Commit b60f7d84 authored by rocking's avatar rocking
Browse files

Add pool3d f16 example

parent 912f06db
add_example_executable(example_pool3d_fwd_fp16 pool3d_fwd_fp16.cpp)
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2022, Advanced Micro Devices, Inc. All rights reserved.
#pragma once
#include <iostream>
#include "ck/ck.hpp"
#include "ck/utility/reduction_enums.hpp"
#include "ck/utility/reduction_functions_accumulate.hpp"
#include "ck/tensor_operation/gpu/device/reduction_operator_mapping.hpp"
#include "ck/tensor_operation/gpu/device/impl/device_pool3d_fwd_ndhwc_ndhwc.hpp"
#include "ck/tensor_operation/gpu/element/element_wise_operation.hpp"
#include "ck/library/utility/check_err.hpp"
#include "ck/library/utility/device_memory.hpp"
#include "ck/library/utility/host_tensor.hpp"
#include "ck/library/utility/host_tensor_generator.hpp"
#include "ck/library/utility/literals.hpp"
template <typename InDataType,
typename OutDataType,
typename AccDataType,
typename IndexDataType,
ck::ReduceTensorOp ReduceOpId,
bool PropagateNan,
bool OutputIndex>
static void pool3d_host_verify(const Tensor<InDataType>& in,
Tensor<OutDataType>& out,
Tensor<IndexDataType>& out_indices,
const std::array<ck::index_t, 3>& window_spatial_lengths,
const std::array<ck::index_t, 3>& window_strides,
const std::array<ck::index_t, 3>& in_left_pads,
const std::array<ck::index_t, 3>& /*in_right_pads*/)
{
const int32_t reduceLength = window_spatial_lengths[0] * window_spatial_lengths[1];
using ReduceOperation = typename ck::reduce_binary_operator<ReduceOpId>::opType;
auto elementwise_ops =
ck::reduce_unary_operator<ReduceOpId, true, true>::GetElementwiseOperator(reduceLength);
auto in_elementwise_op = std::get<0>(elementwise_ops);
auto acc_elementwise_op = std::get<1>(elementwise_ops);
if constexpr(!OutputIndex)
{
using Accumulation =
ck::detail::AccumulateWithNanCheck<PropagateNan, ReduceOperation, AccDataType>;
auto f_ncdhw = [&](auto n, auto c, auto do_, auto ho, auto wo) {
auto accuVal = ReduceOperation::template GetIdentityValue<AccDataType>();
for(ck::index_t z = 0; z < window_spatial_lengths[0]; ++z)
{
ck::index_t di = do_ * window_strides[0] + z - in_left_pads[0];
for(ck::index_t y = 0; y < window_spatial_lengths[1]; ++y)
{
ck::index_t hi = ho * window_strides[1] + y - in_left_pads[1];
for(ck::index_t x = 0; x < window_spatial_lengths[2]; ++x)
{
ck::index_t wi = wo * window_strides[2] + x - in_left_pads[2];
if(di >= 0 && di < static_cast<ck::index_t>(in.mDesc.GetLengths()[2]) &&
hi >= 0 && hi < static_cast<ck::index_t>(in.mDesc.GetLengths()[3]) &&
wi >= 0 && wi < static_cast<ck::index_t>(in.mDesc.GetLengths()[4]))
{
AccDataType currVal = static_cast<AccDataType>(in(n, c, di, hi, wi));
in_elementwise_op(currVal, currVal);
Accumulation::Calculate(accuVal, currVal);
}
}
}
}
acc_elementwise_op(accuVal, accuVal);
out(n, c, do_, ho, wo) = accuVal;
};
make_ParallelTensorFunctor(f_ncdhw,
out.mDesc.GetLengths()[0],
out.mDesc.GetLengths()[1],
out.mDesc.GetLengths()[2],
out.mDesc.GetLengths()[3],
out.mDesc.GetLengths()[4])(std::thread::hardware_concurrency());
}
else
{
using Accumulation = ck::detail::AccumulateWithIndexAndNanCheck<PropagateNan,
ReduceOperation,
AccDataType,
IndexDataType>;
auto f_ncdhw = [&](auto n, auto c, auto do_, auto ho, auto wo) {
auto accuVal = ReduceOperation::template GetIdentityValue<AccDataType>();
IndexDataType accuIndex = 0;
for(ck::index_t z = 0; z < window_spatial_lengths[0]; ++z)
{
ck::index_t di = do_ * window_strides[0] + z - in_left_pads[0];
for(ck::index_t y = 0; y < window_spatial_lengths[1]; ++y)
{
ck::index_t hi = ho * window_strides[1] + y - in_left_pads[1];
for(ck::index_t x = 0; x < window_spatial_lengths[2]; ++x)
{
ck::index_t wi = wo * window_strides[2] + x - in_left_pads[2];
if(di >= 0 && di < static_cast<ck::index_t>(in.mDesc.GetLengths()[2]) &&
hi >= 0 && hi < static_cast<ck::index_t>(in.mDesc.GetLengths()[3]) &&
wi >= 0 && wi < static_cast<ck::index_t>(in.mDesc.GetLengths()[4]))
{
AccDataType currVal = static_cast<AccDataType>(in(n, c, di, hi, wi));
IndexDataType currIndex =
z * window_spatial_lengths[1] * window_spatial_lengths[2] +
y * window_spatial_lengths[2] + x;
in_elementwise_op(currVal, currVal);
Accumulation::Calculate(accuVal, currVal, accuIndex, currIndex);
}
}
}
}
acc_elementwise_op(accuVal, accuVal);
out(n, c, do_, ho, wo) = accuVal;
out_indices(n, c, do_, ho, wo) = accuIndex;
};
make_ParallelTensorFunctor(f_ncdhw,
out.mDesc.GetLengths()[0],
out.mDesc.GetLengths()[1],
out.mDesc.GetLengths()[2],
out.mDesc.GetLengths()[3],
out.mDesc.GetLengths()[4])(std::thread::hardware_concurrency());
};
}
template <typename InDataType,
typename OutDataType,
typename AccDataType,
typename IndexDataType,
typename InLayout,
typename OutLayout,
ck::ReduceTensorOp ReduceOpId,
bool PropagateNan,
bool OutputIndex>
bool pool3d_test(bool do_verification,
bool time_kernel,
ck::index_t N,
ck::index_t C,
ck::index_t Z,
ck::index_t Y,
ck::index_t X,
ck::index_t Di,
ck::index_t Hi,
ck::index_t Wi,
ck::index_t window_stride_d,
ck::index_t window_stride_h,
ck::index_t window_stride_w,
ck::index_t in_left_pad_d,
ck::index_t in_left_pad_h,
ck::index_t in_left_pad_w,
ck::index_t in_right_pad_d,
ck::index_t in_right_pad_h,
ck::index_t in_right_pad_w)
{
using DevicePoolFwdInstance =
ck::tensor_operation::device::DevicePool3dFwd_Input_N_Di_Hi_Wi_C_Output_N_Do_Ho_Wo_C<
InDataType, // InDataType
OutDataType, // OutDataType
AccDataType, // AccDataType
ReduceOpId,
OutputIndex,
64, // BlockSize
64, // ReduceMThreadClusterSize
1, // ReduceKThreadClusterSize
4, // ReduceMThreadSliceSize
1, // ReduceKThreadSliceSize
4>; // InSrcOutDstVectorSize
const ck::index_t Do = (Di + in_left_pad_d + in_right_pad_d - Z) / window_stride_d + 1;
const ck::index_t Ho = (Hi + in_left_pad_h + in_right_pad_h - Y) / window_stride_h + 1;
const ck::index_t Wo = (Wi + in_left_pad_w + in_right_pad_w - X) / window_stride_w + 1;
const std::array<ck::index_t, 3> window_spatial_lengths{{Z, Y, X}};
const std::array<ck::index_t, 3> window_strides{
{window_stride_d, window_stride_h, window_stride_w}};
const std::array<ck::index_t, 3> input_left_pads{{in_left_pad_d, in_left_pad_h, in_left_pad_w}};
const std::array<ck::index_t, 3> input_right_pads{
{in_right_pad_d, in_right_pad_h, in_right_pad_w}};
// tensor layout
auto f_host_tensor_descriptor = [](std::size_t N_,
std::size_t C_,
std::size_t D,
std::size_t H,
std::size_t W,
auto layout) {
using namespace ck::literals;
if constexpr(ck::is_same<decltype(layout), ck::tensor_layout::convolution::NCDHW>::value)
{
return HostTensorDescriptor({N_, C_, D, H, W},
{C_ * D * H * W, D * H * W, H * W, W, 1_uz});
}
else if constexpr(ck::is_same<decltype(layout),
ck::tensor_layout::convolution::NDHWC>::value)
{
return HostTensorDescriptor({N_, C_, D, H, W},
{D * C_ * H * W, 1_uz, C_ * H * W, W * C_, C_});
}
};
Tensor<InDataType> in_n_c_di_hi_wi(f_host_tensor_descriptor(N, C, Di, Hi, Wi, InLayout{}));
Tensor<OutDataType> out_n_c_do_ho_wo_host(
f_host_tensor_descriptor(N, C, Do, Ho, Wo, OutLayout{}));
Tensor<IndexDataType> out_indices_n_c_do_ho_wo_host(
f_host_tensor_descriptor(N, C, Do, Ho, Wo, OutLayout{}));
Tensor<OutDataType> out_n_c_do_ho_wo_device(
f_host_tensor_descriptor(N, C, Do, Ho, Wo, OutLayout{}));
Tensor<IndexDataType> out_indices_n_c_do_ho_wo_device(
f_host_tensor_descriptor(N, C, Do, Ho, Wo, OutLayout{}));
std::cout << "in_n_c_di_hi_wi: " << in_n_c_di_hi_wi.mDesc << std::endl;
std::cout << "out_n_c_do_ho_wo: " << out_n_c_do_ho_wo_host.mDesc << std::endl;
in_n_c_di_hi_wi.GenerateTensorValue(GeneratorTensor_3<InDataType>{-1.0, 1.0});
DeviceMem in_device_buf(sizeof(InDataType) * in_n_c_di_hi_wi.mDesc.GetElementSpaceSize());
DeviceMem out_device_buf(sizeof(OutDataType) *
out_n_c_do_ho_wo_device.mDesc.GetElementSpaceSize());
DeviceMem out_indices_device_buf(sizeof(IndexDataType) *
out_indices_n_c_do_ho_wo_device.mDesc.GetElementSpaceSize());
in_device_buf.ToDevice(in_n_c_di_hi_wi.mData.data());
auto pool = DevicePoolFwdInstance{};
auto invoker_ptr = pool.MakeInvokerPointer();
auto argument_ptr = pool.MakeArgumentPointer(
static_cast<InDataType*>(in_device_buf.GetDeviceBuffer()),
static_cast<OutDataType*>(out_device_buf.GetDeviceBuffer()),
static_cast<IndexDataType*>(out_indices_device_buf.GetDeviceBuffer()),
N,
C,
std::array<ck::index_t, 3>{{Di, Hi, Wi}},
std::array<ck::index_t, 3>{{Z, Y, X}},
std::array<ck::index_t, 3>{{Do, Ho, Wo}},
window_strides,
input_left_pads,
input_right_pads);
if(!pool.IsSupportedArgument(argument_ptr.get()))
{
throw std::runtime_error("wrong! device_op with the specified compilation parameters does "
"not support this problem");
}
float ave_time = invoker_ptr->Run(argument_ptr.get(), StreamConfig{nullptr, time_kernel});
std::cout << "Perf: " << ave_time << std::endl;
bool pass = true;
if(do_verification)
{
pool3d_host_verify<InDataType,
OutDataType,
AccDataType,
IndexDataType,
ReduceOpId,
PropagateNan,
OutputIndex>(in_n_c_di_hi_wi,
out_n_c_do_ho_wo_host,
out_indices_n_c_do_ho_wo_host,
window_spatial_lengths,
window_strides,
input_left_pads,
input_right_pads);
out_device_buf.FromDevice(out_n_c_do_ho_wo_device.mData.data());
pass = pass && ck::utils::check_err(out_n_c_do_ho_wo_device, out_n_c_do_ho_wo_host);
if constexpr(OutputIndex)
{
out_indices_device_buf.FromDevice(out_indices_n_c_do_ho_wo_device.mData.data());
pass = pass && ck::utils::check_err(out_indices_n_c_do_ho_wo_device,
out_indices_n_c_do_ho_wo_host);
};
}
return (pass);
};
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2022, Advanced Micro Devices, Inc. All rights reserved.
#include <iostream>
#include <cstdlib>
#include "ck/ck.hpp"
#include "ck/tensor_operation/gpu/device/tensor_layout.hpp"
#include "ck/utility/reduction_enums.hpp"
#include "pool3d_fwd_common.hpp"
using InDataType = ck::half_t;
using OutDataType = ck::half_t;
using AccDataType = float;
using IndexDataType = int32_t;
using InLayout = ck::tensor_layout::convolution::NDHWC;
using OutLayout = ck::tensor_layout::convolution::NDHWC;
#if 1
static constexpr auto ReduceOpId = ck::ReduceTensorOp::MAX;
#else
static constexpr auto ReduceOpId = ck::ReduceTensorOp::AVG;
#endif
static constexpr bool OutputIndex = false;
static constexpr bool PropagateNan = false;
int main()
{
bool do_verification = true;
bool time_kernel = false;
// Pool shape
ck::index_t N = 2;
ck::index_t C = 32;
ck::index_t Z = 3;
ck::index_t Y = 3;
ck::index_t X = 3;
ck::index_t Di = 31;
ck::index_t Hi = 31;
ck::index_t Wi = 31;
ck::index_t window_stride_d = 2;
ck::index_t window_stride_h = 2;
ck::index_t window_stride_w = 2;
ck::index_t in_left_pad_d = 1;
ck::index_t in_left_pad_h = 1;
ck::index_t in_left_pad_w = 1;
ck::index_t in_right_pad_d = 1;
ck::index_t in_right_pad_h = 1;
ck::index_t in_right_pad_w = 1;
bool pass = pool3d_test<InDataType,
OutDataType,
AccDataType,
IndexDataType,
InLayout,
OutLayout,
ReduceOpId,
PropagateNan,
OutputIndex>(do_verification,
time_kernel,
N,
C,
Z,
Y,
X,
Di,
Hi,
Wi,
window_stride_d,
window_stride_h,
window_stride_w,
in_left_pad_d,
in_left_pad_h,
in_left_pad_w,
in_right_pad_d,
in_right_pad_h,
in_right_pad_w);
return (pass ? 0 : 1);
}
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment