Commit b134b7d6 authored by carlushuang's avatar carlushuang
Browse files

Merge remote-tracking branch 'origin/develop' into cpu_avx2

parents 090ba885 9f71ff48
...@@ -2,7 +2,7 @@ ...@@ -2,7 +2,7 @@
#include "config.hpp" #include "config.hpp"
#include "device_gemm_reduce_xdl_cshuffle.hpp" #include "device_gemm_reduce_xdl_cshuffle.hpp"
#include "element_wise_operation.hpp" #include "element_wise_operation.hpp"
#include "element_wise_reduce_operation.hpp" #include "reduction_operator.hpp"
#include "device_operation_instance.hpp" #include "device_operation_instance.hpp"
namespace ck { namespace ck {
...@@ -19,9 +19,9 @@ using Col = ck::tensor_layout::gemm::ColumnMajor; ...@@ -19,9 +19,9 @@ using Col = ck::tensor_layout::gemm::ColumnMajor;
template <ck::index_t... Is> template <ck::index_t... Is>
using S = ck::Sequence<Is...>; using S = ck::Sequence<Is...>;
using PassThrough = ck::tensor_operation::element_wise::PassThrough; using PassThrough = ck::tensor_operation::element_wise::PassThrough;
using ReduceSum = ck::tensor_operation::element_wise::ReduceSum; using ReduceSum = ck::reduce::Add<F32>;
using ReduceSquareSum = ck::tensor_operation::element_wise::ReduceSquareSum; using Square = ck::tensor_operation::element_wise::UnarySquare<F32, F32, false>;
static constexpr auto GemmDefault = ck::tensor_operation::device::GemmSpecialization::Default; static constexpr auto GemmDefault = ck::tensor_operation::device::GemmSpecialization::Default;
...@@ -30,33 +30,31 @@ static constexpr auto GemmDefault = ck::tensor_operation::device::GemmSpecializa ...@@ -30,33 +30,31 @@ static constexpr auto GemmDefault = ck::tensor_operation::device::GemmSpecializa
// d1[m] = reduce1(c[m, n]) // d1[m] = reduce1(c[m, n])
using device_gemm_reduce_xdl_cshuffle_f16_f16_f16_f32_f32_km_nk_mn_instances = std::tuple< using device_gemm_reduce_xdl_cshuffle_f16_f16_f16_f32_f32_km_nk_mn_instances = std::tuple<
// clang-format off // clang-format off
//###########################| ALayout| BLayout| CLayout|AData| BData| CData| GemmAcc| CShuffle| ReduceAcc| DData| A| B| C| D0| D1| GEMM| NumGemmK| Block| MPer| NPer| KPer| AK1| BK1| MPer| NPer| MXdl| NXdl| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockLds| BBlockTransfer| BBlockTransfer| BBlockTransfer| BlockTransfer| BBlockTransfer| BBlockTransfer| BBlockLds| CShuffle| CShuffle| CBlockTransferClusterLengths| CBlockTransfer| CReduce| CReduceThreadLds2VGprCopy| CReduceThreadVgpr2GlobalCopy| //###########################| ALayout| BLayout| CLayout|AData| BData| CData| GemmAcc| CShuffle| ReduceAcc| DData| A| B| C| D0| D1| D1EleOp| GEMM| NumGemmK| Block| MPer| NPer| KPer| AK1| BK1| MPer| NPer| MXdl| NXdl| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockLds| BBlockTransfer| BBlockTransfer| BBlockTransfer| BlockTransfer| BBlockTransfer| BBlockTransfer| BBlockLds| CShuffle| CShuffle| CBlockTransferClusterLengths| CBlockTransfer| CReduce| CReduceThreadLds2VGprCopy| CReduceThreadVgpr2GlobalCopy|
//###########################| | | | Type| Type| Type| DataType| DataType| DataType| Type| Elementwise| Elementwise| Elementwise| Reduce| Reduce| Spacialization| Prefetch| Size| Block| Block| Block| | | XDL| XDL| Per| Per| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| AddExtraM| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| AddExtraN| MXdlPerWave| NXdlPerWave| _MBlock_MPerBlock| ScalarPerVector| ThreadClusterLengths| SrcDstScalarPerVector| SrcDstScalarPerVector| //###########################| | | | Type| Type| Type| DataType| DataType| DataType| Type| Elementwise| Elementwise| Elementwise| Reduce| Reduce| Spacialization| Prefetch| Size| Block| Block| Block| | | XDL| XDL| Per| Per| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| AddExtraM| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| AddExtraN| MXdlPerWave| NXdlPerWave| _MBlock_MPerBlock| ScalarPerVector| ThreadClusterLengths| SrcDstScalarPerVector| SrcDstScalarPerVector|
//###########################| | | | | | | | | | | Operation| Operation| Operation| Operation| Operation| | Stage| | | | | | | | | Wave| Wave| Lengths_K0_M_K1| ArrangeOrder| | | PerVector| PerVector_K1| | Lengths_K0_N_K1| ArrangeOrder| | | PerVector| PerVector_K1| | PerShuffle| PerShuffle| _NBlock_NPerBlock| _NPerBlock| _MPerBlock_NPerBlock| _NPerBlock| _MPerBlock| //###########################| | | | | | | | | | | Operation| Operation| Operation| Operation| Operation| | Stage| | | | | | | | | Wave| Wave| Lengths_K0_M_K1| ArrangeOrder| | | PerVector| PerVector_K1| | Lengths_K0_N_K1| ArrangeOrder| | | PerVector| PerVector_K1| | PerShuffle| PerShuffle| _NBlock_NPerBlock| _NPerBlock| _MPerBlock_NPerBlock| _NPerBlock| _MPerBlock|
//###########################| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | //###########################| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
DeviceGemmReduce_Xdl_CShuffle< Col, Col, Row, F16, F16, F16, F32, F32, F32, F32, PassThrough, PassThrough, PassThrough, ReduceSum, ReduceSquareSum, GemmDefault, 1, 256, 256, 128, 32, 2, 8, 32, 32, 4, 2, S<4, 64, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 4, 2, false, S<4, 64, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, true, 1, 1, S<1, 32, 1, 8>, 8, S<64, 4>, 4, 1>, DeviceGemmReduce_Xdl_CShuffle< Col, Col, Row, F16, F16, F16, F32, F32, F32, F32, PassThrough, PassThrough, PassThrough, ReduceSum, ReduceSum, Square, GemmDefault, 1, 256, 256, 128, 32, 2, 8, 32, 32, 4, 2, S<4, 64, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 4, 2, false, S<4, 64, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, true, 1, 1, S<1, 32, 1, 8>, 8, S<64, 4>, 4, 1>,
DeviceGemmReduce_Xdl_CShuffle< Col, Col, Row, F16, F16, F16, F32, F32, F32, F32, PassThrough, PassThrough, PassThrough, ReduceSum, ReduceSquareSum, GemmDefault, 1, 256, 256, 128, 32, 8, 8, 32, 32, 4, 2, S<4, 64, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 4, 8, true, S<4, 64, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, true, 1, 1, S<1, 32, 1, 8>, 8, S<64, 4>, 4, 1>, DeviceGemmReduce_Xdl_CShuffle< Col, Col, Row, F16, F16, F16, F32, F32, F32, F32, PassThrough, PassThrough, PassThrough, ReduceSum, ReduceSum, Square, GemmDefault, 1, 256, 256, 128, 32, 8, 8, 32, 32, 4, 2, S<4, 64, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 4, 8, true, S<4, 64, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, true, 1, 1, S<1, 32, 1, 8>, 8, S<64, 4>, 4, 1>,
DeviceGemmReduce_Xdl_CShuffle< Col, Col, Row, F16, F16, F16, F32, F32, F32, F32, PassThrough, PassThrough, PassThrough, ReduceSum, ReduceSquareSum, GemmDefault, 1, 256, 128, 256, 32, 2, 8, 32, 32, 2, 4, S<8, 32, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 4, 2, false, S<4, 64, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, true, 1, 1, S<1, 32, 1, 8>, 8, S<64, 4>, 4, 1>, DeviceGemmReduce_Xdl_CShuffle< Col, Col, Row, F16, F16, F16, F32, F32, F32, F32, PassThrough, PassThrough, PassThrough, ReduceSum, ReduceSum, Square, GemmDefault, 1, 256, 128, 256, 32, 2, 8, 32, 32, 2, 4, S<8, 32, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 4, 2, false, S<4, 64, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, true, 1, 1, S<1, 32, 1, 8>, 8, S<64, 4>, 4, 1>,
DeviceGemmReduce_Xdl_CShuffle< Col, Col, Row, F16, F16, F16, F32, F32, F32, F32, PassThrough, PassThrough, PassThrough, ReduceSum, ReduceSquareSum, GemmDefault, 1, 256, 128, 256, 32, 8, 8, 32, 32, 2, 4, S<4, 64, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 2, 8, true, S<4, 64, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, true, 1, 1, S<1, 32, 1, 8>, 8, S<64, 4>, 4, 1>, DeviceGemmReduce_Xdl_CShuffle< Col, Col, Row, F16, F16, F16, F32, F32, F32, F32, PassThrough, PassThrough, PassThrough, ReduceSum, ReduceSum, Square, GemmDefault, 1, 256, 128, 256, 32, 8, 8, 32, 32, 2, 4, S<4, 64, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 2, 8, true, S<4, 64, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, true, 1, 1, S<1, 32, 1, 8>, 8, S<64, 4>, 4, 1>,
DeviceGemmReduce_Xdl_CShuffle< Col, Col, Row, F16, F16, F16, F32, F32, F32, F32, PassThrough, PassThrough, PassThrough, ReduceSum, ReduceSquareSum, GemmDefault, 1, 128, 128, 128, 32, 2, 8, 32, 32, 4, 2, S<4, 32, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 4, 2, false, S<4, 32, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, true, 1, 1, S<1, 16, 1, 8>, 8, S<32, 4>, 4, 1>, DeviceGemmReduce_Xdl_CShuffle< Col, Col, Row, F16, F16, F16, F32, F32, F32, F32, PassThrough, PassThrough, PassThrough, ReduceSum, ReduceSum, Square, GemmDefault, 1, 128, 128, 128, 32, 2, 8, 32, 32, 4, 2, S<4, 32, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 4, 2, false, S<4, 32, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, true, 1, 1, S<1, 16, 1, 8>, 8, S<32, 4>, 4, 1>,
DeviceGemmReduce_Xdl_CShuffle< Col, Col, Row, F16, F16, F16, F32, F32, F32, F32, PassThrough, PassThrough, PassThrough, ReduceSum, ReduceSquareSum, GemmDefault, 1, 128, 128, 128, 32, 8, 8, 32, 32, 4, 2, S<4, 32, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 4, 8, true, S<4, 32, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, true, 1, 1, S<1, 16, 1, 8>, 8, S<32, 4>, 4, 1>, DeviceGemmReduce_Xdl_CShuffle< Col, Col, Row, F16, F16, F16, F32, F32, F32, F32, PassThrough, PassThrough, PassThrough, ReduceSum, ReduceSum, Square, GemmDefault, 1, 128, 128, 128, 32, 8, 8, 32, 32, 4, 2, S<4, 32, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 4, 8, true, S<4, 32, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, true, 1, 1, S<1, 16, 1, 8>, 8, S<32, 4>, 4, 1>,
DeviceGemmReduce_Xdl_CShuffle< Col, Col, Row, F16, F16, F16, F32, F32, F32, F32, PassThrough, PassThrough, PassThrough, ReduceSum, ReduceSquareSum, GemmDefault, 1, 256, 128, 128, 32, 2, 8, 32, 32, 2, 2, S<8, 32, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 4, 2, false, S<4, 64, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, true, 1, 1, S<1, 32, 1, 8>, 8, S<64, 4>, 4, 1>, DeviceGemmReduce_Xdl_CShuffle< Col, Col, Row, F16, F16, F16, F32, F32, F32, F32, PassThrough, PassThrough, PassThrough, ReduceSum, ReduceSum, Square, GemmDefault, 1, 256, 128, 128, 32, 2, 8, 32, 32, 2, 2, S<8, 32, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 4, 2, false, S<4, 64, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, true, 1, 1, S<1, 32, 1, 8>, 8, S<64, 4>, 4, 1>,
DeviceGemmReduce_Xdl_CShuffle< Col, Col, Row, F16, F16, F16, F32, F32, F32, F32, PassThrough, PassThrough, PassThrough, ReduceSum, ReduceSquareSum, GemmDefault, 1, 256, 128, 128, 32, 8, 8, 32, 32, 2, 2, S<4, 64, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 2, 8, true, S<4, 64, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, true, 1, 1, S<1, 32, 1, 8>, 8, S<64, 4>, 4, 1>, DeviceGemmReduce_Xdl_CShuffle< Col, Col, Row, F16, F16, F16, F32, F32, F32, F32, PassThrough, PassThrough, PassThrough, ReduceSum, ReduceSum, Square, GemmDefault, 1, 256, 128, 128, 32, 8, 8, 32, 32, 2, 2, S<4, 64, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 2, 8, true, S<4, 64, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, true, 1, 1, S<1, 32, 1, 8>, 8, S<64, 4>, 4, 1>,
DeviceGemmReduce_Xdl_CShuffle< Col, Col, Row, F16, F16, F16, F32, F32, F32, F32, PassThrough, PassThrough, PassThrough, ReduceSum, ReduceSquareSum, GemmDefault, 1, 128, 128, 64, 32, 2, 8, 32, 32, 2, 2, S<4, 32, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 4, 2, false, S<4, 32, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, true, 1, 1, S<1, 32, 1, 4>, 8, S<64, 2>, 4, 1>, DeviceGemmReduce_Xdl_CShuffle< Col, Col, Row, F16, F16, F16, F32, F32, F32, F32, PassThrough, PassThrough, PassThrough, ReduceSum, ReduceSum, Square, GemmDefault, 1, 128, 128, 64, 32, 2, 8, 32, 32, 2, 2, S<4, 32, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 4, 2, false, S<4, 32, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, true, 1, 1, S<1, 32, 1, 4>, 8, S<64, 2>, 4, 1>,
DeviceGemmReduce_Xdl_CShuffle< Col, Col, Row, F16, F16, F16, F32, F32, F32, F32, PassThrough, PassThrough, PassThrough, ReduceSum, ReduceSquareSum, GemmDefault, 1, 128, 128, 64, 32, 8, 8, 32, 32, 2, 2, S<4, 32, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 4, 8, true, S<4, 32, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, true, 1, 1, S<1, 32, 1, 4>, 8, S<64, 2>, 4, 1>, DeviceGemmReduce_Xdl_CShuffle< Col, Col, Row, F16, F16, F16, F32, F32, F32, F32, PassThrough, PassThrough, PassThrough, ReduceSum, ReduceSum, Square, GemmDefault, 1, 128, 128, 64, 32, 8, 8, 32, 32, 2, 2, S<4, 32, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 4, 8, true, S<4, 32, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, true, 1, 1, S<1, 32, 1, 4>, 8, S<64, 2>, 4, 1>,
DeviceGemmReduce_Xdl_CShuffle< Col, Col, Row, F16, F16, F16, F32, F32, F32, F32, PassThrough, PassThrough, PassThrough, ReduceSum, ReduceSquareSum, GemmDefault, 1, 128, 64, 128, 32, 2, 8, 32, 32, 2, 2, S<8, 16, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 4, 2, false, S<4, 32, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, true, 1, 1, S<1, 16, 1, 8>, 8, S<32, 4>, 4, 1>, DeviceGemmReduce_Xdl_CShuffle< Col, Col, Row, F16, F16, F16, F32, F32, F32, F32, PassThrough, PassThrough, PassThrough, ReduceSum, ReduceSum, Square, GemmDefault, 1, 128, 64, 128, 32, 2, 8, 32, 32, 2, 2, S<8, 16, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 4, 2, false, S<4, 32, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, true, 1, 1, S<1, 16, 1, 8>, 8, S<32, 4>, 4, 1>,
DeviceGemmReduce_Xdl_CShuffle< Col, Col, Row, F16, F16, F16, F32, F32, F32, F32, PassThrough, PassThrough, PassThrough, ReduceSum, ReduceSquareSum, GemmDefault, 1, 128, 64, 128, 32, 8, 8, 32, 32, 2, 2, S<4, 32, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 2, 8, true, S<4, 32, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, true, 1, 1, S<1, 16, 1, 8>, 8, S<32, 4>, 4, 1>, DeviceGemmReduce_Xdl_CShuffle< Col, Col, Row, F16, F16, F16, F32, F32, F32, F32, PassThrough, PassThrough, PassThrough, ReduceSum, ReduceSum, Square, GemmDefault, 1, 128, 64, 128, 32, 8, 8, 32, 32, 2, 2, S<4, 32, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 2, 8, true, S<4, 32, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, true, 1, 1, S<1, 16, 1, 8>, 8, S<32, 4>, 4, 1>,
DeviceGemmReduce_Xdl_CShuffle< Col, Col, Row, F16, F16, F16, F32, F32, F32, F32, PassThrough, PassThrough, PassThrough, ReduceSum, ReduceSquareSum, GemmDefault, 1, 256, 128, 64, 32, 2, 8, 32, 32, 2, 1, S<8, 32, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 4, 2, false, S<4, 64, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, true, 1, 1, S<1, 16, 1, 4>, 8, S<64, 4>, 4, 1>, DeviceGemmReduce_Xdl_CShuffle< Col, Col, Row, F16, F16, F16, F32, F32, F32, F32, PassThrough, PassThrough, PassThrough, ReduceSum, ReduceSum, Square, GemmDefault, 1, 256, 128, 64, 32, 2, 8, 32, 32, 2, 1, S<8, 32, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 4, 2, false, S<4, 64, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, true, 1, 1, S<1, 16, 1, 4>, 8, S<64, 4>, 4, 1>,
DeviceGemmReduce_Xdl_CShuffle< Col, Col, Row, F16, F16, F16, F32, F32, F32, F32, PassThrough, PassThrough, PassThrough, ReduceSum, ReduceSquareSum, GemmDefault, 1, 256, 128, 64, 32, 8, 8, 32, 32, 2, 1, S<4, 64, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 2, 8, true, S<4, 64, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, true, 1, 1, S<1, 16, 1, 4>, 8, S<64, 4>, 4, 1>, DeviceGemmReduce_Xdl_CShuffle< Col, Col, Row, F16, F16, F16, F32, F32, F32, F32, PassThrough, PassThrough, PassThrough, ReduceSum, ReduceSum, Square, GemmDefault, 1, 256, 128, 64, 32, 8, 8, 32, 32, 2, 1, S<4, 64, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 2, 8, true, S<4, 64, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, true, 1, 1, S<1, 16, 1, 4>, 8, S<64, 4>, 4, 1>,
DeviceGemmReduce_Xdl_CShuffle< Col, Col, Row, F16, F16, F16, F32, F32, F32, F32, PassThrough, PassThrough, PassThrough, ReduceSum, ReduceSquareSum, GemmDefault, 1, 256, 64, 128, 32, 2, 8, 32, 32, 1, 2, S<16,16, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 4, 2, false, S<4, 64, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, true, 1, 1, S<1, 32, 1, 8>, 8, S<64, 4>, 4, 1>, DeviceGemmReduce_Xdl_CShuffle< Col, Col, Row, F16, F16, F16, F32, F32, F32, F32, PassThrough, PassThrough, PassThrough, ReduceSum, ReduceSum, Square, GemmDefault, 1, 256, 64, 128, 32, 2, 8, 32, 32, 1, 2, S<16,16, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 4, 2, false, S<4, 64, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, true, 1, 1, S<1, 32, 1, 8>, 8, S<64, 4>, 4, 1>,
DeviceGemmReduce_Xdl_CShuffle< Col, Col, Row, F16, F16, F16, F32, F32, F32, F32, PassThrough, PassThrough, PassThrough, ReduceSum, ReduceSquareSum, GemmDefault, 1, 256, 64, 128, 32, 8, 8, 32, 32, 1, 2, S<4, 64, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 1, 8, true, S<4, 64, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, true, 1, 1, S<1, 32, 1, 8>, 8, S<64, 4>, 4, 1> DeviceGemmReduce_Xdl_CShuffle< Col, Col, Row, F16, F16, F16, F32, F32, F32, F32, PassThrough, PassThrough, PassThrough, ReduceSum, ReduceSum, Square, GemmDefault, 1, 256, 64, 128, 32, 8, 8, 32, 32, 1, 2, S<4, 64, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 1, 8, true, S<4, 64, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, true, 1, 1, S<1, 32, 1, 8>, 8, S<64, 4>, 4, 1>
// clang-format on // clang-format on
>; >;
void add_device_gemm_reduce_xdl_cshuffle_f16_f16_f16_f32_f32_km_nk_mn_instances( void add_device_gemm_reduce_xdl_cshuffle_f16_f16_f16_f32_f32_km_nk_mn_instances(
std::vector< std::vector<DeviceGemmReducePtr<PassThrough, PassThrough, PassThrough, Square>>& instances)
DeviceGemmReducePtr<PassThrough, PassThrough, PassThrough, ReduceSum, ReduceSquareSum>>&
instances)
{ {
add_device_operation_instances( add_device_operation_instances(
instances, device_gemm_reduce_xdl_cshuffle_f16_f16_f16_f32_f32_km_nk_mn_instances{}); instances, device_gemm_reduce_xdl_cshuffle_f16_f16_f16_f32_f32_km_nk_mn_instances{});
......
...@@ -2,7 +2,7 @@ ...@@ -2,7 +2,7 @@
#include "config.hpp" #include "config.hpp"
#include "device_gemm_reduce_xdl_cshuffle.hpp" #include "device_gemm_reduce_xdl_cshuffle.hpp"
#include "element_wise_operation.hpp" #include "element_wise_operation.hpp"
#include "element_wise_reduce_operation.hpp" #include "reduction_operator.hpp"
#include "device_operation_instance.hpp" #include "device_operation_instance.hpp"
namespace ck { namespace ck {
...@@ -19,9 +19,9 @@ using Col = ck::tensor_layout::gemm::ColumnMajor; ...@@ -19,9 +19,9 @@ using Col = ck::tensor_layout::gemm::ColumnMajor;
template <ck::index_t... Is> template <ck::index_t... Is>
using S = ck::Sequence<Is...>; using S = ck::Sequence<Is...>;
using PassThrough = ck::tensor_operation::element_wise::PassThrough; using PassThrough = ck::tensor_operation::element_wise::PassThrough;
using ReduceSum = ck::tensor_operation::element_wise::ReduceSum; using ReduceSum = ck::reduce::Add<F32>;
using ReduceSquareSum = ck::tensor_operation::element_wise::ReduceSquareSum; using Square = ck::tensor_operation::element_wise::UnarySquare<F32, F32, false>;
static constexpr auto GemmDefault = ck::tensor_operation::device::GemmSpecialization::Default; static constexpr auto GemmDefault = ck::tensor_operation::device::GemmSpecialization::Default;
...@@ -30,33 +30,31 @@ static constexpr auto GemmDefault = ck::tensor_operation::device::GemmSpecializa ...@@ -30,33 +30,31 @@ static constexpr auto GemmDefault = ck::tensor_operation::device::GemmSpecializa
// d1[m] = reduce1(c[m, n]) // d1[m] = reduce1(c[m, n])
using device_gemm_reduce_xdl_cshuffle_f16_f16_f16_f32_f32_mk_kn_mn_instances = std::tuple< using device_gemm_reduce_xdl_cshuffle_f16_f16_f16_f32_f32_mk_kn_mn_instances = std::tuple<
// clang-format off // clang-format off
//###########################| ALayout| BLayout| CLayout| AData| BData| CData| GemmAcc| CShuffle| ReduceAcc| DData| A| B| C| D0| D1| GEMM| NumGemmK| Block| MPer| NPer| KPer| AK1| BK1| MPer| NPer| MXdl| NXdl| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockLds| BBlockTransfer| BBlockTransfer| BBlockTransfer| BlockTransfer| BBlockTransfer| BBlockTransfer| BBlockLds| CShuffle| CShuffle| CBlockTransferClusterLengths| CBlockTransfer| CReduce| CReduceThreadLds2VGprCopy| CReduceThreadVgpr2GlobalCopy| //###########################| ALayout| BLayout| CLayout| AData| BData| CData| GemmAcc| CShuffle| ReduceAcc| DData| A| B| C| D0| D1| D1EleOp| GEMM| NumGemmK| Block| MPer| NPer| KPer| AK1| BK1| MPer| NPer| MXdl| NXdl| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockLds| BBlockTransfer| BBlockTransfer| BBlockTransfer| BlockTransfer| BBlockTransfer| BBlockTransfer| BBlockLds| CShuffle| CShuffle| CBlockTransferClusterLengths| CBlockTransfer| CReduce| CReduceThreadLds2VGprCopy| CReduceThreadVgpr2GlobalCopy|
//###########################| | | | Type| Type| Type| DataType| DataType| DataType| Type| Elementwise| Elementwise| Elementwise| Reduce| Reduce| Spacialization| Prefetch| Size| Block| Block| Block| | | XDL| XDL| Per| Per| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| AddExtraM| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| AddExtraN| MXdlPerWave| NXdlPerWave| _MBlock_MPerBlock| ScalarPerVector| ThreadClusterLengths| SrcDstScalarPerVector| SrcDstScalarPerVector| //###########################| | | | Type| Type| Type| DataType| DataType| DataType| Type| Elementwise| Elementwise| Elementwise| Reduce| Reduce| Spacialization| Prefetch| Size| Block| Block| Block| | | XDL| XDL| Per| Per| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| AddExtraM| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| AddExtraN| MXdlPerWave| NXdlPerWave| _MBlock_MPerBlock| ScalarPerVector| ThreadClusterLengths| SrcDstScalarPerVector| SrcDstScalarPerVector|
//###########################| | | | | | | | | | | Operation| Operation| Operation| Operation| Operation| | Stage| | | | | | | | | Wave| Wave| Lengths_K0_M_K1| ArrangeOrder| | | PerVector| PerVector_K1| | Lengths_K0_N_K1| ArrangeOrder| | | PerVector| PerVector_K1| | PerShuffle| PerShuffle| _NBlock_NPerBlock| _NPerBlock| _MPerBlock_NPerBlock| _NPerBlock| _MPerBlock| //###########################| | | | | | | | | | | Operation| Operation| Operation| Operation| Operation| | Stage| | | | | | | | | Wave| Wave| Lengths_K0_M_K1| ArrangeOrder| | | PerVector| PerVector_K1| | Lengths_K0_N_K1| ArrangeOrder| | | PerVector| PerVector_K1| | PerShuffle| PerShuffle| _NBlock_NPerBlock| _NPerBlock| _MPerBlock_NPerBlock| _NPerBlock| _MPerBlock|
//###########################| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | //###########################| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
DeviceGemmReduce_Xdl_CShuffle< Row, Row, Row, F16, F16, F16, F32, F32, F32, F32, PassThrough, PassThrough, PassThrough, ReduceSum, ReduceSquareSum, GemmDefault, 1, 256, 256, 128, 32, 8, 2, 32, 32, 4, 2, S<4, 64, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, true, S<8, 32, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 4, 2, false, 1, 1, S<1, 32, 1, 8>, 8, S<64, 4>, 4, 1>, DeviceGemmReduce_Xdl_CShuffle< Row, Row, Row, F16, F16, F16, F32, F32, F32, F32, PassThrough, PassThrough, PassThrough, ReduceSum, ReduceSum, Square, GemmDefault, 1, 256, 256, 128, 32, 8, 2, 32, 32, 4, 2, S<4, 64, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, true, S<8, 32, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 4, 2, false, 1, 1, S<1, 32, 1, 8>, 8, S<64, 4>, 4, 1>,
DeviceGemmReduce_Xdl_CShuffle< Row, Row, Row, F16, F16, F16, F32, F32, F32, F32, PassThrough, PassThrough, PassThrough, ReduceSum, ReduceSquareSum, GemmDefault, 1, 256, 256, 128, 32, 8, 8, 32, 32, 4, 2, S<4, 64, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, true, S<4, 64, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 2, 8, true, 1, 1, S<1, 32, 1, 8>, 8, S<64, 4>, 4, 1>, DeviceGemmReduce_Xdl_CShuffle< Row, Row, Row, F16, F16, F16, F32, F32, F32, F32, PassThrough, PassThrough, PassThrough, ReduceSum, ReduceSum, Square, GemmDefault, 1, 256, 256, 128, 32, 8, 8, 32, 32, 4, 2, S<4, 64, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, true, S<4, 64, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 2, 8, true, 1, 1, S<1, 32, 1, 8>, 8, S<64, 4>, 4, 1>,
DeviceGemmReduce_Xdl_CShuffle< Row, Row, Row, F16, F16, F16, F32, F32, F32, F32, PassThrough, PassThrough, PassThrough, ReduceSum, ReduceSquareSum, GemmDefault, 1, 256, 128, 256, 32, 8, 2, 32, 32, 2, 4, S<4, 64, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, true, S<4, 64, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 4, 2, false, 1, 1, S<1, 32, 1, 8>, 8, S<64, 4>, 4, 1>, DeviceGemmReduce_Xdl_CShuffle< Row, Row, Row, F16, F16, F16, F32, F32, F32, F32, PassThrough, PassThrough, PassThrough, ReduceSum, ReduceSum, Square, GemmDefault, 1, 256, 128, 256, 32, 8, 2, 32, 32, 2, 4, S<4, 64, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, true, S<4, 64, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 4, 2, false, 1, 1, S<1, 32, 1, 8>, 8, S<64, 4>, 4, 1>,
DeviceGemmReduce_Xdl_CShuffle< Row, Row, Row, F16, F16, F16, F32, F32, F32, F32, PassThrough, PassThrough, PassThrough, ReduceSum, ReduceSquareSum, GemmDefault, 1, 256, 128, 256, 32, 8, 8, 32, 32, 2, 4, S<4, 64, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, true, S<4, 64, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 4, 8, true, 1, 1, S<1, 32, 1, 8>, 8, S<64, 4>, 4, 1>, DeviceGemmReduce_Xdl_CShuffle< Row, Row, Row, F16, F16, F16, F32, F32, F32, F32, PassThrough, PassThrough, PassThrough, ReduceSum, ReduceSum, Square, GemmDefault, 1, 256, 128, 256, 32, 8, 8, 32, 32, 2, 4, S<4, 64, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, true, S<4, 64, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 4, 8, true, 1, 1, S<1, 32, 1, 8>, 8, S<64, 4>, 4, 1>,
DeviceGemmReduce_Xdl_CShuffle< Row, Row, Row, F16, F16, F16, F32, F32, F32, F32, PassThrough, PassThrough, PassThrough, ReduceSum, ReduceSquareSum, GemmDefault, 1, 128, 128, 128, 32, 8, 2, 32, 32, 4, 2, S<4, 32, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, true, S<4, 32, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 4, 2, false, 1, 1, S<1, 16, 1, 8>, 8, S<32, 4>, 4, 1>, DeviceGemmReduce_Xdl_CShuffle< Row, Row, Row, F16, F16, F16, F32, F32, F32, F32, PassThrough, PassThrough, PassThrough, ReduceSum, ReduceSum, Square, GemmDefault, 1, 128, 128, 128, 32, 8, 2, 32, 32, 4, 2, S<4, 32, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, true, S<4, 32, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 4, 2, false, 1, 1, S<1, 16, 1, 8>, 8, S<32, 4>, 4, 1>,
DeviceGemmReduce_Xdl_CShuffle< Row, Row, Row, F16, F16, F16, F32, F32, F32, F32, PassThrough, PassThrough, PassThrough, ReduceSum, ReduceSquareSum, GemmDefault, 1, 128, 128, 128, 32, 8, 8, 32, 32, 4, 2, S<4, 32, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, true, S<4, 32, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 4, 8, true, 1, 1, S<1, 16, 1, 8>, 8, S<32, 4>, 4, 1>, DeviceGemmReduce_Xdl_CShuffle< Row, Row, Row, F16, F16, F16, F32, F32, F32, F32, PassThrough, PassThrough, PassThrough, ReduceSum, ReduceSum, Square, GemmDefault, 1, 128, 128, 128, 32, 8, 8, 32, 32, 4, 2, S<4, 32, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, true, S<4, 32, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 4, 8, true, 1, 1, S<1, 16, 1, 8>, 8, S<32, 4>, 4, 1>,
DeviceGemmReduce_Xdl_CShuffle< Row, Row, Row, F16, F16, F16, F32, F32, F32, F32, PassThrough, PassThrough, PassThrough, ReduceSum, ReduceSquareSum, GemmDefault, 1, 256, 128, 128, 32, 8, 2, 32, 32, 2, 2, S<4, 64, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, true, S<8, 32, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 4, 2, false, 1, 1, S<1, 32, 1, 8>, 8, S<64, 4>, 4, 1>, DeviceGemmReduce_Xdl_CShuffle< Row, Row, Row, F16, F16, F16, F32, F32, F32, F32, PassThrough, PassThrough, PassThrough, ReduceSum, ReduceSum, Square, GemmDefault, 1, 256, 128, 128, 32, 8, 2, 32, 32, 2, 2, S<4, 64, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, true, S<8, 32, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 4, 2, false, 1, 1, S<1, 32, 1, 8>, 8, S<64, 4>, 4, 1>,
DeviceGemmReduce_Xdl_CShuffle< Row, Row, Row, F16, F16, F16, F32, F32, F32, F32, PassThrough, PassThrough, PassThrough, ReduceSum, ReduceSquareSum, GemmDefault, 1, 256, 128, 128, 32, 8, 8, 32, 32, 2, 2, S<4, 64, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, true, S<4, 64, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 2, 8, true, 1, 1, S<1, 32, 1, 8>, 8, S<64, 4>, 4, 1>, DeviceGemmReduce_Xdl_CShuffle< Row, Row, Row, F16, F16, F16, F32, F32, F32, F32, PassThrough, PassThrough, PassThrough, ReduceSum, ReduceSum, Square, GemmDefault, 1, 256, 128, 128, 32, 8, 8, 32, 32, 2, 2, S<4, 64, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, true, S<4, 64, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 2, 8, true, 1, 1, S<1, 32, 1, 8>, 8, S<64, 4>, 4, 1>,
DeviceGemmReduce_Xdl_CShuffle< Row, Row, Row, F16, F16, F16, F32, F32, F32, F32, PassThrough, PassThrough, PassThrough, ReduceSum, ReduceSquareSum, GemmDefault, 1, 128, 128, 64, 32, 8, 2, 32, 32, 2, 2, S<4, 32, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, true, S<8, 16, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 4, 2, false, 1, 1, S<1, 32, 1, 4>, 8, S<64, 2>, 4, 1>, DeviceGemmReduce_Xdl_CShuffle< Row, Row, Row, F16, F16, F16, F32, F32, F32, F32, PassThrough, PassThrough, PassThrough, ReduceSum, ReduceSum, Square, GemmDefault, 1, 128, 128, 64, 32, 8, 2, 32, 32, 2, 2, S<4, 32, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, true, S<8, 16, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 4, 2, false, 1, 1, S<1, 32, 1, 4>, 8, S<64, 2>, 4, 1>,
DeviceGemmReduce_Xdl_CShuffle< Row, Row, Row, F16, F16, F16, F32, F32, F32, F32, PassThrough, PassThrough, PassThrough, ReduceSum, ReduceSquareSum, GemmDefault, 1, 128, 128, 64, 32, 8, 8, 32, 32, 2, 2, S<4, 32, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, true, S<4, 32, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 2, 8, true, 1, 1, S<1, 32, 1, 4>, 8, S<64, 2>, 4, 1>, DeviceGemmReduce_Xdl_CShuffle< Row, Row, Row, F16, F16, F16, F32, F32, F32, F32, PassThrough, PassThrough, PassThrough, ReduceSum, ReduceSum, Square, GemmDefault, 1, 128, 128, 64, 32, 8, 8, 32, 32, 2, 2, S<4, 32, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, true, S<4, 32, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 2, 8, true, 1, 1, S<1, 32, 1, 4>, 8, S<64, 2>, 4, 1>,
DeviceGemmReduce_Xdl_CShuffle< Row, Row, Row, F16, F16, F16, F32, F32, F32, F32, PassThrough, PassThrough, PassThrough, ReduceSum, ReduceSquareSum, GemmDefault, 1, 128, 64, 128, 32, 8, 2, 32, 32, 2, 2, S<4, 32, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, true, S<4, 32, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 4, 2, false, 1, 1, S<1, 16, 1, 8>, 8, S<32, 4>, 4, 1>, DeviceGemmReduce_Xdl_CShuffle< Row, Row, Row, F16, F16, F16, F32, F32, F32, F32, PassThrough, PassThrough, PassThrough, ReduceSum, ReduceSum, Square, GemmDefault, 1, 128, 64, 128, 32, 8, 2, 32, 32, 2, 2, S<4, 32, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, true, S<4, 32, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 4, 2, false, 1, 1, S<1, 16, 1, 8>, 8, S<32, 4>, 4, 1>,
DeviceGemmReduce_Xdl_CShuffle< Row, Row, Row, F16, F16, F16, F32, F32, F32, F32, PassThrough, PassThrough, PassThrough, ReduceSum, ReduceSquareSum, GemmDefault, 1, 128, 64, 128, 32, 8, 8, 32, 32, 2, 2, S<4, 32, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, true, S<4, 32, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 4, 8, true, 1, 1, S<1, 16, 1, 8>, 8, S<32, 4>, 4, 1>, DeviceGemmReduce_Xdl_CShuffle< Row, Row, Row, F16, F16, F16, F32, F32, F32, F32, PassThrough, PassThrough, PassThrough, ReduceSum, ReduceSum, Square, GemmDefault, 1, 128, 64, 128, 32, 8, 8, 32, 32, 2, 2, S<4, 32, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, true, S<4, 32, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 4, 8, true, 1, 1, S<1, 16, 1, 8>, 8, S<32, 4>, 4, 1>,
DeviceGemmReduce_Xdl_CShuffle< Row, Row, Row, F16, F16, F16, F32, F32, F32, F32, PassThrough, PassThrough, PassThrough, ReduceSum, ReduceSquareSum, GemmDefault, 1, 256, 128, 64, 32, 8, 2, 32, 32, 2, 1, S<4, 64, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, true, S<16,16, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 4, 2, false, 1, 1, S<1, 16, 1, 4>, 8, S<64, 4>, 4, 1>, DeviceGemmReduce_Xdl_CShuffle< Row, Row, Row, F16, F16, F16, F32, F32, F32, F32, PassThrough, PassThrough, PassThrough, ReduceSum, ReduceSum, Square, GemmDefault, 1, 256, 128, 64, 32, 8, 2, 32, 32, 2, 1, S<4, 64, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, true, S<16,16, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 4, 2, false, 1, 1, S<1, 16, 1, 4>, 8, S<64, 4>, 4, 1>,
DeviceGemmReduce_Xdl_CShuffle< Row, Row, Row, F16, F16, F16, F32, F32, F32, F32, PassThrough, PassThrough, PassThrough, ReduceSum, ReduceSquareSum, GemmDefault, 1, 256, 128, 64, 32, 8, 8, 32, 32, 2, 1, S<4, 64, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, true, S<4, 64, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 1, 8, true, 1, 1, S<1, 16, 1, 4>, 8, S<64, 4>, 4, 1>, DeviceGemmReduce_Xdl_CShuffle< Row, Row, Row, F16, F16, F16, F32, F32, F32, F32, PassThrough, PassThrough, PassThrough, ReduceSum, ReduceSum, Square, GemmDefault, 1, 256, 128, 64, 32, 8, 8, 32, 32, 2, 1, S<4, 64, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, true, S<4, 64, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 1, 8, true, 1, 1, S<1, 16, 1, 4>, 8, S<64, 4>, 4, 1>,
DeviceGemmReduce_Xdl_CShuffle< Row, Row, Row, F16, F16, F16, F32, F32, F32, F32, PassThrough, PassThrough, PassThrough, ReduceSum, ReduceSquareSum, GemmDefault, 1, 256, 64, 128, 32, 8, 2, 32, 32, 1, 2, S<4, 64, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, true, S<8, 32, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 4, 2, false, 1, 1, S<1, 32, 1, 8>, 8, S<64, 4>, 4, 1>, DeviceGemmReduce_Xdl_CShuffle< Row, Row, Row, F16, F16, F16, F32, F32, F32, F32, PassThrough, PassThrough, PassThrough, ReduceSum, ReduceSum, Square, GemmDefault, 1, 256, 64, 128, 32, 8, 2, 32, 32, 1, 2, S<4, 64, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, true, S<8, 32, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 4, 2, false, 1, 1, S<1, 32, 1, 8>, 8, S<64, 4>, 4, 1>,
DeviceGemmReduce_Xdl_CShuffle< Row, Row, Row, F16, F16, F16, F32, F32, F32, F32, PassThrough, PassThrough, PassThrough, ReduceSum, ReduceSquareSum, GemmDefault, 1, 256, 64, 128, 32, 8, 8, 32, 32, 1, 2, S<4, 64, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, true, S<4, 64, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 2, 8, true, 1, 1, S<1, 32, 1, 8>, 8, S<64, 4>, 4, 1> DeviceGemmReduce_Xdl_CShuffle< Row, Row, Row, F16, F16, F16, F32, F32, F32, F32, PassThrough, PassThrough, PassThrough, ReduceSum, ReduceSum, Square, GemmDefault, 1, 256, 64, 128, 32, 8, 8, 32, 32, 1, 2, S<4, 64, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, true, S<4, 64, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 2, 8, true, 1, 1, S<1, 32, 1, 8>, 8, S<64, 4>, 4, 1>
// clang-format on // clang-format on
>; >;
void add_device_gemm_reduce_xdl_cshuffle_f16_f16_f16_f32_f32_mk_kn_mn_instances( void add_device_gemm_reduce_xdl_cshuffle_f16_f16_f16_f32_f32_mk_kn_mn_instances(
std::vector< std::vector<DeviceGemmReducePtr<PassThrough, PassThrough, PassThrough, Square>>& instances)
DeviceGemmReducePtr<PassThrough, PassThrough, PassThrough, ReduceSum, ReduceSquareSum>>&
instances)
{ {
add_device_operation_instances( add_device_operation_instances(
instances, device_gemm_reduce_xdl_cshuffle_f16_f16_f16_f32_f32_mk_kn_mn_instances{}); instances, device_gemm_reduce_xdl_cshuffle_f16_f16_f16_f32_f32_mk_kn_mn_instances{});
......
...@@ -2,7 +2,7 @@ ...@@ -2,7 +2,7 @@
#include "config.hpp" #include "config.hpp"
#include "device_gemm_reduce_xdl_cshuffle.hpp" #include "device_gemm_reduce_xdl_cshuffle.hpp"
#include "element_wise_operation.hpp" #include "element_wise_operation.hpp"
#include "element_wise_reduce_operation.hpp" #include "reduction_operator.hpp"
#include "device_operation_instance.hpp" #include "device_operation_instance.hpp"
namespace ck { namespace ck {
...@@ -19,9 +19,9 @@ using Col = ck::tensor_layout::gemm::ColumnMajor; ...@@ -19,9 +19,9 @@ using Col = ck::tensor_layout::gemm::ColumnMajor;
template <ck::index_t... Is> template <ck::index_t... Is>
using S = ck::Sequence<Is...>; using S = ck::Sequence<Is...>;
using PassThrough = ck::tensor_operation::element_wise::PassThrough; using PassThrough = ck::tensor_operation::element_wise::PassThrough;
using ReduceSum = ck::tensor_operation::element_wise::ReduceSum; using ReduceSum = ck::reduce::Add<F32>;
using ReduceSquareSum = ck::tensor_operation::element_wise::ReduceSquareSum; using Square = ck::tensor_operation::element_wise::UnarySquare<F32, F32, false>;
static constexpr auto GemmDefault = ck::tensor_operation::device::GemmSpecialization::Default; static constexpr auto GemmDefault = ck::tensor_operation::device::GemmSpecialization::Default;
...@@ -30,30 +30,28 @@ static constexpr auto GemmDefault = ck::tensor_operation::device::GemmSpecializa ...@@ -30,30 +30,28 @@ static constexpr auto GemmDefault = ck::tensor_operation::device::GemmSpecializa
// d1[m] = reduce1(c[m, n]) // d1[m] = reduce1(c[m, n])
using device_gemm_reduce_xdl_cshuffle_f16_f16_f16_f32_f32_mk_nk_mn_instances = std::tuple< using device_gemm_reduce_xdl_cshuffle_f16_f16_f16_f32_f32_mk_nk_mn_instances = std::tuple<
// clang-format off // clang-format off
//###########################| ALayout| BLayout| CLayout|AData| BData| CData| GemmAcc| CShuffle| ReduceAcc| DData| A| B| C| D0| D1| GEMM| NumGemmK| Block| MPer| NPer| KPer| AK1| BK1| MPer| NPer| MXdl| NXdl| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockLds| BBlockTransfer| BBlockTransfer| BBlockTransfer| BlockTransfer| BBlockTransfer| BBlockTransfer| BBlockLds| CShuffle| CShuffle| CBlockTransferClusterLengths| CBlockTransfer| CReduce| CReduceThreadLds2VGprCopy| CReduceThreadVgpr2GlobalCopy| //###########################| ALayout| BLayout| CLayout|AData| BData| CData| GemmAcc| CShuffle| ReduceAcc| DData| A| B| C| D0| D1| D1EleOp| GEMM| NumGemmK| Block| MPer| NPer| KPer| AK1| BK1| MPer| NPer| MXdl| NXdl| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockLds| BBlockTransfer| BBlockTransfer| BBlockTransfer| BlockTransfer| BBlockTransfer| BBlockTransfer| BBlockLds| CShuffle| CShuffle| CBlockTransferClusterLengths| CBlockTransfer| CReduce| CReduceThreadLds2VGprCopy| CReduceThreadVgpr2GlobalCopy|
//###########################| | | | Type| Type| Type| DataType| DataType| DataType| Type| Elementwise| Elementwise| Elementwise| Reduce| Reduce| Spacialization| Prefetch| Size| Block| Block| Block| | | XDL| XDL| Per| Per| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| AddExtraM| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| AddExtraN| MXdlPerWave| NXdlPerWave| _MBlock_MPerBlock| ScalarPerVector| ThreadClusterLengths| SrcDstScalarPerVector| SrcDstScalarPerVector| //###########################| | | | Type| Type| Type| DataType| DataType| DataType| Type| Elementwise| Elementwise| Elementwise| Reduce| Reduce| Spacialization| Prefetch| Size| Block| Block| Block| | | XDL| XDL| Per| Per| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| AddExtraM| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| AddExtraN| MXdlPerWave| NXdlPerWave| _MBlock_MPerBlock| ScalarPerVector| ThreadClusterLengths| SrcDstScalarPerVector| SrcDstScalarPerVector|
//###########################| | | | | | | | | | | Operation| Operation| Operation| Operation| Operation| | Stage| | | | | | | | | Wave| Wave| Lengths_K0_M_K1| ArrangeOrder| | | PerVector| PerVector_K1| | Lengths_K0_N_K1| ArrangeOrder| | | PerVector| PerVector_K1| | PerShuffle| PerShuffle| _NBlock_NPerBlock| _NPerBlock| _MPerBlock_NPerBlock| _NPerBlock| _MPerBlock| //###########################| | | | | | | | | | | Operation| Operation| Operation| Operation| Operation| | Stage| | | | | | | | | Wave| Wave| Lengths_K0_M_K1| ArrangeOrder| | | PerVector| PerVector_K1| | Lengths_K0_N_K1| ArrangeOrder| | | PerVector| PerVector_K1| | PerShuffle| PerShuffle| _NBlock_NPerBlock| _NPerBlock| _MPerBlock_NPerBlock| _NPerBlock| _MPerBlock|
//###########################| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | //###########################| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
DeviceGemmReduce_Xdl_CShuffle< Row, Col, Row, F16, F16, F16, F32, F32, F32, F32, PassThrough, PassThrough, PassThrough, ReduceSum, ReduceSquareSum, GemmDefault, 1, 256, 256, 128, 32, 8, 8, 32, 32, 4, 2, S<4, 64, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, true, S<4, 64, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, true, 1, 1, S<1, 32, 1, 8>, 8, S<64, 4>, 4, 1>, DeviceGemmReduce_Xdl_CShuffle< Row, Col, Row, F16, F16, F16, F32, F32, F32, F32, PassThrough, PassThrough, PassThrough, ReduceSum, ReduceSum, Square, GemmDefault, 1, 256, 256, 128, 32, 8, 8, 32, 32, 4, 2, S<4, 64, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, true, S<4, 64, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, true, 1, 1, S<1, 32, 1, 8>, 8, S<64, 4>, 4, 1>,
DeviceGemmReduce_Xdl_CShuffle< Row, Col, Row, F16, F16, F16, F32, F32, F32, F32, PassThrough, PassThrough, PassThrough, ReduceSum, ReduceSquareSum, GemmDefault, 1, 256, 128, 256, 32, 8, 8, 32, 32, 2, 4, S<4, 64, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, true, S<4, 64, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, true, 1, 1, S<1, 32, 1, 8>, 8, S<64, 4>, 4, 1>, DeviceGemmReduce_Xdl_CShuffle< Row, Col, Row, F16, F16, F16, F32, F32, F32, F32, PassThrough, PassThrough, PassThrough, ReduceSum, ReduceSum, Square, GemmDefault, 1, 256, 128, 256, 32, 8, 8, 32, 32, 2, 4, S<4, 64, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, true, S<4, 64, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, true, 1, 1, S<1, 32, 1, 8>, 8, S<64, 4>, 4, 1>,
DeviceGemmReduce_Xdl_CShuffle< Row, Col, Row, F16, F16, F16, F32, F32, F32, F32, PassThrough, PassThrough, PassThrough, ReduceSum, ReduceSquareSum, GemmDefault, 1, 128, 128, 128, 32, 8, 8, 32, 32, 4, 2, S<4, 32, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, true, S<4, 32, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, true, 1, 1, S<1, 16, 1, 8>, 8, S<32, 4>, 4, 1>, DeviceGemmReduce_Xdl_CShuffle< Row, Col, Row, F16, F16, F16, F32, F32, F32, F32, PassThrough, PassThrough, PassThrough, ReduceSum, ReduceSum, Square, GemmDefault, 1, 128, 128, 128, 32, 8, 8, 32, 32, 4, 2, S<4, 32, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, true, S<4, 32, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, true, 1, 1, S<1, 16, 1, 8>, 8, S<32, 4>, 4, 1>,
DeviceGemmReduce_Xdl_CShuffle< Row, Col, Row, F16, F16, F16, F32, F32, F32, F32, PassThrough, PassThrough, PassThrough, ReduceSum, ReduceSquareSum, GemmDefault, 1, 256, 128, 128, 32, 8, 8, 32, 32, 2, 2, S<4, 64, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, true, S<4, 64, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, true, 1, 1, S<1, 32, 1, 8>, 8, S<64, 4>, 4, 1>, DeviceGemmReduce_Xdl_CShuffle< Row, Col, Row, F16, F16, F16, F32, F32, F32, F32, PassThrough, PassThrough, PassThrough, ReduceSum, ReduceSum, Square, GemmDefault, 1, 256, 128, 128, 32, 8, 8, 32, 32, 2, 2, S<4, 64, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, true, S<4, 64, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, true, 1, 1, S<1, 32, 1, 8>, 8, S<64, 4>, 4, 1>,
DeviceGemmReduce_Xdl_CShuffle< Row, Col, Row, F16, F16, F16, F32, F32, F32, F32, PassThrough, PassThrough, PassThrough, ReduceSum, ReduceSquareSum, GemmDefault, 1, 128, 128, 64, 32, 8, 8, 32, 32, 2, 2, S<4, 32, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, true, S<4, 32, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, true, 1, 1, S<1, 32, 1, 4>, 8, S<64, 2>, 4, 1>, DeviceGemmReduce_Xdl_CShuffle< Row, Col, Row, F16, F16, F16, F32, F32, F32, F32, PassThrough, PassThrough, PassThrough, ReduceSum, ReduceSum, Square, GemmDefault, 1, 128, 128, 64, 32, 8, 8, 32, 32, 2, 2, S<4, 32, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, true, S<4, 32, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, true, 1, 1, S<1, 32, 1, 4>, 8, S<64, 2>, 4, 1>,
DeviceGemmReduce_Xdl_CShuffle< Row, Col, Row, F16, F16, F16, F32, F32, F32, F32, PassThrough, PassThrough, PassThrough, ReduceSum, ReduceSquareSum, GemmDefault, 1, 128, 64, 128, 32, 8, 8, 32, 32, 2, 2, S<4, 32, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, true, S<4, 32, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, true, 1, 1, S<1, 16, 1, 8>, 8, S<32, 4>, 4, 1>, DeviceGemmReduce_Xdl_CShuffle< Row, Col, Row, F16, F16, F16, F32, F32, F32, F32, PassThrough, PassThrough, PassThrough, ReduceSum, ReduceSum, Square, GemmDefault, 1, 128, 64, 128, 32, 8, 8, 32, 32, 2, 2, S<4, 32, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, true, S<4, 32, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, true, 1, 1, S<1, 16, 1, 8>, 8, S<32, 4>, 4, 1>,
DeviceGemmReduce_Xdl_CShuffle< Row, Col, Row, F16, F16, F16, F32, F32, F32, F32, PassThrough, PassThrough, PassThrough, ReduceSum, ReduceSquareSum, GemmDefault, 1, 64, 64, 64, 32, 8, 8, 32, 32, 2, 2, S<4, 16, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, true, S<4, 16, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, true, 1, 1, S<1, 16, 1, 4>, 8, S<32, 2>, 4, 1>, DeviceGemmReduce_Xdl_CShuffle< Row, Col, Row, F16, F16, F16, F32, F32, F32, F32, PassThrough, PassThrough, PassThrough, ReduceSum, ReduceSum, Square, GemmDefault, 1, 64, 64, 64, 32, 8, 8, 32, 32, 2, 2, S<4, 16, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, true, S<4, 16, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, true, 1, 1, S<1, 16, 1, 4>, 8, S<32, 2>, 4, 1>,
DeviceGemmReduce_Xdl_CShuffle< Row, Col, Row, F16, F16, F16, F32, F32, F32, F32, PassThrough, PassThrough, PassThrough, ReduceSum, ReduceSquareSum, GemmDefault, 1, 256, 128, 64, 32, 8, 8, 32, 32, 2, 1, S<4, 64, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, true, S<4, 64, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, true, 1, 1, S<1, 32, 1, 8>, 8, S<64, 4>, 4, 1>, DeviceGemmReduce_Xdl_CShuffle< Row, Col, Row, F16, F16, F16, F32, F32, F32, F32, PassThrough, PassThrough, PassThrough, ReduceSum, ReduceSum, Square, GemmDefault, 1, 256, 128, 64, 32, 8, 8, 32, 32, 2, 1, S<4, 64, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, true, S<4, 64, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, true, 1, 1, S<1, 32, 1, 8>, 8, S<64, 4>, 4, 1>,
DeviceGemmReduce_Xdl_CShuffle< Row, Col, Row, F16, F16, F16, F32, F32, F32, F32, PassThrough, PassThrough, PassThrough, ReduceSum, ReduceSquareSum, GemmDefault, 1, 256, 64, 128, 32, 8, 8, 32, 32, 1, 2, S<4, 64, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, true, S<4, 64, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, true, 1, 1, S<1, 32, 1, 8>, 8, S<64, 4>, 4, 1>, DeviceGemmReduce_Xdl_CShuffle< Row, Col, Row, F16, F16, F16, F32, F32, F32, F32, PassThrough, PassThrough, PassThrough, ReduceSum, ReduceSum, Square, GemmDefault, 1, 256, 64, 128, 32, 8, 8, 32, 32, 1, 2, S<4, 64, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, true, S<4, 64, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, true, 1, 1, S<1, 32, 1, 8>, 8, S<64, 4>, 4, 1>,
DeviceGemmReduce_Xdl_CShuffle< Row, Col, Row, F16, F16, F16, F32, F32, F32, F32, PassThrough, PassThrough, PassThrough, ReduceSum, ReduceSquareSum, GemmDefault, 1, 128, 128, 32, 32, 8, 8, 32, 32, 2, 1, S<4, 32, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, true, S<4, 32, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, true, 1, 1, S<1, 32, 1, 4>, 8, S<64, 2>, 4, 1>, DeviceGemmReduce_Xdl_CShuffle< Row, Col, Row, F16, F16, F16, F32, F32, F32, F32, PassThrough, PassThrough, PassThrough, ReduceSum, ReduceSum, Square, GemmDefault, 1, 128, 128, 32, 32, 8, 8, 32, 32, 2, 1, S<4, 32, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, true, S<4, 32, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, true, 1, 1, S<1, 32, 1, 4>, 8, S<64, 2>, 4, 1>,
DeviceGemmReduce_Xdl_CShuffle< Row, Col, Row, F16, F16, F16, F32, F32, F32, F32, PassThrough, PassThrough, PassThrough, ReduceSum, ReduceSquareSum, GemmDefault, 1, 128, 32, 128, 32, 8, 8, 32, 32, 1, 2, S<4, 32, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, true, S<4, 32, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, true, 1, 1, S<1, 16, 1, 8>, 8, S<32, 4>, 4, 1>, DeviceGemmReduce_Xdl_CShuffle< Row, Col, Row, F16, F16, F16, F32, F32, F32, F32, PassThrough, PassThrough, PassThrough, ReduceSum, ReduceSum, Square, GemmDefault, 1, 128, 32, 128, 32, 8, 8, 32, 32, 1, 2, S<4, 32, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, true, S<4, 32, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, true, 1, 1, S<1, 16, 1, 8>, 8, S<32, 4>, 4, 1>,
DeviceGemmReduce_Xdl_CShuffle< Row, Col, Row, F16, F16, F16, F32, F32, F32, F32, PassThrough, PassThrough, PassThrough, ReduceSum, ReduceSquareSum, GemmDefault, 1, 64, 64, 32, 32, 8, 8, 32, 32, 2, 1, S<4, 16, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, true, S<4, 16, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, true, 1, 1, S<1, 16, 1, 4>, 8, S<32, 2>, 4, 1>, DeviceGemmReduce_Xdl_CShuffle< Row, Col, Row, F16, F16, F16, F32, F32, F32, F32, PassThrough, PassThrough, PassThrough, ReduceSum, ReduceSum, Square, GemmDefault, 1, 64, 64, 32, 32, 8, 8, 32, 32, 2, 1, S<4, 16, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, true, S<4, 16, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, true, 1, 1, S<1, 16, 1, 4>, 8, S<32, 2>, 4, 1>,
DeviceGemmReduce_Xdl_CShuffle< Row, Col, Row, F16, F16, F16, F32, F32, F32, F32, PassThrough, PassThrough, PassThrough, ReduceSum, ReduceSquareSum, GemmDefault, 1, 64, 32, 64, 32, 8, 8, 32, 32, 1, 2, S<4, 16, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, true, S<4, 16, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, true, 1, 1, S<1, 16, 1, 4>, 8, S<32, 2>, 4, 1> DeviceGemmReduce_Xdl_CShuffle< Row, Col, Row, F16, F16, F16, F32, F32, F32, F32, PassThrough, PassThrough, PassThrough, ReduceSum, ReduceSum, Square, GemmDefault, 1, 64, 32, 64, 32, 8, 8, 32, 32, 1, 2, S<4, 16, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, true, S<4, 16, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, true, 1, 1, S<1, 16, 1, 4>, 8, S<32, 2>, 4, 1>
// clang-format on // clang-format on
>; >;
void add_device_gemm_reduce_xdl_cshuffle_f16_f16_f16_f32_f32_mk_nk_mn_instances( void add_device_gemm_reduce_xdl_cshuffle_f16_f16_f16_f32_f32_mk_nk_mn_instances(
std::vector< std::vector<DeviceGemmReducePtr<PassThrough, PassThrough, PassThrough, Square>>& instances)
DeviceGemmReducePtr<PassThrough, PassThrough, PassThrough, ReduceSum, ReduceSquareSum>>&
instances)
{ {
add_device_operation_instances( add_device_operation_instances(
instances, device_gemm_reduce_xdl_cshuffle_f16_f16_f16_f32_f32_mk_nk_mn_instances{}); instances, device_gemm_reduce_xdl_cshuffle_f16_f16_f16_f32_f32_mk_nk_mn_instances{});
......
...@@ -6,7 +6,7 @@ set(DEVICE_GROUPED_GEMM_INSTANCE_SOURCE ...@@ -6,7 +6,7 @@ set(DEVICE_GROUPED_GEMM_INSTANCE_SOURCE
device_grouped_gemm_xdl_f16_f16_f16_km_nk_mn_instance.cpp; device_grouped_gemm_xdl_f16_f16_f16_km_nk_mn_instance.cpp;
) )
add_library(device_grouped_gemm_instance SHARED ${DEVICE_GROUPED_GEMM_INSTANCE_SOURCE}) add_library(device_grouped_gemm_instance OBJECT ${DEVICE_GROUPED_GEMM_INSTANCE_SOURCE})
target_compile_features(device_grouped_gemm_instance PUBLIC) target_compile_features(device_grouped_gemm_instance PUBLIC)
set_target_properties(device_grouped_gemm_instance PROPERTIES POSITION_INDEPENDENT_CODE ON) set_target_properties(device_grouped_gemm_instance PROPERTIES POSITION_INDEPENDENT_CODE ON)
......
...@@ -38,9 +38,7 @@ set(DEVICE_REDUCE_INSTANCE_SOURCE ...@@ -38,9 +38,7 @@ set(DEVICE_REDUCE_INSTANCE_SOURCE
device_reduce_instance_multiblock_partial_reduce_b16_f32_b16.cpp; device_reduce_instance_multiblock_partial_reduce_b16_f32_b16.cpp;
) )
add_library(device_reduce_instance SHARED ${DEVICE_REDUCE_INSTANCE_SOURCE}) add_library(device_reduce_instance OBJECT ${DEVICE_REDUCE_INSTANCE_SOURCE})
target_compile_features(device_reduce_instance PUBLIC)
set_target_properties(device_reduce_instance PROPERTIES POSITION_INDEPENDENT_CODE ON) set_target_properties(device_reduce_instance PROPERTIES POSITION_INDEPENDENT_CODE ON)
install(TARGETS device_reduce_instance LIBRARY DESTINATION lib)
clang_tidy_check(device_reduce_instance) clang_tidy_check(device_reduce_instance)
...@@ -8,14 +8,14 @@ include_directories(BEFORE ...@@ -8,14 +8,14 @@ include_directories(BEFORE
${PROJECT_SOURCE_DIR}/library/include/ck/library/utility ${PROJECT_SOURCE_DIR}/library/include/ck/library/utility
) )
set(CONV_FWD_UTIL_SOURCE set(CONV_UTIL_SOURCE
conv_fwd_util.cpp conv_util.cpp
) )
add_library(conv_fwd_util SHARED ${CONV_FWD_UTIL_SOURCE}) add_library(conv_util SHARED ${CONV_UTIL_SOURCE})
target_link_libraries(conv_fwd_util PRIVATE host_tensor) target_link_libraries(conv_util PRIVATE host_tensor)
target_compile_features(conv_fwd_util PUBLIC) target_compile_features(conv_util PUBLIC)
set_target_properties(conv_fwd_util PROPERTIES POSITION_INDEPENDENT_CODE ON) set_target_properties(conv_util PROPERTIES POSITION_INDEPENDENT_CODE ON)
target_include_directories(conv_fwd_util SYSTEM PUBLIC $<BUILD_INTERFACE:${HALF_INCLUDE_DIR}>) target_include_directories(conv_util SYSTEM PUBLIC $<BUILD_INTERFACE:${HALF_INCLUDE_DIR}>)
clang_tidy_check(conv_fwd_util) clang_tidy_check(conv_util)
#include "conv_fwd_util.hpp" #include "conv_util.hpp"
namespace ck { namespace ck {
namespace utils { namespace utils {
...@@ -37,16 +37,16 @@ std::size_t get_flops(ck::index_t N, ...@@ -37,16 +37,16 @@ std::size_t get_flops(ck::index_t N,
} }
ConvParams::ConvParams() ConvParams::ConvParams()
: num_dim_spatial(2), : num_dim_spatial_(2),
N(128), N_(128),
K(256), K_(256),
C(192), C_(192),
filter_spatial_lengths(2, 3), filter_spatial_lengths_(2, 3),
input_spatial_lengths(2, 71), input_spatial_lengths_(2, 71),
conv_filter_strides(2, 2), conv_filter_strides_(2, 2),
conv_filter_dilations(2, 1), conv_filter_dilations_(2, 1),
input_left_pads(2, 1), input_left_pads_(2, 1),
input_right_pads(2, 1) input_right_pads_(2, 1)
{ {
} }
...@@ -60,52 +60,54 @@ ConvParams::ConvParams(ck::index_t n_dim, ...@@ -60,52 +60,54 @@ ConvParams::ConvParams(ck::index_t n_dim,
const std::vector<ck::index_t>& dilations, const std::vector<ck::index_t>& dilations,
const std::vector<ck::index_t>& left_pads, const std::vector<ck::index_t>& left_pads,
const std::vector<ck::index_t>& right_pads) const std::vector<ck::index_t>& right_pads)
: num_dim_spatial(n_dim), : num_dim_spatial_(n_dim),
N(n_batch), N_(n_batch),
K(n_out_channels), K_(n_out_channels),
C(n_in_channels), C_(n_in_channels),
filter_spatial_lengths(filters_len), filter_spatial_lengths_(filters_len),
input_spatial_lengths(input_len), input_spatial_lengths_(input_len),
conv_filter_strides(strides), conv_filter_strides_(strides),
conv_filter_dilations(dilations), conv_filter_dilations_(dilations),
input_left_pads(left_pads), input_left_pads_(left_pads),
input_right_pads(right_pads) input_right_pads_(right_pads)
{ {
if(filter_spatial_lengths.size() != num_dim_spatial || if(ck::type_convert<ck::index_t>(filter_spatial_lengths_.size()) != num_dim_spatial_ ||
input_spatial_lengths.size() != num_dim_spatial || ck::type_convert<ck::index_t>(input_spatial_lengths_.size()) != num_dim_spatial_ ||
conv_filter_strides.size() != num_dim_spatial || ck::type_convert<ck::index_t>(conv_filter_strides_.size()) != num_dim_spatial_ ||
conv_filter_dilations.size() != num_dim_spatial || ck::type_convert<ck::index_t>(conv_filter_dilations_.size()) != num_dim_spatial_ ||
input_left_pads.size() != num_dim_spatial || input_right_pads.size() != num_dim_spatial) ck::type_convert<ck::index_t>(input_left_pads_.size()) != num_dim_spatial_ ||
ck::type_convert<ck::index_t>(input_right_pads_.size()) != num_dim_spatial_)
{ {
throw(std::runtime_error( throw(
"ConvParams::GetOutputSpatialLengths: " std::runtime_error("ConvParams::GetOutputSpatialLengths: "
"parameter size is different from number of declared dimensions!")); "parameter size is different from number of declared dimensions!"));
} }
} }
std::vector<ck::index_t> ConvParams::GetOutputSpatialLengths() const std::vector<ck::index_t> ConvParams::GetOutputSpatialLengths() const
{ {
if(filter_spatial_lengths.size() != num_dim_spatial || if(ck::type_convert<ck::index_t>(filter_spatial_lengths_.size()) != num_dim_spatial_ ||
input_spatial_lengths.size() != num_dim_spatial || ck::type_convert<ck::index_t>(input_spatial_lengths_.size()) != num_dim_spatial_ ||
conv_filter_strides.size() != num_dim_spatial || ck::type_convert<ck::index_t>(conv_filter_strides_.size()) != num_dim_spatial_ ||
conv_filter_dilations.size() != num_dim_spatial || ck::type_convert<ck::index_t>(conv_filter_dilations_.size()) != num_dim_spatial_ ||
input_left_pads.size() != num_dim_spatial || input_right_pads.size() != num_dim_spatial) ck::type_convert<ck::index_t>(input_left_pads_.size()) != num_dim_spatial_ ||
ck::type_convert<ck::index_t>(input_right_pads_.size()) != num_dim_spatial_)
{ {
throw(std::runtime_error( throw(
"ConvParams::GetOutputSpatialLengths: " std::runtime_error("ConvParams::GetOutputSpatialLengths: "
"parameter size is different from number of declared dimensions!")); "parameter size is different from number of declared dimensions!"));
} }
std::vector<ck::index_t> out_spatial_len(num_dim_spatial, 0); std::vector<ck::index_t> out_spatial_len(num_dim_spatial_, 0);
for(ck::index_t i = 0; i < num_dim_spatial; ++i) for(ck::index_t i = 0; i < num_dim_spatial_; ++i)
{ {
// XEff = (X - 1) * conv_dilation_w + 1; // XEff = (X - 1) * conv_dilation_w + 1;
// Wo = (Wi + in_left_pad_w + in_right_pad_w - XEff) / conv_stride_w + 1; // Wo = (Wi + in_left_pad_w + in_right_pad_w - XEff) / conv_stride_w + 1;
const ck::index_t idx_eff = const ck::index_t idx_eff =
(filter_spatial_lengths[i] - 1) * conv_filter_dilations[i] + 1; (filter_spatial_lengths_[i] - 1) * conv_filter_dilations_[i] + 1;
out_spatial_len[i] = out_spatial_len[i] =
(input_spatial_lengths[i] + input_left_pads[i] + input_right_pads[i] - idx_eff) / (input_spatial_lengths_[i] + input_left_pads_[i] + input_right_pads_[i] - idx_eff) /
conv_filter_strides[i] + conv_filter_strides_[i] +
1; 1;
} }
return out_spatial_len; return out_spatial_len;
...@@ -115,40 +117,40 @@ ConvParams parse_conv_params(int num_dim_spatial, int arg_idx, char* const argv[ ...@@ -115,40 +117,40 @@ ConvParams parse_conv_params(int num_dim_spatial, int arg_idx, char* const argv[
{ {
ck::utils::conv::ConvParams params; ck::utils::conv::ConvParams params;
params.num_dim_spatial = num_dim_spatial; params.num_dim_spatial_ = num_dim_spatial;
params.N = std::stoi(argv[arg_idx++]); params.N_ = std::stoi(argv[arg_idx++]);
params.K = std::stoi(argv[arg_idx++]); params.K_ = std::stoi(argv[arg_idx++]);
params.C = std::stoi(argv[arg_idx++]); params.C_ = std::stoi(argv[arg_idx++]);
params.filter_spatial_lengths.resize(num_dim_spatial); params.filter_spatial_lengths_.resize(num_dim_spatial);
for(int i = 0; i < num_dim_spatial; ++i) for(int i = 0; i < num_dim_spatial; ++i)
{ {
params.filter_spatial_lengths[i] = std::stoi(argv[arg_idx++]); params.filter_spatial_lengths_[i] = std::stoi(argv[arg_idx++]);
} }
params.input_spatial_lengths.resize(num_dim_spatial); params.input_spatial_lengths_.resize(num_dim_spatial);
for(int i = 0; i < num_dim_spatial; ++i) for(int i = 0; i < num_dim_spatial; ++i)
{ {
params.input_spatial_lengths[i] = std::stoi(argv[arg_idx++]); params.input_spatial_lengths_[i] = std::stoi(argv[arg_idx++]);
} }
params.conv_filter_strides.resize(num_dim_spatial); params.conv_filter_strides_.resize(num_dim_spatial);
for(int i = 0; i < num_dim_spatial; ++i) for(int i = 0; i < num_dim_spatial; ++i)
{ {
params.conv_filter_strides[i] = std::stoi(argv[arg_idx++]); params.conv_filter_strides_[i] = std::stoi(argv[arg_idx++]);
} }
params.conv_filter_dilations.resize(num_dim_spatial); params.conv_filter_dilations_.resize(num_dim_spatial);
for(int i = 0; i < num_dim_spatial; ++i) for(int i = 0; i < num_dim_spatial; ++i)
{ {
params.conv_filter_dilations[i] = std::stoi(argv[arg_idx++]); params.conv_filter_dilations_[i] = std::stoi(argv[arg_idx++]);
} }
params.input_left_pads.resize(num_dim_spatial); params.input_left_pads_.resize(num_dim_spatial);
for(int i = 0; i < num_dim_spatial; ++i) for(int i = 0; i < num_dim_spatial; ++i)
{ {
params.input_left_pads[i] = std::stoi(argv[arg_idx++]); params.input_left_pads_[i] = std::stoi(argv[arg_idx++]);
} }
params.input_right_pads.resize(num_dim_spatial); params.input_right_pads_.resize(num_dim_spatial);
for(int i = 0; i < num_dim_spatial; ++i) for(int i = 0; i < num_dim_spatial; ++i)
{ {
params.input_right_pads[i] = std::stoi(argv[arg_idx++]); params.input_right_pads_[i] = std::stoi(argv[arg_idx++]);
} }
return params; return params;
...@@ -227,12 +229,12 @@ HostTensorDescriptor get_input_host_tensor_descriptor(const std::vector<std::siz ...@@ -227,12 +229,12 @@ HostTensorDescriptor get_input_host_tensor_descriptor(const std::vector<std::siz
std::ostream& operator<<(std::ostream& os, const ck::utils::conv::ConvParams& p) std::ostream& operator<<(std::ostream& os, const ck::utils::conv::ConvParams& p)
{ {
os << "ConvParams {" os << "ConvParams {"
<< "\nnum_dim_spatial: " << p.num_dim_spatial << "\nN: " << p.N << "\nK: " << p.K << "\nnum_dim_spatial: " << p.num_dim_spatial_ << "\nN: " << p.N_ << "\nK: " << p.K_
<< "\nC: " << p.C << "\nfilter_spatial_lengths: " << p.filter_spatial_lengths << "\nC: " << p.C_ << "\nfilter_spatial_lengths: " << p.filter_spatial_lengths_
<< "\ninput_spatial_lengths: " << p.input_spatial_lengths << "\ninput_spatial_lengths: " << p.input_spatial_lengths_
<< "\nconv_filter_strides: " << p.conv_filter_strides << "\nconv_filter_strides: " << p.conv_filter_strides_
<< "\nconv_filter_dilations: " << p.conv_filter_dilations << "\nconv_filter_dilations: " << p.conv_filter_dilations_
<< "\ninput_left_pads: " << p.input_left_pads << "\ninput_left_pads: " << p.input_left_pads_
<< "\ninput_right_pads: " << p.input_right_pads; << "\ninput_right_pads: " << p.input_right_pads_;
return os; return os;
} }
...@@ -44,7 +44,7 @@ set(PROFILER_SOURCE ...@@ -44,7 +44,7 @@ set(PROFILER_SOURCE
add_executable(ckProfiler ${PROFILER_SOURCE}) add_executable(ckProfiler ${PROFILER_SOURCE})
target_link_libraries(ckProfiler PRIVATE host_tensor) target_link_libraries(ckProfiler PRIVATE host_tensor)
target_link_libraries(ckProfiler PRIVATE conv_fwd_util) target_link_libraries(ckProfiler PRIVATE conv_util)
target_link_libraries(ckProfiler PRIVATE device_gemm_reduce_instance) target_link_libraries(ckProfiler PRIVATE device_gemm_reduce_instance)
target_link_libraries(ckProfiler PRIVATE device_gemm_instance) target_link_libraries(ckProfiler PRIVATE device_gemm_instance)
target_link_libraries(ckProfiler PRIVATE device_gemm_bias2d_instance) target_link_libraries(ckProfiler PRIVATE device_gemm_bias2d_instance)
......
...@@ -63,7 +63,7 @@ template <typename ADataType, ...@@ -63,7 +63,7 @@ template <typename ADataType,
bool profile_batched_gemm_impl(int do_verification, bool profile_batched_gemm_impl(int do_verification,
int init_method, int init_method,
bool do_log, bool do_log,
int nrepeat, bool time_kernel,
int M, int M,
int N, int N,
int K, int K,
...@@ -356,11 +356,12 @@ bool profile_batched_gemm_impl(int do_verification, ...@@ -356,11 +356,12 @@ bool profile_batched_gemm_impl(int do_verification,
{ {
std::string gemm_name = gemm_ptr->GetTypeString(); std::string gemm_name = gemm_ptr->GetTypeString();
float ave_time = invoker_ptr->Run(argument_ptr.get(), nrepeat); float ave_time =
invoker_ptr->Run(argument_ptr.get(), StreamConfig{nullptr, time_kernel});
std::size_t flop = std::size_t(2) * BatchCount * M * N * K; std::size_t flop = std::size_t(2) * BatchCount * M * N * K;
std::size_t num_btype = (sizeof(ADataType) * M * K + sizeof(BDataType) * K * M + std::size_t num_btype = (sizeof(ADataType) * M * K + sizeof(BDataType) * K * N +
sizeof(CDataType) * M * N) * sizeof(CDataType) * M * N) *
BatchCount; BatchCount;
......
...@@ -8,7 +8,7 @@ ...@@ -8,7 +8,7 @@
#include "tensor_layout.hpp" #include "tensor_layout.hpp"
#include "device_tensor.hpp" #include "device_tensor.hpp"
#include "element_wise_operation.hpp" #include "element_wise_operation.hpp"
#include "element_wise_reduce_operation.hpp" #include "reduction_operator.hpp"
#include "device_gemm_reduce.hpp" #include "device_gemm_reduce.hpp"
#include "reference_batched_gemm.hpp" #include "reference_batched_gemm.hpp"
...@@ -21,8 +21,7 @@ using DeviceGemmReduceNoOpPtr = ck::tensor_operation::device::DeviceGemmReducePt ...@@ -21,8 +21,7 @@ using DeviceGemmReduceNoOpPtr = ck::tensor_operation::device::DeviceGemmReducePt
ck::tensor_operation::element_wise::PassThrough, ck::tensor_operation::element_wise::PassThrough,
ck::tensor_operation::element_wise::PassThrough, ck::tensor_operation::element_wise::PassThrough,
ck::tensor_operation::element_wise::PassThrough, ck::tensor_operation::element_wise::PassThrough,
ck::tensor_operation::element_wise::ReduceSum, ck::tensor_operation::element_wise::UnarySquare<float, float, false>>;
ck::tensor_operation::element_wise::ReduceSquareSum>;
void add_device_batched_gemm_reduce_xdl_cshuffle_f16_f16_f16_f32_f32_gmk_gkn_gmn_instances( void add_device_batched_gemm_reduce_xdl_cshuffle_f16_f16_f16_f32_f32_gmk_gkn_gmn_instances(
std::vector<DeviceGemmReduceNoOpPtr>&); std::vector<DeviceGemmReduceNoOpPtr>&);
...@@ -54,7 +53,7 @@ template <typename ADataType, ...@@ -54,7 +53,7 @@ template <typename ADataType,
bool profile_batched_gemm_reduce_impl(int do_verification, bool profile_batched_gemm_reduce_impl(int do_verification,
int init_method, int init_method,
bool do_log, bool do_log,
int nrepeat, bool time_kernel,
int M, int M,
int N, int N,
int K, int K,
...@@ -120,17 +119,19 @@ bool profile_batched_gemm_reduce_impl(int do_verification, ...@@ -120,17 +119,19 @@ bool profile_batched_gemm_reduce_impl(int do_verification,
b_g_k_n.GenerateTensorValue(GeneratorTensor_3<BDataType>{-0.5, 0.5}, num_thread); b_g_k_n.GenerateTensorValue(GeneratorTensor_3<BDataType>{-0.5, 0.5}, num_thread);
} }
using AElementOp = ck::tensor_operation::element_wise::PassThrough; using AElementOp = ck::tensor_operation::element_wise::PassThrough;
using BElementOp = ck::tensor_operation::element_wise::PassThrough; using BElementOp = ck::tensor_operation::element_wise::PassThrough;
using CElementOp = ck::tensor_operation::element_wise::PassThrough; using CElementOp = ck::tensor_operation::element_wise::PassThrough;
using D0ReduceOp = ck::tensor_operation::element_wise::ReduceSum; using D0ReduceOp = ck::reduce::Add<float>;
using D1ReduceOp = ck::tensor_operation::element_wise::ReduceSquareSum; using D1ReduceOp = ck::reduce::Add<float>;
using D1ElementOp = ck::tensor_operation::element_wise::UnarySquare<float, float, false>;
const auto a_element_op = AElementOp{}; const auto a_element_op = AElementOp{};
const auto b_element_op = BElementOp{}; const auto b_element_op = BElementOp{};
const auto c_element_op = CElementOp{}; const auto c_element_op = CElementOp{};
const auto d0_reduce_op = D0ReduceOp{}; const auto d0_reduce_op = D0ReduceOp{};
const auto d1_reduce_op = D1ReduceOp{}; const auto d1_reduce_op = D1ReduceOp{};
const auto d1_element_op = D1ElementOp{};
if(do_verification) if(do_verification)
{ {
...@@ -154,17 +155,21 @@ bool profile_batched_gemm_reduce_impl(int do_verification, ...@@ -154,17 +155,21 @@ bool profile_batched_gemm_reduce_impl(int do_verification,
{ {
for(int m = 0; m < M; ++m) for(int m = 0; m < M; ++m)
{ {
float d0_acc = d0_reduce_op.GetReduceZeroValue(); float d0_acc = d0_reduce_op.GetReductionZeroVal();
float d1_acc = d1_reduce_op.GetReduceZeroValue(); float d1_acc = d1_reduce_op.GetReductionZeroVal();
for(int n = 0; n < N; ++n) for(int n = 0; n < N; ++n)
{ {
d0_reduce_op.Reduce(d0_acc, c_g_m_n_host_result(batch, m, n)); float d0_val = ck::type_convert<float>(c_g_m_n_host_result(batch, m, n));
d1_reduce_op.Reduce(d1_acc, c_g_m_n_host_result(batch, m, n)); float d1_val;
d1_element_op(d1_val, d0_val);
d0_reduce_op(d0_acc, d0_val);
d1_reduce_op(d1_acc, d1_val);
} }
d0_g_m_host_result(batch, m) = d0_acc; d0_g_m_host_result(batch, m) = ck::type_convert<DDataType>(d0_acc);
d1_g_m_host_result(batch, m) = d1_acc; d1_g_m_host_result(batch, m) = ck::type_convert<DDataType>(d1_acc);
} }
} }
} }
...@@ -247,38 +252,19 @@ bool profile_batched_gemm_reduce_impl(int do_verification, ...@@ -247,38 +252,19 @@ bool profile_batched_gemm_reduce_impl(int do_verification,
a_element_op, a_element_op,
b_element_op, b_element_op,
c_element_op, c_element_op,
d0_reduce_op, d1_element_op,
d1_reduce_op,
BatchCount); BatchCount);
auto invoker_ptr = gemm_ptr->MakeInvokerPointer(); auto invoker_ptr = gemm_ptr->MakeInvokerPointer();
if(gemm_ptr->IsSupportedArgument(argument_ptr.get())) if(gemm_ptr->IsSupportedArgument(argument_ptr.get()))
{ {
// warm up // init DO, D1 to 0
invoker_ptr->Run(argument_ptr.get()); d0_device_buf.SetZero();
d1_device_buf.SetZero();
// timing
float total_time = 0;
for(int i = 0; i < nrepeat; ++i)
{
// init DO, D1 to 0
d0_device_buf.SetZero();
d1_device_buf.SetZero();
KernelTimer timer;
timer.Start();
invoker_ptr->Run(argument_ptr.get());
timer.End();
total_time += timer.GetElapsedTime();
}
float ave_time = total_time / nrepeat; float ave_time =
invoker_ptr->Run(argument_ptr.get(), StreamConfig{nullptr, time_kernel});
std::string gemm_name = gemm_ptr->GetTypeString(); std::string gemm_name = gemm_ptr->GetTypeString();
......
...@@ -51,7 +51,7 @@ template <int NDimSpatial, ...@@ -51,7 +51,7 @@ template <int NDimSpatial,
void profile_conv_bwd_data_impl(int do_verification, void profile_conv_bwd_data_impl(int do_verification,
int init_method, int init_method,
bool do_log, bool do_log,
int nrepeat, bool time_kernel,
ck::index_t N, ck::index_t N,
ck::index_t K, ck::index_t K,
ck::index_t C, ck::index_t C,
...@@ -228,7 +228,8 @@ void profile_conv_bwd_data_impl(int do_verification, ...@@ -228,7 +228,8 @@ void profile_conv_bwd_data_impl(int do_verification,
{ {
std::string conv_name = conv_ptr->GetTypeString(); std::string conv_name = conv_ptr->GetTypeString();
float ave_time = invoker_ptr->Run(argument_ptr.get(), nrepeat); float ave_time =
invoker_ptr->Run(argument_ptr.get(), StreamControl{nullptr, time_kernel});
std::size_t flop = std::size_t(2) * N * K * Ho * Wo * C * Y * X; std::size_t flop = std::size_t(2) * N * K * Ho * Wo * C * Y * X;
......
#pragma once #pragma once
#include "stream_config.hpp"
#include "config.hpp" #include "config.hpp"
#include "device.hpp" #include "device.hpp"
#include "host_tensor.hpp" #include "host_tensor.hpp"
...@@ -43,7 +45,7 @@ template <int NDimSpatial, ...@@ -43,7 +45,7 @@ template <int NDimSpatial,
bool profile_conv_bwd_weight_impl(int do_verification, bool profile_conv_bwd_weight_impl(int do_verification,
int init_method, int init_method,
bool do_log, bool do_log,
int nrepeat, bool time_kernel,
ck::index_t N, ck::index_t N,
ck::index_t K, ck::index_t K,
ck::index_t C, ck::index_t C,
...@@ -182,6 +184,7 @@ bool profile_conv_bwd_weight_impl(int do_verification, ...@@ -182,6 +184,7 @@ bool profile_conv_bwd_weight_impl(int do_verification,
// profile device Conv instances // profile device Conv instances
bool pass = true; bool pass = true;
for(auto& conv_ptr : conv_ptrs) for(auto& conv_ptr : conv_ptrs)
{ {
// using atomic, so need to reset input // using atomic, so need to reset input
...@@ -189,6 +192,7 @@ bool profile_conv_bwd_weight_impl(int do_verification, ...@@ -189,6 +192,7 @@ bool profile_conv_bwd_weight_impl(int do_verification,
{ {
wei_device_buf.SetZero(); wei_device_buf.SetZero();
} }
auto argument_ptr = conv_ptr->MakeArgumentPointer( auto argument_ptr = conv_ptr->MakeArgumentPointer(
static_cast<InDataType*>(in_device_buf.GetDeviceBuffer()), static_cast<InDataType*>(in_device_buf.GetDeviceBuffer()),
static_cast<WeiDataType*>(wei_device_buf.GetDeviceBuffer()), static_cast<WeiDataType*>(wei_device_buf.GetDeviceBuffer()),
...@@ -214,7 +218,8 @@ bool profile_conv_bwd_weight_impl(int do_verification, ...@@ -214,7 +218,8 @@ bool profile_conv_bwd_weight_impl(int do_verification,
{ {
std::string conv_name = conv_ptr->GetTypeString(); std::string conv_name = conv_ptr->GetTypeString();
float ave_time = invoker_ptr->Run(argument_ptr.get(), nrepeat); float ave_time =
invoker_ptr->Run(argument_ptr.get(), StreamConfig{nullptr, time_kernel});
std::size_t flop = std::size_t(2) * N * K * Ho * Wo * C * Y * X; std::size_t flop = std::size_t(2) * N * K * Ho * Wo * C * Y * X;
...@@ -242,6 +247,7 @@ bool profile_conv_bwd_weight_impl(int do_verification, ...@@ -242,6 +247,7 @@ bool profile_conv_bwd_weight_impl(int do_verification,
wei_device_buf.FromDevice(wei_k_c_y_x_device_result.mData.data()); wei_device_buf.FromDevice(wei_k_c_y_x_device_result.mData.data());
float max_error = check_error(wei_k_c_y_x_host_result, wei_k_c_y_x_device_result); float max_error = check_error(wei_k_c_y_x_host_result, wei_k_c_y_x_device_result);
if(max_error > 8) if(max_error > 8)
{ {
pass = false; pass = false;
......
...@@ -42,7 +42,7 @@ template <int NDimSpatial, ...@@ -42,7 +42,7 @@ template <int NDimSpatial,
void profile_conv_fwd_bias_relu_add_impl(int do_verification, void profile_conv_fwd_bias_relu_add_impl(int do_verification,
int init_method, int init_method,
bool do_log, bool do_log,
int nrepeat, bool time_kernel,
ck::index_t N, ck::index_t N,
ck::index_t K, ck::index_t K,
ck::index_t C, ck::index_t C,
...@@ -219,7 +219,8 @@ void profile_conv_fwd_bias_relu_add_impl(int do_verification, ...@@ -219,7 +219,8 @@ void profile_conv_fwd_bias_relu_add_impl(int do_verification,
{ {
std::string conv_name = op_ptr->GetTypeString(); std::string conv_name = op_ptr->GetTypeString();
float ave_time = invoker_ptr->Run(argument_ptr.get(), nrepeat); float ave_time =
invoker_ptr->Run(argument_ptr.get(), StreamConfig{nullptr, time_kernel});
std::size_t flop = std::size_t(2) * N * K * Ho * Wo * C * Y * X; std::size_t flop = std::size_t(2) * N * K * Ho * Wo * C * Y * X;
......
...@@ -119,7 +119,7 @@ template <int NDimSpatial, ...@@ -119,7 +119,7 @@ template <int NDimSpatial,
void profile_conv_fwd_bias_relu_atomic_add_impl(int do_verification, void profile_conv_fwd_bias_relu_atomic_add_impl(int do_verification,
int init_method, int init_method,
bool do_log, bool do_log,
int nrepeat, bool time_kernel,
ck::index_t N, ck::index_t N,
ck::index_t K, ck::index_t K,
ck::index_t C, ck::index_t C,
...@@ -275,7 +275,8 @@ void profile_conv_fwd_bias_relu_atomic_add_impl(int do_verification, ...@@ -275,7 +275,8 @@ void profile_conv_fwd_bias_relu_atomic_add_impl(int do_verification,
{ {
std::string conv_name = op_ptr->GetTypeString(); std::string conv_name = op_ptr->GetTypeString();
float ave_time = invoker_ptr->Run(argument_ptr.get(), nrepeat); float ave_time =
invoker_ptr->Run(argument_ptr.get(), StreamConfig{nullptr, time_kernel});
std::size_t flop = std::size_t(2) * N * K * Ho * Wo * C * Y * X; std::size_t flop = std::size_t(2) * N * K * Ho * Wo * C * Y * X;
......
...@@ -41,7 +41,7 @@ template <int NDimSpatial, ...@@ -41,7 +41,7 @@ template <int NDimSpatial,
void profile_conv_fwd_bias_relu_impl(int do_verification, void profile_conv_fwd_bias_relu_impl(int do_verification,
int init_method, int init_method,
bool do_log, bool do_log,
int nrepeat, bool time_kernel,
ck::index_t N, ck::index_t N,
ck::index_t K, ck::index_t K,
ck::index_t C, ck::index_t C,
...@@ -207,7 +207,8 @@ void profile_conv_fwd_bias_relu_impl(int do_verification, ...@@ -207,7 +207,8 @@ void profile_conv_fwd_bias_relu_impl(int do_verification,
{ {
std::string conv_name = op_ptr->GetTypeString(); std::string conv_name = op_ptr->GetTypeString();
float ave_time = invoker_ptr->Run(argument_ptr.get(), nrepeat); float ave_time =
invoker_ptr->Run(argument_ptr.get(), StreamConfig{nullptr, time_kernel});
std::size_t flop = std::size_t(2) * N * K * Ho * Wo * C * Y * X; std::size_t flop = std::size_t(2) * N * K * Ho * Wo * C * Y * X;
......
#pragma once #pragma once
#include "config.hpp" #include "config.hpp"
#include "device.hpp" #include "device.hpp"
#include "conv_fwd_util.hpp" #include "conv_util.hpp"
#include "host_tensor.hpp" #include "host_tensor.hpp"
#include "host_tensor_generator.hpp" #include "host_tensor_generator.hpp"
#include "tensor_layout.hpp" #include "tensor_layout.hpp"
...@@ -222,7 +222,7 @@ static bool check_out(const Tensor<T>& ref, const Tensor<T>& result) ...@@ -222,7 +222,7 @@ static bool check_out(const Tensor<T>& ref, const Tensor<T>& result)
{ {
float max_diff = 1e-6; float max_diff = 1e-6;
for(int i = 0; i < ref.mData.size(); ++i) for(std::size_t i = 0; i < ref.mData.size(); ++i)
{ {
float diff = std::abs(double(ref.mData[i]) - double(result.mData[i])); float diff = std::abs(double(ref.mData[i]) - double(result.mData[i]));
if(max_diff < diff) if(max_diff < diff)
...@@ -236,16 +236,16 @@ template <typename DataType> ...@@ -236,16 +236,16 @@ template <typename DataType>
void show_data_nhwc_layout(Tensor<DataType>& nhwc) void show_data_nhwc_layout(Tensor<DataType>& nhwc)
{ {
std::cout << "["; std::cout << "[";
for(int n = 0; n < nhwc.mDesc.GetLengths()[0]; n++) for(int n = 0; n < ck::type_convert<int>(nhwc.mDesc.GetLengths()[0]); n++)
{ {
std::cout << "["; std::cout << "[";
for(int hi = 0; hi < nhwc.mDesc.GetLengths()[2]; hi++) for(int hi = 0; hi < ck::type_convert<int>(nhwc.mDesc.GetLengths()[2]); hi++)
{ {
std::cout << "["; std::cout << "[";
for(int wi = 0; wi < nhwc.mDesc.GetLengths()[3]; wi++) for(int wi = 0; wi < ck::type_convert<int>(nhwc.mDesc.GetLengths()[3]); wi++)
{ {
std::cout << "["; std::cout << "[";
for(int c = 0; c < nhwc.mDesc.GetLengths()[1]; c++) for(int c = 0; c < ck::type_convert<int>(nhwc.mDesc.GetLengths()[1]); c++)
{ {
std::cout << static_cast<float>(nhwc(n, c, hi, wi)) << " "; std::cout << static_cast<float>(nhwc(n, c, hi, wi)) << " ";
} }
...@@ -269,7 +269,7 @@ template <int NDimSpatial, ...@@ -269,7 +269,7 @@ template <int NDimSpatial,
bool profile_convnd_bwd_data_impl(int do_verification, bool profile_convnd_bwd_data_impl(int do_verification,
int init_method, int init_method,
bool do_log, bool do_log,
int nrepeat, bool time_kernel,
ck::index_t N, ck::index_t N,
ck::index_t K, ck::index_t K,
ck::index_t C, ck::index_t C,
...@@ -410,7 +410,8 @@ bool profile_convnd_bwd_data_impl(int do_verification, ...@@ -410,7 +410,8 @@ bool profile_convnd_bwd_data_impl(int do_verification,
{ {
std::string conv_name = conv_ptr->GetTypeString(); std::string conv_name = conv_ptr->GetTypeString();
float ave_time = invoker_ptr->Run(argument_ptr.get(), nrepeat); float ave_time =
invoker_ptr->Run(argument_ptr.get(), StreamConfig{nullptr, time_kernel});
std::size_t flop = std::size_t flop =
ck::utils::conv::get_flops(N, C, K, filter_spatial_lengths, output_spatial_lengths); ck::utils::conv::get_flops(N, C, K, filter_spatial_lengths, output_spatial_lengths);
......
...@@ -65,7 +65,7 @@ template <typename ADataType, ...@@ -65,7 +65,7 @@ template <typename ADataType,
void profile_gemm_bias_2d_impl(int do_verification, void profile_gemm_bias_2d_impl(int do_verification,
int init_method, int init_method,
bool do_log, bool do_log,
int nrepeat, bool time_kernel,
int M, int M,
int N, int N,
int K, int K,
...@@ -259,7 +259,8 @@ void profile_gemm_bias_2d_impl(int do_verification, ...@@ -259,7 +259,8 @@ void profile_gemm_bias_2d_impl(int do_verification,
{ {
std::string gemm_name = gemm_ptr->GetTypeString(); std::string gemm_name = gemm_ptr->GetTypeString();
float ave_time = invoker_ptr->Run(argument_ptr.get(), nrepeat); float ave_time =
invoker_ptr->Run(argument_ptr.get(), StreamConfig{nullptr, time_kernel});
std::size_t flop = std::size_t(2) * M * N * K; std::size_t flop = std::size_t(2) * M * N * K;
......
...@@ -48,7 +48,7 @@ template <typename ADataType, ...@@ -48,7 +48,7 @@ template <typename ADataType,
void profile_gemm_bias_relu_add_impl(int do_verification, void profile_gemm_bias_relu_add_impl(int do_verification,
int init_method, int init_method,
bool do_log, bool do_log,
int nrepeat, bool time_kernel,
int M, int M,
int N, int N,
int K, int K,
...@@ -232,7 +232,8 @@ void profile_gemm_bias_relu_add_impl(int do_verification, ...@@ -232,7 +232,8 @@ void profile_gemm_bias_relu_add_impl(int do_verification,
{ {
std::string gemm_name = gemm_ptr->GetTypeString(); std::string gemm_name = gemm_ptr->GetTypeString();
float ave_time = invoker_ptr->Run(argument_ptr.get(), nrepeat); float ave_time =
invoker_ptr->Run(argument_ptr.get(), StreamConfig{nullptr, time_kernel});
std::size_t flop = std::size_t(2) * M * N * K; std::size_t flop = std::size_t(2) * M * N * K;
......
...@@ -48,7 +48,7 @@ template <typename ADataType, ...@@ -48,7 +48,7 @@ template <typename ADataType,
void profile_gemm_bias_relu_impl(int do_verification, void profile_gemm_bias_relu_impl(int do_verification,
int init_method, int init_method,
bool do_log, bool do_log,
int nrepeat, bool time_kernel,
int M, int M,
int N, int N,
int K, int K,
...@@ -212,7 +212,8 @@ void profile_gemm_bias_relu_impl(int do_verification, ...@@ -212,7 +212,8 @@ void profile_gemm_bias_relu_impl(int do_verification,
{ {
std::string gemm_name = gemm_ptr->GetTypeString(); std::string gemm_name = gemm_ptr->GetTypeString();
float ave_time = invoker_ptr->Run(argument_ptr.get(), nrepeat); float ave_time =
invoker_ptr->Run(argument_ptr.get(), StreamConfig{nullptr, time_kernel});
std::size_t flop = std::size_t(2) * M * N * K; std::size_t flop = std::size_t(2) * M * N * K;
......
...@@ -91,7 +91,7 @@ template <typename ADataType, ...@@ -91,7 +91,7 @@ template <typename ADataType,
void profile_gemm_impl(int do_verification, void profile_gemm_impl(int do_verification,
int init_method, int init_method,
bool do_log, bool do_log,
int nrepeat, bool time_kernel,
int M, int M,
int N, int N,
int K, int K,
...@@ -416,12 +416,13 @@ void profile_gemm_impl(int do_verification, ...@@ -416,12 +416,13 @@ void profile_gemm_impl(int do_verification,
std::string gemm_name = gemm_ptr->GetTypeString(); std::string gemm_name = gemm_ptr->GetTypeString();
float ave_time = invoker_ptr->Run(argument_ptr.get(), nrepeat); float ave_time =
invoker_ptr->Run(argument_ptr.get(), StreamConfig{nullptr, time_kernel});
std::size_t flop = std::size_t(2) * M * N * K; std::size_t flop = std::size_t(2) * M * N * K;
std::size_t num_btype = std::size_t num_btype =
sizeof(ADataType) * M * K + sizeof(BDataType) * K * M + sizeof(CDataType) * M * N; sizeof(ADataType) * M * K + sizeof(BDataType) * K * N + sizeof(CDataType) * M * N;
float tflops = static_cast<float>(flop) / 1.E9 / ave_time; float tflops = static_cast<float>(flop) / 1.E9 / ave_time;
......
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment