, "
<< gemm.GetTypeString() << std::endl;
bool pass = true;
if(do_verification)
{
c_device_buf.FromDevice(c_g0_g1_m_n_device_result.mData.data());
auto ref_batched_gemm = ReferenceBatchedGemmInstance{};
auto ref_invoker = ref_batched_gemm.MakeInvoker();
Tensor<CDataType> c_g_m_n_host_result = HostTensorDescriptor(
std::vector<std::size_t>({batch_count, M, N}), std::vector<std::size_t>({M * N, N, 1}));
auto ref_argument = ref_batched_gemm.MakeArgument(
a_g_m_k, b_g_k_n, c_g_m_n_host_result, a_element_op, b_element_op, c_element_op);
ref_invoker.Run(ref_argument);
for(int g0 = 0; g0 < G0; g0++)
{
for(int g1 = 0; g1 < G1; g1++)
{
for(int m = 0; m < M; m++)
{
for(int n = 0; n < N; n++)
{
int g = g0 * G1 + g1;
c_g0_g1_m_n_host_result(g0, g1, m, n) = c_g_m_n_host_result(g, m, n);
}
}
}
}
pass = ck::utils::check_err(c_g0_g1_m_n_host_result.mData,
c_g0_g1_m_n_device_result.mData,
"Error: Incorrect results c");
}
return pass ? 0 : 1;
}
add_example_executable(example_gemm_bias_c_permute_xdl_fp16 gemm_bias_c_permute_xdl_fp16.cpp)
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2022, Advanced Micro Devices, Inc. All rights reserved.
#include <iostream>
#include <numeric>
#include <initializer_list>
#include <cstdlib>
#include "ck/ck.hpp"
#include "ck/tensor_operation/gpu/device/tensor_layout.hpp"
#include "ck/tensor_operation/gpu/device/gemm_specialization.hpp"
#include "ck/tensor_operation/gpu/device/device_gemm_bias_c_permute_xdl.hpp"
#include "ck/tensor_operation/gpu/element/binary_element_wise_operation.hpp"
#include "ck/library/host_tensor/device_memory.hpp"
#include "ck/library/host_tensor/host_tensor.hpp"
#include "ck/library/host_tensor/host_tensor_generator.hpp"
#include "ck/library/reference_tensor_operation/cpu/reference_gemm.hpp"
#include "ck/library/utility/check_err.hpp"
template <ck::index_t... Is>
using S = ck::Sequence<Is...>;
using F16 = ck::half_t;
using F32 = float;
using Row = ck::tensor_layout::gemm::RowMajor;
using Col = ck::tensor_layout::gemm::ColumnMajor;
using PassThrough = ck::tensor_operation::element_wise::PassThrough;
using Add = ck::tensor_operation::element_wise::Add;
using ADataType = F16;
using BDataType = F16;
using AccDataType = F32;
using CShuffleDataType = F32;
using DDataType = F16;
using EDataType = F16;
using ALayout = Row;
using BLayout = Col;
using DLayout = Row;
using ELayout = Row;
using AElementOp = PassThrough;
using BElementOp = PassThrough;
using CDEElementOp = Add;
static constexpr auto GemmDefault = ck::tensor_operation::device::GemmSpecialization::Default;
// clang-format off
using DeviceOpInstance = ck::tensor_operation::device::DeviceGemmBiasCPermute_Xdl
//######| ALayout| BLayout| ELayout| AData| BData| AccData| CShuffle| DsData| EData| A| B| CDE| GEMM| NumGemmK| Block| MPer| NPer| KPer| AK1| BK1| MPer| NPer| MXdl| NXdl| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockLds| BBlockTransfer| BBlockTransfer| BBlockTransfer| BlockTransfer| BBlockTransfer| BBlockTransfer| BBlockLds| CShuffle| CShuffle| CBlockTransferClusterLengths| CBlockTransfer|
//######| | | | Type| Type| Type| DataType| Type| Type| Elementwise| Elementwise| Elementwise| Spacialization| Prefetch| Size| Block| Block| Block| | | XDL| XDL| Per| Per| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| AddExtraM| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| AddExtraN| MXdlPerWave| NXdlPerWave| _MBlock_MWaveMPerXdl| ScalarPerVector|
//######| | | | | | | | | | Operation| Operation| Operation| | Stage| | | | | | | | | Wave| Wave| Lengths_K0_M_K1| ArrangeOrder| | | PerVector| PerVector_K1| | Lengths_K0_N_K1| ArrangeOrder| | | PerVector| PerVector_K1| | PerShuffle| PerShuffle| _NBlock_NWaveNPerXdl| _NWaveNPerXdl|
//######| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
< ALayout, BLayout, ELayout, ADataType, BDataType, AccDataType, CShuffleDataType, DDataType, EDataType, AElementOp, BElementOp, CDEElementOp, GemmDefault, 1, 256, 256, 128, 32, 8, 8, 32, 32, 4, 2, S<4, 64, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, 1, S<4, 64, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, 1, 1, 1, S<1, 32, 1, 8>, 1>;
// clang-format on
int main(int argc, char* argv[])
{
bool do_verification = true;
int init_method = 1;
bool time_kernel = false;
ck::index_t M0 = 4;
ck::index_t M1 = 32;
ck::index_t M2 = 128;
ck::index_t N0 = 16;
ck::index_t N1 = 256;
// GEMM shape
ck::index_t M = M0 * M1 * M2;
ck::index_t N = N0 * N1;
ck::index_t K = 128;
ck::index_t stride_A = K;
ck::index_t stride_B = K;
#if 1
// E = [M0, N0, M1, N1, M2]
ck::index_t stride_E_M0 = N0 * M1 * N1 * M2;
ck::index_t stride_E_M1 = N1 * M2;
ck::index_t stride_E_M2 = 1;
ck::index_t stride_E_N0 = M1 * N1 * M2;
ck::index_t stride_E_N1 = M2;
// D = [0, N0, 0, N1, 0]
ck::index_t stride_D_M0 = 0;
ck::index_t stride_D_M1 = 0;
ck::index_t stride_D_M2 = 0;
ck::index_t stride_D_N0 = N1;
ck::index_t stride_D_N1 = 1;
#else
// D = [0, 0, 0, N0, N1]
ck::index_t stride_D_M0 = 0;
ck::index_t stride_D_M1 = 0;
ck::index_t stride_D_M2 = 0;
ck::index_t stride_D_N0 = N1;
ck::index_t stride_D_N1 = 1;
// E = [M0, M1, M2, N0, N1]
ck::index_t stride_E_M0 = M1 * M2 * N0 * N1;
ck::index_t stride_E_M1 = M2 * N0 * N1;
ck::index_t stride_E_M2 = N0 * N1;
ck::index_t stride_E_N0 = N1;
ck::index_t stride_E_N1 = 1;
#endif
const ck::tensor_operation::device::DEGridDesc_M0_M1_M2_N0_N1 d_grid_desc{
M0, M1, M2, N0, N1, stride_D_M0, stride_D_M1, stride_D_M2, stride_D_N0, stride_D_N1};
const ck::tensor_operation::device::DEGridDesc_M0_M1_M2_N0_N1 e_grid_desc{
M0, M1, M2, N0, N1, stride_E_M0, stride_E_M1, stride_E_M2, stride_E_N0, stride_E_N1};
if(argc == 1)
{
// use default case
}
else if(argc == 4)
{
do_verification = std::stoi(argv[1]);
init_method = std::stoi(argv[2]);
time_kernel = std::stoi(argv[3]);
}
else
{
printf("arg1: verification (0=no, 1=yes)\n");
printf("arg2: initialization (0=no init, 1=integer value, 2=decimal value)\n");
printf("arg3: time kernel (0=no, 1=yes)\n");
exit(0);
}
auto f_host_tensor_descriptor =
[](std::size_t row, std::size_t col, std::size_t stride, auto layout) {
if(std::is_same<decltype(layout), ck::tensor_layout::gemm::RowMajor>::value)
{
return HostTensorDescriptor(std::vector<std::size_t>({row, col}),
std::vector<std::size_t>({stride, 1}));
}
else
{
return HostTensorDescriptor(std::vector<std::size_t>({row, col}),
std::vector<std::size_t>({1, stride}));
}
};
auto f_host_de_tensor_descriptor =
[](ck::tensor_operation::device::DEGridDesc_M0_M1_M2_N0_N1 de_grid_desc) {
std::size_t m0 = de_grid_desc.M0_;
std::size_t m1 = de_grid_desc.M1_;
std::size_t m2 = de_grid_desc.M2_;
std::size_t n0 = de_grid_desc.N0_;
std::size_t n1 = de_grid_desc.N1_;
std::size_t stride_m0 = de_grid_desc.stride_M0_;
std::size_t stride_m1 = de_grid_desc.stride_M1_;
std::size_t stride_m2 = de_grid_desc.stride_M2_;
std::size_t stride_n0 = de_grid_desc.stride_N0_;
std::size_t stride_n1 = de_grid_desc.stride_N1_;
return HostTensorDescriptor(
std::vector<std::size_t>({m0, m1, m2, n0, n1}),
std::vector<std::size_t>({stride_m0, stride_m1, stride_m2, stride_n0, stride_n1}));
};
Tensor<ADataType> a_m_k(f_host_tensor_descriptor(M, K, stride_A, ALayout{}));
Tensor<BDataType> b_k_n(f_host_tensor_descriptor(K, N, stride_B, BLayout{}));
Tensor<DDataType> d_m0_m1_m2_n0_n1(f_host_de_tensor_descriptor(d_grid_desc));
Tensor<EDataType> e_m0_m1_m2_n0_n1_host_result(f_host_de_tensor_descriptor(e_grid_desc));
Tensor<EDataType> e_m0_m1_m2_n0_n1_device_result(f_host_de_tensor_descriptor(e_grid_desc));
std::cout << "a_m_k: " << a_m_k.mDesc << std::endl;
std::cout << "b_k_n: " << b_k_n.mDesc << std::endl;
std::cout << "d_m0_m1_m2_n0_n1: " << d_m0_m1_m2_n0_n1.mDesc << std::endl;
std::cout << "e_m0_m1_m2_n0_n1: " << e_m0_m1_m2_n0_n1_host_result.mDesc << std::endl;
switch(init_method)
{
case 0: break;
case 1:
a_m_k.GenerateTensorValue(GeneratorTensor_2<ADataType>{-5, 5});
b_k_n.GenerateTensorValue(GeneratorTensor_2<BDataType>{-5, 5});
d_m0_m1_m2_n0_n1.GenerateTensorValue(GeneratorTensor_2<DDataType>{-5, 5});
break;
default:
a_m_k.GenerateTensorValue(GeneratorTensor_3<ADataType>{0.0, 1.0});
b_k_n.GenerateTensorValue(GeneratorTensor_3<BDataType>{-0.5, 0.5});
d_m0_m1_m2_n0_n1.GenerateTensorValue(GeneratorTensor_3<DDataType>{0.0, 1.0});
}
DeviceMem a_m_k_device_buf(sizeof(ADataType) * a_m_k.mDesc.GetElementSpace());
DeviceMem b_k_n_device_buf(sizeof(BDataType) * b_k_n.mDesc.GetElementSpace());
DeviceMem d_m0_m1_m2_n0_n1_device_buf(sizeof(DDataType) *
d_m0_m1_m2_n0_n1.mDesc.GetElementSpace());
DeviceMem e_m0_m1_m2_n0_n1_device_buf(sizeof(EDataType) *
e_m0_m1_m2_n0_n1_device_result.mDesc.GetElementSpace());
a_m_k_device_buf.ToDevice(a_m_k.mData.data());
b_k_n_device_buf.ToDevice(b_k_n.mData.data());
d_m0_m1_m2_n0_n1_device_buf.ToDevice(d_m0_m1_m2_n0_n1.mData.data());
auto a_element_op = AElementOp{};
auto b_element_op = BElementOp{};
auto cde_element_op = CDEElementOp{};
// do GEMM
auto device_op = DeviceOpInstance{};
auto invoker = device_op.MakeInvoker();
auto argument = device_op.MakeArgument(a_m_k_device_buf.GetDeviceBuffer(),
b_k_n_device_buf.GetDeviceBuffer(),
d_m0_m1_m2_n0_n1_device_buf.GetDeviceBuffer(),
e_m0_m1_m2_n0_n1_device_buf.GetDeviceBuffer(),
M,
N,
K,
stride_A,
stride_B,
d_grid_desc,
e_grid_desc,
a_element_op,
b_element_op,
cde_element_op);
if(!device_op.IsSupportedArgument(argument))
{
throw std::runtime_error("wrong! this device_op instance does not support this problem");
}
float ave_time = invoker.Run(argument, StreamConfig{nullptr, time_kernel});
std::size_t flop = std::size_t(2) * M * N * K;
std::size_t num_btype = sizeof(ADataType) * M * K + sizeof(BDataType) * K * N +
sizeof(DDataType) * N + sizeof(EDataType) * M * N;
float tflops = static_cast<float>(flop) / 1.E9 / ave_time;
float gb_per_sec = num_btype / 1.E6 / ave_time;
std::cout << "Perf: " << ave_time << " ms, " << tflops << " TFlops, " << gb_per_sec << " GB/s, "
<< device_op.GetTypeString() << std::endl;
if(do_verification)
{
Tensor<AccDataType> c_m_n(HostTensorDescriptor(
std::vector<std::size_t>{static_cast<std::size_t>(M), static_cast<std::size_t>(N)}));
using ReferenceGemmInstance = ck::tensor_operation::host::ReferenceGemm<ADataType,
BDataType,
AccDataType,
AccDataType,
AElementOp,
BElementOp,
PassThrough>;
auto ref_gemm = ReferenceGemmInstance{};
auto ref_invoker = ref_gemm.MakeInvoker();
auto ref_argument =
ref_gemm.MakeArgument(a_m_k, b_k_n, c_m_n, a_element_op, b_element_op, PassThrough{});
ref_invoker.Run(ref_argument);
for(int m0 = 0; m0 < M0; ++m0)
for(int m1 = 0; m1 < M1; ++m1)
for(int m2 = 0; m2 < M2; ++m2)
for(int n0 = 0; n0 < N0; ++n0)
for(int n1 = 0; n1 < N1; ++n1)
{
int m = m0 * M1 * M2 + m1 * M2 + m2;
int n = n0 * N1 + n1;
cde_element_op(e_m0_m1_m2_n0_n1_host_result(m0, m1, m2, n0, n1),
ck::type_convert<EDataType>(c_m_n(m, n)),
d_m0_m1_m2_n0_n1(m0, m1, m2, n0, n1));
}
e_m0_m1_m2_n0_n1_device_buf.FromDevice(e_m0_m1_m2_n0_n1_device_result.mData.data());
return ck::utils::check_err(e_m0_m1_m2_n0_n1_device_result.mData,
e_m0_m1_m2_n0_n1_host_result.mData)
? 0
: 1;
}
return 0;
}
add_example_executable(example_contraction_bilinear_xdl_fp32 contraction_bilinear_xdl_fp32.cpp)
add_example_executable(example_contraction_scale_xdl_fp32 contraction_scale_xdl_fp32.cpp)
# Instructions for ```example_contraction_bilinear_xdl_fp32```
## Run
```bash
#arg1: verification (0=no, 1=yes)
#arg2: initialization (0=no init, 1=integer value, 2=decimal value)
#arg3: time kernel (0=no, 1=yes)
./bin/example_contraction_bilinear_xdl_fp32 1 1 1
```
Result (MI100 @ dynammic freq, 46TFlops peak FP32)
```
a_ms_ks: dim 4, lengths {30, 128, 32, 64}, strides {524288, 4096, 128, 1}
b_ks_ns: dim 4, lengths {32, 64, 32, 64}, strides {128, 1, 524288, 4096}
c_ms_ns: dim 4, lengths {30, 128, 32, 64}, strides {524288, 4096, 128, 1}
launch_and_time_kernel: grid_dim {240, 1, 1}, block_dim {256, 1, 1}
Warm up 1 time
Start running 10 times...
Perf: 0.843286 ms, 38.1985 TFlops, 94.5014 GB/s, DeviceContractionMultipleD_Xdl_CShuffle<256, 256, 128, 16, 4, 4>
```
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2022, Advanced Micro Devices, Inc. All rights reserved.
#include <iostream>
#include <numeric>
#include <initializer_list>
#include <cstdlib>
#include "ck/ck.hpp"
#include "ck/tensor_operation/gpu/device/gemm_specialization.hpp"
#include "ck/tensor_operation/gpu/device/device_contraction_multiple_d_xdl_cshuffle.hpp"
#include "ck/tensor_operation/gpu/element/element_wise_operation.hpp"
#include "ck/library/utility/check_err.hpp"
#include "ck/library/host_tensor/device_memory.hpp"
#include "ck/library/host_tensor/host_tensor.hpp"
#include "ck/library/host_tensor/host_tensor_generator.hpp"
template <ck::index_t... Is>
using S = ck::Sequence<Is...>;
using F32 = float;
using PassThrough = ck::tensor_operation::element_wise::PassThrough;
using ADataType = F32;
using BDataType = F32;
using AccDataType = F32;
using CShuffleDataType = F32;
using DDataType = F32;
using DsDataType = ck::Tuple<DDataType>;
using EDataType = F32;
static constexpr ck::index_t NumDimM = 2;
static constexpr ck::index_t NumDimN = 2;
static constexpr ck::index_t NumDimK = 2;
using AElementOp = ck::tensor_operation::element_wise::PassThrough;
using BElementOp = ck::tensor_operation::element_wise::PassThrough;
using CDEElementOp = ck::tensor_operation::element_wise::Bilinear;
static constexpr auto GemmSpec = ck::tensor_operation::device::GemmSpecialization::MNKPadding;
// clang-format off
using DeviceOpInstanceKKNN = ck::tensor_operation::device::
//#####################################| NumDimM| NumDimN| NumDimK| AData| BData| AccData| CShuffle| DsData| EData| A| B| CDE| GEMM| NumGemmK| Block| MPer| NPer| KPer| AK1| BK1| MPer| NPer| MXdl| NXdl| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockLds| BBlockTransfer| BBlockTransfer| BBlockTransfer| BlockTransfer| BBlockTransfer| BBlockTransfer| BBlockLds| CShuffle| CShuffle| CBlockTransferClusterLengths| CBlockTransfer|
//#####################################| | | | Type| Type| Type| DataType| Type| Type| Elementwise| Elementwise| Elementwise| Spacialization| Prefetch| Size| Block| Block| Block| | | XDL| XDL| Per| Per| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| AddExtraM| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| AddExtraN| MXdlPerWave| NXdlPerWave| _MBlock_MWaveMPerXdl| ScalarPerVector|
//#####################################| | | | | | | | | | Operation| Operation| Operation| | Stage| | | | | | | | | Wave| Wave| Lengths_K0_M_K1| ArrangeOrder| | | PerVector| PerVector_K1| | Lengths_K0_N_K1| ArrangeOrder| | | PerVector| PerVector_K1| | PerShuffle| PerShuffle| _NBlock_NWaveNPerXdl| _NWaveNPerXdl|
//#####################################| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
DeviceContractionMultipleD_Xdl_CShuffle< NumDimM, NumDimN, NumDimK, F32, F32, F32, F32, DsDataType, F32, AElementOp, BElementOp, CDEElementOp, GemmSpec, 1, 256, 256, 128, 16, 4, 4, 32, 32, 4, 2, S<4, 64, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 4, 4, 1, S<4, 64, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 4, 4, 1, 1, 1, S<1, 16, 1, 16>, 4>;
using DeviceOpInstanceKNNN = ck::tensor_operation::device::
//#####################################| NumDimM| NumDimN| NumDimK| AData| BData| AccData| CShuffle| DsData| EData| A| B| CDE| GEMM| NumGemmK| Block| MPer| NPer| KPer| AK1| BK1| MPer| NPer| MXdl| NXdl| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockLds| BBlockTransfer| BBlockTransfer| BBlockTransfer| BlockTransfer| BBlockTransfer| BBlockTransfer| BBlockLds| CShuffle| CShuffle| CBlockTransferClusterLengths| CBlockTransfer|
//#####################################| | | | Type| Type| Type| DataType| Type| Type| Elementwise| Elementwise| Elementwise| Spacialization| Prefetch| Size| Block| Block| Block| | | XDL| XDL| Per| Per| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| AddExtraM| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| AddExtraN| MXdlPerWave| NXdlPerWave| _MBlock_MWaveMPerXdl| ScalarPerVector|
//#####################################| | | | | | | | | | Operation| Operation| Operation| | Stage| | | | | | | | | Wave| Wave| Lengths_K0_M_K1| ArrangeOrder| | | PerVector| PerVector_K1| | Lengths_K0_N_K1| ArrangeOrder| | | PerVector| PerVector_K1| | PerShuffle| PerShuffle| _NBlock_NWaveNPerXdl| _NWaveNPerXdl|
//#####################################| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
DeviceContractionMultipleD_Xdl_CShuffle< NumDimM, NumDimN, NumDimK, F32, F32, F32, F32, DsDataType, F32, AElementOp, BElementOp, CDEElementOp, GemmSpec, 1, 256, 256, 128, 16, 4, 1, 32, 32, 4, 2, S<4, 64, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 4, 4, 1, S<8, 32, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 4, 1, 0, 1, 1, S<1, 16, 1, 16>, 4>;
using DeviceOpInstanceMKNN = ck::tensor_operation::device::
//#####################################| NumDimM| NumDimN| NumDimK| AData| BData| AccData| CShuffle| DsData| EData| A| B| CDE| GEMM| NumGemmK| Block| MPer| NPer| KPer| AK1| BK1| MPer| NPer| MXdl| NXdl| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockLds| BBlockTransfer| BBlockTransfer| BBlockTransfer| BlockTransfer| BBlockTransfer| BBlockTransfer| BBlockLds| CShuffle| CShuffle| CBlockTransferClusterLengths| CBlockTransfer|
//#####################################| | | | Type| Type| Type| DataType| Type| Type| Elementwise| Elementwise| Elementwise| Spacialization| Prefetch| Size| Block| Block| Block| | | XDL| XDL| Per| Per| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| AddExtraM| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| AddExtraN| MXdlPerWave| NXdlPerWave| _MBlock_MWaveMPerXdl| ScalarPerVector|
//#####################################| | | | | | | | | | Operation| Operation| Operation| | Stage| | | | | | | | | Wave| Wave| Lengths_K0_M_K1| ArrangeOrder| | | PerVector| PerVector_K1| | Lengths_K0_N_K1| ArrangeOrder| | | PerVector| PerVector_K1| | PerShuffle| PerShuffle| _NBlock_NWaveNPerXdl| _NWaveNPerXdl|
//#####################################| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
DeviceContractionMultipleD_Xdl_CShuffle< NumDimM, NumDimN, NumDimK, F32, F32, F32, F32, DsDataType, F32, AElementOp, BElementOp, CDEElementOp, GemmSpec, 1, 256, 256, 128, 16, 1, 4, 32, 32, 4, 2, S<4, 64, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 4, 1, 0, S<4, 64, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 4, 4, 1, 1, 1, S<1, 16, 1, 16>, 4>;
using DeviceOpInstanceMNNN = ck::tensor_operation::device::
//#####################################| NumDimM| NumDimN| NumDimK| AData| BData| AccData| CShuffle| DsData| EData| A| B| CDE| GEMM| NumGemmK| Block| MPer| NPer| KPer| AK1| BK1| MPer| NPer| MXdl| NXdl| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockLds| BBlockTransfer| BBlockTransfer| BBlockTransfer| BlockTransfer| BBlockTransfer| BBlockTransfer| BBlockLds| CShuffle| CShuffle| CBlockTransferClusterLengths| CBlockTransfer|
//#####################################| | | | Type| Type| Type| DataType| Type| Type| Elementwise| Elementwise| Elementwise| Spacialization| Prefetch| Size| Block| Block| Block| | | XDL| XDL| Per| Per| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| AddExtraM| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| AddExtraN| MXdlPerWave| NXdlPerWave| _MBlock_MWaveMPerXdl| ScalarPerVector|
//#####################################| | | | | | | | | | Operation| Operation| Operation| | Stage| | | | | | | | | Wave| Wave| Lengths_K0_M_K1| ArrangeOrder| | | PerVector| PerVector_K1| | Lengths_K0_N_K1| ArrangeOrder| | | PerVector| PerVector_K1| | PerShuffle| PerShuffle| _NBlock_NWaveNPerXdl| _NWaveNPerXdl|
//#####################################| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
DeviceContractionMultipleD_Xdl_CShuffle< NumDimM, NumDimN, NumDimK, F32, F32, F32, F32, DsDataType, F32, AElementOp, BElementOp, CDEElementOp, GemmSpec, 1, 256, 256, 128, 16, 1, 1, 32, 32, 4, 2, S<4, 64, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 4, 1, 0, S<8, 32, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 4, 1, 0, 1, 1, S<1, 16, 1, 16>, 4>;
// clang-format on
using DeviceOpInstance = DeviceOpInstanceKKNN;
// hardcoded for NumDimM == NumDimN == NumDimK == 2
template <ck::index_t NumDimM,
ck::index_t NumDimN,
ck::index_t NumDimK,
typename ADataType,
typename BDataType,
typename EDataType,
typename AccDataType,
typename AElementwiseOperation,
typename BElementwiseOperation,
typename CDEElementwiseOperation,
ck::enable_if_t<NumDimM == 2 && NumDimN == 2 && NumDimK == 2, bool> = false>
struct ReferenceContraction_M2_N2_K2 : public ck::tensor_operation::device::BaseOperator
{
// Argument
struct Argument : public ck::tensor_operation::device::BaseArgument
{
Argument(const Tensor<ADataType>& a_ms_ks,
const Tensor<BDataType>& b_ns_ks,
Tensor<EDataType>& e_ms_ns,
AElementwiseOperation a_element_op,
BElementwiseOperation b_element_op,
CDEElementwiseOperation cde_element_op)
: a_ms_ks_{a_ms_ks},
b_ns_ks_{b_ns_ks},
e_ms_ns_{e_ms_ns},
a_element_op_{a_element_op},
b_element_op_{b_element_op},
cde_element_op_{cde_element_op}
{
}
const Tensor<ADataType>& a_ms_ks_;
const Tensor<BDataType>& b_ns_ks_;
Tensor<EDataType>& e_ms_ns_;
AElementwiseOperation a_element_op_;
BElementwiseOperation b_element_op_;
CDEElementwiseOperation cde_element_op_;
};
// Invoker
struct Invoker : public ck::tensor_operation::device::BaseInvoker
{
using Argument = ReferenceContraction_M2_N2_K2::Argument;
float Run(const Argument& arg)
{
auto f_ms_ns = [&](auto m0, auto m1, auto n0, auto n1) {
const int K0 = arg.a_ms_ks_.mDesc.GetLengths()[2];
const int K1 = arg.a_ms_ks_.mDesc.GetLengths()[3];
AccDataType v_acc = 0;
for(int k0 = 0; k0 < K0; ++k0)
{
for(int k1 = 0; k1 < K1; ++k1)
{
AccDataType v_a;
AccDataType v_b;
arg.a_element_op_(
v_a, ck::type_convert<const AccDataType>(arg.a_ms_ks_(m0, m1, k0, k1)));
arg.b_element_op_(
v_b, ck::type_convert<const AccDataType>(arg.b_ns_ks_(n0, n1, k0, k1)));
v_acc += v_a * v_b;
}
}
AccDataType v_c;
arg.cde_element_op_(v_c, v_acc);
arg.e_ms_ns_(m0, m1, n0, n1) = v_c;
};
make_ParallelTensorFunctor(f_ms_ns,
arg.e_ms_ns_.mDesc.GetLengths()[0],
arg.e_ms_ns_.mDesc.GetLengths()[1],
arg.e_ms_ns_.mDesc.GetLengths()[2],
arg.e_ms_ns_.mDesc.GetLengths()[3])(
std::thread::hardware_concurrency());
return 0;
}
float Run(const ck::tensor_operation::device::BaseArgument* p_arg,
const StreamConfig& /* stream_config */ = StreamConfig{}) override
{
return Run(*dynamic_cast<const Argument*>(p_arg));
}
};
static constexpr bool IsValidCompilationParameter()
{
// TODO: properly implement this check
return true;
}
bool IsSupportedArgument(const ck::tensor_operation::device::BaseArgument*) override
{
return true;
}
static auto MakeArgument(const Tensor<ADataType>& a_ms_ks,
const Tensor<BDataType>& b_ns_ks,
Tensor<EDataType>& e_ms_ns,
AElementwiseOperation a_element_op,
BElementwiseOperation b_element_op,
CDEElementwiseOperation cde_element_op)
{
return Argument{a_ms_ks, b_ns_ks, e_ms_ns, a_element_op, b_element_op, cde_element_op};
}
static auto MakeInvoker() { return Invoker{}; }
virtual std::unique_ptr<ck::tensor_operation::device::BaseInvoker> MakeInvokerPointer()
{
return std::make_unique<Invoker>(Invoker{});
}
std::string GetTypeString() const override
{
auto str = std::stringstream();
// clang-format off
str << "ReferenceContraction_M2_N2_K2"
<< std::endl;
// clang-format on
return str.str();
}
};
int main(int argc, char* argv[])
{
bool do_verification = true;
int init_method = 1;
bool time_kernel = false;
// A[M0, M1, K0, K1]
std::vector<ck::index_t> a_ms_ks_lengths{30, 128, 32, 64};
std::vector<ck::index_t> a_ms_ks_strides{524288, 4096, 128, 1};
// B[N0, N1, K0, K1]
std::vector<ck::index_t> b_ns_ks_lengths{32, 64, 32, 64};
std::vector<ck::index_t> b_ns_ks_strides{524288, 4096, 128, 1};
// D[M0, M1, N0, N1]
std::vector<ck::index_t> d_ms_ns_lengths{30, 128, 32, 64};
std::vector<ck::index_t> d_ms_ns_strides{524288, 4096, 128, 1};
// E[M0, M1, N0, N1]
std::vector<ck::index_t> e_ms_ns_lengths{30, 128, 32, 64};
std::vector<ck::index_t> e_ms_ns_strides{524288, 4096, 128, 1};
float alpha = 1.f;
float beta = 1.f;
if(argc == 1)
{
// use default case
}
else if(argc == 4)
{
do_verification = std::stoi(argv[1]);
init_method = std::stoi(argv[2]);
time_kernel = std::stoi(argv[3]);
}
else if(argc == 28)
{
do_verification = std::stoi(argv[1]);
init_method = std::stoi(argv[2]);
time_kernel = std::stoi(argv[3]);
const ck::index_t M0 = std::stoi(argv[4]);
const ck::index_t M1 = std::stoi(argv[5]);
const ck::index_t N0 = std::stoi(argv[6]);
const ck::index_t N1 = std::stoi(argv[7]);
const ck::index_t K0 = std::stoi(argv[8]);
const ck::index_t K1 = std::stoi(argv[9]);
a_ms_ks_lengths = {M0, M1, K0, K1};
a_ms_ks_strides = {
std::stoi(argv[10]), std::stoi(argv[11]), std::stoi(argv[12]), std::stoi(argv[13])};
b_ns_ks_lengths = {N0, N1, K0, K1};
b_ns_ks_strides = {
std::stoi(argv[14]), std::stoi(argv[15]), std::stoi(argv[16]), std::stoi(argv[17])};
d_ms_ns_lengths = {M0, M1, N0, N1};
d_ms_ns_strides = {
std::stoi(argv[18]), std::stoi(argv[19]), std::stoi(argv[20]), std::stoi(argv[21])};
e_ms_ns_lengths = {M0, M1, N0, N1};
e_ms_ns_strides = {
std::stoi(argv[22]), std::stoi(argv[23]), std::stoi(argv[24]), std::stoi(argv[25])};
alpha = std::stof(argv[26]);
beta = std::stof(argv[27]);
}
else
{
printf("arg1: verification (0=no, 1=yes)\n");
printf("arg2: initialization (0=no init, 1=integer value, 2=decimal value)\n");
printf("arg3: time kernel (0=no, 1=yes)\n");
printf("arg4 to 7: M0, M1, N0, N1, K0, K1\n");
printf("arg10 to 13: Stride_A_M0, Stride_A_M1, Stride_A_K0, Stride_A_K1\n");
printf("arg14 to 17: Stride_B_N0, Stride_B_N1, Stride_B_K0, Stride_B_K1\n");
printf("arg18 to 21: Stride_D_M0, Stride_D_M1, Stride_D_N0, Stride_D_N1\n");
printf("arg22 to 25: Stride_E_M0, Stride_E_M1, Stride_E_N0, Stride_E_N1\n");
printf("arg26 to 27: alpha, beta\n");
exit(0);
}
Tensor<ADataType> a_ms_ks(
std::vector<std::size_t>(a_ms_ks_lengths.begin(), a_ms_ks_lengths.end()),
std::vector<std::size_t>(a_ms_ks_strides.begin(), a_ms_ks_strides.end()));
Tensor<BDataType> b_ns_ks(
std::vector<std::size_t>(b_ns_ks_lengths.begin(), b_ns_ks_lengths.end()),
std::vector<std::size_t>(b_ns_ks_strides.begin(), b_ns_ks_strides.end()));
Tensor<EDataType> d_ms_ns(
std::vector<std::size_t>(d_ms_ns_lengths.begin(), d_ms_ns_lengths.end()),
std::vector<std::size_t>(d_ms_ns_strides.begin(), d_ms_ns_strides.end()));
Tensor<EDataType> e_ms_ns_host_result(
std::vector<std::size_t>(e_ms_ns_lengths.begin(), e_ms_ns_lengths.end()),
std::vector<std::size_t>(e_ms_ns_strides.begin(), e_ms_ns_strides.end()));
Tensor<EDataType> e_ms_ns_device_result(
std::vector<std::size_t>(e_ms_ns_lengths.begin(), e_ms_ns_lengths.end()),
std::vector<std::size_t>(e_ms_ns_strides.begin(), e_ms_ns_strides.end()));
std::cout << "a_ms_ks: " << a_ms_ks.mDesc << std::endl;
std::cout << "b_ns_ks: " << b_ns_ks.mDesc << std::endl;
std::cout << "d_ms_ns: " << d_ms_ns.mDesc << std::endl;
std::cout << "e_ms_ns: " << e_ms_ns_host_result.mDesc << std::endl;
switch(init_method)
{
case 0: break;
case 1:
a_ms_ks.GenerateTensorValue(GeneratorTensor_2<ADataType>{-5, 5});
b_ns_ks.GenerateTensorValue(GeneratorTensor_2<BDataType>{-5, 5});
d_ms_ns.GenerateTensorValue(GeneratorTensor_2<BDataType>{-5, 5});
break;
default:
a_ms_ks.GenerateTensorValue(GeneratorTensor_3<ADataType>{0.0, 1.0});
b_ns_ks.GenerateTensorValue(GeneratorTensor_3<BDataType>{-0.5, 0.5});
d_ms_ns.GenerateTensorValue(GeneratorTensor_3<BDataType>{-0.5, 0.5});
break;
}
DeviceMem a_device_buf(sizeof(ADataType) * a_ms_ks.mDesc.GetElementSpace());
DeviceMem b_device_buf(sizeof(BDataType) * b_ns_ks.mDesc.GetElementSpace());
DeviceMem d_device_buf(sizeof(DDataType) * d_ms_ns.mDesc.GetElementSpace());
DeviceMem e_device_buf(sizeof(EDataType) * e_ms_ns_device_result.mDesc.GetElementSpace());
a_device_buf.ToDevice(a_ms_ks.mData.data());
b_device_buf.ToDevice(b_ns_ks.mData.data());
d_device_buf.ToDevice(d_ms_ns.mData.data());
// set zero
e_device_buf.SetZero();
auto a_element_op = AElementOp{};
auto b_element_op = BElementOp{};
auto cde_element_op = CDEElementOp{alpha, beta};
// device operation
auto op = DeviceOpInstance{};
auto invoker = op.MakeInvoker();
auto argument = op.MakeArgument(a_device_buf.GetDeviceBuffer(),
b_device_buf.GetDeviceBuffer(),
std::array<const void*, 1>{d_device_buf.GetDeviceBuffer()},
e_device_buf.GetDeviceBuffer(),
a_ms_ks_lengths,
a_ms_ks_strides,
b_ns_ks_lengths,
b_ns_ks_strides,
std::array<std::vector<ck::index_t>, 1>{d_ms_ns_lengths},
std::array<std::vector<ck::index_t>, 1>{d_ms_ns_strides},
e_ms_ns_lengths,
e_ms_ns_strides,
a_element_op,
b_element_op,
cde_element_op);
if(!op.IsSupportedArgument(argument))
{
std::cout << op.GetTypeString() << " does not support this problem" << std::endl;
return 0;
}
float ave_time = invoker.Run(argument, StreamConfig{nullptr, time_kernel});
ck::index_t M = std::accumulate(e_ms_ns_lengths.begin(),
e_ms_ns_lengths.begin() + NumDimM,
ck::index_t{1},
std::multiplies<ck::index_t>{});
ck::index_t N = std::accumulate(e_ms_ns_lengths.begin() + NumDimM,
e_ms_ns_lengths.begin() + NumDimM + NumDimN,
ck::index_t{1},
std::multiplies<ck::index_t>{});
ck::index_t K = std::accumulate(a_ms_ks_lengths.begin() + NumDimM,
a_ms_ks_lengths.begin() + NumDimM + NumDimK,
ck::index_t{1},
std::multiplies<ck::index_t>{});
std::size_t flop = std::size_t(2) * M * N * K;
std::size_t num_btype = sizeof(ADataType) * M * K + sizeof(BDataType) * K * N +
sizeof(DDataType) * M * N + sizeof(EDataType) * M * N;
float tflops = static_cast<float>(flop) / 1.E9 / ave_time;
float gb_per_sec = num_btype / 1.E6 / ave_time;
std::cout << "Perf: " << ave_time << " ms, " << tflops << " TFlops, " << gb_per_sec << " GB/s, "
<< op.GetTypeString() << std::endl;
e_device_buf.FromDevice(e_ms_ns_device_result.mData.data());
if(do_verification)
{
Tensor<CShuffleDataType> c_ms_ns_host_result(
std::vector<std::size_t>(e_ms_ns_lengths.begin(), e_ms_ns_lengths.end()),
std::vector<std::size_t>(e_ms_ns_strides.begin(), e_ms_ns_strides.end()));
using ReferenceOpInstance = ReferenceContraction_M2_N2_K2<NumDimM,
NumDimN,
NumDimK,
ADataType,
BDataType,
CShuffleDataType,
AccDataType,
AElementOp,
BElementOp,
PassThrough>;
auto ref_gemm = ReferenceOpInstance{};
auto ref_invoker = ref_gemm.MakeInvoker();
auto ref_argument = ref_gemm.MakeArgument(
a_ms_ks, b_ns_ks, c_ms_ns_host_result, a_element_op, b_element_op, PassThrough{});
ref_invoker.Run(ref_argument);
for(size_t m0 = 0; m0 < e_ms_ns_host_result.mDesc.GetLengths()[0]; ++m0)
{
for(size_t m1 = 0; m1 < e_ms_ns_host_result.mDesc.GetLengths()[1]; ++m1)
{
for(size_t n0 = 0; n0 < e_ms_ns_host_result.mDesc.GetLengths()[2]; ++n0)
{
for(size_t n1 = 0; n1 < e_ms_ns_host_result.mDesc.GetLengths()[3]; ++n1)
{
cde_element_op(e_ms_ns_host_result(m0, m1, n0, n1),
c_ms_ns_host_result(m0, m1, n0, n1),
d_ms_ns(m0, m1, n0, n1));
}
}
}
}
return ck::utils::check_err(e_ms_ns_device_result.mData, e_ms_ns_host_result.mData) ? 0 : 1;
}
return 0;
}
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2022, Advanced Micro Devices, Inc. All rights reserved.
#include <iostream>
#include <numeric>
#include <initializer_list>
#include <cstdlib>
#include "ck/ck.hpp"
#include "ck/tensor_operation/gpu/device/gemm_specialization.hpp"
#include "ck/tensor_operation/gpu/device/device_contraction_multiple_d_xdl_cshuffle.hpp"
#include "ck/tensor_operation/gpu/element/element_wise_operation.hpp"
#include "ck/library/utility/check_err.hpp"
#include "ck/library/host_tensor/device_memory.hpp"
#include "ck/library/host_tensor/host_tensor.hpp"
#include "ck/library/host_tensor/host_tensor_generator.hpp"
template <ck::index_t... Is>
using S = ck::Sequence<Is...>;
using F32 = float;
using PassThrough = ck::tensor_operation::element_wise::PassThrough;
using ADataType = F32;
using BDataType = F32;
using AccDataType = F32;
using CShuffleDataType = F32;
using DsDataType = ck::Tuple<>;
using EDataType = F32;
static constexpr ck::index_t NumDimM = 2;
static constexpr ck::index_t NumDimN = 2;
static constexpr ck::index_t NumDimK = 2;
using AElementOp = ck::tensor_operation::element_wise::PassThrough;
using BElementOp = ck::tensor_operation::element_wise::PassThrough;
using CDEElementOp = ck::tensor_operation::element_wise::Scale;
static constexpr auto GemmSpec = ck::tensor_operation::device::GemmSpecialization::MNKPadding;
// clang-format off
using DeviceOpInstanceKKN = ck::tensor_operation::device::
//#####################################| NumDimM| NumDimN| NumDimK| AData| BData| AccData| CShuffle| DsData| EData| A| B| CDE| GEMM| NumGemmK| Block| MPer| NPer| KPer| AK1| BK1| MPer| NPer| MXdl| NXdl| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockLds| BBlockTransfer| BBlockTransfer| BBlockTransfer| BlockTransfer| BBlockTransfer| BBlockTransfer| BBlockLds| CShuffle| CShuffle| CBlockTransferClusterLengths| CBlockTransfer|
//#####################################| | | | Type| Type| Type| DataType| Type| Type| Elementwise| Elementwise| Elementwise| Spacialization| Prefetch| Size| Block| Block| Block| | | XDL| XDL| Per| Per| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| AddExtraM| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| AddExtraN| MXdlPerWave| NXdlPerWave| _MBlock_MWaveMPerXdl| ScalarPerVector|
//#####################################| | | | | | | | | | Operation| Operation| Operation| | Stage| | | | | | | | | Wave| Wave| Lengths_K0_M_K1| ArrangeOrder| | | PerVector| PerVector_K1| | Lengths_K0_N_K1| ArrangeOrder| | | PerVector| PerVector_K1| | PerShuffle| PerShuffle| _NBlock_NWaveNPerXdl| _NWaveNPerXdl|
//#####################################| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
DeviceContractionMultipleD_Xdl_CShuffle< NumDimM, NumDimN, NumDimK, F32, F32, F32, F32, DsDataType, F32, AElementOp, BElementOp, CDEElementOp, GemmSpec, 1, 256, 256, 128, 16, 4, 4, 32, 32, 4, 2, S<4, 64, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 4, 4, 1, S<4, 64, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 4, 4, 1, 1, 1, S<1, 16, 1, 16>, 4>;
using DeviceOpInstanceKNN = ck::tensor_operation::device::
//#####################################| NumDimM| NumDimN| NumDimK| AData| BData| AccData| CShuffle| DsData| EData| A| B| CDE| GEMM| NumGemmK| Block| MPer| NPer| KPer| AK1| BK1| MPer| NPer| MXdl| NXdl| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockLds| BBlockTransfer| BBlockTransfer| BBlockTransfer| BlockTransfer| BBlockTransfer| BBlockTransfer| BBlockLds| CShuffle| CShuffle| CBlockTransferClusterLengths| CBlockTransfer|
//#####################################| | | | Type| Type| Type| DataType| Type| Type| Elementwise| Elementwise| Elementwise| Spacialization| Prefetch| Size| Block| Block| Block| | | XDL| XDL| Per| Per| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| AddExtraM| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| AddExtraN| MXdlPerWave| NXdlPerWave| _MBlock_MWaveMPerXdl| ScalarPerVector|
//#####################################| | | | | | | | | | Operation| Operation| Operation| | Stage| | | | | | | | | Wave| Wave| Lengths_K0_M_K1| ArrangeOrder| | | PerVector| PerVector_K1| | Lengths_K0_N_K1| ArrangeOrder| | | PerVector| PerVector_K1| | PerShuffle| PerShuffle| _NBlock_NWaveNPerXdl| _NWaveNPerXdl|
//#####################################| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
DeviceContractionMultipleD_Xdl_CShuffle< NumDimM, NumDimN, NumDimK, F32, F32, F32, F32, DsDataType, F32, AElementOp, BElementOp, CDEElementOp, GemmSpec, 1, 256, 256, 128, 16, 4, 1, 32, 32, 4, 2, S<4, 64, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 4, 4, 1, S<8, 32, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 4, 1, 0, 1, 1, S<1, 16, 1, 16>, 4>;
using DeviceOpInstanceMKN = ck::tensor_operation::device::
//#####################################| NumDimM| NumDimN| NumDimK| AData| BData| AccData| CShuffle| DsData| EData| A| B| CDE| GEMM| NumGemmK| Block| MPer| NPer| KPer| AK1| BK1| MPer| NPer| MXdl| NXdl| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockLds| BBlockTransfer| BBlockTransfer| BBlockTransfer| BlockTransfer| BBlockTransfer| BBlockTransfer| BBlockLds| CShuffle| CShuffle| CBlockTransferClusterLengths| CBlockTransfer|
//#####################################| | | | Type| Type| Type| DataType| Type| Type| Elementwise| Elementwise| Elementwise| Spacialization| Prefetch| Size| Block| Block| Block| | | XDL| XDL| Per| Per| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| AddExtraM| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| AddExtraN| MXdlPerWave| NXdlPerWave| _MBlock_MWaveMPerXdl| ScalarPerVector|
//#####################################| | | | | | | | | | Operation| Operation| Operation| | Stage| | | | | | | | | Wave| Wave| Lengths_K0_M_K1| ArrangeOrder| | | PerVector| PerVector_K1| | Lengths_K0_N_K1| ArrangeOrder| | | PerVector| PerVector_K1| | PerShuffle| PerShuffle| _NBlock_NWaveNPerXdl| _NWaveNPerXdl|
//#####################################| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
DeviceContractionMultipleD_Xdl_CShuffle< NumDimM, NumDimN, NumDimK, F32, F32, F32, F32, DsDataType, F32, AElementOp, BElementOp, CDEElementOp, GemmSpec, 1, 256, 256, 128, 16, 1, 4, 32, 32, 4, 2, S<4, 64, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 4, 1, 0, S<4, 64, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 4, 4, 1, 1, 1, S<1, 16, 1, 16>, 4>;
using DeviceOpInstanceMNN = ck::tensor_operation::device::
//#####################################| NumDimM| NumDimN| NumDimK| AData| BData| AccData| CShuffle| DsData| EData| A| B| CDE| GEMM| NumGemmK| Block| MPer| NPer| KPer| AK1| BK1| MPer| NPer| MXdl| NXdl| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockLds| BBlockTransfer| BBlockTransfer| BBlockTransfer| BlockTransfer| BBlockTransfer| BBlockTransfer| BBlockLds| CShuffle| CShuffle| CBlockTransferClusterLengths| CBlockTransfer|
//#####################################| | | | Type| Type| Type| DataType| Type| Type| Elementwise| Elementwise| Elementwise| Spacialization| Prefetch| Size| Block| Block| Block| | | XDL| XDL| Per| Per| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| AddExtraM| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| AddExtraN| MXdlPerWave| NXdlPerWave| _MBlock_MWaveMPerXdl| ScalarPerVector|
//#####################################| | | | | | | | | | Operation| Operation| Operation| | Stage| | | | | | | | | Wave| Wave| Lengths_K0_M_K1| ArrangeOrder| | | PerVector| PerVector_K1| | Lengths_K0_N_K1| ArrangeOrder| | | PerVector| PerVector_K1| | PerShuffle| PerShuffle| _NBlock_NWaveNPerXdl| _NWaveNPerXdl|
//#####################################| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
DeviceContractionMultipleD_Xdl_CShuffle< NumDimM, NumDimN, NumDimK, F32, F32, F32, F32, DsDataType, F32, AElementOp, BElementOp, CDEElementOp, GemmSpec, 1, 256, 256, 128, 16, 1, 1, 32, 32, 4, 2, S<4, 64, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 4, 1, 0, S<8, 32, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 4, 1, 0, 1, 1, S<1, 16, 1, 16>, 4>;
// clang-format on
using DeviceOpInstance = DeviceOpInstanceKKN;
// hardcoded for NumDimM == NumDimN == NumDimK == 2
template <ck::index_t NumDimM,
ck::index_t NumDimN,
ck::index_t NumDimK,
typename ADataType,
typename BDataType,
typename EDataType,
typename AccDataType,
typename AElementwiseOperation,
typename BElementwiseOperation,
typename CDEElementwiseOperation,
ck::enable_if_t<NumDimM == 2 && NumDimN == 2 && NumDimK == 2, bool> = false>
struct ReferenceContraction_M2_N2_K2 : public ck::tensor_operation::device::BaseOperator
{
// Argument
struct Argument : public ck::tensor_operation::device::BaseArgument
{
Argument(const Tensor<ADataType>& a_ms_ks,
const Tensor<BDataType>& b_ns_ks,
Tensor<EDataType>& e_ms_ns,
AElementwiseOperation a_element_op,
BElementwiseOperation b_element_op,
CDEElementwiseOperation cde_element_op)
: a_ms_ks_{a_ms_ks},
b_ns_ks_{b_ns_ks},
e_ms_ns_{e_ms_ns},
a_element_op_{a_element_op},
b_element_op_{b_element_op},
cde_element_op_{cde_element_op}
{
}
const Tensor<ADataType>& a_ms_ks_;
const Tensor<BDataType>& b_ns_ks_;
Tensor<EDataType>& e_ms_ns_;
AElementwiseOperation a_element_op_;
BElementwiseOperation b_element_op_;
CDEElementwiseOperation cde_element_op_;
};
// Invoker
struct Invoker : public ck::tensor_operation::device::BaseInvoker
{
using Argument = ReferenceContraction_M2_N2_K2::Argument;
float Run(const Argument& arg)
{
auto f_ms_ns = [&](auto m0, auto m1, auto n0, auto n1) {
const int K0 = arg.a_ms_ks_.mDesc.GetLengths()[2];
const int K1 = arg.a_ms_ks_.mDesc.GetLengths()[3];
AccDataType v_acc = 0;
for(int k0 = 0; k0 < K0; ++k0)
{
for(int k1 = 0; k1 < K1; ++k1)
{
AccDataType v_a;
AccDataType v_b;
arg.a_element_op_(
v_a, ck::type_convert<const AccDataType>(arg.a_ms_ks_(m0, m1, k0, k1)));
arg.b_element_op_(
v_b, ck::type_convert<const AccDataType>(arg.b_ns_ks_(n0, n1, k0, k1)));
v_acc += v_a * v_b;
}
}
AccDataType v_c;
arg.cde_element_op_(v_c, v_acc);
arg.e_ms_ns_(m0, m1, n0, n1) = v_c;
};
make_ParallelTensorFunctor(f_ms_ns,
arg.e_ms_ns_.mDesc.GetLengths()[0],
arg.e_ms_ns_.mDesc.GetLengths()[1],
arg.e_ms_ns_.mDesc.GetLengths()[2],
arg.e_ms_ns_.mDesc.GetLengths()[3])(
std::thread::hardware_concurrency());
return 0;
}
float Run(const ck::tensor_operation::device::BaseArgument* p_arg,
const StreamConfig& /* stream_config */ = StreamConfig{}) override
{
return Run(*dynamic_cast<const Argument*>(p_arg));
}
};
static constexpr bool IsValidCompilationParameter()
{
// TODO: properly implement this check
return true;
}
bool IsSupportedArgument(const ck::tensor_operation::device::BaseArgument*) override
{
return true;
}
static auto MakeArgument(const Tensor<ADataType>& a_ms_ks,
const Tensor<BDataType>& b_ns_ks,
Tensor<EDataType>& e_ms_ns,
AElementwiseOperation a_element_op,
BElementwiseOperation b_element_op,
CDEElementwiseOperation cde_element_op)
{
return Argument{a_ms_ks, b_ns_ks, e_ms_ns, a_element_op, b_element_op, cde_element_op};
}
static auto MakeInvoker() { return Invoker{}; }
virtual std::unique_ptr<ck::tensor_operation::device::BaseInvoker> MakeInvokerPointer()
{
return std::make_unique<Invoker>(Invoker{});
}
std::string GetTypeString() const override
{
auto str = std::stringstream();
// clang-format off
str << "ReferenceContraction_M2_N2_K2"
<< std::endl;
// clang-format on
return str.str();
}
};
int main(int argc, char* argv[])
{
bool do_verification = true;
int init_method = 1;
bool time_kernel = false;
// A[M0, M1, K0, K1]
std::vector<ck::index_t> a_ms_ks_lengths{30, 128, 32, 64};
std::vector<ck::index_t> a_ms_ks_strides{524288, 4096, 128, 1};
// B[N0, N1, K0, K1]
std::vector<ck::index_t> b_ns_ks_lengths{32, 64, 32, 64};
std::vector<ck::index_t> b_ns_ks_strides{524288, 4096, 128, 1};
// E[M0, M1, N0, N1]
std::vector<ck::index_t> e_ms_ns_lengths{30, 128, 32, 64};
std::vector<ck::index_t> e_ms_ns_strides{524288, 4096, 128, 1};
float scale = 1.f;
if(argc == 1)
{
// use default case
}
else if(argc == 4)
{
do_verification = std::stoi(argv[1]);
init_method = std::stoi(argv[2]);
time_kernel = std::stoi(argv[3]);
}
else if(argc == 23)
{
do_verification = std::stoi(argv[1]);
init_method = std::stoi(argv[2]);
time_kernel = std::stoi(argv[3]);
const ck::index_t M0 = std::stoi(argv[4]);
const ck::index_t M1 = std::stoi(argv[5]);
const ck::index_t N0 = std::stoi(argv[6]);
const ck::index_t N1 = std::stoi(argv[7]);
const ck::index_t K0 = std::stoi(argv[8]);
const ck::index_t K1 = std::stoi(argv[9]);
a_ms_ks_lengths = {M0, M1, K0, K1};
a_ms_ks_strides = {
std::stoi(argv[10]), std::stoi(argv[11]), std::stoi(argv[12]), std::stoi(argv[13])};
b_ns_ks_lengths = {N0, N1, K0, K1};
b_ns_ks_strides = {
std::stoi(argv[14]), std::stoi(argv[15]), std::stoi(argv[16]), std::stoi(argv[17])};
e_ms_ns_lengths = {M0, M1, N0, N1};
e_ms_ns_strides = {
std::stoi(argv[22]), std::stoi(argv[23]), std::stoi(argv[24]), std::stoi(argv[25])};
scale = std::stof(argv[26]);
}
else
{
printf("arg1: verification (0=no, 1=yes)\n");
printf("arg2: initialization (0=no init, 1=integer value, 2=decimal value)\n");
printf("arg3: time kernel (0=no, 1=yes)\n");
printf("arg4 to 7: M0, M1, N0, N1, K0, K1\n");
printf("arg10 to 13: Stride_A_M0, Stride_A_M1, Stride_A_K0, Stride_A_K1\n");
printf("arg14 to 17: Stride_B_N0, Stride_B_N1, Stride_B_K0, Stride_B_K1\n");
printf("arg18 to 21: Stride_E_M0, Stride_E_M1, Stride_E_N0, Stride_E_N1\n");
printf("arg22: scale\n");
exit(0);
}
Tensor<ADataType> a_ms_ks(
std::vector<std::size_t>(a_ms_ks_lengths.begin(), a_ms_ks_lengths.end()),
std::vector<std::size_t>(a_ms_ks_strides.begin(), a_ms_ks_strides.end()));
Tensor<BDataType> b_ns_ks(
std::vector<std::size_t>(b_ns_ks_lengths.begin(), b_ns_ks_lengths.end()),
std::vector<std::size_t>(b_ns_ks_strides.begin(), b_ns_ks_strides.end()));
Tensor<EDataType> e_ms_ns_host_result(
std::vector<std::size_t>(e_ms_ns_lengths.begin(), e_ms_ns_lengths.end()),
std::vector<std::size_t>(e_ms_ns_strides.begin(), e_ms_ns_strides.end()));
Tensor<EDataType> e_ms_ns_device_result(
std::vector<std::size_t>(e_ms_ns_lengths.begin(), e_ms_ns_lengths.end()),
std::vector<std::size_t>(e_ms_ns_strides.begin(), e_ms_ns_strides.end()));
std::cout << "a_ms_ks: " << a_ms_ks.mDesc << std::endl;
std::cout << "b_ns_ks: " << b_ns_ks.mDesc << std::endl;
std::cout << "e_ms_ns: " << e_ms_ns_host_result.mDesc << std::endl;
switch(init_method)
{
case 0: break;
case 1:
a_ms_ks.GenerateTensorValue(GeneratorTensor_2<ADataType>{-5, 5});
b_ns_ks.GenerateTensorValue(GeneratorTensor_2<BDataType>{-5, 5});
break;
default:
a_ms_ks.GenerateTensorValue(GeneratorTensor_3<ADataType>{0.0, 1.0});
b_ns_ks.GenerateTensorValue(GeneratorTensor_3<BDataType>{-0.5, 0.5});
break;
}
DeviceMem a_device_buf(sizeof(ADataType) * a_ms_ks.mDesc.GetElementSpace());
DeviceMem b_device_buf(sizeof(BDataType) * b_ns_ks.mDesc.GetElementSpace());
DeviceMem e_device_buf(sizeof(EDataType) * e_ms_ns_device_result.mDesc.GetElementSpace());
a_device_buf.ToDevice(a_ms_ks.mData.data());
b_device_buf.ToDevice(b_ns_ks.mData.data());
// set zero
e_device_buf.SetZero();
auto a_element_op = AElementOp{};
auto b_element_op = BElementOp{};
auto cde_element_op = CDEElementOp{scale};
// device operation
auto op = DeviceOpInstance{};
auto invoker = op.MakeInvoker();
auto argument = op.MakeArgument(a_device_buf.GetDeviceBuffer(),
b_device_buf.GetDeviceBuffer(),
std::array<const void*, 0>{},
e_device_buf.GetDeviceBuffer(),
a_ms_ks_lengths,
a_ms_ks_strides,
b_ns_ks_lengths,
b_ns_ks_strides,
std::array<std::vector<ck::index_t>, 0>{},
std::array<std::vector<ck::index_t>, 0>{},
e_ms_ns_lengths,
e_ms_ns_strides,
a_element_op,
b_element_op,
cde_element_op);
if(!op.IsSupportedArgument(argument))
{
std::cout << op.GetTypeString() << " does not support this problem" << std::endl;
return 0;
}
float ave_time = invoker.Run(argument, StreamConfig{nullptr, time_kernel});
ck::index_t M = std::accumulate(e_ms_ns_lengths.begin(),
e_ms_ns_lengths.begin() + NumDimM,
ck::index_t{1},
std::multiplies<ck::index_t>{});
ck::index_t N = std::accumulate(e_ms_ns_lengths.begin() + NumDimM,
e_ms_ns_lengths.begin() + NumDimM + NumDimN,
ck::index_t{1},
std::multiplies<ck::index_t>{});
ck::index_t K = std::accumulate(a_ms_ks_lengths.begin() + NumDimM,
a_ms_ks_lengths.begin() + NumDimM + NumDimK,
ck::index_t{1},
std::multiplies<ck::index_t>{});
std::size_t flop = std::size_t(2) * M * N * K;
std::size_t num_btype =
sizeof(ADataType) * M * K + sizeof(BDataType) * K * N + +sizeof(EDataType) * M * N;
float tflops = static_cast<float>(flop) / 1.E9 / ave_time;
float gb_per_sec = num_btype / 1.E6 / ave_time;
std::cout << "Perf: " << ave_time << " ms, " << tflops << " TFlops, " << gb_per_sec << " GB/s, "
<< op.GetTypeString() << std::endl;
e_device_buf.FromDevice(e_ms_ns_device_result.mData.data());
if(do_verification)
{
Tensor<CShuffleDataType> c_ms_ns_host_result(
std::vector<std::size_t>(e_ms_ns_lengths.begin(), e_ms_ns_lengths.end()),
std::vector<std::size_t>(e_ms_ns_strides.begin(), e_ms_ns_strides.end()));
using ReferenceOpInstance = ReferenceContraction_M2_N2_K2<NumDimM,
NumDimN,
NumDimK,
ADataType,
BDataType,
CShuffleDataType,
AccDataType,
AElementOp,
BElementOp,
PassThrough>;
auto ref_gemm = ReferenceOpInstance{};
auto ref_invoker = ref_gemm.MakeInvoker();
auto ref_argument = ref_gemm.MakeArgument(
a_ms_ks, b_ns_ks, c_ms_ns_host_result, a_element_op, b_element_op, PassThrough{});
ref_invoker.Run(ref_argument);
for(size_t m0 = 0; m0 < e_ms_ns_host_result.mDesc.GetLengths()[0]; ++m0)
{
for(size_t m1 = 0; m1 < e_ms_ns_host_result.mDesc.GetLengths()[1]; ++m1)
{
for(size_t n0 = 0; n0 < e_ms_ns_host_result.mDesc.GetLengths()[2]; ++n0)
{
for(size_t n1 = 0; n1 < e_ms_ns_host_result.mDesc.GetLengths()[3]; ++n1)
{
cde_element_op(e_ms_ns_host_result(m0, m1, n0, n1),
c_ms_ns_host_result(m0, m1, n0, n1));
}
}
}
}
return ck::utils::check_err(e_ms_ns_device_result.mData, e_ms_ns_host_result.mData) ? 0 : 1;
}
return 0;
}
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment