Skip to content
GitLab
Menu
Projects
Groups
Snippets
Loading...
Help
Help
Support
Community forum
Keyboard shortcuts
?
Submit feedback
Contribute to GitLab
Sign in / Register
Toggle navigation
Menu
Open sidebar
gaoqiong
composable_kernel
Commits
b5ada11b
Commit
b5ada11b
authored
Jun 01, 2022
by
Jing Zhang
Browse files
merge develop
parents
cee92951
b6eaf3eb
Changes
95
Hide whitespace changes
Inline
Side-by-side
Showing
20 changed files
with
498 additions
and
28 deletions
+498
-28
include/ck/tensor_operation/gpu/grid/gridwise_gemm_xdlops_v3r3.hpp
...k/tensor_operation/gpu/grid/gridwise_gemm_xdlops_v3r3.hpp
+4
-4
include/ck/tensor_operation/gpu/warp/xdlops_gemm.hpp
include/ck/tensor_operation/gpu/warp/xdlops_gemm.hpp
+33
-3
include/ck/utility/amd_xdlops.hpp
include/ck/utility/amd_xdlops.hpp
+19
-0
include/ck/utility/dynamic_buffer.hpp
include/ck/utility/dynamic_buffer.hpp
+1
-1
library/include/ck/library/reference_tensor_operation/cpu/reference_cgemm.hpp
...ibrary/reference_tensor_operation/cpu/reference_cgemm.hpp
+203
-0
library/include/ck/library/reference_tensor_operation/cpu/reference_gemm.hpp
...library/reference_tensor_operation/cpu/reference_gemm.hpp
+7
-6
library/src/tensor_operation_instance/gpu/batched_gemm_reduce/device_batched_gemm_reduce_xdl_cshuffle_f16_f16_f16_f32_f32_gkm_gkn_gmn_instance.cpp
...xdl_cshuffle_f16_f16_f16_f32_f32_gkm_gkn_gmn_instance.cpp
+1
-1
library/src/tensor_operation_instance/gpu/batched_gemm_reduce/device_batched_gemm_reduce_xdl_cshuffle_f16_f16_f16_f32_f32_gkm_gnk_gmn_instance.cpp
...xdl_cshuffle_f16_f16_f16_f32_f32_gkm_gnk_gmn_instance.cpp
+1
-1
library/src/tensor_operation_instance/gpu/batched_gemm_reduce/device_batched_gemm_reduce_xdl_cshuffle_f16_f16_f16_f32_f32_gmk_gkn_gmn_instance.cpp
...xdl_cshuffle_f16_f16_f16_f32_f32_gmk_gkn_gmn_instance.cpp
+1
-1
library/src/tensor_operation_instance/gpu/batched_gemm_reduce/device_batched_gemm_reduce_xdl_cshuffle_f16_f16_f16_f32_f32_gmk_gnk_gmn_instance.cpp
...xdl_cshuffle_f16_f16_f16_f32_f32_gmk_gnk_gmn_instance.cpp
+1
-1
library/src/tensor_operation_instance/gpu/gemm/CMakeLists.txt
...ary/src/tensor_operation_instance/gpu/gemm/CMakeLists.txt
+4
-0
library/src/tensor_operation_instance/gpu/gemm/device_gemm_xdl_f64_f64_f64_km_kn_mn_instance.cpp
...pu/gemm/device_gemm_xdl_f64_f64_f64_km_kn_mn_instance.cpp
+49
-0
library/src/tensor_operation_instance/gpu/gemm/device_gemm_xdl_f64_f64_f64_km_nk_mn_instance.cpp
...pu/gemm/device_gemm_xdl_f64_f64_f64_km_nk_mn_instance.cpp
+49
-0
library/src/tensor_operation_instance/gpu/gemm/device_gemm_xdl_f64_f64_f64_mk_kn_mn_instance.cpp
...pu/gemm/device_gemm_xdl_f64_f64_f64_mk_kn_mn_instance.cpp
+49
-0
library/src/tensor_operation_instance/gpu/gemm/device_gemm_xdl_f64_f64_f64_mk_nk_mn_instance.cpp
...pu/gemm/device_gemm_xdl_f64_f64_f64_mk_nk_mn_instance.cpp
+54
-0
library/src/tensor_operation_instance/gpu/gemm_reduce/device_gemm_reduce_xdl_cshuffle_f16_f16_f16_f32_f32_km_kn_mn_instance.cpp
...ce_xdl_cshuffle_f16_f16_f16_f32_f32_km_kn_mn_instance.cpp
+3
-2
library/src/tensor_operation_instance/gpu/gemm_reduce/device_gemm_reduce_xdl_cshuffle_f16_f16_f16_f32_f32_km_nk_mn_instance.cpp
...ce_xdl_cshuffle_f16_f16_f16_f32_f32_km_nk_mn_instance.cpp
+3
-2
library/src/tensor_operation_instance/gpu/gemm_reduce/device_gemm_reduce_xdl_cshuffle_f16_f16_f16_f32_f32_mk_kn_mn_instance.cpp
...ce_xdl_cshuffle_f16_f16_f16_f32_f32_mk_kn_mn_instance.cpp
+3
-2
library/src/tensor_operation_instance/gpu/gemm_reduce/device_gemm_reduce_xdl_cshuffle_f16_f16_f16_f32_f32_mk_nk_mn_instance.cpp
...ce_xdl_cshuffle_f16_f16_f16_f32_f32_mk_nk_mn_instance.cpp
+3
-2
profiler/include/profile_gemm_impl.hpp
profiler/include/profile_gemm_impl.hpp
+10
-2
No files found.
include/ck/tensor_operation/gpu/grid/gridwise_gemm_xdlops_v3r3.hpp
View file @
b5ada11b
...
@@ -316,11 +316,11 @@ struct GridwiseGemm_k0mk1_k0nk1_mn_xdlops_v3r3
...
@@ -316,11 +316,11 @@ struct GridwiseGemm_k0mk1_k0nk1_mn_xdlops_v3r3
}
}
// return block_id to C matrix tile idx (m0, n0) mapping
// return block_id to C matrix tile idx (m0, n0) mapping
__host__
__device__
static
constexpr
auto
__host__
__device__
static
constexpr
auto
MakeDefaultBlock2CTileMap
(
MakeDefaultBlock2CTileMap
(
const
CGridDesc_M_N
&
c_grid_desc_m_n
,
index_t
M01
,
index_t
N01
)
const
CGridDesc_M_N
&
c_grid_desc_m_n
,
index_t
/* M01 */
,
index_t
/* N01 */
)
{
{
return
BlockToCTileMap_M00_N0
0
_M01
_N01
<
MPerBlock
,
NPerBlock
,
CGridDesc_M_N
>
(
return
BlockToCTileMap_M00_N0_M01
Adapt
<
MPerBlock
,
NPerBlock
,
CGridDesc_M_N
>
(
c_grid_desc_m_n
,
M01
,
N01
);
c_grid_desc_m_n
);
}
}
using
CGridDescriptor_MBlock_MXdlPerWave_MWaveMPerXdl_NBlock_NXdlPerWave_NWaveNPerXdl
=
using
CGridDescriptor_MBlock_MXdlPerWave_MWaveMPerXdl_NBlock_NXdlPerWave_NWaveNPerXdl
=
remove_cvref_t
<
decltype
(
remove_cvref_t
<
decltype
(
...
...
include/ck/tensor_operation/gpu/warp/xdlops_gemm.hpp
View file @
b5ada11b
...
@@ -25,6 +25,7 @@ enum struct MfmaInstr
...
@@ -25,6 +25,7 @@ enum struct MfmaInstr
mfma_f32_16x16x8bf16
,
mfma_f32_16x16x8bf16
,
mfma_i32_32x32x8i8
,
mfma_i32_32x32x8i8
,
mfma_i32_16x16x16i8
,
mfma_i32_16x16x16i8
,
mfma_f64_16x16x4f64
};
};
template
<
MfmaInstr
instr
>
template
<
MfmaInstr
instr
>
...
@@ -383,12 +384,40 @@ struct mfma_type<MfmaInstr::mfma_i32_16x16x16i8>
...
@@ -383,12 +384,40 @@ struct mfma_type<MfmaInstr::mfma_i32_16x16x16i8>
}
}
};
};
template
<
>
struct
mfma_type
<
MfmaInstr
::
mfma_f64_16x16x4f64
>
{
static
constexpr
index_t
group_size
=
1
;
static
constexpr
index_t
num_groups_per_blk
=
4
;
static
constexpr
index_t
num_regs_per_blk
=
4
;
// group_size * num_groups_per_blk;
static
constexpr
index_t
num_threads_per_blk
=
16
;
static
constexpr
index_t
wave_size
=
64
;
static
constexpr
index_t
num_input_blks
=
4
;
// wave_size / num_threads_per_blk;
static
constexpr
index_t
num_output_blks
=
1
;
static
constexpr
index_t
m_per_blk
=
16
;
static
constexpr
index_t
n_per_blk
=
16
;
static
constexpr
index_t
k_per_blk
=
1
;
static
constexpr
bool
is_k_reduction
=
true
;
template
<
index_t
MPerXdlops
,
index_t
NPerXdlops
,
class
FloatA
,
class
FloatB
,
class
FloatC
>
__device__
void
run
(
const
FloatA
&
a
,
const
FloatB
&
b
,
FloatC
&
reg_c
)
const
{
intrin_mfma_f64_16x16x4f64
<
MPerXdlops
,
NPerXdlops
>::
Run
(
a
,
b
,
reg_c
);
}
};
template
<
typename
base_type
,
index_t
MPerXdlops
,
index_t
NPerXdlops
>
template
<
typename
base_type
,
index_t
MPerXdlops
,
index_t
NPerXdlops
>
struct
MfmaSelector
struct
MfmaSelector
{
{
template
<
typename
base_type_
,
index_t
MPerXdlops_
,
index_t
NPerXdlops_
>
template
<
typename
base_type_
,
index_t
MPerXdlops_
,
index_t
NPerXdlops_
>
static
constexpr
auto
GetMfma
();
static
constexpr
auto
GetMfma
();
template
<
>
static
constexpr
auto
GetMfma
<
double
,
16
,
16
>
()
{
return
MfmaInstr
::
mfma_f64_16x16x4f64
;
}
template
<
>
template
<
>
static
constexpr
auto
GetMfma
<
float
,
64
,
64
>
()
static
constexpr
auto
GetMfma
<
float
,
64
,
64
>
()
{
{
...
@@ -661,9 +690,10 @@ struct XdlopsGemm
...
@@ -661,9 +690,10 @@ struct XdlopsGemm
template
<
class
FloatA
,
class
FloatB
,
class
FloatC
>
template
<
class
FloatA
,
class
FloatB
,
class
FloatC
>
__device__
void
Run
(
const
FloatA
&
p_a_wave
,
const
FloatB
&
p_b_wave
,
FloatC
&
p_c_thread
)
const
__device__
void
Run
(
const
FloatA
&
p_a_wave
,
const
FloatB
&
p_b_wave
,
FloatC
&
p_c_thread
)
const
{
{
static_assert
(
is_same
<
base_type
,
float
>::
value
||
is_same
<
base_type
,
half_t
>::
value
||
static_assert
(
is_same
<
base_type
,
double
>::
value
||
is_same
<
base_type
,
float
>::
value
||
is_same
<
base_type
,
bhalf_t
>::
value
||
is_same
<
base_type
,
int8_t
>::
value
,
is_same
<
base_type
,
half_t
>::
value
||
is_same
<
base_type
,
bhalf_t
>::
value
||
"base base_type must be float, half, bfloat16, and int8_t!"
);
is_same
<
base_type
,
int8_t
>::
value
,
"base base_type must be double, float, half, bfloat16, and int8_t!"
);
static_for
<
0
,
KPack
/
mfma_instr
.
k_per_blk
,
1
>
{}([
&
](
auto
k
)
{
static_for
<
0
,
KPack
/
mfma_instr
.
k_per_blk
,
1
>
{}([
&
](
auto
k
)
{
mfma_instr
.
template
run
<
MPerXdlops
,
NPerXdlops
>(
p_a_wave
[
k
],
p_b_wave
[
k
],
p_c_thread
);
mfma_instr
.
template
run
<
MPerXdlops
,
NPerXdlops
>(
p_a_wave
[
k
],
p_b_wave
[
k
],
p_c_thread
);
...
...
include/ck/utility/amd_xdlops.hpp
View file @
b5ada11b
...
@@ -294,5 +294,24 @@ struct intrin_mfma_i32_16x16x16i8<16, 16>
...
@@ -294,5 +294,24 @@ struct intrin_mfma_i32_16x16x16i8<16, 16>
}
}
};
};
template
<
index_t
MPerWave
,
index_t
NPerWave
>
struct
intrin_mfma_f64_16x16x4f64
;
template
<
>
struct
intrin_mfma_f64_16x16x4f64
<
16
,
16
>
{
template
<
class
FloatC
>
__device__
static
void
Run
(
const
double
&
reg_a
,
const
double
&
reg_b
,
FloatC
&
reg_c
)
{
#ifdef __gfx90a__
reg_c
.
template
AsType
<
double4_t
>()(
Number
<
0
>
{})
=
__builtin_amdgcn_mfma_f64_16x16x4f64
(
reg_a
,
reg_b
,
reg_c
.
template
AsType
<
double4_t
>()[
Number
<
0
>
{}],
0
,
0
,
0
);
#else
ignore
=
reg_a
;
ignore
=
reg_b
;
ignore
=
reg_c
;
#endif
}
};
}
// namespace ck
}
// namespace ck
#endif
#endif
include/ck/utility/dynamic_buffer.hpp
View file @
b5ada11b
...
@@ -325,7 +325,7 @@ struct DynamicBuffer
...
@@ -325,7 +325,7 @@ struct DynamicBuffer
{
{
if
(
is_valid_element
)
if
(
is_valid_element
)
{
{
atomic_add
(
c_style_pointer_cast
<
X
*>
(
&
p_data_
[
i
]),
x
);
atomic_add
<
X
>
(
c_style_pointer_cast
<
X
*>
(
&
p_data_
[
i
]),
x
);
}
}
}
}
}
}
...
...
library/include/ck/library/reference_tensor_operation/cpu/reference_cgemm.hpp
0 → 100644
View file @
b5ada11b
/*******************************************************************************
*
* MIT License
*
* Copyright (c) 2022 Advanced Micro Devices, Inc.
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in all
* copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
* SOFTWARE.
*
*******************************************************************************/
#pragma once
#include <iostream>
#include <sstream>
#include "device_base.hpp"
#include "host_tensor.hpp"
namespace
ck
{
namespace
tensor_operation
{
namespace
host
{
// FIXME: support arbitrary elementwise operation for A/B/C
template
<
typename
ADataType
,
typename
BDataType
,
typename
CDataType
,
typename
AElementwiseOperation
,
typename
BElementwiseOperation
,
typename
CElementwiseOperation
,
enable_if_t
<
is_same_v
<
AElementwiseOperation
,
ck
::
tensor_operation
::
element_wise
::
PassThrough
>
&&
is_same_v
<
BElementwiseOperation
,
ck
::
tensor_operation
::
element_wise
::
PassThrough
>
&&
is_same_v
<
CElementwiseOperation
,
ck
::
tensor_operation
::
element_wise
::
PassThrough
>
,
bool
>
=
false
>
struct
ReferenceCGemm
:
public
device
::
BaseOperator
{
// Argument
struct
Argument
:
public
device
::
BaseArgument
{
Argument
(
const
Tensor
<
ADataType
>&
a_m_k_real
,
const
Tensor
<
ADataType
>&
a_m_k_imag
,
const
Tensor
<
BDataType
>&
b_k_n_real
,
const
Tensor
<
BDataType
>&
b_k_n_imag
,
Tensor
<
CDataType
>&
c_m_n_real
,
Tensor
<
CDataType
>&
c_m_n_imag
,
AElementwiseOperation
a_element_op
,
BElementwiseOperation
b_element_op
,
CElementwiseOperation
c_element_op
)
:
a_m_k_real_
{
a_m_k_real
},
a_m_k_imag_
{
a_m_k_imag
},
b_k_n_real_
{
b_k_n_real
},
b_k_n_imag_
{
b_k_n_imag
},
c_m_n_real_
{
c_m_n_real
},
c_m_n_imag_
{
c_m_n_imag
},
a_element_op_
{
a_element_op
},
b_element_op_
{
b_element_op
},
c_element_op_
{
c_element_op
}
{
}
const
Tensor
<
ADataType
>&
a_m_k_real_
;
const
Tensor
<
ADataType
>&
a_m_k_imag_
;
const
Tensor
<
BDataType
>&
b_k_n_real_
;
const
Tensor
<
BDataType
>&
b_k_n_imag_
;
Tensor
<
CDataType
>&
c_m_n_real_
;
Tensor
<
CDataType
>&
c_m_n_imag_
;
AElementwiseOperation
a_element_op_
;
BElementwiseOperation
b_element_op_
;
CElementwiseOperation
c_element_op_
;
};
// Invoker
struct
Invoker
:
public
device
::
BaseInvoker
{
using
Argument
=
ReferenceCGemm
::
Argument
;
float
Run
(
const
Argument
&
arg
)
{
const
std
::
size_t
K
=
arg
.
a_m_k_real_
.
mDesc
.
GetLengths
()[
1
];
if
(
K
!=
arg
.
a_m_k_imag_
.
mDesc
.
GetLengths
()[
1
])
{
throw
std
::
runtime_error
(
"wrong! Incompatible real and imag sizes in CGEMM"
);
}
auto
f_mk_kn_mn_real
=
[
&
](
auto
m
,
auto
n
)
{
float
v_c_real
=
0
;
for
(
std
::
size_t
k
=
0
;
k
<
K
;
++
k
)
{
float
v_a_real
=
ck
::
type_convert
<
float
>
(
arg
.
a_m_k_real_
(
m
,
k
));
float
v_a_imag
=
ck
::
type_convert
<
float
>
(
arg
.
a_m_k_imag_
(
m
,
k
));
float
v_b_real
=
ck
::
type_convert
<
float
>
(
arg
.
b_k_n_real_
(
k
,
n
));
float
v_b_imag
=
ck
::
type_convert
<
float
>
(
arg
.
b_k_n_imag_
(
k
,
n
));
v_c_real
+=
v_a_real
*
v_b_real
-
v_a_imag
*
v_b_imag
;
}
arg
.
c_m_n_real_
(
m
,
n
)
=
v_c_real
;
};
auto
f_mk_kn_mn_imag
=
[
&
](
auto
m
,
auto
n
)
{
float
v_c_imag
=
0
;
for
(
std
::
size_t
k
=
0
;
k
<
K
;
++
k
)
{
float
v_a_real
=
ck
::
type_convert
<
float
>
(
arg
.
a_m_k_real_
(
m
,
k
));
float
v_a_imag
=
ck
::
type_convert
<
float
>
(
arg
.
a_m_k_imag_
(
m
,
k
));
float
v_b_real
=
ck
::
type_convert
<
float
>
(
arg
.
b_k_n_real_
(
k
,
n
));
float
v_b_imag
=
ck
::
type_convert
<
float
>
(
arg
.
b_k_n_imag_
(
k
,
n
));
v_c_imag
+=
v_a_real
*
v_b_imag
+
v_a_imag
*
v_b_real
;
}
arg
.
c_m_n_imag_
(
m
,
n
)
=
v_c_imag
;
};
make_ParallelTensorFunctor
(
f_mk_kn_mn_real
,
arg
.
c_m_n_real_
.
mDesc
.
GetLengths
()[
0
],
arg
.
c_m_n_real_
.
mDesc
.
GetLengths
()[
1
])(
std
::
thread
::
hardware_concurrency
());
make_ParallelTensorFunctor
(
f_mk_kn_mn_imag
,
arg
.
c_m_n_imag_
.
mDesc
.
GetLengths
()[
0
],
arg
.
c_m_n_imag_
.
mDesc
.
GetLengths
()[
1
])(
std
::
thread
::
hardware_concurrency
());
return
0
;
}
float
Run
(
const
device
::
BaseArgument
*
p_arg
,
const
StreamConfig
&
/* stream_config */
=
StreamConfig
{})
override
{
return
Run
(
*
dynamic_cast
<
const
Argument
*>
(
p_arg
));
}
};
static
constexpr
bool
IsValidCompilationParameter
()
{
// TODO: properly implement this check
return
true
;
}
bool
IsSupportedArgument
(
const
device
::
BaseArgument
*
)
override
{
return
true
;
}
static
auto
MakeArgument
(
const
Tensor
<
ADataType
>&
a_m_k_real
,
const
Tensor
<
ADataType
>&
a_m_k_imag
,
const
Tensor
<
BDataType
>&
b_k_n_real
,
const
Tensor
<
BDataType
>&
b_k_n_imag
,
Tensor
<
CDataType
>&
c_m_n_real
,
Tensor
<
CDataType
>&
c_m_n_imag
,
AElementwiseOperation
a_element_op
,
BElementwiseOperation
b_element_op
,
CElementwiseOperation
c_element_op
)
{
return
Argument
{
a_m_k_real
,
a_m_k_imag
,
b_k_n_real
,
b_k_n_imag
,
c_m_n_real
,
c_m_n_imag
,
a_element_op
,
b_element_op
,
c_element_op
};
}
static
auto
MakeInvoker
()
{
return
Invoker
{};
}
virtual
std
::
unique_ptr
<
device
::
BaseInvoker
>
MakeInvokerPointer
()
{
return
std
::
make_unique
<
Invoker
>
(
Invoker
{});
}
std
::
string
GetTypeString
()
const
override
{
auto
str
=
std
::
stringstream
();
// clang-format off
str
<<
"ReferenceCGemm"
<<
std
::
endl
;
// clang-format on
return
str
.
str
();
}
};
}
// namespace host
}
// namespace tensor_operation
}
// namespace ck
library/include/ck/library/reference_tensor_operation/cpu/reference_gemm.hpp
View file @
b5ada11b
...
@@ -11,6 +11,7 @@ namespace host {
...
@@ -11,6 +11,7 @@ namespace host {
template
<
typename
ADataType
,
template
<
typename
ADataType
,
typename
BDataType
,
typename
BDataType
,
typename
CDataType
,
typename
CDataType
,
typename
AccDataType
,
typename
AElementwiseOperation
,
typename
AElementwiseOperation
,
typename
BElementwiseOperation
,
typename
BElementwiseOperation
,
typename
CElementwiseOperation
>
typename
CElementwiseOperation
>
...
@@ -53,20 +54,20 @@ struct ReferenceGemm : public device::BaseOperator
...
@@ -53,20 +54,20 @@ struct ReferenceGemm : public device::BaseOperator
auto
f_mk_kn_mn
=
[
&
](
auto
m
,
auto
n
)
{
auto
f_mk_kn_mn
=
[
&
](
auto
m
,
auto
n
)
{
const
int
K
=
arg
.
a_m_k_
.
mDesc
.
GetLengths
()[
1
];
const
int
K
=
arg
.
a_m_k_
.
mDesc
.
GetLengths
()[
1
];
float
v_acc
=
0
;
AccDataType
v_acc
=
0
;
for
(
int
k
=
0
;
k
<
K
;
++
k
)
for
(
int
k
=
0
;
k
<
K
;
++
k
)
{
{
float
v_a
;
AccDataType
v_a
;
float
v_b
;
AccDataType
v_b
;
arg
.
a_element_op_
(
v_a
,
static_cast
<
const
float
>
(
arg
.
a_m_k_
(
m
,
k
)));
arg
.
a_element_op_
(
v_a
,
static_cast
<
const
AccDataType
>
(
arg
.
a_m_k_
(
m
,
k
)));
arg
.
b_element_op_
(
v_b
,
static_cast
<
const
float
>
(
arg
.
b_k_n_
(
k
,
n
)));
arg
.
b_element_op_
(
v_b
,
static_cast
<
const
AccDataType
>
(
arg
.
b_k_n_
(
k
,
n
)));
v_acc
+=
v_a
*
v_b
;
v_acc
+=
v_a
*
v_b
;
}
}
float
v_c
;
AccDataType
v_c
;
arg
.
c_element_op_
(
v_c
,
v_acc
);
arg
.
c_element_op_
(
v_c
,
v_acc
);
...
...
library/src/tensor_operation_instance/gpu/batched_gemm_reduce/device_batched_gemm_reduce_xdl_cshuffle_f16_f16_f16_f32_f32_gkm_gkn_gmn_instance.cpp
View file @
b5ada11b
...
@@ -38,7 +38,7 @@ static constexpr auto GemmDefault = ck::tensor_operation::device::GemmSpecializa
...
@@ -38,7 +38,7 @@ static constexpr auto GemmDefault = ck::tensor_operation::device::GemmSpecializa
using
device_batched_gemm_reduce_xdl_cshuffle_f16_f16_f16_f32_f32_gkm_gkn_gmn_instances
=
using
device_batched_gemm_reduce_xdl_cshuffle_f16_f16_f16_f32_f32_gkm_gkn_gmn_instances
=
std
::
tuple
<
std
::
tuple
<
// clang-format off
// clang-format off
//##################################| ALayout| BLayout| CLayout|AData| BData| CData| GemmAcc| CShuffle| ReduceAcc| DData| A| B| C| Dxs| DxsInEleOp| Dxs
Out
EleOp| D| GEMM| NumGemmK| Block| MPer| NPer| KPer| AK1| BK1| MPer| NPer| MXdl| NXdl| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockLds| BBlockTransfer| BBlockTransfer| BBlockTransfer| BlockTransfer| BBlockTransfer| BBlockTransfer| BBlockLds| CShuffle| CShuffle| CBlockTransferClusterLengths| CBlockTransfer| CReduce| CReduceThreadLds2VGprCopy| CReduceThreadVgpr2GlobalCopy|
//##################################| ALayout| BLayout| CLayout|AData| BData| CData| GemmAcc| CShuffle| ReduceAcc| DData| A| B| C| Dxs| DxsInEleOp| Dxs
Acc
EleOp| D| GEMM| NumGemmK| Block| MPer| NPer| KPer| AK1| BK1| MPer| NPer| MXdl| NXdl| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockLds| BBlockTransfer| BBlockTransfer| BBlockTransfer| BlockTransfer| BBlockTransfer| BBlockTransfer| BBlockLds| CShuffle| CShuffle| CBlockTransferClusterLengths| CBlockTransfer| CReduce| CReduceThreadLds2VGprCopy| CReduceThreadVgpr2GlobalCopy|
//##################################| | | | Type| Type| Type| DataType| DataType| DataType| Type Tuple| Elementwise| Elementwise| Elementwise| Reduce| | | MemoryData|Spacialization| Prefetch| Size| Block| Block| Block| | | XDL| XDL| Per| Per| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| AddExtraM| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| AddExtraN| MXdlPerWave| NXdlPerWave| _MBlock_MPerBlock| ScalarPerVector| ThreadClusterLengths| SrcDstScalarPerVector| SrcDstScalarPerVector|
//##################################| | | | Type| Type| Type| DataType| DataType| DataType| Type Tuple| Elementwise| Elementwise| Elementwise| Reduce| | | MemoryData|Spacialization| Prefetch| Size| Block| Block| Block| | | XDL| XDL| Per| Per| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| AddExtraM| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| AddExtraN| MXdlPerWave| NXdlPerWave| _MBlock_MPerBlock| ScalarPerVector| ThreadClusterLengths| SrcDstScalarPerVector| SrcDstScalarPerVector|
//##################################| | | | | | | | | | | Operation| Operation| Operation| Operation| | | Operation| | Stage| | | | | | | | | Wave| Wave| Lengths_K0_M_K1| ArrangeOrder| | | PerVector| PerVector_K1| | Lengths_K0_N_K1| ArrangeOrder| | | PerVector| PerVector_K1| | PerShuffle| PerShuffle| _NBlock_NPerBlock| _NPerBlock| _MPerBlock_NPerBlock| _NPerBlock| _MPerBlock|
//##################################| | | | | | | | | | | Operation| Operation| Operation| Operation| | | Operation| | Stage| | | | | | | | | Wave| Wave| Lengths_K0_M_K1| ArrangeOrder| | | PerVector| PerVector_K1| | Lengths_K0_N_K1| ArrangeOrder| | | PerVector| PerVector_K1| | PerShuffle| PerShuffle| _NBlock_NPerBlock| _NPerBlock| _MPerBlock_NPerBlock| _NPerBlock| _MPerBlock|
//##################################| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
//##################################| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
...
...
library/src/tensor_operation_instance/gpu/batched_gemm_reduce/device_batched_gemm_reduce_xdl_cshuffle_f16_f16_f16_f32_f32_gkm_gnk_gmn_instance.cpp
View file @
b5ada11b
...
@@ -38,7 +38,7 @@ static constexpr auto GemmDefault = ck::tensor_operation::device::GemmSpecializa
...
@@ -38,7 +38,7 @@ static constexpr auto GemmDefault = ck::tensor_operation::device::GemmSpecializa
using
device_batched_gemm_reduce_xdl_cshuffle_f16_f16_f16_f32_f32_gkm_gnk_gmn_instances
=
using
device_batched_gemm_reduce_xdl_cshuffle_f16_f16_f16_f32_f32_gkm_gnk_gmn_instances
=
std
::
tuple
<
std
::
tuple
<
// clang-format off
// clang-format off
//##################################| ALayout| BLayout| CLayout|AData| BData| CData| GemmAcc| CShuffle| ReduceAcc| DData| A| B| C| Dxs| DxsInEleOp| Dxs
Out
EleOp| D| GEMM| NumGemmK| Block| MPer| NPer| KPer| AK1| BK1| MPer| NPer| MXdl| NXdl| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockLds| BBlockTransfer| BBlockTransfer| BBlockTransfer| BlockTransfer| BBlockTransfer| BBlockTransfer| BBlockLds| CShuffle| CShuffle| CBlockTransferClusterLengths| CBlockTransfer| CReduce| CReduceThreadLds2VGprCopy| CReduceThreadVgpr2GlobalCopy|
//##################################| ALayout| BLayout| CLayout|AData| BData| CData| GemmAcc| CShuffle| ReduceAcc| DData| A| B| C| Dxs| DxsInEleOp| Dxs
Acc
EleOp| D| GEMM| NumGemmK| Block| MPer| NPer| KPer| AK1| BK1| MPer| NPer| MXdl| NXdl| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockLds| BBlockTransfer| BBlockTransfer| BBlockTransfer| BlockTransfer| BBlockTransfer| BBlockTransfer| BBlockLds| CShuffle| CShuffle| CBlockTransferClusterLengths| CBlockTransfer| CReduce| CReduceThreadLds2VGprCopy| CReduceThreadVgpr2GlobalCopy|
//##################################| | | | Type| Type| Type| DataType| DataType| DataType| Type Tuple| Elementwise| Elementwise| Elementwise| Reduce| | | MemoryData|Spacialization| Prefetch| Size| Block| Block| Block| | | XDL| XDL| Per| Per| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| AddExtraM| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| AddExtraN| MXdlPerWave| NXdlPerWave| _MBlock_MPerBlock| ScalarPerVector| ThreadClusterLengths| SrcDstScalarPerVector| SrcDstScalarPerVector|
//##################################| | | | Type| Type| Type| DataType| DataType| DataType| Type Tuple| Elementwise| Elementwise| Elementwise| Reduce| | | MemoryData|Spacialization| Prefetch| Size| Block| Block| Block| | | XDL| XDL| Per| Per| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| AddExtraM| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| AddExtraN| MXdlPerWave| NXdlPerWave| _MBlock_MPerBlock| ScalarPerVector| ThreadClusterLengths| SrcDstScalarPerVector| SrcDstScalarPerVector|
//##################################| | | | | | | | | | | Operation| Operation| Operation| Operation| | | Operation| | Stage| | | | | | | | | Wave| Wave| Lengths_K0_M_K1| ArrangeOrder| | | PerVector| PerVector_K1| | Lengths_K0_N_K1| ArrangeOrder| | | PerVector| PerVector_K1| | PerShuffle| PerShuffle| _NBlock_NPerBlock| _NPerBlock| _MPerBlock_NPerBlock| _NPerBlock| _MPerBlock|
//##################################| | | | | | | | | | | Operation| Operation| Operation| Operation| | | Operation| | Stage| | | | | | | | | Wave| Wave| Lengths_K0_M_K1| ArrangeOrder| | | PerVector| PerVector_K1| | Lengths_K0_N_K1| ArrangeOrder| | | PerVector| PerVector_K1| | PerShuffle| PerShuffle| _NBlock_NPerBlock| _NPerBlock| _MPerBlock_NPerBlock| _NPerBlock| _MPerBlock|
//##################################| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
//##################################| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
...
...
library/src/tensor_operation_instance/gpu/batched_gemm_reduce/device_batched_gemm_reduce_xdl_cshuffle_f16_f16_f16_f32_f32_gmk_gkn_gmn_instance.cpp
View file @
b5ada11b
...
@@ -38,7 +38,7 @@ static constexpr auto GemmDefault = ck::tensor_operation::device::GemmSpecializa
...
@@ -38,7 +38,7 @@ static constexpr auto GemmDefault = ck::tensor_operation::device::GemmSpecializa
using
device_batched_gemm_reduce_xdl_cshuffle_f16_f16_f16_f32_f32_gmk_gkn_gmn_instances
=
using
device_batched_gemm_reduce_xdl_cshuffle_f16_f16_f16_f32_f32_gmk_gkn_gmn_instances
=
std
::
tuple
<
std
::
tuple
<
// clang-format off
// clang-format off
//##################################| ALayout| BLayout| CLayout| AData| BData| CData| GemmAcc| CShuffle| ReduceAcc| DData| A| B| C| Dxs| DxsInEleOp| Dxs
Out
EleOp| D| GEMM| NumGemmK| Block| MPer| NPer| KPer| AK1| BK1| MPer| NPer| MXdl| NXdl| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockLds| BBlockTransfer| BBlockTransfer| BBlockTransfer| BlockTransfer| BBlockTransfer| BBlockTransfer| BBlockLds| CShuffle| CShuffle| CBlockTransferClusterLengths| CBlockTransfer| CReduce| CReduceThreadLds2VGprCopy| CReduceThreadVgpr2GlobalCopy|
//##################################| ALayout| BLayout| CLayout| AData| BData| CData| GemmAcc| CShuffle| ReduceAcc| DData| A| B| C| Dxs| DxsInEleOp| Dxs
Acc
EleOp| D| GEMM| NumGemmK| Block| MPer| NPer| KPer| AK1| BK1| MPer| NPer| MXdl| NXdl| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockLds| BBlockTransfer| BBlockTransfer| BBlockTransfer| BlockTransfer| BBlockTransfer| BBlockTransfer| BBlockLds| CShuffle| CShuffle| CBlockTransferClusterLengths| CBlockTransfer| CReduce| CReduceThreadLds2VGprCopy| CReduceThreadVgpr2GlobalCopy|
//##################################| | | | Type| Type| Type| DataType| DataType| DataType| Type Tuple| Elementwise| Elementwise| Elementwise| Reduce| | | MemoryData|Spacialization| Prefetch| Size| Block| Block| Block| | | XDL| XDL| Per| Per| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| AddExtraM| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| AddExtraN| MXdlPerWave| NXdlPerWave| _MBlock_MPerBlock| ScalarPerVector| ThreadClusterLengths| SrcDstScalarPerVector| SrcDstScalarPerVector|
//##################################| | | | Type| Type| Type| DataType| DataType| DataType| Type Tuple| Elementwise| Elementwise| Elementwise| Reduce| | | MemoryData|Spacialization| Prefetch| Size| Block| Block| Block| | | XDL| XDL| Per| Per| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| AddExtraM| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| AddExtraN| MXdlPerWave| NXdlPerWave| _MBlock_MPerBlock| ScalarPerVector| ThreadClusterLengths| SrcDstScalarPerVector| SrcDstScalarPerVector|
//##################################| | | | | | | | | | | Operation| Operation| Operation| Operation| | | Operation| | Stage| | | | | | | | | Wave| Wave| Lengths_K0_M_K1| ArrangeOrder| | | PerVector| PerVector_K1| | Lengths_K0_N_K1| ArrangeOrder| | | PerVector| PerVector_K1| | PerShuffle| PerShuffle| _NBlock_NPerBlock| _NPerBlock| _MPerBlock_NPerBlock| _NPerBlock| _MPerBlock|
//##################################| | | | | | | | | | | Operation| Operation| Operation| Operation| | | Operation| | Stage| | | | | | | | | Wave| Wave| Lengths_K0_M_K1| ArrangeOrder| | | PerVector| PerVector_K1| | Lengths_K0_N_K1| ArrangeOrder| | | PerVector| PerVector_K1| | PerShuffle| PerShuffle| _NBlock_NPerBlock| _NPerBlock| _MPerBlock_NPerBlock| _NPerBlock| _MPerBlock|
//##################################| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
//##################################| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
...
...
library/src/tensor_operation_instance/gpu/batched_gemm_reduce/device_batched_gemm_reduce_xdl_cshuffle_f16_f16_f16_f32_f32_gmk_gnk_gmn_instance.cpp
View file @
b5ada11b
...
@@ -38,7 +38,7 @@ static constexpr auto GemmDefault = ck::tensor_operation::device::GemmSpecializa
...
@@ -38,7 +38,7 @@ static constexpr auto GemmDefault = ck::tensor_operation::device::GemmSpecializa
using
device_batched_gemm_reduce_xdl_cshuffle_f16_f16_f16_f32_f32_gmk_gnk_gmn_instances
=
using
device_batched_gemm_reduce_xdl_cshuffle_f16_f16_f16_f32_f32_gmk_gnk_gmn_instances
=
std
::
tuple
<
std
::
tuple
<
// clang-format off
// clang-format off
//##################################| ALayout| BLayout| CLayout|AData| BData| CData| GemmAcc| CShuffle| ReduceAcc| DData| A| B| C| Dxs| DxsInEleOp| Dxs
Out
EleOp| D| GEMM| NumGemmK| Block| MPer| NPer| KPer| AK1| BK1| MPer| NPer| MXdl| NXdl| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockLds| BBlockTransfer| BBlockTransfer| BBlockTransfer| BlockTransfer| BBlockTransfer| BBlockTransfer| BBlockLds| CShuffle| CShuffle| CBlockTransferClusterLengths| CBlockTransfer| CReduce| CReduceThreadLds2VGprCopy| CReduceThreadVgpr2GlobalCopy|
//##################################| ALayout| BLayout| CLayout|AData| BData| CData| GemmAcc| CShuffle| ReduceAcc| DData| A| B| C| Dxs| DxsInEleOp| Dxs
Acc
EleOp| D| GEMM| NumGemmK| Block| MPer| NPer| KPer| AK1| BK1| MPer| NPer| MXdl| NXdl| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockLds| BBlockTransfer| BBlockTransfer| BBlockTransfer| BlockTransfer| BBlockTransfer| BBlockTransfer| BBlockLds| CShuffle| CShuffle| CBlockTransferClusterLengths| CBlockTransfer| CReduce| CReduceThreadLds2VGprCopy| CReduceThreadVgpr2GlobalCopy|
//##################################| | | | Type| Type| Type| DataType| DataType| DataType| Type Tuple| Elementwise| Elementwise| Elementwise| Reduce| | | MemoryData|Spacialization| Prefetch| Size| Block| Block| Block| | | XDL| XDL| Per| Per| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| AddExtraM| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| AddExtraN| MXdlPerWave| NXdlPerWave| _MBlock_MPerBlock| ScalarPerVector| ThreadClusterLengths| SrcDstScalarPerVector| SrcDstScalarPerVector|
//##################################| | | | Type| Type| Type| DataType| DataType| DataType| Type Tuple| Elementwise| Elementwise| Elementwise| Reduce| | | MemoryData|Spacialization| Prefetch| Size| Block| Block| Block| | | XDL| XDL| Per| Per| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| AddExtraM| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| AddExtraN| MXdlPerWave| NXdlPerWave| _MBlock_MPerBlock| ScalarPerVector| ThreadClusterLengths| SrcDstScalarPerVector| SrcDstScalarPerVector|
//##################################| | | | | | | | | | | Operation| Operation| Operation| Operation| | | Operation| | Stage| | | | | | | | | Wave| Wave| Lengths_K0_M_K1| ArrangeOrder| | | PerVector| PerVector_K1| | Lengths_K0_N_K1| ArrangeOrder| | | PerVector| PerVector_K1| | PerShuffle| PerShuffle| _NBlock_NPerBlock| _NPerBlock| _MPerBlock_NPerBlock| _NPerBlock| _MPerBlock|
//##################################| | | | | | | | | | | Operation| Operation| Operation| Operation| | | Operation| | Stage| | | | | | | | | Wave| Wave| Lengths_K0_M_K1| ArrangeOrder| | | PerVector| PerVector_K1| | Lengths_K0_N_K1| ArrangeOrder| | | PerVector| PerVector_K1| | PerShuffle| PerShuffle| _NBlock_NPerBlock| _NPerBlock| _MPerBlock_NPerBlock| _NPerBlock| _MPerBlock|
//##################################| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
//##################################| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
...
...
library/src/tensor_operation_instance/gpu/gemm/CMakeLists.txt
View file @
b5ada11b
set
(
DEVICE_GEMM_INSTANCE_SOURCE
set
(
DEVICE_GEMM_INSTANCE_SOURCE
device_gemm_xdl_f64_f64_f64_mk_kn_mn_instance.cpp;
device_gemm_xdl_f64_f64_f64_mk_nk_mn_instance.cpp;
device_gemm_xdl_f64_f64_f64_km_kn_mn_instance.cpp;
device_gemm_xdl_f64_f64_f64_km_nk_mn_instance.cpp;
device_gemm_xdl_f32_f32_f32_mk_kn_mn_instance.cpp;
device_gemm_xdl_f32_f32_f32_mk_kn_mn_instance.cpp;
device_gemm_xdl_f32_f32_f32_mk_nk_mn_instance.cpp;
device_gemm_xdl_f32_f32_f32_mk_nk_mn_instance.cpp;
device_gemm_xdl_f32_f32_f32_km_kn_mn_instance.cpp;
device_gemm_xdl_f32_f32_f32_km_kn_mn_instance.cpp;
...
...
library/src/tensor_operation_instance/gpu/gemm/device_gemm_xdl_f64_f64_f64_km_kn_mn_instance.cpp
0 → 100644
View file @
b5ada11b
#include <stdlib.h>
#include "config.hpp"
#include "device_gemm_xdl.hpp"
#include "element_wise_operation.hpp"
#include "device_operation_instance.hpp"
namespace
ck
{
namespace
tensor_operation
{
namespace
device
{
namespace
device_gemm_instance
{
using
F64
=
double
;
using
Row
=
ck
::
tensor_layout
::
gemm
::
RowMajor
;
using
Col
=
ck
::
tensor_layout
::
gemm
::
ColumnMajor
;
template
<
ck
::
index_t
...
Is
>
using
S
=
ck
::
Sequence
<
Is
...
>
;
using
PassThrough
=
ck
::
tensor_operation
::
element_wise
::
PassThrough
;
static
constexpr
auto
GemmDefault
=
ck
::
tensor_operation
::
device
::
GemmSpecialization
::
Default
;
// Compilation parameters for a[k, m] * b[k, n] = c[m, n]
using
device_gemm_xdl_f64_f64_f64_km_kn_mn_instances
=
std
::
tuple
<
// clang-format off
//##########| AData| BData| CData| AccData| ALayout| BLayout| CLayout| A| B| C| GEMM| Block| MPer| NPer| K0Per| K1| MPer| NPer| MXdl| NXdl| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockLds| BBlockTransfer| BBlockTransfer| BBlockTransfer| BlockTransfer| BBlockTransfer| BBlockTransfer| BBlockLds| CThreadTransfer| CThreadTransfer|
//##########| Type| Type| Type| Type| | | | Elementwise| Elementwise| Elementwise|Spacialization| Size| Block| Block| Block| | XDL| XDL| Per| Per| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| AddExtraM| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| AddExtraN| SrcDstVectorDim| DstScalar|
//##########| | | | | | | | Operation| Operation| Operation| | | | | | | | | Wave| Wave| Lengths_K0_M_K1| ArrangeOrder| | | PerVector| PerVector_K1| | Lengths_K0_N_K1| ArrangeOrder| | | PerVector| PerVector_K1| | | PerVector|
//##########| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
DeviceGemmXdl
<
F64
,
F64
,
F64
,
F64
,
Col
,
Row
,
Row
,
PassThrough
,
PassThrough
,
PassThrough
,
GemmDefault
,
256
,
128
,
128
,
4
,
2
,
16
,
16
,
4
,
4
,
S
<
4
,
64
,
1
>
,
S
<
0
,
2
,
1
>
,
S
<
0
,
2
,
1
>
,
1
,
2
,
2
,
true
,
S
<
4
,
64
,
1
>
,
S
<
0
,
2
,
1
>
,
S
<
0
,
2
,
1
>
,
1
,
2
,
2
,
true
,
7
,
1
>
,
DeviceGemmXdl
<
F64
,
F64
,
F64
,
F64
,
Col
,
Row
,
Row
,
PassThrough
,
PassThrough
,
PassThrough
,
GemmDefault
,
128
,
128
,
64
,
4
,
2
,
16
,
16
,
4
,
4
,
S
<
4
,
32
,
1
>
,
S
<
0
,
2
,
1
>
,
S
<
0
,
2
,
1
>
,
1
,
4
,
2
,
true
,
S
<
4
,
32
,
1
>
,
S
<
0
,
2
,
1
>
,
S
<
0
,
2
,
1
>
,
1
,
2
,
2
,
true
,
7
,
1
>
,
DeviceGemmXdl
<
F64
,
F64
,
F64
,
F64
,
Col
,
Row
,
Row
,
PassThrough
,
PassThrough
,
PassThrough
,
GemmDefault
,
128
,
64
,
128
,
4
,
2
,
16
,
16
,
4
,
4
,
S
<
4
,
32
,
1
>
,
S
<
0
,
2
,
1
>
,
S
<
0
,
2
,
1
>
,
1
,
2
,
2
,
true
,
S
<
4
,
32
,
1
>
,
S
<
0
,
2
,
1
>
,
S
<
0
,
2
,
1
>
,
1
,
4
,
2
,
true
,
7
,
1
>
,
DeviceGemmXdl
<
F64
,
F64
,
F64
,
F64
,
Col
,
Row
,
Row
,
PassThrough
,
PassThrough
,
PassThrough
,
GemmDefault
,
256
,
128
,
64
,
4
,
2
,
16
,
16
,
4
,
2
,
S
<
4
,
64
,
1
>
,
S
<
0
,
2
,
1
>
,
S
<
0
,
2
,
1
>
,
1
,
2
,
2
,
true
,
S
<
4
,
64
,
1
>
,
S
<
0
,
2
,
1
>
,
S
<
0
,
2
,
1
>
,
1
,
1
,
2
,
true
,
7
,
1
>
,
DeviceGemmXdl
<
F64
,
F64
,
F64
,
F64
,
Col
,
Row
,
Row
,
PassThrough
,
PassThrough
,
PassThrough
,
GemmDefault
,
256
,
64
,
128
,
4
,
2
,
16
,
16
,
2
,
4
,
S
<
4
,
64
,
1
>
,
S
<
0
,
2
,
1
>
,
S
<
0
,
2
,
1
>
,
1
,
1
,
2
,
true
,
S
<
4
,
64
,
1
>
,
S
<
0
,
2
,
1
>
,
S
<
0
,
2
,
1
>
,
1
,
2
,
2
,
true
,
7
,
1
>
// clang-format on
>
;
void
add_device_gemm_xdl_f64_f64_f64_km_kn_mn_instances
(
std
::
vector
<
DeviceGemmPtr
<
PassThrough
,
PassThrough
,
PassThrough
>>&
instances
)
{
add_device_operation_instances
(
instances
,
device_gemm_xdl_f64_f64_f64_km_kn_mn_instances
{});
}
}
// namespace device_gemm_instance
}
// namespace device
}
// namespace tensor_operation
}
// namespace ck
library/src/tensor_operation_instance/gpu/gemm/device_gemm_xdl_f64_f64_f64_km_nk_mn_instance.cpp
0 → 100644
View file @
b5ada11b
#include <stdlib.h>
#include "config.hpp"
#include "device_gemm_xdl.hpp"
#include "element_wise_operation.hpp"
#include "device_operation_instance.hpp"
namespace
ck
{
namespace
tensor_operation
{
namespace
device
{
namespace
device_gemm_instance
{
using
F64
=
double
;
using
Row
=
ck
::
tensor_layout
::
gemm
::
RowMajor
;
using
Col
=
ck
::
tensor_layout
::
gemm
::
ColumnMajor
;
template
<
ck
::
index_t
...
Is
>
using
S
=
ck
::
Sequence
<
Is
...
>
;
using
PassThrough
=
ck
::
tensor_operation
::
element_wise
::
PassThrough
;
static
constexpr
auto
GemmDefault
=
ck
::
tensor_operation
::
device
::
GemmSpecialization
::
Default
;
// Compilation parameters for a[k, m] * b[n, k] = c[m, n]
using
device_gemm_xdl_f64_f64_f64_km_nk_mn_instances
=
std
::
tuple
<
// clang-format off
//##########| AData| BData| CData| AccData| ALayout| BLayout| CLayout| A| B| C| GEMM| Block| MPer| NPer| K0Per| K1| MPer| NPer| MXdl| NXdl| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockLds| BBlockTransfer| BBlockTransfer| BBlockTransfer| BlockTransfer| BBlockTransfer| BBlockTransfer| BBlockLds| CThreadTransfer| CThreadTransfer|
//##########| Type| Type| Type| Type| | | | Elementwise| Elementwise| Elementwise|Spacialization| Size| Block| Block| Block| | XDL| XDL| Per| Per| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| AddExtraM| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| AddExtraN| SrcDstVectorDim| DstScalar|
//##########| | | | | | | | Operation| Operation| Operation| | | | | | | | | Wave| Wave| Lengths_K0_M_K1| ArrangeOrder| | | PerVector| PerVector_K1| | Lengths_K0_N_K1| ArrangeOrder| | | PerVector| PerVector_K1| | | PerVector|
//##########| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
DeviceGemmXdl
<
F64
,
F64
,
F64
,
F64
,
Col
,
Col
,
Row
,
PassThrough
,
PassThrough
,
PassThrough
,
GemmDefault
,
256
,
128
,
128
,
4
,
2
,
16
,
16
,
4
,
4
,
S
<
4
,
64
,
1
>
,
S
<
0
,
2
,
1
>
,
S
<
0
,
2
,
1
>
,
1
,
2
,
2
,
true
,
S
<
4
,
64
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
2
,
2
,
true
,
7
,
1
>
,
DeviceGemmXdl
<
F64
,
F64
,
F64
,
F64
,
Col
,
Col
,
Row
,
PassThrough
,
PassThrough
,
PassThrough
,
GemmDefault
,
128
,
128
,
64
,
4
,
2
,
16
,
16
,
4
,
4
,
S
<
4
,
32
,
1
>
,
S
<
0
,
2
,
1
>
,
S
<
0
,
2
,
1
>
,
1
,
4
,
2
,
true
,
S
<
4
,
32
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
2
,
2
,
true
,
7
,
1
>
,
DeviceGemmXdl
<
F64
,
F64
,
F64
,
F64
,
Col
,
Col
,
Row
,
PassThrough
,
PassThrough
,
PassThrough
,
GemmDefault
,
128
,
64
,
128
,
4
,
2
,
16
,
16
,
4
,
4
,
S
<
4
,
32
,
1
>
,
S
<
0
,
2
,
1
>
,
S
<
0
,
2
,
1
>
,
1
,
2
,
2
,
true
,
S
<
4
,
32
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
2
,
2
,
true
,
7
,
1
>
,
DeviceGemmXdl
<
F64
,
F64
,
F64
,
F64
,
Col
,
Col
,
Row
,
PassThrough
,
PassThrough
,
PassThrough
,
GemmDefault
,
256
,
128
,
64
,
4
,
2
,
16
,
16
,
4
,
2
,
S
<
4
,
64
,
1
>
,
S
<
0
,
2
,
1
>
,
S
<
0
,
2
,
1
>
,
1
,
2
,
2
,
true
,
S
<
4
,
64
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
2
,
2
,
true
,
7
,
1
>
,
DeviceGemmXdl
<
F64
,
F64
,
F64
,
F64
,
Col
,
Col
,
Row
,
PassThrough
,
PassThrough
,
PassThrough
,
GemmDefault
,
256
,
64
,
128
,
4
,
2
,
16
,
16
,
2
,
4
,
S
<
4
,
64
,
1
>
,
S
<
0
,
2
,
1
>
,
S
<
0
,
2
,
1
>
,
1
,
1
,
2
,
true
,
S
<
4
,
64
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
2
,
2
,
true
,
7
,
1
>
// clang-format on
>
;
void
add_device_gemm_xdl_f64_f64_f64_km_nk_mn_instances
(
std
::
vector
<
DeviceGemmPtr
<
PassThrough
,
PassThrough
,
PassThrough
>>&
instances
)
{
add_device_operation_instances
(
instances
,
device_gemm_xdl_f64_f64_f64_km_nk_mn_instances
{});
}
}
// namespace device_gemm_instance
}
// namespace device
}
// namespace tensor_operation
}
// namespace ck
library/src/tensor_operation_instance/gpu/gemm/device_gemm_xdl_f64_f64_f64_mk_kn_mn_instance.cpp
0 → 100644
View file @
b5ada11b
#include <stdlib.h>
#include "config.hpp"
#include "device_gemm_xdl.hpp"
#include "element_wise_operation.hpp"
#include "device_operation_instance.hpp"
namespace
ck
{
namespace
tensor_operation
{
namespace
device
{
namespace
device_gemm_instance
{
using
F64
=
double
;
using
Row
=
ck
::
tensor_layout
::
gemm
::
RowMajor
;
using
Col
=
ck
::
tensor_layout
::
gemm
::
ColumnMajor
;
template
<
ck
::
index_t
...
Is
>
using
S
=
ck
::
Sequence
<
Is
...
>
;
using
PassThrough
=
ck
::
tensor_operation
::
element_wise
::
PassThrough
;
static
constexpr
auto
GemmDefault
=
ck
::
tensor_operation
::
device
::
GemmSpecialization
::
Default
;
// Compilation parameters for a[m, k] * b[k, n] = c[m, n]
using
device_gemm_xdl_f64_f64_f64_mk_kn_mn_instances
=
std
::
tuple
<
// clang-format off
//##########| AData| BData| CData| AccData| ALayout| BLayout| CLayout| A| B| C| GEMM| Block| MPer| NPer| K0Per| K1| MPer| NPer| MXdl| NXdl| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockLds| BBlockTransfer| BBlockTransfer| BBlockTransfer| BlockTransfer| BBlockTransfer| BBlockTransfer| BBlockLds| CThreadTransfer| CThreadTransfer|
//##########| Type| Type| Type| Type| | | | Elementwise| Elementwise| Elementwise|Spacialization| Size| Block| Block| Block| | XDL| XDL| Per| Per| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| AddExtraM| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| AddExtraN| SrcDstVectorDim| DstScalar|
//##########| | | | | | | | Operation| Operation| Operation| | | | | | | | | Wave| Wave| Lengths_K0_M_K1| ArrangeOrder| | | PerVector| PerVector_K1| | Lengths_K0_N_K1| ArrangeOrder| | | PerVector| PerVector_K1| | | PerVector|
//##########| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
DeviceGemmXdl
<
F64
,
F64
,
F64
,
F64
,
Row
,
Row
,
Row
,
PassThrough
,
PassThrough
,
PassThrough
,
GemmDefault
,
256
,
128
,
128
,
4
,
2
,
16
,
16
,
4
,
4
,
S
<
4
,
64
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
2
,
2
,
true
,
S
<
4
,
64
,
1
>
,
S
<
0
,
2
,
1
>
,
S
<
0
,
2
,
1
>
,
1
,
2
,
2
,
true
,
7
,
1
>
,
DeviceGemmXdl
<
F64
,
F64
,
F64
,
F64
,
Row
,
Row
,
Row
,
PassThrough
,
PassThrough
,
PassThrough
,
GemmDefault
,
128
,
128
,
64
,
4
,
2
,
16
,
16
,
4
,
4
,
S
<
4
,
32
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
2
,
2
,
true
,
S
<
4
,
32
,
1
>
,
S
<
0
,
2
,
1
>
,
S
<
0
,
2
,
1
>
,
1
,
2
,
2
,
true
,
7
,
1
>
,
DeviceGemmXdl
<
F64
,
F64
,
F64
,
F64
,
Row
,
Row
,
Row
,
PassThrough
,
PassThrough
,
PassThrough
,
GemmDefault
,
128
,
64
,
128
,
4
,
2
,
16
,
16
,
4
,
4
,
S
<
4
,
32
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
2
,
2
,
true
,
S
<
4
,
32
,
1
>
,
S
<
0
,
2
,
1
>
,
S
<
0
,
2
,
1
>
,
1
,
4
,
2
,
true
,
7
,
1
>
,
DeviceGemmXdl
<
F64
,
F64
,
F64
,
F64
,
Row
,
Row
,
Row
,
PassThrough
,
PassThrough
,
PassThrough
,
GemmDefault
,
256
,
128
,
64
,
4
,
2
,
16
,
16
,
4
,
2
,
S
<
4
,
64
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
2
,
2
,
true
,
S
<
4
,
64
,
1
>
,
S
<
0
,
2
,
1
>
,
S
<
0
,
2
,
1
>
,
1
,
1
,
2
,
true
,
7
,
1
>
,
DeviceGemmXdl
<
F64
,
F64
,
F64
,
F64
,
Row
,
Row
,
Row
,
PassThrough
,
PassThrough
,
PassThrough
,
GemmDefault
,
256
,
64
,
128
,
4
,
2
,
16
,
16
,
2
,
4
,
S
<
4
,
64
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
2
,
2
,
true
,
S
<
4
,
64
,
1
>
,
S
<
0
,
2
,
1
>
,
S
<
0
,
2
,
1
>
,
1
,
2
,
2
,
true
,
7
,
1
>
// clang-format on
>
;
void
add_device_gemm_xdl_f64_f64_f64_mk_kn_mn_instances
(
std
::
vector
<
DeviceGemmPtr
<
PassThrough
,
PassThrough
,
PassThrough
>>&
instances
)
{
add_device_operation_instances
(
instances
,
device_gemm_xdl_f64_f64_f64_mk_kn_mn_instances
{});
}
}
// namespace device_gemm_instance
}
// namespace device
}
// namespace tensor_operation
}
// namespace ck
library/src/tensor_operation_instance/gpu/gemm/device_gemm_xdl_f64_f64_f64_mk_nk_mn_instance.cpp
0 → 100644
View file @
b5ada11b
#include <stdlib.h>
#include "config.hpp"
#include "device_gemm_xdl.hpp"
#include "element_wise_operation.hpp"
#include "device_operation_instance.hpp"
namespace
ck
{
namespace
tensor_operation
{
namespace
device
{
namespace
device_gemm_instance
{
using
F64
=
double
;
using
Row
=
ck
::
tensor_layout
::
gemm
::
RowMajor
;
using
Col
=
ck
::
tensor_layout
::
gemm
::
ColumnMajor
;
template
<
ck
::
index_t
...
Is
>
using
S
=
ck
::
Sequence
<
Is
...
>
;
using
PassThrough
=
ck
::
tensor_operation
::
element_wise
::
PassThrough
;
static
constexpr
auto
GemmDefault
=
ck
::
tensor_operation
::
device
::
GemmSpecialization
::
Default
;
// Compilation parameters for a[m, k] * b[n, k] = c[m, n]
using
device_gemm_xdl_f64_f64_f64_mk_nk_mn_instances
=
std
::
tuple
<
// clang-format off
//##########| AData| BData| CData| AccData| ALayout| BLayout| CLayout| A| B| C| GEMM| Block| MPer| NPer| K0Per| K1| MPer| NPer| MXdl| NXdl| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockLds| BBlockTransfer| BBlockTransfer| BBlockTransfer| BlockTransfer| BBlockTransfer| BBlockTransfer| BBlockLds| CThreadTransfer| CThreadTransfer|
//##########| Type| Type| Type| Type| | | | Elementwise| Elementwise| Elementwise|Spacialization| Size| Block| Block| Block| | XDL| XDL| Per| Per| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| AddExtraM| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| AddExtraN| SrcDstVectorDim| DstScalar|
//##########| | | | | | | | Operation| Operation| Operation| | | | | | | | | Wave| Wave| Lengths_K0_M_K1| ArrangeOrder| | | PerVector| PerVector_K1| | Lengths_K0_N_K1| ArrangeOrder| | | PerVector| PerVector_K1| | | PerVector|
//##########| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
DeviceGemmXdl
<
F64
,
F64
,
F64
,
F64
,
Row
,
Col
,
Row
,
PassThrough
,
PassThrough
,
PassThrough
,
GemmDefault
,
256
,
128
,
128
,
4
,
2
,
16
,
16
,
4
,
4
,
S
<
4
,
64
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
2
,
2
,
true
,
S
<
4
,
64
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
2
,
2
,
true
,
7
,
1
>
,
DeviceGemmXdl
<
F64
,
F64
,
F64
,
F64
,
Row
,
Col
,
Row
,
PassThrough
,
PassThrough
,
PassThrough
,
GemmDefault
,
128
,
128
,
64
,
4
,
2
,
16
,
16
,
4
,
4
,
S
<
4
,
32
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
2
,
2
,
true
,
S
<
4
,
32
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
2
,
2
,
true
,
7
,
1
>
,
DeviceGemmXdl
<
F64
,
F64
,
F64
,
F64
,
Row
,
Col
,
Row
,
PassThrough
,
PassThrough
,
PassThrough
,
GemmDefault
,
128
,
64
,
128
,
4
,
2
,
16
,
16
,
4
,
4
,
S
<
4
,
32
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
2
,
2
,
true
,
S
<
4
,
32
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
2
,
2
,
true
,
7
,
1
>
,
DeviceGemmXdl
<
F64
,
F64
,
F64
,
F64
,
Row
,
Col
,
Row
,
PassThrough
,
PassThrough
,
PassThrough
,
GemmDefault
,
64
,
64
,
64
,
4
,
2
,
16
,
16
,
4
,
4
,
S
<
4
,
16
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
2
,
2
,
true
,
S
<
4
,
16
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
2
,
2
,
true
,
7
,
1
>
,
DeviceGemmXdl
<
F64
,
F64
,
F64
,
F64
,
Row
,
Col
,
Row
,
PassThrough
,
PassThrough
,
PassThrough
,
GemmDefault
,
256
,
128
,
64
,
4
,
2
,
16
,
16
,
4
,
2
,
S
<
4
,
64
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
2
,
2
,
true
,
S
<
4
,
64
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
2
,
2
,
true
,
7
,
1
>
,
DeviceGemmXdl
<
F64
,
F64
,
F64
,
F64
,
Row
,
Col
,
Row
,
PassThrough
,
PassThrough
,
PassThrough
,
GemmDefault
,
256
,
64
,
128
,
4
,
2
,
16
,
16
,
2
,
4
,
S
<
4
,
64
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
2
,
2
,
true
,
S
<
4
,
64
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
2
,
2
,
true
,
7
,
1
>
,
DeviceGemmXdl
<
F64
,
F64
,
F64
,
F64
,
Row
,
Col
,
Row
,
PassThrough
,
PassThrough
,
PassThrough
,
GemmDefault
,
128
,
128
,
32
,
4
,
2
,
16
,
16
,
4
,
2
,
S
<
4
,
32
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
2
,
2
,
true
,
S
<
4
,
32
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
2
,
2
,
true
,
7
,
1
>
,
DeviceGemmXdl
<
F64
,
F64
,
F64
,
F64
,
Row
,
Col
,
Row
,
PassThrough
,
PassThrough
,
PassThrough
,
GemmDefault
,
128
,
32
,
128
,
4
,
2
,
16
,
16
,
2
,
4
,
S
<
4
,
32
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
2
,
2
,
true
,
S
<
4
,
32
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
2
,
2
,
true
,
7
,
1
>
,
DeviceGemmXdl
<
F64
,
F64
,
F64
,
F64
,
Row
,
Col
,
Row
,
PassThrough
,
PassThrough
,
PassThrough
,
GemmDefault
,
64
,
64
,
32
,
4
,
2
,
16
,
16
,
4
,
2
,
S
<
4
,
16
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
2
,
2
,
true
,
S
<
4
,
16
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
2
,
2
,
true
,
7
,
1
>
,
DeviceGemmXdl
<
F64
,
F64
,
F64
,
F64
,
Row
,
Col
,
Row
,
PassThrough
,
PassThrough
,
PassThrough
,
GemmDefault
,
64
,
32
,
64
,
4
,
2
,
16
,
16
,
2
,
4
,
S
<
4
,
16
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
2
,
2
,
true
,
S
<
4
,
16
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
2
,
2
,
true
,
7
,
1
>
// clang-format on
>
;
void
add_device_gemm_xdl_f64_f64_f64_mk_nk_mn_instances
(
std
::
vector
<
DeviceGemmPtr
<
PassThrough
,
PassThrough
,
PassThrough
>>&
instances
)
{
add_device_operation_instances
(
instances
,
device_gemm_xdl_f64_f64_f64_mk_nk_mn_instances
{});
}
}
// namespace device_gemm_instance
}
// namespace device
}
// namespace tensor_operation
}
// namespace ck
library/src/tensor_operation_instance/gpu/gemm_reduce/device_gemm_reduce_xdl_cshuffle_f16_f16_f16_f32_f32_km_kn_mn_instance.cpp
View file @
b5ada11b
...
@@ -24,10 +24,11 @@ using PassThrough = ck::tensor_operation::element_wise::PassThrough;
...
@@ -24,10 +24,11 @@ using PassThrough = ck::tensor_operation::element_wise::PassThrough;
using
ReduceSum
=
ck
::
reduce
::
Add
<
F32
>
;
using
ReduceSum
=
ck
::
reduce
::
Add
<
F32
>
;
using
ReduceOps
=
ck
::
Tuple
<
ReduceSum
,
ReduceSum
>
;
using
ReduceOps
=
ck
::
Tuple
<
ReduceSum
,
ReduceSum
>
;
using
Div
=
ck
::
tensor_operation
::
element_wise
::
UnaryIdentic
<
F32
,
F32
,
true
>
;
using
Identity
=
ck
::
tensor_operation
::
element_wise
::
UnaryIdentic
<
F32
,
F32
,
false
>
;
using
Identity
=
ck
::
tensor_operation
::
element_wise
::
UnaryIdentic
<
F32
,
F32
,
false
>
;
using
Square
=
ck
::
tensor_operation
::
element_wise
::
UnarySquare
<
F32
,
F32
,
false
>
;
using
Square
=
ck
::
tensor_operation
::
element_wise
::
UnarySquare
<
F32
,
F32
,
false
>
;
using
DInElementOps
=
ck
::
Tuple
<
Identity
,
Square
>
;
using
DInElementOps
=
ck
::
Tuple
<
Identity
,
Square
>
;
using
DOutElementOps
=
ck
::
Tuple
<
Identity
,
Identity
>
;
using
DOutElementOps
=
ck
::
Tuple
<
Div
,
Div
>
;
using
ReduceMemOp
=
ck
::
InMemoryDataOperationEnumSequence
<
ck
::
InMemoryDataOperationEnum
::
AtomicAdd
,
using
ReduceMemOp
=
ck
::
InMemoryDataOperationEnumSequence
<
ck
::
InMemoryDataOperationEnum
::
AtomicAdd
,
ck
::
InMemoryDataOperationEnum
::
AtomicAdd
>
;
ck
::
InMemoryDataOperationEnum
::
AtomicAdd
>
;
...
@@ -37,7 +38,7 @@ static constexpr auto GemmDefault = ck::tensor_operation::device::GemmSpecializa
...
@@ -37,7 +38,7 @@ static constexpr auto GemmDefault = ck::tensor_operation::device::GemmSpecializa
// c[m, n] = a[k, m] * b[k, n]
// c[m, n] = a[k, m] * b[k, n]
using
device_gemm_reduce_xdl_cshuffle_f16_f16_f16_f32_f32_km_kn_mn_instances
=
std
::
tuple
<
using
device_gemm_reduce_xdl_cshuffle_f16_f16_f16_f32_f32_km_kn_mn_instances
=
std
::
tuple
<
// clang-format off
// clang-format off
//###########################| ALayout| BLayout| CLayout|AData| BData| CData| GemmAcc| CShuffle| ReduceAcc| DData| A| B| C| Dxs| DxsInEleOp| Dxs
Out
EleOp| D| GEMM| NumGemmK| Block| MPer| NPer| KPer| AK1| BK1| MPer| NPer| MXdl| NXdl| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockLds| BBlockTransfer| BBlockTransfer| BBlockTransfer| BlockTransfer| BBlockTransfer| BBlockTransfer| BBlockLds| CShuffle| CShuffle| CBlockTransferClusterLengths| CBlockTransfer| CReduce| CReduceThreadLds2VGprCopy| CReduceThreadVgpr2GlobalCopy|
//###########################| ALayout| BLayout| CLayout|AData| BData| CData| GemmAcc| CShuffle| ReduceAcc| DData| A| B| C| Dxs| DxsInEleOp| Dxs
Acc
EleOp| D| GEMM| NumGemmK| Block| MPer| NPer| KPer| AK1| BK1| MPer| NPer| MXdl| NXdl| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockLds| BBlockTransfer| BBlockTransfer| BBlockTransfer| BlockTransfer| BBlockTransfer| BBlockTransfer| BBlockLds| CShuffle| CShuffle| CBlockTransferClusterLengths| CBlockTransfer| CReduce| CReduceThreadLds2VGprCopy| CReduceThreadVgpr2GlobalCopy|
//###########################| | | | Type| Type| Type| DataType| DataType| DataType| Type Tuple| Elementwise| Elementwise| Elementwise| Reduce| | | MemoryData|Spacialization| Prefetch| Size| Block| Block| Block| | | XDL| XDL| Per| Per| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| AddExtraM| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| AddExtraN| MXdlPerWave| NXdlPerWave| _MBlock_MPerBlock| ScalarPerVector| ThreadClusterLengths| SrcDstScalarPerVector| SrcDstScalarPerVector|
//###########################| | | | Type| Type| Type| DataType| DataType| DataType| Type Tuple| Elementwise| Elementwise| Elementwise| Reduce| | | MemoryData|Spacialization| Prefetch| Size| Block| Block| Block| | | XDL| XDL| Per| Per| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| AddExtraM| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| AddExtraN| MXdlPerWave| NXdlPerWave| _MBlock_MPerBlock| ScalarPerVector| ThreadClusterLengths| SrcDstScalarPerVector| SrcDstScalarPerVector|
//###########################| | | | | | | | | | | Operation| Operation| Operation| Operation| | | Operation| | Stage| | | | | | | | | Wave| Wave| Lengths_K0_M_K1| ArrangeOrder| | | PerVector| PerVector_K1| | Lengths_K0_N_K1| ArrangeOrder| | | PerVector| PerVector_K1| | PerShuffle| PerShuffle| _NBlock_NPerBlock| _NPerBlock| _MPerBlock_NPerBlock| _NPerBlock| _MPerBlock|
//###########################| | | | | | | | | | | Operation| Operation| Operation| Operation| | | Operation| | Stage| | | | | | | | | Wave| Wave| Lengths_K0_M_K1| ArrangeOrder| | | PerVector| PerVector_K1| | Lengths_K0_N_K1| ArrangeOrder| | | PerVector| PerVector_K1| | PerShuffle| PerShuffle| _NBlock_NPerBlock| _NPerBlock| _MPerBlock_NPerBlock| _NPerBlock| _MPerBlock|
//###########################| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
//###########################| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
...
...
library/src/tensor_operation_instance/gpu/gemm_reduce/device_gemm_reduce_xdl_cshuffle_f16_f16_f16_f32_f32_km_nk_mn_instance.cpp
View file @
b5ada11b
...
@@ -24,10 +24,11 @@ using PassThrough = ck::tensor_operation::element_wise::PassThrough;
...
@@ -24,10 +24,11 @@ using PassThrough = ck::tensor_operation::element_wise::PassThrough;
using
ReduceSum
=
ck
::
reduce
::
Add
<
F32
>
;
using
ReduceSum
=
ck
::
reduce
::
Add
<
F32
>
;
using
ReduceOps
=
ck
::
Tuple
<
ReduceSum
,
ReduceSum
>
;
using
ReduceOps
=
ck
::
Tuple
<
ReduceSum
,
ReduceSum
>
;
using
Div
=
ck
::
tensor_operation
::
element_wise
::
UnaryIdentic
<
F32
,
F32
,
true
>
;
using
Identity
=
ck
::
tensor_operation
::
element_wise
::
UnaryIdentic
<
F32
,
F32
,
false
>
;
using
Identity
=
ck
::
tensor_operation
::
element_wise
::
UnaryIdentic
<
F32
,
F32
,
false
>
;
using
Square
=
ck
::
tensor_operation
::
element_wise
::
UnarySquare
<
F32
,
F32
,
false
>
;
using
Square
=
ck
::
tensor_operation
::
element_wise
::
UnarySquare
<
F32
,
F32
,
false
>
;
using
DInElementOps
=
ck
::
Tuple
<
Identity
,
Square
>
;
using
DInElementOps
=
ck
::
Tuple
<
Identity
,
Square
>
;
using
DOutElementOps
=
ck
::
Tuple
<
Identity
,
Identity
>
;
using
DOutElementOps
=
ck
::
Tuple
<
Div
,
Div
>
;
using
ReduceMemOp
=
ck
::
InMemoryDataOperationEnumSequence
<
ck
::
InMemoryDataOperationEnum
::
AtomicAdd
,
using
ReduceMemOp
=
ck
::
InMemoryDataOperationEnumSequence
<
ck
::
InMemoryDataOperationEnum
::
AtomicAdd
,
ck
::
InMemoryDataOperationEnum
::
AtomicAdd
>
;
ck
::
InMemoryDataOperationEnum
::
AtomicAdd
>
;
...
@@ -37,7 +38,7 @@ static constexpr auto GemmDefault = ck::tensor_operation::device::GemmSpecializa
...
@@ -37,7 +38,7 @@ static constexpr auto GemmDefault = ck::tensor_operation::device::GemmSpecializa
// c[m, n] = a[k, m] * b[n, k]
// c[m, n] = a[k, m] * b[n, k]
using
device_gemm_reduce_xdl_cshuffle_f16_f16_f16_f32_f32_km_nk_mn_instances
=
std
::
tuple
<
using
device_gemm_reduce_xdl_cshuffle_f16_f16_f16_f32_f32_km_nk_mn_instances
=
std
::
tuple
<
// clang-format off
// clang-format off
//###########################| ALayout| BLayout| CLayout|AData| BData| CData| GemmAcc| CShuffle| ReduceAcc| DData| A| B| C| Dxs| DxsInEleOp| Dxs
Out
EleOp| D| GEMM| NumGemmK| Block| MPer| NPer| KPer| AK1| BK1| MPer| NPer| MXdl| NXdl| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockLds| BBlockTransfer| BBlockTransfer| BBlockTransfer| BlockTransfer| BBlockTransfer| BBlockTransfer| BBlockLds| CShuffle| CShuffle| CBlockTransferClusterLengths| CBlockTransfer| CReduce| CReduceThreadLds2VGprCopy| CReduceThreadVgpr2GlobalCopy|
//###########################| ALayout| BLayout| CLayout|AData| BData| CData| GemmAcc| CShuffle| ReduceAcc| DData| A| B| C| Dxs| DxsInEleOp| Dxs
Acc
EleOp| D| GEMM| NumGemmK| Block| MPer| NPer| KPer| AK1| BK1| MPer| NPer| MXdl| NXdl| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockLds| BBlockTransfer| BBlockTransfer| BBlockTransfer| BlockTransfer| BBlockTransfer| BBlockTransfer| BBlockLds| CShuffle| CShuffle| CBlockTransferClusterLengths| CBlockTransfer| CReduce| CReduceThreadLds2VGprCopy| CReduceThreadVgpr2GlobalCopy|
//###########################| | | | Type| Type| Type| DataType| DataType| DataType| Type Tuple| Elementwise| Elementwise| Elementwise| Reduce| | | MemoryData|Spacialization| Prefetch| Size| Block| Block| Block| | | XDL| XDL| Per| Per| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| AddExtraM| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| AddExtraN| MXdlPerWave| NXdlPerWave| _MBlock_MPerBlock| ScalarPerVector| ThreadClusterLengths| SrcDstScalarPerVector| SrcDstScalarPerVector|
//###########################| | | | Type| Type| Type| DataType| DataType| DataType| Type Tuple| Elementwise| Elementwise| Elementwise| Reduce| | | MemoryData|Spacialization| Prefetch| Size| Block| Block| Block| | | XDL| XDL| Per| Per| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| AddExtraM| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| AddExtraN| MXdlPerWave| NXdlPerWave| _MBlock_MPerBlock| ScalarPerVector| ThreadClusterLengths| SrcDstScalarPerVector| SrcDstScalarPerVector|
//###########################| | | | | | | | | | | Operation| Operation| Operation| Operation| | | Operation| | Stage| | | | | | | | | Wave| Wave| Lengths_K0_M_K1| ArrangeOrder| | | PerVector| PerVector_K1| | Lengths_K0_N_K1| ArrangeOrder| | | PerVector| PerVector_K1| | PerShuffle| PerShuffle| _NBlock_NPerBlock| _NPerBlock| _MPerBlock_NPerBlock| _NPerBlock| _MPerBlock|
//###########################| | | | | | | | | | | Operation| Operation| Operation| Operation| | | Operation| | Stage| | | | | | | | | Wave| Wave| Lengths_K0_M_K1| ArrangeOrder| | | PerVector| PerVector_K1| | Lengths_K0_N_K1| ArrangeOrder| | | PerVector| PerVector_K1| | PerShuffle| PerShuffle| _NBlock_NPerBlock| _NPerBlock| _MPerBlock_NPerBlock| _NPerBlock| _MPerBlock|
//###########################| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
//###########################| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
...
...
library/src/tensor_operation_instance/gpu/gemm_reduce/device_gemm_reduce_xdl_cshuffle_f16_f16_f16_f32_f32_mk_kn_mn_instance.cpp
View file @
b5ada11b
...
@@ -24,10 +24,11 @@ using PassThrough = ck::tensor_operation::element_wise::PassThrough;
...
@@ -24,10 +24,11 @@ using PassThrough = ck::tensor_operation::element_wise::PassThrough;
using
ReduceSum
=
ck
::
reduce
::
Add
<
F32
>
;
using
ReduceSum
=
ck
::
reduce
::
Add
<
F32
>
;
using
ReduceOps
=
ck
::
Tuple
<
ReduceSum
,
ReduceSum
>
;
using
ReduceOps
=
ck
::
Tuple
<
ReduceSum
,
ReduceSum
>
;
using
Div
=
ck
::
tensor_operation
::
element_wise
::
UnaryIdentic
<
F32
,
F32
,
true
>
;
using
Identity
=
ck
::
tensor_operation
::
element_wise
::
UnaryIdentic
<
F32
,
F32
,
false
>
;
using
Identity
=
ck
::
tensor_operation
::
element_wise
::
UnaryIdentic
<
F32
,
F32
,
false
>
;
using
Square
=
ck
::
tensor_operation
::
element_wise
::
UnarySquare
<
F32
,
F32
,
false
>
;
using
Square
=
ck
::
tensor_operation
::
element_wise
::
UnarySquare
<
F32
,
F32
,
false
>
;
using
DInElementOps
=
ck
::
Tuple
<
Identity
,
Square
>
;
using
DInElementOps
=
ck
::
Tuple
<
Identity
,
Square
>
;
using
DOutElementOps
=
ck
::
Tuple
<
Identity
,
Identity
>
;
using
DOutElementOps
=
ck
::
Tuple
<
Div
,
Div
>
;
using
ReduceMemOp
=
ck
::
InMemoryDataOperationEnumSequence
<
ck
::
InMemoryDataOperationEnum
::
AtomicAdd
,
using
ReduceMemOp
=
ck
::
InMemoryDataOperationEnumSequence
<
ck
::
InMemoryDataOperationEnum
::
AtomicAdd
,
ck
::
InMemoryDataOperationEnum
::
AtomicAdd
>
;
ck
::
InMemoryDataOperationEnum
::
AtomicAdd
>
;
...
@@ -37,7 +38,7 @@ static constexpr auto GemmDefault = ck::tensor_operation::device::GemmSpecializa
...
@@ -37,7 +38,7 @@ static constexpr auto GemmDefault = ck::tensor_operation::device::GemmSpecializa
// c[m, n] = a[m, k] * b[n, k]
// c[m, n] = a[m, k] * b[n, k]
using
device_gemm_reduce_xdl_cshuffle_f16_f16_f16_f32_f32_mk_kn_mn_instances
=
std
::
tuple
<
using
device_gemm_reduce_xdl_cshuffle_f16_f16_f16_f32_f32_mk_kn_mn_instances
=
std
::
tuple
<
// clang-format off
// clang-format off
//###########################| ALayout| BLayout| CLayout| AData| BData| CData| GemmAcc| CShuffle| ReduceAcc| DData| A| B| C| Dxs| DxsInEleOp| Dxs
Out
EleOp| D| GEMM| NumGemmK| Block| MPer| NPer| KPer| AK1| BK1| MPer| NPer| MXdl| NXdl| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockLds| BBlockTransfer| BBlockTransfer| BBlockTransfer| BlockTransfer| BBlockTransfer| BBlockTransfer| BBlockLds| CShuffle| CShuffle| CBlockTransferClusterLengths| CBlockTransfer| CReduce| CReduceThreadLds2VGprCopy| CReduceThreadVgpr2GlobalCopy|
//###########################| ALayout| BLayout| CLayout| AData| BData| CData| GemmAcc| CShuffle| ReduceAcc| DData| A| B| C| Dxs| DxsInEleOp| Dxs
Acc
EleOp| D| GEMM| NumGemmK| Block| MPer| NPer| KPer| AK1| BK1| MPer| NPer| MXdl| NXdl| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockLds| BBlockTransfer| BBlockTransfer| BBlockTransfer| BlockTransfer| BBlockTransfer| BBlockTransfer| BBlockLds| CShuffle| CShuffle| CBlockTransferClusterLengths| CBlockTransfer| CReduce| CReduceThreadLds2VGprCopy| CReduceThreadVgpr2GlobalCopy|
//###########################| | | | Type| Type| Type| DataType| DataType| DataType| Type Tuple| Elementwise| Elementwise| Elementwise| Reduce| | | MemoryData|Spacialization| Prefetch| Size| Block| Block| Block| | | XDL| XDL| Per| Per| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| AddExtraM| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| AddExtraN| MXdlPerWave| NXdlPerWave| _MBlock_MPerBlock| ScalarPerVector| ThreadClusterLengths| SrcDstScalarPerVector| SrcDstScalarPerVector|
//###########################| | | | Type| Type| Type| DataType| DataType| DataType| Type Tuple| Elementwise| Elementwise| Elementwise| Reduce| | | MemoryData|Spacialization| Prefetch| Size| Block| Block| Block| | | XDL| XDL| Per| Per| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| AddExtraM| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| AddExtraN| MXdlPerWave| NXdlPerWave| _MBlock_MPerBlock| ScalarPerVector| ThreadClusterLengths| SrcDstScalarPerVector| SrcDstScalarPerVector|
//###########################| | | | | | | | | | | Operation| Operation| Operation| Operation| | | Operation| | Stage| | | | | | | | | Wave| Wave| Lengths_K0_M_K1| ArrangeOrder| | | PerVector| PerVector_K1| | Lengths_K0_N_K1| ArrangeOrder| | | PerVector| PerVector_K1| | PerShuffle| PerShuffle| _NBlock_NPerBlock| _NPerBlock| _MPerBlock_NPerBlock| _NPerBlock| _MPerBlock|
//###########################| | | | | | | | | | | Operation| Operation| Operation| Operation| | | Operation| | Stage| | | | | | | | | Wave| Wave| Lengths_K0_M_K1| ArrangeOrder| | | PerVector| PerVector_K1| | Lengths_K0_N_K1| ArrangeOrder| | | PerVector| PerVector_K1| | PerShuffle| PerShuffle| _NBlock_NPerBlock| _NPerBlock| _MPerBlock_NPerBlock| _NPerBlock| _MPerBlock|
//###########################| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
//###########################| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
...
...
library/src/tensor_operation_instance/gpu/gemm_reduce/device_gemm_reduce_xdl_cshuffle_f16_f16_f16_f32_f32_mk_nk_mn_instance.cpp
View file @
b5ada11b
...
@@ -24,10 +24,11 @@ using PassThrough = ck::tensor_operation::element_wise::PassThrough;
...
@@ -24,10 +24,11 @@ using PassThrough = ck::tensor_operation::element_wise::PassThrough;
using
ReduceSum
=
ck
::
reduce
::
Add
<
F32
>
;
using
ReduceSum
=
ck
::
reduce
::
Add
<
F32
>
;
using
ReduceOps
=
ck
::
Tuple
<
ReduceSum
,
ReduceSum
>
;
using
ReduceOps
=
ck
::
Tuple
<
ReduceSum
,
ReduceSum
>
;
using
Div
=
ck
::
tensor_operation
::
element_wise
::
UnaryIdentic
<
F32
,
F32
,
true
>
;
using
Identity
=
ck
::
tensor_operation
::
element_wise
::
UnaryIdentic
<
F32
,
F32
,
false
>
;
using
Identity
=
ck
::
tensor_operation
::
element_wise
::
UnaryIdentic
<
F32
,
F32
,
false
>
;
using
Square
=
ck
::
tensor_operation
::
element_wise
::
UnarySquare
<
F32
,
F32
,
false
>
;
using
Square
=
ck
::
tensor_operation
::
element_wise
::
UnarySquare
<
F32
,
F32
,
false
>
;
using
DInElementOps
=
ck
::
Tuple
<
Identity
,
Square
>
;
using
DInElementOps
=
ck
::
Tuple
<
Identity
,
Square
>
;
using
DOutElementOps
=
ck
::
Tuple
<
Identity
,
Identity
>
;
using
DOutElementOps
=
ck
::
Tuple
<
Div
,
Div
>
;
using
ReduceMemOp
=
ck
::
InMemoryDataOperationEnumSequence
<
ck
::
InMemoryDataOperationEnum
::
AtomicAdd
,
using
ReduceMemOp
=
ck
::
InMemoryDataOperationEnumSequence
<
ck
::
InMemoryDataOperationEnum
::
AtomicAdd
,
ck
::
InMemoryDataOperationEnum
::
AtomicAdd
>
;
ck
::
InMemoryDataOperationEnum
::
AtomicAdd
>
;
...
@@ -37,7 +38,7 @@ static constexpr auto GemmDefault = ck::tensor_operation::device::GemmSpecializa
...
@@ -37,7 +38,7 @@ static constexpr auto GemmDefault = ck::tensor_operation::device::GemmSpecializa
// c[m, n] = a[m, k] * b[n, k]
// c[m, n] = a[m, k] * b[n, k]
using
device_gemm_reduce_xdl_cshuffle_f16_f16_f16_f32_f32_mk_nk_mn_instances
=
std
::
tuple
<
using
device_gemm_reduce_xdl_cshuffle_f16_f16_f16_f32_f32_mk_nk_mn_instances
=
std
::
tuple
<
// clang-format off
// clang-format off
//###########################| ALayout| BLayout| CLayout|AData| BData| CData| GemmAcc| CShuffle| ReduceAcc| DData| A| B| C| Dxs| DxsInEleOp| Dxs
Out
EleOp| D| GEMM| NumGemmK| Block| MPer| NPer| KPer| AK1| BK1| MPer| NPer| MXdl| NXdl| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockLds| BBlockTransfer| BBlockTransfer| BBlockTransfer| BlockTransfer| BBlockTransfer| BBlockTransfer| BBlockLds| CShuffle| CShuffle| CBlockTransferClusterLengths| CBlockTransfer| CReduce| CReduceThreadLds2VGprCopy| CReduceThreadVgpr2GlobalCopy|
//###########################| ALayout| BLayout| CLayout|AData| BData| CData| GemmAcc| CShuffle| ReduceAcc| DData| A| B| C| Dxs| DxsInEleOp| Dxs
Acc
EleOp| D| GEMM| NumGemmK| Block| MPer| NPer| KPer| AK1| BK1| MPer| NPer| MXdl| NXdl| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockLds| BBlockTransfer| BBlockTransfer| BBlockTransfer| BlockTransfer| BBlockTransfer| BBlockTransfer| BBlockLds| CShuffle| CShuffle| CBlockTransferClusterLengths| CBlockTransfer| CReduce| CReduceThreadLds2VGprCopy| CReduceThreadVgpr2GlobalCopy|
//###########################| | | | Type| Type| Type| DataType| DataType| DataType| Type Tuple| Elementwise| Elementwise| Elementwise| Reduce| | | MemoryData| Spacialization| Prefetch| Size| Block| Block| Block| | | XDL| XDL| Per| Per| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| AddExtraM| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| AddExtraN| MXdlPerWave| NXdlPerWave| _MBlock_MPerBlock| ScalarPerVector| ThreadClusterLengths| SrcDstScalarPerVector| SrcDstScalarPerVector|
//###########################| | | | Type| Type| Type| DataType| DataType| DataType| Type Tuple| Elementwise| Elementwise| Elementwise| Reduce| | | MemoryData| Spacialization| Prefetch| Size| Block| Block| Block| | | XDL| XDL| Per| Per| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| AddExtraM| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| AddExtraN| MXdlPerWave| NXdlPerWave| _MBlock_MPerBlock| ScalarPerVector| ThreadClusterLengths| SrcDstScalarPerVector| SrcDstScalarPerVector|
//###########################| | | | | | | | | | | Operation| Operation| Operation| Operation| | | Operation| | Stage| | | | | | | | | Wave| Wave| Lengths_K0_M_K1| ArrangeOrder| | | PerVector| PerVector_K1| | Lengths_K0_N_K1| ArrangeOrder| | | PerVector| PerVector_K1| | PerShuffle| PerShuffle| _NBlock_NPerBlock| _NPerBlock| _MPerBlock_NPerBlock| _NPerBlock| _MPerBlock|
//###########################| | | | | | | | | | | Operation| Operation| Operation| Operation| | | Operation| | Stage| | | | | | | | | Wave| Wave| Lengths_K0_M_K1| ArrangeOrder| | | PerVector| PerVector_K1| | Lengths_K0_N_K1| ArrangeOrder| | | PerVector| PerVector_K1| | PerShuffle| PerShuffle| _NBlock_NPerBlock| _NPerBlock| _MPerBlock_NPerBlock| _NPerBlock| _MPerBlock|
//###########################| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
//###########################| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
...
...
profiler/include/profile_gemm_impl.hpp
View file @
b5ada11b
...
@@ -98,6 +98,7 @@ namespace profiler {
...
@@ -98,6 +98,7 @@ namespace profiler {
template
<
typename
ADataType
,
template
<
typename
ADataType
,
typename
BDataType
,
typename
BDataType
,
typename
CDataType
,
typename
CDataType
,
typename
AccDataType
,
typename
ALayout
,
typename
ALayout
,
typename
BLayout
,
typename
BLayout
,
typename
CLayout
>
typename
CLayout
>
...
@@ -511,8 +512,14 @@ void profile_gemm_impl(int do_verification,
...
@@ -511,8 +512,14 @@ void profile_gemm_impl(int do_verification,
bf16_to_f32_
(
b_k_n
,
b_f32_k_n
);
bf16_to_f32_
(
b_k_n
,
b_f32_k_n
);
bf16_to_f32_
(
c_m_n_device_result
,
c_m_n_device_f32_result
);
bf16_to_f32_
(
c_m_n_device_result
,
c_m_n_device_f32_result
);
using
ReferenceGemmInstance
=
ck
::
tensor_operation
::
host
::
using
ReferenceGemmInstance
=
ReferenceGemm
<
float
,
float
,
float
,
AElementOp
,
BElementOp
,
CElementOp
>
;
ck
::
tensor_operation
::
host
::
ReferenceGemm
<
float
,
float
,
float
,
float
,
AElementOp
,
BElementOp
,
CElementOp
>
;
auto
ref_gemm
=
ReferenceGemmInstance
{};
auto
ref_gemm
=
ReferenceGemmInstance
{};
auto
ref_invoker
=
ref_gemm
.
MakeInvoker
();
auto
ref_invoker
=
ref_gemm
.
MakeInvoker
();
...
@@ -544,6 +551,7 @@ void profile_gemm_impl(int do_verification,
...
@@ -544,6 +551,7 @@ void profile_gemm_impl(int do_verification,
ck
::
tensor_operation
::
host
::
ReferenceGemm
<
ADataType
,
ck
::
tensor_operation
::
host
::
ReferenceGemm
<
ADataType
,
BDataType
,
BDataType
,
CDataType
,
CDataType
,
AccDataType
,
AElementOp
,
AElementOp
,
BElementOp
,
BElementOp
,
CElementOp
>
;
CElementOp
>
;
...
...
Prev
1
2
3
4
5
Next
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
.
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment