"vscode:/vscode.git/clone" did not exist on "1b151ed181f5ef0d267c1cf6d15d6f6f43e302ed"
Commit b5ada11b authored by Jing Zhang's avatar Jing Zhang
Browse files

merge develop

parents cee92951 b6eaf3eb
/*******************************************************************************
*
* MIT License
*
* Copyright (c) 2022 Advanced Micro Devices, Inc.
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in all
* copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
* SOFTWARE.
*
*******************************************************************************/
#pragma once
#include <iostream>
#include <sstream>
#include "device.hpp"
#include "device_gemm.hpp"
#include "device_cgemm.hpp"
#include "common_header.hpp"
#include "tensor_layout.hpp"
#include "tensor_descriptor.hpp"
#include "tensor_descriptor_helper.hpp"
#include "gridwise_gemm_xdl_cshuffle_v1.hpp"
#include "binary_element_wise_operation.hpp"
#include "gridwise_binary_elementwise_1d.hpp"
#include "tensor_operation/gpu/device/gemm_specialization.hpp"
namespace ck {
namespace tensor_operation {
namespace device {
template <
typename ALayout,
typename BLayout,
typename CLayout,
typename ADataType,
typename BDataType,
typename CDataType,
typename GemmAccDataType,
typename CShuffleDataType,
typename AElementwiseOperation,
typename BElementwiseOperation,
typename CElementwiseOperation,
GemmSpecialization GemmSpec,
index_t NumGemmKPrefetchStage,
index_t BlockSize,
index_t MPerBlock,
index_t NPerBlock,
index_t KPerBlock,
index_t AK1,
index_t BK1,
index_t MPerXDL,
index_t NPerXDL,
index_t MXdlPerWave,
index_t NXdlPerWave,
typename ABlockTransferThreadClusterLengths_AK0_M_AK1,
typename ABlockTransferThreadClusterArrangeOrder,
typename ABlockTransferSrcAccessOrder,
index_t ABlockTransferSrcVectorDim,
index_t ABlockTransferSrcScalarPerVector,
index_t ABlockTransferDstScalarPerVector_AK1,
bool ABlockLdsExtraM,
typename BBlockTransferThreadClusterLengths_BK0_N_BK1,
typename BBlockTransferThreadClusterArrangeOrder,
typename BBlockTransferSrcAccessOrder,
index_t BBlockTransferSrcVectorDim,
index_t BBlockTransferSrcScalarPerVector,
index_t BBlockTransferDstScalarPerVector_BK1,
bool BBlockLdsExtraN,
index_t CShuffleMXdlPerWavePerShuffle,
index_t CShuffleNXdlPerWavePerShuffle,
typename CShuffleBlockTransferClusterLengths_MBlock_MPerBlock_NBlock_NPerBlock,
index_t CShuffleBlockTransferScalarPerVector_NPerBlock,
LoopScheduler LoopSched = make_default_loop_scheduler(),
enable_if_t<
is_same_v<AElementwiseOperation, ck::tensor_operation::element_wise::PassThrough> &&
is_same_v<BElementwiseOperation, ck::tensor_operation::element_wise::PassThrough> &&
is_same_v<CElementwiseOperation, ck::tensor_operation::element_wise::PassThrough>,
bool> = false>
struct DeviceCGemm_4Gemm_Xdl_CShuffle
: public DeviceCGemm<AElementwiseOperation, BElementwiseOperation, CElementwiseOperation>
{
using DeviceOp = DeviceCGemm_4Gemm_Xdl_CShuffle;
static constexpr auto I0 = Number<0>{};
static constexpr auto I1 = Number<1>{};
static constexpr auto I2 = Number<2>{};
static constexpr auto MPerThread = Number<4>{};
static constexpr auto AScalarPerVector = Number<4>{};
static constexpr auto BScalarPerVector = Number<4>{};
static constexpr auto CScalarPerVector = Number<4>{};
template <typename Desc_M>
static auto PadDescriptor_M_1d(Desc_M desc_m, index_t gridSize, index_t blockSize)
{
const auto M = desc_m.GetLength(I0);
const index_t loop_step = gridSize * blockSize * MPerThread;
const auto pad = math::integer_least_multiple(M, loop_step) - M;
const auto desc_m_pad =
transform_tensor_descriptor(desc_m,
make_tuple(make_right_pad_transform(M, pad)),
make_tuple(Sequence<0>{}),
make_tuple(Sequence<0>{}));
return desc_m_pad;
}
static auto MakeDescriptor_M(const std::vector<index_t>& lengths,
const std::vector<index_t>& strides,
index_t gridSize,
index_t blockSize)
{
auto tupleOfShape = generate_tuple([&](auto I) { return lengths[I]; }, Number<2>{});
auto tupleOfStride = generate_tuple([&](auto I) { return strides[I]; }, Number<2>{});
// nd desc - [s0, s1, s2, ...]
const auto desc = make_naive_tensor_descriptor(tupleOfShape, tupleOfStride);
const auto desc_m = transform_tensor_descriptor(
desc,
make_tuple(make_merge_transform(tupleOfShape)),
make_tuple(generate_sequence_v2([&](auto I) { return I; }, Number<2>{})),
make_tuple(Sequence<0>{}));
return PadDescriptor_M_1d(desc_m, gridSize, blockSize);
}
static auto MakeAGridDescriptor_AK0_M_AK1(index_t MRaw, index_t KRaw, index_t StrideA)
{
const auto a_grid_desc_mraw_kraw = [&]() {
if constexpr(is_same_v<tensor_layout::gemm::RowMajor, ALayout>)
{
return make_naive_tensor_descriptor(make_tuple(MRaw, KRaw),
make_tuple(StrideA, I1));
}
else if constexpr(is_same_v<tensor_layout::gemm::ColumnMajor, ALayout>)
{
return make_naive_tensor_descriptor(make_tuple(MRaw, KRaw),
make_tuple(I1, StrideA));
}
}();
const auto M = math::integer_divide_ceil(MRaw, MPerBlock) * MPerBlock;
const auto K = math::integer_divide_ceil(KRaw, KPerBlock) * KPerBlock;
const auto MPad = M - MRaw;
const auto KPad = K - KRaw;
if constexpr(GemmSpec == GemmSpecialization::MKPadding ||
GemmSpec == GemmSpecialization::MNKPadding)
{
// pad both M and K
assert(K % AK1 == 0);
const auto AK0 = K / AK1;
const auto a_grid_desc_m_k =
transform_tensor_descriptor(a_grid_desc_mraw_kraw,
make_tuple(make_right_pad_transform(MRaw, MPad),
make_right_pad_transform(KRaw, KPad)),
make_tuple(Sequence<0>{}, Sequence<1>{}),
make_tuple(Sequence<0>{}, Sequence<1>{}));
const auto a_grid_desc_ak0_m_ak1 =
transform_tensor_descriptor(a_grid_desc_m_k,
make_tuple(make_unmerge_transform(make_tuple(AK0, AK1)),
make_pass_through_transform(M)),
make_tuple(Sequence<1>{}, Sequence<0>{}),
make_tuple(Sequence<0, 2>{}, Sequence<1>{}));
return a_grid_desc_ak0_m_ak1;
}
else if constexpr(GemmSpec == GemmSpecialization::MPadding ||
GemmSpec == GemmSpecialization::MNPadding)
{
// pad M, but not K
assert(KRaw % AK1 == 0);
const auto AK0 = KRaw / AK1;
const auto a_grid_desc_ak0_m_ak1 =
transform_tensor_descriptor(a_grid_desc_mraw_kraw,
make_tuple(make_unmerge_transform(make_tuple(AK0, AK1)),
make_right_pad_transform(MRaw, MPad)),
make_tuple(Sequence<1>{}, Sequence<0>{}),
make_tuple(Sequence<0, 2>{}, Sequence<1>{}));
return a_grid_desc_ak0_m_ak1;
}
else if constexpr(GemmSpec == GemmSpecialization::KPadding ||
GemmSpec == GemmSpecialization::NKPadding)
{
// pad K, but not M
assert(K % AK1 == 0);
const auto AK0 = K / AK1;
const auto a_grid_desc_m_k = transform_tensor_descriptor(
a_grid_desc_mraw_kraw,
make_tuple(make_pass_through_transform(MRaw), make_right_pad_transform(KRaw, KPad)),
make_tuple(Sequence<0>{}, Sequence<1>{}),
make_tuple(Sequence<0>{}, Sequence<1>{}));
const auto a_grid_desc_ak0_m_ak1 =
transform_tensor_descriptor(a_grid_desc_m_k,
make_tuple(make_unmerge_transform(make_tuple(AK0, AK1)),
make_pass_through_transform(MRaw)),
make_tuple(Sequence<1>{}, Sequence<0>{}),
make_tuple(Sequence<0, 2>{}, Sequence<1>{}));
return a_grid_desc_ak0_m_ak1;
}
else
{
// not pad M or K
assert(KRaw % AK1 == 0);
const auto AK0 = KRaw / AK1;
const auto a_grid_desc_ak0_m_ak1 =
transform_tensor_descriptor(a_grid_desc_mraw_kraw,
make_tuple(make_unmerge_transform(make_tuple(AK0, AK1)),
make_pass_through_transform(MRaw)),
make_tuple(Sequence<1>{}, Sequence<0>{}),
make_tuple(Sequence<0, 2>{}, Sequence<1>{}));
return a_grid_desc_ak0_m_ak1;
}
}
static auto MakeBGridDescriptor_BK0_N_BK1(index_t KRaw, index_t NRaw, index_t StrideB)
{
const auto b_grid_desc_nraw_kraw = [&]() {
if constexpr(is_same<tensor_layout::gemm::RowMajor, BLayout>::value)
{
return make_naive_tensor_descriptor(make_tuple(NRaw, KRaw),
make_tuple(I1, StrideB));
}
else if constexpr(is_same<tensor_layout::gemm::ColumnMajor, BLayout>::value)
{
return make_naive_tensor_descriptor(make_tuple(NRaw, KRaw),
make_tuple(StrideB, I1));
}
}();
const auto N = math::integer_divide_ceil(NRaw, NPerBlock) * NPerBlock;
const auto K = math::integer_divide_ceil(KRaw, KPerBlock) * KPerBlock;
const auto NPad = N - NRaw;
const auto KPad = K - KRaw;
if constexpr(GemmSpec == GemmSpecialization::NKPadding ||
GemmSpec == GemmSpecialization::MNKPadding)
{
// pad both N and K
assert(K % BK1 == 0);
const auto BK0 = K / BK1;
const auto b_grid_desc_n_k =
transform_tensor_descriptor(b_grid_desc_nraw_kraw,
make_tuple(make_right_pad_transform(NRaw, NPad),
make_right_pad_transform(KRaw, KPad)),
make_tuple(Sequence<0>{}, Sequence<1>{}),
make_tuple(Sequence<0>{}, Sequence<1>{}));
const auto b_grid_desc_bk0_n_bk1 =
transform_tensor_descriptor(b_grid_desc_n_k,
make_tuple(make_unmerge_transform(make_tuple(BK0, BK1)),
make_pass_through_transform(N)),
make_tuple(Sequence<1>{}, Sequence<0>{}),
make_tuple(Sequence<0, 2>{}, Sequence<1>{}));
return b_grid_desc_bk0_n_bk1;
}
else if constexpr(GemmSpec == GemmSpecialization::NPadding ||
GemmSpec == GemmSpecialization::MNPadding)
{
// pad N, but not K
assert(KRaw % BK1 == 0);
const auto BK0 = KRaw / BK1;
const auto b_grid_desc_bk0_n_bk1 =
transform_tensor_descriptor(b_grid_desc_nraw_kraw,
make_tuple(make_unmerge_transform(make_tuple(BK0, BK1)),
make_right_pad_transform(NRaw, NPad)),
make_tuple(Sequence<1>{}, Sequence<0>{}),
make_tuple(Sequence<0, 2>{}, Sequence<1>{}));
return b_grid_desc_bk0_n_bk1;
}
else if constexpr(GemmSpec == GemmSpecialization::KPadding ||
GemmSpec == GemmSpecialization::MKPadding)
{
// pad K, but not N
assert(K % BK1 == 0);
const auto BK0 = K / BK1;
const auto b_grid_desc_n_k = transform_tensor_descriptor(
b_grid_desc_nraw_kraw,
make_tuple(make_pass_through_transform(NRaw), make_right_pad_transform(KRaw, KPad)),
make_tuple(Sequence<0>{}, Sequence<1>{}),
make_tuple(Sequence<0>{}, Sequence<1>{}));
const auto b_grid_desc_bk0_n_bk1 =
transform_tensor_descriptor(b_grid_desc_n_k,
make_tuple(make_unmerge_transform(make_tuple(BK0, BK1)),
make_pass_through_transform(NRaw)),
make_tuple(Sequence<1>{}, Sequence<0>{}),
make_tuple(Sequence<0, 2>{}, Sequence<1>{}));
return b_grid_desc_bk0_n_bk1;
}
else
{
// not pad N or K
assert(KRaw % BK1 == 0);
const auto BK0 = KRaw / BK1;
const auto b_grid_desc_bk0_n_bk1 =
transform_tensor_descriptor(b_grid_desc_nraw_kraw,
make_tuple(make_unmerge_transform(make_tuple(BK0, BK1)),
make_pass_through_transform(NRaw)),
make_tuple(Sequence<1>{}, Sequence<0>{}),
make_tuple(Sequence<0, 2>{}, Sequence<1>{}));
return b_grid_desc_bk0_n_bk1;
}
}
static auto MakeCGridDescriptor_M_N(index_t MRaw, index_t NRaw, index_t StrideC)
{
const auto c_grid_desc_mraw_nraw = [&]() {
if constexpr(is_same<tensor_layout::gemm::RowMajor, CLayout>::value)
{
return make_naive_tensor_descriptor(make_tuple(MRaw, NRaw),
make_tuple(StrideC, I1));
}
else if constexpr(is_same<tensor_layout::gemm::ColumnMajor, CLayout>::value)
{
return make_naive_tensor_descriptor(make_tuple(MRaw, NRaw),
make_tuple(I1, StrideC));
}
}();
const auto M = math::integer_divide_ceil(MRaw, MPerBlock) * MPerBlock;
const auto N = math::integer_divide_ceil(NRaw, NPerBlock) * NPerBlock;
const auto MPad = M - MRaw;
const auto NPad = N - NRaw;
if constexpr(GemmSpec == GemmSpecialization::MNPadding ||
GemmSpec == GemmSpecialization::MNKPadding)
{
// pad M and N
return transform_tensor_descriptor(c_grid_desc_mraw_nraw,
make_tuple(make_right_pad_transform(MRaw, MPad),
make_right_pad_transform(NRaw, NPad)),
make_tuple(Sequence<0>{}, Sequence<1>{}),
make_tuple(Sequence<0>{}, Sequence<1>{}));
}
else if constexpr(GemmSpec == GemmSpecialization::MPadding ||
GemmSpec == GemmSpecialization::MKPadding)
{
// pad M, but not N
return transform_tensor_descriptor(
c_grid_desc_mraw_nraw,
make_tuple(make_right_pad_transform(MRaw, MPad), make_pass_through_transform(NRaw)),
make_tuple(Sequence<0>{}, Sequence<1>{}),
make_tuple(Sequence<0>{}, Sequence<1>{}));
}
else if constexpr(GemmSpec == GemmSpecialization::NPadding ||
GemmSpec == GemmSpecialization::NKPadding)
{
// pad N, but not M
return transform_tensor_descriptor(
c_grid_desc_mraw_nraw,
make_tuple(make_pass_through_transform(MRaw), make_right_pad_transform(NRaw, NPad)),
make_tuple(Sequence<0>{}, Sequence<1>{}),
make_tuple(Sequence<0>{}, Sequence<1>{}));
}
else
{
// not pad M or N
return c_grid_desc_mraw_nraw;
}
}
using AGridDesc_AK0_M_AK1 = decltype(MakeAGridDescriptor_AK0_M_AK1(1, 1, 1));
using BGridDesc_BK0_N_BK1 = decltype(MakeBGridDescriptor_BK0_N_BK1(1, 1, 1));
using CGridDesc_M_N = decltype(MakeCGridDescriptor_M_N(1, 1, 1));
using CGridDesc_M = decltype(MakeDescriptor_M({1, 1}, {1, 1}, 1, 1));
// GridwiseGemm
using GridwiseGemm = GridwiseGemm_k0mk1_k0nk1_mn_xdl_cshuffle_v1<
ADataType, // TODO: distinguish A/B datatype
GemmAccDataType,
CShuffleDataType,
CDataType,
AElementwiseOperation,
BElementwiseOperation,
CElementwiseOperation,
InMemoryDataOperationEnum::Set,
AGridDesc_AK0_M_AK1,
BGridDesc_BK0_N_BK1,
CGridDesc_M_N,
NumGemmKPrefetchStage,
BlockSize,
MPerBlock,
NPerBlock,
KPerBlock,
AK1,
BK1,
MPerXDL,
NPerXDL,
MXdlPerWave,
NXdlPerWave,
ABlockTransferThreadClusterLengths_AK0_M_AK1,
ABlockTransferThreadClusterArrangeOrder,
ABlockTransferSrcAccessOrder,
ABlockTransferSrcVectorDim,
ABlockTransferSrcScalarPerVector,
ABlockTransferDstScalarPerVector_AK1,
false,
ABlockLdsExtraM,
BBlockTransferThreadClusterLengths_BK0_N_BK1,
BBlockTransferThreadClusterArrangeOrder,
BBlockTransferSrcAccessOrder,
BBlockTransferSrcVectorDim,
BBlockTransferSrcScalarPerVector,
BBlockTransferDstScalarPerVector_BK1,
false,
BBlockLdsExtraN,
CShuffleMXdlPerWavePerShuffle,
CShuffleNXdlPerWavePerShuffle,
CShuffleBlockTransferClusterLengths_MBlock_MPerBlock_NBlock_NPerBlock,
CShuffleBlockTransferScalarPerVector_NPerBlock,
LoopSched>;
// Argument
struct Argument : public BaseArgument
{
Argument(const ADataType* p_a_grid_real,
const ADataType* p_a_grid_imag,
const BDataType* p_b_grid_real,
const BDataType* p_b_grid_imag,
CDataType* p_c_grid_real,
CDataType* p_c_grid_imag,
CDataType* p_workspace,
index_t MRaw,
index_t NRaw,
index_t KRaw,
index_t StrideA,
index_t StrideB,
index_t StrideC,
AElementwiseOperation a_element_op,
BElementwiseOperation b_element_op,
CElementwiseOperation c_element_op)
: p_a_grid_real_{p_a_grid_real},
p_a_grid_imag_{p_a_grid_imag},
p_b_grid_real_{p_b_grid_real},
p_b_grid_imag_{p_b_grid_imag},
p_c_grid_real_{p_c_grid_real},
p_c_grid_imag_{p_c_grid_imag},
p_aux_grid_{p_workspace},
a_grid_desc_ak0_m_ak1_{DeviceOp::MakeAGridDescriptor_AK0_M_AK1(MRaw, KRaw, StrideA)},
b_grid_desc_bk0_n_bk1_{DeviceOp::MakeBGridDescriptor_BK0_N_BK1(KRaw, NRaw, StrideB)},
c_grid_desc_m_n_{DeviceOp::MakeCGridDescriptor_M_N(MRaw, NRaw, StrideC)},
c_grid_desc_mblock_mperblock_nblock_nperblock_{},
block_2_ctile_map_{GridwiseGemm::MakeDefaultBlock2CTileMap(c_grid_desc_m_n_)},
a_element_op_{a_element_op},
b_element_op_{b_element_op},
c_element_op_{c_element_op}
{
if(GridwiseGemm::CheckValidity(a_grid_desc_ak0_m_ak1_,
b_grid_desc_bk0_n_bk1_,
c_grid_desc_m_n_,
block_2_ctile_map_))
{
c_grid_desc_mblock_mperblock_nblock_nperblock_ =
GridwiseGemm::MakeCGridDescriptor_MBlock_MPerBlock_NBlock_NPerBlock(
c_grid_desc_m_n_);
}
const index_t grid_size = block_2_ctile_map_.CalculateGridSize(c_grid_desc_m_n_);
if constexpr(is_same<tensor_layout::gemm::RowMajor, CLayout>::value)
{
c_grid_desc_m_ =
DeviceOp::MakeDescriptor_M({MRaw, NRaw}, {StrideC, I1}, grid_size, BlockSize);
}
else if constexpr(is_same<tensor_layout::gemm::ColumnMajor, CLayout>::value)
{
c_grid_desc_m_ =
DeviceOp::MakeDescriptor_M({MRaw, NRaw}, {I1, StrideC}, grid_size, BlockSize);
}
p_aux_2_grid_ = p_workspace + c_grid_desc_m_n_.GetElementSpaceSize();
}
// private:
const ADataType* p_a_grid_real_;
const ADataType* p_a_grid_imag_;
const BDataType* p_b_grid_real_;
const BDataType* p_b_grid_imag_;
CDataType* p_c_grid_real_;
CDataType* p_c_grid_imag_;
CDataType* p_aux_grid_;
CDataType* p_aux_2_grid_;
AGridDesc_AK0_M_AK1 a_grid_desc_ak0_m_ak1_;
BGridDesc_BK0_N_BK1 b_grid_desc_bk0_n_bk1_;
CGridDesc_M_N c_grid_desc_m_n_;
CGridDesc_M c_grid_desc_m_;
typename GridwiseGemm::CGridDescriptor_MBlock_MPerBlock_NBlock_NPerBlock
c_grid_desc_mblock_mperblock_nblock_nperblock_;
typename GridwiseGemm::DefaultBlock2CTileMap block_2_ctile_map_;
AElementwiseOperation a_element_op_;
BElementwiseOperation b_element_op_;
CElementwiseOperation c_element_op_;
};
// Invoker
struct Invoker : public BaseInvoker
{
using Argument = DeviceOp::Argument;
float Run(const Argument& arg, const StreamConfig& stream_config = StreamConfig{})
{
if(!GridwiseGemm::CheckValidity(arg.a_grid_desc_ak0_m_ak1_,
arg.b_grid_desc_bk0_n_bk1_,
arg.c_grid_desc_m_n_,
arg.block_2_ctile_map_))
{
throw std::runtime_error("wrong! GridwiseGemm has invalid setting");
}
const index_t grid_size =
arg.block_2_ctile_map_.CalculateGridSize(arg.c_grid_desc_m_n_);
const auto K =
arg.a_grid_desc_ak0_m_ak1_.GetLength(I0) * arg.a_grid_desc_ak0_m_ak1_.GetLength(I2);
float ave_time = 0;
using Add =
ck::tensor_operation::binary_element_wise::Add<CDataType, CDataType, CDataType>;
using Substract = ck::tensor_operation::binary_element_wise::
Substract<CDataType, CDataType, CDataType>;
using GridwiseBinAdd = GridwiseBinaryElementwise_1D<CDataType,
CDataType,
CDataType,
CDataType,
CGridDesc_M,
CGridDesc_M,
CGridDesc_M,
Add,
MPerThread,
AScalarPerVector,
BScalarPerVector,
CScalarPerVector>;
using GridwiseBinSubstract = GridwiseBinaryElementwise_1D<CDataType,
CDataType,
CDataType,
CDataType,
CGridDesc_M,
CGridDesc_M,
CGridDesc_M,
Substract,
MPerThread,
AScalarPerVector,
BScalarPerVector,
CScalarPerVector>;
const auto add_kernel = kernel_binary_elementwise_1d<GridwiseBinAdd,
CDataType,
CDataType,
CDataType,
CGridDesc_M,
CGridDesc_M,
CGridDesc_M,
Add>;
const auto substract_kernel = kernel_binary_elementwise_1d<GridwiseBinSubstract,
CDataType,
CDataType,
CDataType,
CGridDesc_M,
CGridDesc_M,
CGridDesc_M,
Substract>;
if(GridwiseGemm::CalculateHasMainKBlockLoop(K))
{
const auto kernel = kernel_gemm_xdl_cshuffle_v1<
GridwiseGemm,
ADataType, // TODO: distiguish A/B datatype
CDataType,
AElementwiseOperation,
BElementwiseOperation,
CElementwiseOperation,
DeviceOp::AGridDesc_AK0_M_AK1,
DeviceOp::BGridDesc_BK0_N_BK1,
typename GridwiseGemm::CGridDescriptor_MBlock_MPerBlock_NBlock_NPerBlock,
typename GridwiseGemm::DefaultBlock2CTileMap,
true>;
ave_time +=
launch_and_time_kernel(stream_config,
kernel,
dim3(grid_size),
dim3(BlockSize),
0,
arg.p_a_grid_real_,
arg.p_b_grid_real_,
arg.p_aux_grid_,
arg.a_element_op_,
arg.b_element_op_,
arg.c_element_op_,
arg.a_grid_desc_ak0_m_ak1_,
arg.b_grid_desc_bk0_n_bk1_,
arg.c_grid_desc_mblock_mperblock_nblock_nperblock_,
arg.block_2_ctile_map_);
ave_time +=
launch_and_time_kernel(stream_config,
kernel,
dim3(grid_size),
dim3(BlockSize),
0,
arg.p_a_grid_imag_,
arg.p_b_grid_imag_,
arg.p_aux_2_grid_,
arg.a_element_op_,
arg.b_element_op_,
arg.c_element_op_,
arg.a_grid_desc_ak0_m_ak1_,
arg.b_grid_desc_bk0_n_bk1_,
arg.c_grid_desc_mblock_mperblock_nblock_nperblock_,
arg.block_2_ctile_map_);
// c_real = aux - aux_2
ave_time += launch_and_time_kernel(stream_config,
substract_kernel,
dim3(grid_size),
dim3(BlockSize),
0,
arg.p_aux_grid_,
arg.p_aux_2_grid_,
arg.p_c_grid_real_,
arg.c_grid_desc_m_,
arg.c_grid_desc_m_,
arg.c_grid_desc_m_,
Substract{});
ave_time +=
launch_and_time_kernel(stream_config,
kernel,
dim3(grid_size),
dim3(BlockSize),
0,
arg.p_a_grid_real_,
arg.p_b_grid_imag_,
arg.p_aux_grid_,
arg.a_element_op_,
arg.b_element_op_,
arg.c_element_op_,
arg.a_grid_desc_ak0_m_ak1_,
arg.b_grid_desc_bk0_n_bk1_,
arg.c_grid_desc_mblock_mperblock_nblock_nperblock_,
arg.block_2_ctile_map_);
ave_time +=
launch_and_time_kernel(stream_config,
kernel,
dim3(grid_size),
dim3(BlockSize),
0,
arg.p_a_grid_imag_,
arg.p_b_grid_real_,
arg.p_aux_2_grid_,
arg.a_element_op_,
arg.b_element_op_,
arg.c_element_op_,
arg.a_grid_desc_ak0_m_ak1_,
arg.b_grid_desc_bk0_n_bk1_,
arg.c_grid_desc_mblock_mperblock_nblock_nperblock_,
arg.block_2_ctile_map_);
// c_imag = aux + aux_2
ave_time += launch_and_time_kernel(stream_config,
add_kernel,
dim3(grid_size),
dim3(BlockSize),
0,
arg.p_aux_grid_,
arg.p_aux_2_grid_,
arg.p_c_grid_imag_,
arg.c_grid_desc_m_,
arg.c_grid_desc_m_,
arg.c_grid_desc_m_,
Add{});
}
else
{
const auto kernel = kernel_gemm_xdl_cshuffle_v1<
GridwiseGemm,
ADataType, // TODO: distiguish A/B datatype
CDataType,
AElementwiseOperation,
BElementwiseOperation,
CElementwiseOperation,
DeviceOp::AGridDesc_AK0_M_AK1,
DeviceOp::BGridDesc_BK0_N_BK1,
typename GridwiseGemm::CGridDescriptor_MBlock_MPerBlock_NBlock_NPerBlock,
typename GridwiseGemm::DefaultBlock2CTileMap,
false>;
ave_time +=
launch_and_time_kernel(stream_config,
kernel,
dim3(grid_size),
dim3(BlockSize),
0,
arg.p_a_grid_real_,
arg.p_b_grid_real_,
arg.p_aux_grid_,
arg.a_element_op_,
arg.b_element_op_,
arg.c_element_op_,
arg.a_grid_desc_ak0_m_ak1_,
arg.b_grid_desc_bk0_n_bk1_,
arg.c_grid_desc_mblock_mperblock_nblock_nperblock_,
arg.block_2_ctile_map_);
ave_time +=
launch_and_time_kernel(stream_config,
kernel,
dim3(grid_size),
dim3(BlockSize),
0,
arg.p_a_grid_imag_,
arg.p_b_grid_imag_,
arg.p_aux_2_grid_,
arg.a_element_op_,
arg.b_element_op_,
arg.c_element_op_,
arg.a_grid_desc_ak0_m_ak1_,
arg.b_grid_desc_bk0_n_bk1_,
arg.c_grid_desc_mblock_mperblock_nblock_nperblock_,
arg.block_2_ctile_map_);
// c_real = aux - aux_2
ave_time += launch_and_time_kernel(stream_config,
substract_kernel,
dim3(grid_size),
dim3(BlockSize),
0,
arg.p_aux_grid_,
arg.p_aux_2_grid_,
arg.p_c_grid_real_,
arg.c_grid_desc_m_,
arg.c_grid_desc_m_,
arg.c_grid_desc_m_,
Substract{});
ave_time +=
launch_and_time_kernel(stream_config,
kernel,
dim3(grid_size),
dim3(BlockSize),
0,
arg.p_a_grid_real_,
arg.p_b_grid_imag_,
arg.p_aux_grid_,
arg.a_element_op_,
arg.b_element_op_,
arg.c_element_op_,
arg.a_grid_desc_ak0_m_ak1_,
arg.b_grid_desc_bk0_n_bk1_,
arg.c_grid_desc_mblock_mperblock_nblock_nperblock_,
arg.block_2_ctile_map_);
ave_time +=
launch_and_time_kernel(stream_config,
kernel,
dim3(grid_size),
dim3(BlockSize),
0,
arg.p_a_grid_imag_,
arg.p_b_grid_real_,
arg.p_aux_2_grid_,
arg.a_element_op_,
arg.b_element_op_,
arg.c_element_op_,
arg.a_grid_desc_ak0_m_ak1_,
arg.b_grid_desc_bk0_n_bk1_,
arg.c_grid_desc_mblock_mperblock_nblock_nperblock_,
arg.block_2_ctile_map_);
// c_imag = aux + aux_2
ave_time += launch_and_time_kernel(stream_config,
add_kernel,
dim3(grid_size),
dim3(BlockSize),
0,
arg.p_aux_grid_,
arg.p_aux_2_grid_,
arg.p_c_grid_imag_,
arg.c_grid_desc_m_,
arg.c_grid_desc_m_,
arg.c_grid_desc_m_,
Add{});
}
return ave_time;
}
// polymorphic
float Run(const BaseArgument* p_arg,
const StreamConfig& stream_config = StreamConfig{}) override
{
return Run(*dynamic_cast<const Argument*>(p_arg), stream_config);
}
};
static constexpr bool IsValidCompilationParameter()
{
// TODO: properly implement this check
return true;
}
static bool IsSupportedArgument(const Argument& arg)
{
return GridwiseGemm::CheckValidity(arg.a_grid_desc_ak0_m_ak1_,
arg.b_grid_desc_bk0_n_bk1_,
arg.c_grid_desc_m_n_,
arg.block_2_ctile_map_);
}
// polymorphic
bool IsSupportedArgument(const BaseArgument* p_arg) override
{
return IsSupportedArgument(*dynamic_cast<const Argument*>(p_arg));
}
static auto MakeArgument(const ADataType* p_a_real,
const ADataType* p_a_imag,
const BDataType* p_b_real,
const BDataType* p_b_imag,
CDataType* p_c_real,
CDataType* p_c_imag,
CDataType* p_workspace,
index_t MRaw,
index_t NRaw,
index_t KRaw,
index_t StrideA,
index_t StrideB,
index_t StrideC,
AElementwiseOperation a_element_op,
BElementwiseOperation b_element_op,
CElementwiseOperation c_element_op)
{
return Argument{p_a_real,
p_a_imag,
p_b_real,
p_b_imag,
p_c_real,
p_c_imag,
p_workspace,
MRaw,
NRaw,
KRaw,
StrideA,
StrideB,
StrideC,
a_element_op,
b_element_op,
c_element_op};
}
static auto MakeInvoker() { return Invoker{}; }
// polymorphic
std::unique_ptr<BaseArgument> MakeArgumentPointer(const void* p_a_real,
const void* p_a_imag,
const void* p_b_real,
const void* p_b_imag,
void* p_c_real,
void* p_c_imag,
void* p_workspace,
index_t MRaw,
index_t NRaw,
index_t KRaw,
index_t StrideA,
index_t StrideB,
index_t StrideC,
AElementwiseOperation a_element_op,
BElementwiseOperation b_element_op,
CElementwiseOperation c_element_op,
index_t /* KBatch */ = 1) override
{
return std::make_unique<Argument>(static_cast<const ADataType*>(p_a_real),
static_cast<const ADataType*>(p_a_imag),
static_cast<const BDataType*>(p_b_real),
static_cast<const BDataType*>(p_b_imag),
static_cast<CDataType*>(p_c_real),
static_cast<CDataType*>(p_c_imag),
static_cast<CDataType*>(p_workspace),
MRaw,
NRaw,
KRaw,
StrideA,
StrideB,
StrideC,
a_element_op,
b_element_op,
c_element_op);
}
// polymorphic
std::unique_ptr<BaseInvoker> MakeInvokerPointer() override
{
return std::make_unique<Invoker>(Invoker{});
}
// polymorphic
std::string GetTypeString() const override
{
auto str = std::stringstream();
// clang-format off
str << "DeviceCGemm_4Gemm_Xdl_CShuffle"
<< "<"
<< BlockSize << ", "
<< MPerBlock << ", "
<< NPerBlock << ", "
<< KPerBlock << ", "
<< AK1 << ", "
<< BK1
<< ">";
// clang-format on
return str.str();
}
std::size_t GetWorkspaceSize(index_t MRaw,
index_t NRaw,
[[maybe_unused]] index_t KRaw,
[[maybe_unused]] index_t StrideA,
[[maybe_unused]] index_t StrideB,
index_t StrideC) override
{
const auto c_grid_desc_m_n = MakeCGridDescriptor_M_N(MRaw, NRaw, StrideC);
return 2 * sizeof(CDataType) * c_grid_desc_m_n.GetElementSpaceSize();
}
};
} // namespace device
} // namespace tensor_operation
} // namespace ck
......@@ -417,6 +417,8 @@ struct DeviceConv2dFwdXdl_C_Shuffle_Input_N_Hi_Wi_C_Weight_K_Y_X_C_Output_N_Ho_W
using BGridDesc_K0_N_K1 = remove_cvref_t<decltype(ABCGridDescs{}[I1])>;
using CGridDesc_M_N = remove_cvref_t<decltype(ABCGridDescs{}[I2])>;
using Block2CTileMap = BlockToCTileMap_M00_N0_M01<MPerBlock, NPerBlock, CGridDesc_M_N>;
// GridwiseGemm
using GridwiseGemm = GridwiseGemm_k0mk1_k0nk1_mn_xdlops_v3r1<
BlockSize,
......@@ -477,8 +479,6 @@ struct DeviceConv2dFwdXdl_C_Shuffle_Input_N_Hi_Wi_C_Weight_K_Y_X_C_Output_N_Ho_W
std::vector<ck::index_t> conv_filter_dilations,
std::vector<ck::index_t> input_left_pads,
std::vector<ck::index_t> input_right_pads,
ck::index_t M01,
ck::index_t N01,
InElementwiseOperation in_element_op,
WeiElementwiseOperation wei_element_op,
OutElementwiseOperation out_element_op)
......@@ -490,8 +490,6 @@ struct DeviceConv2dFwdXdl_C_Shuffle_Input_N_Hi_Wi_C_Weight_K_Y_X_C_Output_N_Ho_W
c_grid_desc_m_n_{},
c_grid_desc_mblock_mxdlperwave_mwavemperxdl_nblock_nxdlperwave_nwavenperxdl_{},
block_2_ctile_map_{},
M01_{M01},
N01_{N01},
in_element_op_{in_element_op},
wei_element_op_{wei_element_op},
out_element_op_{out_element_op},
......@@ -520,10 +518,9 @@ struct DeviceConv2dFwdXdl_C_Shuffle_Input_N_Hi_Wi_C_Weight_K_Y_X_C_Output_N_Ho_W
a_grid_desc_k0_m_k1_ = descs[I0];
b_grid_desc_k0_n_k1_ = descs[I1];
block_2_ctile_map_ =
GridwiseGemm::MakeDefaultBlock2CTileMap(c_grid_desc_m_n_, M01, N01);
c_grid_desc_m_n_ = descs[I2];
c_grid_desc_m_n_ = descs[I2];
block_2_ctile_map_ = Block2CTileMap{c_grid_desc_m_n_};
if(GridwiseGemm::CheckValidity(a_grid_desc_k0_m_k1_,
b_grid_desc_k0_n_k1_,
......@@ -546,9 +543,7 @@ struct DeviceConv2dFwdXdl_C_Shuffle_Input_N_Hi_Wi_C_Weight_K_Y_X_C_Output_N_Ho_W
typename GridwiseGemm::
CGridDescriptor_MBlock_MXdlPerWave_MWaveMPerXdl_NBlock_NXdlPerWave_NWaveNPerXdl
c_grid_desc_mblock_mxdlperwave_mwavemperxdl_nblock_nxdlperwave_nwavenperxdl_;
typename GridwiseGemm::DefaultBlock2CTileMap block_2_ctile_map_;
index_t M01_;
index_t N01_;
Block2CTileMap block_2_ctile_map_;
InElementwiseOperation in_element_op_;
WeiElementwiseOperation wei_element_op_;
OutElementwiseOperation out_element_op_;
......@@ -661,7 +656,7 @@ struct DeviceConv2dFwdXdl_C_Shuffle_Input_N_Hi_Wi_C_Weight_K_Y_X_C_Output_N_Ho_W
InElementwiseOperation,
WeiElementwiseOperation,
OutElementwiseOperation,
remove_reference_t<typename GridwiseGemm::DefaultBlock2CTileMap>,
Block2CTileMap,
true>;
ave_time = launch_and_time_kernel(
......@@ -695,7 +690,7 @@ struct DeviceConv2dFwdXdl_C_Shuffle_Input_N_Hi_Wi_C_Weight_K_Y_X_C_Output_N_Ho_W
InElementwiseOperation,
WeiElementwiseOperation,
OutElementwiseOperation,
remove_reference_t<typename GridwiseGemm::DefaultBlock2CTileMap>,
Block2CTileMap,
false>;
ave_time = launch_and_time_kernel(
......@@ -814,8 +809,6 @@ struct DeviceConv2dFwdXdl_C_Shuffle_Input_N_Hi_Wi_C_Weight_K_Y_X_C_Output_N_Ho_W
conv_filter_dilations,
input_left_pads,
input_right_pads,
1,
1,
in_element_op,
wei_element_op,
out_element_op};
......@@ -854,8 +847,6 @@ struct DeviceConv2dFwdXdl_C_Shuffle_Input_N_Hi_Wi_C_Weight_K_Y_X_C_Output_N_Ho_W
conv_filter_dilations,
input_left_pads,
input_right_pads,
1,
1,
in_element_op,
wei_element_op,
out_element_op);
......
#ifndef DEVICE_CONVND_FWD_XDL_NHWC_KYXC_NHWK_HPP
#define DEVICE_CONVND_FWD_XDL_NHWC_KYXC_NHWK_HPP
#pragma once
#include <functional>
#include <iostream>
......@@ -8,6 +7,7 @@
#include <sstream>
#include "device.hpp"
#include "device_prop.hpp"
#include "device_base.hpp"
#include "device_conv_fwd.hpp"
#include "convolution_forward_specialization.hpp"
......@@ -607,6 +607,8 @@ struct DeviceConvNDFwdXdl_Input_N_Hi_Wi_C_Weight_K_Y_X_C_Output_N_Ho_Wo_K
using BGridDesc_K0_N_K1 = remove_cvref_t<decltype(ABCGridDescs{}[I1])>;
using CGridDesc_M_N = remove_cvref_t<decltype(ABCGridDescs{}[I2])>;
using Block2CTileMap = BlockToCTileMap_M00_N0_M01<MPerBlock, NPerBlock, CGridDesc_M_N>;
// GridwiseGemm
using GridwiseGemm = GridwiseGemm_k0mk1_k0nk1_mn_xdlops_v2r3<
BlockSize,
......@@ -664,8 +666,6 @@ struct DeviceConvNDFwdXdl_Input_N_Hi_Wi_C_Weight_K_Y_X_C_Output_N_Ho_Wo_K
std::vector<ck::index_t> conv_filter_dilations,
std::vector<ck::index_t> input_left_pads,
std::vector<ck::index_t> input_right_pads,
ck::index_t M01,
ck::index_t N01,
InElementwiseOperation in_element_op,
WeiElementwiseOperation wei_element_op,
OutElementwiseOperation out_element_op)
......@@ -677,8 +677,6 @@ struct DeviceConvNDFwdXdl_Input_N_Hi_Wi_C_Weight_K_Y_X_C_Output_N_Ho_Wo_K
c_grid_desc_m_n_{},
c_grid_desc_m0_n0_m1_n1_m2_m3_m4_n2_{},
block_2_ctile_map_{},
M01_{M01},
N01_{N01},
in_element_op_{in_element_op},
wei_element_op_{wei_element_op},
out_element_op_{out_element_op},
......@@ -705,8 +703,8 @@ struct DeviceConvNDFwdXdl_Input_N_Hi_Wi_C_Weight_K_Y_X_C_Output_N_Ho_Wo_K
a_grid_desc_k0_m_k1_ = descs[I0];
b_grid_desc_k0_n_k1_ = descs[I1];
c_grid_desc_m_n_ = descs[I2];
block_2_ctile_map_ =
GridwiseGemm::MakeDefaultBlock2CTileMap(c_grid_desc_m_n_, M01, N01);
block_2_ctile_map_ = Block2CTileMap{c_grid_desc_m_n_};
if(GridwiseGemm::CheckValidity(a_grid_desc_k0_m_k1_,
b_grid_desc_k0_n_k1_,
......@@ -727,9 +725,7 @@ struct DeviceConvNDFwdXdl_Input_N_Hi_Wi_C_Weight_K_Y_X_C_Output_N_Ho_Wo_K
CGridDesc_M_N c_grid_desc_m_n_;
typename GridwiseGemm::CGridDesc_M0_N0_M1_N1_M2_M3_M4_N2
c_grid_desc_m0_n0_m1_n1_m2_m3_m4_n2_;
typename GridwiseGemm::DefaultBlock2CTileMap block_2_ctile_map_;
index_t M01_;
index_t N01_;
Block2CTileMap block_2_ctile_map_;
InElementwiseOperation in_element_op_;
WeiElementwiseOperation wei_element_op_;
OutElementwiseOperation out_element_op_;
......@@ -793,7 +789,7 @@ struct DeviceConvNDFwdXdl_Input_N_Hi_Wi_C_Weight_K_Y_X_C_Output_N_Ho_Wo_K
InElementwiseOperation,
WeiElementwiseOperation,
OutElementwiseOperation,
remove_reference_t<typename GridwiseGemm::DefaultBlock2CTileMap>,
Block2CTileMap,
true>;
ave_time = launch_and_time_kernel(stream_config,
......@@ -824,7 +820,7 @@ struct DeviceConvNDFwdXdl_Input_N_Hi_Wi_C_Weight_K_Y_X_C_Output_N_Ho_Wo_K
InElementwiseOperation,
WeiElementwiseOperation,
OutElementwiseOperation,
remove_reference_t<typename GridwiseGemm::DefaultBlock2CTileMap>,
Block2CTileMap,
false>;
ave_time = launch_and_time_kernel(stream_config,
......@@ -862,6 +858,27 @@ struct DeviceConvNDFwdXdl_Input_N_Hi_Wi_C_Weight_K_Y_X_C_Output_N_Ho_Wo_K
static bool IsSupportedArgument(const Argument& arg)
{
if(ck::get_device_name() == "gfx908")
{
if constexpr(!(is_same_v<AccDataType, float> || is_same_v<AccDataType, float> ||
is_same_v<AccDataType, int32_t>))
{
return false;
}
}
else if(ck::get_device_name() == "gfx90a")
{
if constexpr(!(is_same_v<AccDataType, float> || is_same_v<AccDataType, float> ||
is_same_v<AccDataType, int32_t> || is_same_v<AccDataType, double>))
{
return false;
}
}
else
{
return false;
}
// Input tensors can't be bigger than 2GB each.
constexpr ck::long_index_t GB2 = (ck::long_index_t{1} << 31);
......@@ -955,8 +972,6 @@ struct DeviceConvNDFwdXdl_Input_N_Hi_Wi_C_Weight_K_Y_X_C_Output_N_Ho_Wo_K
conv_filter_dilations,
input_left_pads,
input_right_pads,
1,
1,
in_element_op,
wei_element_op,
out_element_op};
......@@ -995,8 +1010,6 @@ struct DeviceConvNDFwdXdl_Input_N_Hi_Wi_C_Weight_K_Y_X_C_Output_N_Ho_Wo_K
conv_filter_dilations,
input_left_pads,
input_right_pads,
1,
1,
in_element_op,
wei_element_op,
out_element_op);
......@@ -1012,8 +1025,7 @@ struct DeviceConvNDFwdXdl_Input_N_Hi_Wi_C_Weight_K_Y_X_C_Output_N_Ho_Wo_K
auto str = std::stringstream();
// clang-format off
str << "DeviceConv" << std::to_string(NumDimSpatial)
<< "DFwdXdl_Input_N_Hi_Wi_C_Weight_K_Y_X_C_Output_N_Ho_Wo_K"
str << "DeviceConvNDFwdXdl_Input_N_Hi_Wi_C_Weight_K_Y_X_C_Output_N_Ho_Wo_K"
<< "<"
<< BlockSize << ", "
<< MPerBlock << ", "
......@@ -1030,4 +1042,3 @@ struct DeviceConvNDFwdXdl_Input_N_Hi_Wi_C_Weight_K_Y_X_C_Output_N_Ho_Wo_K
} // namespace device
} // namespace tensor_operation
} // namespace ck
#endif
......@@ -4,6 +4,7 @@
#include <sstream>
#include "device.hpp"
#include "device_prop.hpp"
#include "device_base.hpp"
#include "device_gemm.hpp"
#include "common_header.hpp"
......@@ -13,7 +14,6 @@
#include "gemm_specialization.hpp"
#include "element_wise_operation.hpp"
#include "gridwise_gemm_dl_v1r3.hpp"
#include "device_prop.hpp"
namespace ck {
namespace tensor_operation {
......@@ -60,8 +60,8 @@ template <
index_t CThreadTransferDstScalarPerVector,
enable_if_t<
is_same_v<AElementwiseOperation, ck::tensor_operation::element_wise::PassThrough> &&
is_same_v<AElementwiseOperation, ck::tensor_operation::element_wise::PassThrough> &&
is_same_v<AElementwiseOperation, ck::tensor_operation::element_wise::PassThrough>,
is_same_v<BElementwiseOperation, ck::tensor_operation::element_wise::PassThrough> &&
is_same_v<CElementwiseOperation, ck::tensor_operation::element_wise::PassThrough>,
bool> = false>
struct DeviceGemmDl
: public DeviceGemm<AElementwiseOperation, BElementwiseOperation, CElementwiseOperation>
......
......@@ -11,7 +11,7 @@ template <typename DPtrsGlobal,
typename BElementwiseOperation,
typename CElementwiseOperation,
typename DxsInElementwiseOperation,
typename DxsOutElementwiseOperation>
typename DxsAccElementwiseOperation>
struct DeviceGemmReduce : public BaseOperator
{
virtual std::unique_ptr<BaseArgument>
......@@ -29,7 +29,7 @@ struct DeviceGemmReduce : public BaseOperator
BElementwiseOperation b_element_op,
CElementwiseOperation c_element_op,
DxsInElementwiseOperation dxs_in_element_op,
DxsOutElementwiseOperation dxs_out_element_op,
DxsAccElementwiseOperation dxs_out_element_op,
ck::index_t BatchCount = 1) = 0;
virtual std::unique_ptr<BaseInvoker> MakeInvokerPointer() = 0;
......@@ -40,13 +40,13 @@ template <typename DPtrsGlobal,
typename BElementwiseOperation,
typename CElementwiseOperation,
typename DxsInElementwiseOperation,
typename DxsOutElementwiseOperation>
typename DxsAccElementwiseOperation>
using DeviceGemmReducePtr = std::unique_ptr<DeviceGemmReduce<DPtrsGlobal,
AElementwiseOperation,
BElementwiseOperation,
CElementwiseOperation,
DxsInElementwiseOperation,
DxsOutElementwiseOperation>>;
DxsAccElementwiseOperation>>;
} // namespace device
} // namespace tensor_operation
......
......@@ -32,7 +32,7 @@ template <typename ALayout,
typename CElementwiseOperation,
typename DxsReduceOperation,
typename DxsInElementwiseOperation,
typename DxsOutElementwiseOperation,
typename DxsAccElementwiseOperation,
typename DGlobalMemoryDataOperation,
GemmSpecialization GemmSpec,
index_t NumGemmKPrefetchStage,
......@@ -73,7 +73,7 @@ struct DeviceGemmReduce_Xdl_CShuffle : public DeviceGemmReduce<DPtrsGlobal,
BElementwiseOperation,
CElementwiseOperation,
DxsInElementwiseOperation,
DxsOutElementwiseOperation>
DxsAccElementwiseOperation>
{
using DeviceOp = DeviceGemmReduce_Xdl_CShuffle;
......@@ -389,7 +389,7 @@ struct DeviceGemmReduce_Xdl_CShuffle : public DeviceGemmReduce<DPtrsGlobal,
CElementwiseOperation,
DxsReduceOperation,
DxsInElementwiseOperation,
DxsOutElementwiseOperation,
DxsAccElementwiseOperation,
InMemoryDataOperationEnum::Set,
DGlobalMemoryDataOperation,
AGridDesc_AK0_M_AK1,
......@@ -449,7 +449,7 @@ struct DeviceGemmReduce_Xdl_CShuffle : public DeviceGemmReduce<DPtrsGlobal,
BElementwiseOperation b_element_op,
CElementwiseOperation c_element_op,
DxsInElementwiseOperation dxs_in_element_op,
DxsOutElementwiseOperation dxs_out_element_op)
DxsAccElementwiseOperation dxs_out_element_op)
: p_a_grid_{p_a_grid},
p_b_grid_{p_b_grid},
p_c_grid_{p_c_grid},
......@@ -498,7 +498,7 @@ struct DeviceGemmReduce_Xdl_CShuffle : public DeviceGemmReduce<DPtrsGlobal,
BElementwiseOperation b_element_op_;
CElementwiseOperation c_element_op_;
DxsInElementwiseOperation dxs_in_element_op_;
DxsOutElementwiseOperation dxs_out_element_op_;
DxsAccElementwiseOperation dxs_out_element_op_;
};
// Invoker
......@@ -554,7 +554,7 @@ struct DeviceGemmReduce_Xdl_CShuffle : public DeviceGemmReduce<DPtrsGlobal,
BElementwiseOperation,
CElementwiseOperation,
DxsInElementwiseOperation,
DxsOutElementwiseOperation,
DxsAccElementwiseOperation,
DeviceOp::AGridDesc_AK0_M_AK1,
DeviceOp::BGridDesc_BK0_N_BK1,
typename GridwiseGemm::CGridDescriptor_MBlock_MPerBlock_NBlock_NPerBlock,
......@@ -594,7 +594,7 @@ struct DeviceGemmReduce_Xdl_CShuffle : public DeviceGemmReduce<DPtrsGlobal,
BElementwiseOperation,
CElementwiseOperation,
DxsInElementwiseOperation,
DxsOutElementwiseOperation,
DxsAccElementwiseOperation,
DeviceOp::AGridDesc_AK0_M_AK1,
DeviceOp::BGridDesc_BK0_N_BK1,
typename GridwiseGemm::CGridDescriptor_MBlock_MPerBlock_NBlock_NPerBlock,
......@@ -669,7 +669,7 @@ struct DeviceGemmReduce_Xdl_CShuffle : public DeviceGemmReduce<DPtrsGlobal,
BElementwiseOperation b_element_op,
CElementwiseOperation c_element_op,
DxsInElementwiseOperation dxs_in_element_op,
DxsOutElementwiseOperation dxs_out_element_op)
DxsAccElementwiseOperation dxs_out_element_op)
{
return Argument{p_a,
p_b,
......@@ -705,7 +705,7 @@ struct DeviceGemmReduce_Xdl_CShuffle : public DeviceGemmReduce<DPtrsGlobal,
BElementwiseOperation b_element_op,
CElementwiseOperation c_element_op,
DxsInElementwiseOperation dxs_in_element_op,
DxsOutElementwiseOperation dxs_out_element_op,
DxsAccElementwiseOperation dxs_out_element_op,
index_t /* KBatch */ = 1) override
{
return std::make_unique<Argument>(static_cast<const ADataType*>(p_a),
......
......@@ -3,6 +3,7 @@
#include <iostream>
#include <sstream>
#include "device.hpp"
#include "device_prop.hpp"
#include "device_base.hpp"
#include "device_gemm.hpp"
#include "common_header.hpp"
......@@ -11,7 +12,6 @@
#include "tensor_descriptor_helper.hpp"
#include "gridwise_gemm_xdlops_v2r3.hpp"
#include "gemm_specialization.hpp"
#include "device_prop.hpp"
namespace ck {
namespace tensor_operation {
......@@ -408,7 +408,23 @@ struct DeviceGemmXdl
static bool IsSupportedArgument(const Argument& arg)
{
if(!(ck::get_device_name() == "gfx908" || ck::get_device_name() == "gfx90a"))
if(ck::get_device_name() == "gfx908")
{
if constexpr(!(is_same_v<AccDataType, float> || is_same_v<AccDataType, float> ||
is_same_v<AccDataType, int32_t>))
{
return false;
}
}
else if(ck::get_device_name() == "gfx90a")
{
if constexpr(!(is_same_v<AccDataType, float> || is_same_v<AccDataType, float> ||
is_same_v<AccDataType, int32_t> || is_same_v<AccDataType, double>))
{
return false;
}
}
else
{
return false;
}
......
......@@ -65,7 +65,7 @@ __global__ void
c_element_op,
gemm_desc_ptr[group_id].grouped_gemm_block_2_ctile_map_);
#else
ignore = gemm_descs;
ignore = gemm_descs_const;
ignore = group_count;
ignore = a_element_op;
ignore = b_element_op;
......@@ -320,7 +320,6 @@ struct DeviceGroupedGemmXdl
return block_2_ctile_map_.CheckValidity(c_grid_desc_m_n);
}
private:
typename GridwiseGemm::DefaultBlock2CTileMap block_2_ctile_map_;
ck::index_t BlockStart_;
};
......@@ -394,9 +393,8 @@ struct DeviceGroupedGemmXdl
DeviceGroupedGemmXdl::MakeCGridDescriptor_M_N(M, N, StrideC);
const index_t grid_size_grp =
typename GroupedGemmBlock2CTileMap::UnderlyingBlock2CTileMap(
c_grid_desc_m_n_, M01, N01)
.CalculateGridSize(c_grid_desc_m_n_);
GroupedGemmBlock2CTileMap(c_grid_desc_m_n_, M01, N01, 0)
.block_2_ctile_map_.CalculateGridSize(c_grid_desc_m_n_);
const index_t BlockStart = grid_size_;
const index_t BlockEnd = grid_size_ + grid_size_grp;
......
/*******************************************************************************
*
* MIT License
*
* Copyright (c) 2022 Advanced Micro Devices, Inc.
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in all
* copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
* SOFTWARE.
*
*******************************************************************************/
#pragma once
#include "data_type.hpp"
......@@ -5,14 +30,22 @@ namespace ck {
namespace tensor_operation {
namespace binary_element_wise {
struct Add
template <typename Y, typename X1, typename X2>
struct Add;
template <>
struct Add<double, double, double>
{
__host__ __device__ constexpr void
operator()(double& dst, const double& src1, const double& src2) const
{
dst = src1 + src2;
}
};
template <>
struct Add<float, float, float>
{
__host__ __device__ constexpr void
operator()(float& dst, const float& src1, const float& src2) const
{
......@@ -20,6 +53,75 @@ struct Add
}
};
template <>
struct Add<half_t, half_t, half_t>
{
__host__ __device__ constexpr void
operator()(half_t& dst, const half_t& src1, const half_t& src2) const
{
dst = src1 + src2;
}
};
template <>
struct Add<bhalf_t, bhalf_t, bhalf_t>
{
__host__ __device__ constexpr void
operator()(bhalf_t& dst, const bhalf_t& src1, const bhalf_t& src2) const
{
const float x1 = ck::type_convert<float>(src1);
const float x2 = ck::type_convert<float>(src2);
const float y = x1 + x2;
dst = ck::type_convert<bhalf_t>(y);
}
};
template <typename Y, typename X1, typename X2>
struct Substract;
template <>
struct Substract<double, double, double>
{
__host__ __device__ constexpr void
operator()(double& dst, const double& src1, const double& src2) const
{
dst = src1 - src2;
}
};
template <>
struct Substract<float, float, float>
{
__host__ __device__ constexpr void
operator()(float& dst, const float& src1, const float& src2) const
{
dst = src1 - src2;
}
};
template <>
struct Substract<half_t, half_t, half_t>
{
__host__ __device__ constexpr void
operator()(half_t& dst, const half_t& src1, const half_t& src2) const
{
dst = src1 - src2;
}
};
template <>
struct Substract<bhalf_t, bhalf_t, bhalf_t>
{
__host__ __device__ constexpr void
operator()(bhalf_t& dst, const bhalf_t& src1, const bhalf_t& src2) const
{
const float x1 = ck::type_convert<float>(src1);
const float x2 = ck::type_convert<float>(src2);
const float y = x1 - x2;
dst = ck::type_convert<bhalf_t>(y);
}
};
} // namespace binary_element_wise
} // namespace tensor_operation
} // namespace ck
......@@ -143,6 +143,24 @@ struct AddHardswishAdd
}
};
struct Normalize
{
Normalize(float epsilon = 1e-4) : epsilon_(epsilon) {}
__host__ __device__ constexpr void operator()(float& y,
const float& x,
const float& mean,
const float& mean_square,
const float& gamma,
const float& beta) const
{
float variance = mean_square - (mean * mean);
y = ((x - mean) / sqrtf(variance + epsilon_)) * gamma + beta;
}
float epsilon_;
};
// Unary operators are usually called element-wisely before/after the reduction is executed on the
// elements. They are needed for easy implementation of reduction types of AVG, NRM1, NRM2
......
......@@ -8,6 +8,237 @@
namespace ck {
// Rows of column-vectors
template <index_t MPerBlock,
index_t NPerBlock,
typename CGridDesc_M_N,
bool DeviceCTileIndexCheck = false>
struct BlockToCTileMap_M00_N0_M01
{
static constexpr auto I0 = Number<0>{};
static constexpr auto I1 = Number<1>{};
static constexpr auto I2 = Number<2>{};
static constexpr auto I3 = Number<3>{};
__host__ __device__ BlockToCTileMap_M00_N0_M01() = default;
__host__ __device__ BlockToCTileMap_M00_N0_M01(const CGridDesc_M_N& c_grid_desc_m_n,
index_t M01 = 1)
: M01_(M01), underlying_map_(GetBlockToCTileMap(c_grid_desc_m_n, M01))
{
}
__host__ constexpr index_t CalculateGridSize(const CGridDesc_M_N& c_grid_desc_m_n) const
{
const auto M0 = math::integer_divide_ceil(c_grid_desc_m_n.GetLength(I0), MPerBlock);
const auto N0 = math::integer_divide_ceil(c_grid_desc_m_n.GetLength(I1), NPerBlock);
const auto M00 = math::integer_divide_ceil(M0, M01_);
const index_t grid_size = M00 * M01_ * N0;
return grid_size;
}
template <typename TopIdx>
__host__ __device__ constexpr auto CalculateBottomIndex(const TopIdx& idx_top) const
{
return underlying_map_.CalculateBottomIndex(idx_top);
}
template <typename CTileIdx, typename CTileDim>
__host__ __device__ bool ValidCTileIndex(const CTileIdx& c_tile_idx,
const CTileDim& c_tile_dim) const
{
if constexpr(DeviceCTileIndexCheck)
return DefaultValidCTileIndex(c_tile_idx, c_tile_dim);
else
return true;
}
__host__ bool CheckValidity(const CGridDesc_M_N& c_grid_desc_m_n) const
{
if constexpr(DeviceCTileIndexCheck)
return true; // validity check moved to kernel
const index_t M0 = math::integer_divide_ceil(c_grid_desc_m_n.GetLength(I0), MPerBlock);
if(M0 % M01_ == 0)
{
return true;
}
else
{
return false;
}
}
private:
__host__ __device__ static constexpr auto
GetBlockToCTileMap(const CGridDesc_M_N& c_grid_desc_m_n, index_t M01)
{
const auto M0 = math::integer_divide_ceil(c_grid_desc_m_n.GetLength(I0), MPerBlock);
const auto N0 = math::integer_divide_ceil(c_grid_desc_m_n.GetLength(I1), NPerBlock);
const auto M00 = math::integer_divide_ceil(M0, M01);
const auto m00_n0_m01_to_m0_n0_block_cluster_adaptor = make_single_stage_tensor_adaptor(
make_tuple(make_insert_transform(1),
make_unmerge_transform(make_tuple(M00, M01)),
make_pass_through_transform(make_tuple(N0))),
make_tuple(Sequence<>{}, Sequence<0>{}, Sequence<1>{}),
make_tuple(Sequence<0>{}, Sequence<1, 3>{}, Sequence<2>{}));
const auto cblockid_to_m00_n0_m01_block_cluster_adaptor = make_single_stage_tensor_adaptor(
make_tuple(make_merge_transform(make_tuple(1, M00, N0, M01))),
make_tuple(Sequence<0, 1, 2, 3>{}),
make_tuple(Sequence<0>{}));
const auto cblockid_to_m0_n0_block_cluster_adaptor =
chain_tensor_adaptors(m00_n0_m01_to_m0_n0_block_cluster_adaptor,
cblockid_to_m00_n0_m01_block_cluster_adaptor);
return cblockid_to_m0_n0_block_cluster_adaptor;
}
index_t M01_;
using UnderlyingMap = decltype(GetBlockToCTileMap(CGridDesc_M_N{}, 1));
UnderlyingMap underlying_map_;
};
// Rows of column-vectors
// This C-tile map dynamically adjusts M01 when C-tile index is out of range
template <index_t MPerBlock, index_t NPerBlock, typename CGridDesc_M_N>
struct BlockToCTileMap_M00_N0_M01Adapt
{
static constexpr auto I0 = Number<0>{};
static constexpr auto I1 = Number<1>{};
static constexpr auto I2 = Number<2>{};
static constexpr auto I3 = Number<3>{};
__host__ __device__ BlockToCTileMap_M00_N0_M01Adapt() = default;
__host__ __device__ BlockToCTileMap_M00_N0_M01Adapt(const CGridDesc_M_N& c_grid_desc_m_n,
index_t M01 = 8)
: M01_(M01), c_grid_desc_m_n_(c_grid_desc_m_n)
{
}
__host__ constexpr index_t CalculateGridSize(const CGridDesc_M_N& c_grid_desc_m_n) const
{
const auto M0 = math::integer_divide_ceil(c_grid_desc_m_n.GetLength(I0), MPerBlock);
const auto N0 = math::integer_divide_ceil(c_grid_desc_m_n.GetLength(I1), NPerBlock);
const index_t grid_size = M0 * N0;
return grid_size;
}
template <typename TopIdx>
__host__ __device__ constexpr auto CalculateBottomIndex(const TopIdx& idx_top) const
{
auto block_1d_id = idx_top[I0];
const auto M0 = math::integer_divide_ceil(c_grid_desc_m_n_.GetLength(I0), MPerBlock);
const auto N0 = math::integer_divide_ceil(c_grid_desc_m_n_.GetLength(I1), NPerBlock);
block_1d_id = block_1d_id % (M0 * N0); // swallow batch index
index_t idx_N0 = block_1d_id % N0;
index_t idx_M0 = block_1d_id / N0;
const auto M01_adapt = (idx_M0 < M0 - M0 % M01_) ? M01_ : M0 % M01_;
index_t idx_M00 = idx_M0 / M01_;
index_t idx_M01 = idx_M0 % M01_;
index_t idx_N0_M01_local = idx_N0 + idx_M01 * N0;
return make_tuple(idx_N0_M01_local % M01_adapt + idx_M00 * M01_,
idx_N0_M01_local / M01_adapt);
}
template <typename CTileIdx, typename CTileDim>
__host__ __device__ bool ValidCTileIndex(const CTileIdx& /* c_tile_idx */,
const CTileDim& /* c_tile_dim */) const
{
return true; // always valid provided that user gets grid size from CalculateGridSize()
}
__host__ bool CheckValidity(const CGridDesc_M_N& /* c_grid_desc_m_n */) const { return true; }
private:
index_t M01_;
CGridDesc_M_N c_grid_desc_m_n_;
};
// 2D slices of column-vectors in 3D space
// This C-tile map dynamically adjusts M01 when C-tile index is out of range
template <index_t MPerBlock, index_t NPerBlock, typename CGridDesc_M_N>
struct BlockToCTileMap_KSplit_M00_N0_M01Adapt
{
static constexpr auto I0 = Number<0>{};
static constexpr auto I1 = Number<1>{};
static constexpr auto I2 = Number<2>{};
static constexpr auto I3 = Number<3>{};
__host__ __device__ BlockToCTileMap_KSplit_M00_N0_M01Adapt() = default;
__host__ __device__ BlockToCTileMap_KSplit_M00_N0_M01Adapt(const CGridDesc_M_N& c_grid_desc_m_n,
index_t M01 = 8,
index_t KSplit = 1)
: M01_(M01), KSplit_(KSplit), c_grid_desc_m_n_(c_grid_desc_m_n)
{
}
__host__ constexpr index_t CalculateGridSize(const CGridDesc_M_N& c_grid_desc_m_n) const
{
const auto M0 = math::integer_divide_ceil(c_grid_desc_m_n.GetLength(I0), MPerBlock);
const auto N0 = math::integer_divide_ceil(c_grid_desc_m_n.GetLength(I1), NPerBlock);
const index_t grid_size = M0 * N0 * KSplit_;
return grid_size;
}
template <typename TopIdx>
__host__ __device__ constexpr auto CalculateBottomIndex(const TopIdx& idx_top) const
{
auto block_1d_id = idx_top[I0];
const auto M0 = math::integer_divide_ceil(c_grid_desc_m_n_.GetLength(I0), MPerBlock);
const auto N0 = math::integer_divide_ceil(c_grid_desc_m_n_.GetLength(I1), NPerBlock);
const index_t idx_ksplit = block_1d_id / (M0 * N0);
block_1d_id = block_1d_id % (M0 * N0);
index_t idx_N0 = block_1d_id % N0;
index_t idx_M0 = block_1d_id / N0;
const auto M01_adapt = (idx_M0 < M0 - M0 % M01_) ? M01_ : M0 % M01_;
index_t idx_M00 = idx_M0 / M01_;
index_t idx_M01 = idx_M0 % M01_;
index_t idx_N0_M01_local = idx_N0 + idx_M01 * N0;
return make_tuple(idx_ksplit,
idx_N0_M01_local % M01_adapt + idx_M00 * M01_,
idx_N0_M01_local / M01_adapt);
}
template <typename CTileIdx, typename CTileDim>
__host__ __device__ bool ValidCTileIndex(const CTileIdx& /* c_tile_idx */,
const CTileDim& /* c_tile_dim */) const
{
return true; // always valid provided that user gets grid size from CalculateGridSize()
}
__host__ bool CheckValidity(const CGridDesc_M_N& /* c_grid_desc_m_n */) const { return true; }
private:
index_t M01_;
index_t KSplit_;
CGridDesc_M_N c_grid_desc_m_n_;
};
// Blocks of row-vectors
template <index_t MPerBlock,
index_t NPerBlock,
......
#pragma once
#include "cluster_descriptor.hpp"
#include "data_type.hpp"
#include "element_wise_operation.hpp"
#include "threadwise_tensor_slice_transfer.hpp"
namespace ck {
template <typename Gridwise5AryEltwise,
typename ADataType,
typename BDataType,
typename CDataType,
typename DDataType,
typename EDataType,
typename FDataType,
typename AGridDesc_M,
typename BGridDesc_M,
typename CGridDesc_M,
typename DGridDesc_M,
typename EGridDesc_M,
typename FGridDesc_M,
typename ElementwiseFunctor>
__global__ void kernel_5ary_elementwise_1d(const ADataType* __restrict__ p_a_global,
const BDataType* __restrict__ p_b_global,
const CDataType* __restrict__ p_c_global,
const DDataType* __restrict__ p_d_global,
const EDataType* __restrict__ p_e_global,
FDataType* __restrict__ p_f_global,
const AGridDesc_M a_grid_desc_m,
const BGridDesc_M b_grid_desc_m,
const CGridDesc_M c_grid_desc_m,
const DGridDesc_M d_grid_desc_m,
const EGridDesc_M e_grid_desc_m,
const FGridDesc_M f_grid_desc_m,
const ElementwiseFunctor functor)
{
Gridwise5AryEltwise::Run(p_a_global,
p_b_global,
p_c_global,
p_d_global,
p_e_global,
p_f_global,
a_grid_desc_m,
b_grid_desc_m,
c_grid_desc_m,
d_grid_desc_m,
e_grid_desc_m,
f_grid_desc_m,
functor);
}
// TODO - implement n-ary Elemenetwise_1D, tuple of inputs and tuple of outputs
template <typename ADataType,
typename BDataType,
typename CDataType,
typename DDataType,
typename EDataType,
typename FDataType,
typename ComputeDataType,
typename AGridDesc_M,
typename BGridDesc_M,
typename CGridDesc_M,
typename DGridDesc_M,
typename EGridDesc_M,
typename FGridDesc_M,
typename ElementwiseFunctor,
index_t MPerThread,
index_t AScalarPerVector,
index_t BScalarPerVector,
index_t CScalarPerVector,
index_t DScalarPerVector,
index_t EScalarPerVector,
index_t FScalarPerVector>
struct Gridwise5AryElementwise_1D
{
static constexpr auto I0 = Number<0>{};
static constexpr auto thread_desc_m =
make_naive_tensor_descriptor_packed(make_tuple(Number<MPerThread>{}));
using PassThrough = tensor_operation::element_wise::PassThrough;
static __device__ auto CalculateElementwiseIndex()
{
const index_t global_thread_id = get_thread_global_1d_id();
return make_multi_index(global_thread_id * MPerThread);
}
__device__ static void Run(const ADataType* __restrict__ p_a_global,
const BDataType* __restrict__ p_b_global,
const CDataType* __restrict__ p_c_global,
const DDataType* __restrict__ p_d_global,
const EDataType* __restrict__ p_e_global,
FDataType* __restrict__ p_f_global,
const AGridDesc_M a_grid_desc_m,
const BGridDesc_M b_grid_desc_m,
const CGridDesc_M c_grid_desc_m,
const DGridDesc_M d_grid_desc_m,
const EGridDesc_M e_grid_desc_m,
const FGridDesc_M f_grid_desc_m,
const ElementwiseFunctor functor)
{
const auto a_global_buf = make_dynamic_buffer<AddressSpaceEnum::Global>(
p_a_global, a_grid_desc_m.GetElementSpaceSize());
const auto b_global_buf = make_dynamic_buffer<AddressSpaceEnum::Global>(
p_b_global, b_grid_desc_m.GetElementSpaceSize());
const auto c_global_buf = make_dynamic_buffer<AddressSpaceEnum::Global>(
p_c_global, c_grid_desc_m.GetElementSpaceSize());
const auto d_global_buf = make_dynamic_buffer<AddressSpaceEnum::Global>(
p_d_global, d_grid_desc_m.GetElementSpaceSize());
const auto e_global_buf = make_dynamic_buffer<AddressSpaceEnum::Global>(
p_e_global, e_grid_desc_m.GetElementSpaceSize());
auto f_global_buf = make_dynamic_buffer<AddressSpaceEnum::Global>(
p_f_global, f_grid_desc_m.GetElementSpaceSize());
StaticBuffer<AddressSpaceEnum::Vgpr, ComputeDataType, MPerThread, true> a_thread_buf;
StaticBuffer<AddressSpaceEnum::Vgpr, ComputeDataType, MPerThread, true> b_thread_buf;
StaticBuffer<AddressSpaceEnum::Vgpr, ComputeDataType, MPerThread, true> c_thread_buf;
StaticBuffer<AddressSpaceEnum::Vgpr, ComputeDataType, MPerThread, true> d_thread_buf;
StaticBuffer<AddressSpaceEnum::Vgpr, ComputeDataType, MPerThread, true> e_thread_buf;
StaticBuffer<AddressSpaceEnum::Vgpr, ComputeDataType, MPerThread, true> f_thread_buf;
const auto thread_store_global_offset = CalculateElementwiseIndex();
auto a_global_load =
ThreadwiseTensorSliceTransfer_v2<ADataType,
ComputeDataType,
AGridDesc_M,
decltype(thread_desc_m),
Sequence<MPerThread>, // SliceLengths
Sequence<0>, // DimAccessOrder
0, // SrcVectorDim
AScalarPerVector, // ScalarPerVector
1, // SrcScalarStrideInVector
false>{a_grid_desc_m, thread_store_global_offset};
auto b_global_load =
ThreadwiseTensorSliceTransfer_v2<BDataType,
ComputeDataType,
BGridDesc_M,
decltype(thread_desc_m),
Sequence<MPerThread>, // SliceLengths
Sequence<0>, // DimAccessOrder
0, // SrcVectorDim
BScalarPerVector, // ScalarPerVector
1, // SrcScalarStrideInVector
false>{b_grid_desc_m, thread_store_global_offset};
auto c_global_load =
ThreadwiseTensorSliceTransfer_v2<CDataType,
ComputeDataType,
CGridDesc_M,
decltype(thread_desc_m),
Sequence<MPerThread>, // SliceLengths
Sequence<0>, // DimAccessOrder
0, // SrcVectorDim
CScalarPerVector, // ScalarPerVector
1, // SrcScalarStrideInVector
false>{c_grid_desc_m, thread_store_global_offset};
auto d_global_load =
ThreadwiseTensorSliceTransfer_v2<DDataType,
ComputeDataType,
DGridDesc_M,
decltype(thread_desc_m),
Sequence<MPerThread>, // SliceLengths
Sequence<0>, // DimAccessOrder
0, // SrcVectorDim
DScalarPerVector, // ScalarPerVector
1, // SrcScalarStrideInVector
false>{d_grid_desc_m, thread_store_global_offset};
auto e_global_load =
ThreadwiseTensorSliceTransfer_v2<EDataType,
ComputeDataType,
EGridDesc_M,
decltype(thread_desc_m),
Sequence<MPerThread>, // SliceLengths
Sequence<0>, // DimAccessOrder
0, // SrcVectorDim
EScalarPerVector, // ScalarPerVector
1, // SrcScalarStrideInVector
false>{e_grid_desc_m, thread_store_global_offset};
auto f_global_write =
ThreadwiseTensorSliceTransfer_v1r3<ComputeDataType,
FDataType,
decltype(thread_desc_m),
FGridDesc_M,
PassThrough,
Sequence<MPerThread>, // SliceLengths
Sequence<0>, // DimAccessOrder
0, // DstVectorDim
FScalarPerVector, // ScalarPerVector
InMemoryDataOperationEnum::Set,
1, // DstScalarStrideInVector
false>{
f_grid_desc_m, thread_store_global_offset, PassThrough{}};
const index_t blockSize = get_block_size();
const index_t blockPerGrid = get_grid_size();
const auto M = c_grid_desc_m.GetLength(I0);
const index_t loop_step = blockPerGrid * blockSize * MPerThread;
const auto loop_step_index = make_multi_index(loop_step);
index_t num_iter = M / (loop_step);
do
{
// read and process MPerThread elements
a_global_load.Run(
a_grid_desc_m, a_global_buf, thread_desc_m, make_tuple(I0), a_thread_buf);
b_global_load.Run(
b_grid_desc_m, b_global_buf, thread_desc_m, make_tuple(I0), b_thread_buf);
c_global_load.Run(
c_grid_desc_m, c_global_buf, thread_desc_m, make_tuple(I0), c_thread_buf);
d_global_load.Run(
d_grid_desc_m, d_global_buf, thread_desc_m, make_tuple(I0), d_thread_buf);
e_global_load.Run(
e_grid_desc_m, e_global_buf, thread_desc_m, make_tuple(I0), e_thread_buf);
static_for<0, MPerThread, 1>{}([&](auto m) {
constexpr auto offset = thread_desc_m.CalculateOffset(make_tuple(m));
functor(f_thread_buf(Number<offset>{}),
a_thread_buf(Number<offset>{}),
b_thread_buf(Number<offset>{}),
c_thread_buf(Number<offset>{}),
d_thread_buf(Number<offset>{}),
e_thread_buf(Number<offset>{}));
});
f_global_write.Run(thread_desc_m,
make_tuple(I0), // SrcSliceOriginIdx
f_thread_buf,
f_grid_desc_m,
f_global_buf);
a_global_load.MoveSrcSliceWindow(a_grid_desc_m, loop_step_index);
b_global_load.MoveSrcSliceWindow(b_grid_desc_m, loop_step_index);
c_global_load.MoveSrcSliceWindow(c_grid_desc_m, loop_step_index);
d_global_load.MoveSrcSliceWindow(d_grid_desc_m, loop_step_index);
e_global_load.MoveSrcSliceWindow(e_grid_desc_m, loop_step_index);
f_global_write.MoveDstSliceWindow(f_grid_desc_m, loop_step_index);
} while(--num_iter);
}
};
} // namespace ck
......@@ -11,138 +11,140 @@ template <typename GridwiseBinEltwise,
typename ADataType,
typename BDataType,
typename CDataType,
typename GridDesc_M0,
typename AGridDesc_M,
typename BGridDesc_M,
typename CGridDesc_M,
typename ElementwiseFunctor>
__global__ void kernel_binary_elementwise_1d(const ADataType* __restrict__ p_a_global,
const BDataType* __restrict__ p_b_global,
CDataType* __restrict__ p_c_global,
const GridDesc_M0 a_grid_desc_m0,
const GridDesc_M0 b_grid_desc_m0,
const GridDesc_M0 c_grid_desc_m0,
const AGridDesc_M a_grid_desc_m,
const BGridDesc_M b_grid_desc_m,
const CGridDesc_M c_grid_desc_m,
const ElementwiseFunctor functor)
{
GridwiseBinEltwise::Run(p_a_global,
p_b_global,
p_c_global,
a_grid_desc_m0,
b_grid_desc_m0,
c_grid_desc_m0,
functor);
GridwiseBinEltwise::Run(
p_a_global, p_b_global, p_c_global, a_grid_desc_m, b_grid_desc_m, c_grid_desc_m, functor);
}
template <typename ADataType,
typename BDataType,
typename CDataType,
typename ComputeDataType,
typename GridDesc_M0,
typename AGridDesc_M,
typename BGridDesc_M,
typename CGridDesc_M,
typename ElementwiseFunctor,
index_t ScalarPerVector>
index_t MPerThread,
index_t AScalarPerVector,
index_t BScalarPerVector,
index_t CScalarPerVector>
struct GridwiseBinaryElementwise_1D
{
static constexpr auto I0 = Number<0>{};
static constexpr auto thread_desc_m0 =
make_naive_tensor_descriptor_packed(make_tuple(Number<ScalarPerVector>{}));
static constexpr auto thread_desc_m =
make_naive_tensor_descriptor_packed(make_tuple(Number<MPerThread>{}));
using PassThrough = tensor_operation::element_wise::PassThrough;
static __device__ auto CalculateElementwiseIndex()
{
const index_t global_thread_id = get_thread_global_1d_id();
return make_multi_index(global_thread_id * ScalarPerVector);
return make_multi_index(global_thread_id * MPerThread);
}
__device__ static void Run(const ADataType* __restrict__ p_a_global,
const BDataType* __restrict__ p_b_global,
CDataType* __restrict__ p_c_global,
const GridDesc_M0 a_grid_desc_m0,
const GridDesc_M0 b_grid_desc_m0,
const GridDesc_M0 c_grid_desc_m0,
const AGridDesc_M a_grid_desc_m,
const BGridDesc_M b_grid_desc_m,
const CGridDesc_M c_grid_desc_m,
const ElementwiseFunctor functor)
{
const auto a_global_buf = make_dynamic_buffer<AddressSpaceEnum::Global>(
p_a_global, a_grid_desc_m0.GetElementSpaceSize());
p_a_global, a_grid_desc_m.GetElementSpaceSize());
const auto b_global_buf = make_dynamic_buffer<AddressSpaceEnum::Global>(
p_b_global, b_grid_desc_m0.GetElementSpaceSize());
p_b_global, b_grid_desc_m.GetElementSpaceSize());
auto c_global_buf = make_dynamic_buffer<AddressSpaceEnum::Global>(
p_c_global, c_grid_desc_m0.GetElementSpaceSize());
p_c_global, c_grid_desc_m.GetElementSpaceSize());
StaticBuffer<AddressSpaceEnum::Vgpr, ComputeDataType, ScalarPerVector, true> a_thread_buf;
StaticBuffer<AddressSpaceEnum::Vgpr, ComputeDataType, ScalarPerVector, true> b_thread_buf;
StaticBuffer<AddressSpaceEnum::Vgpr, ComputeDataType, ScalarPerVector, true> c_thread_buf;
StaticBuffer<AddressSpaceEnum::Vgpr, ComputeDataType, MPerThread, true> a_thread_buf;
StaticBuffer<AddressSpaceEnum::Vgpr, ComputeDataType, MPerThread, true> b_thread_buf;
StaticBuffer<AddressSpaceEnum::Vgpr, ComputeDataType, MPerThread, true> c_thread_buf;
const auto thread_store_global_offset = CalculateElementwiseIndex();
auto a_global_load =
ThreadwiseTensorSliceTransfer_v2<ADataType,
ComputeDataType,
GridDesc_M0,
decltype(thread_desc_m0),
Sequence<ScalarPerVector>, // SliceLengths
Sequence<0>, // DimAccessOrder
0, // SrcVectorDim
ScalarPerVector,
1, // SrcScalarStrideInVector
false>{a_grid_desc_m0, thread_store_global_offset};
AGridDesc_M,
decltype(thread_desc_m),
Sequence<MPerThread>, // SliceLengths
Sequence<0>, // DimAccessOrder
0, // SrcVectorDim
AScalarPerVector, // ScalarPerVector
1, // SrcScalarStrideInVector
false>{a_grid_desc_m, thread_store_global_offset};
auto b_global_load =
ThreadwiseTensorSliceTransfer_v2<BDataType,
ComputeDataType,
GridDesc_M0,
decltype(thread_desc_m0),
Sequence<ScalarPerVector>, // SliceLengths
Sequence<0>, // DimAccessOrder
0, // SrcVectorDim
ScalarPerVector,
1, // SrcScalarStrideInVector
false>{b_grid_desc_m0, thread_store_global_offset};
BGridDesc_M,
decltype(thread_desc_m),
Sequence<MPerThread>, // SliceLengths
Sequence<0>, // DimAccessOrder
0, // SrcVectorDim
BScalarPerVector, // ScalarPerVector
1, // SrcScalarStrideInVector
false>{b_grid_desc_m, thread_store_global_offset};
auto c_global_write =
ThreadwiseTensorSliceTransfer_v1r3<ComputeDataType,
CDataType,
decltype(thread_desc_m0),
GridDesc_M0,
decltype(thread_desc_m),
CGridDesc_M,
PassThrough,
Sequence<ScalarPerVector>, // SliceLengths
Sequence<0>, // DimAccessOrder
0, // DstVectorDim
ScalarPerVector,
Sequence<MPerThread>, // SliceLengths
Sequence<0>, // DimAccessOrder
0, // DstVectorDim
CScalarPerVector, // ScalarPerVector
InMemoryDataOperationEnum::Set,
1, // DstScalarStrideInVector
false>{
c_grid_desc_m0, thread_store_global_offset, PassThrough{}};
c_grid_desc_m, thread_store_global_offset, PassThrough{}};
const index_t blockSize = get_block_size();
const index_t blockPerGrid = get_grid_size();
const auto m0 = c_grid_desc_m0.GetLength(I0);
const index_t loop_step = blockPerGrid * blockSize * ScalarPerVector;
const auto M = c_grid_desc_m.GetLength(I0);
const index_t loop_step = blockPerGrid * blockSize * MPerThread;
const auto loop_step_index = make_multi_index(loop_step);
index_t num_iter = m0 / (loop_step);
index_t num_iter = M / (loop_step);
do
{
// read and process ScalarPerVector elements
// read and process MPerThread elements
a_global_load.Run(
a_grid_desc_m0, a_global_buf, thread_desc_m0, make_tuple(I0), a_thread_buf);
a_grid_desc_m, a_global_buf, thread_desc_m, make_tuple(I0), a_thread_buf);
b_global_load.Run(
b_grid_desc_m0, b_global_buf, thread_desc_m0, make_tuple(I0), b_thread_buf);
b_grid_desc_m, b_global_buf, thread_desc_m, make_tuple(I0), b_thread_buf);
static_for<0, ScalarPerVector, 1>{}([&](auto m) {
constexpr auto offset = thread_desc_m0.CalculateOffset(make_tuple(m));
static_for<0, MPerThread, 1>{}([&](auto m) {
constexpr auto offset = thread_desc_m.CalculateOffset(make_tuple(m));
functor(c_thread_buf(Number<offset>{}),
a_thread_buf(Number<offset>{}),
b_thread_buf(Number<offset>{}));
});
c_global_write.Run(thread_desc_m0,
c_global_write.Run(thread_desc_m,
make_tuple(I0), // SrcSliceOriginIdx
c_thread_buf,
c_grid_desc_m0,
c_grid_desc_m,
c_global_buf);
a_global_load.MoveSrcSliceWindow(a_grid_desc_m0, loop_step_index);
b_global_load.MoveSrcSliceWindow(b_grid_desc_m0, loop_step_index);
c_global_write.MoveDstSliceWindow(c_grid_desc_m0, loop_step_index);
a_global_load.MoveSrcSliceWindow(a_grid_desc_m, loop_step_index);
b_global_load.MoveSrcSliceWindow(b_grid_desc_m, loop_step_index);
c_global_write.MoveDstSliceWindow(c_grid_desc_m, loop_step_index);
} while(--num_iter);
}
};
......
......@@ -21,7 +21,7 @@ template <typename GridwiseGemm,
typename BElementwiseOperation,
typename CElementwiseOperation,
typename DxsInElementwiseOperation,
typename DxsOutElementwiseOperation,
typename DxsAccElementwiseOperation,
typename AGridDesc_AK0_M_AK1,
typename BGridDesc_BK0_N_BK1,
typename CGridDescriptor_MBlock_MPerBlock_NBlock_NPerBlock,
......@@ -41,7 +41,7 @@ __global__ void
const BElementwiseOperation b_element_op,
const CElementwiseOperation c_element_op,
const DxsInElementwiseOperation dxs_in_element_op,
const DxsOutElementwiseOperation dxs_out_element_op,
const DxsAccElementwiseOperation dxs_out_element_op,
const AGridDesc_AK0_M_AK1 a_grid_desc_ak0_m_ak1,
const BGridDesc_BK0_N_BK1 b_grid_desc_bk0_n_bk1,
const CGridDescriptor_MBlock_MPerBlock_NBlock_NPerBlock
......@@ -96,7 +96,7 @@ template <typename FloatAB,
typename CElementwiseOperation,
typename DxsReduceOperation,
typename DxsInElementwiseOperation,
typename DxsOutElementwiseOperation,
typename DxsAccElementwiseOperation,
InMemoryDataOperationEnum CGlobalMemoryDataOperation,
typename DGlobalMemoryDataOperation,
typename AGridDesc_AK0_M_AK1,
......@@ -306,7 +306,7 @@ struct GridwiseGemmReduce_k0mk1_k0nk1_mn_xdl_cshuffle_v1
__host__ __device__ static constexpr auto
MakeDefaultBlock2CTileMap(const CGridDesc_M_N& c_grid_desc_m_n)
{
return BlockToCTileMap_M00_N00_M01_N01<MPerBlock, NPerBlock, CGridDesc_M_N>(
return BlockToCTileMap_M00_N0_M01Adapt<MPerBlock, NPerBlock, CGridDesc_M_N>(
c_grid_desc_m_n);
}
......@@ -329,7 +329,7 @@ struct GridwiseGemmReduce_k0mk1_k0nk1_mn_xdl_cshuffle_v1
const BElementwiseOperation& b_element_op,
const CElementwiseOperation& c_element_op,
const DxsInElementwiseOperation& dxs_in_element_op,
const DxsOutElementwiseOperation& dxs_out_element_op,
const DxsAccElementwiseOperation& dxs_out_element_op,
const AGridDesc_AK0_M_AK1& a_grid_desc_ak0_m_ak1,
const BGridDesc_BK0_N_BK1& b_grid_desc_bk0_n_bk1,
const CGridDescriptor_MBlock_MPerBlock_NBlock_NPerBlock&
......
......@@ -259,7 +259,7 @@ struct GridwiseGemm_k0mk1_k0nk1_mn_xdl_cshuffle_v1
__host__ __device__ static constexpr auto
MakeDefaultBlock2CTileMap(const CGridDesc_M_N& c_grid_desc_m_n)
{
return BlockToCTileMap_M00_N00_M01_N01<MPerBlock, NPerBlock, CGridDesc_M_N>(
return BlockToCTileMap_M00_N0_M01Adapt<MPerBlock, NPerBlock, CGridDesc_M_N>(
c_grid_desc_m_n);
}
......
......@@ -288,11 +288,11 @@ struct GridwiseGemm_k0mk1_k0nk1_mn_xdlops_v2r3
}
// return block_id to C matrix tile idx (m0, n0) mapping
__host__ __device__ static constexpr auto
MakeDefaultBlock2CTileMap(const CGridDesc_M_N& c_grid_desc_m_n, index_t M01, index_t N01)
__host__ __device__ static constexpr auto MakeDefaultBlock2CTileMap(
const CGridDesc_M_N& c_grid_desc_m_n, index_t /* M01 */, index_t /* N01 */)
{
return BlockToCTileMap_M00_N00_M01_N01<MPerBlock, NPerBlock, CGridDesc_M_N>(
c_grid_desc_m_n, M01, N01);
return BlockToCTileMap_M00_N0_M01Adapt<MPerBlock, NPerBlock, CGridDesc_M_N>(
c_grid_desc_m_n);
}
using CGridDesc_M0_N0_M1_N1_M2_M3_M4_N2 =
......
......@@ -265,10 +265,10 @@ struct GridwiseGemm_bk0mk1_bk0nk1_mn_xdlops_v2r4
// return block_id to C matrix tile idx (m0, n0) mapping
__host__ __device__ static constexpr auto MakeCBlockClusterAdaptor(
const CMNGridDesc& c_m_n_grid_desc, index_t M01, index_t N01, index_t KBatch)
const CMNGridDesc& c_m_n_grid_desc, index_t /* M01 */, index_t /* N01 */, index_t KBatch)
{
return BlockToCTileMap_KSplit_M00_N00_M01_N01<MPerBlock, NPerBlock, CMNGridDesc>(
c_m_n_grid_desc, M01, N01, KBatch);
return BlockToCTileMap_KSplit_M00_N0_M01Adapt<MPerBlock, NPerBlock, CMNGridDesc>(
c_m_n_grid_desc, 8, KBatch);
}
using CM0N0M1N1M2M3M4N2GridDesc = decltype(MakeCM0N0M1N1M2M3M4N2GridDescriptor(CMNGridDesc{}));
......
......@@ -239,10 +239,10 @@ struct GridwiseGemm_bk0mk1_bk0nk1_mn_xdlops_v2r4r2
// return block_id to C matrix tile idx (m0, n0) mapping
__host__ __device__ static constexpr auto MakeCBlockClusterAdaptor(
const CMNGridDesc& c_m_n_grid_desc, index_t M01, index_t N01, index_t KBatch)
const CMNGridDesc& c_m_n_grid_desc, index_t /* M01 */, index_t /* N01 */, index_t KBatch)
{
return BlockToCTileMap_KSplit_M00_N00_M01_N01<MPerBlock, NPerBlock, CMNGridDesc>(
c_m_n_grid_desc, M01, N01, KBatch);
return BlockToCTileMap_KSplit_M00_N0_M01Adapt<MPerBlock, NPerBlock, CMNGridDesc>(
c_m_n_grid_desc, 8, KBatch);
}
__host__ __device__ static constexpr auto
......
......@@ -300,11 +300,11 @@ struct GridwiseGemm_k0mk1_k0nk1_mn_xdlops_v3r1
}
// return block_id to C matrix tile idx (m0, n0) mapping
__host__ __device__ static constexpr auto
MakeDefaultBlock2CTileMap(const CGridDesc_M_N& c_grid_desc_m_n, index_t M01, index_t N01)
__host__ __device__ static constexpr auto MakeDefaultBlock2CTileMap(
const CGridDesc_M_N& c_grid_desc_m_n, index_t /* M01 */, index_t /* N01 */)
{
return BlockToCTileMap_M00_N00_M01_N01<MPerBlock, NPerBlock, CGridDesc_M_N>(
c_grid_desc_m_n, M01, N01);
return BlockToCTileMap_M00_N0_M01Adapt<MPerBlock, NPerBlock, CGridDesc_M_N>(
c_grid_desc_m_n);
}
using CGridDescriptor_MBlock_MXdlPerWave_MWaveMPerXdl_NBlock_NXdlPerWave_NWaveNPerXdl =
remove_cvref_t<decltype(
......@@ -314,7 +314,7 @@ struct GridwiseGemm_k0mk1_k0nk1_mn_xdlops_v3r1
using DefaultBlock2CTileMap =
remove_cvref_t<decltype(MakeDefaultBlock2CTileMap(CGridDesc_M_N{}, 1, 1))>;
template <bool HasMainK0BlockLoop, typename Block2CTileMap = DefaultBlock2CTileMap>
template <bool HasMainK0BlockLoop, typename Block2CTileMap>
__device__ static void
Run(const FloatAB* __restrict__ p_a_grid,
const FloatAB* __restrict__ p_b_grid,
......
......@@ -309,11 +309,11 @@ struct GridwiseGemm_k0mk1_k0nk1_mn_xdlops_v3r2
}
// return block_id to C matrix tile idx (m0, n0) mapping
__host__ __device__ static constexpr auto
MakeDefaultBlock2CTileMap(const CGridDesc_M_N& c_grid_desc_m_n, index_t M01, index_t N01)
__host__ __device__ static constexpr auto MakeDefaultBlock2CTileMap(
const CGridDesc_M_N& c_grid_desc_m_n, index_t /* M01 */, index_t /* N01 */)
{
return BlockToCTileMap_M00_N00_M01_N01<MPerBlock, NPerBlock, CGridDesc_M_N>(
c_grid_desc_m_n, M01, N01);
return BlockToCTileMap_M00_N0_M01Adapt<MPerBlock, NPerBlock, CGridDesc_M_N>(
c_grid_desc_m_n);
}
using CGridDescriptor_MBlock_MXdlPerWave_MWaveMPerXdl_NBlock_NXdlPerWave_NWaveNPerXdl =
......
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment