Commit b41e6019 authored by Po-Yen, Chen's avatar Po-Yen, Chen
Browse files

Merge branch 'develop' into feature/add-permute-device-op

parents d356c871 868e5c55
add_executable(client_softmax4d softmax4d.cpp)
target_link_libraries(client_softmax4d PRIVATE composable_kernel::device_operations)
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2022, Advanced Micro Devices, Inc. All rights reserved.
#include <functional>
#include <numeric>
#include <iomanip>
#include <iostream>
#include <vector>
#include "ck/ck.hpp"
#include "ck/tensor_operation/gpu/device/tensor_layout.hpp"
#include "ck/tensor_operation/gpu/device/device_softmax.hpp"
#include "ck/tensor_operation/gpu/element/element_wise_operation.hpp"
#include "ck/library/tensor_operation_instance/gpu/softmax.hpp"
using InDataType = ck::half_t;
using OutDataType = ck::half_t;
using AccDataType = float;
using PassThrough = ck::tensor_operation::element_wise::PassThrough;
constexpr int Rank = 4;
constexpr int NumReduceDim = 2;
struct SimpleDeviceMem
{
SimpleDeviceMem() = delete;
SimpleDeviceMem(std::size_t mem_size) : p_mem_{}
{
(void)hipMalloc(static_cast<void**>(&p_mem_), mem_size);
}
void* GetDeviceBuffer() { return p_mem_; }
~SimpleDeviceMem() { (void)hipFree(p_mem_); }
void* p_mem_;
};
int main(int argc, char* argv[])
{
std::vector<ck::index_t> in_lengths{2, 8, 128, 1024};
std::vector<ck::index_t> in_strides{8 * 128 * 1024, 128 * 1024, 1024, 1};
std::vector<ck::index_t> reduce_dims{2, 3};
ck::index_t num_elements =
std::accumulate(in_lengths.begin(), in_lengths.end(), 1, std::multiplies<ck::index_t>());
AccDataType alpha{2.0f};
AccDataType beta{2.0f};
SimpleDeviceMem in(sizeof(InDataType) * num_elements);
SimpleDeviceMem out(sizeof(OutDataType) * num_elements);
using DeviceOp = ck::tensor_operation::device::
DeviceSoftmax<InDataType, AccDataType, OutDataType, PassThrough, PassThrough, Rank>;
// get device op instances
const auto op_ptrs = ck::tensor_operation::device::instance::DeviceOperationInstanceFactory<
DeviceOp>::GetInstances();
std::cout << "found " << op_ptrs.size() << " instances" << std::endl;
std::string best_op_name;
bool found = false;
int best_op_id = -1;
float best_ave_time = std::numeric_limits<float>::max();
float best_gb_per_sec = 0;
// profile device operation instances
std::cout << "Run all instances and do timing" << std::endl;
for(int i = 0; i < op_ptrs.size(); ++i)
{
auto& op_ptr = op_ptrs[i];
if(op_ptr->GetRank() != Rank || op_ptr->GetNumReduceDim() != NumReduceDim)
{
continue;
}
auto argument_ptr = op_ptr->MakeArgumentPointer(in_lengths,
in_strides,
reduce_dims,
&alpha,
&beta,
in.GetDeviceBuffer(),
out.GetDeviceBuffer(),
PassThrough{},
PassThrough{});
auto invoker_ptr = op_ptr->MakeInvokerPointer();
std::string op_name = op_ptr->GetTypeString();
if(op_ptr->IsSupportedArgument(argument_ptr.get()))
{
float ave_time = invoker_ptr->Run(argument_ptr.get(), StreamConfig{nullptr, true});
std::size_t num_bytes = num_elements * sizeof(InDataType) +
(beta == 0.0f ? 1 : 2) * num_elements * sizeof(OutDataType);
float gb_per_sec = num_bytes / 1.E6 / ave_time;
std::cout << "Perf: " << std::setw(10) << ave_time << " ms, " << gb_per_sec << " GB/s, "
<< op_name << std::endl;
if(ave_time < best_ave_time)
{
found = true;
best_op_id = i;
best_op_name = op_name;
best_ave_time = ave_time;
best_gb_per_sec = gb_per_sec;
}
}
else
{
std::cout << op_name << " does not support this problem" << std::endl;
}
}
std::cout << "Best Perf: " << best_ave_time << " ms, " << best_gb_per_sec << " GB/s, "
<< best_op_name << std::endl;
// run the best intance
{
auto& op_ptr = op_ptrs[best_op_id];
std::cout << "Run the best instance without timing: " << op_ptr->GetTypeString()
<< std::endl;
auto argument_ptr = op_ptr->MakeArgumentPointer(in_lengths,
in_strides,
reduce_dims,
&alpha,
&beta,
in.GetDeviceBuffer(),
out.GetDeviceBuffer(),
PassThrough{},
PassThrough{});
auto invoker_ptr = op_ptr->MakeInvokerPointer();
if(op_ptr->IsSupportedArgument(argument_ptr.get()))
{
invoker_ptr->Run(argument_ptr.get(), StreamConfig{nullptr, false});
}
std::cout << "Done" << std::endl;
}
return 0;
}
\ No newline at end of file
......@@ -11,3 +11,4 @@ add_subdirectory(02_gemm_add_add_fastgelu)
add_subdirectory(03_gemm_layernorm)
add_subdirectory(04_contraction)
add_subdirectory(05_layernorm)
add_subdirectory(06_softmax)
......@@ -9,27 +9,31 @@
#include "ck/ck.hpp"
#include "ck/utility/reduction_enums.hpp"
#include "ck/tensor_operation/gpu/device/device_softmax.hpp"
#include "ck/tensor_operation/gpu/device/impl/device_softmax_impl.hpp"
#include "ck/tensor_operation/gpu/device/reduction_operator_mapping.hpp"
#include "ck/tensor_operation/gpu/element/element_wise_operation.hpp"
#include "ck/library/utility/check_err.hpp"
#include "ck/library/utility/device_memory.hpp"
#include "ck/library/utility/host_common_util.hpp"
#include "ck/library/reference_tensor_operation/cpu/reference_softmax.hpp"
using namespace ck;
using namespace ck::tensor_operation::device;
using InDataType = ck::half_t;
using OutDataType = ck::half_t;
using AccDataType = float;
using PassThrough = ck::tensor_operation::element_wise::PassThrough;
constexpr int Rank = 3;
constexpr int NumReduceDim = 1;
using DeviceInstance = DeviceSoftmax<InDataType,
using DeviceInstance = DeviceSoftmaxImpl<InDataType,
AccDataType,
OutDataType,
PassThrough, // InElementwiseOperation
PassThrough, // AccElementwiseOperation
Rank,
NumReduceDim,
256, // BlockSize
......@@ -196,7 +200,7 @@ int main(int argc, char* argv[])
if(args.do_verification)
{
using ReferenceInstance =
tensor_operation::host::ReferenceSoftmax<InDataType, OutDataType, AccDataType>;
ck::tensor_operation::host::ReferenceSoftmax<InDataType, OutDataType, AccDataType>;
ReferenceInstance ref;
auto ref_arg = ref.MakeArgument(in, out_ref, alpha, beta, reduceDims);
auto invoker = ref.MakeInvoker();
......@@ -220,7 +224,9 @@ int main(int argc, char* argv[])
&alpha,
&beta,
in_dev.GetDeviceBuffer(),
out_dev.GetDeviceBuffer());
out_dev.GetDeviceBuffer(),
PassThrough{},
PassThrough{});
if(!device_instance.IsSupportedArgument(argument_ptr.get()))
{
......
add_example_executable(example_batched_gemm_scale_softmax_gemm_xdl_fp16 batched_gemm_scale_softmax_gemm_xdl_fp16.cpp)
add_example_executable(example_batched_gemm_scale_softmax_gemm_permute_xdl_fp16 batched_gemm_scale_softmax_gemm_permute_xdl_fp16.cpp)
add_example_executable(example_padded_batched_gemm_scale_softmax_gemm_xdl_fp16 padded_batched_gemm_scale_softmax_gemm_xdl_fp16.cpp)
add_custom_target(example_batched_gemm_scale_softmax_gemm)
add_dependencies(example_batched_gemm_scale_softmax_gemm example_batched_gemm_scale_softmax_gemm_xdl_fp16)
add_dependencies(example_batched_gemm_scale_softmax_gemm example_batched_gemm_scale_softmax_gemm_permute_xdl_fp16)
add_dependencies(example_batched_gemm_scale_softmax_gemm example_padded_batched_gemm_scale_softmax_gemm_xdl_fp16)
......@@ -49,14 +49,9 @@ using B0Layout = Col;
using B1Layout = Row;
using CLayout = Row;
// When using padded DeviceBatchedGemmSoftmaxGemm_Xdl_CShuffle kernel, 2 specs should be set:
// 1. GemmSpecialization should be set to MNPadding(or NPadding in future)
// 2. Acc0ElementOp should be set to ScaleAndResetNaNToMinusInfinity
// Otherwise, wrong result may be produced.
using AElementOp = PassThrough;
using B0ElementOp = PassThrough;
using Acc0ElementOp = ck::tensor_operation::element_wise::ScaleAndResetNaNToMinusInfinity;
using Acc0ElementOp = ck::tensor_operation::element_wise::Scale;
using B1ElementOp = PassThrough;
using CElementOp = PassThrough;
......
......@@ -144,6 +144,17 @@
// workaround: compiler gnerating inefficient ds_write instructions
#define CK_WORKAROUND_SWDEV_XXXXXX_INT8_DS_WRITE_ISSUE 1
// (gfx908 only) workaround: compiler crash in fused kernels on mainline #9110; #10738 seems ok
// error message was "fatal error: error in backend: Error while trying to spill VGPR0 from class
// VGPR_32: Cannot scavenge register without an emergency spill slot!"
// this fall back to less ideal way of handle NPadding in fused attention kernel
#ifdef __gfx908__
#define CK_WORKAROUND_SWDEV_XXXXXX_ATTN_KERNEL_CLANG_CANNOT_SCAVENGE_REGISTER 1
#else
// for __gfx90a__, ...
#define CK_WORKAROUND_SWDEV_XXXXXX_ATTN_KERNEL_CLANG_CANNOT_SCAVENGE_REGISTER 0
#endif // __gfx908__
// workaround: verifaction failure, due to compiler regression, for conv bwd-data fp16 using some
// tuning parameter
#define CK_WORKAROUND_SWDEV_325164 0
......
......@@ -16,7 +16,8 @@ template <index_t BlockSize,
typename AccDataType,
typename ThreadMap_M_K, // thread_id to m_k
typename ThreadClusterDesc_M_K,
typename ThreadSliceDesc_M_K>
typename ThreadSliceDesc_M_K,
bool IgnoreNaN = false>
struct BlockwiseSoftmax
{
static constexpr auto I0 = Number<0>{};
......@@ -27,11 +28,33 @@ struct BlockwiseSoftmax
using ThreadSliceDesc_M = decltype(
make_naive_tensor_descriptor_packed(make_tuple(ThreadSliceDesc_M_K{}.GetLength(I0))));
using ThreadwiseMaxReduce = ThreadwiseReduction<AccDataType,
using ThreadwiseMaxReduce = typename conditional<
IgnoreNaN,
ThreadwiseReduction<AccDataType,
ThreadSliceDesc_M_K,
ThreadSliceDesc_M,
reduce::Max,
false>;
false,
detail::AccumulateWithNanIgnore<reduce::Max, AccDataType>>,
ThreadwiseReduction<AccDataType,
ThreadSliceDesc_M_K,
ThreadSliceDesc_M,
reduce::Max,
false>>::type;
using ThreadwiseSumReduce = typename conditional<
IgnoreNaN,
ThreadwiseReduction<AccDataType,
ThreadSliceDesc_M_K,
ThreadSliceDesc_M,
reduce::Add,
false,
detail::AccumulateWithNanIgnore<reduce::Add, AccDataType>>,
ThreadwiseReduction<AccDataType,
ThreadSliceDesc_M_K,
ThreadSliceDesc_M,
reduce::Add,
false>>::type;
using ThreadClusterLengths_M_K = decltype(ThreadClusterDesc_M_K{}.GetLengths());
......@@ -49,12 +72,6 @@ struct BlockwiseSoftmax
reduce::Add,
false>;
using ThreadwiseSumReduce = ThreadwiseReduction<AccDataType,
ThreadSliceDesc_M_K,
ThreadSliceDesc_M,
reduce::Add,
false>;
using BufferType = StaticBuffer<AddressSpaceEnum::Vgpr, AccDataType, MRepeat, true>;
template <typename CThreadBuffer, typename WorkspaceBuffer>
......@@ -74,7 +91,9 @@ struct BlockwiseSoftmax
static_for<0, MRepeat, 1>{}([&](auto iM) {
static_for<0, KRepeat, 1>{}([&](auto iK) {
auto offset = Number<ThreadSliceDesc_M_K{}.CalculateOffset(make_tuple(iM, iK))>{};
in_thread_buf(offset) = math::exp(in_thread_buf[offset] - max_value_buf(iM));
in_thread_buf(offset) = IgnoreNaN && ck::math::isnan(in_thread_buf[offset])
? 0
: math::exp(in_thread_buf[offset] - max_value_buf(iM));
});
});
......
......@@ -456,8 +456,7 @@ struct DeviceBatchedGemmGemm_Xdl_CShuffle : public DeviceBatchedGemmGemm<ALayout
b_grid_desc_bk0_n_bk1_,
b1_grid_desc_bk0_n_bk1_,
c_grid_desc_m_n_,
block_2_ctile_map_,
raw_lengths_m_n_k_o_))
block_2_ctile_map_))
{
c_grid_desc_mblock_mperblock_nblock_nperblock_ =
GridwiseGemm::MakeCGridDescriptor_MBlock_MPerBlock_NBlock_NPerBlock(
......@@ -508,8 +507,7 @@ struct DeviceBatchedGemmGemm_Xdl_CShuffle : public DeviceBatchedGemmGemm<ALayout
arg.b_grid_desc_bk0_n_bk1_,
arg.b1_grid_desc_bk0_n_bk1_,
arg.c_grid_desc_m_n_,
arg.block_2_ctile_map_,
arg.raw_lengths_m_n_k_o_))
arg.block_2_ctile_map_))
{
throw std::runtime_error("wrong! GridwiseGemm has invalid setting");
}
......@@ -628,8 +626,7 @@ struct DeviceBatchedGemmGemm_Xdl_CShuffle : public DeviceBatchedGemmGemm<ALayout
arg.b_grid_desc_bk0_n_bk1_,
arg.b1_grid_desc_bk0_n_bk1_,
arg.c_grid_desc_m_n_,
arg.block_2_ctile_map_,
arg.raw_lengths_m_n_k_o_);
arg.block_2_ctile_map_);
}
// polymorphic
......
......@@ -194,6 +194,9 @@ struct DeviceBatchedGemmSoftmaxGemmPermute_Xdl_CShuffle
GemmGemmPadder<GemmSpec, index_t, index_t, index_t, index_t>{
MPerBlock, NPerBlock, KPerBlock, Gemm1NPerBlock};
// FIXME: pad K
static_assert(!matrix_padder.PadK, "KPadding is currently not supported");
static auto MakeAGridDescriptor_AK0_M_AK1(index_t MRaw, index_t KRaw, index_t StrideA)
{
const auto a_grid_desc_mraw_kraw = [&]() {
......@@ -209,92 +212,18 @@ struct DeviceBatchedGemmSoftmaxGemmPermute_Xdl_CShuffle
}
}();
const auto M = math::integer_divide_ceil(MRaw, MPerBlock) * MPerBlock;
const auto K = math::integer_divide_ceil(KRaw, KPerBlock) * KPerBlock;
const auto MPad = M - MRaw;
const auto KPad = K - KRaw;
const auto a_grid_desc_m_k = matrix_padder.PadADescriptor_M_K(a_grid_desc_mraw_kraw);
if constexpr(GemmSpec == GemmSpecialization::MKPadding ||
GemmSpec == GemmSpecialization::MNKPadding)
{
// pad both M and K
assert(K % AK1 == 0);
const auto M = a_grid_desc_m_k.GetLength(I0);
const auto K = a_grid_desc_m_k.GetLength(I1);
const auto AK0 = K / AK1;
const auto a_grid_desc_m_k =
transform_tensor_descriptor(a_grid_desc_mraw_kraw,
make_tuple(make_right_pad_transform(MRaw, MPad),
make_right_pad_transform(KRaw, KPad)),
make_tuple(Sequence<0>{}, Sequence<1>{}),
make_tuple(Sequence<0>{}, Sequence<1>{}));
const auto a_grid_desc_ak0_m_ak1 =
transform_tensor_descriptor(a_grid_desc_m_k,
return transform_tensor_descriptor(a_grid_desc_m_k,
make_tuple(make_unmerge_transform(make_tuple(AK0, AK1)),
make_pass_through_transform(M)),
make_tuple(Sequence<1>{}, Sequence<0>{}),
make_tuple(Sequence<0, 2>{}, Sequence<1>{}));
return a_grid_desc_ak0_m_ak1;
}
else if constexpr(GemmSpec == GemmSpecialization::MPadding ||
GemmSpec == GemmSpecialization::MNPadding)
{
// pad M, but not K
assert(KRaw % AK1 == 0);
const auto AK0 = KRaw / AK1;
const auto a_grid_desc_ak0_m_ak1 =
transform_tensor_descriptor(a_grid_desc_mraw_kraw,
make_tuple(make_unmerge_transform(make_tuple(AK0, AK1)),
make_right_pad_transform(MRaw, MPad)),
make_tuple(Sequence<1>{}, Sequence<0>{}),
make_tuple(Sequence<0, 2>{}, Sequence<1>{}));
return a_grid_desc_ak0_m_ak1;
}
else if constexpr(GemmSpec == GemmSpecialization::KPadding ||
GemmSpec == GemmSpecialization::NKPadding)
{
// pad K, but not M
assert(K % AK1 == 0);
const auto AK0 = K / AK1;
const auto a_grid_desc_m_k = transform_tensor_descriptor(
a_grid_desc_mraw_kraw,
make_tuple(make_pass_through_transform(MRaw), make_right_pad_transform(KRaw, KPad)),
make_tuple(Sequence<0>{}, Sequence<1>{}),
make_tuple(Sequence<0>{}, Sequence<1>{}));
const auto a_grid_desc_ak0_m_ak1 =
transform_tensor_descriptor(a_grid_desc_m_k,
make_tuple(make_unmerge_transform(make_tuple(AK0, AK1)),
make_pass_through_transform(MRaw)),
make_tuple(Sequence<1>{}, Sequence<0>{}),
make_tuple(Sequence<0, 2>{}, Sequence<1>{}));
return a_grid_desc_ak0_m_ak1;
}
else
{
// not pad M or K
assert(KRaw % AK1 == 0);
const auto AK0 = KRaw / AK1;
const auto a_grid_desc_ak0_m_ak1 =
transform_tensor_descriptor(a_grid_desc_mraw_kraw,
make_tuple(make_unmerge_transform(make_tuple(AK0, AK1)),
make_pass_through_transform(MRaw)),
make_tuple(Sequence<1>{}, Sequence<0>{}),
make_tuple(Sequence<0, 2>{}, Sequence<1>{}));
return a_grid_desc_ak0_m_ak1;
}
}
static auto MakeBGridDescriptor_BK0_N_BK1(index_t KRaw, index_t NRaw, index_t StrideB)
......@@ -312,84 +241,18 @@ struct DeviceBatchedGemmSoftmaxGemmPermute_Xdl_CShuffle
}
}();
const auto N = math::integer_divide_ceil(NRaw, NPerBlock) * NPerBlock;
const auto K = math::integer_divide_ceil(KRaw, KPerBlock) * KPerBlock;
const auto b_grid_desc_n_k = matrix_padder.PadBDescriptor_N_K(b_grid_desc_nraw_kraw);
const auto NPad = N - NRaw;
const auto KPad = K - KRaw;
const auto N = b_grid_desc_n_k.GetLength(I0);
const auto K = b_grid_desc_n_k.GetLength(I1);
if constexpr(GemmSpec == GemmSpecialization::NKPadding ||
GemmSpec == GemmSpecialization::MNKPadding)
{
// pad both N and K
const auto BK0 = K / BK1;
const auto b_grid_desc_n_k =
transform_tensor_descriptor(b_grid_desc_nraw_kraw,
make_tuple(make_right_pad_transform(NRaw, NPad),
make_right_pad_transform(KRaw, KPad)),
make_tuple(Sequence<0>{}, Sequence<1>{}),
make_tuple(Sequence<0>{}, Sequence<1>{}));
const auto b_grid_desc_bk0_n_bk1 =
transform_tensor_descriptor(b_grid_desc_n_k,
return transform_tensor_descriptor(b_grid_desc_n_k,
make_tuple(make_unmerge_transform(make_tuple(BK0, BK1)),
make_pass_through_transform(N)),
make_tuple(Sequence<1>{}, Sequence<0>{}),
make_tuple(Sequence<0, 2>{}, Sequence<1>{}));
return b_grid_desc_bk0_n_bk1;
}
else if constexpr(GemmSpec == GemmSpecialization::NPadding ||
GemmSpec == GemmSpecialization::MNPadding)
{
// pad N, but not K
const auto BK0 = KRaw / BK1;
const auto b_grid_desc_bk0_n_bk1 =
transform_tensor_descriptor(b_grid_desc_nraw_kraw,
make_tuple(make_unmerge_transform(make_tuple(BK0, BK1)),
make_right_pad_transform(NRaw, NPad)),
make_tuple(Sequence<1>{}, Sequence<0>{}),
make_tuple(Sequence<0, 2>{}, Sequence<1>{}));
return b_grid_desc_bk0_n_bk1;
}
else if constexpr(GemmSpec == GemmSpecialization::KPadding ||
GemmSpec == GemmSpecialization::MKPadding)
{
// pad K, but not N
const auto BK0 = K / BK1;
const auto b_grid_desc_n_k = transform_tensor_descriptor(
b_grid_desc_nraw_kraw,
make_tuple(make_pass_through_transform(NRaw), make_right_pad_transform(KRaw, KPad)),
make_tuple(Sequence<0>{}, Sequence<1>{}),
make_tuple(Sequence<0>{}, Sequence<1>{}));
const auto b_grid_desc_bk0_n_bk1 =
transform_tensor_descriptor(b_grid_desc_n_k,
make_tuple(make_unmerge_transform(make_tuple(BK0, BK1)),
make_pass_through_transform(NRaw)),
make_tuple(Sequence<1>{}, Sequence<0>{}),
make_tuple(Sequence<0, 2>{}, Sequence<1>{}));
return b_grid_desc_bk0_n_bk1;
}
else
{
// not pad N or K
const auto BK0 = KRaw / BK1;
const auto b_grid_desc_bk0_n_bk1 =
transform_tensor_descriptor(b_grid_desc_nraw_kraw,
make_tuple(make_unmerge_transform(make_tuple(BK0, BK1)),
make_pass_through_transform(NRaw)),
make_tuple(Sequence<1>{}, Sequence<0>{}),
make_tuple(Sequence<0, 2>{}, Sequence<1>{}));
return b_grid_desc_bk0_n_bk1;
}
}
// Args: Gemm1KRaw, Gemm1NRaw, StrideB1
......@@ -408,47 +271,19 @@ struct DeviceBatchedGemmSoftmaxGemmPermute_Xdl_CShuffle
}
}();
const auto N = math::integer_divide_ceil(NRaw, Gemm1NPerBlock) * Gemm1NPerBlock;
const auto K = math::integer_divide_ceil(KRaw, Gemm1KPerBlock) * Gemm1KPerBlock;
const auto NPad = N - NRaw;
const auto KPad = K - KRaw;
const auto b1_grid_desc_n_k = matrix_padder.PadB1Descriptor_N_K(b1_grid_desc_nraw_kraw);
// TODO: implement finer-grained padding
if constexpr(GemmSpec == GemmSpecialization::Default)
{
const auto B1K0 = KRaw / B1K1;
const auto b1_grid_desc_bk0_n_bk1 = transform_tensor_descriptor(
b1_grid_desc_nraw_kraw,
make_tuple(make_unmerge_transform(make_tuple(B1K0, B1K1)),
make_pass_through_transform(NRaw)),
make_tuple(Sequence<1>{}, Sequence<0>{}),
make_tuple(Sequence<0, 2>{}, Sequence<1>{}));
const auto N = b1_grid_desc_n_k.GetLength(I0);
const auto K = b1_grid_desc_n_k.GetLength(I1);
return b1_grid_desc_bk0_n_bk1;
}
else
{
// pad both B1N and B1K
const auto B1K0 = K / B1K1;
const auto b1_grid_desc_n_k =
transform_tensor_descriptor(b1_grid_desc_nraw_kraw,
make_tuple(make_right_pad_transform(NRaw, NPad),
make_right_pad_transform(KRaw, KPad)),
make_tuple(Sequence<0>{}, Sequence<1>{}),
make_tuple(Sequence<0>{}, Sequence<1>{}));
const auto b1_grid_desc_bk0_n_bk1 = transform_tensor_descriptor(
return transform_tensor_descriptor(
b1_grid_desc_n_k,
make_tuple(make_unmerge_transform(make_tuple(B1K0, B1K1)),
make_pass_through_transform(N)),
make_tuple(Sequence<1>{}, Sequence<0>{}),
make_tuple(Sequence<0, 2>{}, Sequence<1>{}));
return b1_grid_desc_bk0_n_bk1;
}
}
// assume C[G0, G1, ..., M0, M1, M2, ..., N0, N1, N2...]
......@@ -662,7 +497,8 @@ struct DeviceBatchedGemmSoftmaxGemmPermute_Xdl_CShuffle
CShuffleNXdlPerWavePerShuffle,
CShuffleBlockTransferClusterLengths_MBlock_MPerBlock_NBlock_NPerBlock,
CShuffleBlockTransferScalarPerVector_NPerBlock,
LoopSched>;
LoopSched,
matrix_padder.PadN>;
// Argument
// FIXME: constness
......@@ -711,7 +547,10 @@ struct DeviceBatchedGemmSoftmaxGemmPermute_Xdl_CShuffle
c_element_op_{c_element_op},
batch_count_(Batch),
compute_base_ptr_of_batch_{
BatchStrideA, BatchStrideB, BatchStrideB1, c_grid_desc_g_m_n_}
BatchStrideA, BatchStrideB, BatchStrideB1, c_grid_desc_g_m_n_},
raw_lengths_m_n_k_o_{MRaw, NRaw, KRaw, Gemm1NRaw},
c_extent_lowest_{c_gs_ms_gemm1ns_lengths.back()},
c_stride_lowest_{c_gs_ms_gemm1ns_strides.back()}
{
if(GridwiseGemm::CheckValidity(a_grid_desc_ak0_m_ak1_,
b_grid_desc_bk0_n_bk1_,
......@@ -745,6 +584,11 @@ struct DeviceBatchedGemmSoftmaxGemmPermute_Xdl_CShuffle
CElementwiseOperation c_element_op_;
index_t batch_count_;
ComputeBasePtrOfStridedBatch compute_base_ptr_of_batch_;
// For robust IsSupportedArgument() check
std::vector<index_t> raw_lengths_m_n_k_o_;
index_t c_extent_lowest_;
index_t c_stride_lowest_;
};
// Invoker
......@@ -859,7 +703,35 @@ struct DeviceBatchedGemmSoftmaxGemmPermute_Xdl_CShuffle
return false;
}
// TODO: Check A/B0/B1 length & stride and scalar per vector
// Note: we need raw lengths since threadwise copy can not handle vector load when part of
// vector is out of bounds
const auto MRaw = arg.raw_lengths_m_n_k_o_[0];
const auto NRaw = arg.raw_lengths_m_n_k_o_[1];
const auto KRaw = arg.raw_lengths_m_n_k_o_[2];
const auto Gemm1NRaw = arg.raw_lengths_m_n_k_o_[3];
// Check scalar per vector requirement
const auto a_extent_lowest =
is_same_v<tensor_layout::gemm::RowMajor, ALayout> ? KRaw : MRaw;
const auto b_extent_lowest =
is_same_v<tensor_layout::gemm::RowMajor, BLayout> ? NRaw : KRaw;
const auto b1_extent_lowest =
is_same_v<tensor_layout::gemm::RowMajor, B1Layout> ? Gemm1NRaw : NRaw;
const auto c_extent_lowest = arg.c_extent_lowest_;
if(!(a_extent_lowest % ABlockTransferSrcScalarPerVector == 0 &&
b_extent_lowest % BBlockTransferSrcScalarPerVector == 0 &&
b1_extent_lowest % B1BlockTransferSrcScalarPerVector == 0 &&
c_extent_lowest % CShuffleBlockTransferScalarPerVector_NPerBlock == 0))
{
return false;
}
// Check vector store requirement; assumes last dimension in N to be contiguous
if(arg.c_stride_lowest_ != 1)
{
return false;
}
return GridwiseGemm::CheckValidity(arg.a_grid_desc_ak0_m_ak1_,
arg.b_grid_desc_bk0_n_bk1_,
......@@ -996,7 +868,8 @@ struct DeviceBatchedGemmSoftmaxGemmPermute_Xdl_CShuffle
<< MPerBlock << ", "
<< Gemm1NPerBlock << ", "
<< Gemm1KPerBlock << ", "
<< B1K1 << ">";
<< B1K1 << ", "
<< getGemmSpecializationString(GemmSpec) << ">";
// clang-format on
return str.str();
......
......@@ -12,6 +12,7 @@
#include "ck/tensor_operation/gpu/device/tensor_layout.hpp"
#include "ck/tensor_operation/gpu/device/device_batched_gemm_softmax_gemm.hpp"
#include "ck/tensor_operation/gpu/device/gemm_specialization.hpp"
#include "ck/tensor_operation/gpu/device/matrix_padder.hpp"
#include "ck/tensor_operation/gpu/grid/gridwise_batched_gemm_softmax_gemm_xdl_cshuffle_v1.hpp"
#include "ck/host_utility/device_prop.hpp"
#include "ck/host_utility/kernel_launch.hpp"
......@@ -198,6 +199,13 @@ struct DeviceBatchedGemmSoftmaxGemm_Xdl_CShuffle
static constexpr auto I1 = Number<1>{};
static constexpr auto I2 = Number<2>{};
static constexpr auto matrix_padder =
GemmGemmPadder<GemmSpec, index_t, index_t, index_t, index_t>{
MPerBlock, NPerBlock, KPerBlock, Gemm1NPerBlock};
// FIXME: pad K
static_assert(!matrix_padder.PadK, "KPadding is currently not supported");
static auto MakeAGridDescriptor_AK0_M_AK1(index_t MRaw, index_t KRaw, index_t StrideA)
{
const auto a_grid_desc_mraw_kraw = [&]() {
......@@ -213,92 +221,18 @@ struct DeviceBatchedGemmSoftmaxGemm_Xdl_CShuffle
}
}();
const auto M = math::integer_divide_ceil(MRaw, MPerBlock) * MPerBlock;
const auto K = math::integer_divide_ceil(KRaw, KPerBlock) * KPerBlock;
const auto MPad = M - MRaw;
const auto KPad = K - KRaw;
const auto a_grid_desc_m_k = matrix_padder.PadADescriptor_M_K(a_grid_desc_mraw_kraw);
if constexpr(GemmSpec == GemmSpecialization::MKPadding ||
GemmSpec == GemmSpecialization::MNKPadding)
{
// pad both M and K
assert(K % AK1 == 0);
const auto M = a_grid_desc_m_k.GetLength(I0);
const auto K = a_grid_desc_m_k.GetLength(I1);
const auto AK0 = K / AK1;
const auto a_grid_desc_m_k =
transform_tensor_descriptor(a_grid_desc_mraw_kraw,
make_tuple(make_right_pad_transform(MRaw, MPad),
make_right_pad_transform(KRaw, KPad)),
make_tuple(Sequence<0>{}, Sequence<1>{}),
make_tuple(Sequence<0>{}, Sequence<1>{}));
const auto a_grid_desc_ak0_m_ak1 =
transform_tensor_descriptor(a_grid_desc_m_k,
return transform_tensor_descriptor(a_grid_desc_m_k,
make_tuple(make_unmerge_transform(make_tuple(AK0, AK1)),
make_pass_through_transform(M)),
make_tuple(Sequence<1>{}, Sequence<0>{}),
make_tuple(Sequence<0, 2>{}, Sequence<1>{}));
return a_grid_desc_ak0_m_ak1;
}
else if constexpr(GemmSpec == GemmSpecialization::MPadding ||
GemmSpec == GemmSpecialization::MNPadding)
{
// pad M, but not K
assert(KRaw % AK1 == 0);
const auto AK0 = KRaw / AK1;
const auto a_grid_desc_ak0_m_ak1 =
transform_tensor_descriptor(a_grid_desc_mraw_kraw,
make_tuple(make_unmerge_transform(make_tuple(AK0, AK1)),
make_right_pad_transform(MRaw, MPad)),
make_tuple(Sequence<1>{}, Sequence<0>{}),
make_tuple(Sequence<0, 2>{}, Sequence<1>{}));
return a_grid_desc_ak0_m_ak1;
}
else if constexpr(GemmSpec == GemmSpecialization::KPadding ||
GemmSpec == GemmSpecialization::NKPadding)
{
// pad K, but not M
assert(K % AK1 == 0);
const auto AK0 = K / AK1;
const auto a_grid_desc_m_k = transform_tensor_descriptor(
a_grid_desc_mraw_kraw,
make_tuple(make_pass_through_transform(MRaw), make_right_pad_transform(KRaw, KPad)),
make_tuple(Sequence<0>{}, Sequence<1>{}),
make_tuple(Sequence<0>{}, Sequence<1>{}));
const auto a_grid_desc_ak0_m_ak1 =
transform_tensor_descriptor(a_grid_desc_m_k,
make_tuple(make_unmerge_transform(make_tuple(AK0, AK1)),
make_pass_through_transform(MRaw)),
make_tuple(Sequence<1>{}, Sequence<0>{}),
make_tuple(Sequence<0, 2>{}, Sequence<1>{}));
return a_grid_desc_ak0_m_ak1;
}
else
{
// not pad M or K
assert(KRaw % AK1 == 0);
const auto AK0 = KRaw / AK1;
const auto a_grid_desc_ak0_m_ak1 =
transform_tensor_descriptor(a_grid_desc_mraw_kraw,
make_tuple(make_unmerge_transform(make_tuple(AK0, AK1)),
make_pass_through_transform(MRaw)),
make_tuple(Sequence<1>{}, Sequence<0>{}),
make_tuple(Sequence<0, 2>{}, Sequence<1>{}));
return a_grid_desc_ak0_m_ak1;
}
}
static auto MakeBGridDescriptor_BK0_N_BK1(index_t KRaw, index_t NRaw, index_t StrideB)
......@@ -316,84 +250,18 @@ struct DeviceBatchedGemmSoftmaxGemm_Xdl_CShuffle
}
}();
const auto N = math::integer_divide_ceil(NRaw, NPerBlock) * NPerBlock;
const auto K = math::integer_divide_ceil(KRaw, KPerBlock) * KPerBlock;
const auto b_grid_desc_n_k = matrix_padder.PadBDescriptor_N_K(b_grid_desc_nraw_kraw);
const auto NPad = N - NRaw;
const auto KPad = K - KRaw;
const auto N = b_grid_desc_n_k.GetLength(I0);
const auto K = b_grid_desc_n_k.GetLength(I1);
if constexpr(GemmSpec == GemmSpecialization::NKPadding ||
GemmSpec == GemmSpecialization::MNKPadding)
{
// pad both N and K
const auto BK0 = K / BK1;
const auto b_grid_desc_n_k =
transform_tensor_descriptor(b_grid_desc_nraw_kraw,
make_tuple(make_right_pad_transform(NRaw, NPad),
make_right_pad_transform(KRaw, KPad)),
make_tuple(Sequence<0>{}, Sequence<1>{}),
make_tuple(Sequence<0>{}, Sequence<1>{}));
const auto b_grid_desc_bk0_n_bk1 =
transform_tensor_descriptor(b_grid_desc_n_k,
return transform_tensor_descriptor(b_grid_desc_n_k,
make_tuple(make_unmerge_transform(make_tuple(BK0, BK1)),
make_pass_through_transform(N)),
make_tuple(Sequence<1>{}, Sequence<0>{}),
make_tuple(Sequence<0, 2>{}, Sequence<1>{}));
return b_grid_desc_bk0_n_bk1;
}
else if constexpr(GemmSpec == GemmSpecialization::NPadding ||
GemmSpec == GemmSpecialization::MNPadding)
{
// pad N, but not K
const auto BK0 = KRaw / BK1;
const auto b_grid_desc_bk0_n_bk1 =
transform_tensor_descriptor(b_grid_desc_nraw_kraw,
make_tuple(make_unmerge_transform(make_tuple(BK0, BK1)),
make_right_pad_transform(NRaw, NPad)),
make_tuple(Sequence<1>{}, Sequence<0>{}),
make_tuple(Sequence<0, 2>{}, Sequence<1>{}));
return b_grid_desc_bk0_n_bk1;
}
else if constexpr(GemmSpec == GemmSpecialization::KPadding ||
GemmSpec == GemmSpecialization::MKPadding)
{
// pad K, but not N
const auto BK0 = K / BK1;
const auto b_grid_desc_n_k = transform_tensor_descriptor(
b_grid_desc_nraw_kraw,
make_tuple(make_pass_through_transform(NRaw), make_right_pad_transform(KRaw, KPad)),
make_tuple(Sequence<0>{}, Sequence<1>{}),
make_tuple(Sequence<0>{}, Sequence<1>{}));
const auto b_grid_desc_bk0_n_bk1 =
transform_tensor_descriptor(b_grid_desc_n_k,
make_tuple(make_unmerge_transform(make_tuple(BK0, BK1)),
make_pass_through_transform(NRaw)),
make_tuple(Sequence<1>{}, Sequence<0>{}),
make_tuple(Sequence<0, 2>{}, Sequence<1>{}));
return b_grid_desc_bk0_n_bk1;
}
else
{
// not pad N or K
const auto BK0 = KRaw / BK1;
const auto b_grid_desc_bk0_n_bk1 =
transform_tensor_descriptor(b_grid_desc_nraw_kraw,
make_tuple(make_unmerge_transform(make_tuple(BK0, BK1)),
make_pass_through_transform(NRaw)),
make_tuple(Sequence<1>{}, Sequence<0>{}),
make_tuple(Sequence<0, 2>{}, Sequence<1>{}));
return b_grid_desc_bk0_n_bk1;
}
}
// Args: Gemm1KRaw, Gemm1NRaw, StrideB1
......@@ -412,47 +280,19 @@ struct DeviceBatchedGemmSoftmaxGemm_Xdl_CShuffle
}
}();
const auto N = math::integer_divide_ceil(NRaw, Gemm1NPerBlock) * Gemm1NPerBlock;
const auto K = math::integer_divide_ceil(KRaw, Gemm1KPerBlock) * Gemm1KPerBlock;
const auto b1_grid_desc_n_k = matrix_padder.PadB1Descriptor_N_K(b1_grid_desc_nraw_kraw);
const auto NPad = N - NRaw;
const auto KPad = K - KRaw;
const auto N = b1_grid_desc_n_k.GetLength(I0);
const auto K = b1_grid_desc_n_k.GetLength(I1);
// TODO: implement finer-grained padding
if constexpr(GemmSpec == GemmSpecialization::Default)
{
const auto B1K0 = KRaw / B1K1;
const auto b1_grid_desc_bk0_n_bk1 = transform_tensor_descriptor(
b1_grid_desc_nraw_kraw,
make_tuple(make_unmerge_transform(make_tuple(B1K0, B1K1)),
make_pass_through_transform(NRaw)),
make_tuple(Sequence<1>{}, Sequence<0>{}),
make_tuple(Sequence<0, 2>{}, Sequence<1>{}));
return b1_grid_desc_bk0_n_bk1;
}
else
{
// pad both B1N and B1K
const auto B1K0 = K / B1K1;
const auto b1_grid_desc_n_k =
transform_tensor_descriptor(b1_grid_desc_nraw_kraw,
make_tuple(make_right_pad_transform(NRaw, NPad),
make_right_pad_transform(KRaw, KPad)),
make_tuple(Sequence<0>{}, Sequence<1>{}),
make_tuple(Sequence<0>{}, Sequence<1>{}));
const auto b1_grid_desc_bk0_n_bk1 = transform_tensor_descriptor(
return transform_tensor_descriptor(
b1_grid_desc_n_k,
make_tuple(make_unmerge_transform(make_tuple(B1K0, B1K1)),
make_pass_through_transform(N)),
make_tuple(Sequence<1>{}, Sequence<0>{}),
make_tuple(Sequence<0, 2>{}, Sequence<1>{}));
return b1_grid_desc_bk0_n_bk1;
}
}
static auto MakeCGridDescriptor_M_N(index_t MRaw, index_t NRaw, index_t StrideC)
......@@ -470,47 +310,7 @@ struct DeviceBatchedGemmSoftmaxGemm_Xdl_CShuffle
}
}();
const auto M = math::integer_divide_ceil(MRaw, MPerBlock) * MPerBlock;
const auto N = math::integer_divide_ceil(NRaw, Gemm1NPerBlock) * Gemm1NPerBlock;
const auto MPad = M - MRaw;
const auto NPad = N - NRaw;
if constexpr(GemmSpec == GemmSpecialization::MNPadding ||
GemmSpec == GemmSpecialization::MNKPadding)
{
// pad M and N
return transform_tensor_descriptor(c_grid_desc_mraw_nraw,
make_tuple(make_right_pad_transform(MRaw, MPad),
make_right_pad_transform(NRaw, NPad)),
make_tuple(Sequence<0>{}, Sequence<1>{}),
make_tuple(Sequence<0>{}, Sequence<1>{}));
}
else if constexpr(GemmSpec == GemmSpecialization::MPadding ||
GemmSpec == GemmSpecialization::MKPadding)
{
// pad M, but not N
return transform_tensor_descriptor(
c_grid_desc_mraw_nraw,
make_tuple(make_right_pad_transform(MRaw, MPad), make_pass_through_transform(NRaw)),
make_tuple(Sequence<0>{}, Sequence<1>{}),
make_tuple(Sequence<0>{}, Sequence<1>{}));
}
else if constexpr(GemmSpec == GemmSpecialization::NPadding ||
GemmSpec == GemmSpecialization::NKPadding)
{
// pad N, but not M
return transform_tensor_descriptor(
c_grid_desc_mraw_nraw,
make_tuple(make_pass_through_transform(MRaw), make_right_pad_transform(NRaw, NPad)),
make_tuple(Sequence<0>{}, Sequence<1>{}),
make_tuple(Sequence<0>{}, Sequence<1>{}));
}
else
{
// not pad M or N
return c_grid_desc_mraw_nraw;
}
return matrix_padder.PadCDescriptor_M_N(c_grid_desc_mraw_nraw);
}
struct ComputeBasePtrOfStridedBatch
......@@ -617,7 +417,8 @@ struct DeviceBatchedGemmSoftmaxGemm_Xdl_CShuffle
CShuffleNXdlPerWavePerShuffle,
CShuffleBlockTransferClusterLengths_MBlock_MPerBlock_NBlock_NPerBlock,
CShuffleBlockTransferScalarPerVector_NPerBlock,
LoopSched>;
LoopSched,
matrix_padder.PadN>;
// Argument
struct Argument : public BaseArgument
......@@ -661,7 +462,8 @@ struct DeviceBatchedGemmSoftmaxGemm_Xdl_CShuffle
b1_element_op_{b1_element_op},
c_element_op_{c_element_op},
batch_count_(Batch),
compute_base_ptr_of_batch_{BatchStrideA, BatchStrideB, BatchStrideB1, BatchStrideC}
compute_base_ptr_of_batch_{BatchStrideA, BatchStrideB, BatchStrideB1, BatchStrideC},
raw_lengths_m_n_k_o_{MRaw, NRaw, KRaw, Gemm1NRaw}
{
if(GridwiseGemm::CheckValidity(a_grid_desc_ak0_m_ak1_,
b_grid_desc_bk0_n_bk1_,
......@@ -694,6 +496,9 @@ struct DeviceBatchedGemmSoftmaxGemm_Xdl_CShuffle
CElementwiseOperation c_element_op_;
index_t batch_count_;
ComputeBasePtrOfStridedBatch compute_base_ptr_of_batch_;
// For robust IsSupportedArgument() check
std::vector<index_t> raw_lengths_m_n_k_o_;
};
// Invoker
......@@ -797,6 +602,31 @@ struct DeviceBatchedGemmSoftmaxGemm_Xdl_CShuffle
return false;
}
// Note: we need raw lengths since threadwise copy can not handle vector load when part of
// vector is out of bounds
const auto MRaw = arg.raw_lengths_m_n_k_o_[0];
const auto NRaw = arg.raw_lengths_m_n_k_o_[1];
const auto KRaw = arg.raw_lengths_m_n_k_o_[2];
const auto Gemm1NRaw = arg.raw_lengths_m_n_k_o_[3];
// Check scalar per vector requirement
const auto a_extent_lowest =
is_same_v<tensor_layout::gemm::RowMajor, ALayout> ? KRaw : MRaw;
const auto b_extent_lowest =
is_same_v<tensor_layout::gemm::RowMajor, BLayout> ? NRaw : KRaw;
const auto b1_extent_lowest =
is_same_v<tensor_layout::gemm::RowMajor, B1Layout> ? Gemm1NRaw : NRaw;
const auto c_extent_lowest =
is_same_v<tensor_layout::gemm::RowMajor, CLayout> ? Gemm1NRaw : MRaw;
if(!(a_extent_lowest % ABlockTransferSrcScalarPerVector == 0 &&
b_extent_lowest % BBlockTransferSrcScalarPerVector == 0 &&
b1_extent_lowest % B1BlockTransferSrcScalarPerVector == 0 &&
c_extent_lowest % CShuffleBlockTransferScalarPerVector_NPerBlock == 0))
{
return false;
}
return GridwiseGemm::CheckValidity(arg.a_grid_desc_ak0_m_ak1_,
arg.b_grid_desc_bk0_n_bk1_,
arg.b1_grid_desc_bk0_n_bk1_,
......@@ -913,7 +743,8 @@ struct DeviceBatchedGemmSoftmaxGemm_Xdl_CShuffle
<< MPerBlock << ", "
<< Gemm1NPerBlock << ", "
<< Gemm1KPerBlock << ", "
<< B1K1 << ">";
<< B1K1 << ", "
<< getGemmSpecializationString(GemmSpec) << ">";
// clang-format on
return str.str();
......
......@@ -3,19 +3,10 @@
#pragma once
#include <iostream>
#include <sstream>
#include <memory>
#include <vector>
#include "ck/utility/reduction_operator.hpp"
#include "ck/tensor_operation/gpu/device/device_base.hpp"
#include "ck/tensor_operation/gpu/device/device_reduce.hpp"
#include "ck/tensor_operation/gpu/device/device_normalization.hpp"
#include "ck/tensor_operation/gpu/device/device_reduce_multiblock.hpp"
#include "ck/tensor_operation/gpu/device/device_reduce_common.hpp"
#include "ck/tensor_operation/gpu/grid/gridwise_softmax.hpp"
#include "ck/tensor_operation/gpu/grid/gridwise_set_buffer_value.hpp"
#include "ck/host_utility/device_prop.hpp"
#include "ck/host_utility/kernel_launch.hpp"
namespace ck {
namespace tensor_operation {
......@@ -24,227 +15,54 @@ namespace device {
template <typename InDataType,
typename AccDataType,
typename OutDataType,
index_t Rank,
index_t NumReduceDim,
index_t BlockSize,
index_t MThreadClusterSize,
index_t KThreadClusterSize,
index_t MThreadSliceSize,
index_t KThreadSliceSize,
index_t InSrcVectorDim,
index_t InSrcVectorSize,
index_t OutDstVectorSize>
struct DeviceSoftmax : public DeviceNormalization
typename InElementwiseOp,
typename AccElementwiseOp,
index_t Rank>
struct DeviceSoftmax : public BaseOperator
{
static constexpr index_t kRank = Rank;
static constexpr index_t kNumReduceDim = NumReduceDim;
virtual index_t GetRank() const override { return kRank; }
virtual index_t GetNumReduceDim() const override { return kNumReduceDim; }
using PassThrough = tensor_operation::element_wise::PassThrough;
// Used for freeloading of some handy functions from DeviceReduceMultiBlock
using Reduction = DeviceReduceMultiBlock<InDataType,
AccDataType,
OutDataType,
Rank,
NumReduceDim,
reduce::Add,
PassThrough, // InElementwiseOperation
PassThrough, // AccElementwiseOperation
InMemoryDataOperationEnum::Set,
false, // PropagateNan
false, // OutputIndex
false, // HaveIndexInputIfOutputIndex
BlockSize,
MThreadClusterSize,
KThreadClusterSize,
MThreadSliceSize,
KThreadSliceSize,
InSrcVectorDim,
InSrcVectorSize,
1>; // OutDstVectorSize
using GridDesc_M_K = decltype(Reduction::MakeSrc2dDescriptor({1}, {1}, 1, 1));
using GridwiseSoftmaxGeneric = GridwiseSoftmax_mk_to_mk<InDataType,
OutDataType,
AccDataType,
GridDesc_M_K,
BlockSize,
MThreadClusterSize,
KThreadClusterSize,
MThreadSliceSize,
KThreadSliceSize,
InSrcVectorDim,
InSrcVectorSize,
OutDstVectorSize,
false>;
using GridwiseSoftmaxSweepOnce = GridwiseSoftmax_mk_to_mk<InDataType,
OutDataType,
AccDataType,
GridDesc_M_K,
BlockSize,
MThreadClusterSize,
KThreadClusterSize,
MThreadSliceSize,
KThreadSliceSize,
InSrcVectorDim,
InSrcVectorSize,
OutDstVectorSize,
true>;
struct Argument : public Reduction::Argument
{
Argument(const std::vector<index_t> inLengths,
const std::vector<index_t> inStrides,
const std::vector<index_t> reduceDims,
AccDataType alpha,
AccDataType beta,
const InDataType* in_dev,
OutDataType* out_dev)
: Reduction::Argument(inLengths,
inStrides,
{},
{},
reduceDims,
0.0f, // alpha
0.0f, // beta
in_dev,
nullptr,
out_dev,
nullptr,
PassThrough{},
PassThrough{}),
// FIXME: The base class DeviceReduceMultiBlock::Argument only supports alpha/beta of
// float32 precision. Make it support any data type so the fields can be removed.
alpha_(alpha),
beta_(beta)
{
// std::cout << "blkGroupSize= " << this->blkGroupSize
// << ", numBlockTileIteration= " << this->numBlockTileIteration
// << ", gridSize=" << this->gridSize
// << ", invariant_total_length=" << this->invariant_total_length <<
// std::endl;
}
AccDataType alpha_;
AccDataType beta_;
};
struct Invoker : public BaseInvoker
{
float Run(const Argument& arg, const StreamConfig& stream_config = StreamConfig{})
{
const auto in_grid_desc_m_k = Reduction::MakeSrc2dDescriptor(
arg.inLengths_, arg.inStrides_, arg.blkGroupSize, arg.numBlockTileIteration);
const auto out_grid_desc_m_k = Reduction::MakeSrc2dDescriptor(
arg.inLengths_, arg.inStrides_, arg.blkGroupSize, arg.numBlockTileIteration);
bool sweep_once =
in_grid_desc_m_k.GetLength(Number<1>{}) <= KThreadClusterSize * KThreadSliceSize;
const auto kernel_main = sweep_once ? kernel_softmax<GridwiseSoftmaxSweepOnce,
InDataType,
OutDataType,
AccDataType,
GridDesc_M_K>
: kernel_softmax<GridwiseSoftmaxGeneric,
InDataType,
OutDataType,
AccDataType,
GridDesc_M_K>;
float avg_time = 0;
avg_time += launch_and_time_kernel(stream_config,
kernel_main,
dim3(arg.gridSize),
dim3(BlockSize),
0,
in_grid_desc_m_k,
out_grid_desc_m_k,
arg.blkGroupSize,
arg.numBlockTileIteration,
arg.alpha_,
arg.in_dev_,
arg.beta_,
arg.out_dev_);
return (avg_time);
};
float Run(const BaseArgument* p_arg,
const StreamConfig& stream_config = StreamConfig{}) override
{
return Run(*dynamic_cast<const Argument*>(p_arg), stream_config);
};
};
bool IsSupportedArgument(const BaseArgument* p_arg) override
{
const Argument* p_arg_ = dynamic_cast<const Argument*>(p_arg);
if(!Reduction::IsSupportedArgument(p_arg_))
{
return false;
}
if(p_arg_->inLengths_[Rank - 1] % OutDstVectorSize != 0)
{
return false;
}
return true;
};
// inLengths: input tensor extent(s) from high to low dimension
// inStrides: input tensor stride(s) from high to low dimension
// reduceDims: the dimension(s) the softmax normalization operate on
// alpha: typeless pointer in host memory storing the alpha scaling value as type AccDataType
// beta: typeless pointer in host memory storing the beta scaling value as type AccDataType
// in_dev: typeless const pointer in device memory storing the input tensor
// out_dev: typeless pointer in device memory storing the output tensor
std::unique_ptr<BaseArgument> MakeArgumentPointer(const std::vector<index_t> inLengths,
//
// @brief Makes a pointer to Argument class.
//
// @param[in] inLengths Input tensor extent(s) from high to low dimension
// @param[in] inStrides Input tensor stride(s) from high to low dimension
// @param[in] reduceDims The dimension(s) the normalization operation is applied
// @param[in] alpha Typeless pointer in host memory storing the alpha scaling
// value as type AccDataType
// @param[in] beta Typeless pointer in host memory storing the beta scaling
// value as type AccDataType
// @param[in] in_dev Typeless const pointer in device memory storing the input
// tensor
// @param out_dev Typeless pointer in device memory storing the output tensor
// @param[in] in_elementwise_op The input elementwise operation.
// @param[in] acc_elementwise_op The accumulation elementwise operation.
//
// @return Unique pointer to the Argument class.
//
virtual std::unique_ptr<BaseArgument>
MakeArgumentPointer(const std::vector<index_t> inLengths,
const std::vector<index_t> inStrides,
const std::vector<int> reduceDims,
const void* alpha,
const void* beta,
const void* in_dev,
void* out_dev) override
{
return std::make_unique<Argument>(inLengths,
inStrides,
reduceDims,
*static_cast<const AccDataType*>(alpha),
*static_cast<const AccDataType*>(beta),
static_cast<const InDataType*>(in_dev),
static_cast<OutDataType*>(out_dev));
};
void* out_dev,
InElementwiseOp in_elementwise_op,
AccElementwiseOp acc_elementwise_op) = 0;
std::unique_ptr<BaseInvoker> MakeInvokerPointer() override
{
return std::make_unique<Invoker>();
};
std::string GetTypeString() const override
{
auto str = std::stringstream();
// clang-format off
str << "DeviceReduceSoftmax<" << BlockSize << ",";
str << "M_C" << MThreadClusterSize << "_S" << MThreadSliceSize << ",";
str << "K_C" << KThreadClusterSize << "_S" << KThreadSliceSize << ",";
str << "InSrcVectorDim_" << InSrcVectorDim << "_InSrcVectorSize_" << InSrcVectorSize << "_OutDstVectorSize_" << OutDstVectorSize << ">";
// clang-format on
return str.str();
}
virtual std::unique_ptr<BaseInvoker> MakeInvokerPointer() = 0;
virtual index_t GetRank() const = 0;
virtual index_t GetNumReduceDim() const = 0;
};
template <typename InDataType,
typename AccDataType,
typename OutDataType,
typename InElementwiseOp,
typename AccElementwiseOp,
index_t Rank>
using DeviceSoftmaxPtr = std::unique_ptr<
DeviceSoftmax<InDataType, AccDataType, OutDataType, InElementwiseOp, AccElementwiseOp, Rank>>;
} // namespace device
} // namespace tensor_operation
} // namespace ck
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2022, Advanced Micro Devices, Inc. All rights reserved.
#pragma once
#include <iostream>
#include <sstream>
#include "ck/utility/reduction_operator.hpp"
#include "ck/tensor_operation/gpu/device/device_base.hpp"
#include "ck/tensor_operation/gpu/device/device_reduce.hpp"
#include "ck/tensor_operation/gpu/device/device_softmax.hpp"
#include "ck/tensor_operation/gpu/device/device_reduce_multiblock.hpp"
#include "ck/tensor_operation/gpu/device/device_reduce_common.hpp"
#include "ck/tensor_operation/gpu/grid/gridwise_softmax.hpp"
#include "ck/tensor_operation/gpu/grid/gridwise_set_buffer_value.hpp"
#include "ck/host_utility/device_prop.hpp"
#include "ck/host_utility/kernel_launch.hpp"
namespace ck {
namespace tensor_operation {
namespace device {
template <typename InDataType,
typename AccDataType,
typename OutDataType,
typename InElementwiseOp,
typename AccElementwiseOp,
index_t Rank,
index_t NumReduceDim,
index_t BlockSize,
index_t MThreadClusterSize,
index_t KThreadClusterSize,
index_t MThreadSliceSize,
index_t KThreadSliceSize,
index_t InSrcVectorDim,
index_t InSrcVectorSize,
index_t OutDstVectorSize>
struct DeviceSoftmaxImpl : public DeviceSoftmax<InDataType,
AccDataType,
OutDataType,
InElementwiseOp,
AccElementwiseOp,
Rank>
{
static constexpr index_t kRank = Rank;
static constexpr index_t kNumReduceDim = NumReduceDim;
virtual index_t GetRank() const override { return kRank; }
virtual index_t GetNumReduceDim() const override { return kNumReduceDim; }
// Used for freeloading of some handy functions from DeviceReduceMultiBlock
using Reduction = DeviceReduceMultiBlock<InDataType,
AccDataType,
OutDataType,
Rank,
NumReduceDim,
reduce::Add,
InElementwiseOp,
AccElementwiseOp,
InMemoryDataOperationEnum::Set,
false, // PropagateNan
false, // OutputIndex
false, // HaveIndexInputIfOutputIndex
BlockSize,
MThreadClusterSize,
KThreadClusterSize,
MThreadSliceSize,
KThreadSliceSize,
InSrcVectorDim,
InSrcVectorSize,
1>; // OutDstVectorSize
using GridDesc_M_K = decltype(Reduction::MakeSrc2dDescriptor({1}, {1}, 1, 1));
using GridwiseSoftmaxGeneric = GridwiseSoftmax_mk_to_mk<InDataType,
OutDataType,
AccDataType,
GridDesc_M_K,
BlockSize,
MThreadClusterSize,
KThreadClusterSize,
MThreadSliceSize,
KThreadSliceSize,
InSrcVectorDim,
InSrcVectorSize,
OutDstVectorSize,
false>;
using GridwiseSoftmaxSweepOnce = GridwiseSoftmax_mk_to_mk<InDataType,
OutDataType,
AccDataType,
GridDesc_M_K,
BlockSize,
MThreadClusterSize,
KThreadClusterSize,
MThreadSliceSize,
KThreadSliceSize,
InSrcVectorDim,
InSrcVectorSize,
OutDstVectorSize,
true>;
struct Argument : public Reduction::Argument
{
Argument(const std::vector<index_t> inLengths,
const std::vector<index_t> inStrides,
const std::vector<index_t> reduceDims,
AccDataType alpha,
AccDataType beta,
const InDataType* in_dev,
OutDataType* out_dev,
InElementwiseOp in_elementwise_op,
AccElementwiseOp acc_elementwise_op)
: Reduction::Argument(inLengths,
inStrides,
{},
{},
reduceDims,
0.0f, // alpha
0.0f, // beta
in_dev,
nullptr,
out_dev,
nullptr,
in_elementwise_op,
acc_elementwise_op),
// FIXME: The base class DeviceReduceMultiBlock::Argument only supports alpha/beta of
// float32 precision. Make it support any data type so the fields can be removed.
alpha_(alpha),
beta_(beta)
{
// std::cout << "blkGroupSize= " << this->blkGroupSize
// << ", numBlockTileIteration= " << this->numBlockTileIteration
// << ", gridSize=" << this->gridSize
// << ", invariant_total_length=" << this->invariant_total_length <<
// std::endl;
}
AccDataType alpha_;
AccDataType beta_;
};
struct Invoker : public BaseInvoker
{
float Run(const Argument& arg, const StreamConfig& stream_config = StreamConfig{})
{
const auto in_grid_desc_m_k = Reduction::MakeSrc2dDescriptor(
arg.inLengths_, arg.inStrides_, arg.blkGroupSize, arg.numBlockTileIteration);
const auto out_grid_desc_m_k = Reduction::MakeSrc2dDescriptor(
arg.inLengths_, arg.inStrides_, arg.blkGroupSize, arg.numBlockTileIteration);
bool sweep_once =
in_grid_desc_m_k.GetLength(Number<1>{}) <= KThreadClusterSize * KThreadSliceSize;
const auto kernel_main = sweep_once ? kernel_softmax<GridwiseSoftmaxSweepOnce,
InDataType,
OutDataType,
AccDataType,
GridDesc_M_K>
: kernel_softmax<GridwiseSoftmaxGeneric,
InDataType,
OutDataType,
AccDataType,
GridDesc_M_K>;
float avg_time = 0;
avg_time += launch_and_time_kernel(stream_config,
kernel_main,
dim3(arg.gridSize),
dim3(BlockSize),
0,
in_grid_desc_m_k,
out_grid_desc_m_k,
arg.blkGroupSize,
arg.numBlockTileIteration,
arg.alpha_,
arg.in_dev_,
arg.beta_,
arg.out_dev_);
return (avg_time);
};
float Run(const BaseArgument* p_arg,
const StreamConfig& stream_config = StreamConfig{}) override
{
return Run(*dynamic_cast<const Argument*>(p_arg), stream_config);
};
};
bool IsSupportedArgument(const BaseArgument* p_arg) override
{
const Argument* p_arg_ = dynamic_cast<const Argument*>(p_arg);
if(!Reduction::IsSupportedArgument(p_arg_))
{
return false;
}
if(p_arg_->inLengths_[Rank - 1] % OutDstVectorSize != 0)
{
return false;
}
return true;
};
//
// @brief Makes a pointer to Argument class.
//
// @param[in] inLengths Input tensor extent(s) from high to low dimension
// @param[in] inStrides Input tensor stride(s) from high to low dimension
// @param[in] reduceDims The dimension(s) the normalization operation is applied
// @param[in] alpha Typeless pointer in host memory storing the alpha scaling
// value as type AccDataType
// @param[in] beta Typeless pointer in host memory storing the beta scaling
// value as type AccDataType
// @param[in] in_dev Typeless const pointer in device memory storing the input
// tensor
// @param out_dev Typeless pointer in device memory storing the output tensor
// @param[in] in_elementwise_op The input elementwise operation.
// @param[in] acc_elementwise_op The accumulation elementwise operation.
//
// @return Unique pointer to the Argument class.
//
std::unique_ptr<BaseArgument> MakeArgumentPointer(const std::vector<index_t> inLengths,
const std::vector<index_t> inStrides,
const std::vector<int> reduceDims,
const void* alpha,
const void* beta,
const void* in_dev,
void* out_dev,
InElementwiseOp in_elementwise_op,
AccElementwiseOp acc_elementwise_op) override
{
return std::make_unique<Argument>(inLengths,
inStrides,
reduceDims,
*static_cast<const AccDataType*>(alpha),
*static_cast<const AccDataType*>(beta),
static_cast<const InDataType*>(in_dev),
static_cast<OutDataType*>(out_dev),
in_elementwise_op,
acc_elementwise_op);
};
std::unique_ptr<BaseInvoker> MakeInvokerPointer() override
{
return std::make_unique<Invoker>();
};
std::string GetTypeString() const override
{
auto str = std::stringstream();
// clang-format off
str << "DeviceReduceSoftmax<" << BlockSize << ",";
str << "M_C" << MThreadClusterSize << "_S" << MThreadSliceSize << ",";
str << "K_C" << KThreadClusterSize << "_S" << KThreadSliceSize << ",";
str << "InSrcVectorDim_" << InSrcVectorDim << "_InSrcVectorSize_" << InSrcVectorSize << "_OutDstVectorSize_" << OutDstVectorSize << ">";
// clang-format on
return str.str();
}
};
} // namespace device
} // namespace tensor_operation
} // namespace ck
......@@ -200,8 +200,7 @@ struct GridwiseBatchedGemmGemm_Xdl_CShuffle
const BGridDesc_BK0_N_BK1& b_grid_desc_bk0_n_bk1,
const B1GridDesc_BK0_N_BK1& b1_grid_desc_bk0_n_bk1,
const CGridDesc_M_N& c_grid_desc_m_n,
const Block2CTileMap& block_2_ctile_map,
const std::vector<index_t>& lengths_m_n_k_o)
const Block2CTileMap& block_2_ctile_map)
{
static_assert((MPerBlock % (MPerXdl * MXdlPerWave) == 0) &&
(NPerBlock % (NXdlPerWave * NPerXdl)) == 0,
......@@ -217,13 +216,6 @@ struct GridwiseBatchedGemmGemm_Xdl_CShuffle
return false;
}
// K is rounded to nearest multiples of K1 during tensor transformation so instead get KRaw
const auto KRaw = lengths_m_n_k_o[2];
if(!(KRaw % AK1 == 0 && KRaw % BK1 == 0))
{
return false;
}
if(!(M % MPerBlock == 0 && N % NPerBlock == 0 && K % KPerBlock == 0 &&
Gemm1N % Gemm1NPerBlock == 0))
{
......@@ -602,8 +594,9 @@ struct GridwiseBatchedGemmGemm_Xdl_CShuffle
static_cast<FloatAB*>(p_shared) + SharedMemTrait::b1_block_space_offset,
b1_block_desc_bk0_n_bk1.GetElementSpaceSize());
// selected_mfma.k_per_blk <= B1K1 <= selected_mfma.group_size
constexpr index_t Gemm1KPack = math::max(
math::lcm(MfmaSelector<FloatAB, MPerXdl, NPerXdl>::selected_mfma.group_size, B1K1),
math::gcd(MfmaSelector<FloatAB, MPerXdl, NPerXdl>::selected_mfma.group_size, B1K1),
MfmaSelector<FloatAB, MPerXdl, NPerXdl>::selected_mfma.k_per_blk);
auto gemm1_blockwise_gemm = BlockwiseGemmXdlops_v2<
......
......@@ -75,7 +75,8 @@ template <typename FloatAB,
index_t CShuffleNXdlPerWavePerShuffle,
typename CShuffleBlockTransferClusterLengths_MBlock_MPerBlock_NBlock_NPerBlock,
index_t CShuffleBlockTransferScalarPerVector_NPerBlock,
LoopScheduler LoopSched>
LoopScheduler LoopSched,
bool PadN>
struct GridwiseBatchedGemmSoftmaxGemm_Xdl_CShuffle
{
static_assert(LoopSched == LoopScheduler::Default,
......@@ -330,6 +331,36 @@ struct GridwiseBatchedGemmSoftmaxGemm_Xdl_CShuffle
c_shuffle_block_desc_mblock_mperblock_nblock_nperblock.GetElementSpaceSize();
};
template <bool Pred>
struct ElementOpPredicatedResetNaNToMinusInf;
template <>
struct ElementOpPredicatedResetNaNToMinusInf<true>
{
template <typename ElementOp, typename OutT, typename InT>
__host__ __device__ void Run(OutT& y, const ElementOp& op, const InT& x)
{
if(ck::math::isnan(x))
{
y = -ck::NumericLimits<float>::Infinity();
}
else
{
op(y, x);
}
}
};
template <>
struct ElementOpPredicatedResetNaNToMinusInf<false>
{
template <typename ElementOp, typename OutT, typename InT>
__host__ __device__ void Run(OutT& y, const ElementOp& op, const InT& x)
{
op(y, x);
}
};
template <bool HasMainKBlockLoop, typename Block2CTileMap>
__device__ static void Run(const FloatAB* __restrict__ p_a_grid,
const FloatAB* __restrict__ p_b_grid,
......@@ -348,14 +379,20 @@ struct GridwiseBatchedGemmSoftmaxGemm_Xdl_CShuffle
c_grid_desc_mblock_mperblock_nblock_nperblock,
const Block2CTileMap& block_2_ctile_map)
{
const auto a_grid_buf = make_dynamic_buffer<AddressSpaceEnum::Global>(
const auto a_grid_buf =
conditional_expr<PadN>(make_dynamic_buffer<AddressSpaceEnum::Global>(
p_a_grid,
a_grid_desc_ak0_m_ak1.GetElementSpaceSize(),
NumericLimits<FloatAB>::QuietNaN());
const auto b_grid_buf = make_dynamic_buffer<AddressSpaceEnum::Global>(
NumericLimits<FloatAB>::QuietNaN()),
make_dynamic_buffer<AddressSpaceEnum::Global>(
p_a_grid, a_grid_desc_ak0_m_ak1.GetElementSpaceSize()));
const auto b_grid_buf =
conditional_expr<PadN>(make_dynamic_buffer<AddressSpaceEnum::Global>(
p_b_grid,
b_grid_desc_bk0_n_bk1.GetElementSpaceSize(),
NumericLimits<FloatAB>::QuietNaN());
NumericLimits<FloatAB>::QuietNaN()),
make_dynamic_buffer<AddressSpaceEnum::Global>(
p_b_grid, b_grid_desc_bk0_n_bk1.GetElementSpaceSize()));
const auto b1_grid_buf = make_dynamic_buffer<AddressSpaceEnum::Global>(
p_b1_grid, b1_grid_desc_bk0_n_bk1.GetElementSpaceSize());
auto c_grid_buf = make_dynamic_buffer<AddressSpaceEnum::Global>(
......@@ -608,8 +645,9 @@ struct GridwiseBatchedGemmSoftmaxGemm_Xdl_CShuffle
static_cast<FloatAB*>(p_shared) + SharedMemTrait::b1_block_space_offset,
b1_block_desc_bk0_n_bk1.GetElementSpaceSize());
// selected_mfma.k_per_blk <= B1K1 <= selected_mfma.group_size
constexpr index_t Gemm1KPack = math::max(
math::lcm(MfmaSelector<FloatAB, MPerXdl, NPerXdl>::selected_mfma.group_size, B1K1),
math::gcd(MfmaSelector<FloatAB, MPerXdl, NPerXdl>::selected_mfma.group_size, B1K1),
MfmaSelector<FloatAB, MPerXdl, NPerXdl>::selected_mfma.k_per_blk);
auto gemm1_blockwise_gemm = BlockwiseGemmXdlops_v2<
......@@ -680,7 +718,12 @@ struct GridwiseBatchedGemmSoftmaxGemm_Xdl_CShuffle
FloatGemmAcc,
decltype(threadid_to_m_n_thread_cluster_adaptor),
decltype(thread_cluster_desc_m_n),
decltype(thread_slice_desc_m_n)>{};
decltype(thread_slice_desc_m_n)
#if CK_WORKAROUND_SWDEV_XXXXXX_ATTN_KERNEL_CLANG_CANNOT_SCAVENGE_REGISTER
,
true
#endif
>{};
const index_t num_gemm1_k_block_outer_loop =
b_grid_desc_bk0_n_bk1.GetLength(I1) / NPerBlock;
......@@ -721,8 +764,15 @@ struct GridwiseBatchedGemmSoftmaxGemm_Xdl_CShuffle
num_k_block_main_loop);
// Acc0 elementwise Op
#if CK_WORKAROUND_SWDEV_XXXXXX_ATTN_KERNEL_CLANG_CANNOT_SCAVENGE_REGISTER
static_for<0, acc_thread_buf.Size(), 1>{}(
[&](auto i) { acc_element_op(acc_thread_buf(i), acc_thread_buf[i]); });
#else
static_for<0, acc_thread_buf.Size(), 1>{}([&](auto i) {
ElementOpPredicatedResetNaNToMinusInf<PadN>{}.Run(
acc_thread_buf(i), acc_element_op, acc_thread_buf[i]);
});
#endif
block_sync_lds(); // wait for lds read in gemm0 blockwise gemm
......
......@@ -32,6 +32,20 @@ void add_device_batched_gemm_gemm_xdl_cshuffle_f16_f16_f16_f16_gmk_gnk_gno_gmo_i
PassThrough,
PassThrough>>>& instances);
void add_device_batched_gemm_gemm_xdl_cshuffle_f16_f16_f16_f16_gmk_gnk_gon_gmo_instance(
std::vector<std::unique_ptr<DeviceBatchedGemmGemm<Row,
Col,
Col,
Row,
F16,
F16,
F16,
F16,
PassThrough,
PassThrough,
PassThrough,
PassThrough,
PassThrough>>>& instances);
template <typename ALayout,
typename B0Layout,
typename B1Layout,
......@@ -82,6 +96,12 @@ struct DeviceOperationInstanceFactory<
add_device_batched_gemm_gemm_xdl_cshuffle_f16_f16_f16_f16_gmk_gnk_gno_gmo_instance(
op_ptrs);
}
else if constexpr(is_same_v<ALayout, Row> && is_same_v<B0Layout, Col> &&
is_same_v<B1Layout, Col> && is_same_v<CLayout, Row>)
{
add_device_batched_gemm_gemm_xdl_cshuffle_f16_f16_f16_f16_gmk_gnk_gon_gmo_instance(
op_ptrs);
}
}
return op_ptrs;
}
......
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2022, Advanced Micro Devices, Inc. All rights reserved.
#pragma once
#include <type_traits>
#include <vector>
#include "ck/ck.hpp"
#include "ck/library/tensor_operation_instance/device_operation_instance_factory.hpp"
#include "ck/tensor_operation/gpu/device/tensor_layout.hpp"
#include "ck/tensor_operation/gpu/device/device_softmax.hpp"
#include "ck/tensor_operation/gpu/element/element_wise_operation.hpp"
#include "ck/utility/data_type.hpp"
namespace ck {
namespace tensor_operation {
namespace device {
namespace instance {
using F16 = ck::half_t;
using F32 = float;
using PassThrough = ck::tensor_operation::element_wise::PassThrough;
void add_device_softmax_f16_f16_rank3_instances(
std::vector<DeviceSoftmaxPtr<F16, F32, F16, PassThrough, PassThrough, 3>>&);
void add_device_softmax_f16_f16_rank4_instances(
std::vector<DeviceSoftmaxPtr<F16, F32, F16, PassThrough, PassThrough, 4>>&);
void add_device_softmax_f32_f32_rank3_instances(
std::vector<DeviceSoftmaxPtr<F32, F32, F32, PassThrough, PassThrough, 3>>&);
void add_device_softmax_f32_f32_rank4_instances(
std::vector<DeviceSoftmaxPtr<F32, F32, F32, PassThrough, PassThrough, 4>>&);
template <typename InDataType, typename AccDataType, typename OutDataType, index_t Rank>
struct DeviceOperationInstanceFactory<
ck::tensor_operation::device::
DeviceSoftmax<InDataType, AccDataType, OutDataType, PassThrough, PassThrough, Rank>>
{
using DeviceOp =
DeviceSoftmax<InDataType, AccDataType, OutDataType, PassThrough, PassThrough, Rank>;
static auto GetInstances()
{
std::vector<std::unique_ptr<DeviceOp>> op_ptrs;
if constexpr(std::is_same_v<InDataType, F16> && std::is_same_v<AccDataType, F32> &&
std::is_same_v<OutDataType, F16>)
{
if constexpr(Rank == 3)
add_device_softmax_f16_f16_rank3_instances(op_ptrs);
else if constexpr(Rank == 4)
add_device_softmax_f16_f16_rank4_instances(op_ptrs);
}
else if constexpr(std::is_same_v<InDataType, F32> && std::is_same_v<AccDataType, F32> &&
std::is_same_v<OutDataType, F32>)
{
if constexpr(Rank == 3)
add_device_softmax_f32_f32_rank3_instances(op_ptrs);
else if constexpr(Rank == 4)
add_device_softmax_f32_f32_rank4_instances(op_ptrs);
}
return op_ptrs;
}
};
} // namespace instance
} // namespace device
} // namespace tensor_operation
} // namespace ck
......@@ -78,6 +78,7 @@ target_include_directories(device_operations PUBLIC
$<INSTALL_INTERFACE:${CMAKE_INSTALL_INCLUDEDIR}/ck/tensor>
$<INSTALL_INTERFACE:${CMAKE_INSTALL_INCLUDEDIR}/ck/problem_transform>
$<INSTALL_INTERFACE:${CMAKE_INSTALL_INCLUDEDIR}/ck/tensor_operation/gpu/device>
$<INSTALL_INTERFACE:${CMAKE_INSTALL_INCLUDEDIR}/ck/tensor_operation/gpu/device/impl>
$<INSTALL_INTERFACE:${CMAKE_INSTALL_INCLUDEDIR}/ck/tensor_operation/gpu/grid>
$<INSTALL_INTERFACE:${CMAKE_INSTALL_INCLUDEDIR}/ck/tensor_operation/gpu/block>
$<INSTALL_INTERFACE:${CMAKE_INSTALL_INCLUDEDIR}/ck/tensor_operation/gpu/warp>
......
add_instance_library(device_batched_gemm_gemm_instance
device_batched_gemm_gemm_xdl_cshuffle_f16_f16_f16_f16_gmk_gnk_gno_gmo_instance.cpp
device_batched_gemm_gemm_xdl_cshuffle_f16_f16_f16_f16_gmk_gnk_gon_gmo_instance.cpp
)
......@@ -35,11 +35,21 @@ using device_batched_gemm_gemm_xdl_cshuffle_f16_f16_f16_f16_gmk_gnk_gno_gmo_inst
//################################| | | | | Type| Type| Type| Type| Type| DataType| Elementwise| Elementwise| Elementwise| Elementwise| Elementwise| Specialization| Prefetch| Size| MPer| NPer| KPer| NPer| KPer| | | | XDL| XDL| MXdl| NXdl| NXdl| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| AddExtraM| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| AddExtraN| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| AddExtraN| MXdlPerWave| NXdlPerWave| _MBlock_MWaveMPerXdl| ScalarPerVector|
//################################| | | | | | | | | | | Operation| Operation| Operation| Operation| Operation| | Stage| | Block| Block| Block| Block| Block| | | | | | Per| Per| Per| Lengths_K0_M_K1| ArrangeOrder| | | PerVector| PerVector_K1| | Lengths_K0_N_K1| ArrangeOrder| | | PerVector| PerVector_K1| | Lengths_K0_N_K1| ArrangeOrder| | | PerVector| PerVector_K1| | PerShuffle| PerShuffle| _NBlock_NWaveNPerXdl| _NWaveNPerXdl|
//################################| | | | | | | | | | | | | | | | | | | | | | | | | | | | | Wave| Wave| Wave| | | | | | | | | | | | | | | | | | | | | | | | | |
DeviceBatchedGemmGemm_Xdl_CShuffle< Row, Col, Row, Row, F16, F16, F16, F16, F32, F16, PassThrough, PassThrough, PassThrough, PassThrough, PassThrough, GemmDefault, 1, 256, 256, 128, 32, 128, 32, 8, 8, 2, 32, 32, 2, 4, 4, S<4, 64, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, true, S<4, 64, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, true, S< 8, 32, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 4, 2, false, 1, 2, S<1, 32, 1, 8>, 8>,
DeviceBatchedGemmGemm_Xdl_CShuffle< Row, Col, Row, Row, F16, F16, F16, F16, F32, F16, PassThrough, PassThrough, PassThrough, PassThrough, PassThrough, GemmDefault, 1, 256, 128, 128, 32, 128, 32, 8, 8, 2, 32, 32, 1, 4, 4, S<4, 64, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, true, S<4, 64, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, true, S< 8, 32, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 4, 2, false, 1, 2, S<1, 32, 1, 8>, 8>,
//################################| | | | | | | | | | | | | | | | | | | | | | | | | | | | | Wave| Wave| Wave| | | | | | | | | | | | | | | | | | | | | | | | | |
// DeviceBatchedGemmGemm_Xdl_CShuffle< Row, Col, Row, Row, F16, F16, F16, F16, F32, F16, PassThrough, PassThrough, PassThrough, PassThrough, PassThrough, GemmDefault, 1, 256, 256, 128, 32, 64, 32, 8, 8, 2, 32, 32, 2, 4, 2, S<4, 64, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, true, S<4, 64, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, true, S<16, 16, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 4, 2, false, 1, 2, S<1, 32, 1, 8>, 8>, // failed validation on MI100
// DeviceBatchedGemmGemm_Xdl_CShuffle< Row, Col, Row, Row, F16, F16, F16, F16, F32, F16, PassThrough, PassThrough, PassThrough, PassThrough, PassThrough, GemmDefault, 1, 256, 256, 128, 32, 128, 32, 8, 8, 2, 32, 32, 2, 4, 4, S<4, 64, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, true, S<4, 64, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, true, S< 8, 32, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 4, 2, false, 1, 2, S<1, 32, 1, 8>, 8>, // failed validation on MI100
// DeviceBatchedGemmGemm_Xdl_CShuffle< Row, Col, Row, Row, F16, F16, F16, F16, F32, F16, PassThrough, PassThrough, PassThrough, PassThrough, PassThrough, GemmDefault, 1, 256, 128, 256, 32, 64, 32, 8, 8, 2, 32, 32, 1, 8, 2, S<4, 64, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, true, S<4, 64, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, true, S<16, 16, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 4, 2, false, 1, 2, S<1, 32, 1, 8>, 8>, // failed validation on MI100
// DeviceBatchedGemmGemm_Xdl_CShuffle< Row, Col, Row, Row, F16, F16, F16, F16, F32, F16, PassThrough, PassThrough, PassThrough, PassThrough, PassThrough, GemmDefault, 1, 256, 128, 256, 32, 128, 32, 8, 8, 2, 32, 32, 1, 8, 4, S<4, 64, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, true, S<4, 64, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, true, S< 8, 32, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 4, 2, false, 1, 2, S<1, 32, 1, 8>, 8>, // failed validation on MI100
DeviceBatchedGemmGemm_Xdl_CShuffle< Row, Col, Row, Row, F16, F16, F16, F16, F32, F16, PassThrough, PassThrough, PassThrough, PassThrough, PassThrough, GemmDefault, 1, 256, 128, 128, 64, 64, 32, 8, 8, 2, 32, 32, 1, 4, 2, S<8, 32, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, false, S<8, 32, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, false, S<16, 16, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 4, 2, false, 1, 2, S<1, 32, 1, 8>, 8>,
DeviceBatchedGemmGemm_Xdl_CShuffle< Row, Col, Row, Row, F16, F16, F16, F16, F32, F16, PassThrough, PassThrough, PassThrough, PassThrough, PassThrough, GemmDefault, 1, 256, 128, 128, 32, 64, 32, 8, 8, 2, 32, 32, 1, 4, 2, S<4, 64, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, true, S<4, 64, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, true, S<16, 16, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 4, 2, false, 1, 2, S<1, 32, 1, 8>, 8>,
DeviceBatchedGemmGemm_Xdl_CShuffle< Row, Col, Row, Row, F16, F16, F16, F16, F32, F16, PassThrough, PassThrough, PassThrough, PassThrough, PassThrough, GemmDefault, 1, 256, 128, 64, 32, 128, 32, 8, 8, 2, 32, 32, 1, 2, 4, S<4, 64, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, true, S<4, 64, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, true, S< 8, 32, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 4, 2, false, 1, 2, S<1, 32, 1, 8>, 8>,
DeviceBatchedGemmGemm_Xdl_CShuffle< Row, Col, Row, Row, F16, F16, F16, F16, F32, F16, PassThrough, PassThrough, PassThrough, PassThrough, PassThrough, GemmDefault, 1, 256, 128, 128, 64, 128, 32, 8, 8, 2, 32, 32, 1, 4, 4, S<8, 32, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, false, S<8, 32, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, false, S< 8, 32, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 4, 2, false, 1, 2, S<1, 32, 1, 8>, 8>,
DeviceBatchedGemmGemm_Xdl_CShuffle< Row, Col, Row, Row, F16, F16, F16, F16, F32, F16, PassThrough, PassThrough, PassThrough, PassThrough, PassThrough, GemmDefault, 1, 256, 128, 128, 32, 128, 32, 8, 8, 2, 32, 32, 1, 4, 4, S<4, 64, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, true, S<4, 64, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, true, S< 8, 32, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 4, 2, false, 1, 2, S<1, 32, 1, 8>, 8>,
DeviceBatchedGemmGemm_Xdl_CShuffle< Row, Col, Row, Row, F16, F16, F16, F16, F32, F16, PassThrough, PassThrough, PassThrough, PassThrough, PassThrough, GemmDefault, 1, 256, 64, 256, 32, 128, 32, 8, 8, 2, 16, 16, 1, 16, 8, S<4, 64, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, true, S<4, 64, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, true, S< 8, 32, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 4, 2, false, 1, 8, S<1, 16, 1,16>, 8>,
DeviceBatchedGemmGemm_Xdl_CShuffle< Row, Col, Row, Row, F16, F16, F16, F16, F32, F16, PassThrough, PassThrough, PassThrough, PassThrough, PassThrough, GemmDefault, 1, 256, 64, 256, 32, 64, 32, 8, 8, 2, 16, 16, 1, 16, 4, S<4, 64, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, true, S<4, 64, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, true, S<16, 16, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 4, 2, false, 1, 4, S<1, 32, 1, 8>, 8>,
DeviceBatchedGemmGemm_Xdl_CShuffle< Row, Col, Row, Row, F16, F16, F16, F16, F32, F16, PassThrough, PassThrough, PassThrough, PassThrough, PassThrough, GemmDefault, 1, 256, 64, 256, 64, 128, 32, 8, 8, 2, 16, 16, 1, 16, 8, S<8, 32, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, true, S<8, 32, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, true, S< 8, 32, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 4, 2, false, 1, 8, S<1, 16, 1,16>, 8>,
DeviceBatchedGemmGemm_Xdl_CShuffle< Row, Col, Row, Row, F16, F16, F16, F16, F32, F16, PassThrough, PassThrough, PassThrough, PassThrough, PassThrough, GemmDefault, 1, 256, 64, 256, 64, 64, 32, 8, 8, 2, 16, 16, 1, 16, 4, S<8, 32, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, true, S<8, 32, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, true, S<16, 16, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 4, 2, false, 1, 4, S<1, 32, 1, 8>, 8>,
// Padded fallback kernel
DeviceBatchedGemmGemm_Xdl_CShuffle< Row, Col, Row, Row, F16, F16, F16, F16, F32, F16, PassThrough, PassThrough, PassThrough, PassThrough, PassThrough, GemmPadded, 1, 256, 128, 128, 64, 128, 32, 8, 8, 2, 32, 32, 1, 4, 4, S<8, 32, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, false, S<8, 32, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, false, S< 8, 32, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 4, 2, false, 1, 2, S<1, 32, 1, 8>, 8>,
DeviceBatchedGemmGemm_Xdl_CShuffle< Row, Col, Row, Row, F16, F16, F16, F16, F32, F16, PassThrough, PassThrough, PassThrough, PassThrough, PassThrough, GemmPadded, 1, 256, 128, 64, 32, 128, 32, 8, 8, 2, 32, 32, 1, 2, 4, S<4, 64, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, true, S<4, 64, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, true, S< 8, 32, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 4, 2, false, 1, 2, S<1, 32, 1, 8>, 8>
// clang-format on
>;
......
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment