Skip to content
GitLab
Menu
Projects
Groups
Snippets
Loading...
Help
Help
Support
Community forum
Keyboard shortcuts
?
Submit feedback
Contribute to GitLab
Sign in / Register
Toggle navigation
Menu
Open sidebar
gaoqiong
composable_kernel
Commits
b11ce4ba
Commit
b11ce4ba
authored
Jun 15, 2023
by
Adam Osewski
Browse files
Roofline version with warp raked threadwise transfer.
parent
5c7e8b67
Changes
1
Hide whitespace changes
Inline
Side-by-side
Showing
1 changed file
with
996 additions
and
0 deletions
+996
-0
include/ck/tensor_operation/gpu/grid/gridwise_gemm_xdlops_splitk_direct_c_write_out_roofline.hpp
...idwise_gemm_xdlops_splitk_direct_c_write_out_roofline.hpp
+996
-0
No files found.
include/ck/tensor_operation/gpu/grid/gridwise_gemm_xdlops_splitk_direct_c_write_out_roofline.hpp
0 → 100644
View file @
b11ce4ba
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2022, Advanced Micro Devices, Inc. All rights reserved.
#pragma once
#include "ck/utility/common_header.hpp"
#include "ck/tensor_description/multi_index_transform_helper.hpp"
#include "ck/tensor_description/tensor_descriptor.hpp"
#include "ck/tensor_description/tensor_descriptor_helper.hpp"
#include "ck/tensor_operation/gpu/grid/block_to_ctile_map.hpp"
#include "ck/tensor_operation/gpu/grid/gridwise_gemm_pipeline_selector.hpp"
#include "ck/tensor_operation/gpu/grid/gridwise_gemm_pipeline_v1.hpp"
#include "ck/tensor_operation/gpu/block/blockwise_gemm_xdlops.hpp"
#include "ck/tensor_operation/gpu/block/thread_group_tensor_slice_transfer_v4r1.hpp"
#include "ck/tensor_operation/gpu/block/thread_group_tensor_slice_transfer_v6r1.hpp"
#include "ck/tensor_operation/gpu/thread/threadwise_tensor_slice_transfer.hpp"
#include "ck/tensor_operation/gpu/element/element_wise_operation.hpp"
#include "ck/tensor_operation/gpu/device/matrix_padder.hpp"
namespace
ck
{
template
<
typename
GridwiseGemm
,
bool
HasMainKBlockLoop
,
InMemoryDataOperationEnum
CGlobalMemoryDataOperation
,
typename
Block2CTileMap
>
__global__
void
#if CK_USE_LAUNCH_BOUNDS
__launch_bounds__
(
CK_MAX_THREAD_PER_BLOCK
,
CK_MIN_BLOCK_PER_CU
)
#endif
kernel_gemm_xdlops_splitk_simplified
(
typename
GridwiseGemm
::
Argument
karg
,
const
Block2CTileMap
&
b2c_map
)
{
#if(!defined(__HIP_DEVICE_COMPILE__) || defined(__gfx908__) || defined(__gfx90a__) || \
defined(__gfx940__))
constexpr
index_t
shared_size
=
GridwiseGemm
::
GetSharedMemoryNumberOfByte
();
__shared__
uint8_t
p_shared
[
shared_size
];
GridwiseGemm
::
template
Run
<
HasMainKBlockLoop
,
CGlobalMemoryDataOperation
>(
karg
,
static_cast
<
void
*>
(
p_shared
),
b2c_map
);
#else
ignore
=
karg
;
ignore
=
b2c_map
;
#endif // end of if (defined(__gfx908__) || defined(__gfx90a__) || defined(__gfx940__))
}
template
<
index_t
BlockSize
,
typename
FloatAB
,
typename
FloatAcc
,
typename
FloatC
,
typename
ALayout
,
typename
BLayout
,
typename
CLayout
,
typename
AElementwiseOperation
,
typename
BElementwiseOperation
,
typename
CElementwiseOperation
,
tensor_operation
::
device
::
GemmSpecialization
GemmSpec
,
index_t
NumGemmKPrefetchStage
,
index_t
MPerBlock
,
index_t
NPerBlock
,
index_t
K0PerBlock
,
index_t
MPerXDL
,
index_t
NPerXDL
,
index_t
K1Value
,
index_t
MXdlPerWave
,
index_t
NXdlPerWave
,
typename
ABlockTransferThreadClusterLengths_K0_M_K1
,
typename
ABlockTransferThreadClusterArrangeOrder
,
typename
ABlockTransferSrcAccessOrder
,
index_t
ABlockTransferSrcVectorDim
,
index_t
ABlockTransferSrcScalarPerVector
,
index_t
ABlockTransferDstScalarPerVector_K1
,
bool
AThreadTransferSrcResetCoordinateAfterRun
,
bool
ABlockLdsExtraM
,
typename
BBlockTransferThreadClusterLengths_K0_N_K1
,
typename
BBlockTransferThreadClusterArrangeOrder
,
typename
BBlockTransferSrcAccessOrder
,
index_t
BBlockTransferSrcVectorDim
,
index_t
BBlockTransferSrcScalarPerVector
,
index_t
BBlockTransferDstScalarPerVector_K1
,
bool
BThreadTransferSrcResetCoordinateAfterRun
,
bool
BBlockLdsExtraN
,
LoopScheduler
LoopSched
=
make_default_loop_scheduler
(),
PipelineVersion
PipelineVer
=
PipelineVersion
::
v1
>
struct
GridwiseGemm_bk0mk1_bk0nk1_mn_xdlops_splitk_direct_c_write_out
{
static
constexpr
auto
I0
=
Number
<
0
>
{};
static
constexpr
auto
I1
=
Number
<
1
>
{};
static
constexpr
auto
I2
=
Number
<
2
>
{};
static
constexpr
auto
I3
=
Number
<
3
>
{};
static
constexpr
auto
I4
=
Number
<
4
>
{};
static
constexpr
auto
I5
=
Number
<
5
>
{};
static
constexpr
auto
I6
=
Number
<
6
>
{};
static
constexpr
auto
I7
=
Number
<
7
>
{};
// K1 should be Number<...>
static
constexpr
auto
K1
=
Number
<
K1Value
>
{};
static
constexpr
auto
KPerBlock
=
K1Value
*
K0PerBlock
;
using
ThisThreadBlock
=
ThisThreadBlock
<
BlockSize
>
;
using
GridwiseGemmPipe
=
remove_cvref_t
<
decltype
(
GridwiseGemmPipeline_Selector
<
PipelineVer
,
NumGemmKPrefetchStage
,
LoopSched
>
())
>
;
struct
Argument
:
public
ck
::
tensor_operation
::
device
::
BaseArgument
{
const
FloatAB
*
p_a_grid
;
const
FloatAB
*
p_b_grid
;
FloatC
*
p_c_grid
;
index_t
M
;
index_t
N
;
index_t
K
;
index_t
StrideA
;
index_t
StrideB
;
index_t
StrideC
;
index_t
K0
;
index_t
k_batch
;
Argument
(
const
FloatAB
*
p_a_grid_
,
const
FloatAB
*
p_b_grid_
,
FloatC
*
p_c_grid_
,
index_t
M_
,
index_t
N_
,
index_t
K_
,
index_t
StrideA_
,
index_t
StrideB_
,
index_t
StrideC_
,
index_t
K0_
,
index_t
k_batch_
)
:
p_a_grid
(
p_a_grid_
),
p_b_grid
(
p_b_grid_
),
p_c_grid
(
p_c_grid_
),
M
(
M_
),
N
(
N_
),
K
(
K_
),
StrideA
(
StrideA_
),
StrideB
(
StrideB_
),
StrideC
(
StrideC_
),
K0
(
K0_
),
k_batch
(
k_batch_
)
{
}
void
Print
()
const
{
std
::
cout
<<
"arg {"
<<
"M:"
<<
M
<<
", "
<<
"N:"
<<
N
<<
", "
<<
"K:"
<<
K
<<
", "
<<
"SA:"
<<
StrideA
<<
", "
<<
"SB:"
<<
StrideB
<<
", "
<<
"SC:"
<<
StrideC
<<
", "
<<
"K0:"
<<
K0
<<
", "
<<
"KB:"
<<
k_batch
<<
"}"
<<
std
::
endl
;
}
};
__host__
__device__
static
auto
CalculateGridSize
(
const
Argument
&
karg
)
{
return
std
::
make_tuple
(
math
::
integer_divide_ceil
(
karg
.
N
,
NPerBlock
),
math
::
integer_divide_ceil
(
karg
.
M
,
MPerBlock
),
karg
.
k_batch
);
}
// prefer this to be called on host
__host__
__device__
static
auto
CalculateMPadded
(
index_t
M
)
{
return
math
::
integer_least_multiple
(
M
,
MPerBlock
);
}
__host__
__device__
static
auto
CalculateNPadded
(
index_t
N
)
{
return
math
::
integer_least_multiple
(
N
,
NPerBlock
);
}
__host__
__device__
static
auto
CalculateK0
(
index_t
K
,
index_t
K_Batch
=
1
)
{
// k_batch * k0 * k0_per_block * k1
auto
K_t
=
K_Batch
*
K0PerBlock
*
K1
;
return
(
K
+
K_t
-
1
)
/
K_t
*
K0PerBlock
;
}
__host__
__device__
static
auto
CalculateKPadded
(
index_t
K
,
index_t
K_Batch
=
1
)
{
auto
K0
=
CalculateK0
(
K
,
K_Batch
);
return
K_Batch
*
K0
*
K1
;
}
template
<
typename
ABlockDesc_AK0_M_AK1
>
__device__
static
constexpr
auto
MakeGemmAMmaTileDescriptor_M0_M1_M2_K
(
const
ABlockDesc_AK0_M_AK1
&
)
{
constexpr
index_t
MWaves
=
MPerBlock
/
(
MXdlPerWave
*
MPerXDL
);
return
MakeGemmMmaTileDescriptor_MN0_MN1_MN2_K
<
MXdlPerWave
,
MWaves
,
MPerXDL
>
(
ABlockDesc_AK0_M_AK1
{});
}
template
<
typename
BBlockDesc_BK0_N_BK1
>
__device__
static
constexpr
auto
MakeGemmBMmaTileDescriptor_N0_N1_N2_K
(
const
BBlockDesc_BK0_N_BK1
&
)
{
constexpr
index_t
NWaves
=
NPerBlock
/
(
NXdlPerWave
*
NPerXDL
);
return
MakeGemmMmaTileDescriptor_MN0_MN1_MN2_K
<
NXdlPerWave
,
NWaves
,
NPerXDL
>
(
BBlockDesc_BK0_N_BK1
{});
}
__device__
static
constexpr
auto
GetABlockDescriptor_AK0PerBlock_MPerBlock_AK1
()
{
constexpr
auto
max_lds_align
=
K1
;
// A matrix in LDS memory, dst of blockwise copy
if
constexpr
(
ABlockLdsExtraM
)
{
return
make_naive_tensor_descriptor
(
make_tuple
(
Number
<
K0PerBlock
>
{},
Number
<
MPerBlock
>
{},
K1
),
make_tuple
(
Number
<
MPerBlock
+
1
>
{}
*
K1
,
K1
,
I1
));
}
else
{
return
make_naive_tensor_descriptor_aligned
(
make_tuple
(
Number
<
K0PerBlock
>
{},
Number
<
MPerBlock
>
{},
K1
),
max_lds_align
);
}
}
__device__
static
constexpr
auto
GetABlockDescriptor_KBatch_AK0PerBlock_MPerBlock_AK1
()
{
// lds max alignment
constexpr
auto
max_lds_align
=
K1
;
if
constexpr
(
ABlockLdsExtraM
)
{
return
make_naive_tensor_descriptor
(
make_tuple
(
Number
<
1
>
{},
Number
<
K0PerBlock
>
{},
Number
<
MPerBlock
>
{},
K1
),
make_tuple
(
Number
<
K0PerBlock
>
{}
*
Number
<
MPerBlock
+
1
>
{}
*
K1
,
Number
<
MPerBlock
+
1
>
{}
*
K1
,
K1
,
I1
));
}
else
{
return
make_naive_tensor_descriptor_aligned
(
make_tuple
(
Number
<
1
>
{},
Number
<
K0PerBlock
>
{},
Number
<
MPerBlock
>
{},
K1
),
max_lds_align
);
}
}
__device__
static
constexpr
auto
GetBBlockDescriptor_BK0PerBlock_NPerBlock_BK1
()
{
constexpr
auto
max_lds_align
=
K1
;
// B matrix in LDS memory, dst of blockwise copy
if
constexpr
(
BBlockLdsExtraN
)
{
return
make_naive_tensor_descriptor
(
make_tuple
(
Number
<
K0PerBlock
>
{},
Number
<
NPerBlock
>
{},
K1
),
make_tuple
(
Number
<
NPerBlock
+
1
>
{}
*
K1
,
K1
,
I1
));
}
else
{
return
make_naive_tensor_descriptor_aligned
(
make_tuple
(
Number
<
K0PerBlock
>
{},
Number
<
NPerBlock
>
{},
K1
),
max_lds_align
);
}
}
__device__
static
constexpr
auto
GetBBlockDescriptor_KBatch_BK0PerBlock_NPerBlock_BK1
()
{
constexpr
auto
max_lds_align
=
K1
;
if
constexpr
(
BBlockLdsExtraN
)
{
return
make_naive_tensor_descriptor
(
make_tuple
(
Number
<
1
>
{},
Number
<
K0PerBlock
>
{},
Number
<
NPerBlock
>
{},
K1
),
make_tuple
(
Number
<
K0PerBlock
>
{}
*
Number
<
NPerBlock
+
1
>
{}
*
K1
,
Number
<
NPerBlock
+
1
>
{}
*
K1
,
K1
,
I1
));
}
else
{
return
make_naive_tensor_descriptor_aligned
(
make_tuple
(
Number
<
1
>
{},
Number
<
K0PerBlock
>
{},
Number
<
NPerBlock
>
{},
K1
),
max_lds_align
);
}
}
__host__
__device__
static
auto
MakeAGridDescriptor_KBatch_K0_M_K1
(
index_t
M
,
index_t
K
,
index_t
StrideA
,
index_t
KBatch
,
index_t
K0
)
{
const
auto
a_grid_desc_m_k
=
[
&
]()
{
if
constexpr
(
is_same
<
tensor_layout
::
gemm
::
RowMajor
,
ALayout
>::
value
)
{
return
make_naive_tensor_descriptor
(
make_tuple
(
M
,
K
),
make_tuple
(
StrideA
,
I1
));
}
else
if
constexpr
(
is_same
<
tensor_layout
::
gemm
::
ColumnMajor
,
ALayout
>::
value
)
{
return
make_naive_tensor_descriptor
(
make_tuple
(
M
,
K
),
make_tuple
(
I1
,
StrideA
));
}
}();
using
DoPads
=
Sequence
<
tensor_operation
::
device
::
GemmPadM
<
GemmSpec
>::
PadM
,
true
>
;
const
auto
a_grid_desc_mpad_kpad
=
tensor_operation
::
device
::
PadTensorDescriptor
(
a_grid_desc_m_k
,
make_tuple
(
MPerBlock
,
K0
*
K1
),
DoPads
{});
return
transform_tensor_descriptor
(
a_grid_desc_mpad_kpad
,
make_tuple
(
make_unmerge_transform
(
make_tuple
(
KBatch
,
K0
,
K1
)),
make_pass_through_transform
(
a_grid_desc_mpad_kpad
.
GetLength
(
I0
))),
make_tuple
(
Sequence
<
1
>
{},
Sequence
<
0
>
{}),
make_tuple
(
Sequence
<
0
,
1
,
3
>
{},
Sequence
<
2
>
{}));
}
__host__
__device__
static
auto
MakeBGridDescriptor_KBatch_K0_N_K1
(
index_t
K
,
index_t
N
,
index_t
StrideB
,
index_t
KBatch
,
index_t
K0
)
{
const
auto
b_grid_desc_k_n
=
[
&
]()
{
if
constexpr
(
is_same
<
tensor_layout
::
gemm
::
RowMajor
,
BLayout
>::
value
)
{
return
make_naive_tensor_descriptor
(
make_tuple
(
K
,
N
),
make_tuple
(
StrideB
,
I1
));
}
else
if
constexpr
(
is_same
<
tensor_layout
::
gemm
::
ColumnMajor
,
BLayout
>::
value
)
{
return
make_naive_tensor_descriptor
(
make_tuple
(
K
,
N
),
make_tuple
(
I1
,
StrideB
));
}
}();
using
DoPads
=
Sequence
<
true
,
tensor_operation
::
device
::
GemmPadN
<
GemmSpec
>::
PadN
>
;
const
auto
b_grid_desc_kpad_npad
=
tensor_operation
::
device
::
PadTensorDescriptor
(
b_grid_desc_k_n
,
make_tuple
(
K0
*
K1
,
NPerBlock
),
DoPads
{});
return
transform_tensor_descriptor
(
b_grid_desc_kpad_npad
,
make_tuple
(
make_unmerge_transform
(
make_tuple
(
KBatch
,
K0
,
K1
)),
make_pass_through_transform
(
b_grid_desc_kpad_npad
.
GetLength
(
I1
))),
make_tuple
(
Sequence
<
0
>
{},
Sequence
<
1
>
{}),
make_tuple
(
Sequence
<
0
,
1
,
3
>
{},
Sequence
<
2
>
{}));
}
__host__
__device__
static
auto
MakeCGridDescriptor_M_N
(
index_t
M
,
index_t
N
,
index_t
StrideC
)
{
const
auto
c_grid_desc_m_n
=
[
&
]()
{
if
constexpr
(
is_same
<
tensor_layout
::
gemm
::
RowMajor
,
CLayout
>::
value
)
{
return
make_naive_tensor_descriptor
(
make_tuple
(
M
,
N
),
make_tuple
(
StrideC
,
I1
));
}
else
if
constexpr
(
is_same
<
tensor_layout
::
gemm
::
ColumnMajor
,
CLayout
>::
value
)
{
return
make_naive_tensor_descriptor
(
make_tuple
(
M
,
N
),
make_tuple
(
I1
,
StrideC
));
}
}();
using
DoPads
=
Sequence
<
tensor_operation
::
device
::
GemmPadM
<
GemmSpec
>::
PadM
,
tensor_operation
::
device
::
GemmPadN
<
GemmSpec
>::
PadN
>
;
return
tensor_operation
::
device
::
PadTensorDescriptor
(
c_grid_desc_m_n
,
make_tuple
(
MPerBlock
,
NPerBlock
),
DoPads
{});
}
__host__
__device__
static
constexpr
index_t
GetSharedMemoryNumberOfByte
()
{
constexpr
auto
max_lds_align
=
K1
;
// LDS allocation for A and B: be careful of alignment
constexpr
auto
a_k0_m_k1_block_desc
=
GetABlockDescriptor_AK0PerBlock_MPerBlock_AK1
();
constexpr
auto
b_k0_n_k1_block_desc
=
GetBBlockDescriptor_BK0PerBlock_NPerBlock_BK1
();
// LDS allocation for A and B: be careful of alignment
constexpr
auto
a_block_space_size
=
math
::
integer_least_multiple
(
a_k0_m_k1_block_desc
.
GetElementSpaceSize
(),
max_lds_align
);
constexpr
auto
b_block_space_size
=
math
::
integer_least_multiple
(
b_k0_n_k1_block_desc
.
GetElementSpaceSize
(),
max_lds_align
);
return
(
a_block_space_size
+
b_block_space_size
)
*
sizeof
(
FloatAB
);
}
__host__
__device__
static
constexpr
bool
CheckValidity
(
const
Argument
&
karg
)
{
if
constexpr
(
!
(
GemmSpec
==
tensor_operation
::
device
::
GemmSpecialization
::
MPadding
||
GemmSpec
==
tensor_operation
::
device
::
GemmSpecialization
::
MNPadding
||
GemmSpec
==
tensor_operation
::
device
::
GemmSpecialization
::
MKPadding
||
GemmSpec
==
tensor_operation
::
device
::
GemmSpecialization
::
MNKPadding
))
{
if
(
!
(
karg
.
M
%
MPerBlock
==
0
))
{
#if DEBUG_LOG
std
::
cout
<<
"Arg M value is not a multiple of MPerBlock! M: "
<<
karg
.
M
<<
" "
<<
__FILE__
<<
":"
<<
__LINE__
<<
", in function: "
<<
__func__
<<
std
::
endl
;
#endif // DEBUG_LOG
return
false
;
}
}
if
constexpr
(
!
(
GemmSpec
==
tensor_operation
::
device
::
GemmSpecialization
::
NPadding
||
GemmSpec
==
tensor_operation
::
device
::
GemmSpecialization
::
MNPadding
||
GemmSpec
==
tensor_operation
::
device
::
GemmSpecialization
::
NKPadding
||
GemmSpec
==
tensor_operation
::
device
::
GemmSpecialization
::
MNKPadding
))
{
if
(
!
(
karg
.
N
%
NPerBlock
==
0
))
{
#if DEBUG_LOG
std
::
cout
<<
"Arg N value is not a multiple of NPerBlock! N: "
<<
karg
.
N
<<
" "
<<
__FILE__
<<
":"
<<
__LINE__
<<
", in function: "
<<
__func__
<<
std
::
endl
;
#endif // DEBUG_LOG
return
false
;
}
}
if
constexpr
(
is_same
<
tensor_layout
::
gemm
::
RowMajor
,
ALayout
>::
value
)
{
if
(
karg
.
K
%
ABlockTransferSrcScalarPerVector
!=
0
)
{
#if DEBUG_LOG
std
::
cout
<<
"Arg K ("
<<
karg
.
K
<<
") value is not a multiple of ABlockTransferSrcScalarPerVector ("
<<
ABlockTransferSrcScalarPerVector
<<
" )! "
<<
__FILE__
<<
":"
<<
__LINE__
<<
", in function: "
<<
__func__
<<
std
::
endl
;
#endif // DEBUG_LOG
return
false
;
}
}
else
{
if
(
karg
.
M
%
ABlockTransferSrcScalarPerVector
!=
0
)
{
#if DEBUG_LOG
std
::
cout
<<
"Arg M ("
<<
karg
.
M
<<
") value is not a multiple of ABlockTransferSrcScalarPerVector ("
<<
ABlockTransferSrcScalarPerVector
<<
" )! "
<<
__FILE__
<<
":"
<<
__LINE__
<<
", in function: "
<<
__func__
<<
std
::
endl
;
#endif // DEBUG_LOG
return
false
;
}
}
if
constexpr
(
is_same
<
tensor_layout
::
gemm
::
RowMajor
,
BLayout
>::
value
)
{
if
(
karg
.
N
%
BBlockTransferSrcScalarPerVector
!=
0
)
{
#if DEBUG_LOG
std
::
cout
<<
"Arg N ("
<<
karg
.
N
<<
") value is not a multiple of BBlockTransferSrcScalarPerVector ("
<<
BBlockTransferSrcScalarPerVector
<<
" )! "
<<
__FILE__
<<
":"
<<
__LINE__
<<
", in function: "
<<
__func__
<<
std
::
endl
;
#endif // DEBUG_LOG
return
false
;
}
}
else
{
if
(
karg
.
K
%
BBlockTransferSrcScalarPerVector
!=
0
)
{
#if DEBUG_LOG
std
::
cout
<<
"Arg K ("
<<
karg
.
K
<<
") value is not a multiple of BBlockTransferSrcScalarPerVector ("
<<
BBlockTransferSrcScalarPerVector
<<
" )! "
<<
__FILE__
<<
":"
<<
__LINE__
<<
", in function: "
<<
__func__
<<
std
::
endl
;
#endif // DEBUG_LOG
return
false
;
}
}
const
auto
num_k_loop
=
karg
.
K0
/
K0PerBlock
;
if
(
!
GridwiseGemmPipe
::
IsSupported
(
num_k_loop
))
{
#if DEBUG_LOG
std
::
cout
<<
"The number of k loops ("
<<
num_k_loop
<<
") value is not supported by GridwiseGemm Pipeline."
<<
" K0: "
<<
karg
.
K0
<<
", K0PerBlock: "
<<
K0PerBlock
<<
" "
<<
__FILE__
<<
":"
<<
__LINE__
<<
", in function: "
<<
__func__
<<
std
::
endl
;
#endif // DEBUG_LOG
return
false
;
}
return
true
;
}
__host__
__device__
static
constexpr
bool
CalculateHasMainK0BlockLoop
(
index_t
K0
)
{
const
index_t
num_loop
=
K0
/
K0PerBlock
;
return
GridwiseGemmPipe
::
CalculateHasMainLoop
(
num_loop
);
}
template
<
typename
CGridDesc
>
__host__
__device__
static
constexpr
auto
MakeCGridDescriptor_M0_N0_M1_N1_M2_N2_N3_N4
(
const
CGridDesc
&
c_grid_desc_m_n
)
{
using
ABlockDesc_AK0_M_AK1
=
remove_cvref_t
<
decltype
(
GetABlockDescriptor_AK0PerBlock_MPerBlock_AK1
())
>
;
using
BBlockDesc_AK0_N_AK1
=
remove_cvref_t
<
decltype
(
GetBBlockDescriptor_BK0PerBlock_NPerBlock_BK1
())
>
;
using
GemmAMmaTileDesc
=
remove_cvref_t
<
decltype
(
MakeGemmAMmaTileDescriptor_M0_M1_M2_K
(
ABlockDesc_AK0_M_AK1
{}))
>
;
using
GemmBMmaTileDesc
=
remove_cvref_t
<
decltype
(
MakeGemmBMmaTileDescriptor_N0_N1_N2_K
(
BBlockDesc_AK0_N_AK1
{}))
>
;
constexpr
index_t
KPack
=
math
::
max
(
K1
,
MfmaSelector
<
FloatAB
,
MPerXDL
,
NPerXDL
>::
selected_mfma
.
k_per_blk
);
using
BlockwiseGemm
=
BlockwiseGemmXdlops_v2
<
BlockSize
,
FloatAB
,
FloatAcc
,
ABlockDesc_AK0_M_AK1
,
BBlockDesc_AK0_N_AK1
,
GemmAMmaTileDesc
,
GemmBMmaTileDesc
,
MPerBlock
,
NPerBlock
,
KPerBlock
,
MPerXDL
,
NPerXDL
,
MXdlPerWave
,
NXdlPerWave
,
KPack
,
true
>
;
// TransposeC
// A MMaTileKStride
// B MMaTileKStride
return
BlockwiseGemm
::
MakeCGridDescriptor_M0_N0_M1_N1_M2_N2_N3_N4
(
c_grid_desc_m_n
);
}
// return block_id to C matrix tile idx (m0, n0) mapping
template
<
typename
CGridDesc
>
__host__
__device__
static
constexpr
auto
MakeCBlockClusterAdaptor
(
const
CGridDesc
&
c_m_n_grid_desc
,
index_t
/* M01 */
,
index_t
/* N01 */
,
index_t
KBatch
)
{
return
BlockToCTileMap_KSplit_M00_N0_M01Adapt
<
MPerBlock
,
NPerBlock
,
CGridDesc
>
(
c_m_n_grid_desc
,
8
,
KBatch
);
}
// return block_id to C matrix tile idx (m0, n0, k_split) mapping
__host__
__device__
static
constexpr
auto
MakeDefaultBlock2CTileMap
()
{
return
BlockToCTileMap_3DGrid_KSplit
<
MPerBlock
,
NPerBlock
>
();
}
using
CGridDesc_M_N
=
remove_cvref_t
<
decltype
(
MakeCGridDescriptor_M_N
(
1
,
1
,
1
))
>
;
using
CGridDescriptor_M0_N0_M1_N1_M2_N2_N3_N4
=
remove_cvref_t
<
decltype
(
MakeCGridDescriptor_M0_N0_M1_N1_M2_N2_N3_N4
(
CGridDesc_M_N
{}))
>
;
using
DefaultBlock2CTileMap
=
remove_cvref_t
<
decltype
(
MakeDefaultBlock2CTileMap
())
>
;
template
<
bool
HasMainKBlockLoop
,
InMemoryDataOperationEnum
CGlobalMemoryDataOperation
,
typename
Block2CTileMap
>
__device__
static
void
Run
(
const
Argument
&
karg
,
void
*
__restrict__
p_shared_block
,
const
Block2CTileMap
&
block_2_ctile_map
)
{
const
FloatAB
*
p_a_grid
=
karg
.
p_a_grid
;
const
FloatAB
*
p_b_grid
=
karg
.
p_b_grid
;
FloatC
*
p_c_grid
=
karg
.
p_c_grid
;
const
auto
a_b_k0_m_k1_grid_desc
=
MakeAGridDescriptor_KBatch_K0_M_K1
(
karg
.
M
,
karg
.
K
,
karg
.
StrideA
,
karg
.
k_batch
,
karg
.
K0
);
const
auto
b_b_k0_n_k1_grid_desc
=
MakeBGridDescriptor_KBatch_K0_N_K1
(
karg
.
K
,
karg
.
N
,
karg
.
StrideB
,
karg
.
k_batch
,
karg
.
K0
);
const
auto
c_grid_desc_m_n
=
MakeCGridDescriptor_M_N
(
karg
.
M
,
karg
.
N
,
karg
.
StrideC
);
const
auto
c_grid_desc_m0_n0_m1_n1_m2_n2_n3_n4
=
MakeCGridDescriptor_M0_N0_M1_N1_M2_N2_N3_N4
(
c_grid_desc_m_n
);
const
AElementwiseOperation
a_element_op
=
AElementwiseOperation
{};
const
BElementwiseOperation
b_element_op
=
BElementwiseOperation
{};
const
CElementwiseOperation
c_element_op
=
CElementwiseOperation
{};
const
auto
a_grid_buf
=
make_dynamic_buffer
<
AddressSpaceEnum
::
Global
>
(
p_a_grid
,
a_b_k0_m_k1_grid_desc
.
GetElementSpaceSize
());
const
auto
b_grid_buf
=
make_dynamic_buffer
<
AddressSpaceEnum
::
Global
>
(
p_b_grid
,
b_b_k0_n_k1_grid_desc
.
GetElementSpaceSize
());
auto
c_grid_buf
=
make_dynamic_buffer
<
AddressSpaceEnum
::
Global
>
(
p_c_grid
,
c_grid_desc_m0_n0_m1_n1_m2_n2_n3_n4
.
GetElementSpaceSize
());
// divide block work by [KBatch, M, N]
const
auto
block_work_idx
=
block_2_ctile_map
.
CalculateBottomIndex
(
make_multi_index
(
get_block_1d_id
()));
if
(
!
block_2_ctile_map
.
ValidCTileIndex
(
block_work_idx
,
make_tuple
(
a_b_k0_m_k1_grid_desc
.
GetLength
(
I2
)
/
MPerBlock
,
b_b_k0_n_k1_grid_desc
.
GetLength
(
I2
)
/
NPerBlock
)))
{
return
;
}
const
index_t
block_m_id
=
__builtin_amdgcn_readfirstlane
(
block_work_idx
[
I1
]);
const
index_t
block_n_id
=
__builtin_amdgcn_readfirstlane
(
block_work_idx
[
I2
]);
const
index_t
k_batch_id
=
__builtin_amdgcn_readfirstlane
(
block_work_idx
[
I0
]);
// HACK: this force m/n_block_data_idx_on_grid into SGPR
const
index_t
m_block_data_idx_on_grid
=
__builtin_amdgcn_readfirstlane
(
block_m_id
*
MPerBlock
);
const
index_t
n_block_data_idx_on_grid
=
__builtin_amdgcn_readfirstlane
(
block_n_id
*
NPerBlock
);
// A matrix in LDS memory, dst of blockwise copy
constexpr
auto
a_k0_m_k1_block_desc
=
GetABlockDescriptor_AK0PerBlock_MPerBlock_AK1
();
constexpr
auto
a_b_k0_m_k1_block_desc
=
GetABlockDescriptor_KBatch_AK0PerBlock_MPerBlock_AK1
();
// B matrix in LDS memory, dst of blockwise copy
constexpr
auto
b_k0_n_k1_block_desc
=
GetBBlockDescriptor_BK0PerBlock_NPerBlock_BK1
();
constexpr
auto
b_b_k0_n_k1_block_desc
=
GetBBlockDescriptor_KBatch_BK0PerBlock_NPerBlock_BK1
();
// A matrix blockwise copy
auto
a_blockwise_copy
=
ThreadGroupTensorSliceTransfer_v4r1
<
ThisThreadBlock
,
AElementwiseOperation
,
ck
::
tensor_operation
::
element_wise
::
PassThrough
,
InMemoryDataOperationEnum
::
Set
,
Sequence
<
1
,
K0PerBlock
,
MPerBlock
,
K1
>
,
ABlockTransferThreadClusterLengths_K0_M_K1
,
ABlockTransferThreadClusterArrangeOrder
,
FloatAB
,
FloatAB
,
decltype
(
a_b_k0_m_k1_grid_desc
),
decltype
(
a_b_k0_m_k1_block_desc
),
ABlockTransferSrcAccessOrder
,
Sequence
<
0
,
2
,
1
,
3
>
,
ABlockTransferSrcVectorDim
,
3
,
ABlockTransferSrcScalarPerVector
,
ABlockTransferDstScalarPerVector_K1
,
1
,
1
,
AThreadTransferSrcResetCoordinateAfterRun
,
true
>
(
a_b_k0_m_k1_grid_desc
,
make_multi_index
(
k_batch_id
,
0
,
m_block_data_idx_on_grid
,
0
),
a_element_op
,
a_b_k0_m_k1_block_desc
,
make_multi_index
(
0
,
0
,
0
,
0
),
ck
::
tensor_operation
::
element_wise
::
PassThrough
{});
// B matrix blockwise copy
auto
b_blockwise_copy
=
ThreadGroupTensorSliceTransfer_v4r1
<
ThisThreadBlock
,
BElementwiseOperation
,
ck
::
tensor_operation
::
element_wise
::
PassThrough
,
InMemoryDataOperationEnum
::
Set
,
Sequence
<
1
,
K0PerBlock
,
NPerBlock
,
K1
>
,
BBlockTransferThreadClusterLengths_K0_N_K1
,
BBlockTransferThreadClusterArrangeOrder
,
FloatAB
,
FloatAB
,
decltype
(
b_b_k0_n_k1_grid_desc
),
decltype
(
b_b_k0_n_k1_block_desc
),
BBlockTransferSrcAccessOrder
,
Sequence
<
0
,
2
,
1
,
3
>
,
BBlockTransferSrcVectorDim
,
3
,
BBlockTransferSrcScalarPerVector
,
BBlockTransferDstScalarPerVector_K1
,
1
,
1
,
BThreadTransferSrcResetCoordinateAfterRun
,
true
>
(
b_b_k0_n_k1_grid_desc
,
make_multi_index
(
k_batch_id
,
0
,
n_block_data_idx_on_grid
,
0
),
b_element_op
,
b_b_k0_n_k1_block_desc
,
make_multi_index
(
0
,
0
,
0
,
0
),
ck
::
tensor_operation
::
element_wise
::
PassThrough
{});
// GEMM definition
// c_mtx += transpose(a_mtx) * b_mtx
// a_mtx[K0PerBlock, MPerBlock] is in LDS
// b_mtx[K0PerBlock, NPerBlock] is in LDS
// c_mtx[MPerBlock, NPerBlock] is distributed among threads, and saved in
// register
// sanity check
constexpr
index_t
KPack
=
math
::
max
(
K1
,
MfmaSelector
<
FloatAB
,
MPerXDL
,
NPerXDL
>::
selected_mfma
.
k_per_blk
);
auto
blockwise_gemm
=
BlockwiseGemmXdlops_v2
<
BlockSize
,
FloatAB
,
FloatAcc
,
decltype
(
a_k0_m_k1_block_desc
),
decltype
(
b_k0_n_k1_block_desc
),
decltype
(
MakeGemmAMmaTileDescriptor_M0_M1_M2_K
(
a_k0_m_k1_block_desc
)),
decltype
(
MakeGemmBMmaTileDescriptor_N0_N1_N2_K
(
b_k0_n_k1_block_desc
)),
MPerBlock
,
NPerBlock
,
KPerBlock
,
MPerXDL
,
NPerXDL
,
MXdlPerWave
,
NXdlPerWave
,
KPack
,
true
>
{};
// TransposeC
// A MMaTileKStride
// B MMaTileKStride
auto
c_thread_buf
=
blockwise_gemm
.
GetCThreadBuffer
();
constexpr
auto
max_lds_align
=
K1
;
// LDS allocation for A and B: be careful of alignment
constexpr
auto
a_block_space_size
=
math
::
integer_least_multiple
(
a_k0_m_k1_block_desc
.
GetElementSpaceSize
(),
max_lds_align
);
FloatAB
*
p_a_block
=
static_cast
<
FloatAB
*>
(
p_shared_block
);
FloatAB
*
p_b_block
=
static_cast
<
FloatAB
*>
(
p_shared_block
)
+
a_block_space_size
;
constexpr
auto
a_block_slice_copy_step
=
make_multi_index
(
0
,
K0PerBlock
,
0
,
0
);
constexpr
auto
b_block_slice_copy_step
=
make_multi_index
(
0
,
K0PerBlock
,
0
,
0
);
auto
a_block_buf
=
make_dynamic_buffer
<
AddressSpaceEnum
::
Lds
>
(
p_a_block
,
a_k0_m_k1_block_desc
.
GetElementSpaceSize
());
auto
b_block_buf
=
make_dynamic_buffer
<
AddressSpaceEnum
::
Lds
>
(
p_b_block
,
b_k0_n_k1_block_desc
.
GetElementSpaceSize
());
// gridwise GEMM pipeline
const
index_t
num_k_block_main_loop
=
__builtin_amdgcn_readfirstlane
(
(
a_b_k0_m_k1_grid_desc
.
GetLength
(
I1
)
*
a_b_k0_m_k1_grid_desc
.
GetLength
(
I3
))
/
KPerBlock
);
const
auto
gridwise_gemm_pipeline
=
GridwiseGemmPipe
{};
gridwise_gemm_pipeline
.
template
Run
<
HasMainKBlockLoop
>(
a_b_k0_m_k1_grid_desc
,
a_b_k0_m_k1_block_desc
,
a_blockwise_copy
,
a_grid_buf
,
a_block_buf
,
a_block_slice_copy_step
,
b_b_k0_n_k1_grid_desc
,
b_b_k0_n_k1_block_desc
,
b_blockwise_copy
,
b_grid_buf
,
b_block_buf
,
b_block_slice_copy_step
,
blockwise_gemm
,
c_thread_buf
,
num_k_block_main_loop
);
// output: register to global memory
{
// M0 - MRepeat / MXdlPerWave
// N0 - NRepeat / NXdlPerWave
// M1 - MWaves
// N1 - NWaves
// M2 - mfma_instr.num_threads_per_blk
// N2 - mfma_instr.num_groups_per_blk
// N3 - mfma_instr.num_input_blks
// N4 - mfma_instr.group_size
// {M0, N0, 1, 1, 1, 4, 1, 4}
// constexpr auto c_thread_desc_m0_n0_m1_n1_m2_n2_n3_n4 =
// blockwise_gemm.GetCThreadDescriptor_M0_N0_M1_N1_M2_N2_N3_N4();
// c_block_desc_m0_n0_m1_n1_m2_n2_n3_n4 is only used to get lengths
constexpr
auto
c_block_desc_m0_n0_m1_n1_m2_n2_n3_n4
=
blockwise_gemm
.
GetCBlockDescriptor_M0_N0_M1_N1_M2_N2_N3_N4
();
constexpr
auto
M0
=
c_block_desc_m0_n0_m1_n1_m2_n2_n3_n4
.
GetLength
(
I0
);
constexpr
auto
N0
=
c_block_desc_m0_n0_m1_n1_m2_n2_n3_n4
.
GetLength
(
I1
);
constexpr
auto
M1
=
c_block_desc_m0_n0_m1_n1_m2_n2_n3_n4
.
GetLength
(
I2
);
constexpr
auto
N1
=
c_block_desc_m0_n0_m1_n1_m2_n2_n3_n4
.
GetLength
(
I3
);
constexpr
auto
M2
=
c_block_desc_m0_n0_m1_n1_m2_n2_n3_n4
.
GetLength
(
I4
);
constexpr
auto
N2
=
c_block_desc_m0_n0_m1_n1_m2_n2_n3_n4
.
GetLength
(
I5
);
constexpr
auto
N3
=
c_block_desc_m0_n0_m1_n1_m2_n2_n3_n4
.
GetLength
(
I6
);
constexpr
auto
N4
=
c_block_desc_m0_n0_m1_n1_m2_n2_n3_n4
.
GetLength
(
I7
);
constexpr
auto
c_thread_desc_m0_n0_m1_n1_m2_m3_n2_n3
=
make_naive_tensor_descriptor_packed
(
make_tuple
(
M0
,
N0
,
I1
,
I1
,
I2
,
I1
,
I1
,
Number
<
8
>
{}));
const
auto
M0_grid
=
c_grid_desc_m0_n0_m1_n1_m2_n2_n3_n4
.
GetLength
(
I0
);
const
auto
N0_grid
=
c_grid_desc_m0_n0_m1_n1_m2_n2_n3_n4
.
GetLength
(
I1
);
const
auto
M1_grid
=
c_grid_desc_m0_n0_m1_n1_m2_n2_n3_n4
.
GetLength
(
I2
);
const
auto
N1_grid
=
c_grid_desc_m0_n0_m1_n1_m2_n2_n3_n4
.
GetLength
(
I3
);
const
auto
M2_grid
=
c_grid_desc_m0_n0_m1_n1_m2_n2_n3_n4
.
GetLength
(
I4
);
const
auto
N2_grid
=
c_grid_desc_m0_n0_m1_n1_m2_n2_n3_n4
.
GetLength
(
I5
);
const
auto
N3_grid
=
c_grid_desc_m0_n0_m1_n1_m2_n2_n3_n4
.
GetLength
(
I6
);
const
auto
N4_grid
=
c_grid_desc_m0_n0_m1_n1_m2_n2_n3_n4
.
GetLength
(
I7
);
// if (blockIdx.x == 0 && ThisThreadBlock::GetThreadId() == 0)
// {
// printf("grid: [M0: %d, N0: %d, M1: %d, N1: %d, M2: %d, N2: %d, N3: %d, N4: %d]\n",
// M0_grid,
// N0_grid,
// M1_grid,
// N1_grid,
// M2_grid.value,
// N2_grid.value,
// N3_grid.value,
// N4_grid.value);
// }
const
auto
c_grid_desc_m0_n0_m1_n1_m2_n234_tmp
=
transform_tensor_descriptor
(
c_grid_desc_m0_n0_m1_n1_m2_n2_n3_n4
,
make_tuple
(
make_pass_through_transform
(
M0_grid
),
make_pass_through_transform
(
N0_grid
),
make_pass_through_transform
(
M1_grid
),
make_pass_through_transform
(
N1_grid
),
make_pass_through_transform
(
M2_grid
),
make_merge_transform
(
make_tuple
(
N3_grid
,
N2_grid
,
N4_grid
))
// num_groups_per_blk * group_size
),
make_tuple
(
Sequence
<
0
>
{},
Sequence
<
1
>
{},
Sequence
<
2
>
{},
Sequence
<
3
>
{},
Sequence
<
4
>
{},
Sequence
<
5
,
6
,
7
>
{}
),
make_tuple
(
Sequence
<
0
>
{},
Sequence
<
1
>
{},
Sequence
<
2
>
{},
Sequence
<
3
>
{},
Sequence
<
4
>
{},
Sequence
<
5
>
{}
));
// if (blockIdx.x == 0 && ThisThreadBlock::GetThreadId() == 0)
// {
// printf("grid tmp: [M0: %d, N0: %d, M1: %d, N1: %d, M2: %d, N234: %d]\n",
// c_grid_desc_m0_n0_m1_n1_m2_n234_tmp.GetLength(I0),
// c_grid_desc_m0_n0_m1_n1_m2_n234_tmp.GetLength(I1),
// c_grid_desc_m0_n0_m1_n1_m2_n234_tmp.GetLength(I2),
// c_grid_desc_m0_n0_m1_n1_m2_n234_tmp.GetLength(I3),
// c_grid_desc_m0_n0_m1_n1_m2_n234_tmp.GetLength(I4).value,
// c_grid_desc_m0_n0_m1_n1_m2_n234_tmp.GetLength(I5).value);
// }
const
auto
c_grid_desc_m0_n0_m1_n1_m2_m3_n2_n3_new
=
transform_tensor_descriptor
(
c_grid_desc_m0_n0_m1_n1_m2_n234_tmp
,
make_tuple
(
make_pass_through_transform
(
M0_grid
),
// M0 - MRepeat / MXdlPerWave
make_pass_through_transform
(
N0_grid
),
// N0 - NRepeat / NXdlPerWave
make_pass_through_transform
(
M1_grid
),
// M1 - MWaves
make_pass_through_transform
(
N1_grid
),
// N1 - NWaves
make_unmerge_transform
(
make_tuple
(
I2
,
Number
<
16
>
{})),
// M2 -> (M2: 2, M3: 16)
make_unmerge_transform
(
make_tuple
(
I4
,
Number
<
8
>
{}))
// N2, N3
),
make_tuple
(
Sequence
<
0
>
{},
Sequence
<
1
>
{},
Sequence
<
2
>
{},
Sequence
<
3
>
{},
Sequence
<
4
>
{},
Sequence
<
5
>
{}
),
make_tuple
(
Sequence
<
0
>
{},
Sequence
<
1
>
{},
Sequence
<
2
>
{},
Sequence
<
3
>
{},
Sequence
<
4
,
5
>
{},
Sequence
<
6
,
7
>
{}
)
);
// if (blockIdx.x == 0 && ThisThreadBlock::GetThreadId() == 0)
// {
// printf("grid_new: [M0: %d, N0: %d, M1: %d, N1: %d, M2: %d, N2: %d, N3: %d]\n",
// c_grid_desc_m0_n0_m1_n1_m2_m3_n2_n3_new.GetLength(I0),
// c_grid_desc_m0_n0_m1_n1_m2_m3_n2_n3_new.GetLength(I1),
// c_grid_desc_m0_n0_m1_n1_m2_m3_n2_n3_new.GetLength(I2),
// c_grid_desc_m0_n0_m1_n1_m2_m3_n2_n3_new.GetLength(I3),
// c_grid_desc_m0_n0_m1_n1_m2_m3_n2_n3_new.GetLength(I4).value,
// c_grid_desc_m0_n0_m1_n1_m2_m3_n2_n3_new.GetLength(I5).value,
// c_grid_desc_m0_n0_m1_n1_m2_m3_n2_n3_new.GetLength(I6).value);
// }
const
auto
wave_idx
=
blockwise_gemm
.
GetWaveIdx
();
const
auto
lane_id_to_m3_n2_adaptor
=
make_single_stage_tensor_adaptor
(
make_tuple
(
make_merge_transform
(
make_tuple
(
Number
<
16
>
{},
I4
))),
make_tuple
(
Sequence
<
0
,
1
>
{}),
make_tuple
(
Sequence
<
0
>
{})
);
const
auto
lane_data_idx_on_block
=
lane_id_to_m3_n2_adaptor
.
CalculateBottomIndex
(
make_multi_index
(
wave_idx
[
I2
]));
// if (blockIdx.x == 0 && (ThisThreadBlock::GetThreadId() == 0 ||
// ThisThreadBlock::GetThreadId() == 16 ||
// ThisThreadBlock::GetThreadId() == 75 ||
// ThisThreadBlock::GetThreadId() == 234 ))
// {
// printf("[tid on blck %d] M1: %d, N1: %d, M2: %d, N2: %d\n",
// ThisThreadBlock::GetThreadId(),
// lane_data_idx_on_block[I0],
// lane_data_idx_on_block[I1],
// lane_data_idx_on_block[I2],
// lane_data_idx_on_block[I3]);
// }
const
auto
m_thread_data_on_grid_to_m0_m1_m2_adaptor
=
make_single_stage_tensor_adaptor
(
make_tuple
(
make_merge_transform
(
make_tuple
(
M0
,
M1
,
M2
))),
make_tuple
(
Sequence
<
0
,
1
,
2
>
{}),
make_tuple
(
Sequence
<
0
>
{}));
const
auto
m_thread_data_on_grid_idx
=
m_thread_data_on_grid_to_m0_m1_m2_adaptor
.
CalculateBottomIndex
(
make_multi_index
(
m_block_data_idx_on_grid
));
const
auto
n_thread_data_on_grid_to_n0_n1_n2_n3_n4_adaptor
=
make_single_stage_tensor_adaptor
(
make_tuple
(
make_merge_transform
(
make_tuple
(
N0
,
N1
,
N2
,
N3
,
N4
))),
make_tuple
(
Sequence
<
0
,
1
,
2
,
3
,
4
>
{}),
make_tuple
(
Sequence
<
0
>
{}));
const
auto
n_thread_data_on_grid_idx
=
n_thread_data_on_grid_to_n0_n1_n2_n3_n4_adaptor
.
CalculateBottomIndex
(
make_multi_index
(
n_block_data_idx_on_grid
));
auto
c_thread_copy
=
ThreadwiseTensorSliceTransfer_v1r3
<
FloatAcc
,
FloatC
,
decltype
(
c_thread_desc_m0_n0_m1_n1_m2_m3_n2_n3
),
decltype
(
c_grid_desc_m0_n0_m1_n1_m2_m3_n2_n3_new
),
CElementwiseOperation
,
Sequence
<
M0
,
N0
,
I1
,
I1
,
I2
,
I1
,
I1
,
8
>
,
// SliceLengths
Sequence
<
0
,
1
,
2
,
3
,
4
,
5
,
6
,
7
>
,
// CThreadTransferDstAccessOrder,
7
,
// CThreadTransferDstVectorDim,
8
,
// CThreadTransferDstScalarPerVector,
CGlobalMemoryDataOperation
,
1
,
true
>
{
c_grid_desc_m0_n0_m1_n1_m2_m3_n2_n3_new
,
make_multi_index
(
m_thread_data_on_grid_idx
[
I0
],
n_thread_data_on_grid_idx
[
I0
],
wave_idx
[
I0
],
wave_idx
[
I1
],
I0
,
lane_data_idx_on_block
[
I0
],
lane_data_idx_on_block
[
I1
],
I0
),
c_element_op
};
// if (blockIdx.x == 0 || blockIdx.x == 5)
// { // M1, N1, M2, N2, N3
// if (ThisThreadBlock::GetThreadId() == 0 ||
// ThisThreadBlock::GetThreadId() == 3 || // [ 0, 0, 0, 3, 0]
// ThisThreadBlock::GetThreadId() == 16 || // [ 0, 0, 4, 0, 0]
// ThisThreadBlock::GetThreadId() == 33 || // [ 0, 0, 8, 1, 0]
// ThisThreadBlock::GetThreadId() == 64 || // [ 0, 1, 0, 0, 0]
// ThisThreadBlock::GetThreadId() == 96 || // [ 0, 1, 8, 0, 0]
// ThisThreadBlock::GetThreadId() == 130 || // [ 1, 0, 0, 2, 0]
// ThisThreadBlock::GetThreadId() == 224 // [ 1, 1, 8, 0, 0]
// )
// {
// printf("[B:%d, T:%d] -> dst_slice_origin_idx: [%d, %d, %d, %d, %d, %d, %d]\n",
// get_block_1d_id(),
// ThisThreadBlock::GetThreadId(),
// m_thread_data_on_grid_idx[I0],
// n_thread_data_on_grid_idx[I0],
// wave_idx[I0],
// wave_idx[I1],
// lane_data_idx_on_block[I0],
// lane_data_idx_on_block[I1],
// I0.value);
// }
// }
c_thread_copy
.
Run
(
c_thread_desc_m0_n0_m1_n1_m2_m3_n2_n3
,
make_tuple
(
I0
,
I0
,
I0
,
I0
,
I0
,
I0
,
I0
,
I0
),
c_thread_buf
,
c_grid_desc_m0_n0_m1_n1_m2_m3_n2_n3_new
,
c_grid_buf
);
}
}
static
std
::
string
GetTypeString
()
{
auto
str
=
std
::
stringstream
();
// clang-format off
str
<<
"GridwiseGemmXdlSplitKDirectCWriteOutRoofline"
<<
getGemmSpecializationString
(
GemmSpec
)
<<
"_"
<<
std
::
string
(
ALayout
::
name
)[
0
]
<<
std
::
string
(
BLayout
::
name
)[
0
]
<<
std
::
string
(
CLayout
::
name
)[
0
]
<<
"_"
<<
"B"
<<
BlockSize
<<
"_"
<<
"Vec"
<<
ABlockTransferSrcScalarPerVector
<<
"x"
<<
BBlockTransferSrcScalarPerVector
<<
"x"
<<
MPerBlock
<<
"x"
<<
NPerBlock
<<
"x"
<<
K0PerBlock
<<
"x"
<<
K1
;
// clang-format on
return
str
.
str
();
}
};
}
// namespace ck
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
.
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment