Skip to content
GitLab
Menu
Projects
Groups
Snippets
Loading...
Help
Help
Support
Community forum
Keyboard shortcuts
?
Submit feedback
Contribute to GitLab
Sign in / Register
Toggle navigation
Menu
Open sidebar
gaoqiong
composable_kernel
Commits
b60f7d84
"vscode:/vscode.git/clone" did not exist on "3360a1f5c36af0a8d3e88afc5bf7776d762fee75"
Commit
b60f7d84
authored
Apr 28, 2023
by
rocking
Browse files
Add pool3d f16 example
parent
912f06db
Changes
3
Show whitespace changes
Inline
Side-by-side
Showing
3 changed files
with
380 additions
and
0 deletions
+380
-0
example/48_pool3d_fwd/CMakeLists.txt
example/48_pool3d_fwd/CMakeLists.txt
+2
-0
example/48_pool3d_fwd/pool3d_fwd_common.hpp
example/48_pool3d_fwd/pool3d_fwd_common.hpp
+294
-0
example/48_pool3d_fwd/pool3d_fwd_fp16.cpp
example/48_pool3d_fwd/pool3d_fwd_fp16.cpp
+84
-0
No files found.
example/48_pool3d_fwd/CMakeLists.txt
0 → 100644
View file @
b60f7d84
add_example_executable
(
example_pool3d_fwd_fp16 pool3d_fwd_fp16.cpp
)
example/48_pool3d_fwd/pool3d_fwd_common.hpp
0 → 100644
View file @
b60f7d84
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2022, Advanced Micro Devices, Inc. All rights reserved.
#pragma once
#include <iostream>
#include "ck/ck.hpp"
#include "ck/utility/reduction_enums.hpp"
#include "ck/utility/reduction_functions_accumulate.hpp"
#include "ck/tensor_operation/gpu/device/reduction_operator_mapping.hpp"
#include "ck/tensor_operation/gpu/device/impl/device_pool3d_fwd_ndhwc_ndhwc.hpp"
#include "ck/tensor_operation/gpu/element/element_wise_operation.hpp"
#include "ck/library/utility/check_err.hpp"
#include "ck/library/utility/device_memory.hpp"
#include "ck/library/utility/host_tensor.hpp"
#include "ck/library/utility/host_tensor_generator.hpp"
#include "ck/library/utility/literals.hpp"
template
<
typename
InDataType
,
typename
OutDataType
,
typename
AccDataType
,
typename
IndexDataType
,
ck
::
ReduceTensorOp
ReduceOpId
,
bool
PropagateNan
,
bool
OutputIndex
>
static
void
pool3d_host_verify
(
const
Tensor
<
InDataType
>&
in
,
Tensor
<
OutDataType
>&
out
,
Tensor
<
IndexDataType
>&
out_indices
,
const
std
::
array
<
ck
::
index_t
,
3
>&
window_spatial_lengths
,
const
std
::
array
<
ck
::
index_t
,
3
>&
window_strides
,
const
std
::
array
<
ck
::
index_t
,
3
>&
in_left_pads
,
const
std
::
array
<
ck
::
index_t
,
3
>&
/*in_right_pads*/
)
{
const
int32_t
reduceLength
=
window_spatial_lengths
[
0
]
*
window_spatial_lengths
[
1
];
using
ReduceOperation
=
typename
ck
::
reduce_binary_operator
<
ReduceOpId
>::
opType
;
auto
elementwise_ops
=
ck
::
reduce_unary_operator
<
ReduceOpId
,
true
,
true
>::
GetElementwiseOperator
(
reduceLength
);
auto
in_elementwise_op
=
std
::
get
<
0
>
(
elementwise_ops
);
auto
acc_elementwise_op
=
std
::
get
<
1
>
(
elementwise_ops
);
if
constexpr
(
!
OutputIndex
)
{
using
Accumulation
=
ck
::
detail
::
AccumulateWithNanCheck
<
PropagateNan
,
ReduceOperation
,
AccDataType
>
;
auto
f_ncdhw
=
[
&
](
auto
n
,
auto
c
,
auto
do_
,
auto
ho
,
auto
wo
)
{
auto
accuVal
=
ReduceOperation
::
template
GetIdentityValue
<
AccDataType
>();
for
(
ck
::
index_t
z
=
0
;
z
<
window_spatial_lengths
[
0
];
++
z
)
{
ck
::
index_t
di
=
do_
*
window_strides
[
0
]
+
z
-
in_left_pads
[
0
];
for
(
ck
::
index_t
y
=
0
;
y
<
window_spatial_lengths
[
1
];
++
y
)
{
ck
::
index_t
hi
=
ho
*
window_strides
[
1
]
+
y
-
in_left_pads
[
1
];
for
(
ck
::
index_t
x
=
0
;
x
<
window_spatial_lengths
[
2
];
++
x
)
{
ck
::
index_t
wi
=
wo
*
window_strides
[
2
]
+
x
-
in_left_pads
[
2
];
if
(
di
>=
0
&&
di
<
static_cast
<
ck
::
index_t
>
(
in
.
mDesc
.
GetLengths
()[
2
])
&&
hi
>=
0
&&
hi
<
static_cast
<
ck
::
index_t
>
(
in
.
mDesc
.
GetLengths
()[
3
])
&&
wi
>=
0
&&
wi
<
static_cast
<
ck
::
index_t
>
(
in
.
mDesc
.
GetLengths
()[
4
]))
{
AccDataType
currVal
=
static_cast
<
AccDataType
>
(
in
(
n
,
c
,
di
,
hi
,
wi
));
in_elementwise_op
(
currVal
,
currVal
);
Accumulation
::
Calculate
(
accuVal
,
currVal
);
}
}
}
}
acc_elementwise_op
(
accuVal
,
accuVal
);
out
(
n
,
c
,
do_
,
ho
,
wo
)
=
accuVal
;
};
make_ParallelTensorFunctor
(
f_ncdhw
,
out
.
mDesc
.
GetLengths
()[
0
],
out
.
mDesc
.
GetLengths
()[
1
],
out
.
mDesc
.
GetLengths
()[
2
],
out
.
mDesc
.
GetLengths
()[
3
],
out
.
mDesc
.
GetLengths
()[
4
])(
std
::
thread
::
hardware_concurrency
());
}
else
{
using
Accumulation
=
ck
::
detail
::
AccumulateWithIndexAndNanCheck
<
PropagateNan
,
ReduceOperation
,
AccDataType
,
IndexDataType
>
;
auto
f_ncdhw
=
[
&
](
auto
n
,
auto
c
,
auto
do_
,
auto
ho
,
auto
wo
)
{
auto
accuVal
=
ReduceOperation
::
template
GetIdentityValue
<
AccDataType
>();
IndexDataType
accuIndex
=
0
;
for
(
ck
::
index_t
z
=
0
;
z
<
window_spatial_lengths
[
0
];
++
z
)
{
ck
::
index_t
di
=
do_
*
window_strides
[
0
]
+
z
-
in_left_pads
[
0
];
for
(
ck
::
index_t
y
=
0
;
y
<
window_spatial_lengths
[
1
];
++
y
)
{
ck
::
index_t
hi
=
ho
*
window_strides
[
1
]
+
y
-
in_left_pads
[
1
];
for
(
ck
::
index_t
x
=
0
;
x
<
window_spatial_lengths
[
2
];
++
x
)
{
ck
::
index_t
wi
=
wo
*
window_strides
[
2
]
+
x
-
in_left_pads
[
2
];
if
(
di
>=
0
&&
di
<
static_cast
<
ck
::
index_t
>
(
in
.
mDesc
.
GetLengths
()[
2
])
&&
hi
>=
0
&&
hi
<
static_cast
<
ck
::
index_t
>
(
in
.
mDesc
.
GetLengths
()[
3
])
&&
wi
>=
0
&&
wi
<
static_cast
<
ck
::
index_t
>
(
in
.
mDesc
.
GetLengths
()[
4
]))
{
AccDataType
currVal
=
static_cast
<
AccDataType
>
(
in
(
n
,
c
,
di
,
hi
,
wi
));
IndexDataType
currIndex
=
z
*
window_spatial_lengths
[
1
]
*
window_spatial_lengths
[
2
]
+
y
*
window_spatial_lengths
[
2
]
+
x
;
in_elementwise_op
(
currVal
,
currVal
);
Accumulation
::
Calculate
(
accuVal
,
currVal
,
accuIndex
,
currIndex
);
}
}
}
}
acc_elementwise_op
(
accuVal
,
accuVal
);
out
(
n
,
c
,
do_
,
ho
,
wo
)
=
accuVal
;
out_indices
(
n
,
c
,
do_
,
ho
,
wo
)
=
accuIndex
;
};
make_ParallelTensorFunctor
(
f_ncdhw
,
out
.
mDesc
.
GetLengths
()[
0
],
out
.
mDesc
.
GetLengths
()[
1
],
out
.
mDesc
.
GetLengths
()[
2
],
out
.
mDesc
.
GetLengths
()[
3
],
out
.
mDesc
.
GetLengths
()[
4
])(
std
::
thread
::
hardware_concurrency
());
};
}
template
<
typename
InDataType
,
typename
OutDataType
,
typename
AccDataType
,
typename
IndexDataType
,
typename
InLayout
,
typename
OutLayout
,
ck
::
ReduceTensorOp
ReduceOpId
,
bool
PropagateNan
,
bool
OutputIndex
>
bool
pool3d_test
(
bool
do_verification
,
bool
time_kernel
,
ck
::
index_t
N
,
ck
::
index_t
C
,
ck
::
index_t
Z
,
ck
::
index_t
Y
,
ck
::
index_t
X
,
ck
::
index_t
Di
,
ck
::
index_t
Hi
,
ck
::
index_t
Wi
,
ck
::
index_t
window_stride_d
,
ck
::
index_t
window_stride_h
,
ck
::
index_t
window_stride_w
,
ck
::
index_t
in_left_pad_d
,
ck
::
index_t
in_left_pad_h
,
ck
::
index_t
in_left_pad_w
,
ck
::
index_t
in_right_pad_d
,
ck
::
index_t
in_right_pad_h
,
ck
::
index_t
in_right_pad_w
)
{
using
DevicePoolFwdInstance
=
ck
::
tensor_operation
::
device
::
DevicePool3dFwd_Input_N_Di_Hi_Wi_C_Output_N_Do_Ho_Wo_C
<
InDataType
,
// InDataType
OutDataType
,
// OutDataType
AccDataType
,
// AccDataType
ReduceOpId
,
OutputIndex
,
64
,
// BlockSize
64
,
// ReduceMThreadClusterSize
1
,
// ReduceKThreadClusterSize
4
,
// ReduceMThreadSliceSize
1
,
// ReduceKThreadSliceSize
4
>
;
// InSrcOutDstVectorSize
const
ck
::
index_t
Do
=
(
Di
+
in_left_pad_d
+
in_right_pad_d
-
Z
)
/
window_stride_d
+
1
;
const
ck
::
index_t
Ho
=
(
Hi
+
in_left_pad_h
+
in_right_pad_h
-
Y
)
/
window_stride_h
+
1
;
const
ck
::
index_t
Wo
=
(
Wi
+
in_left_pad_w
+
in_right_pad_w
-
X
)
/
window_stride_w
+
1
;
const
std
::
array
<
ck
::
index_t
,
3
>
window_spatial_lengths
{{
Z
,
Y
,
X
}};
const
std
::
array
<
ck
::
index_t
,
3
>
window_strides
{
{
window_stride_d
,
window_stride_h
,
window_stride_w
}};
const
std
::
array
<
ck
::
index_t
,
3
>
input_left_pads
{{
in_left_pad_d
,
in_left_pad_h
,
in_left_pad_w
}};
const
std
::
array
<
ck
::
index_t
,
3
>
input_right_pads
{
{
in_right_pad_d
,
in_right_pad_h
,
in_right_pad_w
}};
// tensor layout
auto
f_host_tensor_descriptor
=
[](
std
::
size_t
N_
,
std
::
size_t
C_
,
std
::
size_t
D
,
std
::
size_t
H
,
std
::
size_t
W
,
auto
layout
)
{
using
namespace
ck
::
literals
;
if
constexpr
(
ck
::
is_same
<
decltype
(
layout
),
ck
::
tensor_layout
::
convolution
::
NCDHW
>::
value
)
{
return
HostTensorDescriptor
({
N_
,
C_
,
D
,
H
,
W
},
{
C_
*
D
*
H
*
W
,
D
*
H
*
W
,
H
*
W
,
W
,
1
_uz
});
}
else
if
constexpr
(
ck
::
is_same
<
decltype
(
layout
),
ck
::
tensor_layout
::
convolution
::
NDHWC
>::
value
)
{
return
HostTensorDescriptor
({
N_
,
C_
,
D
,
H
,
W
},
{
D
*
C_
*
H
*
W
,
1
_uz
,
C_
*
H
*
W
,
W
*
C_
,
C_
});
}
};
Tensor
<
InDataType
>
in_n_c_di_hi_wi
(
f_host_tensor_descriptor
(
N
,
C
,
Di
,
Hi
,
Wi
,
InLayout
{}));
Tensor
<
OutDataType
>
out_n_c_do_ho_wo_host
(
f_host_tensor_descriptor
(
N
,
C
,
Do
,
Ho
,
Wo
,
OutLayout
{}));
Tensor
<
IndexDataType
>
out_indices_n_c_do_ho_wo_host
(
f_host_tensor_descriptor
(
N
,
C
,
Do
,
Ho
,
Wo
,
OutLayout
{}));
Tensor
<
OutDataType
>
out_n_c_do_ho_wo_device
(
f_host_tensor_descriptor
(
N
,
C
,
Do
,
Ho
,
Wo
,
OutLayout
{}));
Tensor
<
IndexDataType
>
out_indices_n_c_do_ho_wo_device
(
f_host_tensor_descriptor
(
N
,
C
,
Do
,
Ho
,
Wo
,
OutLayout
{}));
std
::
cout
<<
"in_n_c_di_hi_wi: "
<<
in_n_c_di_hi_wi
.
mDesc
<<
std
::
endl
;
std
::
cout
<<
"out_n_c_do_ho_wo: "
<<
out_n_c_do_ho_wo_host
.
mDesc
<<
std
::
endl
;
in_n_c_di_hi_wi
.
GenerateTensorValue
(
GeneratorTensor_3
<
InDataType
>
{
-
1.0
,
1.0
});
DeviceMem
in_device_buf
(
sizeof
(
InDataType
)
*
in_n_c_di_hi_wi
.
mDesc
.
GetElementSpaceSize
());
DeviceMem
out_device_buf
(
sizeof
(
OutDataType
)
*
out_n_c_do_ho_wo_device
.
mDesc
.
GetElementSpaceSize
());
DeviceMem
out_indices_device_buf
(
sizeof
(
IndexDataType
)
*
out_indices_n_c_do_ho_wo_device
.
mDesc
.
GetElementSpaceSize
());
in_device_buf
.
ToDevice
(
in_n_c_di_hi_wi
.
mData
.
data
());
auto
pool
=
DevicePoolFwdInstance
{};
auto
invoker_ptr
=
pool
.
MakeInvokerPointer
();
auto
argument_ptr
=
pool
.
MakeArgumentPointer
(
static_cast
<
InDataType
*>
(
in_device_buf
.
GetDeviceBuffer
()),
static_cast
<
OutDataType
*>
(
out_device_buf
.
GetDeviceBuffer
()),
static_cast
<
IndexDataType
*>
(
out_indices_device_buf
.
GetDeviceBuffer
()),
N
,
C
,
std
::
array
<
ck
::
index_t
,
3
>
{{
Di
,
Hi
,
Wi
}},
std
::
array
<
ck
::
index_t
,
3
>
{{
Z
,
Y
,
X
}},
std
::
array
<
ck
::
index_t
,
3
>
{{
Do
,
Ho
,
Wo
}},
window_strides
,
input_left_pads
,
input_right_pads
);
if
(
!
pool
.
IsSupportedArgument
(
argument_ptr
.
get
()))
{
throw
std
::
runtime_error
(
"wrong! device_op with the specified compilation parameters does "
"not support this problem"
);
}
float
ave_time
=
invoker_ptr
->
Run
(
argument_ptr
.
get
(),
StreamConfig
{
nullptr
,
time_kernel
});
std
::
cout
<<
"Perf: "
<<
ave_time
<<
std
::
endl
;
bool
pass
=
true
;
if
(
do_verification
)
{
pool3d_host_verify
<
InDataType
,
OutDataType
,
AccDataType
,
IndexDataType
,
ReduceOpId
,
PropagateNan
,
OutputIndex
>
(
in_n_c_di_hi_wi
,
out_n_c_do_ho_wo_host
,
out_indices_n_c_do_ho_wo_host
,
window_spatial_lengths
,
window_strides
,
input_left_pads
,
input_right_pads
);
out_device_buf
.
FromDevice
(
out_n_c_do_ho_wo_device
.
mData
.
data
());
pass
=
pass
&&
ck
::
utils
::
check_err
(
out_n_c_do_ho_wo_device
,
out_n_c_do_ho_wo_host
);
if
constexpr
(
OutputIndex
)
{
out_indices_device_buf
.
FromDevice
(
out_indices_n_c_do_ho_wo_device
.
mData
.
data
());
pass
=
pass
&&
ck
::
utils
::
check_err
(
out_indices_n_c_do_ho_wo_device
,
out_indices_n_c_do_ho_wo_host
);
};
}
return
(
pass
);
};
example/48_pool3d_fwd/pool3d_fwd_fp16.cpp
0 → 100644
View file @
b60f7d84
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2022, Advanced Micro Devices, Inc. All rights reserved.
#include <iostream>
#include <cstdlib>
#include "ck/ck.hpp"
#include "ck/tensor_operation/gpu/device/tensor_layout.hpp"
#include "ck/utility/reduction_enums.hpp"
#include "pool3d_fwd_common.hpp"
using
InDataType
=
ck
::
half_t
;
using
OutDataType
=
ck
::
half_t
;
using
AccDataType
=
float
;
using
IndexDataType
=
int32_t
;
using
InLayout
=
ck
::
tensor_layout
::
convolution
::
NDHWC
;
using
OutLayout
=
ck
::
tensor_layout
::
convolution
::
NDHWC
;
#if 1
static
constexpr
auto
ReduceOpId
=
ck
::
ReduceTensorOp
::
MAX
;
#else
static
constexpr
auto
ReduceOpId
=
ck
::
ReduceTensorOp
::
AVG
;
#endif
static
constexpr
bool
OutputIndex
=
false
;
static
constexpr
bool
PropagateNan
=
false
;
int
main
()
{
bool
do_verification
=
true
;
bool
time_kernel
=
false
;
// Pool shape
ck
::
index_t
N
=
2
;
ck
::
index_t
C
=
32
;
ck
::
index_t
Z
=
3
;
ck
::
index_t
Y
=
3
;
ck
::
index_t
X
=
3
;
ck
::
index_t
Di
=
31
;
ck
::
index_t
Hi
=
31
;
ck
::
index_t
Wi
=
31
;
ck
::
index_t
window_stride_d
=
2
;
ck
::
index_t
window_stride_h
=
2
;
ck
::
index_t
window_stride_w
=
2
;
ck
::
index_t
in_left_pad_d
=
1
;
ck
::
index_t
in_left_pad_h
=
1
;
ck
::
index_t
in_left_pad_w
=
1
;
ck
::
index_t
in_right_pad_d
=
1
;
ck
::
index_t
in_right_pad_h
=
1
;
ck
::
index_t
in_right_pad_w
=
1
;
bool
pass
=
pool3d_test
<
InDataType
,
OutDataType
,
AccDataType
,
IndexDataType
,
InLayout
,
OutLayout
,
ReduceOpId
,
PropagateNan
,
OutputIndex
>
(
do_verification
,
time_kernel
,
N
,
C
,
Z
,
Y
,
X
,
Di
,
Hi
,
Wi
,
window_stride_d
,
window_stride_h
,
window_stride_w
,
in_left_pad_d
,
in_left_pad_h
,
in_left_pad_w
,
in_right_pad_d
,
in_right_pad_h
,
in_right_pad_w
);
return
(
pass
?
0
:
1
);
}
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
.
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment