Skip to content
GitLab
Menu
Projects
Groups
Snippets
Loading...
Help
Help
Support
Community forum
Keyboard shortcuts
?
Submit feedback
Contribute to GitLab
Sign in / Register
Toggle navigation
Menu
Open sidebar
gaoqiong
composable_kernel
Commits
b79df771
Commit
b79df771
authored
Jul 12, 2022
by
carlushuang
Browse files
Merge remote-tracking branch 'origin/develop' into cpu_avx2
parents
05d38218
63914743
Changes
450
Hide whitespace changes
Inline
Side-by-side
Showing
20 changed files
with
2067 additions
and
586 deletions
+2067
-586
include/ck/tensor_operation/gpu/device/device_reduce_threadwise.hpp
.../tensor_operation/gpu/device/device_reduce_threadwise.hpp
+11
-8
include/ck/tensor_operation/gpu/device/device_softmax.hpp
include/ck/tensor_operation/gpu/device/device_softmax.hpp
+250
-0
include/ck/tensor_operation/gpu/device/device_unary_elementwise.hpp
.../tensor_operation/gpu/device/device_unary_elementwise.hpp
+183
-0
include/ck/tensor_operation/gpu/device/gemm_specialization.hpp
...de/ck/tensor_operation/gpu/device/gemm_specialization.hpp
+20
-3
include/ck/tensor_operation/gpu/device/reduction_operator_mapping.hpp
...ensor_operation/gpu/device/reduction_operator_mapping.hpp
+111
-94
include/ck/tensor_operation/gpu/device/tensor_layout.hpp
include/ck/tensor_operation/gpu/device/tensor_layout.hpp
+3
-0
include/ck/tensor_operation/gpu/element/binary_element_wise_operation.hpp
...r_operation/gpu/element/binary_element_wise_operation.hpp
+142
-83
include/ck/tensor_operation/gpu/element/element_wise_operation.hpp
...k/tensor_operation/gpu/element/element_wise_operation.hpp
+124
-269
include/ck/tensor_operation/gpu/element/element_wise_reduce_operation.hpp
...r_operation/gpu/element/element_wise_reduce_operation.hpp
+0
-10
include/ck/tensor_operation/gpu/element/unary_element_wise_operation.hpp
...or_operation/gpu/element/unary_element_wise_operation.hpp
+139
-0
include/ck/tensor_operation/gpu/grid/block_to_ctile_map.hpp
include/ck/tensor_operation/gpu/grid/block_to_ctile_map.hpp
+8
-8
include/ck/tensor_operation/gpu/grid/gridwise_2d_reduction_multiblock.hpp
...r_operation/gpu/grid/gridwise_2d_reduction_multiblock.hpp
+22
-47
include/ck/tensor_operation/gpu/grid/gridwise_2d_reduction_threadwise.hpp
...r_operation/gpu/grid/gridwise_2d_reduction_threadwise.hpp
+22
-46
include/ck/tensor_operation/gpu/grid/gridwise_5ary_Elementwise_1d.hpp
...ensor_operation/gpu/grid/gridwise_5ary_Elementwise_1d.hpp
+7
-4
include/ck/tensor_operation/gpu/grid/gridwise_binary_elementwise_1d.hpp
...sor_operation/gpu/grid/gridwise_binary_elementwise_1d.hpp
+7
-4
include/ck/tensor_operation/gpu/grid/gridwise_contraction_dlops_v1r2.hpp
...or_operation/gpu/grid/gridwise_contraction_dlops_v1r2.hpp
+3
-0
include/ck/tensor_operation/gpu/grid/gridwise_gemm_bias_add_reduce_xdl_cshuffle_v1.hpp
...pu/grid/gridwise_gemm_bias_add_reduce_xdl_cshuffle_v1.hpp
+995
-0
include/ck/tensor_operation/gpu/grid/gridwise_gemm_dl_v1r3.hpp
...de/ck/tensor_operation/gpu/grid/gridwise_gemm_dl_v1r3.hpp
+14
-10
include/ck/tensor_operation/gpu/grid/gridwise_gemm_dlops_v1r2.hpp
...ck/tensor_operation/gpu/grid/gridwise_gemm_dlops_v1r2.hpp
+3
-0
include/ck/tensor_operation/gpu/grid/gridwise_gemm_dlops_v2.hpp
...e/ck/tensor_operation/gpu/grid/gridwise_gemm_dlops_v2.hpp
+3
-0
No files found.
Too many changes to show.
To preserve performance only
450 of 450+
files are displayed.
Plain diff
Email patch
include/ck/tensor_operation/gpu/device/device_reduce_threadwise.hpp
View file @
b79df771
#ifndef DEVICE_REDUCE_THREADWISE_HPP
// SPDX-License-Identifier: MIT
#define DEVICE_REDUCE_THREADWISE_HPP
// Copyright (c) 2018-2022, Advanced Micro Devices, Inc. All rights reserved.
#pragma once
#include <iostream>
#include <iostream>
#include <sstream>
#include <sstream>
#include "device.hpp"
#include "device_reduce.hpp"
#include "ck/device_utility/device_prop.hpp"
#include "device_reduce_common.hpp"
#include "ck/device_utility/kernel_launch.hpp"
#include "gridwise_2d_reduction_multiblock.hpp"
#include "ck/tensor_operation/gpu/device/device_reduce.hpp"
#include "gridwise_2d_reduction_threadwise.hpp"
#include "ck/tensor_operation/gpu/device/device_reduce_common.hpp"
#include "ck/tensor_operation/gpu/grid/gridwise_2d_reduction_multiblock.hpp"
#include "ck/tensor_operation/gpu/grid/gridwise_2d_reduction_threadwise.hpp"
namespace
ck
{
namespace
ck
{
namespace
tensor_operation
{
namespace
tensor_operation
{
...
@@ -370,4 +374,3 @@ struct DeviceReduceThreadWise : public DeviceReduce<InElementwiseOperation, AccE
...
@@ -370,4 +374,3 @@ struct DeviceReduceThreadWise : public DeviceReduce<InElementwiseOperation, AccE
}
// namespace device
}
// namespace device
}
// namespace tensor_operation
}
// namespace tensor_operation
}
// namespace ck
}
// namespace ck
#endif
include/ck/tensor_operation/gpu/device/device_softmax.hpp
0 → 100644
View file @
b79df771
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2022, Advanced Micro Devices, Inc. All rights reserved.
#pragma once
#include <iostream>
#include <sstream>
#include "ck/utility/reduction_operator.hpp"
#include "ck/tensor_operation/gpu/device/device_base.hpp"
#include "ck/tensor_operation/gpu/device/device_reduce.hpp"
#include "ck/tensor_operation/gpu/device/device_normalization.hpp"
#include "ck/tensor_operation/gpu/device/device_reduce_multiblock.hpp"
#include "ck/tensor_operation/gpu/device/device_reduce_common.hpp"
#include "ck/tensor_operation/gpu/grid/gridwise_softmax.hpp"
#include "ck/tensor_operation/gpu/grid/gridwise_set_buffer_value.hpp"
#include "ck/device_utility/device_prop.hpp"
#include "ck/device_utility/kernel_launch.hpp"
namespace
ck
{
namespace
tensor_operation
{
namespace
device
{
template
<
typename
InDataType
,
typename
AccDataType
,
typename
OutDataType
,
index_t
Rank
,
index_t
NumReduceDim
,
index_t
BlockSize
,
index_t
MThreadClusterSize
,
index_t
KThreadClusterSize
,
index_t
MThreadSliceSize
,
index_t
KThreadSliceSize
,
index_t
InSrcVectorDim
,
index_t
InSrcVectorSize
,
index_t
OutDstVectorSize
>
struct
DeviceSoftmax
:
public
DeviceNormalization
{
static
constexpr
index_t
kRank
=
Rank
;
static
constexpr
index_t
kNumReduceDim
=
NumReduceDim
;
virtual
index_t
GetRank
()
const
override
{
return
kRank
;
}
virtual
index_t
GetNumReduceDim
()
const
override
{
return
kNumReduceDim
;
}
using
PassThrough
=
tensor_operation
::
element_wise
::
PassThrough
;
// Used for freeloading of some handy functions from DeviceReduceMultiBlock
using
Reduction
=
DeviceReduceMultiBlock
<
InDataType
,
AccDataType
,
OutDataType
,
Rank
,
NumReduceDim
,
reduce
::
Add
,
PassThrough
,
// InElementwiseOperation
PassThrough
,
// AccElementwiseOperation
InMemoryDataOperationEnum
::
Set
,
false
,
// PropagateNan
false
,
// OutputIndex
false
,
// HaveIndexInputIfOutputIndex
BlockSize
,
MThreadClusterSize
,
KThreadClusterSize
,
MThreadSliceSize
,
KThreadSliceSize
,
InSrcVectorDim
,
InSrcVectorSize
,
1
>
;
// OutDstVectorSize
using
GridDesc_M_K
=
decltype
(
Reduction
::
MakeSrc2dDescriptor
({
1
},
{
1
},
1
,
1
));
using
GridwiseSoftmaxGeneric
=
GridwiseSoftmax_mk_to_mk
<
InDataType
,
OutDataType
,
AccDataType
,
GridDesc_M_K
,
BlockSize
,
MThreadClusterSize
,
KThreadClusterSize
,
MThreadSliceSize
,
KThreadSliceSize
,
InSrcVectorDim
,
InSrcVectorSize
,
OutDstVectorSize
,
false
>
;
using
GridwiseSoftmaxSweepOnce
=
GridwiseSoftmax_mk_to_mk
<
InDataType
,
OutDataType
,
AccDataType
,
GridDesc_M_K
,
BlockSize
,
MThreadClusterSize
,
KThreadClusterSize
,
MThreadSliceSize
,
KThreadSliceSize
,
InSrcVectorDim
,
InSrcVectorSize
,
OutDstVectorSize
,
true
>
;
struct
Argument
:
public
Reduction
::
Argument
{
Argument
(
const
std
::
vector
<
index_t
>
inLengths
,
const
std
::
vector
<
index_t
>
inStrides
,
const
std
::
vector
<
index_t
>
reduceDims
,
AccDataType
alpha
,
AccDataType
beta
,
const
InDataType
*
in_dev
,
OutDataType
*
out_dev
)
:
Reduction
::
Argument
(
inLengths
,
inStrides
,
{},
{},
reduceDims
,
0.0
f
,
// alpha
0.0
f
,
// beta
in_dev
,
nullptr
,
out_dev
,
nullptr
,
PassThrough
{},
PassThrough
{}),
// FIXME: The base class DeviceReduceMultiBlock::Argument only supports alpha/beta of
// float32 precision. Make it support any data type so the fields can be removed.
alpha_
(
alpha
),
beta_
(
beta
)
{
// std::cout << "blkGroupSize= " << this->blkGroupSize
// << ", numBlockTileIteration= " << this->numBlockTileIteration
// << ", gridSize=" << this->gridSize
// << ", invariant_total_length=" << this->invariant_total_length <<
// std::endl;
}
AccDataType
alpha_
;
AccDataType
beta_
;
};
struct
Invoker
:
public
BaseInvoker
{
float
Run
(
const
Argument
&
arg
,
const
StreamConfig
&
stream_config
=
StreamConfig
{})
{
const
auto
in_grid_desc_m_k
=
Reduction
::
MakeSrc2dDescriptor
(
arg
.
inLengths_
,
arg
.
inStrides_
,
arg
.
blkGroupSize
,
arg
.
numBlockTileIteration
);
const
auto
out_grid_desc_m_k
=
Reduction
::
MakeSrc2dDescriptor
(
arg
.
inLengths_
,
arg
.
inStrides_
,
arg
.
blkGroupSize
,
arg
.
numBlockTileIteration
);
bool
sweep_once
=
in_grid_desc_m_k
.
GetLength
(
Number
<
1
>
{})
<=
KThreadClusterSize
*
KThreadSliceSize
;
const
auto
kernel_main
=
sweep_once
?
kernel_softmax
<
GridwiseSoftmaxSweepOnce
,
InDataType
,
OutDataType
,
AccDataType
,
GridDesc_M_K
>
:
kernel_softmax
<
GridwiseSoftmaxGeneric
,
InDataType
,
OutDataType
,
AccDataType
,
GridDesc_M_K
>
;
float
avg_time
=
0
;
avg_time
+=
launch_and_time_kernel
(
stream_config
,
kernel_main
,
dim3
(
arg
.
gridSize
),
dim3
(
BlockSize
),
0
,
in_grid_desc_m_k
,
out_grid_desc_m_k
,
arg
.
blkGroupSize
,
arg
.
numBlockTileIteration
,
arg
.
alpha_
,
arg
.
in_dev_
,
arg
.
beta_
,
arg
.
out_dev_
);
return
(
avg_time
);
};
float
Run
(
const
BaseArgument
*
p_arg
,
const
StreamConfig
&
stream_config
=
StreamConfig
{})
override
{
return
Run
(
*
dynamic_cast
<
const
Argument
*>
(
p_arg
),
stream_config
);
};
};
bool
IsSupportedArgument
(
const
BaseArgument
*
p_arg
)
override
{
const
Argument
*
p_arg_
=
dynamic_cast
<
const
Argument
*>
(
p_arg
);
if
(
!
Reduction
::
IsSupportedArgument
(
p_arg_
))
{
return
false
;
}
if
(
p_arg_
->
inLengths_
[
Rank
-
1
]
%
OutDstVectorSize
!=
0
)
{
return
false
;
}
return
true
;
};
// inLengths: input tensor extent(s) from high to low dimension
// inStrides: input tensor stride(s) from high to low dimension
// reduceDims: the dimension(s) the softmax normalization operate on
// alpha: typeless pointer in host memory storing the alpha scaling value as type AccDataType
// beta: typeless pointer in host memory storing the beta scaling value as type AccDataType
// in_dev: typeless const pointer in device memory storing the input tensor
// out_dev: typeless pointer in device memory storing the output tensor
std
::
unique_ptr
<
BaseArgument
>
MakeArgumentPointer
(
const
std
::
vector
<
index_t
>
inLengths
,
const
std
::
vector
<
index_t
>
inStrides
,
const
std
::
vector
<
int
>
reduceDims
,
const
void
*
alpha
,
const
void
*
beta
,
const
void
*
in_dev
,
void
*
out_dev
)
override
{
return
std
::
make_unique
<
Argument
>
(
inLengths
,
inStrides
,
reduceDims
,
*
static_cast
<
const
AccDataType
*>
(
alpha
),
*
static_cast
<
const
AccDataType
*>
(
beta
),
static_cast
<
const
InDataType
*>
(
in_dev
),
static_cast
<
OutDataType
*>
(
out_dev
));
};
std
::
unique_ptr
<
BaseInvoker
>
MakeInvokerPointer
()
override
{
return
std
::
make_unique
<
Invoker
>
();
};
std
::
string
GetTypeString
()
const
override
{
auto
str
=
std
::
stringstream
();
// clang-format off
str
<<
"DeviceReduceSoftmax<"
<<
BlockSize
<<
","
;
str
<<
"M_C"
<<
MThreadClusterSize
<<
"_S"
<<
MThreadSliceSize
<<
","
;
str
<<
"K_C"
<<
KThreadClusterSize
<<
"_S"
<<
KThreadSliceSize
<<
","
;
str
<<
"InSrcVectorDim_"
<<
InSrcVectorDim
<<
"_InSrcVectorSize_"
<<
InSrcVectorSize
<<
"_OutDstVectorSize_"
<<
OutDstVectorSize
<<
">"
;
// clang-format on
return
str
.
str
();
}
};
}
// namespace device
}
// namespace tensor_operation
}
// namespace ck
include/ck/tensor_operation/gpu/device/device_unary_elementwise.hpp
0 → 100644
View file @
b79df771
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2022, Advanced Micro Devices, Inc. All rights reserved.
#pragma once
#include <iostream>
#include <vector>
#include "ck/device_utility/device_prop.hpp"
#include "ck/device_utility/kernel_launch.hpp"
#include "ck/tensor_operation/gpu/device/device_base.hpp"
#include "ck/tensor_operation/gpu/grid/gridwise_unary_elementwise_1d.hpp"
namespace
ck
{
namespace
tensor_operation
{
namespace
device
{
template
<
typename
ADataType
,
typename
BDataType
,
typename
ElementwiseFunctor
,
index_t
Dim
,
index_t
ScalarPerVector
>
struct
DeviceUnaryElementwise
:
public
BaseOperator
{
static
constexpr
auto
I0
=
Number
<
0
>
{};
template
<
typename
Desc_M0
>
static
auto
PadDescriptor_M0_1d
(
Desc_M0
desc_m0
,
index_t
gridSize
,
index_t
blockSize
)
{
const
auto
m0
=
desc_m0
.
GetLength
(
I0
);
const
index_t
loop_step
=
gridSize
*
blockSize
*
ScalarPerVector
;
const
auto
pad
=
math
::
integer_least_multiple
(
m0
,
loop_step
)
-
m0
;
const
auto
desc_m0_pad
=
transform_tensor_descriptor
(
desc_m0
,
make_tuple
(
make_right_pad_transform
(
m0
,
pad
)),
make_tuple
(
Sequence
<
0
>
{}),
make_tuple
(
Sequence
<
0
>
{}));
return
desc_m0_pad
;
}
static
auto
MakeDescriptor_M0
(
const
std
::
vector
<
index_t
>&
shape
,
const
std
::
vector
<
index_t
>&
stride
,
index_t
gridSize
,
index_t
blockSize
)
{
auto
tupleOfShape
=
generate_tuple
([
&
](
auto
I
)
{
return
shape
[
I
];
},
Number
<
Dim
>
{});
auto
tupleOfStride
=
generate_tuple
([
&
](
auto
I
)
{
return
stride
[
I
];
},
Number
<
Dim
>
{});
// nd desc - [s0, s1, s2, ...]
const
auto
desc
=
make_naive_tensor_descriptor
(
tupleOfShape
,
tupleOfStride
);
// merge nd to 1d desc - [s0 * s1 * ...]
if
constexpr
(
Dim
>
1
)
{
const
auto
desc_m0
=
transform_tensor_descriptor
(
desc
,
make_tuple
(
make_merge_transform
(
tupleOfShape
)),
make_tuple
(
generate_sequence_v2
([
&
](
auto
I
)
{
return
I
;
},
Number
<
Dim
>
{})),
make_tuple
(
Sequence
<
0
>
{}));
return
PadDescriptor_M0_1d
(
desc_m0
,
gridSize
,
blockSize
);
}
else
return
PadDescriptor_M0_1d
(
desc
,
gridSize
,
blockSize
);
}
using
GridDesc_M0
=
decltype
(
MakeDescriptor_M0
({
1
,
1
},
{
1
,
1
},
1
,
1
));
using
GridwiseUEltwise
=
GridwiseUnaryElementwise_1D
<
ADataType
,
BDataType
,
GridDesc_M0
,
ElementwiseFunctor
,
ScalarPerVector
>
;
struct
Argument
:
public
BaseArgument
{
Argument
(
const
ADataType
*
p_a
,
BDataType
*
p_b
,
const
std
::
vector
<
index_t
>&
shape
,
const
std
::
vector
<
index_t
>&
stride_a
,
const
std
::
vector
<
index_t
>&
stride_b
,
ElementwiseFunctor
functor
)
:
p_a_
(
p_a
),
p_b_
(
p_b
),
shape_
(
shape
),
functor_
(
functor
),
blockSize_
(
256
)
// FIXME - Calculate the grid size by number of CU in the future
{
index_t
tensor_size
=
std
::
accumulate
(
shape
.
begin
(),
shape
.
end
(),
1
,
std
::
multiplies
<
int
>
{});
gridSize_
=
GridwiseUEltwise
::
CalculateGridSize
(
tensor_size
);
a_grid_desc_m0_
=
MakeDescriptor_M0
(
shape
,
stride_a
,
gridSize_
,
blockSize_
);
b_grid_desc_m0_
=
MakeDescriptor_M0
(
shape
,
stride_b
,
gridSize_
,
blockSize_
);
}
const
ADataType
*
p_a_
;
BDataType
*
p_b_
;
std
::
vector
<
int
>
shape_
;
GridDesc_M0
a_grid_desc_m0_
;
GridDesc_M0
b_grid_desc_m0_
;
ElementwiseFunctor
functor_
;
index_t
blockSize_
;
index_t
gridSize_
;
};
struct
Invoker
:
public
BaseInvoker
{
float
Run
(
const
Argument
&
arg
,
const
StreamConfig
&
stream_config
=
StreamConfig
{})
{
const
auto
kernel
=
kernel_unary_elementwise_1d
<
GridwiseUEltwise
,
ADataType
,
BDataType
,
GridDesc_M0
,
ElementwiseFunctor
>
;
float
elapsed_time
=
launch_and_time_kernel
(
stream_config
,
kernel
,
dim3
(
arg
.
gridSize_
),
dim3
(
arg
.
blockSize_
),
0
,
arg
.
p_a_
,
arg
.
p_b_
,
arg
.
a_grid_desc_m0_
,
arg
.
b_grid_desc_m0_
,
arg
.
functor_
);
return
elapsed_time
;
}
// polymorphic
float
Run
(
const
BaseArgument
*
p_arg
,
const
StreamConfig
&
stream_config
=
StreamConfig
{})
override
{
return
Run
(
*
dynamic_cast
<
const
Argument
*>
(
p_arg
),
stream_config
);
}
};
bool
IsSupportedArgument
(
const
BaseArgument
*
p_arg
)
override
{
const
Argument
*
pArg
=
dynamic_cast
<
const
Argument
*>
(
p_arg
);
if
(
pArg
==
nullptr
)
return
false
;
if
(
pArg
->
shape_
.
back
()
%
ScalarPerVector
!=
0
)
return
false
;
return
true
;
};
std
::
unique_ptr
<
BaseArgument
>
MakeArgumentPointer
(
const
void
*
p_a
,
void
*
p_b
,
std
::
vector
<
index_t
>
shape
,
std
::
vector
<
index_t
>
stride_a
,
std
::
vector
<
index_t
>
stride_b
,
ElementwiseFunctor
functor
)
{
return
std
::
make_unique
<
Argument
>
(
static_cast
<
const
ADataType
*>
(
p_a
),
static_cast
<
BDataType
*>
(
p_b
),
shape
,
stride_a
,
stride_b
,
functor
);
}
std
::
unique_ptr
<
BaseInvoker
>
MakeInvokerPointer
()
{
return
std
::
make_unique
<
Invoker
>
();
}
std
::
string
GetTypeString
()
const
override
{
auto
str
=
std
::
stringstream
();
// clang-format off
str
<<
"DeviceBinaryElementwise"
<<
"<"
<<
"ScalarPerVector = "
<<
ScalarPerVector
<<
">"
;
// clang-format on
return
str
.
str
();
}
};
}
// namespace device
}
// namespace tensor_operation
}
// namespace ck
include/ck/tensor_operation/gpu/device/gemm_specialization.hpp
View file @
b79df771
#ifndef GEMM_SPECIALIZATION
// SPDX-License-Identifier: MIT
#define GEMM_SPECIALIZATION
// Copyright (c) 2018-2022, Advanced Micro Devices, Inc. All rights reserved.
#pragma once
namespace
ck
{
namespace
ck
{
namespace
tensor_operation
{
namespace
tensor_operation
{
...
@@ -17,7 +19,22 @@ enum struct GemmSpecialization
...
@@ -17,7 +19,22 @@ enum struct GemmSpecialization
MNKPadding
,
MNKPadding
,
};
};
inline
std
::
string
getGemmSpecializationString
(
const
GemmSpecialization
&
s
)
{
switch
(
s
)
{
case
GemmSpecialization
::
Default
:
return
"Default"
;
case
GemmSpecialization
::
MPadding
:
return
"MPadding"
;
case
GemmSpecialization
::
NPadding
:
return
"NPadding"
;
case
GemmSpecialization
::
KPadding
:
return
"KPadding"
;
case
GemmSpecialization
::
MNPadding
:
return
"MNPadding"
;
case
GemmSpecialization
::
MKPadding
:
return
"MKPadding"
;
case
GemmSpecialization
::
NKPadding
:
return
"NKPadding"
;
case
GemmSpecialization
::
MNKPadding
:
return
"MNKPadding"
;
default:
return
"Unrecognized specialization!"
;
}
}
}
// namespace device
}
// namespace device
}
// namespace tensor_operation
}
// namespace tensor_operation
}
// namespace ck
}
// namespace ck
#endif
include/ck/tensor_operation/gpu/device/reduction_operator_mapping.hpp
View file @
b79df771
/*******************************************************************************
// SPDX-License-Identifier: MIT
*
// Copyright (c) 2018-2022, Advanced Micro Devices, Inc. All rights reserved.
* MIT License
*
#pragma once
* Copyright (c) 2020 Advanced Micro Devices, Inc.
*
#include "ck/utility/reduction_operator.hpp"
* Permission is hereby granted, free of charge, to any person obtaining a copy
#include "ck/utility/reduction_enums.hpp"
* of this software and associated documentation files (the "Software"), to deal
#include "ck/tensor_operation/gpu/element/element_wise_operation.hpp"
* in the Software without restriction, including without limitation the rights
// FIXME: can it be replaced with ck::Tuple?
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
#include <tuple>
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in all
* copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
* SOFTWARE.
*
*******************************************************************************/
#ifndef CK_REDUCTION_OPERATOR_MAPPING_HPP
#define CK_REDUCTION_OPERATOR_MAPPING_HPP
#include "reduction_operator.hpp"
#include "reduction_enums.hpp"
#include "element_wise_operation.hpp"
namespace
ck
{
namespace
ck
{
...
@@ -37,77 +16,69 @@ namespace ck {
...
@@ -37,77 +16,69 @@ namespace ck {
// The boolean member "indexable" are also provided in reduce_binary_operactor for
// The boolean member "indexable" are also provided in reduce_binary_operactor for
// easier checking by the upper-layer codes in the kernels.
// easier checking by the upper-layer codes in the kernels.
template
<
typename
T
,
ReduceTensorOp
Op
>
template
<
ReduceTensorOp
Op
>
struct
reduce_binary_operator
;
struct
reduce_binary_operator
;
template
<
typename
T
>
template
<
>
struct
reduce_binary_operator
<
T
,
ReduceTensorOp
::
ADD
>
struct
reduce_binary_operator
<
ReduceTensorOp
::
ADD
>
{
{
using
opType
=
reduce
::
Add
<
T
>
;
using
opType
=
reduce
::
Add
;
using
dataType
=
T
;
static
constexpr
bool
indexable
=
false
;
static
constexpr
bool
indexable
=
false
;
};
};
template
<
typename
T
>
template
<
>
struct
reduce_binary_operator
<
T
,
ReduceTensorOp
::
MUL
>
struct
reduce_binary_operator
<
ReduceTensorOp
::
MUL
>
{
{
using
opType
=
reduce
::
Mul
<
T
>
;
using
opType
=
reduce
::
Mul
;
using
dataType
=
T
;
static
constexpr
bool
indexable
=
false
;
static
constexpr
bool
indexable
=
false
;
};
};
template
<
typename
T
>
template
<
>
struct
reduce_binary_operator
<
T
,
ReduceTensorOp
::
MIN
>
struct
reduce_binary_operator
<
ReduceTensorOp
::
MIN
>
{
{
using
opType
=
reduce
::
Min
<
T
>
;
using
opType
=
reduce
::
Min
;
using
dataType
=
T
;
static
constexpr
bool
indexable
=
true
;
static
constexpr
bool
indexable
=
true
;
};
};
template
<
typename
T
>
template
<
>
struct
reduce_binary_operator
<
T
,
ReduceTensorOp
::
MAX
>
struct
reduce_binary_operator
<
ReduceTensorOp
::
MAX
>
{
{
using
opType
=
reduce
::
Max
<
T
>
;
using
opType
=
reduce
::
Max
;
using
dataType
=
T
;
static
constexpr
bool
indexable
=
true
;
static
constexpr
bool
indexable
=
true
;
};
};
template
<
typename
T
>
template
<
>
struct
reduce_binary_operator
<
T
,
ReduceTensorOp
::
AMAX
>
struct
reduce_binary_operator
<
ReduceTensorOp
::
AMAX
>
{
{
using
opType
=
reduce
::
AMax
<
T
>
;
using
opType
=
reduce
::
AMax
;
using
dataType
=
T
;
static
constexpr
bool
indexable
=
true
;
static
constexpr
bool
indexable
=
true
;
};
};
template
<
typename
T
>
template
<
>
struct
reduce_binary_operator
<
T
,
ReduceTensorOp
::
AVG
>
struct
reduce_binary_operator
<
ReduceTensorOp
::
AVG
>
{
{
using
opType
=
reduce
::
Add
<
T
>
;
using
opType
=
reduce
::
Add
;
using
dataType
=
T
;
static
constexpr
bool
indexable
=
false
;
static
constexpr
bool
indexable
=
false
;
};
};
template
<
typename
T
>
template
<
>
struct
reduce_binary_operator
<
T
,
ReduceTensorOp
::
NORM1
>
struct
reduce_binary_operator
<
ReduceTensorOp
::
NORM1
>
{
{
using
opType
=
reduce
::
Add
<
T
>
;
using
opType
=
reduce
::
Add
;
using
dataType
=
T
;
static
constexpr
bool
indexable
=
false
;
static
constexpr
bool
indexable
=
false
;
};
};
template
<
typename
T
>
template
<
>
struct
reduce_binary_operator
<
T
,
ReduceTensorOp
::
NORM2
>
struct
reduce_binary_operator
<
ReduceTensorOp
::
NORM2
>
{
{
using
opType
=
reduce
::
Add
<
T
>
;
using
opType
=
reduce
::
Add
;
using
dataType
=
T
;
static
constexpr
bool
indexable
=
false
;
static
constexpr
bool
indexable
=
false
;
};
};
...
@@ -115,55 +86,101 @@ struct reduce_binary_operator<T, ReduceTensorOp::NORM2>
...
@@ -115,55 +86,101 @@ struct reduce_binary_operator<T, ReduceTensorOp::NORM2>
// The templated struct reduce_unary_operator maps the enum Ids of Reduce operators to two unary
// The templated struct reduce_unary_operator maps the enum Ids of Reduce operators to two unary
// functor classes.
// functor classes.
// The two unary functors are called before and afer the Reduction is executed respectively
// The two unary functors are called before and afer the Reduction is executed respectively
template
<
typename
T
,
ReduceTensorOp
Op
,
bool
IsFirstReduce
,
bool
IsLastReduce
>
template
<
ReduceTensorOp
Op
,
bool
IsFirstReduce
,
bool
IsLastReduce
>
struct
reduce_unary_operator
struct
reduce_unary_operator
{
{
using
InElementwiseOperation
=
tensor_operation
::
element_wise
::
UnaryIdentic
<
T
,
T
>
;
using
InElementwiseOperation
=
tensor_operation
::
element_wise
::
PassThrough
;
using
AccElementwiseOperation
=
tensor_operation
::
element_wise
::
UnaryIdentic
<
T
,
T
>
;
using
AccElementwiseOperation
=
tensor_operation
::
element_wise
::
PassThrough
;
static
std
::
tuple
<
InElementwiseOperation
,
AccElementwiseOperation
>
GetElementwiseOperator
(
int32_t
reduceLength
)
{
(
void
)
reduceLength
;
return
std
::
make_tuple
(
InElementwiseOperation
{},
AccElementwiseOperation
{});
};
};
};
template
<
typename
T
,
bool
IsFirstReduce
>
template
<
bool
IsFirstReduce
>
struct
reduce_unary_operator
<
T
,
ReduceTensorOp
::
AVG
,
IsFirstReduce
,
true
>
struct
reduce_unary_operator
<
ReduceTensorOp
::
AVG
,
IsFirstReduce
,
true
>
{
{
using
InElementwiseOperation
=
tensor_operation
::
element_wise
::
UnaryIdentic
<
T
,
T
>
;
using
InElementwiseOperation
=
tensor_operation
::
element_wise
::
PassThrough
;
using
AccElementwiseOperation
=
tensor_operation
::
element_wise
::
UnaryIdentic
<
T
,
T
,
true
>
;
using
AccElementwiseOperation
=
tensor_operation
::
element_wise
::
UnaryDivide
;
static
std
::
tuple
<
InElementwiseOperation
,
AccElementwiseOperation
>
GetElementwiseOperator
(
int32_t
reduceLength
)
{
return
std
::
make_tuple
(
InElementwiseOperation
{},
AccElementwiseOperation
{
reduceLength
});
};
};
};
template
<
typename
T
,
bool
IsLastReduce
>
template
<
bool
IsLastReduce
>
struct
reduce_unary_operator
<
T
,
ReduceTensorOp
::
NORM1
,
true
,
IsLastReduce
>
struct
reduce_unary_operator
<
ReduceTensorOp
::
NORM1
,
true
,
IsLastReduce
>
{
{
using
InElementwiseOperation
=
tensor_operation
::
element_wise
::
UnaryAbs
<
T
,
T
>
;
using
InElementwiseOperation
=
tensor_operation
::
element_wise
::
UnaryAbs
;
using
AccElementwiseOperation
=
tensor_operation
::
element_wise
::
UnaryIdentic
<
T
,
T
>
;
using
AccElementwiseOperation
=
tensor_operation
::
element_wise
::
PassThrough
;
static
std
::
tuple
<
InElementwiseOperation
,
AccElementwiseOperation
>
GetElementwiseOperator
(
int32_t
reduceLength
)
{
(
void
)
reduceLength
;
return
std
::
make_tuple
(
InElementwiseOperation
{},
AccElementwiseOperation
{});
};
};
};
template
<
typename
T
,
bool
IsLastReduce
>
template
<
bool
IsLastReduce
>
struct
reduce_unary_operator
<
T
,
ReduceTensorOp
::
AMAX
,
true
,
IsLastReduce
>
struct
reduce_unary_operator
<
ReduceTensorOp
::
AMAX
,
true
,
IsLastReduce
>
{
{
using
InElementwiseOperation
=
tensor_operation
::
element_wise
::
UnaryAbs
<
T
,
T
>
;
using
InElementwiseOperation
=
tensor_operation
::
element_wise
::
UnaryAbs
;
using
AccElementwiseOperation
=
tensor_operation
::
element_wise
::
UnaryIdentic
<
T
,
T
>
;
using
AccElementwiseOperation
=
tensor_operation
::
element_wise
::
PassThrough
;
static
std
::
tuple
<
InElementwiseOperation
,
AccElementwiseOperation
>
GetElementwiseOperator
(
int32_t
reduceLength
)
{
(
void
)
reduceLength
;
return
std
::
make_tuple
(
InElementwiseOperation
{},
AccElementwiseOperation
{});
};
};
};
template
<
typename
T
>
template
<
>
struct
reduce_unary_operator
<
T
,
ReduceTensorOp
::
NORM2
,
true
,
false
>
struct
reduce_unary_operator
<
ReduceTensorOp
::
NORM2
,
true
,
false
>
{
{
using
InElementwiseOperation
=
tensor_operation
::
element_wise
::
UnarySquare
<
T
,
T
>
;
using
InElementwiseOperation
=
tensor_operation
::
element_wise
::
UnarySquare
;
using
AccElementwiseOperation
=
tensor_operation
::
element_wise
::
UnaryIdentic
<
T
,
T
>
;
using
AccElementwiseOperation
=
tensor_operation
::
element_wise
::
PassThrough
;
static
std
::
tuple
<
InElementwiseOperation
,
AccElementwiseOperation
>
GetElementwiseOperator
(
int32_t
reduceLength
)
{
(
void
)
reduceLength
;
return
std
::
make_tuple
(
InElementwiseOperation
{},
AccElementwiseOperation
{});
};
};
};
template
<
typename
T
>
template
<
>
struct
reduce_unary_operator
<
T
,
ReduceTensorOp
::
NORM2
,
true
,
true
>
struct
reduce_unary_operator
<
ReduceTensorOp
::
NORM2
,
true
,
true
>
{
{
using
InElementwiseOperation
=
tensor_operation
::
element_wise
::
UnarySquare
<
T
,
T
>
;
using
InElementwiseOperation
=
tensor_operation
::
element_wise
::
UnarySquare
;
using
AccElementwiseOperation
=
tensor_operation
::
element_wise
::
UnarySqrt
<
T
,
T
>
;
using
AccElementwiseOperation
=
tensor_operation
::
element_wise
::
UnarySqrt
;
static
std
::
tuple
<
InElementwiseOperation
,
AccElementwiseOperation
>
GetElementwiseOperator
(
int32_t
reduceLength
)
{
(
void
)
reduceLength
;
return
std
::
make_tuple
(
InElementwiseOperation
{},
AccElementwiseOperation
{});
};
};
};
template
<
typename
T
>
template
<
>
struct
reduce_unary_operator
<
T
,
ReduceTensorOp
::
NORM2
,
false
,
true
>
struct
reduce_unary_operator
<
ReduceTensorOp
::
NORM2
,
false
,
true
>
{
{
using
InElementwiseOperation
=
tensor_operation
::
element_wise
::
UnaryIdentic
<
T
,
T
>
;
using
InElementwiseOperation
=
tensor_operation
::
element_wise
::
PassThrough
;
using
AccElementwiseOperation
=
tensor_operation
::
element_wise
::
UnarySqrt
<
T
,
T
>
;
using
AccElementwiseOperation
=
tensor_operation
::
element_wise
::
UnarySqrt
;
static
std
::
tuple
<
InElementwiseOperation
,
AccElementwiseOperation
>
GetElementwiseOperator
(
int32_t
reduceLength
)
{
(
void
)
reduceLength
;
return
std
::
make_tuple
(
InElementwiseOperation
{},
AccElementwiseOperation
{});
};
};
};
}
// end of namespace ck
}
// namespace ck
#endif
include/ck/tensor_operation/gpu/device/tensor_layout.hpp
View file @
b79df771
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2022, Advanced Micro Devices, Inc. All rights reserved.
#pragma once
#pragma once
namespace
ck
{
namespace
ck
{
...
...
include/ck/tensor_operation/gpu/element/binary_element_wise_operation.hpp
View file @
b79df771
/*******************************************************************************
// SPDX-License-Identifier: MIT
*
// Copyright (c) 2018-2022, Advanced Micro Devices, Inc. All rights reserved.
* MIT License
*
* Copyright (c) 2022 Advanced Micro Devices, Inc.
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in all
* copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
* SOFTWARE.
*
*******************************************************************************/
#pragma once
#pragma once
#include "data_type.hpp"
#include "ck/utility/data_type.hpp"
namespace
ck
{
namespace
ck
{
namespace
tensor_operation
{
namespace
tensor_operation
{
namespace
binary_element_wise
{
namespace
element_wise
{
template
<
typename
Y
,
typename
X1
,
typename
X2
>
struct
Add
;
template
<
>
struct
Add
struct
Add
<
double
,
double
,
double
>
{
{
template
<
typename
Y
,
typename
X0
,
typename
X1
>
__host__
__device__
constexpr
void
operator
()(
Y
&
y
,
const
X0
&
x0
,
const
X1
&
x1
)
const
;
template
<
>
__host__
__device__
constexpr
void
__host__
__device__
constexpr
void
operator
()
(
double
&
dst
,
const
double
&
src1
,
const
double
&
src2
)
const
operator
()
<
float
>
(
float
&
y
,
const
float
&
x0
,
const
float
&
x1
)
const
{
{
dst
=
src1
+
src2
;
y
=
x0
+
x1
;
}
};
};
template
<
>
template
<
>
struct
Add
<
float
,
float
,
float
>
{
__host__
__device__
constexpr
void
__host__
__device__
constexpr
void
operator
()
(
float
&
dst
,
const
float
&
src1
,
const
float
&
src2
)
const
operator
()
<
double
>
(
double
&
y
,
const
double
&
x0
,
const
double
&
x1
)
const
{
{
dst
=
src1
+
src2
;
y
=
x0
+
x1
;
}
};
};
template
<
>
template
<
>
struct
Add
<
half_t
,
half_t
,
half_t
>
__host__
__device__
constexpr
void
{
operator
()
<
half_t
>
(
half_t
&
y
,
const
float
&
x0
,
const
half_t
&
x1
)
const
{
y
=
type_convert
<
half_t
>
(
x0
)
+
x1
;
};
template
<
>
__host__
__device__
constexpr
void
operator
()
<
half_t
>
(
half_t
&
y
,
const
half_t
&
x0
,
const
half_t
&
x1
)
const
{
y
=
x0
+
x1
;
};
template
<
>
__host__
__device__
constexpr
void
__host__
__device__
constexpr
void
operator
()
(
half_t
&
dst
,
const
half_t
&
src1
,
const
half_t
&
src2
)
const
operator
()
<
bhalf_t
>
(
b
half_t
&
y
,
const
b
half_t
&
x0
,
const
b
half_t
&
x1
)
const
{
{
dst
=
src1
+
src2
;
const
float
x1_tmp
=
ck
::
type_convert
<
float
>
(
x0
);
const
float
x2_tmp
=
ck
::
type_convert
<
float
>
(
x1
);
const
float
y_tmp
=
x1_tmp
+
x2_tmp
;
y
=
ck
::
type_convert
<
bhalf_t
>
(
y_tmp
);
}
}
};
};
template
<
>
struct
Subtract
struct
Add
<
bhalf_t
,
bhalf_t
,
bhalf_t
>
{
{
template
<
typename
T
>
__host__
__device__
constexpr
void
operator
()(
T
&
y
,
const
T
&
x0
,
const
T
&
x1
)
const
;
template
<
>
__host__
__device__
constexpr
void
__host__
__device__
constexpr
void
operator
()
(
bhalf_t
&
dst
,
const
bhalf_t
&
src1
,
const
bhalf_t
&
src2
)
const
operator
()
<
float
>
(
float
&
y
,
const
float
&
x0
,
const
float
&
x1
)
const
{
{
const
float
x1
=
ck
::
type_convert
<
float
>
(
src1
);
y
=
x0
-
x1
;
const
float
x2
=
ck
::
type_convert
<
float
>
(
src2
);
};
const
float
y
=
x1
+
x2
;
dst
=
ck
::
type_convert
<
bhalf_t
>
(
y
);
}
};
template
<
typename
Y
,
typename
X1
,
typename
X2
>
template
<
>
struct
Substract
;
__host__
__device__
constexpr
void
operator
()
<
double
>
(
double
&
y
,
const
double
&
x0
,
const
double
&
x1
)
const
{
y
=
x0
-
x1
;
};
template
<
>
template
<
>
struct
Substract
<
double
,
double
,
double
>
__host__
__device__
constexpr
void
{
operator
()
<
half_t
>
(
half_t
&
y
,
const
half_t
&
x0
,
const
half_t
&
x1
)
const
{
y
=
x0
-
x1
;
};
template
<
>
__host__
__device__
constexpr
void
__host__
__device__
constexpr
void
operator
()
(
double
&
dst
,
const
double
&
src1
,
const
double
&
src2
)
const
operator
()
<
bhalf_t
>
(
bhalf_t
&
y
,
const
bhalf_t
&
x0
,
const
bhalf_t
&
x1
)
const
{
{
dst
=
src1
-
src2
;
const
float
x1_tmp
=
ck
::
type_convert
<
float
>
(
x0
);
const
float
x2_tmp
=
ck
::
type_convert
<
float
>
(
x1
);
const
float
y_tmp
=
x1_tmp
-
x2_tmp
;
y
=
ck
::
type_convert
<
bhalf_t
>
(
y_tmp
);
}
}
};
};
template
<
>
struct
Bilinear
struct
Substract
<
float
,
float
,
float
>
{
{
Bilinear
(
float
alpha
,
float
beta
)
:
alpha_
(
alpha
),
beta_
(
beta
){};
template
<
typename
Y
,
typename
X0
,
typename
X1
>
__host__
__device__
constexpr
void
operator
()(
Y
&
,
const
X0
&
,
const
X1
&
)
const
;
template
<
>
__host__
__device__
constexpr
void
__host__
__device__
constexpr
void
operator
()(
float
&
dst
,
const
float
&
src1
,
const
float
&
src2
)
const
operator
()
<
float
,
float
,
float
>
(
float
&
y
,
const
float
&
x0
,
const
float
&
x1
)
const
{
{
dst
=
src1
-
src2
;
y
=
alpha_
*
x0
+
beta_
*
x1
;
}
};
template
<
>
__host__
__device__
constexpr
void
operator
()
<
half_t
,
float
,
half_t
>
(
half_t
&
y
,
const
float
&
x0
,
const
half_t
&
x1
)
const
{
y
=
type_convert
<
half_t
>
(
alpha_
*
x0
+
beta_
*
ck
::
type_convert
<
float
>
(
x1
));
};
float
alpha_
;
float
beta_
;
};
};
template
<
>
struct
AddRelu
struct
Substract
<
half_t
,
half_t
,
half_t
>
{
{
template
<
typename
T
>
__host__
__device__
constexpr
void
operator
()(
T
&
y
,
const
T
&
x0
,
const
T
&
x1
)
const
;
template
<
>
__host__
__device__
constexpr
void
__host__
__device__
constexpr
void
operator
()
(
half_t
&
dst
,
const
half_t
&
src1
,
const
half_t
&
src2
)
const
operator
()
<
float
>
(
float
&
y
,
const
float
&
x0
,
const
float
&
x1
)
const
{
{
dst
=
src1
-
src2
;
const
float
a
=
x0
+
x1
;
}
y
=
a
>
0.0
f
?
a
:
0.0
f
;
};
template
<
>
__host__
__device__
constexpr
void
operator
()
<
double
>
(
double
&
y
,
const
double
&
x0
,
const
double
&
x1
)
const
{
const
double
a
=
x0
+
x1
;
y
=
a
>
0.0
?
a
:
0.0
;
};
template
<
>
__host__
__device__
constexpr
void
operator
()
<
half_t
>
(
half_t
&
y
,
const
half_t
&
x0
,
const
half_t
&
x1
)
const
{
const
half_t
a
=
x0
+
x1
;
y
=
a
>
type_convert
<
half_t
>
(
0.0
f
)
?
a
:
type_convert
<
half_t
>
(
0.0
f
);
};
};
};
template
<
>
struct
AddHardswish
struct
Substract
<
bhalf_t
,
bhalf_t
,
bhalf_t
>
{
{
template
<
typename
T
>
__host__
__device__
constexpr
void
operator
()(
T
&
y
,
const
T
&
x0
,
const
T
&
x1
)
const
;
template
<
>
__host__
__device__
constexpr
void
__host__
__device__
constexpr
void
operator
()
(
bhalf_t
&
dst
,
const
bhalf_t
&
src1
,
const
bhalf_t
&
src2
)
const
operator
()
<
float
>
(
float
&
y
,
const
float
&
x0
,
const
float
&
x1
)
const
{
{
const
float
x1
=
ck
::
type_convert
<
float
>
(
src1
);
float
a
=
x0
+
x1
;
const
float
x2
=
ck
::
type_convert
<
float
>
(
src2
);
float
b
=
a
+
float
{
3
};
const
float
y
=
x1
-
x2
;
float
c
=
(
b
>
0
)
*
(
b
>
6.0
f
?
6.0
f
:
b
)
*
a
*
0.166667
f
;
dst
=
ck
::
type_convert
<
bhalf_t
>
(
y
);
y
=
c
;
}
};
template
<
>
__host__
__device__
constexpr
void
operator
()
<
double
>
(
double
&
y
,
const
double
&
x0
,
const
double
&
x1
)
const
{
double
a
=
x0
+
x1
;
double
b
=
a
+
3.0
;
double
c
=
(
b
>
0
)
*
(
b
>
6.0
?
6.0
:
b
)
*
a
*
0.166667
;
y
=
c
;
};
template
<
>
__host__
__device__
constexpr
void
operator
()
<
half_t
>
(
half_t
&
y
,
const
half_t
&
x0
,
const
half_t
&
x1
)
const
{
float
a
=
x0
+
x1
;
float
b
=
a
+
3.0
f
;
float
c
=
(
b
>
0
)
*
(
b
>
6.0
f
?
6.0
f
:
b
)
*
a
*
0.166667
f
;
y
=
c
;
};
};
};
}
// namespace
binary_
element_wise
}
// namespace element_wise
}
// namespace tensor_operation
}
// namespace tensor_operation
}
// namespace ck
}
// namespace ck
include/ck/tensor_operation/gpu/element/element_wise_operation.hpp
View file @
b79df771
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2022, Advanced Micro Devices, Inc. All rights reserved.
#pragma once
#pragma once
#include "data_type.hpp"
#include "math_v2.hpp"
#include "ck/utility/data_type.hpp"
#include "ck/utility/math_v2.hpp"
#include "ck/tensor_operation/gpu/element/unary_element_wise_operation.hpp"
#include "ck/tensor_operation/gpu/element/binary_element_wise_operation.hpp"
namespace
ck
{
namespace
ck
{
namespace
tensor_operation
{
namespace
tensor_operation
{
namespace
element_wise
{
namespace
element_wise
{
struct
PassThrough
// Need to ensure compiler will fail if there is no matching candidate, instead of compiler
{
// siliently do implicit type conversion
__host__
__device__
void
operator
()(
float
&
y
,
const
float
&
x
)
const
{
y
=
x
;
}
//
// Method 1:
__host__
__device__
void
operator
()(
half_t
&
y
,
const
half_t
&
x
)
const
{
y
=
x
;
}
//
// struct ExampleElementwiseOp
__host__
__device__
void
operator
()(
bhalf_t
&
y
,
const
bhalf_t
&
x
)
const
{
y
=
x
;
}
// {
// template<typename Y, typename X>
__host__
__device__
void
operator
()(
int32_t
&
y
,
const
int32_t
&
x
)
const
{
y
=
x
;
}
// __host__ __device__ constexpr void
// operator()(Y&, const X) const;
__host__
__device__
void
operator
()(
int8_t
&
y
,
const
int8_t
&
x
)
const
{
y
=
x
;
}
//
// template<>
__host__
__device__
void
operator
()(
double
&
y
,
const
double
&
x
)
const
{
y
=
x
;
}
// __host__ __device__ constexpr void
};
// operator()<half_t, half_t>(half_t& y, const half_t& x) const
// {
struct
Add
// }
{
// };
__host__
__device__
constexpr
void
operator
()(
float
&
y
,
const
float
&
x0
,
const
float
&
x1
)
const
//
{
// Method 2:
y
=
x0
+
x1
;
//
}
// template <typename Y, typename X>
// struct ExampleElementwiseOp;
__host__
__device__
constexpr
void
//
operator
()(
half_t
&
y
,
const
half_t
&
x0
,
const
half_t
&
x1
)
const
// template <>
{
// struct ExampleElementwiseOp<float, ck::bhalf_t>
// FIXME - Use float (acc type) bias in the future.
// {
y
=
x0
+
x1
;
// __host__ __device__ void operator()(float& y, ck::bhalf_t& x) const
}
// {
};
// }
// };
struct
AlphaBetaAdd
{
AlphaBetaAdd
(
float
alpha
,
float
beta
)
:
alpha_
(
alpha
),
beta_
(
beta
)
{}
__host__
__device__
constexpr
void
operator
()(
float
&
y
,
const
float
&
x0
,
const
float
&
x1
)
const
{
y
=
alpha_
*
x0
+
beta_
*
x1
;
}
__host__
__device__
constexpr
void
operator
()(
half_t
&
y
,
const
half_t
&
x0
,
const
half_t
&
x1
)
const
{
// FIXME - Let x0 be acc type
y
=
static_cast
<
half_t
>
(
alpha_
*
static_cast
<
float
>
(
x0
)
+
beta_
*
static_cast
<
float
>
(
x1
));
}
float
alpha_
;
float
beta_
;
};
struct
AddRelu
{
__host__
__device__
constexpr
void
operator
()(
float
&
y
,
const
float
&
x0
,
const
float
&
x1
)
const
{
const
float
a
=
x0
+
x1
;
y
=
a
>
0
?
a
:
0
;
}
__host__
__device__
constexpr
void
operator
()(
half_t
&
y
,
const
half_t
&
x0
,
const
half_t
&
x1
)
const
{
const
half_t
a
=
x0
+
x1
;
y
=
a
>
0
?
a
:
0
;
}
};
struct
AddHardswish
{
__host__
__device__
constexpr
void
operator
()(
float
&
y
,
const
float
&
x0
,
const
float
&
x1
)
const
{
float
a
=
x0
+
x1
;
float
b
=
a
+
float
{
3
};
float
c
=
(
b
>
0
)
*
(
b
>
float
{
6
}
?
float
{
6
}
:
b
)
*
a
*
float
{
0.166667
};
y
=
c
;
}
__host__
__device__
constexpr
void
operator
()(
half_t
&
y
,
const
half_t
&
x0
,
const
half_t
&
x1
)
const
{
float
a
=
x0
+
x1
;
float
b
=
a
+
float
{
3
};
float
c
=
(
b
>
0
)
*
(
b
>
float
{
6
}
?
float
{
6
}
:
b
)
*
a
*
float
{
0.166667
};
y
=
c
;
}
};
struct
AddReluAdd
struct
AddReluAdd
{
{
__host__
__device__
constexpr
void
template
<
typename
Y
,
typename
X0
,
typename
X1
,
typename
X2
>
operator
()(
half_t
&
y
,
const
half_t
&
x0
,
const
half_t
&
x1
,
const
half_t
&
x2
)
const
__host__
__device__
constexpr
void
operator
()(
Y
&
,
const
X0
&
,
const
X1
&
,
const
X2
&
)
const
;
template
<
>
__host__
__device__
constexpr
void
operator
()
<
half_t
,
half_t
,
half_t
,
half_t
>
(
half_t
&
y
,
const
half_t
&
x0
,
const
half_t
&
x1
,
const
half_t
&
x2
)
const
{
{
half_t
a
=
x0
+
x1
;
half_t
a
=
x0
+
x1
;
half_t
b
=
a
>
0
?
a
:
0
;
half_t
b
=
a
>
0
?
a
:
0
;
y
=
b
+
x2
;
y
=
b
+
x2
;
}
}
__host__
__device__
constexpr
void
template
<
>
operator
()(
float
&
y
,
const
float
&
x0
,
const
float
&
x1
,
const
float
&
x2
)
const
__host__
__device__
constexpr
void
operator
()
<
float
,
float
,
float
,
float
>
(
float
&
y
,
const
float
&
x0
,
const
float
&
x1
,
const
float
&
x2
)
const
{
{
float
a
=
x0
+
x1
;
float
a
=
x0
+
x1
;
float
b
=
a
>
0
?
a
:
0
;
float
b
=
a
>
0
?
a
:
0
;
...
@@ -111,8 +69,9 @@ struct AddReluAdd
...
@@ -111,8 +69,9 @@ struct AddReluAdd
y
=
c
;
y
=
c
;
}
}
__host__
__device__
constexpr
void
template
<
>
operator
()(
half_t
&
y
,
const
float
&
x0
,
const
half_t
&
x1
,
const
half_t
&
x2
)
const
__host__
__device__
constexpr
void
operator
()
<
half_t
,
float
,
half_t
,
half_t
>
(
half_t
&
y
,
const
float
&
x0
,
const
half_t
&
x1
,
const
half_t
&
x2
)
const
{
{
float
a
=
x0
+
x1
;
float
a
=
x0
+
x1
;
float
b
=
a
>
0
?
a
:
0
;
float
b
=
a
>
0
?
a
:
0
;
...
@@ -123,8 +82,14 @@ struct AddReluAdd
...
@@ -123,8 +82,14 @@ struct AddReluAdd
struct
AddHardswishAdd
struct
AddHardswishAdd
{
{
__host__
__device__
constexpr
void
template
<
typename
Y
,
typename
X0
,
typename
X1
,
typename
X2
>
operator
()(
float
&
y
,
const
float
&
x0
,
const
float
&
x1
,
const
float
&
x2
)
const
__host__
__device__
constexpr
void
operator
()(
Y
&
,
const
X0
&
,
const
X1
&
,
const
X2
&
)
const
;
template
<
>
__host__
__device__
constexpr
void
operator
()
<
float
,
float
,
float
,
float
>
(
float
&
y
,
const
float
&
x0
,
const
float
&
x1
,
const
float
&
x2
)
const
{
{
float
a
=
x0
+
x1
;
float
a
=
x0
+
x1
;
float
b
=
a
+
float
{
3
};
float
b
=
a
+
float
{
3
};
...
@@ -133,8 +98,9 @@ struct AddHardswishAdd
...
@@ -133,8 +98,9 @@ struct AddHardswishAdd
y
=
d
;
y
=
d
;
}
}
__host__
__device__
constexpr
void
template
<
>
operator
()(
half_t
&
y
,
const
half_t
&
x0
,
const
half_t
&
x1
,
const
half_t
&
x2
)
const
__host__
__device__
constexpr
void
operator
()
<
half_t
,
half_t
,
half_t
,
half_t
>
(
half_t
&
y
,
const
half_t
&
x0
,
const
half_t
&
x1
,
const
half_t
&
x2
)
const
{
{
float
a
=
x0
+
x1
;
float
a
=
x0
+
x1
;
float
b
=
a
+
float
{
3
};
float
b
=
a
+
float
{
3
};
...
@@ -144,206 +110,95 @@ struct AddHardswishAdd
...
@@ -144,206 +110,95 @@ struct AddHardswishAdd
}
}
};
};
struct
Normalize
// C = A * B
{
// E = FastGelu(C + D0 + D1)
Normalize
(
float
epsilon
=
1e-4
)
:
epsilon_
(
epsilon
)
{}
struct
AddAddFastGelu
__host__
__device__
constexpr
void
operator
()(
float
&
y
,
const
float
&
x
,
const
float
&
mean
,
const
float
&
mean_square
,
const
float
&
gamma
,
const
float
&
beta
)
const
{
float
variance
=
mean_square
-
(
mean
*
mean
);
y
=
((
x
-
mean
)
/
sqrtf
(
variance
+
epsilon_
))
*
gamma
+
beta
;
}
float
epsilon_
;
};
// Unary operators are usually called element-wisely before/after the reduction is executed on the
// elements. They are needed for easy implementation of reduction types of AVG, NRM1, NRM2
template
<
typename
Y
,
typename
X
,
bool
HasDividing
=
false
>
struct
UnaryIdentic
;
template
<
>
struct
UnaryIdentic
<
float
,
float
,
false
>
{
{
__host__
__device__
UnaryIdentic
(
const
int32_t
divider
=
1
)
{
(
void
)
divider
;
};
template
<
typename
E
,
typename
C
,
typename
D0
,
typename
D1
>
__host__
__device__
void
operator
()(
E
&
,
const
C
&
,
const
D0
&
,
const
D1
&
)
const
;
__host__
__device__
void
operator
()(
float
&
y
,
const
float
&
x
)
const
{
y
=
x
;
};
};
template
<
>
template
<
>
struct
UnaryIdentic
<
float
,
float
,
true
>
__host__
__device__
void
operator
()
<
half_t
,
float
,
half_t
,
half_t
>
(
half_t
&
e
,
{
const
float
&
c
,
__host__
__device__
UnaryIdentic
(
const
int32_t
divider
=
1
)
{
divider_
=
divider
;
};
const
half_t
&
d0
,
const
half_t
&
d1
)
const
__host__
__device__
void
operator
()(
float
&
y
,
const
float
&
x
)
const
{
{
y
=
x
/
type_convert
<
float
>
(
divider_
);
// Fast GeLU
};
// https://paperswithcode.com/method/gelu
// y = 0.5*x*(1+tanh(sqrt(2/pi)*(x+0.044715*x^3)))
const
auto
fast_gelu
=
[
&
](
float
x
)
{
const
float
u
=
float
(
2
)
*
x
*
(
float
(
0.035677
)
*
x
*
x
+
float
(
0.797885
));
const
float
emu
=
exp
(
-
u
);
const
float
cdf
=
float
(
0.5
)
+
float
(
0.5
)
*
(
float
(
2
)
/
(
float
(
1
)
+
emu
)
-
float
(
1
));
return
x
*
cdf
;
};
int32_t
divider_
=
1
;
const
float
y
=
fast_gelu
(
c
+
float
(
d0
)
+
float
(
d1
));
};
template
<
>
e
=
type_convert
<
half_t
>
(
y
);
struct
UnaryIdentic
<
half_t
,
half_t
,
false
>
}
{
__host__
__device__
UnaryIdentic
(
const
int32_t
divider
=
1
)
{
(
void
)
divider
;
};
__host__
__device__
void
operator
()(
half_t
&
y
,
const
half_t
&
x
)
const
{
y
=
x
;
};
};
};
template
<
>
struct
Normalize
struct
UnaryIdentic
<
double
,
double
,
false
>
{
{
__host__
__device__
UnaryIdentic
(
const
int32_t
divider
=
1
)
{
(
void
)
divider
;
};
// FIXME: is double absolutely necessary?
Normalize
(
double
epsilon
=
1e-4
)
:
epsilon_
(
epsilon
)
{}
__host__
__device__
void
operator
()(
double
&
y
,
const
double
&
x
)
const
{
y
=
x
;
};
template
<
typename
T
>
};
__host__
__device__
constexpr
void
operator
()(
T
&
y
,
const
T
&
x
,
const
T
&
mean
,
const
T
&
mean_square
,
const
T
&
gamma
,
const
T
&
beta
)
const
;
template
<
>
struct
UnaryIdentic
<
double
,
double
,
true
>
{
__host__
__device__
UnaryIdentic
(
const
int32_t
divider
=
1
)
{
divider_
=
divider
;
};
__host__
__device__
void
operator
()(
double
&
y
,
const
double
&
x
)
const
template
<
>
__host__
__device__
constexpr
void
operator
()
<
float
>
(
float
&
y
,
const
float
&
x
,
const
float
&
mean
,
const
float
&
mean_square
,
const
float
&
gamma
,
const
float
&
beta
)
const
{
{
y
=
x
/
type_convert
<
double
>
(
divider_
);
using
ck
::
math
::
sqrt
;
};
int32_t
divider_
=
1
;
};
template
<
>
struct
UnaryIdentic
<
int32_t
,
int32_t
,
false
>
{
__host__
__device__
UnaryIdentic
(
const
int32_t
divider
=
1
)
{
(
void
)
divider
;
};
__host__
__device__
void
operator
()(
int32_t
&
y
,
const
int32_t
&
x
)
const
{
y
=
x
;
};
};
template
<
>
struct
UnaryIdentic
<
int32_t
,
int32_t
,
true
>
{
__host__
__device__
UnaryIdentic
(
const
int32_t
divider
=
1
)
{
divider_
=
divider
;
};
__host__
__device__
void
operator
()(
int32_t
&
y
,
const
int32_t
&
x
)
const
{
y
=
x
/
divider_
;
};
int32_t
divider_
=
1
;
};
template
<
>
struct
UnaryIdentic
<
int8_t
,
int8_t
,
false
>
{
__host__
__device__
UnaryIdentic
(
const
int8_t
divider
=
1
)
{
(
void
)
divider
;
};
__host__
__device__
void
operator
()(
int8_t
&
y
,
const
int8_t
&
x
)
const
{
y
=
x
;
};
};
template
<
typename
Y
,
typename
X
,
bool
HasDividing
=
false
>
struct
UnarySquare
;
template
<
>
struct
UnarySquare
<
float
,
float
,
false
>
{
__host__
__device__
UnarySquare
(
const
int32_t
divider
=
1
)
{
(
void
)
divider
;
};
__host__
__device__
void
operator
()(
float
&
y
,
const
float
&
x
)
const
{
y
=
x
*
x
;
};
float
variance
=
mean_square
-
(
mean
*
mean
);
};
y
=
((
x
-
mean
)
/
sqrt
(
variance
+
type_convert
<
float
>
(
epsilon_
)))
*
gamma
+
beta
;
template
<
>
struct
UnarySquare
<
float
,
float
,
true
>
{
__host__
__device__
UnarySquare
(
const
int32_t
divider
=
1
)
{
divider_
=
divider
;
};
__host__
__device__
void
operator
()(
float
&
y
,
const
float
&
x
)
const
{
y
=
x
*
x
/
type_convert
<
float
>
(
divider_
);
};
};
int32_t
divider_
=
1
;
template
<
>
};
__host__
__device__
constexpr
void
operator
()
<
double
>
(
double
&
y
,
const
double
&
x
,
template
<
>
const
double
&
mean
,
struct
UnarySquare
<
double
,
double
,
false
>
const
double
&
mean_square
,
{
const
double
&
gamma
,
__host__
__device__
UnarySquare
(
const
int32_t
divider
=
1
)
{
(
void
)
divider
;
};
const
double
&
beta
)
const
__host__
__device__
void
operator
()(
double
&
y
,
const
double
&
x
)
const
{
y
=
x
*
x
;
};
};
template
<
>
struct
UnarySquare
<
double
,
double
,
true
>
{
__host__
__device__
UnarySquare
(
const
int32_t
divider
=
1
)
{
divider_
=
divider
;
};
__host__
__device__
void
operator
()(
double
&
y
,
const
double
&
x
)
const
{
{
y
=
x
*
x
/
type_convert
<
double
>
(
divider_
);
using
ck
::
math
::
sqrt
;
};
int32_t
divider_
=
1
;
double
variance
=
mean_square
-
(
mean
*
mean
);
};
y
=
((
x
-
mean
)
/
sqrt
(
variance
+
epsilon_
))
*
gamma
+
beta
;
};
template
<
typename
Y
,
typename
X
>
struct
UnaryAbs
;
template
<
>
struct
UnaryAbs
<
float
,
float
>
{
__host__
__device__
UnaryAbs
(
const
int32_t
divider
=
1
)
{
(
void
)
divider
;
};
__host__
__device__
void
operator
()(
float
&
y
,
const
float
&
x
)
const
{
y
=
ck
::
math
::
abs
(
x
);
};
};
template
<
>
struct
UnaryAbs
<
half_t
,
half_t
>
{
__host__
__device__
UnaryAbs
(
const
int32_t
divider
=
1
)
{
(
void
)
divider
;
};
__host__
__device__
void
operator
()(
half_t
&
y
,
const
half_t
&
x
)
const
{
y
=
ck
::
math
::
abs
(
x
);
};
};
template
<
>
struct
UnaryAbs
<
double
,
double
>
{
__host__
__device__
UnaryAbs
(
const
int32_t
divider
=
1
)
{
(
void
)
divider
;
};
__host__
__device__
void
operator
()(
double
&
y
,
const
double
&
x
)
const
{
y
=
ck
::
math
::
abs
(
x
);
};
};
template
<
>
struct
UnaryAbs
<
int8_t
,
int8_t
>
{
__host__
__device__
UnaryAbs
(
const
int32_t
divider
=
1
)
{
(
void
)
divider
;
};
__host__
__device__
void
operator
()(
int8_t
&
y
,
const
int8_t
&
x
)
const
{
y
=
ck
::
math
::
abs
(
x
);
};
// FIXME: is double absolutely necessary?
double
epsilon_
;
};
};
template
<
typename
Y
,
typename
X
>
template
<
typename
Y
,
typename
X
>
struct
Unary
Sq
rt
;
struct
Unary
TypeConve
rt
;
template
<
>
template
<
>
struct
Unary
Sq
rt
<
float
,
floa
t
>
struct
Unary
TypeConve
rt
<
float
,
ck
::
bhalf_
t
>
{
{
__host__
__device__
UnarySqrt
(
const
int32_t
divider
=
1
)
{
(
void
)
divider
;
};
__host__
__device__
void
operator
()(
float
&
y
,
ck
::
bhalf_t
&
x
)
const
{
__host__
__device__
void
operator
()(
float
&
y
,
const
float
&
x
)
const
{
y
=
ck
::
math
::
sqrt
(
x
);
};
y
=
ck
::
type_convert
<
float
,
ck
::
bhalf_t
>
(
x
);
}
};
};
template
<
>
template
<
>
struct
Unary
Sqrt
<
double
,
double
>
struct
Unary
TypeConvert
<
ck
::
bhalf_t
,
float
>
{
{
__host__
__device__
UnarySqrt
(
const
int32_t
divider
=
1
)
{
(
void
)
divider
;
};
__host__
__device__
void
operator
()(
ck
::
bhalf_t
&
y
,
float
&
x
)
const
__host__
__device__
void
operator
()(
double
&
y
,
const
double
&
x
)
const
{
{
y
=
ck
::
math
::
sqrt
(
x
);
y
=
ck
::
type_convert
<
ck
::
bhalf_t
,
float
>
(
x
);
}
;
}
};
};
}
// namespace element_wise
}
// namespace element_wise
...
...
include/ck/tensor_operation/gpu/element/element_wise_reduce_operation.hpp
deleted
100644 → 0
View file @
05d38218
#pragma once
#include "data_type.hpp"
namespace
ck
{
namespace
tensor_operation
{
namespace
element_wise
{
}
// namespace element_wise
}
// namespace tensor_operation
}
// namespace ck
include/ck/tensor_operation/gpu/element/unary_element_wise_operation.hpp
0 → 100644
View file @
b79df771
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2022, Advanced Micro Devices, Inc. All rights reserved.
#pragma once
#include "ck/utility/data_type.hpp"
#include "ck/utility/math_v2.hpp"
namespace
ck
{
namespace
tensor_operation
{
namespace
element_wise
{
struct
PassThrough
{
template
<
typename
T
>
__host__
__device__
void
operator
()(
T
&
y
,
const
T
&
x
)
const
{
static_assert
(
is_same
<
T
,
float
>::
value
||
is_same
<
T
,
double
>::
value
||
is_same
<
T
,
half_t
>::
value
||
is_same
<
T
,
bhalf_t
>::
value
||
is_same
<
T
,
int32_t
>::
value
||
is_same
<
T
,
int8_t
>::
value
,
"Data type is not supported by this operation!"
);
y
=
x
;
};
};
struct
Scale
{
__host__
__device__
Scale
(
float
scale
)
:
scale_
(
scale
)
{}
template
<
typename
Y
,
typename
X
>
__host__
__device__
void
operator
()(
Y
&
y
,
const
X
&
x
)
const
;
template
<
>
__host__
__device__
void
operator
()
<
float
,
float
>
(
float
&
y
,
const
float
&
x
)
const
{
y
=
scale_
*
x
;
};
float
scale_
;
};
struct
UnaryDivide
{
__host__
__device__
UnaryDivide
(
const
int32_t
divider
=
1
)
:
divider_
(
divider
)
{}
template
<
typename
T
>
__host__
__device__
void
operator
()(
T
&
y
,
const
T
&
x
)
const
{
static_assert
(
is_same
<
T
,
float
>::
value
||
is_same
<
T
,
double
>::
value
||
is_same
<
T
,
int32_t
>::
value
,
"Data type is not supported by this operation!"
);
y
=
x
/
type_convert
<
T
>
(
divider_
);
};
int32_t
divider_
=
1
;
};
struct
UnarySquare
{
template
<
typename
T
>
__host__
__device__
void
operator
()(
T
&
y
,
const
T
&
x
)
const
{
static_assert
(
is_same
<
T
,
float
>::
value
||
is_same
<
T
,
double
>::
value
,
"Data type is not supported by this operation!"
);
y
=
x
*
x
;
};
};
struct
UnaryAbs
{
template
<
typename
T
>
__host__
__device__
void
operator
()(
T
&
y
,
const
T
&
x
)
const
{
static_assert
(
is_same
<
T
,
float
>::
value
||
is_same
<
T
,
double
>::
value
||
is_same
<
T
,
half_t
>::
value
||
is_same
<
T
,
int32_t
>::
value
||
is_same
<
T
,
int8_t
>::
value
,
"Data type is not supported by this operation!"
);
y
=
ck
::
math
::
abs
(
x
);
};
};
struct
UnarySqrt
{
template
<
typename
T
>
__host__
__device__
void
operator
()(
T
&
y
,
const
T
&
x
)
const
{
static_assert
(
is_same
<
T
,
float
>::
value
||
is_same
<
T
,
double
>::
value
,
"Data type is not supported by this operation!"
);
y
=
ck
::
math
::
sqrt
(
x
);
};
};
struct
Relu
{
template
<
typename
T
>
__host__
__device__
void
operator
()(
T
&
y
,
const
T
&
x
)
const
{
static_assert
(
is_same
<
T
,
float
>::
value
||
is_same
<
T
,
double
>::
value
||
is_same
<
T
,
half_t
>::
value
||
is_same
<
T
,
int32_t
>::
value
||
is_same
<
T
,
int8_t
>::
value
,
"Data type is not supported by this operation!"
);
y
=
x
>
0
?
x
:
0
;
}
template
<
>
__host__
__device__
void
operator
()(
bhalf_t
&
y
,
const
bhalf_t
&
x
)
const
{
float
x_f32
=
ck
::
type_convert
<
float
>
(
x
);
float
y_f32
=
x_f32
>
0
?
x_f32
:
0
;
y
=
ck
::
type_convert
<
bhalf_t
>
(
y_f32
);
}
};
// https://paperswithcode.com/method/gelu
// y = 0.5*x*(1+tanh(sqrt(2/pi)*(x+0.044715*x^3)))
struct
FastGelu
{
template
<
typename
Y
,
typename
X
>
__host__
__device__
void
operator
()(
Y
&
y
,
const
X
&
x
)
const
;
template
<
>
__host__
__device__
void
operator
()
<
float
,
float
>
(
float
&
y
,
const
float
&
x
)
const
{
const
float
u
=
float
(
2
)
*
x
*
(
float
(
0.035677
)
*
x
*
x
+
float
(
0.797885
));
const
float
emu
=
exp
(
-
u
);
const
float
cdf
=
float
(
0.5
)
+
float
(
0.5
)
*
(
float
(
2
)
/
(
float
(
1
)
+
emu
)
-
float
(
1
));
y
=
x
*
cdf
;
}
};
}
// namespace element_wise
}
// namespace tensor_operation
}
// namespace ck
include/ck/tensor_operation/gpu/grid/block_to_ctile_map.hpp
View file @
b79df771
#ifndef UTILITY_BLOCK_TO_CTILE_MAP
// SPDX-License-Identifier: MIT
#define UTILITY_BLOCK_TO_CTILE_MAP
// Copyright (c) 2018-2022, Advanced Micro Devices, Inc. All rights reserved.
#include "utility/math.hpp"
#pragma once
#include "utility/number.hpp"
#include "tensor_description/tensor_adaptor.hpp"
#include "ck/utility/math.hpp"
#include "tensor_description/multi_index_transform_helper.hpp"
#include "ck/utility/number.hpp"
#include "ck/tensor_description/tensor_adaptor.hpp"
#include "ck/tensor_description/multi_index_transform_helper.hpp"
namespace
ck
{
namespace
ck
{
...
@@ -485,5 +487,3 @@ __host__ __device__ bool DefaultValidCTileIndex(const CTileIdx& c_tile_idx,
...
@@ -485,5 +487,3 @@ __host__ __device__ bool DefaultValidCTileIndex(const CTileIdx& c_tile_idx,
}
}
}
// namespace ck
}
// namespace ck
#endif // UTILITY_BLOCK_TO_CTILE_MAP
include/ck/tensor_operation/gpu/grid/gridwise_2d_reduction_multiblock.hpp
View file @
b79df771
/*******************************************************************************
// SPDX-License-Identifier: MIT
*
// Copyright (c) 2018-2022, Advanced Micro Devices, Inc. All rights reserved.
* MIT License
*
#pragma once
* Copyright (c) 2020 Advanced Micro Devices, Inc.
*
#include "ck/utility/reduction_common.hpp"
* Permission is hereby granted, free of charge, to any person obtaining a copy
#include "ck/utility/reduction_operator.hpp"
* of this software and associated documentation files (the "Software"), to deal
#include "ck/utility/reduction_functions_accumulate.hpp"
* in the Software without restriction, including without limitation the rights
#include "ck/tensor_operation/gpu/block/reduction_functions_blockwise.hpp"
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
#include "ck/tensor_operation/gpu/thread/reduction_functions_threadwise.hpp"
* copies of the Software, and to permit persons to whom the Software is
#include "ck/tensor_operation/gpu/thread/threadwise_tensor_slice_transfer.hpp"
* furnished to do so, subject to the following conditions:
#include "ck/tensor_operation/gpu/element/element_wise_operation.hpp"
*
* The above copyright notice and this permission notice shall be included in all
* copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
* SOFTWARE.
*
*******************************************************************************/
#ifndef CK_GRIDWISE_2D_REDUCTION_MULTIBLOCK_HPP
#define CK_GRIDWISE_2D_REDUCTION_MULTIBLOCK_HPP
#include "reduction_common.hpp"
#include "reduction_operator.hpp"
#include "reduction_functions_accumulate.hpp"
#include "reduction_functions_blockwise.hpp"
#include "reduction_functions_threadwise.hpp"
#include "threadwise_tensor_slice_transfer.hpp"
#include "element_wise_operation.hpp"
namespace
ck
{
namespace
ck
{
...
@@ -171,15 +147,15 @@ struct GridwiseReduction_mk_to_m_multiblock
...
@@ -171,15 +147,15 @@ struct GridwiseReduction_mk_to_m_multiblock
AccDataType
beta
,
AccDataType
beta
,
OutDataType
*
const
__restrict__
p_out_value_global
)
OutDataType
*
const
__restrict__
p_out_value_global
)
{
{
const
auto
identityVal
=
ReduceOperation
::
GetIdentityValue
();
const
auto
identityVal
=
ReduceOperation
::
template
GetIdentityValue
<
AccDataType
>
();
// LDS
// LDS
__shared__
AccDataType
p_reduce_work_buffer
[
BlockSize
];
__shared__
AccDataType
p_reduce_work_buffer
[
BlockSize
];
const
auto
in_global_val_buf
=
const
auto
in_global_val_buf
=
make_dynamic_buffer
<
AddressSpaceEnum
::
Global
>
(
make_dynamic_buffer
<
AddressSpaceEnum
::
Global
>
(
p_in_value_global
,
p_in_value_global
,
in_grid_desc_m_k
.
GetElementSpaceSize
(),
in_grid_desc_m_k
.
GetElementSpaceSize
(),
type_convert
<
InDataType
>
(
identityVal
));
ReduceOperation
::
template
GetIdentityValue
<
InDataType
>());
auto
out_global_val_buf
=
make_dynamic_buffer
<
AddressSpaceEnum
::
Global
>
(
auto
out_global_val_buf
=
make_dynamic_buffer
<
AddressSpaceEnum
::
Global
>
(
p_out_value_global
,
out_grid_desc_m
.
GetElementSpaceSize
());
p_out_value_global
,
out_grid_desc_m
.
GetElementSpaceSize
());
...
@@ -358,12 +334,12 @@ struct GridwiseReduction_mk_to_m_multiblock
...
@@ -358,12 +334,12 @@ struct GridwiseReduction_mk_to_m_multiblock
__shared__
AccDataType
p_reduce_work_val_buffer
[
BlockSize
];
__shared__
AccDataType
p_reduce_work_val_buffer
[
BlockSize
];
__shared__
IndexDataType
p_reduce_work_idx_buffer
[
BlockSize
];
__shared__
IndexDataType
p_reduce_work_idx_buffer
[
BlockSize
];
const
auto
identityVal
=
ReduceOperation
::
GetIdentityValue
();
const
auto
identityVal
=
ReduceOperation
::
template
GetIdentityValue
<
AccDataType
>
();
const
auto
in_global_val_buf
=
const
auto
in_global_val_buf
=
make_dynamic_buffer
<
AddressSpaceEnum
::
Global
>
(
make_dynamic_buffer
<
AddressSpaceEnum
::
Global
>
(
p_in_value_global
,
p_in_value_global
,
in_grid_desc_m_k
.
GetElementSpaceSize
(),
in_grid_desc_m_k
.
GetElementSpaceSize
(),
type_convert
<
InDataType
>
(
identityVal
));
ReduceOperation
::
template
GetIdentityValue
<
InDataType
>());
const
auto
in_global_idx_buf
=
make_dynamic_buffer
<
AddressSpaceEnum
::
Global
>
(
const
auto
in_global_idx_buf
=
make_dynamic_buffer
<
AddressSpaceEnum
::
Global
>
(
p_in_index_global
,
in_grid_desc_m_k
.
GetElementSpaceSize
());
p_in_index_global
,
in_grid_desc_m_k
.
GetElementSpaceSize
());
auto
out_global_val_buf
=
make_dynamic_buffer
<
AddressSpaceEnum
::
Global
>
(
auto
out_global_val_buf
=
make_dynamic_buffer
<
AddressSpaceEnum
::
Global
>
(
...
@@ -635,4 +611,3 @@ struct GridwiseReduction_mk_to_m_multiblock
...
@@ -635,4 +611,3 @@ struct GridwiseReduction_mk_to_m_multiblock
};
};
}
// namespace ck
}
// namespace ck
#endif
include/ck/tensor_operation/gpu/grid/gridwise_2d_reduction_threadwise.hpp
View file @
b79df771
/*******************************************************************************
// SPDX-License-Identifier: MIT
*
// Copyright (c) 2018-2022, Advanced Micro Devices, Inc. All rights reserved.
* MIT License
*
#pragma once
* Copyright (c) 2021 Advanced Micro Devices, Inc.
*
#include "ck/utility/data_type.hpp"
* Permission is hereby granted, free of charge, to any person obtaining a copy
#include "ck/utility/reduction_common.hpp"
* of this software and associated documentation files (the "Software"), to deal
#include "ck/utility/reduction_operator.hpp"
* in the Software without restriction, including without limitation the rights
#include "ck/utility/reduction_functions_accumulate.hpp"
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
#include "ck/tensor_operation/gpu/thread/reduction_functions_threadwise.hpp"
* copies of the Software, and to permit persons to whom the Software is
#include "ck/tensor_operation/gpu/thread/threadwise_tensor_slice_transfer.hpp"
* furnished to do so, subject to the following conditions:
#include "ck/tensor_operation/gpu/element/element_wise_operation.hpp"
*
* The above copyright notice and this permission notice shall be included in all
* copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
* SOFTWARE.
*
*******************************************************************************/
#ifndef CK_GRIDWISE_2D_REDUCTION_THREADWISE_HPP
#define CK_GRIDWISE_2D_REDUCTION_THREADWISE_HPP
#include "data_type.hpp"
#include "reduction_common.hpp"
#include "reduction_operator.hpp"
#include "reduction_functions_accumulate.hpp"
#include "reduction_functions_threadwise.hpp"
#include "threadwise_tensor_slice_transfer.hpp"
#include "element_wise_operation.hpp"
namespace
ck
{
namespace
ck
{
...
@@ -135,12 +112,12 @@ struct GridwiseReduction_mk_to_m_threadwise
...
@@ -135,12 +112,12 @@ struct GridwiseReduction_mk_to_m_threadwise
ReduceOperation
,
ReduceOperation
,
PropagateNan
>
;
PropagateNan
>
;
const
auto
identityVal
=
ReduceOperation
::
GetIdentityValue
();
const
auto
identityVal
=
ReduceOperation
::
template
GetIdentityValue
<
AccDataType
>
();
const
auto
in_global_val_buf
=
const
auto
in_global_val_buf
=
make_dynamic_buffer
<
AddressSpaceEnum
::
Global
>
(
make_dynamic_buffer
<
AddressSpaceEnum
::
Global
>
(
p_in_value_global
,
p_in_value_global
,
in_grid_desc_m_k
.
GetElementSpaceSize
(),
in_grid_desc_m_k
.
GetElementSpaceSize
(),
type_convert
<
InDataType
>
(
identityVal
));
ReduceOperation
::
template
GetIdentityValue
<
InDataType
>());
auto
dst_global_buf
=
make_dynamic_buffer
<
AddressSpaceEnum
::
Global
>
(
auto
dst_global_buf
=
make_dynamic_buffer
<
AddressSpaceEnum
::
Global
>
(
p_out_value_global
,
out_grid_desc_m
.
GetElementSpaceSize
());
p_out_value_global
,
out_grid_desc_m
.
GetElementSpaceSize
());
...
@@ -276,12 +253,12 @@ struct GridwiseReduction_mk_to_m_threadwise
...
@@ -276,12 +253,12 @@ struct GridwiseReduction_mk_to_m_threadwise
(
void
)
acc_elementwise_op
;
(
void
)
acc_elementwise_op
;
const
auto
identityVal
=
ReduceOperation
::
GetIdentityValue
();
const
auto
identityVal
=
ReduceOperation
::
template
GetIdentityValue
<
AccDataType
>
();
const
auto
in_global_val_buf
=
const
auto
in_global_val_buf
=
make_dynamic_buffer
<
AddressSpaceEnum
::
Global
>
(
make_dynamic_buffer
<
AddressSpaceEnum
::
Global
>
(
p_in_value_global
,
p_in_value_global
,
in_grid_desc_m_k
.
GetElementSpaceSize
(),
in_grid_desc_m_k
.
GetElementSpaceSize
(),
type_convert
<
InDataType
>
(
identityVal
));
ReduceOperation
::
template
GetIdentityValue
<
InDataType
>());
const
auto
in_global_idx_buf
=
make_dynamic_buffer
<
AddressSpaceEnum
::
Global
>
(
const
auto
in_global_idx_buf
=
make_dynamic_buffer
<
AddressSpaceEnum
::
Global
>
(
p_in_index_global
,
in_grid_desc_m_k
.
GetElementSpaceSize
());
p_in_index_global
,
in_grid_desc_m_k
.
GetElementSpaceSize
());
...
@@ -495,4 +472,3 @@ struct GridwiseReduction_mk_to_m_threadwise
...
@@ -495,4 +472,3 @@ struct GridwiseReduction_mk_to_m_threadwise
};
};
}
// namespace ck
}
// namespace ck
#endif
include/ck/tensor_operation/gpu/grid/gridwise_5ary_Elementwise_1d.hpp
View file @
b79df771
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2022, Advanced Micro Devices, Inc. All rights reserved.
#pragma once
#pragma once
#include "cluster_descriptor.hpp"
#include "
ck/tensor_description/
cluster_descriptor.hpp"
#include "data_type.hpp"
#include "
ck/utility/
data_type.hpp"
#include "element_wise_operation.hpp"
#include "
ck/tensor_operation/gpu/element/
element_wise_operation.hpp"
#include "threadwise_tensor_slice_transfer.hpp"
#include "
ck/tensor_operation/gpu/thread/
threadwise_tensor_slice_transfer.hpp"
namespace
ck
{
namespace
ck
{
...
...
include/ck/tensor_operation/gpu/grid/gridwise_binary_elementwise_1d.hpp
View file @
b79df771
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2022, Advanced Micro Devices, Inc. All rights reserved.
#pragma once
#pragma once
#include "c
luster_descriptor
.hpp"
#include "c
k/utility/data_type
.hpp"
#include "
data_type
.hpp"
#include "
ck/tensor_description/cluster_descriptor
.hpp"
#include "element_wise_operation.hpp"
#include "
ck/tensor_operation/gpu/element/
element_wise_operation.hpp"
#include "threadwise_tensor_slice_transfer.hpp"
#include "
ck/tensor_operation/gpu/thread/
threadwise_tensor_slice_transfer.hpp"
namespace
ck
{
namespace
ck
{
...
...
include/ck/tensor_operation/gpu/grid/gridwise_contraction_dlops_v1r2.hpp
View file @
b79df771
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2022, Advanced Micro Devices, Inc. All rights reserved.
#ifndef CK_GRIDWISE_CONTRACTION_DLOPS_V1R2_HPP
#ifndef CK_GRIDWISE_CONTRACTION_DLOPS_V1R2_HPP
#define CK_GRIDWISE_CONTRACTION_DLOPS_V1R2_HPP
#define CK_GRIDWISE_CONTRACTION_DLOPS_V1R2_HPP
...
...
include/ck/tensor_operation/gpu/grid/gridwise_gemm_bias_add_reduce_xdl_cshuffle_v1.hpp
0 → 100644
View file @
b79df771
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2022, Advanced Micro Devices, Inc. All rights reserved.
#pragma once
#include "ck/utility/common_header.hpp"
#include "ck/tensor_description/multi_index_transform_helper.hpp"
#include "ck/tensor_description/tensor_descriptor.hpp"
#include "ck/tensor_description/tensor_descriptor_helper.hpp"
#include "ck/tensor_operation/gpu/grid/block_to_ctile_map.hpp"
#include "ck/tensor_operation/gpu/grid/gridwise_gemm_pipeline_v1.hpp"
#include "ck/tensor_operation/gpu/block/blockwise_gemm_xdlops.hpp"
#include "ck/tensor_operation/gpu/block/thread_group_tensor_slice_transfer_v4r1.hpp"
#include "ck/tensor_operation/gpu/block/thread_group_tensor_slice_transfer_v6r1.hpp"
#include "ck/tensor_operation/gpu/thread/threadwise_tensor_slice_transfer.hpp"
#include "ck/tensor_operation/gpu/thread/reduction_functions_threadwise.hpp"
#include "ck/tensor_operation/gpu/element/element_wise_operation.hpp"
namespace
ck
{
template
<
typename
GridwiseGemm
,
typename
FloatAB
,
typename
FloatC
,
typename
FloatC0
,
typename
FloatC1
,
typename
ReducePtrsGlobal
,
typename
AElementwiseOperation
,
typename
BElementwiseOperation
,
typename
CElementwiseOperation
,
typename
C1ElementwiseOperation
,
typename
ReduceInElementwiseOperations
,
typename
ReduceAccElementwiseOperations
,
typename
AGridDesc_AK0_M_AK1
,
typename
BGridDesc_BK0_N_BK1
,
typename
CGridDescriptor_MBlock_MPerBlock_NBlock_NPerBlock
,
typename
C0GridDescriptor_MBlock_MPerBlock_NBlock_NPerBlock
,
typename
C1GridDescriptor_MBlock_MPerBlock_NBlock_NPerBlock
,
typename
ReduceGridDescriptor_MBlock_MPerBlock
,
typename
Block2CTileMap
,
bool
HasMainKBlockLoop
>
__global__
void
#if CK_USE_LAUNCH_BOUNDS
__launch_bounds__
(
CK_MAX_THREAD_PER_BLOCK
,
CK_MIN_BLOCK_PER_CU
)
#endif
kernel_gemm_bias_add_reduce_xdl_cshuffle_v1
(
const
FloatAB
*
__restrict__
p_a_grid
,
const
FloatAB
*
__restrict__
p_b_grid
,
FloatC
*
__restrict__
p_c_grid
,
const
FloatC0
*
__restrict__
p_bias_grid
,
const
FloatC1
*
__restrict__
p_d0_grid
,
ReducePtrsGlobal
p_reduces_grid
,
const
AElementwiseOperation
a_element_op
,
const
BElementwiseOperation
b_element_op
,
const
CElementwiseOperation
c_element_op
,
const
C1ElementwiseOperation
c1_element_op
,
const
ReduceInElementwiseOperations
reduce_in_element_ops
,
const
ReduceAccElementwiseOperations
reduce_out_element_ops
,
const
AGridDesc_AK0_M_AK1
a_grid_desc_ak0_m_ak1
,
const
BGridDesc_BK0_N_BK1
b_grid_desc_bk0_n_bk1
,
const
CGridDescriptor_MBlock_MPerBlock_NBlock_NPerBlock
c_grid_desc_mblock_mperblock_nblock_nperblock
,
const
C0GridDescriptor_MBlock_MPerBlock_NBlock_NPerBlock
c0_grid_desc_mblock_mperblock_nblock_nperblock
,
const
C1GridDescriptor_MBlock_MPerBlock_NBlock_NPerBlock
c1_grid_desc_mblock_mperblock_nblock_nperblock
,
const
ReduceGridDescriptor_MBlock_MPerBlock
reduce_grid_desc_mblock_mperblock
,
const
Block2CTileMap
block_2_ctile_map
)
{
#if(!defined(__HIP_DEVICE_COMPILE__) || defined(__gfx908__) || defined(__gfx90a__))
__shared__
char
p_shared
[
GridwiseGemm
::
GetSharedMemoryNumberOfByte
()];
GridwiseGemm
::
template
Run
<
HasMainKBlockLoop
>(
p_a_grid
,
p_b_grid
,
p_c_grid
,
p_bias_grid
,
p_d0_grid
,
p_reduces_grid
,
p_shared
,
a_element_op
,
b_element_op
,
c_element_op
,
c1_element_op
,
reduce_in_element_ops
,
reduce_out_element_ops
,
a_grid_desc_ak0_m_ak1
,
b_grid_desc_bk0_n_bk1
,
c_grid_desc_mblock_mperblock_nblock_nperblock
,
c0_grid_desc_mblock_mperblock_nblock_nperblock
,
c1_grid_desc_mblock_mperblock_nblock_nperblock
,
reduce_grid_desc_mblock_mperblock
,
block_2_ctile_map
);
#else
ignore
=
p_a_grid
;
ignore
=
p_b_grid
;
ignore
=
p_c_grid
;
ignore
=
p_bias_grid
;
ignore
=
p_d0_grid
;
ignore
=
p_reduces_grid
;
ignore
=
a_element_op
;
ignore
=
b_element_op
;
ignore
=
c_element_op
;
ignore
=
c1_element_op
;
ignore
=
reduce_in_element_ops
;
ignore
=
reduce_out_element_ops
;
ignore
=
a_grid_desc_ak0_m_ak1
;
ignore
=
b_grid_desc_bk0_n_bk1
;
ignore
=
c_grid_desc_mblock_mperblock_nblock_nperblock
;
ignore
=
c0_grid_desc_mblock_mperblock_nblock_nperblock
;
ignore
=
c1_grid_desc_mblock_mperblock_nblock_nperblock
;
ignore
=
reduce_grid_desc_mblock_mperblock
;
ignore
=
block_2_ctile_map
;
#endif // end of if (defined(__gfx908__) || defined(__gfx90a__))
}
template
<
typename
FloatAB
,
typename
FloatGemmAcc
,
typename
FloatCShuffle
,
typename
FloatC
,
typename
FloatC0
,
typename
FloatC1
,
typename
FloatReduceAcc
,
typename
ReducePtrsGlobal
,
typename
AElementwiseOperation
,
typename
BElementwiseOperation
,
typename
CElementwiseOperation
,
typename
C1ElementwiseOperation
,
typename
ReduceOperations
,
typename
ReduceInElementwiseOperations
,
typename
ReduceAccElementwiseOperations
,
InMemoryDataOperationEnum
CGlobalMemoryDataOperation
,
typename
ReduceGlobalMemoryDataOperation
,
typename
AGridDesc_AK0_M_AK1
,
typename
BGridDesc_BK0_N_BK1
,
typename
CGridDesc_M_N
,
typename
C0GridDesc_M_N
,
typename
C1GridDesc_M_N
,
typename
ReduceGridDesc_M
,
index_t
NumGemmKPrefetchStage
,
index_t
BlockSize
,
index_t
MPerBlock
,
index_t
NPerBlock
,
index_t
KPerBlock
,
index_t
AK1Value
,
index_t
BK1Value
,
index_t
MPerXdl
,
index_t
NPerXdl
,
index_t
MXdlPerWave
,
index_t
NXdlPerWave
,
typename
ABlockTransferThreadClusterLengths_AK0_M_AK1
,
typename
ABlockTransferThreadClusterArrangeOrder
,
typename
ABlockTransferSrcAccessOrder
,
index_t
ABlockTransferSrcVectorDim
,
index_t
ABlockTransferSrcScalarPerVector
,
index_t
ABlockTransferDstScalarPerVector_AK1
,
bool
AThreadTransferSrcResetCoordinateAfterRun
,
index_t
ABlockLdsExtraM
,
typename
BBlockTransferThreadClusterLengths_BK0_N_BK1
,
typename
BBlockTransferThreadClusterArrangeOrder
,
typename
BBlockTransferSrcAccessOrder
,
index_t
BBlockTransferSrcVectorDim
,
index_t
BBlockTransferSrcScalarPerVector
,
index_t
BBlockTransferDstScalarPerVector_BK1
,
bool
BThreadTransferSrcResetCoordinateAfterRun
,
index_t
BBlockLdsExtraN
,
index_t
CShuffleMXdlPerWavePerShuffle
,
index_t
CShuffleNXdlPerWavePerShuffle
,
typename
CShuffleBlockTransferClusterLengths_MBlock_MPerBlock_NBlock_NPerBlock
,
index_t
CShuffleBlockTransferScalarPerVector_NPerBlock
,
typename
CReduceThreadClusterLengths_MPerBlock_NPerBlock
,
index_t
CReduceThreadLds2VGprCopySrcDstScalarPerVector_NPerBlock
,
index_t
CReduceThreadVgpr2GlobalCopySrcDstScalarPerVector_MPerBlock
,
LoopScheduler
LoopSched
>
struct
GridwiseGemmBiasAddReduce_k0mk1_k0nk1_mn_xdl_cshuffle_v1
{
static
constexpr
auto
I0
=
Number
<
0
>
{};
static
constexpr
auto
I1
=
Number
<
1
>
{};
static
constexpr
auto
I2
=
Number
<
2
>
{};
static
constexpr
auto
I3
=
Number
<
3
>
{};
static
constexpr
auto
I4
=
Number
<
4
>
{};
static
constexpr
auto
I5
=
Number
<
5
>
{};
static
constexpr
auto
I6
=
Number
<
6
>
{};
static
constexpr
auto
I7
=
Number
<
7
>
{};
// K1 should be Number<...>
static
constexpr
auto
AK0
=
Number
<
KPerBlock
/
AK1Value
>
{};
static
constexpr
auto
BK0
=
Number
<
KPerBlock
/
BK1Value
>
{};
static
constexpr
auto
AK1
=
Number
<
AK1Value
>
{};
static
constexpr
auto
BK1
=
Number
<
BK1Value
>
{};
using
ThisThreadBlock
=
ThisThreadBlock
<
BlockSize
>
;
using
GridwiseGemmPipe
=
GridwiseGemmPipeline_v1
<
NumGemmKPrefetchStage
>
;
__host__
__device__
static
constexpr
auto
GetABlockDescriptor_AK0PerBlock_MPerBlock_AK1
()
{
// A matrix in LDS memory, dst of blockwise copy
return
make_naive_tensor_descriptor
(
make_tuple
(
AK0
,
Number
<
MPerBlock
>
{},
AK1
),
make_tuple
(
Number
<
MPerBlock
+
ABlockLdsExtraM
>
{}
*
AK1
,
AK1
,
I1
));
}
__host__
__device__
static
constexpr
auto
GetBBlockDescriptor_BK0PerBlock_NPerBlock_BK1
()
{
// B matrix in LDS memory, dst of blockwise copy
return
make_naive_tensor_descriptor
(
make_tuple
(
BK0
,
Number
<
NPerBlock
>
{},
BK1
),
make_tuple
(
Number
<
NPerBlock
+
BBlockLdsExtraN
>
{}
*
BK1
,
BK1
,
I1
));
}
__host__
__device__
static
constexpr
auto
GetCShuffleBlockDescriptor_MBlock_MPerBlock_NBlock_NPerBlock
()
{
constexpr
index_t
MWave
=
MPerBlock
/
(
MXdlPerWave
*
MPerXdl
);
constexpr
index_t
NWave
=
NPerBlock
/
(
NXdlPerWave
*
NPerXdl
);
constexpr
auto
c_shuffle_block_desc_mblock_mperblock_nblock_nperblock
=
make_naive_tensor_descriptor_packed
(
make_tuple
(
I1
,
Number
<
CShuffleMXdlPerWavePerShuffle
*
MWave
*
MPerXdl
>
{},
I1
,
Number
<
CShuffleNXdlPerWavePerShuffle
*
NWave
*
NPerXdl
>
{}));
return
c_shuffle_block_desc_mblock_mperblock_nblock_nperblock
;
}
__host__
__device__
static
constexpr
index_t
GetSharedMemoryNumberOfByte
()
{
// LDS allocation for A and B: be careful of alignment
constexpr
auto
a_block_desc_ak0_m_ak1
=
GetABlockDescriptor_AK0PerBlock_MPerBlock_AK1
();
constexpr
auto
b_block_desc_bk0_n_bk1
=
GetBBlockDescriptor_BK0PerBlock_NPerBlock_BK1
();
// lds max alignment
constexpr
auto
max_lds_align
=
math
::
lcm
(
AK1
,
BK1
);
constexpr
auto
a_block_space_size_aligned
=
math
::
integer_least_multiple
(
a_block_desc_ak0_m_ak1
.
GetElementSpaceSize
(),
max_lds_align
);
constexpr
auto
b_block_space_size_aligned
=
math
::
integer_least_multiple
(
b_block_desc_bk0_n_bk1
.
GetElementSpaceSize
(),
max_lds_align
);
// LDS allocation for C shuffle in LDS
constexpr
auto
c_shuffle_block_desc_mblock_mperblock_nblock_nperblock
=
GetCShuffleBlockDescriptor_MBlock_MPerBlock_NBlock_NPerBlock
();
constexpr
auto
c_block_size
=
c_shuffle_block_desc_mblock_mperblock_nblock_nperblock
.
GetElementSpaceSize
();
return
math
::
max
((
a_block_space_size_aligned
+
b_block_space_size_aligned
)
*
sizeof
(
FloatAB
),
c_block_size
*
sizeof
(
FloatCShuffle
));
}
// block_id to matrix tile idx (m0, n0) mapping are controlled by {M01, N01}
template
<
typename
Block2CTileMap
>
__host__
__device__
static
constexpr
bool
CheckValidity
(
const
AGridDesc_AK0_M_AK1
&
a_grid_desc_ak0_m_ak1
,
const
BGridDesc_BK0_N_BK1
&
b_grid_desc_bk0_n_bk1
,
const
CGridDesc_M_N
&
c_grid_desc_m_n
,
const
Block2CTileMap
&
block_2_ctile_map
)
{
// static_assert(is_known_at_compile_time<remove_cv_t<decltype(AK1)>>::value &&
// is_known_at_compile_time<remove_cv_t<decltype(BK1)>>::value,
// "wrong! K1 need to be known at compile-time");
static_assert
((
MPerBlock
%
(
MPerXdl
*
MXdlPerWave
)
==
0
)
&&
(
NPerBlock
%
(
NXdlPerWave
*
NPerXdl
))
==
0
,
"Invalid tuning param!"
);
const
auto
M
=
a_grid_desc_ak0_m_ak1
.
GetLength
(
I1
);
const
auto
N
=
b_grid_desc_bk0_n_bk1
.
GetLength
(
I1
);
const
auto
K
=
a_grid_desc_ak0_m_ak1
.
GetLength
(
I0
)
*
a_grid_desc_ak0_m_ak1
.
GetLength
(
I2
);
if
(
!
(
M
==
c_grid_desc_m_n
.
GetLength
(
I0
)
&&
N
==
c_grid_desc_m_n
.
GetLength
(
I1
)))
return
false
;
if
(
!
(
M
%
MPerBlock
==
0
&&
N
%
NPerBlock
==
0
&&
K
%
KPerBlock
==
0
))
return
false
;
// check gridwise gemm pipeline
const
auto
num_k_loop
=
K
/
KPerBlock
;
if
(
!
GridwiseGemmPipe
::
IsSupported
(
num_k_loop
))
{
return
false
;
}
if
(
!
block_2_ctile_map
.
CheckValidity
(
c_grid_desc_m_n
))
{
return
false
;
}
// TODO: also check validity of all components (blockwise-copy, threadwise-copy, etc)
return
true
;
}
__host__
__device__
static
constexpr
bool
CalculateHasMainKBlockLoop
(
index_t
K
)
{
const
index_t
num_loop
=
K
/
KPerBlock
;
return
GridwiseGemmPipe
::
CalculateHasMainLoop
(
num_loop
);
}
template
<
typename
CGridDesc_M_N_
>
__host__
__device__
static
constexpr
auto
MakeCGridDescriptor_MBlock_MPerBlock_NBlock_NPerBlock
(
const
CGridDesc_M_N_
&
c_grid_desc_m_n
)
{
const
auto
M
=
c_grid_desc_m_n
.
GetLength
(
I0
);
const
auto
N
=
c_grid_desc_m_n
.
GetLength
(
I1
);
const
auto
MBlock
=
M
/
MPerBlock
;
const
auto
NBlock
=
N
/
NPerBlock
;
const
auto
c_grid_desc_mblock_mperblock_nblock_nperblock
=
transform_tensor_descriptor
(
c_grid_desc_m_n
,
make_tuple
(
make_unmerge_transform
(
make_tuple
(
MBlock
,
Number
<
MPerBlock
>
{})),
make_unmerge_transform
(
make_tuple
(
NBlock
,
Number
<
NPerBlock
>
{}))),
make_tuple
(
Sequence
<
0
>
{},
Sequence
<
1
>
{}),
make_tuple
(
Sequence
<
0
,
1
>
{},
Sequence
<
2
,
3
>
{}));
return
c_grid_desc_mblock_mperblock_nblock_nperblock
;
}
__host__
__device__
static
constexpr
auto
MakeReduceGridDescriptor_MBlock_MPerBlock
(
const
ReduceGridDesc_M
&
d_grid_desc_m
)
{
const
auto
M
=
d_grid_desc_m
.
GetLength
(
I0
);
const
auto
MBlock
=
M
/
MPerBlock
;
const
auto
reduce_grid_desc_mblock_mperblock
=
transform_tensor_descriptor
(
d_grid_desc_m
,
make_tuple
(
make_unmerge_transform
(
make_tuple
(
MBlock
,
Number
<
MPerBlock
>
{}))),
make_tuple
(
Sequence
<
0
>
{}),
make_tuple
(
Sequence
<
0
,
1
>
{}));
return
reduce_grid_desc_mblock_mperblock
;
}
// return block_id to C matrix tile idx (m0, n0) mapping
__host__
__device__
static
constexpr
auto
MakeDefaultBlock2CTileMap
(
const
CGridDesc_M_N
&
c_grid_desc_m_n
)
{
return
BlockToCTileMap_M00_N0_M01Adapt
<
MPerBlock
,
NPerBlock
,
CGridDesc_M_N
>
(
c_grid_desc_m_n
);
}
using
CGridDescriptor_MBlock_MPerBlock_NBlock_NPerBlock
=
remove_cvref_t
<
decltype
(
MakeCGridDescriptor_MBlock_MPerBlock_NBlock_NPerBlock
(
CGridDesc_M_N
{}))
>
;
using
C0GridDescriptor_MBlock_MPerBlock_NBlock_NPerBlock
=
remove_cvref_t
<
decltype
(
MakeCGridDescriptor_MBlock_MPerBlock_NBlock_NPerBlock
(
C0GridDesc_M_N
{}))
>
;
using
C1GridDescriptor_MBlock_MPerBlock_NBlock_NPerBlock
=
remove_cvref_t
<
decltype
(
MakeCGridDescriptor_MBlock_MPerBlock_NBlock_NPerBlock
(
C1GridDesc_M_N
{}))
>
;
using
ReduceGridDescriptor_MBlock_MPerBlock
=
remove_cvref_t
<
decltype
(
MakeReduceGridDescriptor_MBlock_MPerBlock
(
ReduceGridDesc_M
{}))
>
;
using
DefaultBlock2CTileMap
=
remove_cvref_t
<
decltype
(
MakeDefaultBlock2CTileMap
(
CGridDesc_M_N
{}))
>
;
template
<
bool
HasMainKBlockLoop
,
typename
Block2CTileMap
>
__device__
static
void
Run
(
const
FloatAB
*
__restrict__
p_a_grid
,
const
FloatAB
*
__restrict__
p_b_grid
,
FloatC
*
__restrict__
p_c_grid
,
const
FloatC0
*
__restrict__
p_bias_grid
,
const
FloatC1
*
__restrict__
p_d0_grid
,
ReducePtrsGlobal
p_reduces_grid
,
void
*
__restrict__
p_shared
,
const
AElementwiseOperation
&
a_element_op
,
const
BElementwiseOperation
&
b_element_op
,
const
CElementwiseOperation
&
c_element_op
,
const
C1ElementwiseOperation
&
c1_element_op
,
const
ReduceInElementwiseOperations
&
reduce_in_element_ops
,
const
ReduceAccElementwiseOperations
&
reduce_out_element_ops
,
const
AGridDesc_AK0_M_AK1
&
a_grid_desc_ak0_m_ak1
,
const
BGridDesc_BK0_N_BK1
&
b_grid_desc_bk0_n_bk1
,
const
CGridDescriptor_MBlock_MPerBlock_NBlock_NPerBlock
&
c_grid_desc_mblock_mperblock_nblock_nperblock
,
const
C0GridDescriptor_MBlock_MPerBlock_NBlock_NPerBlock
&
c0_grid_desc_mblock_mperblock_nblock_nperblock
,
const
C1GridDescriptor_MBlock_MPerBlock_NBlock_NPerBlock
&
c1_grid_desc_mblock_mperblock_nblock_nperblock
,
const
ReduceGridDescriptor_MBlock_MPerBlock
&
reduce_grid_desc_mblock_mperblock
,
const
Block2CTileMap
&
block_2_ctile_map
)
{
const
auto
a_grid_buf
=
make_dynamic_buffer
<
AddressSpaceEnum
::
Global
>
(
p_a_grid
,
a_grid_desc_ak0_m_ak1
.
GetElementSpaceSize
());
const
auto
b_grid_buf
=
make_dynamic_buffer
<
AddressSpaceEnum
::
Global
>
(
p_b_grid
,
b_grid_desc_bk0_n_bk1
.
GetElementSpaceSize
());
auto
c_grid_buf
=
make_dynamic_buffer
<
AddressSpaceEnum
::
Global
>
(
p_c_grid
,
c_grid_desc_mblock_mperblock_nblock_nperblock
.
GetElementSpaceSize
());
auto
c0_grid_buf
=
make_dynamic_buffer
<
AddressSpaceEnum
::
Global
>
(
p_bias_grid
,
c0_grid_desc_mblock_mperblock_nblock_nperblock
.
GetElementSpaceSize
());
auto
c1_grid_buf
=
make_dynamic_buffer
<
AddressSpaceEnum
::
Global
>
(
p_d0_grid
,
c1_grid_desc_mblock_mperblock_nblock_nperblock
.
GetElementSpaceSize
());
// divide block work by [M, N]
const
auto
block_work_idx
=
block_2_ctile_map
.
CalculateBottomIndex
(
make_multi_index
(
get_block_1d_id
()));
if
(
!
block_2_ctile_map
.
ValidCTileIndex
(
block_work_idx
,
make_tuple
(
c_grid_desc_mblock_mperblock_nblock_nperblock
.
GetLength
(
I0
),
c_grid_desc_mblock_mperblock_nblock_nperblock
.
GetLength
(
I2
))))
{
return
;
}
// HACK: this force m/n_block_data_idx_on_grid into SGPR
const
index_t
m_block_data_idx_on_grid
=
__builtin_amdgcn_readfirstlane
(
block_work_idx
[
I0
]
*
MPerBlock
);
const
index_t
n_block_data_idx_on_grid
=
__builtin_amdgcn_readfirstlane
(
block_work_idx
[
I1
]
*
NPerBlock
);
// lds max alignment
constexpr
auto
max_lds_align
=
math
::
lcm
(
AK1
,
BK1
);
// A matrix in LDS memory, dst of blockwise copy
constexpr
auto
a_block_desc_ak0_m_ak1
=
GetABlockDescriptor_AK0PerBlock_MPerBlock_AK1
();
// B matrix in LDS memory, dst of blockwise copy
constexpr
auto
b_block_desc_bk0_n_bk1
=
GetBBlockDescriptor_BK0PerBlock_NPerBlock_BK1
();
// A matrix blockwise copy
auto
a_blockwise_copy
=
ThreadGroupTensorSliceTransfer_v4r1
<
ThisThreadBlock
,
AElementwiseOperation
,
ck
::
tensor_operation
::
element_wise
::
PassThrough
,
InMemoryDataOperationEnum
::
Set
,
Sequence
<
AK0
,
MPerBlock
,
AK1
>
,
ABlockTransferThreadClusterLengths_AK0_M_AK1
,
ABlockTransferThreadClusterArrangeOrder
,
FloatAB
,
FloatAB
,
decltype
(
a_grid_desc_ak0_m_ak1
),
decltype
(
a_block_desc_ak0_m_ak1
),
ABlockTransferSrcAccessOrder
,
Sequence
<
1
,
0
,
2
>
,
ABlockTransferSrcVectorDim
,
2
,
ABlockTransferSrcScalarPerVector
,
ABlockTransferDstScalarPerVector_AK1
,
1
,
1
,
AThreadTransferSrcResetCoordinateAfterRun
,
true
,
NumGemmKPrefetchStage
>
(
a_grid_desc_ak0_m_ak1
,
make_multi_index
(
0
,
m_block_data_idx_on_grid
,
0
),
a_element_op
,
a_block_desc_ak0_m_ak1
,
make_multi_index
(
0
,
0
,
0
),
ck
::
tensor_operation
::
element_wise
::
PassThrough
{});
// B matrix blockwise copy
auto
b_blockwise_copy
=
ThreadGroupTensorSliceTransfer_v4r1
<
ThisThreadBlock
,
BElementwiseOperation
,
ck
::
tensor_operation
::
element_wise
::
PassThrough
,
InMemoryDataOperationEnum
::
Set
,
Sequence
<
BK0
,
NPerBlock
,
BK1
>
,
BBlockTransferThreadClusterLengths_BK0_N_BK1
,
BBlockTransferThreadClusterArrangeOrder
,
FloatAB
,
FloatAB
,
decltype
(
b_grid_desc_bk0_n_bk1
),
decltype
(
b_block_desc_bk0_n_bk1
),
BBlockTransferSrcAccessOrder
,
Sequence
<
1
,
0
,
2
>
,
BBlockTransferSrcVectorDim
,
2
,
BBlockTransferSrcScalarPerVector
,
BBlockTransferDstScalarPerVector_BK1
,
1
,
1
,
BThreadTransferSrcResetCoordinateAfterRun
,
true
,
NumGemmKPrefetchStage
>
(
b_grid_desc_bk0_n_bk1
,
make_multi_index
(
0
,
n_block_data_idx_on_grid
,
0
),
b_element_op
,
b_block_desc_bk0_n_bk1
,
make_multi_index
(
0
,
0
,
0
),
ck
::
tensor_operation
::
element_wise
::
PassThrough
{});
// GEMM definition
// c_mtx += transpose(a_mtx) * b_mtx
// a_mtx[K0PerBlock, MPerBlock] is in LDS
// b_mtx[K0PerBlock, NPerBlock] is in LDS
// c_mtx[MPerBlock, NPerBlock] is distributed among threads, and saved in
// register
// sanity check
constexpr
index_t
KPack
=
math
::
max
(
math
::
lcm
(
AK1
,
BK1
),
MfmaSelector
<
FloatAB
,
MPerXdl
,
NPerXdl
>::
selected_mfma
.
k_per_blk
);
auto
blockwise_gemm
=
BlockwiseGemmXdlops_k0mk1_k0nk1_m0n0m1n1m2m3m4n2_Selector
<
BlockSize
,
FloatAB
,
FloatGemmAcc
,
decltype
(
a_block_desc_ak0_m_ak1
),
decltype
(
b_block_desc_bk0_n_bk1
),
MPerXdl
,
NPerXdl
,
MXdlPerWave
,
NXdlPerWave
,
KPack
,
LoopSched
>
();
auto
c_thread_buf
=
blockwise_gemm
.
GetCThreadBuffer
();
// LDS allocation for A and B: be careful of alignment
constexpr
auto
a_block_space_size_aligned
=
math
::
integer_least_multiple
(
a_block_desc_ak0_m_ak1
.
GetElementSpaceSize
(),
max_lds_align
);
auto
a_block_buf
=
make_dynamic_buffer
<
AddressSpaceEnum
::
Lds
>
(
static_cast
<
FloatAB
*>
(
p_shared
),
a_block_desc_ak0_m_ak1
.
GetElementSpaceSize
());
auto
b_block_buf
=
make_dynamic_buffer
<
AddressSpaceEnum
::
Lds
>
(
static_cast
<
FloatAB
*>
(
p_shared
)
+
a_block_space_size_aligned
,
b_block_desc_bk0_n_bk1
.
GetElementSpaceSize
());
constexpr
auto
a_block_slice_copy_step
=
make_multi_index
(
KPerBlock
/
AK1
,
0
,
0
);
constexpr
auto
b_block_slice_copy_step
=
make_multi_index
(
KPerBlock
/
BK1
,
0
,
0
);
// gridwise GEMM pipeline
const
auto
gridwise_gemm_pipeline
=
GridwiseGemmPipeline_v1_Selector
<
NumGemmKPrefetchStage
,
LoopSched
>
();
const
index_t
num_k_block_main_loop
=
__builtin_amdgcn_readfirstlane
(
(
a_grid_desc_ak0_m_ak1
.
GetLength
(
I0
)
*
a_grid_desc_ak0_m_ak1
.
GetLength
(
I2
))
/
KPerBlock
);
gridwise_gemm_pipeline
.
template
Run
<
HasMainKBlockLoop
>(
a_grid_desc_ak0_m_ak1
,
a_block_desc_ak0_m_ak1
,
a_blockwise_copy
,
a_grid_buf
,
a_block_buf
,
a_block_slice_copy_step
,
b_grid_desc_bk0_n_bk1
,
b_block_desc_bk0_n_bk1
,
b_blockwise_copy
,
b_grid_buf
,
b_block_buf
,
b_block_slice_copy_step
,
blockwise_gemm
,
c_thread_buf
,
num_k_block_main_loop
);
// shuffle C + reduction + write out
{
static_assert
(
MXdlPerWave
%
CShuffleMXdlPerWavePerShuffle
==
0
&&
NXdlPerWave
%
CShuffleNXdlPerWavePerShuffle
==
0
,
"wrong!"
);
constexpr
index_t
MWave
=
MPerBlock
/
(
MXdlPerWave
*
MPerXdl
);
constexpr
index_t
NWave
=
NPerBlock
/
(
NXdlPerWave
*
NPerXdl
);
// TODO: hacky, fix it!
constexpr
auto
c_thread_desc_m0_n0_m1_n1_m2_m3_m4_n2
=
blockwise_gemm
.
GetCThreadDescriptor_M0_N0_M1_N1_M2_M3_M4_N2
();
// TODO: hacky, fix it!
// c_block_desc_m0_n0_m1_n1_m2_m3_m4_n2_tmp is only used to get lengths
constexpr
auto
c_block_desc_m0_n0_m1_n1_m2_m3_m4_n2_tmp
=
blockwise_gemm
.
GetCBlockDescriptor_M0_N0_M1_N1_M2_M3_M4_N2
();
constexpr
auto
M0
=
c_block_desc_m0_n0_m1_n1_m2_m3_m4_n2_tmp
.
GetLength
(
I0
);
constexpr
auto
N0
=
c_block_desc_m0_n0_m1_n1_m2_m3_m4_n2_tmp
.
GetLength
(
I1
);
constexpr
auto
M1
=
c_block_desc_m0_n0_m1_n1_m2_m3_m4_n2_tmp
.
GetLength
(
I2
);
constexpr
auto
N1
=
c_block_desc_m0_n0_m1_n1_m2_m3_m4_n2_tmp
.
GetLength
(
I3
);
constexpr
auto
M2
=
c_block_desc_m0_n0_m1_n1_m2_m3_m4_n2_tmp
.
GetLength
(
I4
);
constexpr
auto
M3
=
c_block_desc_m0_n0_m1_n1_m2_m3_m4_n2_tmp
.
GetLength
(
I5
);
constexpr
auto
M4
=
c_block_desc_m0_n0_m1_n1_m2_m3_m4_n2_tmp
.
GetLength
(
I6
);
constexpr
auto
N2
=
c_block_desc_m0_n0_m1_n1_m2_m3_m4_n2_tmp
.
GetLength
(
I7
);
constexpr
auto
c_shuffle_block_desc_mblock_mperblock_nblock_nperblock
=
GetCShuffleBlockDescriptor_MBlock_MPerBlock_NBlock_NPerBlock
();
auto
c_shuffle_block_buf
=
make_dynamic_buffer
<
AddressSpaceEnum
::
Lds
>
(
static_cast
<
FloatCShuffle
*>
(
p_shared
),
c_shuffle_block_desc_mblock_mperblock_nblock_nperblock
.
GetElementSpaceSize
());
constexpr
auto
c_block_desc_m0_n0_m1_n1_m2_m3_m4_n2
=
transform_tensor_descriptor
(
c_shuffle_block_desc_mblock_mperblock_nblock_nperblock
,
make_tuple
(
make_freeze_transform
(
I0
),
make_unmerge_transform
(
make_tuple
(
Number
<
CShuffleMXdlPerWavePerShuffle
>
{},
// M0 (MXdlPerWave) per shuffle
M1
,
// M1 = MWave
M2
,
// M2 * M3 * M4 = MPerXdl
M3
,
M4
)),
make_freeze_transform
(
I0
),
make_unmerge_transform
(
make_tuple
(
Number
<
CShuffleNXdlPerWavePerShuffle
>
{},
// N0 (NXdlPerWave) per shuffle
N1
,
// N1 = NWave
N2
))),
// N2 = NPerXdl
make_tuple
(
Sequence
<
0
>
{},
Sequence
<
1
>
{},
Sequence
<
2
>
{},
Sequence
<
3
>
{}),
make_tuple
(
Sequence
<>
{},
Sequence
<
0
,
2
,
4
,
5
,
6
>
{},
Sequence
<>
{},
Sequence
<
1
,
3
,
7
>
{}));
// calculate origin of thread output tensor on global memory
// blockwise GEMM c matrix starting index
const
auto
c_thread_mtx_on_block
=
blockwise_gemm
.
CalculateCThreadOriginDataIndex
(
I0
,
I0
,
I0
,
I0
);
const
index_t
m_thread_data_on_block
=
c_thread_mtx_on_block
[
I0
];
const
index_t
n_thread_data_on_block
=
c_thread_mtx_on_block
[
I1
];
const
auto
m_thread_data_on_block_to_m0_m1_m2_m3_m4_adaptor
=
make_single_stage_tensor_adaptor
(
make_tuple
(
make_merge_transform
(
make_tuple
(
M0
,
M1
,
M2
,
M3
,
M4
))),
make_tuple
(
Sequence
<
0
,
1
,
2
,
3
,
4
>
{}),
make_tuple
(
Sequence
<
0
>
{}));
const
auto
m_thread_data_on_block_idx
=
m_thread_data_on_block_to_m0_m1_m2_m3_m4_adaptor
.
CalculateBottomIndex
(
make_multi_index
(
m_thread_data_on_block
));
const
auto
n_thread_data_on_block_to_n0_n1_n2_adaptor
=
make_single_stage_tensor_adaptor
(
make_tuple
(
make_merge_transform
(
make_tuple
(
N0
,
N1
,
N2
))),
make_tuple
(
Sequence
<
0
,
1
,
2
>
{}),
make_tuple
(
Sequence
<
0
>
{}));
const
auto
n_thread_data_on_block_idx
=
n_thread_data_on_block_to_n0_n1_n2_adaptor
.
CalculateBottomIndex
(
make_multi_index
(
n_thread_data_on_block
));
// shuffle: threadwise copy C from VGPR to LDS
auto
c_thread_copy_vgpr_to_lds
=
ThreadwiseTensorSliceTransfer_v1r3
<
FloatGemmAcc
,
FloatCShuffle
,
decltype
(
c_thread_desc_m0_n0_m1_n1_m2_m3_m4_n2
),
decltype
(
c_block_desc_m0_n0_m1_n1_m2_m3_m4_n2
),
ck
::
tensor_operation
::
element_wise
::
PassThrough
,
Sequence
<
CShuffleMXdlPerWavePerShuffle
,
CShuffleNXdlPerWavePerShuffle
,
I1
,
I1
,
M2
,
I1
,
M4
,
I1
>
,
Sequence
<
0
,
1
,
2
,
3
,
4
,
5
,
6
,
7
>
,
7
,
1
,
InMemoryDataOperationEnum
::
Set
,
1
,
true
>
{
c_block_desc_m0_n0_m1_n1_m2_m3_m4_n2
,
make_multi_index
(
0
,
0
,
m_thread_data_on_block_idx
[
I1
],
n_thread_data_on_block_idx
[
I1
],
m_thread_data_on_block_idx
[
I2
],
m_thread_data_on_block_idx
[
I3
],
m_thread_data_on_block_idx
[
I4
],
n_thread_data_on_block_idx
[
I2
]),
ck
::
tensor_operation
::
element_wise
::
PassThrough
{}};
// space filling curve for threadwise C in VGPR
constexpr
auto
sfc_c_vgpr
=
SpaceFillingCurve
<
Sequence
<
MXdlPerWave
,
NXdlPerWave
,
1
,
1
,
M2
,
1
,
M4
,
1
>
,
Sequence
<
0
,
1
,
2
,
3
,
4
,
5
,
6
,
7
>
,
Sequence
<
CShuffleMXdlPerWavePerShuffle
,
CShuffleNXdlPerWavePerShuffle
,
1
,
1
,
M2
,
1
,
M4
,
1
>>
{};
// space filling curve for shuffled blockwise C in global mem
constexpr
auto
sfc_c_global
=
SpaceFillingCurve
<
Sequence
<
1
,
MPerBlock
,
1
,
NPerBlock
>
,
Sequence
<
0
,
2
,
1
,
3
>
,
Sequence
<
1
,
CShuffleMXdlPerWavePerShuffle
*
MWave
*
MPerXdl
,
1
,
CShuffleNXdlPerWavePerShuffle
*
NWave
*
NPerXdl
>>
{};
// TODO: this should be implemented as a blockwise reduction
// LDS c_reduce_block_desc_mperblock_nperblock
constexpr
auto
c_reduce_block_desc_mperblock_nperblock
=
transform_tensor_descriptor
(
c_shuffle_block_desc_mblock_mperblock_nblock_nperblock
,
make_tuple
(
make_freeze_transform
(
I0
),
make_pass_through_transform
(
c_shuffle_block_desc_mblock_mperblock_nblock_nperblock
.
GetLength
(
I1
)),
make_freeze_transform
(
I0
),
make_pass_through_transform
(
c_shuffle_block_desc_mblock_mperblock_nblock_nperblock
.
GetLength
(
I3
))),
make_tuple
(
Sequence
<
0
>
{},
Sequence
<
1
>
{},
Sequence
<
2
>
{},
Sequence
<
3
>
{}),
make_tuple
(
Sequence
<>
{},
Sequence
<
0
>
{},
Sequence
<>
{},
Sequence
<
1
>
{}));
static_assert
(
CReduceThreadClusterLengths_MPerBlock_NPerBlock
::
At
(
I0
)
*
CReduceThreadClusterLengths_MPerBlock_NPerBlock
::
At
(
I1
)
==
BlockSize
,
"wrong!"
);
static_assert
((
CShuffleMXdlPerWavePerShuffle
*
MWave
*
MPerXdl
)
%
CReduceThreadClusterLengths_MPerBlock_NPerBlock
::
At
(
I0
)
==
0
&&
(
CShuffleNXdlPerWavePerShuffle
*
NWave
*
NPerXdl
)
%
CReduceThreadClusterLengths_MPerBlock_NPerBlock
::
At
(
I1
)
==
0
,
"wrong!"
);
constexpr
index_t
mreduce_per_thread
=
(
CShuffleMXdlPerWavePerShuffle
*
MWave
*
MPerXdl
)
/
CReduceThreadClusterLengths_MPerBlock_NPerBlock
::
At
(
I0
);
constexpr
index_t
nreduce_per_thread
=
(
CShuffleNXdlPerWavePerShuffle
*
NWave
*
NPerXdl
)
/
CReduceThreadClusterLengths_MPerBlock_NPerBlock
::
At
(
I1
);
constexpr
auto
c_reduce_thread_lengths_mperblock_nperblock
=
Sequence
<
mreduce_per_thread
,
nreduce_per_thread
>
{};
// VGPR c_reduce_thread_desc_mperblock_nperblock
constexpr
auto
c_reduce_thread_desc_mperblock_nperblock
=
make_naive_tensor_descriptor_packed
(
make_tuple
(
Number
<
mreduce_per_thread
>
{},
Number
<
nreduce_per_thread
>
{}));
// VGPR reduce_thread_desc_mperblock
constexpr
auto
reduce_thread_desc_mperblock
=
make_naive_tensor_descriptor_packed
(
make_tuple
(
Number
<
mreduce_per_thread
>
{}));
// VGPR reduce_thread_desc_mblock_mperblock
constexpr
auto
reduce_thread_desc_mblock_mperblock
=
make_naive_tensor_descriptor_packed
(
make_tuple
(
I1
,
Number
<
mreduce_per_thread
>
{}));
auto
c_reduce_thread_buf
=
make_static_buffer
<
AddressSpaceEnum
::
Vgpr
,
FloatReduceAcc
>
(
c_reduce_thread_desc_mperblock_nperblock
.
GetElementSpaceSize
());
// reduce: threadwise copy from LDS to VGPR
constexpr
auto
c_reduce_thread_cluster_desc
=
make_cluster_descriptor
(
CReduceThreadClusterLengths_MPerBlock_NPerBlock
{},
Sequence
<
1
,
0
>
{});
const
auto
c_reduce_thread_cluster_idx
=
c_reduce_thread_cluster_desc
.
CalculateBottomIndex
(
make_multi_index
(
get_thread_local_1d_id
()));
const
auto
c_reduce_thread_data_idx_begin
=
c_reduce_thread_cluster_idx
*
c_reduce_thread_lengths_mperblock_nperblock
;
auto
c_reduce_thread_copy_lds_to_vgpr
=
ThreadwiseTensorSliceTransfer_v2
<
FloatCShuffle
,
FloatReduceAcc
,
decltype
(
c_reduce_block_desc_mperblock_nperblock
),
decltype
(
c_reduce_thread_desc_mperblock_nperblock
),
decltype
(
c_reduce_thread_lengths_mperblock_nperblock
),
Sequence
<
0
,
1
>
,
1
,
CReduceThreadLds2VGprCopySrcDstScalarPerVector_NPerBlock
,
1
,
true
>
{
c_reduce_block_desc_mperblock_nperblock
,
c_reduce_thread_data_idx_begin
};
auto
reduce_tuple_thread_copy_vgpr_to_global
=
generate_tuple
(
[
&
](
auto
I
)
{
auto
p_reduce_grid
=
p_reduces_grid
[
I
];
auto
reduce_acc_element_op
=
reduce_out_element_ops
[
I
];
return
ThreadwiseTensorSliceTransfer_v1r3
<
FloatReduceAcc
,
remove_pointer_t
<
decltype
(
p_reduce_grid
)
>
,
decltype
(
reduce_thread_desc_mblock_mperblock
),
decltype
(
reduce_grid_desc_mblock_mperblock
),
decltype
(
reduce_acc_element_op
),
Sequence
<
1
,
mreduce_per_thread
>
,
Sequence
<
0
,
1
>
,
1
,
CReduceThreadVgpr2GlobalCopySrcDstScalarPerVector_MPerBlock
,
ReduceGlobalMemoryDataOperation
::
At
(
I
),
1
,
false
>
{
reduce_grid_desc_mblock_mperblock
,
make_multi_index
(
block_work_idx
[
I0
],
// mblock
c_reduce_thread_data_idx_begin
[
I0
]),
// mperblock
reduce_acc_element_op
};
},
Number
<
p_reduces_grid
.
Size
()
>
{});
// c0 and c1
constexpr
auto
c0_reduce_thread_desc_mblock_mperblock_nblock_nperblock
=
make_naive_tensor_descriptor_packed
(
make_tuple
(
I1
,
Number
<
mreduce_per_thread
>
{},
I1
,
Number
<
nreduce_per_thread
>
{}));
constexpr
auto
c1_reduce_thread_desc_mblock_mperblock_nblock_nperblock
=
c0_reduce_thread_desc_mblock_mperblock_nblock_nperblock
;
auto
c01_thread_buf
=
make_static_buffer
<
AddressSpaceEnum
::
Vgpr
,
FloatReduceAcc
>
(
c0_reduce_thread_desc_mblock_mperblock_nblock_nperblock
.
GetElementSpaceSize
());
auto
c0_thread_copy_global_to_vgpr
=
ThreadwiseTensorSliceTransfer_v2
<
FloatC0
,
FloatReduceAcc
,
decltype
(
c0_grid_desc_mblock_mperblock_nblock_nperblock
),
decltype
(
c0_reduce_thread_desc_mblock_mperblock_nblock_nperblock
),
Sequence
<
I1
,
mreduce_per_thread
,
I1
,
nreduce_per_thread
>
,
Sequence
<
0
,
1
,
2
,
3
>
,
3
,
CReduceThreadLds2VGprCopySrcDstScalarPerVector_NPerBlock
,
1
,
true
>
(
c0_grid_desc_mblock_mperblock_nblock_nperblock
,
make_multi_index
(
I0
,
m_block_data_idx_on_grid
+
c_reduce_thread_data_idx_begin
[
I0
],
I0
,
n_block_data_idx_on_grid
+
c_reduce_thread_data_idx_begin
[
I1
]));
auto
c1_thread_copy_global_to_vgpr
=
ThreadwiseTensorSliceTransfer_v2
<
FloatC1
,
FloatReduceAcc
,
decltype
(
c1_grid_desc_mblock_mperblock_nblock_nperblock
),
decltype
(
c1_reduce_thread_desc_mblock_mperblock_nblock_nperblock
),
Sequence
<
I1
,
mreduce_per_thread
,
I1
,
nreduce_per_thread
>
,
Sequence
<
0
,
1
,
2
,
3
>
,
3
,
CReduceThreadLds2VGprCopySrcDstScalarPerVector_NPerBlock
,
1
,
true
>
(
c1_grid_desc_mblock_mperblock_nblock_nperblock
,
make_multi_index
(
I0
,
m_block_data_idx_on_grid
+
c_reduce_thread_data_idx_begin
[
I0
],
I0
,
n_block_data_idx_on_grid
+
c_reduce_thread_data_idx_begin
[
I1
]));
constexpr
auto
c_reduce_thread_desc_mblock_mperblock_nblock_nperblock
=
make_naive_tensor_descriptor_packed
(
make_tuple
(
I1
,
Number
<
mreduce_per_thread
>
{},
I1
,
Number
<
nreduce_per_thread
>
{}));
auto
c_reduce_thread_copy_vgpr_to_global
=
ThreadwiseTensorSliceTransfer_v1r3
<
FloatReduceAcc
,
FloatC
,
decltype
(
c_reduce_thread_desc_mblock_mperblock_nblock_nperblock
),
decltype
(
c_grid_desc_mblock_mperblock_nblock_nperblock
),
tensor_operation
::
element_wise
::
PassThrough
,
Sequence
<
I1
,
mreduce_per_thread
,
I1
,
nreduce_per_thread
>
,
// SliceLengths
Sequence
<
0
,
1
,
2
,
3
>
,
// DimAccessOrder
3
,
// DstVectorDim
CReduceThreadLds2VGprCopySrcDstScalarPerVector_NPerBlock
,
InMemoryDataOperationEnum
::
Set
,
1
,
true
>
{
c_grid_desc_mblock_mperblock_nblock_nperblock
,
make_multi_index
(
I0
,
m_block_data_idx_on_grid
+
c_reduce_thread_data_idx_begin
[
I0
],
I0
,
n_block_data_idx_on_grid
+
c_reduce_thread_data_idx_begin
[
I1
]),
tensor_operation
::
element_wise
::
PassThrough
{}};
constexpr
index_t
num_access
=
sfc_c_vgpr
.
GetNumOfAccess
();
static_assert
(
num_access
==
sfc_c_global
.
GetNumOfAccess
(),
"wrong!"
);
static_for
<
0
,
num_access
,
1
>
{}([
&
](
auto
access_id
)
{
// each thread write its data from VGPR to LDS
c_thread_copy_vgpr_to_lds
.
Run
(
c_thread_desc_m0_n0_m1_n1_m2_m3_m4_n2
,
sfc_c_vgpr
.
GetIndexTupleOfNumber
(
access_id
),
c_thread_buf
,
c_block_desc_m0_n0_m1_n1_m2_m3_m4_n2
,
c_shuffle_block_buf
);
// make sure it's safe to write to LDS
block_sync_lds
();
{
c_reduce_thread_copy_lds_to_vgpr
.
Run
(
c_reduce_block_desc_mperblock_nperblock
,
c_shuffle_block_buf
,
c_reduce_thread_desc_mperblock_nperblock
,
make_tuple
(
I0
,
I0
),
c_reduce_thread_buf
);
c0_thread_copy_global_to_vgpr
.
Run
(
c0_grid_desc_mblock_mperblock_nblock_nperblock
,
c0_grid_buf
,
c0_reduce_thread_desc_mblock_mperblock_nblock_nperblock
,
make_tuple
(
I0
,
I0
,
I0
,
I0
),
c01_thread_buf
);
// c = activation(c + bias)
static_for
<
0
,
c_reduce_thread_desc_mperblock_nperblock
.
GetElementSize
(),
1
>
{}(
[
&
](
auto
i
)
{
FloatReduceAcc
out
;
c_element_op
(
out
,
c_reduce_thread_buf
(
i
)
+
c01_thread_buf
(
i
));
c_reduce_thread_buf
(
i
)
=
out
;
});
c1_thread_copy_global_to_vgpr
.
Run
(
c1_grid_desc_mblock_mperblock_nblock_nperblock
,
c1_grid_buf
,
c1_reduce_thread_desc_mblock_mperblock_nblock_nperblock
,
make_tuple
(
I0
,
I0
,
I0
,
I0
),
c01_thread_buf
);
// c = c + c1_functior(c1)
static_for
<
0
,
c_reduce_thread_desc_mperblock_nperblock
.
GetElementSize
(),
1
>
{}(
[
&
](
auto
i
)
{
c1_element_op
(
c01_thread_buf
(
i
),
c01_thread_buf
(
i
));
c_reduce_thread_buf
(
i
)
+=
c01_thread_buf
(
i
);
});
c_reduce_thread_copy_vgpr_to_global
.
Run
(
c_reduce_thread_desc_mblock_mperblock_nblock_nperblock
,
make_tuple
(
I0
,
I0
,
I0
,
I0
),
c_reduce_thread_buf
,
c_grid_desc_mblock_mperblock_nblock_nperblock
,
c_grid_buf
);
static_for
<
0
,
p_reduces_grid
.
Size
(),
1
>
{}([
&
](
auto
In
)
{
auto
&
p_reduce_grid
=
p_reduces_grid
[
In
];
auto
reduce_grid_buf
=
make_dynamic_buffer
<
AddressSpaceEnum
::
Global
>
(
p_reduce_grid
,
reduce_grid_desc_mblock_mperblock
.
GetElementSpaceSize
());
auto
reduce_thread_buf
=
make_static_buffer
<
AddressSpaceEnum
::
Vgpr
,
FloatReduceAcc
>
(
reduce_thread_desc_mperblock
.
GetElementSpaceSize
());
auto
&
reduce_in_element_op
=
reduce_in_element_ops
[
In
];
auto
&
reduce_thread_copy_vgpr_to_global
=
reduce_tuple_thread_copy_vgpr_to_global
(
In
);
using
ReduceOperation
=
remove_cvref_t
<
decltype
(
ReduceOperations
{}[
In
])
>
;
using
ThreadwiseReduce
=
ThreadwiseReduction
<
FloatReduceAcc
,
decltype
(
c_reduce_thread_desc_mperblock_nperblock
),
decltype
(
reduce_thread_desc_mperblock
),
ReduceOperation
,
false
>
;
// Global write Gemm shuffle + reduction
const
auto
reduce_identityVal
=
ReduceOperation
::
template
GetIdentityValue
<
FloatReduceAcc
>();
static_for
<
0
,
mreduce_per_thread
,
1
>
{}(
[
&
](
auto
I
)
{
reduce_thread_buf
(
I
)
=
reduce_identityVal
;
});
// reduce in VGPR
static_for
<
0
,
mreduce_per_thread
,
1
>
{}([
&
](
auto
im
)
{
static_for
<
0
,
nreduce_per_thread
,
1
>
{}([
&
](
auto
in
)
{
constexpr
auto
offset
=
Number
<
c_reduce_thread_desc_mperblock_nperblock
.
CalculateOffset
(
make_tuple
(
im
,
in
))
>
{};
reduce_in_element_op
(
c_reduce_thread_buf
(
offset
),
c_reduce_thread_buf
(
offset
));
});
});
ThreadwiseReduce
::
Reduce
(
c_reduce_thread_buf
,
reduce_thread_buf
);
// copy from VGPR to Global
reduce_thread_copy_vgpr_to_global
.
Run
(
reduce_thread_desc_mblock_mperblock
,
make_tuple
(
I0
,
I0
),
reduce_thread_buf
,
reduce_grid_desc_mblock_mperblock
,
reduce_grid_buf
);
if
constexpr
(
access_id
<
num_access
-
1
)
{
constexpr
auto
c_global_step
=
sfc_c_global
.
GetForwardStep
(
access_id
);
reduce_thread_copy_vgpr_to_global
.
MoveDstSliceWindow
(
reduce_grid_desc_mblock_mperblock
,
make_tuple
(
c_global_step
[
I0
],
c_global_step
[
I1
]));
}
});
}
if
constexpr
(
access_id
<
num_access
-
1
)
{
constexpr
auto
c_global_step
=
sfc_c_global
.
GetForwardStep
(
access_id
);
// move on C
c_reduce_thread_copy_vgpr_to_global
.
MoveDstSliceWindow
(
c_grid_desc_mblock_mperblock_nblock_nperblock
,
c_global_step
);
// move on C0
c0_thread_copy_global_to_vgpr
.
MoveSrcSliceWindow
(
c0_grid_desc_mblock_mperblock_nblock_nperblock
,
c_global_step
);
// move on C1
c1_thread_copy_global_to_vgpr
.
MoveSrcSliceWindow
(
c1_grid_desc_mblock_mperblock_nblock_nperblock
,
c_global_step
);
}
});
}
// Reduction
}
};
}
// namespace ck
include/ck/tensor_operation/gpu/grid/gridwise_gemm_dl_v1r3.hpp
View file @
b79df771
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2022, Advanced Micro Devices, Inc. All rights reserved.
#pragma once
#pragma once
#include "common_header.hpp"
#include "ck/utility/common_header.hpp"
#include "multi_index_transform_helper.hpp"
#include "ck/tensor_description/multi_index_transform_helper.hpp"
#include "tensor_descriptor.hpp"
#include "ck/tensor_description/tensor_descriptor.hpp"
#include "tensor_descriptor_helper.hpp"
#include "ck/tensor_description/tensor_descriptor_helper.hpp"
#include "tensor_operation/gpu/grid/block_to_ctile_map.hpp"
#include "ck/tensor_operation/gpu/grid/block_to_ctile_map.hpp"
#include "blockwise_gemm_dl_v2r3.hpp"
#include "ck/tensor_operation/gpu/grid/gridwise_gemm_pipeline_v1.hpp"
#include "blockwise_tensor_slice_transfer_v5r1.hpp"
#include "ck/tensor_operation/gpu/block/blockwise_gemm_dl_v2r3.hpp"
#include "threadwise_tensor_slice_transfer.hpp"
#include "ck/tensor_operation/gpu/block/blockwise_tensor_slice_transfer_v5r1.hpp"
#include "threadwise_tensor_slice_set.hpp"
#include "ck/tensor_operation/gpu/thread/threadwise_tensor_slice_transfer.hpp"
#include "element_wise_operation.hpp"
#include "ck/tensor_operation/gpu/thread/threadwise_tensor_slice_set.hpp"
#include "ck/tensor_operation/gpu/element/element_wise_operation.hpp"
namespace
ck
{
namespace
ck
{
...
...
include/ck/tensor_operation/gpu/grid/gridwise_gemm_dlops_v1r2.hpp
View file @
b79df771
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2022, Advanced Micro Devices, Inc. All rights reserved.
#ifndef CK_GRIDWISE_GEMM_DLOPS_V1R2_HPP
#ifndef CK_GRIDWISE_GEMM_DLOPS_V1R2_HPP
#define CK_GRIDWISE_GEMM_DLOPS_V1R2_HPP
#define CK_GRIDWISE_GEMM_DLOPS_V1R2_HPP
...
...
include/ck/tensor_operation/gpu/grid/gridwise_gemm_dlops_v2.hpp
View file @
b79df771
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2022, Advanced Micro Devices, Inc. All rights reserved.
#ifndef CK_GRIDWISE_GEMM_V2_HPP
#ifndef CK_GRIDWISE_GEMM_V2_HPP
#define CK_GRIDWISE_GEMM_V2_HPP
#define CK_GRIDWISE_GEMM_V2_HPP
...
...
Prev
1
…
6
7
8
9
10
11
12
13
14
…
23
Next
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
.
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment