Skip to content
GitLab
Menu
Projects
Groups
Snippets
Loading...
Help
Help
Support
Community forum
Keyboard shortcuts
?
Submit feedback
Contribute to GitLab
Sign in / Register
Toggle navigation
Menu
Open sidebar
gaoqiong
composable_kernel
Commits
b097be17
Commit
b097be17
authored
Jun 23, 2022
by
root
Browse files
merge changes for upstream/latest update
parents
8a891bbd
a49115b9
Changes
140
Hide whitespace changes
Inline
Side-by-side
Showing
20 changed files
with
1955 additions
and
305 deletions
+1955
-305
profiler/include/profile_gemm_add_add_fastgelu_impl.hpp
profiler/include/profile_gemm_add_add_fastgelu_impl.hpp
+288
-0
profiler/include/profile_gemm_bias_add_reduce_impl.hpp
profiler/include/profile_gemm_bias_add_reduce_impl.hpp
+386
-0
profiler/include/profile_gemm_reduce_impl.hpp
profiler/include/profile_gemm_reduce_impl.hpp
+27
-30
profiler/include/profile_reduce_impl.hpp
profiler/include/profile_reduce_impl.hpp
+17
-11
profiler/src/profile_convnd_fwd.cpp
profiler/src/profile_convnd_fwd.cpp
+15
-9
profiler/src/profile_gemm_add_add_fastgelu.cpp
profiler/src/profile_gemm_add_add_fastgelu.cpp
+152
-0
profiler/src/profile_gemm_bias_add_reduce.cpp
profiler/src/profile_gemm_bias_add_reduce.cpp
+159
-0
profiler/src/profiler.cpp
profiler/src/profiler.cpp
+42
-18
script/profile_conv.sh
script/profile_conv.sh
+3
-3
script/run_performance_tests.sh
script/run_performance_tests.sh
+57
-58
test/CMakeLists.txt
test/CMakeLists.txt
+1
-0
test/convnd_fwd/CMakeLists.txt
test/convnd_fwd/CMakeLists.txt
+1
-1
test/convnd_fwd/conv1d_fwd.cpp
test/convnd_fwd/conv1d_fwd.cpp
+143
-47
test/convnd_fwd/conv2d_fwd.cpp
test/convnd_fwd/conv2d_fwd.cpp
+224
-50
test/convnd_fwd/conv3d_fwd.cpp
test/convnd_fwd/conv3d_fwd.cpp
+151
-52
test/convnd_fwd/conv_util.hpp
test/convnd_fwd/conv_util.hpp
+116
-26
test/softmax/CMakeLists.txt
test/softmax/CMakeLists.txt
+8
-0
test/softmax/test_softmax_fp16.cpp
test/softmax/test_softmax_fp16.cpp
+26
-0
test/softmax/test_softmax_fp32.cpp
test/softmax/test_softmax_fp32.cpp
+26
-0
test/softmax/test_softmax_util.hpp
test/softmax/test_softmax_util.hpp
+113
-0
No files found.
profiler/include/profile_gemm_add_add_fastgelu_impl.hpp
0 → 100644
View file @
b097be17
#pragma once
#include <iomanip>
#include "check_err.hpp"
#include "config.hpp"
#include "device.hpp"
#include "host_tensor.hpp"
#include "host_tensor_generator.hpp"
#include "host_conv.hpp"
#include "tensor_layout.hpp"
#include "device_tensor.hpp"
#include "element_wise_operation.hpp"
#include "reference_gemm.hpp"
#include "device_gemm_multiple_d.hpp"
namespace
ck
{
namespace
tensor_operation
{
namespace
device
{
namespace
device_gemm_instance
{
using
DeviceGemmAddAddFastGeluPtr
=
ck
::
tensor_operation
::
device
::
DeviceGemmMultipleDPtr
<
2
,
ck
::
tensor_operation
::
element_wise
::
PassThrough
,
ck
::
tensor_operation
::
element_wise
::
PassThrough
,
ck
::
tensor_operation
::
element_wise
::
AddAddFastGelu
>
;
void
add_device_gemm_add_add_fastgelu_xdl_c_shuffle_f16_f16_f16_mk_kn_mn_instances
(
std
::
vector
<
DeviceGemmAddAddFastGeluPtr
>&
);
void
add_device_gemm_add_add_fastgelu_xdl_c_shuffle_f16_f16_f16_mk_nk_mn_instances
(
std
::
vector
<
DeviceGemmAddAddFastGeluPtr
>&
);
void
add_device_gemm_add_add_fastgelu_xdl_c_shuffle_f16_f16_f16_km_kn_mn_instances
(
std
::
vector
<
DeviceGemmAddAddFastGeluPtr
>&
);
void
add_device_gemm_add_add_fastgelu_xdl_c_shuffle_f16_f16_f16_km_nk_mn_instances
(
std
::
vector
<
DeviceGemmAddAddFastGeluPtr
>&
);
}
// namespace device_gemm_instance
}
// namespace device
}
// namespace tensor_operation
}
// namespace ck
namespace
ck
{
namespace
profiler
{
template
<
typename
ADataType
,
typename
BDataType
,
typename
AccDataType
,
typename
D0DataType
,
typename
D1DataType
,
typename
EDataType
,
typename
ALayout
,
typename
BLayout
,
typename
D0Layout
,
typename
D1Layout
,
typename
ELayout
>
int
profile_gemm_add_add_fastgelu_impl
(
int
do_verification
,
int
init_method
,
bool
/*do_log*/
,
bool
time_kernel
,
int
M
,
int
N
,
int
K
,
int
StrideA
,
int
StrideB
,
int
StrideD0
,
int
StrideD1
,
int
StrideE
)
{
auto
f_host_tensor_descriptor
=
[](
std
::
size_t
row
,
std
::
size_t
col
,
std
::
size_t
stride
,
auto
layout
)
{
if
(
is_same
<
decltype
(
layout
),
tensor_layout
::
gemm
::
RowMajor
>::
value
)
{
return
HostTensorDescriptor
(
std
::
vector
<
std
::
size_t
>
({
row
,
col
}),
std
::
vector
<
std
::
size_t
>
({
stride
,
1
}));
}
else
{
return
HostTensorDescriptor
(
std
::
vector
<
std
::
size_t
>
({
row
,
col
}),
std
::
vector
<
std
::
size_t
>
({
1
,
stride
}));
}
};
Tensor
<
ADataType
>
a_m_k
(
f_host_tensor_descriptor
(
M
,
K
,
StrideA
,
ALayout
{}));
Tensor
<
BDataType
>
b_k_n
(
f_host_tensor_descriptor
(
K
,
N
,
StrideB
,
BLayout
{}));
Tensor
<
D0DataType
>
d0_m_n
(
f_host_tensor_descriptor
(
M
,
N
,
StrideD0
,
D0Layout
{}));
Tensor
<
D1DataType
>
d1_m_n
(
f_host_tensor_descriptor
(
M
,
N
,
StrideD1
,
D1Layout
{}));
Tensor
<
EDataType
>
e_m_n_device_result
(
f_host_tensor_descriptor
(
M
,
N
,
StrideE
,
ELayout
{}));
Tensor
<
EDataType
>
e_m_n_host_result
(
f_host_tensor_descriptor
(
M
,
N
,
StrideE
,
ELayout
{}));
std
::
cout
<<
"a_m_k: "
<<
a_m_k
.
mDesc
<<
std
::
endl
;
std
::
cout
<<
"b_k_n: "
<<
b_k_n
.
mDesc
<<
std
::
endl
;
std
::
cout
<<
"d0_m_n: "
<<
d0_m_n
.
mDesc
<<
std
::
endl
;
std
::
cout
<<
"d1_m_n: "
<<
d1_m_n
.
mDesc
<<
std
::
endl
;
std
::
cout
<<
"e_m_n: "
<<
e_m_n_device_result
.
mDesc
<<
std
::
endl
;
switch
(
init_method
)
{
case
0
:
break
;
case
1
:
a_m_k
.
GenerateTensorValue
(
GeneratorTensor_2
<
ADataType
>
{
-
5
,
5
});
b_k_n
.
GenerateTensorValue
(
GeneratorTensor_2
<
BDataType
>
{
-
5
,
5
});
d0_m_n
.
GenerateTensorValue
(
GeneratorTensor_2
<
D0DataType
>
{
-
5
,
5
});
d1_m_n
.
GenerateTensorValue
(
GeneratorTensor_2
<
D1DataType
>
{
-
5
,
5
});
break
;
default:
a_m_k
.
GenerateTensorValue
(
GeneratorTensor_3
<
ADataType
>
{
0.0
,
1.0
});
b_k_n
.
GenerateTensorValue
(
GeneratorTensor_3
<
BDataType
>
{
-
0.5
,
0.5
});
d0_m_n
.
GenerateTensorValue
(
GeneratorTensor_3
<
D0DataType
>
{
0.0
,
1.0
});
d1_m_n
.
GenerateTensorValue
(
GeneratorTensor_3
<
D1DataType
>
{
0.0
,
1.0
});
}
using
PassThrough
=
ck
::
tensor_operation
::
element_wise
::
PassThrough
;
using
AddAddFastGelu
=
ck
::
tensor_operation
::
element_wise
::
AddAddFastGelu
;
using
AElementOp
=
PassThrough
;
using
BElementOp
=
PassThrough
;
using
CDEElementOp
=
AddAddFastGelu
;
const
auto
a_element_op
=
AElementOp
{};
const
auto
b_element_op
=
BElementOp
{};
const
auto
cde_element_op
=
CDEElementOp
{};
// add device GEMM instances
std
::
vector
<
ck
::
tensor_operation
::
device
::
device_gemm_instance
::
DeviceGemmAddAddFastGeluPtr
>
device_op_ptrs
;
if
constexpr
(
is_same_v
<
ADataType
,
half_t
>
&&
is_same_v
<
BDataType
,
half_t
>
&&
is_same_v
<
EDataType
,
half_t
>
)
{
if
constexpr
(
is_same_v
<
ALayout
,
tensor_layout
::
gemm
::
RowMajor
>
&&
is_same_v
<
BLayout
,
tensor_layout
::
gemm
::
RowMajor
>
&&
is_same_v
<
ELayout
,
tensor_layout
::
gemm
::
RowMajor
>
)
{
ck
::
tensor_operation
::
device
::
device_gemm_instance
::
add_device_gemm_add_add_fastgelu_xdl_c_shuffle_f16_f16_f16_mk_kn_mn_instances
(
device_op_ptrs
);
}
else
if
constexpr
(
is_same_v
<
ALayout
,
tensor_layout
::
gemm
::
RowMajor
>
&&
is_same_v
<
BLayout
,
tensor_layout
::
gemm
::
ColumnMajor
>
&&
is_same_v
<
ELayout
,
tensor_layout
::
gemm
::
RowMajor
>
)
{
ck
::
tensor_operation
::
device
::
device_gemm_instance
::
add_device_gemm_add_add_fastgelu_xdl_c_shuffle_f16_f16_f16_mk_nk_mn_instances
(
device_op_ptrs
);
}
else
if
constexpr
(
is_same_v
<
ALayout
,
tensor_layout
::
gemm
::
ColumnMajor
>
&&
is_same_v
<
BLayout
,
tensor_layout
::
gemm
::
RowMajor
>
&&
is_same_v
<
ELayout
,
tensor_layout
::
gemm
::
RowMajor
>
)
{
ck
::
tensor_operation
::
device
::
device_gemm_instance
::
add_device_gemm_add_add_fastgelu_xdl_c_shuffle_f16_f16_f16_km_kn_mn_instances
(
device_op_ptrs
);
}
else
if
constexpr
(
is_same_v
<
ALayout
,
tensor_layout
::
gemm
::
ColumnMajor
>
&&
is_same_v
<
BLayout
,
tensor_layout
::
gemm
::
ColumnMajor
>
&&
is_same_v
<
ELayout
,
tensor_layout
::
gemm
::
RowMajor
>
)
{
ck
::
tensor_operation
::
device
::
device_gemm_instance
::
add_device_gemm_add_add_fastgelu_xdl_c_shuffle_f16_f16_f16_km_nk_mn_instances
(
device_op_ptrs
);
}
}
std
::
cout
<<
"found "
<<
device_op_ptrs
.
size
()
<<
" instances"
<<
std
::
endl
;
// run reference
if
(
do_verification
)
{
Tensor
<
AccDataType
>
c_m_n
(
HostTensorDescriptor
(
std
::
vector
<
std
::
size_t
>
{
static_cast
<
std
::
size_t
>
(
M
),
static_cast
<
std
::
size_t
>
(
N
)}));
using
ReferenceGemmInstance
=
ck
::
tensor_operation
::
host
::
ReferenceGemm
<
ADataType
,
BDataType
,
AccDataType
,
AccDataType
,
AElementOp
,
BElementOp
,
PassThrough
>
;
auto
ref_gemm
=
ReferenceGemmInstance
{};
auto
ref_invoker
=
ref_gemm
.
MakeInvoker
();
auto
ref_argument
=
ref_gemm
.
MakeArgument
(
a_m_k
,
b_k_n
,
c_m_n
,
a_element_op
,
b_element_op
,
PassThrough
{});
ref_invoker
.
Run
(
ref_argument
);
for
(
int
m
=
0
;
m
<
M
;
++
m
)
{
for
(
int
n
=
0
;
n
<
N
;
++
n
)
{
cde_element_op
(
e_m_n_host_result
(
m
,
n
),
c_m_n
(
m
,
n
),
d0_m_n
(
m
,
n
),
d1_m_n
(
m
,
n
));
}
}
}
DeviceMem
a_device_buf
(
sizeof
(
ADataType
)
*
a_m_k
.
mDesc
.
GetElementSpace
());
DeviceMem
b_device_buf
(
sizeof
(
BDataType
)
*
b_k_n
.
mDesc
.
GetElementSpace
());
DeviceMem
d0_m_n_device_buf
(
sizeof
(
D0DataType
)
*
d0_m_n
.
mDesc
.
GetElementSpace
());
DeviceMem
d1_m_n_device_buf
(
sizeof
(
D1DataType
)
*
d1_m_n
.
mDesc
.
GetElementSpace
());
DeviceMem
e_device_buf
(
sizeof
(
EDataType
)
*
e_m_n_device_result
.
mDesc
.
GetElementSpace
());
a_device_buf
.
ToDevice
(
a_m_k
.
mData
.
data
());
b_device_buf
.
ToDevice
(
b_k_n
.
mData
.
data
());
d0_m_n_device_buf
.
ToDevice
(
d0_m_n
.
mData
.
data
());
d1_m_n_device_buf
.
ToDevice
(
d1_m_n
.
mData
.
data
());
std
::
string
best_device_op_name
;
float
best_ave_time
=
0
;
float
best_tflops
=
0
;
float
best_gb_per_sec
=
0
;
bool
pass
=
true
;
// profile device operation instances
for
(
auto
&
device_op_ptr
:
device_op_ptrs
)
{
auto
argument_ptr
=
device_op_ptr
->
MakeArgumentPointer
(
a_device_buf
.
GetDeviceBuffer
(),
b_device_buf
.
GetDeviceBuffer
(),
std
::
array
<
const
void
*
,
2
>
{
d0_m_n_device_buf
.
GetDeviceBuffer
(),
d1_m_n_device_buf
.
GetDeviceBuffer
()},
static_cast
<
EDataType
*>
(
e_device_buf
.
GetDeviceBuffer
()),
M
,
N
,
K
,
StrideA
,
StrideB
,
std
::
array
<
ck
::
index_t
,
2
>
{
StrideD0
,
StrideD1
},
StrideE
,
a_element_op
,
b_element_op
,
cde_element_op
);
auto
invoker_ptr
=
device_op_ptr
->
MakeInvokerPointer
();
std
::
string
device_op_name
=
device_op_ptr
->
GetTypeString
();
if
(
device_op_ptr
->
IsSupportedArgument
(
argument_ptr
.
get
()))
{
// re-init E to zero before profiling a kernel
e_device_buf
.
SetZero
();
float
ave_time
=
invoker_ptr
->
Run
(
argument_ptr
.
get
(),
StreamConfig
{
nullptr
,
time_kernel
});
std
::
size_t
flop
=
std
::
size_t
(
2
)
*
M
*
N
*
K
;
std
::
size_t
num_btype
=
sizeof
(
ADataType
)
*
M
*
K
+
sizeof
(
BDataType
)
*
K
*
N
+
sizeof
(
EDataType
)
*
M
*
N
;
float
tflops
=
static_cast
<
float
>
(
flop
)
/
1.E9
/
ave_time
;
float
gb_per_sec
=
num_btype
/
1.E6
/
ave_time
;
std
::
cout
<<
"Perf: "
<<
std
::
setw
(
10
)
<<
ave_time
<<
" ms, "
<<
tflops
<<
" TFlops, "
<<
gb_per_sec
<<
" GB/s, "
<<
device_op_name
<<
std
::
endl
;
if
(
tflops
>
best_tflops
)
{
best_device_op_name
=
device_op_name
;
best_tflops
=
tflops
;
best_ave_time
=
ave_time
;
best_gb_per_sec
=
gb_per_sec
;
}
if
(
do_verification
)
{
e_device_buf
.
FromDevice
(
e_m_n_device_result
.
mData
.
data
());
pass
=
pass
&&
ck
::
utils
::
check_err
(
e_m_n_device_result
.
mData
,
e_m_n_host_result
.
mData
);
}
}
else
{
std
::
cout
<<
device_op_name
<<
" does not support this problem"
<<
std
::
endl
;
}
}
std
::
cout
<<
"Best Perf: "
<<
best_ave_time
<<
" ms, "
<<
best_tflops
<<
" TFlops, "
<<
best_gb_per_sec
<<
" GB/s, "
<<
best_device_op_name
<<
std
::
endl
;
return
pass
?
0
:
1
;
}
}
// namespace profiler
}
// namespace ck
profiler/include/profile_gemm_bias_add_reduce_impl.hpp
0 → 100644
View file @
b097be17
#pragma once
#include "check_err.hpp"
#include "config.hpp"
#include "device.hpp"
#include "host_tensor.hpp"
#include "host_tensor_generator.hpp"
#include "host_conv.hpp"
#include "tensor_layout.hpp"
#include "device_tensor.hpp"
#include "element_wise_operation.hpp"
#include "reduction_operator.hpp"
#include "device_gemm_reduce.hpp"
#include "reference_gemm.hpp"
namespace
ck
{
namespace
tensor_operation
{
namespace
device
{
namespace
device_gemm_instance
{
using
F32
=
float
;
using
F16
=
ck
::
half_t
;
using
DPtrsGlobal
=
ck
::
Tuple
<
F32
*
,
F32
*>
;
using
Div
=
ck
::
tensor_operation
::
element_wise
::
UnaryDivide
;
using
Identity
=
ck
::
tensor_operation
::
element_wise
::
PassThrough
;
using
Square
=
ck
::
tensor_operation
::
element_wise
::
UnarySquare
;
using
DInElementOps
=
ck
::
Tuple
<
Identity
,
Square
>
;
using
DOutElementOps
=
ck
::
Tuple
<
Div
,
Div
>
;
using
DeviceGemmBiasAddReduceNoOpPtr
=
ck
::
tensor_operation
::
device
::
DeviceGemmBiasAddReducePtr
<
ck
::
tensor_operation
::
element_wise
::
PassThrough
,
ck
::
tensor_operation
::
element_wise
::
PassThrough
,
ck
::
tensor_operation
::
element_wise
::
PassThrough
,
ck
::
tensor_operation
::
element_wise
::
PassThrough
,
DInElementOps
,
DOutElementOps
>
;
void
add_device_gemm_bias_add_reduce_xdl_cshuffle_f16_f16_f16_f16_f16_f32_f32_mk_kn_mn_instances
(
std
::
vector
<
DeviceGemmBiasAddReduceNoOpPtr
>&
);
void
add_device_gemm_bias_add_reduce_xdl_cshuffle_f16_f16_f16_f16_f16_f32_f32_mk_nk_mn_instances
(
std
::
vector
<
DeviceGemmBiasAddReduceNoOpPtr
>&
);
void
add_device_gemm_bias_add_reduce_xdl_cshuffle_f16_f16_f16_f16_f16_f32_f32_km_kn_mn_instances
(
std
::
vector
<
DeviceGemmBiasAddReduceNoOpPtr
>&
);
void
add_device_gemm_bias_add_reduce_xdl_cshuffle_f16_f16_f16_f16_f16_f32_f32_km_nk_mn_instances
(
std
::
vector
<
DeviceGemmBiasAddReduceNoOpPtr
>&
);
}
// namespace device_gemm_instance
}
// namespace device
}
// namespace tensor_operation
}
// namespace ck
namespace
ck
{
namespace
profiler
{
template
<
typename
ADataType
,
typename
BDataType
,
typename
CDataType
,
typename
C0DataType
,
typename
C1DataType
,
typename
DDataType
,
typename
ALayout
,
typename
BLayout
,
typename
CLayout
>
void
profile_gemm_bias_add_reduce_impl
(
int
do_verification
,
int
init_method
,
bool
do_log
,
bool
time_kernel
,
int
M
,
int
N
,
int
K
,
int
StrideA
,
int
StrideB
,
int
StrideC
,
int
StrideC1
)
{
auto
f_host_tensor_descriptor1d
=
[](
std
::
size_t
len
,
std
::
size_t
stride
)
{
return
HostTensorDescriptor
(
std
::
vector
<
std
::
size_t
>
({
len
}),
std
::
vector
<
std
::
size_t
>
({
stride
}));
};
auto
f_host_tensor_descriptor2d
=
[](
std
::
size_t
row
,
std
::
size_t
col
,
std
::
size_t
stride
,
auto
layout
)
{
if
(
is_same
<
decltype
(
layout
),
tensor_layout
::
gemm
::
RowMajor
>::
value
)
{
return
HostTensorDescriptor
(
std
::
vector
<
std
::
size_t
>
({
row
,
col
}),
std
::
vector
<
std
::
size_t
>
({
stride
,
1
}));
}
else
{
return
HostTensorDescriptor
(
std
::
vector
<
std
::
size_t
>
({
row
,
col
}),
std
::
vector
<
std
::
size_t
>
({
1
,
stride
}));
}
};
Tensor
<
ADataType
>
a_m_k
(
f_host_tensor_descriptor2d
(
M
,
K
,
StrideA
,
ALayout
{}));
Tensor
<
BDataType
>
b_k_n
(
f_host_tensor_descriptor2d
(
K
,
N
,
StrideB
,
BLayout
{}));
Tensor
<
CDataType
>
c_m_n_host_result
(
f_host_tensor_descriptor2d
(
M
,
N
,
StrideC
,
CLayout
{}));
Tensor
<
C0DataType
>
bias_n
(
f_host_tensor_descriptor1d
(
N
,
1
));
Tensor
<
C1DataType
>
c1_m_n
(
f_host_tensor_descriptor2d
(
M
,
N
,
StrideC
,
CLayout
{}));
Tensor
<
DDataType
>
d0_m_host_result
(
HostTensorDescriptor
(
std
::
vector
<
std
::
size_t
>
({
static_cast
<
std
::
size_t
>
(
M
)})));
Tensor
<
DDataType
>
d1_m_host_result
(
HostTensorDescriptor
(
std
::
vector
<
std
::
size_t
>
({
static_cast
<
std
::
size_t
>
(
M
)})));
Tensor
<
CDataType
>
c_m_n_device_result
(
f_host_tensor_descriptor2d
(
M
,
N
,
StrideC
,
CLayout
{}));
Tensor
<
DDataType
>
d0_m_device_result
(
HostTensorDescriptor
(
std
::
vector
<
std
::
size_t
>
({
static_cast
<
std
::
size_t
>
(
M
)})));
Tensor
<
DDataType
>
d1_m_device_result
(
HostTensorDescriptor
(
std
::
vector
<
std
::
size_t
>
({
static_cast
<
std
::
size_t
>
(
M
)})));
std
::
cout
<<
"a_m_k: "
<<
a_m_k
.
mDesc
<<
std
::
endl
;
std
::
cout
<<
"b_k_n: "
<<
b_k_n
.
mDesc
<<
std
::
endl
;
std
::
cout
<<
"c_m_n: "
<<
c_m_n_host_result
.
mDesc
<<
std
::
endl
;
std
::
cout
<<
"d0_m: "
<<
d0_m_host_result
.
mDesc
<<
std
::
endl
;
std
::
cout
<<
"d1_m: "
<<
d1_m_host_result
.
mDesc
<<
std
::
endl
;
std
::
size_t
num_thread
=
1
;
switch
(
init_method
)
{
case
0
:
break
;
case
1
:
std
::
srand
(
0
);
a_m_k
.
GenerateTensorValue
(
GeneratorTensor_2
<
ADataType
>
{
-
5
,
5
},
num_thread
);
b_k_n
.
GenerateTensorValue
(
GeneratorTensor_2
<
BDataType
>
{
-
5
,
5
},
num_thread
);
bias_n
.
GenerateTensorValue
(
GeneratorTensor_2
<
BDataType
>
{
-
5
,
5
},
num_thread
);
c1_m_n
.
GenerateTensorValue
(
GeneratorTensor_2
<
BDataType
>
{
-
5
,
5
},
num_thread
);
break
;
default:
std
::
srand
(
0
);
a_m_k
.
GenerateTensorValue
(
GeneratorTensor_3
<
ADataType
>
{
0.0
,
1.0
},
num_thread
);
b_k_n
.
GenerateTensorValue
(
GeneratorTensor_3
<
BDataType
>
{
-
0.5
,
0.5
},
num_thread
);
bias_n
.
GenerateTensorValue
(
GeneratorTensor_3
<
ADataType
>
{
-
0.5
,
0.5
},
num_thread
);
c1_m_n
.
GenerateTensorValue
(
GeneratorTensor_3
<
BDataType
>
{
-
0.5
,
0.5
},
num_thread
);
}
using
PassThrough
=
ck
::
tensor_operation
::
element_wise
::
PassThrough
;
using
AElementOp
=
PassThrough
;
using
BElementOp
=
PassThrough
;
using
CElementOp
=
PassThrough
;
using
C1ElementOp
=
PassThrough
;
using
D0ReduceOp
=
ck
::
reduce
::
Add
;
using
D1ReduceOp
=
ck
::
reduce
::
Add
;
using
UnaryDivElementOp
=
ck
::
tensor_operation
::
element_wise
::
UnaryDivide
;
using
UnaryIdenticElementOp
=
ck
::
tensor_operation
::
element_wise
::
PassThrough
;
using
UnarySquareElementOp
=
ck
::
tensor_operation
::
element_wise
::
UnarySquare
;
using
DxsInElementOps
=
ck
::
Tuple
<
UnaryIdenticElementOp
,
UnarySquareElementOp
>
;
using
DxsOutElementOps
=
ck
::
Tuple
<
UnaryDivElementOp
,
UnaryDivElementOp
>
;
const
auto
a_element_op
=
AElementOp
{};
const
auto
b_element_op
=
BElementOp
{};
const
auto
c_element_op
=
CElementOp
{};
const
auto
c1_element_op
=
C1ElementOp
{};
const
auto
d0_reduce_op
=
D0ReduceOp
{};
const
auto
d1_reduce_op
=
D1ReduceOp
{};
auto
dxs_in_element_op
=
DxsInElementOps
{};
auto
dxs_out_element_op
=
DxsOutElementOps
{
N
,
N
};
if
(
do_verification
)
{
using
ReferenceGemmInstance
=
ck
::
tensor_operation
::
host
::
ReferenceGemm
<
ADataType
,
BDataType
,
CDataType
,
DDataType
,
AElementOp
,
BElementOp
,
CElementOp
>
;
using
ReduceAccDataType
=
DDataType
;
auto
ref_gemm
=
ReferenceGemmInstance
{};
auto
ref_invoker
=
ref_gemm
.
MakeInvoker
();
auto
ref_argument
=
ref_gemm
.
MakeArgument
(
a_m_k
,
b_k_n
,
c_m_n_host_result
,
a_element_op
,
b_element_op
,
PassThrough
{});
ref_invoker
.
Run
(
ref_argument
);
for
(
int
m
=
0
;
m
<
M
;
++
m
)
for
(
int
n
=
0
;
n
<
N
;
++
n
)
{
ReduceAccDataType
acc
=
static_cast
<
ReduceAccDataType
>
(
c_m_n_host_result
(
m
,
n
))
+
static_cast
<
ReduceAccDataType
>
(
bias_n
(
n
));
ReduceAccDataType
c1
=
static_cast
<
ReduceAccDataType
>
(
c1_m_n
(
m
,
n
));
c_element_op
(
acc
,
acc
);
c1_element_op
(
c1
,
c1
);
acc
+=
c1
;
c_m_n_host_result
(
m
,
n
)
=
static_cast
<
CDataType
>
(
acc
);
}
for
(
int
m
=
0
;
m
<
M
;
++
m
)
{
auto
d0_acc
=
d0_reduce_op
.
GetIdentityValue
<
ReduceAccDataType
>
();
auto
d1_acc
=
d1_reduce_op
.
GetIdentityValue
<
ReduceAccDataType
>
();
for
(
int
n
=
0
;
n
<
N
;
++
n
)
{
ReduceAccDataType
c_val
=
ck
::
type_convert
<
ReduceAccDataType
>
(
c_m_n_host_result
(
m
,
n
));
ReduceAccDataType
d0_val
;
ReduceAccDataType
d1_val
;
dxs_in_element_op
(
ck
::
Number
<
0
>
{})(
d0_val
,
c_val
);
dxs_in_element_op
(
ck
::
Number
<
1
>
{})(
d1_val
,
c_val
);
d0_reduce_op
(
d0_acc
,
d0_val
);
d1_reduce_op
(
d1_acc
,
d1_val
);
}
dxs_out_element_op
(
ck
::
Number
<
0
>
{})(
d0_acc
,
d0_acc
);
dxs_out_element_op
(
ck
::
Number
<
1
>
{})(
d1_acc
,
d1_acc
);
d0_m_host_result
(
m
)
=
ck
::
type_convert
<
DDataType
>
(
d0_acc
);
d1_m_host_result
(
m
)
=
ck
::
type_convert
<
DDataType
>
(
d1_acc
);
}
}
DeviceMem
a_device_buf
(
sizeof
(
ADataType
)
*
a_m_k
.
mDesc
.
GetElementSpace
());
DeviceMem
b_device_buf
(
sizeof
(
BDataType
)
*
b_k_n
.
mDesc
.
GetElementSpace
());
DeviceMem
c_device_buf
(
sizeof
(
CDataType
)
*
c_m_n_device_result
.
mDesc
.
GetElementSpace
());
DeviceMem
bias_device_buf
(
sizeof
(
C0DataType
)
*
bias_n
.
mDesc
.
GetElementSpace
());
DeviceMem
c1_device_buf
(
sizeof
(
C1DataType
)
*
c1_m_n
.
mDesc
.
GetElementSpace
());
DeviceMem
d0_device_buf
(
sizeof
(
DDataType
)
*
d0_m_device_result
.
mDesc
.
GetElementSpace
());
DeviceMem
d1_device_buf
(
sizeof
(
DDataType
)
*
d1_m_device_result
.
mDesc
.
GetElementSpace
());
auto
dxs_global
=
ck
::
make_tuple
(
static_cast
<
DDataType
*>
(
d0_device_buf
.
GetDeviceBuffer
()),
static_cast
<
DDataType
*>
(
d1_device_buf
.
GetDeviceBuffer
()));
a_device_buf
.
ToDevice
(
a_m_k
.
mData
.
data
());
b_device_buf
.
ToDevice
(
b_k_n
.
mData
.
data
());
bias_device_buf
.
ToDevice
(
bias_n
.
mData
.
data
());
c1_device_buf
.
ToDevice
(
c1_m_n
.
mData
.
data
());
// add device GEMM instances
std
::
vector
<
ck
::
tensor_operation
::
device
::
device_gemm_instance
::
DeviceGemmBiasAddReduceNoOpPtr
>
gemm_ptrs
;
if
constexpr
(
is_same
<
ADataType
,
half_t
>::
value
&&
is_same
<
BDataType
,
half_t
>::
value
&&
is_same
<
CDataType
,
half_t
>::
value
)
{
if
constexpr
(
is_same
<
ALayout
,
tensor_layout
::
gemm
::
RowMajor
>::
value
&&
is_same
<
BLayout
,
tensor_layout
::
gemm
::
RowMajor
>::
value
&&
is_same
<
CLayout
,
tensor_layout
::
gemm
::
RowMajor
>::
value
)
{
ck
::
tensor_operation
::
device
::
device_gemm_instance
::
add_device_gemm_bias_add_reduce_xdl_cshuffle_f16_f16_f16_f16_f16_f32_f32_mk_kn_mn_instances
(
gemm_ptrs
);
}
else
if
constexpr
(
is_same
<
ALayout
,
tensor_layout
::
gemm
::
RowMajor
>::
value
&&
is_same
<
BLayout
,
tensor_layout
::
gemm
::
ColumnMajor
>::
value
&&
is_same
<
CLayout
,
tensor_layout
::
gemm
::
RowMajor
>::
value
)
{
ck
::
tensor_operation
::
device
::
device_gemm_instance
::
add_device_gemm_bias_add_reduce_xdl_cshuffle_f16_f16_f16_f16_f16_f32_f32_mk_nk_mn_instances
(
gemm_ptrs
);
}
else
if
constexpr
(
is_same
<
ALayout
,
tensor_layout
::
gemm
::
ColumnMajor
>::
value
&&
is_same
<
BLayout
,
tensor_layout
::
gemm
::
RowMajor
>::
value
&&
is_same
<
CLayout
,
tensor_layout
::
gemm
::
RowMajor
>::
value
)
{
ck
::
tensor_operation
::
device
::
device_gemm_instance
::
add_device_gemm_bias_add_reduce_xdl_cshuffle_f16_f16_f16_f16_f16_f32_f32_km_kn_mn_instances
(
gemm_ptrs
);
}
else
if
constexpr
(
is_same
<
ALayout
,
tensor_layout
::
gemm
::
ColumnMajor
>::
value
&&
is_same
<
BLayout
,
tensor_layout
::
gemm
::
ColumnMajor
>::
value
&&
is_same
<
CLayout
,
tensor_layout
::
gemm
::
RowMajor
>::
value
)
{
ck
::
tensor_operation
::
device
::
device_gemm_instance
::
add_device_gemm_bias_add_reduce_xdl_cshuffle_f16_f16_f16_f16_f16_f32_f32_km_nk_mn_instances
(
gemm_ptrs
);
}
}
if
(
gemm_ptrs
.
size
()
<=
0
)
{
throw
std
::
runtime_error
(
"wrong! no device GEMM instance found"
);
}
std
::
string
best_gemm_name
;
float
best_ave_time
=
0
;
float
best_tflops
=
0
;
float
best_gb_per_sec
=
0
;
// profile device GEMM instances
for
(
auto
&
gemm_ptr
:
gemm_ptrs
)
{
auto
argument_ptr
=
gemm_ptr
->
MakeArgumentPointer
(
static_cast
<
ADataType
*>
(
a_device_buf
.
GetDeviceBuffer
()),
static_cast
<
BDataType
*>
(
b_device_buf
.
GetDeviceBuffer
()),
static_cast
<
CDataType
*>
(
c_device_buf
.
GetDeviceBuffer
()),
static_cast
<
C0DataType
*>
(
bias_device_buf
.
GetDeviceBuffer
()),
static_cast
<
C1DataType
*>
(
c1_device_buf
.
GetDeviceBuffer
()),
&
dxs_global
,
M
,
N
,
K
,
StrideA
,
StrideB
,
StrideC
,
StrideC1
,
a_element_op
,
b_element_op
,
c_element_op
,
c1_element_op
,
dxs_in_element_op
,
dxs_out_element_op
);
auto
invoker_ptr
=
gemm_ptr
->
MakeInvokerPointer
();
if
(
gemm_ptr
->
IsSupportedArgument
(
argument_ptr
.
get
()))
{
// init DO, D1 to 0
d0_device_buf
.
SetZero
();
d1_device_buf
.
SetZero
();
float
ave_time
=
invoker_ptr
->
Run
(
argument_ptr
.
get
(),
StreamConfig
{
nullptr
,
time_kernel
});
std
::
string
gemm_name
=
gemm_ptr
->
GetTypeString
();
std
::
size_t
flop
=
std
::
size_t
(
2
)
*
M
*
N
*
K
+
std
::
size_t
(
2
)
*
M
*
N
;
std
::
size_t
num_byte
=
sizeof
(
ADataType
)
*
M
*
K
+
sizeof
(
BDataType
)
*
K
*
N
+
sizeof
(
CDataType
)
*
M
*
N
+
sizeof
(
C0DataType
)
*
M
*
N
+
sizeof
(
C1DataType
)
*
M
*
N
+
sizeof
(
DDataType
)
*
M
+
sizeof
(
DDataType
)
*
M
;
float
tflops
=
static_cast
<
float
>
(
flop
)
/
1.E9
/
ave_time
;
float
gb_per_sec
=
num_byte
/
1.E6
/
ave_time
;
std
::
cout
<<
"Perf: "
<<
ave_time
<<
" ms, "
<<
tflops
<<
" TFlops, "
<<
gb_per_sec
<<
" GB/s, "
<<
gemm_name
<<
std
::
endl
;
if
(
tflops
>
best_tflops
)
{
best_gemm_name
=
gemm_name
;
best_tflops
=
tflops
;
best_ave_time
=
ave_time
;
best_gb_per_sec
=
gb_per_sec
;
}
if
(
do_verification
)
{
c_device_buf
.
FromDevice
(
c_m_n_device_result
.
mData
.
data
());
d0_device_buf
.
FromDevice
(
d0_m_device_result
.
mData
.
data
());
d1_device_buf
.
FromDevice
(
d1_m_device_result
.
mData
.
data
());
ck
::
utils
::
check_err
(
c_m_n_device_result
.
mData
,
c_m_n_host_result
.
mData
);
ck
::
utils
::
check_err
(
d0_m_device_result
.
mData
,
d0_m_host_result
.
mData
);
ck
::
utils
::
check_err
(
d1_m_device_result
.
mData
,
d1_m_host_result
.
mData
);
if
(
do_log
)
{
LogRangeAsType
<
float
>
(
std
::
cout
<<
"a : "
,
a_m_k
.
mData
,
","
)
<<
std
::
endl
;
LogRangeAsType
<
float
>
(
std
::
cout
<<
"b: "
,
b_k_n
.
mData
,
","
)
<<
std
::
endl
;
LogRangeAsType
<
float
>
(
std
::
cout
<<
"c_host: "
,
c_m_n_host_result
.
mData
,
","
)
<<
std
::
endl
;
LogRangeAsType
<
float
>
(
std
::
cout
<<
"c_device: "
,
c_m_n_device_result
.
mData
,
","
)
<<
std
::
endl
;
LogRangeAsType
<
float
>
(
std
::
cout
<<
"d0_host: "
,
d0_m_host_result
.
mData
,
","
)
<<
std
::
endl
;
LogRangeAsType
<
float
>
(
std
::
cout
<<
"d0_device: "
,
d0_m_device_result
.
mData
,
","
)
<<
std
::
endl
;
LogRangeAsType
<
float
>
(
std
::
cout
<<
"d1_host: "
,
d1_m_host_result
.
mData
,
","
)
<<
std
::
endl
;
LogRangeAsType
<
float
>
(
std
::
cout
<<
"d1_device: "
,
d1_m_device_result
.
mData
,
","
)
<<
std
::
endl
;
}
}
}
else
{
std
::
cout
<<
"does not support this GEMM problem"
<<
std
::
endl
;
}
}
std
::
cout
<<
"Best Perf: "
<<
best_ave_time
<<
" ms, "
<<
best_tflops
<<
" TFlops, "
<<
best_gb_per_sec
<<
" GB/s, "
<<
best_gemm_name
<<
std
::
endl
;
}
}
// namespace profiler
}
// namespace ck
profiler/include/profile_gemm_reduce_impl.hpp
View file @
b097be17
#pragma once
#include "check_err.hpp"
#include "config.hpp"
#include "device.hpp"
#include "host_tensor.hpp"
...
...
@@ -19,14 +20,13 @@ namespace device_gemm_instance {
using
F32
=
float
;
using
F16
=
ck
::
half_t
;
using
DPtrsGlobal
=
ck
::
Tuple
<
F32
*
,
F32
*>
;
using
Div
=
ck
::
tensor_operation
::
element_wise
::
Unary
Identic
<
F32
,
F32
,
true
>
;
using
Identity
=
ck
::
tensor_operation
::
element_wise
::
UnaryIdentic
<
F32
,
F32
,
false
>
;
using
Square
=
ck
::
tensor_operation
::
element_wise
::
UnarySquare
<
F32
,
F32
,
false
>
;
using
Div
=
ck
::
tensor_operation
::
element_wise
::
Unary
Divide
;
using
Identity
=
ck
::
tensor_operation
::
element_wise
::
PassThrough
;
using
Square
=
ck
::
tensor_operation
::
element_wise
::
UnarySquare
;
using
DInElementOps
=
ck
::
Tuple
<
Identity
,
Square
>
;
using
DOutElementOps
=
ck
::
Tuple
<
Div
,
Div
>
;
using
DeviceGemmReduceNoOpPtr
=
ck
::
tensor_operation
::
device
::
DeviceGemmReducePtr
<
DPtrsGlobal
,
ck
::
tensor_operation
::
element_wise
::
PassThrough
,
ck
::
tensor_operation
::
element_wise
::
PassThrough
,
ck
::
tensor_operation
::
element_wise
::
PassThrough
,
...
...
@@ -123,18 +123,16 @@ bool profile_gemm_reduce_impl(int do_verification,
b_k_n
.
GenerateTensorValue
(
GeneratorTensor_3
<
BDataType
>
{
-
0.5
,
0.5
},
num_thread
);
}
using
AElementOp
=
ck
::
tensor_operation
::
element_wise
::
PassThrough
;
using
BElementOp
=
ck
::
tensor_operation
::
element_wise
::
PassThrough
;
using
CElementOp
=
ck
::
tensor_operation
::
element_wise
::
PassThrough
;
using
D0ReduceOp
=
ck
::
reduce
::
Add
<
float
>
;
using
D1ReduceOp
=
ck
::
reduce
::
Add
<
float
>
;
using
UnaryDivElementOp
=
ck
::
tensor_operation
::
element_wise
::
UnaryIdentic
<
float
,
float
,
true
>
;
using
UnaryIdenticElementOp
=
ck
::
tensor_operation
::
element_wise
::
UnaryIdentic
<
float
,
float
,
false
>
;
using
UnarySquareElementOp
=
ck
::
tensor_operation
::
element_wise
::
UnarySquare
<
float
,
float
,
false
>
;
using
DxsInElementOps
=
ck
::
Tuple
<
UnaryIdenticElementOp
,
UnarySquareElementOp
>
;
using
DxsOutElementOps
=
ck
::
Tuple
<
UnaryDivElementOp
,
UnaryDivElementOp
>
;
using
AElementOp
=
ck
::
tensor_operation
::
element_wise
::
PassThrough
;
using
BElementOp
=
ck
::
tensor_operation
::
element_wise
::
PassThrough
;
using
CElementOp
=
ck
::
tensor_operation
::
element_wise
::
PassThrough
;
using
D0ReduceOp
=
ck
::
reduce
::
Add
;
using
D1ReduceOp
=
ck
::
reduce
::
Add
;
using
UnaryDivElementOp
=
ck
::
tensor_operation
::
element_wise
::
UnaryDivide
;
using
UnaryIdenticElementOp
=
ck
::
tensor_operation
::
element_wise
::
PassThrough
;
using
UnarySquareElementOp
=
ck
::
tensor_operation
::
element_wise
::
UnarySquare
;
using
DxsInElementOps
=
ck
::
Tuple
<
UnaryIdenticElementOp
,
UnarySquareElementOp
>
;
using
DxsOutElementOps
=
ck
::
Tuple
<
UnaryDivElementOp
,
UnaryDivElementOp
>
;
const
auto
a_element_op
=
AElementOp
{};
const
auto
b_element_op
=
BElementOp
{};
...
...
@@ -143,7 +141,7 @@ bool profile_gemm_reduce_impl(int do_verification,
const
auto
d1_reduce_op
=
D1ReduceOp
{};
auto
dxs_in_element_op
=
DxsInElementOps
{};
auto
dxs_out_element_op
=
DxsOutElementOps
{
M
,
M
};
auto
dxs_out_element_op
=
DxsOutElementOps
{
N
,
N
};
if
(
do_verification
)
{
...
...
@@ -155,6 +153,8 @@ bool profile_gemm_reduce_impl(int do_verification,
BElementOp
,
CElementOp
>
;
using
ReduceAccDataType
=
DDataType
;
auto
ref_gemm
=
ReferenceGemmInstance
{};
auto
ref_invoker
=
ref_gemm
.
MakeInvoker
();
...
...
@@ -165,14 +165,15 @@ bool profile_gemm_reduce_impl(int do_verification,
for
(
int
m
=
0
;
m
<
M
;
++
m
)
{
float
d0_acc
=
d0_reduce_op
.
GetIdentityValue
();
float
d1_acc
=
d1_reduce_op
.
GetIdentityValue
();
auto
d0_acc
=
d0_reduce_op
.
GetIdentityValue
<
ReduceAccDataType
>
();
auto
d1_acc
=
d1_reduce_op
.
GetIdentityValue
<
ReduceAccDataType
>
();
for
(
int
n
=
0
;
n
<
N
;
++
n
)
{
float
c_val
=
ck
::
type_convert
<
float
>
(
c_m_n_host_result
(
m
,
n
));
float
d0_val
=
0
;
float
d1_val
=
0
;
ReduceAccDataType
c_val
=
ck
::
type_convert
<
ReduceAccDataType
>
(
c_m_n_host_result
(
m
,
n
));
ReduceAccDataType
d0_val
;
ReduceAccDataType
d1_val
;
dxs_in_element_op
(
ck
::
Number
<
0
>
{})(
d0_val
,
c_val
);
dxs_in_element_op
(
ck
::
Number
<
1
>
{})(
d1_val
,
c_val
);
...
...
@@ -257,7 +258,7 @@ bool profile_gemm_reduce_impl(int do_verification,
gemm_ptr
->
MakeArgumentPointer
(
static_cast
<
ADataType
*>
(
a_device_buf
.
GetDeviceBuffer
()),
static_cast
<
BDataType
*>
(
b_device_buf
.
GetDeviceBuffer
()),
static_cast
<
CDataType
*>
(
c_device_buf
.
GetDeviceBuffer
()),
dxs_global
,
&
dxs_global
,
M
,
N
,
K
,
...
...
@@ -309,13 +310,9 @@ bool profile_gemm_reduce_impl(int do_verification,
d0_device_buf
.
FromDevice
(
d0_m_device_result
.
mData
.
data
());
d1_device_buf
.
FromDevice
(
d1_m_device_result
.
mData
.
data
());
float
c_error
=
check_error
(
c_m_n_host_result
,
c_m_n_device_result
);
float
d0_error
=
check_error
(
d0_m_host_result
,
d0_m_device_result
);
float
d1_error
=
check_error
(
d1_m_host_result
,
d1_m_device_result
);
pass
=
pass
&&
(
c_error
<
1E-6
);
pass
=
pass
&&
(
d0_error
<
1E-6
);
pass
=
pass
&&
(
d1_error
<
1E-6
);
ck
::
utils
::
check_err
(
c_m_n_device_result
.
mData
,
c_m_n_host_result
.
mData
);
ck
::
utils
::
check_err
(
d0_m_device_result
.
mData
,
d0_m_host_result
.
mData
);
ck
::
utils
::
check_err
(
d1_m_device_result
.
mData
,
d1_m_host_result
.
mData
);
if
(
do_log
)
{
...
...
profiler/include/profile_reduce_impl.hpp
View file @
b097be17
...
...
@@ -261,13 +261,18 @@ bool profile_reduce_impl_impl(bool do_verification,
float
best_gb_per_sec
=
0
;
using
InElementwiseOperation
=
typename
reduce_unary_operator
<
AccDataType
,
ReduceOpId
,
true
,
true
>::
InElementwiseOperation
;
typename
reduce_unary_operator
<
ReduceOpId
,
true
,
true
>::
InElementwiseOperation
;
using
AccElementwiseOperation
=
typename
reduce_unary_operator
<
AccDataType
,
ReduceOpId
,
true
,
true
>::
AccElementwiseOperation
;
typename
reduce_unary_operator
<
ReduceOpId
,
true
,
true
>::
AccElementwiseOperation
;
using
ReduceOperation
=
typename
reduce_binary_operator
<
AccDataType
,
ReduceOpId
>::
opType
;
using
ReduceOperation
=
typename
reduce_binary_operator
<
ReduceOpId
>::
opType
;
InElementwiseOperation
in_elementwise_op
;
AccElementwiseOperation
acc_elementwise_op
;
std
::
tie
(
in_elementwise_op
,
acc_elementwise_op
)
=
reduce_unary_operator
<
ReduceOpId
,
true
,
true
>::
GetElementwiseOperator
(
static_cast
<
int32_t
>
(
reduce_total_length
));
using
DeviceReduceInstPtr0
=
DeviceReducePtr
<
InElementwiseOperation
,
AccElementwiseOperation
>
;
...
...
@@ -323,8 +328,13 @@ bool profile_reduce_impl_impl(bool do_verification,
OutputIndex
>
hostReduce
(
in
.
mDesc
,
out_ref
.
mDesc
,
invariantDims
,
reduceDims
);
hostReduce
.
Run
(
alpha
,
in
.
mData
.
data
(),
beta
,
out_ref
.
mData
.
data
(),
out_indices_ref
.
mData
.
data
());
hostReduce
.
Run
(
alpha
,
in
.
mData
.
data
(),
beta
,
out_ref
.
mData
.
data
(),
out_indices_ref
.
mData
.
data
(),
in_elementwise_op
,
acc_elementwise_op
);
};
std
::
vector
<
ck
::
index_t
>
i_inLengths
;
...
...
@@ -339,10 +349,6 @@ bool profile_reduce_impl_impl(bool do_verification,
for
(
auto
&
reduce_ptr
:
reduce0_ptrs
)
{
InElementwiseOperation
in_elementwise_op
(
static_cast
<
int32_t
>
(
reduce_total_length
));
AccElementwiseOperation
acc_elementwise_op
(
static_cast
<
int32_t
>
(
reduce_total_length
));
auto
argument_ptr
=
reduce_ptr
->
MakeArgumentPointer
(
i_inLengths
,
i_inStrides
,
i_outLengths
,
...
...
profiler/src/profile_convnd_fwd.cpp
View file @
b097be17
#include <cstdlib>
#include <functional>
#include <iostream>
#include <memory>
#include <string>
...
...
@@ -150,9 +151,12 @@ void profile_convnd_instances_impl(const ck::utils::conv::ConvParams& params,
ck
::
tensor_operation
::
element_wise
::
PassThrough
,
ck
::
tensor_operation
::
element_wise
::
PassThrough
,
ck
::
tensor_operation
::
element_wise
::
PassThrough
,
ck
::
utils
::
FillUniform
<
int
>
,
ck
::
utils
::
FillUniform
<
int
>>>
(
params
,
true
,
ck
::
utils
::
FillUniform
<
int
>
{},
ck
::
utils
::
FillUniform
<
int
>
{});
ck
::
utils
::
FillUniformDistributionIntegerValue
<
int
>
,
ck
::
utils
::
FillUniformDistributionIntegerValue
<
int
>>>
(
params
,
true
,
ck
::
utils
::
FillUniformDistributionIntegerValue
<
int
>
{},
ck
::
utils
::
FillUniformDistributionIntegerValue
<
int
>
{});
break
;
case
2
:
conv_instance
=
std
::
make_unique
<
...
...
@@ -165,12 +169,12 @@ void profile_convnd_instances_impl(const ck::utils::conv::ConvParams& params,
ck
::
tensor_operation
::
element_wise
::
PassThrough
,
ck
::
tensor_operation
::
element_wise
::
PassThrough
,
ck
::
tensor_operation
::
element_wise
::
PassThrough
,
ck
::
utils
::
FillUniform
<
InDataType
>
,
ck
::
utils
::
FillUniform
<
WeiDataType
>>>
(
ck
::
utils
::
FillUniform
Distribution
<
InDataType
>
,
ck
::
utils
::
FillUniform
Distribution
<
WeiDataType
>>>
(
params
,
true
,
ck
::
utils
::
FillUniform
<
InDataType
>
{},
ck
::
utils
::
FillUniform
<
WeiDataType
>
{});
ck
::
utils
::
FillUniform
Distribution
<
InDataType
>
{},
ck
::
utils
::
FillUniform
Distribution
<
WeiDataType
>
{});
break
;
default:
throw
std
::
runtime_error
(
"Unsupported init method!"
);
}
...
...
@@ -181,8 +185,10 @@ void profile_convnd_instances_impl(const ck::utils::conv::ConvParams& params,
_1
,
_2
,
_3
);
OpInstanceRunEngine
<
InDataType
,
WeiDataType
,
OutDataType
>
run_engine
(
*
conv_instance
,
reference_conv_fwd_fun
);
OpInstanceRunEngine
<
InDataType
,
WeiDataType
,
OutDataType
>
run_engine
(
*
conv_instance
,
reference_conv_fwd_fun
,
do_verification
);
auto
best_conf
=
run_engine
.
Profile
(
conv
::
ConvolutionFwdInstances
<
InDataType
,
WeiDataType
,
OutDataType
>::
template
Get
<
NDim
>(),
time_kernel
,
...
...
profiler/src/profile_gemm_add_add_fastgelu.cpp
0 → 100644
View file @
b097be17
#include <iostream>
#include <numeric>
#include <initializer_list>
#include <cstdlib>
#include <stdlib.h>
#include "profile_gemm_add_add_fastgelu_impl.hpp"
int
profile_gemm_add_add_fastgelu
(
int
argc
,
char
*
argv
[])
{
enum
struct
MatrixLayout
{
MK_KN_MN_MN_MN
,
// 0
MK_NK_MN_MN_MN
,
// 1
KM_KN_MN_MN_MN
,
// 2
KM_NK_MN_MN_MN
,
// 3
MK_KN_NM_MN_MN
,
// 4
MK_NK_NM_MN_MN
,
// 5
KM_KN_NM_MN_MN
,
// 6
KM_NK_NM_MN_MN
,
// 7
};
enum
struct
MatrixDataType
{
F32_F32_F32_F32_F32
,
// 0
F16_F16_F16_F16_F16
,
// 1
BF16_BF16_BF16_BF16_BF16
,
// 2
INT8_INT8_INT8_INT8_INT8
,
// 3
};
if
(
argc
!=
16
)
{
// clang-format off
printf
(
"arg1: tensor operation (gemm_add_add_fastgelu: GEMM+Add+Add+GeLU)
\n
"
);
printf
(
"arg2: data type (0: fp32; 1: fp16; 2: bf16; 3: int8)
\n
"
);
printf
(
"arg3: matrix layout (0: E[m, n] = FastGeLU(A[m, k] * B[k, n] + D0[m, n] + D1[m, n]);
\n
"
);
printf
(
" 1: E[m, n] = FastGeLU(A[m, k] * B[n, k] + D0[m, n] + D1[m, n]);
\n
"
);
printf
(
" 2: E[m, n] = FastGeLU(A[k, m] * B[k, n] + D0[m, n] + D1[m, n]);
\n
"
);
printf
(
" 3: E[m, n] = FastGeLU(A[k, m] * B[n, k] + D0[m, n] + D1[m, n]))
\n
"
);
printf
(
"arg4: verification (0: no; 1: yes)
\n
"
);
printf
(
"arg5: initialization (0: no init; 1: integer value; 2: decimal value)
\n
"
);
printf
(
"arg6: print tensor value (0: no; 1: yes)
\n
"
);
printf
(
"arg7: time kernel (0=no, 1=yes)
\n
"
);
printf
(
"arg8 to 13: M, N, K, StrideA, StrideB, StrideD0, StrideD1, StrideE
\n
"
);
// clang-format on
exit
(
1
);
}
const
auto
data_type
=
static_cast
<
MatrixDataType
>
(
std
::
stoi
(
argv
[
2
]));
const
auto
layout
=
static_cast
<
MatrixLayout
>
(
std
::
stoi
(
argv
[
3
]));
const
bool
do_verification
=
std
::
stoi
(
argv
[
4
]);
const
int
init_method
=
std
::
stoi
(
argv
[
5
]);
const
bool
do_log
=
std
::
stoi
(
argv
[
6
]);
const
bool
time_kernel
=
std
::
stoi
(
argv
[
7
]);
const
int
M
=
std
::
stoi
(
argv
[
8
]);
const
int
N
=
std
::
stoi
(
argv
[
9
]);
const
int
K
=
std
::
stoi
(
argv
[
10
]);
const
int
StrideA
=
std
::
stoi
(
argv
[
11
]);
const
int
StrideB
=
std
::
stoi
(
argv
[
12
]);
const
int
StrideD0
=
std
::
stoi
(
argv
[
13
]);
const
int
StrideD1
=
std
::
stoi
(
argv
[
14
]);
const
int
StrideE
=
std
::
stoi
(
argv
[
15
]);
using
F16
=
ck
::
half_t
;
using
F32
=
float
;
using
Row
=
ck
::
tensor_layout
::
gemm
::
RowMajor
;
using
Col
=
ck
::
tensor_layout
::
gemm
::
ColumnMajor
;
auto
profile
=
[
&
](
auto
a_type
,
auto
b_type
,
auto
acc_type
,
auto
d0_type
,
auto
d1_type
,
auto
e_type
,
auto
a_layout
,
auto
b_layout
,
auto
d0_layout
,
auto
d1_layout
,
auto
e_layout
)
{
using
ADataType
=
decltype
(
a_type
);
using
BDataType
=
decltype
(
b_type
);
using
AccDataType
=
decltype
(
acc_type
);
using
D0DataType
=
decltype
(
d0_type
);
using
D1DataType
=
decltype
(
d1_type
);
using
EDataType
=
decltype
(
e_type
);
using
ALayout
=
decltype
(
a_layout
);
using
BLayout
=
decltype
(
b_layout
);
using
D0Layout
=
decltype
(
d0_layout
);
using
D1Layout
=
decltype
(
d1_layout
);
using
ELayout
=
decltype
(
e_layout
);
const
int
DefaultStrideA
=
ck
::
is_same_v
<
ALayout
,
Row
>
?
K
:
M
;
const
int
DefaultStrideB
=
ck
::
is_same_v
<
BLayout
,
Row
>
?
N
:
K
;
const
int
DefaultStrideD0
=
ck
::
is_same_v
<
D0Layout
,
Row
>
?
N
:
M
;
const
int
DefaultStrideD1
=
ck
::
is_same_v
<
D1Layout
,
Row
>
?
N
:
M
;
const
int
DefaultStrideE
=
ck
::
is_same_v
<
ELayout
,
Row
>
?
N
:
M
;
return
ck
::
profiler
::
profile_gemm_add_add_fastgelu_impl
<
ADataType
,
BDataType
,
AccDataType
,
D0DataType
,
D1DataType
,
EDataType
,
ALayout
,
BLayout
,
D0Layout
,
D1Layout
,
ELayout
>
(
do_verification
,
init_method
,
do_log
,
time_kernel
,
M
,
N
,
K
,
(
StrideA
<
0
)
?
DefaultStrideA
:
StrideA
,
(
StrideB
<
0
)
?
DefaultStrideB
:
StrideB
,
(
StrideD0
<
0
)
?
DefaultStrideD0
:
StrideD0
,
(
StrideD1
<
0
)
?
DefaultStrideD1
:
StrideD1
,
(
StrideE
<
0
)
?
DefaultStrideE
:
StrideE
);
};
if
(
data_type
==
MatrixDataType
::
F16_F16_F16_F16_F16
&&
layout
==
MatrixLayout
::
MK_KN_MN_MN_MN
)
{
return
profile
(
F16
{},
F16
{},
F32
{},
F16
{},
F16
{},
F16
{},
Row
{},
Row
{},
Row
{},
Row
{},
Row
{});
}
else
if
(
data_type
==
MatrixDataType
::
F16_F16_F16_F16_F16
&&
layout
==
MatrixLayout
::
MK_NK_MN_MN_MN
)
{
return
profile
(
F16
{},
F16
{},
F32
{},
F16
{},
F16
{},
F16
{},
Row
{},
Col
{},
Row
{},
Row
{},
Row
{});
}
else
if
(
data_type
==
MatrixDataType
::
F16_F16_F16_F16_F16
&&
layout
==
MatrixLayout
::
KM_KN_MN_MN_MN
)
{
return
profile
(
F16
{},
F16
{},
F32
{},
F16
{},
F16
{},
F16
{},
Col
{},
Row
{},
Row
{},
Row
{},
Row
{});
}
else
if
(
data_type
==
MatrixDataType
::
F16_F16_F16_F16_F16
&&
layout
==
MatrixLayout
::
KM_NK_MN_MN_MN
)
{
return
profile
(
F16
{},
F16
{},
F32
{},
F16
{},
F16
{},
F16
{},
Col
{},
Col
{},
Row
{},
Row
{},
Row
{});
}
else
{
std
::
cout
<<
"this data_type & layout is not implemented"
<<
std
::
endl
;
return
0
;
}
}
profiler/src/profile_gemm_bias_add_reduce.cpp
0 → 100644
View file @
b097be17
#include <iostream>
#include <numeric>
#include <initializer_list>
#include <cstdlib>
#include <stdlib.h>
#include <half.hpp>
#include "profile_gemm_bias_add_reduce_impl.hpp"
int
profile_gemm_bias_add_reduce
(
int
argc
,
char
*
argv
[])
{
enum
struct
GemmMatrixLayout
{
MK_KN_MN
,
// 0
MK_NK_MN
,
// 1
KM_KN_MN
,
// 2
KM_NK_MN
,
// 3
};
enum
struct
GemmReduceDataType
{
F32_F32_F32_F32_F32_F32_F32
,
// 0
F16_F16_F16_F16_F16_F32_F32
,
// 1
};
if
(
!
(
argc
==
14
||
argc
==
15
))
{
printf
(
"arg1: tensor operation (gemm: GEMM+bias+add+Reduce)
\n
"
);
printf
(
"arg2: data type (0: fp32; 1: fp16)
\n
"
);
printf
(
"arg3: matrix layout (0: A[m, k] * B[k, n] = C[m, n];
\n
"
);
printf
(
" 1: A[m, k] * B[n, k] = C[m, n];
\n
"
);
printf
(
" 2: A[k, m] * B[k, n] = C[m, n];
\n
"
);
printf
(
" 3: A[k, m] * B[n, k] = C[m, n])
\n
"
);
printf
(
"arg4: verification (0: no; 1: yes)
\n
"
);
printf
(
"arg5: initialization (0: no init; 1: integer value; 2: decimal value)
\n
"
);
printf
(
"arg6: print tensor value (0: no; 1: yes)
\n
"
);
printf
(
"arg7: time kernel (0=n0, 1=yes)
\n
"
);
printf
(
"arg8 to 14: M, N, K, StrideA, StrideB, StrideC, StrideC1
\n
"
);
exit
(
1
);
}
const
auto
data_type
=
static_cast
<
GemmReduceDataType
>
(
std
::
stoi
(
argv
[
2
]));
const
auto
layout
=
static_cast
<
GemmMatrixLayout
>
(
std
::
stoi
(
argv
[
3
]));
const
bool
do_verification
=
std
::
stoi
(
argv
[
4
]);
const
int
init_method
=
std
::
stoi
(
argv
[
5
]);
const
bool
do_log
=
std
::
stoi
(
argv
[
6
]);
const
bool
time_kernel
=
std
::
stoi
(
argv
[
7
]);
const
int
M
=
std
::
stoi
(
argv
[
8
]);
const
int
N
=
std
::
stoi
(
argv
[
9
]);
const
int
K
=
std
::
stoi
(
argv
[
10
]);
const
int
StrideA
=
std
::
stoi
(
argv
[
11
]);
const
int
StrideB
=
std
::
stoi
(
argv
[
12
]);
const
int
StrideC
=
std
::
stoi
(
argv
[
13
]);
const
int
StrideC1
=
std
::
stoi
(
argv
[
14
]);
if
(
data_type
==
GemmReduceDataType
::
F16_F16_F16_F16_F16_F32_F32
&&
layout
==
GemmMatrixLayout
::
MK_KN_MN
)
{
ck
::
profiler
::
profile_gemm_bias_add_reduce_impl
<
ck
::
half_t
,
ck
::
half_t
,
ck
::
half_t
,
ck
::
half_t
,
ck
::
half_t
,
float
,
ck
::
tensor_layout
::
gemm
::
RowMajor
,
ck
::
tensor_layout
::
gemm
::
RowMajor
,
ck
::
tensor_layout
::
gemm
::
RowMajor
>
(
do_verification
,
init_method
,
do_log
,
time_kernel
,
M
,
N
,
K
,
(
StrideA
<
0
)
?
M
:
StrideA
,
(
StrideB
<
0
)
?
N
:
StrideB
,
(
StrideC
<
0
)
?
N
:
StrideC
,
(
StrideC1
<
0
)
?
N
:
StrideC1
);
}
else
if
(
data_type
==
GemmReduceDataType
::
F16_F16_F16_F16_F16_F32_F32
&&
layout
==
GemmMatrixLayout
::
MK_NK_MN
)
{
ck
::
profiler
::
profile_gemm_bias_add_reduce_impl
<
ck
::
half_t
,
ck
::
half_t
,
ck
::
half_t
,
ck
::
half_t
,
ck
::
half_t
,
float
,
ck
::
tensor_layout
::
gemm
::
RowMajor
,
ck
::
tensor_layout
::
gemm
::
ColumnMajor
,
ck
::
tensor_layout
::
gemm
::
RowMajor
>
(
do_verification
,
init_method
,
do_log
,
time_kernel
,
M
,
N
,
K
,
(
StrideA
<
0
)
?
M
:
StrideA
,
(
StrideB
<
0
)
?
N
:
StrideB
,
(
StrideC
<
0
)
?
N
:
StrideC
,
(
StrideC1
<
0
)
?
N
:
StrideC1
);
}
else
if
(
data_type
==
GemmReduceDataType
::
F16_F16_F16_F16_F16_F32_F32
&&
layout
==
GemmMatrixLayout
::
KM_KN_MN
)
{
ck
::
profiler
::
profile_gemm_bias_add_reduce_impl
<
ck
::
half_t
,
ck
::
half_t
,
ck
::
half_t
,
ck
::
half_t
,
ck
::
half_t
,
float
,
ck
::
tensor_layout
::
gemm
::
ColumnMajor
,
ck
::
tensor_layout
::
gemm
::
RowMajor
,
ck
::
tensor_layout
::
gemm
::
RowMajor
>
(
do_verification
,
init_method
,
do_log
,
time_kernel
,
M
,
N
,
K
,
(
StrideA
<
0
)
?
M
:
StrideA
,
(
StrideB
<
0
)
?
N
:
StrideB
,
(
StrideC
<
0
)
?
N
:
StrideC
,
(
StrideC1
<
0
)
?
N
:
StrideC1
);
}
else
if
(
data_type
==
GemmReduceDataType
::
F16_F16_F16_F16_F16_F32_F32
&&
layout
==
GemmMatrixLayout
::
KM_NK_MN
)
{
ck
::
profiler
::
profile_gemm_bias_add_reduce_impl
<
ck
::
half_t
,
ck
::
half_t
,
ck
::
half_t
,
ck
::
half_t
,
ck
::
half_t
,
float
,
ck
::
tensor_layout
::
gemm
::
ColumnMajor
,
ck
::
tensor_layout
::
gemm
::
ColumnMajor
,
ck
::
tensor_layout
::
gemm
::
RowMajor
>
(
do_verification
,
init_method
,
do_log
,
time_kernel
,
M
,
N
,
K
,
(
StrideA
<
0
)
?
M
:
StrideA
,
(
StrideB
<
0
)
?
N
:
StrideB
,
(
StrideC
<
0
)
?
N
:
StrideC
,
(
StrideC1
<
0
)
?
N
:
StrideC1
);
}
else
{
throw
std
::
runtime_error
(
"wrong! this data_type & layout is not implemented"
);
}
return
0
;
}
profiler/src/profiler.cpp
View file @
b097be17
...
...
@@ -11,6 +11,7 @@ int profile_gemm_bias_2d(int, char*[]);
int
profile_gemm_bias_relu
(
int
,
char
*
[]);
int
profile_gemm_bias_relu_add
(
int
,
char
*
[]);
int
profile_gemm_reduce
(
int
,
char
*
[]);
int
profile_gemm_bias_add_reduce
(
int
,
char
*
[]);
int
profile_batched_gemm
(
int
,
char
*
[]);
int
profile_grouped_gemm
(
int
,
char
*
[]);
int
profile_conv_fwd
(
int
,
char
*
[]);
...
...
@@ -21,9 +22,39 @@ int profile_convnd_bwd_data(int, char*[], int);
int
profile_reduce
(
int
,
char
*
[]);
int
profile_conv_bwd_weight
(
int
,
char
*
[]);
int
profile_batched_gemm_reduce
(
int
,
char
*
[]);
int
profile_gemm_add_add_fastgelu
(
int
,
char
*
[]);
static
void
print_helper_message
()
{
// clang-format off
printf
(
"arg1: tensor operation (gemm: GEMM
\n
"
" gemm_bias_2d: GEMM+Bias(2D)
\n
"
" gemm_bias_relu: GEMM+Bias+ReLU
\n
"
" gemm_bias_relu_add: GEMM+Bias+ReLU+Add
\n
"
" gemm_reduce: GEMM+Reduce
\n
"
" grouped_gemm: Grouped GEMM
\n
"
" conv_fwd: ForwardConvolution
\n
"
" conv_fwd_bias_relu: ForwardConvolution+Bias+ReLU
\n
"
" conv_fwd_bias_relu_add: ForwardConvolution+Bias+ReLU+Add
\n
"
" conv_fwd_bias_relu_atomic_add: ForwardConvolution+Bias+ReLU+AtomicAdd
\n
"
" conv1d_bwd_data: BackwardConvolution data 1 dim
\n
"
" conv2d_bwd_data: BackwardConvolution data 2 dim
\n
"
" conv3d_bwd_data: BackwardConvolution data 3 dim
\n
"
" reduce: Reduce
\n
"
" conv2d_bwd_weight: Backward Weight Convolution 2d
\n
"
" gemm_add_add_fastgelu: GEMM+Add+Add+FastGeLU
\n
"
);
// clang-format on
}
int
main
(
int
argc
,
char
*
argv
[])
{
if
(
argc
==
1
)
{
print_helper_message
();
return
0
;
}
if
(
strcmp
(
argv
[
1
],
"gemm"
)
==
0
)
{
return
profile_gemm
(
argc
,
argv
);
...
...
@@ -44,6 +75,10 @@ int main(int argc, char* argv[])
{
return
profile_gemm_reduce
(
argc
,
argv
);
}
else
if
(
strcmp
(
argv
[
1
],
"gemm_bias_add_reduce"
)
==
0
)
{
return
profile_gemm_bias_add_reduce
(
argc
,
argv
);
}
else
if
(
strcmp
(
argv
[
1
],
"batched_gemm"
)
==
0
)
{
return
profile_batched_gemm
(
argc
,
argv
);
...
...
@@ -92,25 +127,14 @@ int main(int argc, char* argv[])
{
return
profile_conv_bwd_weight
(
argc
,
argv
);
}
else
if
(
strcmp
(
argv
[
1
],
"gemm_add_add_fastgelu"
)
==
0
)
{
return
profile_gemm_add_add_fastgelu
(
argc
,
argv
);
}
else
{
// clang-format off
printf
(
"arg1: tensor operation (gemm: GEMM
\n
"
" gemm_bias_2d: GEMM+Bias(2D)
\n
"
" gemm_bias_relu: GEMM+Bias+ReLU
\n
"
" gemm_bias_relu_add: GEMM+Bias+ReLU+Add
\n
"
" gemm_reduce: GEMM+Reduce
\n
"
" grouped_gemm: Grouped GEMM
\n
"
" conv_fwd: ForwardConvolution
\n
"
" conv_fwd_bias_relu: ForwardConvolution+Bias+ReLU
\n
"
" conv_fwd_bias_relu_add: ForwardConvolution+Bias+ReLU+Add
\n
"
" conv_fwd_bias_relu_atomic_add: ForwardConvolution+Bias+ReLU+AtomicAdd
\n
"
" conv1d_bwd_data: BackwardConvolution data 1 dim
\n
"
" conv2d_bwd_data: BackwardConvolution data 2 dim
\n
"
" conv3d_bwd_data: BackwardConvolution data 3 dim
\n
"
" reduce: Reduce
\n
"
" conv2d_bwd_weight: Backward Weight Convolution 2d
\n
"
);
// clang-format on
print_helper_message
();
return
0
;
}
return
0
;
}
script/profile_conv.sh
View file @
b097be17
...
...
@@ -26,7 +26,7 @@ REPEAT=$9
N
=
${
10
}
# Resnet50
from Bing
# Resnet50
(no duplicated layer)
######## op datatype in_layout wei_layout out_layout verify init log repeat N__ K___ C___ Y X Hi__ Wi__ Strides Dilations LeftPads RightPads
#$DRIVER $OP $DATATYPE $IN_LAYOUT $WEI_LAYOUT $OUT_LAYOUT $VERIFY $INIT $LOG $REPEAT $N 256 1024 1 1 14 14 1 1 1 1 0 0 0 0
#$DRIVER $OP $DATATYPE $IN_LAYOUT $WEI_LAYOUT $OUT_LAYOUT $VERIFY $INIT $LOG $REPEAT $N 512 1024 1 1 14 14 1 1 1 1 0 0 0 0
...
...
@@ -47,10 +47,10 @@ REPEAT=$9
#$DRIVER $OP $DATATYPE $IN_LAYOUT $WEI_LAYOUT $OUT_LAYOUT $VERIFY $INIT $LOG $REPEAT $N 256 64 1 1 56 56 1 1 1 1 0 0 0 0
#$DRIVER $OP $DATATYPE $IN_LAYOUT $WEI_LAYOUT $OUT_LAYOUT $VERIFY $INIT $LOG $REPEAT $N 64 64 1 1 56 56 1 1 1 1 0 0 0 0
#$DRIVER $OP $DATATYPE $IN_LAYOUT $WEI_LAYOUT $OUT_LAYOUT $VERIFY $INIT $LOG $REPEAT $N 64 64 3 3 56 56 1 1 1 1 1 1 1 1
#$DRIVER $OP $DATATYPE $IN_LAYOUT $WEI_LAYOUT $OUT_LAYOUT $VERIFY $INIT $LOG $REPEAT $N 64
8
7 7 224 224 2 2 1 1 3 3 3 3
#$DRIVER $OP $DATATYPE $IN_LAYOUT $WEI_LAYOUT $OUT_LAYOUT $VERIFY $INIT $LOG $REPEAT $N 64
3
7 7 224 224 2 2 1 1 3 3 3 3
# Resnet50 f
rom Bing
# Resnet50 f
usion
####### op_________________ datatype in_layout wei_layout out_layout verify init log repeat N__ K___ C_ Y X Hi_ Wi__ Strides Dilations LeftPads RightPads
$DRIVER
conv_fwd_bias_relu
$DATATYPE
$IN_LAYOUT
$WEI_LAYOUT
$OUT_LAYOUT
$VERIFY
$INIT
$LOG
$REPEAT
$N
64 3 7 7 224 224 2 2 1 1 3 3 3 3
$DRIVER
conv_fwd_bias_relu
$DATATYPE
$IN_LAYOUT
$WEI_LAYOUT
$OUT_LAYOUT
$VERIFY
$INIT
$LOG
$REPEAT
$N
64 64 1 1 56 56 1 1 1 1 0 0 0 0
...
...
script/run_performance_tests.sh
100644 → 100755
View file @
b097be17
#!/bin/bash
#
# in order to run this script you'd first need to build the ckProfiler executable in ../build/bin/
# and make sure the following python packages are installed in your environment:
# pip3 install --upgrade pip
# pip3 install sqlalchemy
# pip3 install pymysql
# pip3 install pandas
# pip3 install sshtunnel
# you would also need to set up some environment variables in order to
# post your new test results to the database and compare them to the baseline
# please contact Illia.Silin@amd.com for more details
#
export
gemm_log
=
"perf_gemm.log"
rm
-f
$gemm_log
git status |
grep
-e
'On branch'
>
${
gemm_log
}
echo
-n
'Node name: '
>>
${
gemm_log
}
;
hostname
>>
${
gemm_log
}
#get GPU_arch and number of compute units from rocminfo
echo
-n
"GPU_arch: "
>>
${
gemm_log
}
;
rocminfo |
grep
"Name:"
|
grep
"gfx"
>>
${
gemm_log
}
rocminfo |
grep
"Compute Unit:"
>>
${
gemm_log
}
hipcc
--version
|
grep
-e
'HIP version'
>>
${
gemm_log
}
/opt/rocm/bin/amdclang++
--version
|
grep
-e
'InstalledDir'
>>
${
gemm_log
}
./profile_gemm.sh gemm 0 0 0 1 0 5 |
tee
-a
${
gemm_log
}
./profile_gemm.sh gemm 1 0 0 1 0 5 |
tee
-a
$gemm_log
./profile_gemm.sh gemm 2 0 0 1 0 5 |
tee
-a
$gemm_log
./profile_gemm.sh gemm 3 0 0 1 0 5 |
tee
-a
$gemm_log
./profile_gemm.sh gemm 0 1 0 1 0 5 |
tee
-a
$gemm_log
./profile_gemm.sh gemm 1 1 0 1 0 5 |
tee
-a
$gemm_log
./profile_gemm.sh gemm 2 1 0 1 0 5 |
tee
-a
$gemm_log
./profile_gemm.sh gemm 3 1 0 1 0 5 |
tee
-a
$gemm_log
./profile_gemm.sh gemm 0 2 0 1 0 5 |
tee
-a
$gemm_log
./profile_gemm.sh gemm 1 2 0 1 0 5 |
tee
-a
$gemm_log
./profile_gemm.sh gemm 2 2 0 1 0 5 |
tee
-a
$gemm_log
./profile_gemm.sh gemm 3 2 0 1 0 5 |
tee
-a
$gemm_log
./profile_gemm.sh gemm 0 3 0 1 0 5 |
tee
-a
$gemm_log
./profile_gemm.sh gemm 1 3 0 1 0 5 |
tee
-a
$gemm_log
./profile_gemm.sh gemm 2 3 0 1 0 5 |
tee
-a
$gemm_log
./profile_gemm.sh gemm 3 3 0 1 0 5 |
tee
-a
$gemm_log
python3 parse_perf_data.py
${
gemm_log
}
#run resnet50 test
export
resnet_log
=
"perf_resnet50.log"
rm
-f
$resnet_log
git status |
grep
-e
'On branch'
>
${
resnet_log
}
echo
-n
'Node name: '
>>
${
resnet_log
}
;
hostname
>>
${
resnet_log
}
#get GPU_arch and number of compute units from rocminfo
echo
-n
"GPU_arch: "
>>
${
resnet_log
}
;
rocminfo |
grep
"Name:"
|
grep
"gfx"
>>
${
resnet_log
}
rocminfo |
grep
"Compute Unit:"
>>
${
resnet_log
}
hipcc
--version
|
grep
-e
'HIP version'
>>
${
resnet_log
}
/opt/rocm/bin/amdclang++
--version
|
grep
-e
'InstalledDir'
>>
${
resnet_log
}
#first run tests with N=256
./profile_conv.sh conv_fwd_bias_relu 1 1 1 1 0 2 0 1 256 |
tee
-a
${
resnet_log
}
#then run with N=4
./profile_conv.sh conv_fwd_bias_relu 1 1 1 1 0 2 0 1 4 |
tee
-a
${
resnet_log
}
#the script will put the results from N=256 and N=4 runs into separate tables
python3 parse_perf_data.py
${
resnet_log
}
#!/bin/bash
#
# in order to run this script you'd first need to build the ckProfiler executable in ../build/bin/
# and make sure the following python packages are installed in your environment:
pip3
install
--upgrade
pip
pip3
install
sqlalchemy pymysql pandas sshtunnel
# you would also need to set up some environment variables in order to
# post your new test results to the database and compare them to the baseline
# please contact Illia.Silin@amd.com for more details
#
export
gemm_log
=
"perf_gemm.log"
rm
-f
$gemm_log
git status |
grep
-e
'On branch'
>
${
gemm_log
}
echo
-n
'Node name: '
>>
${
gemm_log
}
;
hostname
>>
${
gemm_log
}
#get GPU_arch and number of compute units from rocminfo
echo
-n
"GPU_arch: "
>>
${
gemm_log
}
;
rocminfo |
grep
"Name:"
|
grep
"gfx"
>>
${
gemm_log
}
rocminfo |
grep
"Compute Unit:"
>>
${
gemm_log
}
hipcc
--version
|
grep
-e
'HIP version'
>>
${
gemm_log
}
/opt/rocm/bin/amdclang++
--version
|
grep
-e
'InstalledDir'
>>
${
gemm_log
}
./profile_gemm.sh gemm 0 0 0 1 0 5 |
tee
-a
${
gemm_log
}
./profile_gemm.sh gemm 1 0 0 1 0 5 |
tee
-a
$gemm_log
./profile_gemm.sh gemm 2 0 0 1 0 5 |
tee
-a
$gemm_log
./profile_gemm.sh gemm 3 0 0 1 0 5 |
tee
-a
$gemm_log
./profile_gemm.sh gemm 0 1 0 1 0 5 |
tee
-a
$gemm_log
./profile_gemm.sh gemm 1 1 0 1 0 5 |
tee
-a
$gemm_log
./profile_gemm.sh gemm 2 1 0 1 0 5 |
tee
-a
$gemm_log
./profile_gemm.sh gemm 3 1 0 1 0 5 |
tee
-a
$gemm_log
./profile_gemm.sh gemm 0 2 0 1 0 5 |
tee
-a
$gemm_log
./profile_gemm.sh gemm 1 2 0 1 0 5 |
tee
-a
$gemm_log
./profile_gemm.sh gemm 2 2 0 1 0 5 |
tee
-a
$gemm_log
./profile_gemm.sh gemm 3 2 0 1 0 5 |
tee
-a
$gemm_log
./profile_gemm.sh gemm 0 3 0 1 0 5 |
tee
-a
$gemm_log
./profile_gemm.sh gemm 1 3 0 1 0 5 |
tee
-a
$gemm_log
./profile_gemm.sh gemm 2 3 0 1 0 5 |
tee
-a
$gemm_log
./profile_gemm.sh gemm 3 3 0 1 0 5 |
tee
-a
$gemm_log
python3 parse_perf_data.py
${
gemm_log
}
#run resnet50 test
export
resnet_log
=
"perf_resnet50.log"
rm
-f
$resnet_log
git status |
grep
-e
'On branch'
>
${
resnet_log
}
echo
-n
'Node name: '
>>
${
resnet_log
}
;
hostname
>>
${
resnet_log
}
#get GPU_arch and number of compute units from rocminfo
echo
-n
"GPU_arch: "
>>
${
resnet_log
}
;
rocminfo |
grep
"Name:"
|
grep
"gfx"
>>
${
resnet_log
}
rocminfo |
grep
"Compute Unit:"
>>
${
resnet_log
}
hipcc
--version
|
grep
-e
'HIP version'
>>
${
resnet_log
}
/opt/rocm/bin/amdclang++
--version
|
grep
-e
'InstalledDir'
>>
${
resnet_log
}
#first run tests with N=256
./profile_conv.sh conv_fwd_bias_relu 1 1 1 1 0 2 0 1 256 |
tee
-a
${
resnet_log
}
#then run with N=4
./profile_conv.sh conv_fwd_bias_relu 1 1 1 1 0 2 0 1 4 |
tee
-a
${
resnet_log
}
#the script will put the results from N=256 and N=4 runs into separate tables
python3 parse_perf_data.py
${
resnet_log
}
test/CMakeLists.txt
View file @
b097be17
...
...
@@ -65,4 +65,5 @@ add_subdirectory(reduce)
add_subdirectory
(
conv2d_bwd_weight
)
add_subdirectory
(
convnd_bwd_data
)
add_subdirectory
(
block_to_ctile_map
)
add_subdirectory
(
softmax
)
# DONOT add client_app, that is tested via CI independently
test/convnd_fwd/CMakeLists.txt
View file @
b097be17
...
...
@@ -5,7 +5,7 @@ target_link_libraries(test_conv1d_fwd PRIVATE host_tensor device_conv1d_fwd_inst
add_dependencies
(
test_convnd_fwd test_conv1d_fwd
)
add_gtest_executable
(
test_conv2d_fwd conv2d_fwd.cpp
)
target_link_libraries
(
test_conv2d_fwd PRIVATE host_tensor device_conv2d_fwd_instance conv_util
)
target_link_libraries
(
test_conv2d_fwd PRIVATE host_tensor device_conv2d_fwd_instance
device_convnd_2d_fwd_instance
conv_util
)
add_dependencies
(
test_convnd_fwd test_conv2d_fwd
)
add_gtest_executable
(
test_conv3d_fwd conv3d_fwd.cpp
)
...
...
test/convnd_fwd/conv1d_fwd.cpp
View file @
b097be17
#include <iostream>
#include <stdexcept>
#include <tuple>
#include <vector>
#include "gtest/gtest.h"
...
...
@@ -11,83 +10,180 @@
namespace
{
template
<
typename
T
>
bool
test_conv1d_nwc_instances
(
const
std
::
vector
<
test
::
conv
::
DeviceConvFwdNoOpPtr
>&
conv_ptrs
)
class
Conv1dFwdNWCInstances
:
public
::
testing
::
Test
{
public:
template
<
typename
T
>
bool
test_conv1d_nwc_instances
(
const
std
::
vector
<
test
::
conv
::
DeviceConvFwdNoOpPtr
>&
conv_ptrs
,
const
ck
::
utils
::
conv
::
ConvParams
&
params
)
{
using
namespace
std
::
placeholders
;
using
namespace
ck
::
utils
;
namespace
ctl
=
ck
::
tensor_layout
::
convolution
;
conv
::
ConvFwdOpInstance
<
T
,
T
,
T
,
ctl
::
NWC
,
ctl
::
KXC
,
ctl
::
NWK
,
ck
::
tensor_operation
::
element_wise
::
PassThrough
,
ck
::
tensor_operation
::
element_wise
::
PassThrough
,
ck
::
tensor_operation
::
element_wise
::
PassThrough
,
FillUniformDistributionIntegerValue
<
T
>
,
FillUniformDistributionIntegerValue
<
T
>>
conv_instance
(
params
,
true
,
FillUniformDistributionIntegerValue
<
T
>
{},
FillUniformDistributionIntegerValue
<
T
>
{});
auto
reference_conv_fwd_fun
=
std
::
bind
(
conv
::
run_reference_convolution_forward
<
1
,
T
,
T
,
T
>
,
params
,
_1
,
_2
,
_3
);
OpInstanceRunEngine
<
T
,
T
,
T
>
run_engine
(
conv_instance
,
reference_conv_fwd_fun
);
run_engine
.
SetAtol
(
atol_
);
run_engine
.
SetRtol
(
rtol_
);
return
run_engine
.
Test
(
conv_ptrs
);
}
template
<
typename
T
>
bool
test_default
()
{
return
test_conv1d_nwc_instances
<
T
>
(
ck
::
utils
::
conv
::
ConvolutionFwdInstances
<
T
,
T
,
T
>::
template
Get
<
1
>(),
params_default_
);
}
template
<
typename
T
>
bool
test_filter1x1_stride1_pad0
()
{
return
test_conv1d_nwc_instances
<
T
>
(
ck
::
utils
::
conv
::
ConvolutionFwdInstances
<
T
,
T
,
T
>::
template
Get
<
1
>(),
params_filter1x1_stride1_pad0_
);
}
template
<
typename
T
>
bool
test_filter1x1_pad0
()
{
return
test_conv1d_nwc_instances
<
T
>
(
ck
::
utils
::
conv
::
ConvolutionFwdInstances
<
T
,
T
,
T
>::
template
Get
<
1
>(),
params_filter1x1_pad0_
);
}
static
inline
ck
::
utils
::
conv
::
ConvParams
params_default_
{
1
,
4
,
256
,
64
,
{
3
},
{
71
},
{
2
},
{
2
},
{
2
},
{
2
}};
static
inline
ck
::
utils
::
conv
::
ConvParams
params_filter1x1_stride1_pad0_
{
1
,
4
,
256
,
64
,
{
1
},
{
28
},
{
1
},
{
1
},
{
0
},
{
0
}};
static
inline
ck
::
utils
::
conv
::
ConvParams
params_filter1x1_pad0_
{
1
,
4
,
256
,
64
,
{
1
},
{
28
},
{
2
},
{
1
},
{
0
},
{
0
}};
private:
double
atol_
{
1e-5
};
double
rtol_
{
1e-4
};
};
}
// anonymous namespace
TEST
(
Conv1DFwdNWC
,
IntegerValues
)
{
using
namespace
std
::
placeholders
;
using
namespace
ck
::
utils
;
namespace
ctl
=
ck
::
tensor_layout
::
convolution
;
using
T
=
float
;
ck
::
utils
::
conv
::
ConvParams
params
;
params
.
num_dim_spatial_
=
1
;
params
.
filter_spatial_lengths_
=
std
::
vector
<
ck
::
index_t
>
{
3
};
params
.
input_spatial_lengths_
=
std
::
vector
<
ck
::
index_t
>
{
71
};
params
.
conv_filter_strides_
=
std
::
vector
<
ck
::
index_t
>
{
2
};
params
.
conv_filter_dilations_
=
std
::
vector
<
ck
::
index_t
>
{
1
};
params
.
input_left_pads_
=
std
::
vector
<
ck
::
index_t
>
{
1
};
params
.
input_right_pads_
=
std
::
vector
<
ck
::
index_t
>
{
1
};
ck
::
utils
::
conv
::
ConvParams
params
{
1
,
4
,
256
,
64
,
{
3
},
{
36
},
{
1
},
{
2
},
{
2
},
{
2
}};
conv
::
ConvFwdOpInstance
<
T
,
T
,
T
,
ctl
::
NWC
,
ctl
::
KCX
,
ctl
::
NWK
>
conv_instance
(
params
);
std
::
vector
<
test
::
conv
::
DeviceConvFwdNoOpPtr
>
conv_ptrs
;
test
::
conv
::
get_test_convolution_fwd_instance
<
1
,
T
,
T
,
T
,
T
>
(
conv_ptrs
);
conv
::
ConvFwdOpInstance
<
T
,
T
,
T
,
ctl
::
NWC
,
ctl
::
KXC
,
ctl
::
NWK
,
ck
::
tensor_operation
::
element_wise
::
PassThrough
,
ck
::
tensor_operation
::
element_wise
::
PassThrough
,
ck
::
tensor_operation
::
element_wise
::
PassThrough
,
FillUniformDistributionIntegerValue
<
T
>
,
FillUniformDistributionIntegerValue
<
T
>>
conv_instance
(
params
,
true
,
FillUniformDistributionIntegerValue
<
T
>
{},
FillUniformDistributionIntegerValue
<
T
>
{});
auto
reference_conv_fwd_fun
=
std
::
bind
(
conv
::
run_reference_convolution_forward
<
1
,
T
,
T
,
T
>
,
params
,
_1
,
_2
,
_3
);
OpInstanceRunEngine
<
T
,
T
,
T
>
run_engine
(
conv_instance
,
reference_conv_fwd_fun
);
return
run_engine
.
Test
(
conv_ptrs
);
run_engine
.
SetAtol
(
1e-5
);
run_engine
.
SetRtol
(
1e-4
);
EXPECT_TRUE
(
run_engine
.
Test
(
conv_ptrs
));
}
}
// anonymous namespace
TEST
(
Conv1DFwdNWC
,
TestConv1D
)
TEST
(
Conv1DFwdNWC
,
FloatingPointValues
)
{
using
namespace
std
::
placeholders
;
using
namespace
ck
::
utils
;
namespace
ctl
=
ck
::
tensor_layout
::
convolution
;
using
T
=
ck
::
half_t
;
ck
::
utils
::
conv
::
ConvParams
params
;
params
.
num_dim_spatial_
=
1
;
params
.
N_
=
2
;
params
.
K_
=
16
;
params
.
C_
=
4
;
params
.
filter_spatial_lengths_
=
std
::
vector
<
ck
::
index_t
>
{
3
};
params
.
input_spatial_lengths_
=
std
::
vector
<
ck
::
index_t
>
{
16
};
params
.
conv_filter_strides_
=
std
::
vector
<
ck
::
index_t
>
{
1
};
params
.
conv_filter_dilations_
=
std
::
vector
<
ck
::
index_t
>
{
1
};
params
.
input_left_pads_
=
std
::
vector
<
ck
::
index_t
>
{
1
};
params
.
input_right_pads_
=
std
::
vector
<
ck
::
index_t
>
{
1
};
ck
::
utils
::
conv
::
ConvParams
params
{
1
,
4
,
256
,
64
,
{
3
},
{
36
},
{
1
},
{
2
},
{
2
},
{
2
}};
std
::
vector
<
test
::
conv
::
DeviceConvFwdNoOpPtr
>
conv_ptrs
;
test
::
conv
::
get_test_convolution_fwd_instance
<
1
>
(
conv_ptrs
);
conv
::
ConvFwdOpInstance
<
float
,
float
,
float
,
ctl
::
NWC
,
ctl
::
KCX
,
ctl
::
NWK
>
conv_instance
(
params
);
test
::
conv
::
get_test_convolution_fwd_instance
<
1
,
T
,
T
,
T
,
float
>
(
conv_ptrs
);
conv
::
ConvFwdOpInstance
<
T
,
T
,
T
,
ctl
::
NWC
,
ctl
::
KXC
,
ctl
::
NWK
,
ck
::
tensor_operation
::
element_wise
::
PassThrough
,
ck
::
tensor_operation
::
element_wise
::
PassThrough
,
ck
::
tensor_operation
::
element_wise
::
PassThrough
,
FillUniformDistribution
<
T
>
,
FillUniformDistribution
<
T
>>
conv_instance
(
params
,
true
,
FillUniformDistribution
<
T
>
{},
FillUniformDistribution
<
T
>
{});
auto
reference_conv_fwd_fun
=
std
::
bind
(
conv
::
run_reference_convolution_forward
<
1
,
float
,
float
,
float
>
,
params
,
_1
,
_2
,
_3
);
OpInstanceRunEngine
<
float
,
float
,
float
>
run_engine
(
conv_instance
,
reference_conv_fwd_fun
);
run_engine
.
SetAtol
(
1e-5
);
run_engine
.
SetRtol
(
1e-
4
);
auto
reference_conv_fwd_fun
=
std
::
bind
(
conv
::
run_reference_convolution_forward
<
1
,
T
,
T
,
T
>
,
params
,
_1
,
_2
,
_3
);
OpInstanceRunEngine
<
T
,
T
,
T
>
run_engine
(
conv_instance
,
reference_conv_fwd_fun
);
run_engine
.
SetAtol
(
0.1
);
run_engine
.
SetRtol
(
1e-
2
);
EXPECT_TRUE
(
run_engine
.
Test
(
conv_ptrs
));
}
TEST
(
Conv1DFwdNWC
,
Bf16Iinstances
)
TEST_F
(
Conv1dFwdNWCInstances
,
BF16_default
)
{
EXPECT_TRUE
(
this
->
test_default
<
ck
::
bhalf_t
>
());
}
TEST_F
(
Conv1dFwdNWCInstances
,
BF16_filter1x1_stride1_pad0
)
{
EXPECT_TRUE
(
this
->
test_filter1x1_stride1_pad0
<
ck
::
bhalf_t
>
());
}
TEST_F
(
Conv1dFwdNWCInstances
,
BF16_filter1x1_pad0
)
{
EXPECT_TRUE
(
test_conv1d_nwc_instances
<
ck
::
bhalf_t
>
(
ck
::
utils
::
conv
::
ConvolutionFwdInstances
<
ck
::
bhalf_t
,
ck
::
bhalf_t
,
ck
::
bhalf_t
>::
Get
<
1
>
()));
EXPECT_TRUE
(
this
->
test_filter1x1_pad0
<
ck
::
bhalf_t
>
());
}
TEST
(
Conv1DFwdNWC
,
F16Instances
)
TEST_F
(
Conv1dFwdNWCInstances
,
F16_default
)
{
EXPECT_TRUE
(
this
->
test_default
<
ck
::
half_t
>
());
}
TEST_F
(
Conv1dFwdNWCInstances
,
F16_filter1x1_stride1_pad0
)
{
EXPECT_TRUE
(
this
->
test_filter1x1_stride1_pad0
<
ck
::
half_t
>
());
}
TEST_F
(
Conv1dFwdNWCInstances
,
F16_filter1x1_pad0
)
{
EXPECT_TRUE
(
test_conv1d_nwc_instances
<
ck
::
half_t
>
(
ck
::
utils
::
conv
::
ConvolutionFwdInstances
<
ck
::
half_t
,
ck
::
half_t
,
ck
::
half_t
>::
Get
<
1
>
()));
EXPECT_TRUE
(
this
->
test_filter1x1_pad0
<
ck
::
half_t
>
());
}
TEST
(
Conv1DFwdNWC
,
F32Instances
)
TEST_F
(
Conv1dFwdNWCInstances
,
F32_default
)
{
EXPECT_TRUE
(
this
->
test_default
<
float
>
());
}
TEST_F
(
Conv1dFwdNWCInstances
,
F32_filter1x1_stride1_pad0
)
{
EXPECT_TRUE
(
test_conv1d_nwc_instances
<
float
>
(
ck
::
utils
::
conv
::
ConvolutionFwdInstances
<
float
,
float
,
float
>::
Get
<
1
>
()));
EXPECT_TRUE
(
this
->
test_filter1x1_stride1_pad0
<
float
>
());
}
TEST_F
(
Conv1dFwdNWCInstances
,
F32_filter1x1_pad0
)
{
EXPECT_TRUE
(
this
->
test_filter1x1_pad0
<
float
>
());
}
TEST
(
Conv1DFwdNWC
,
Int8Instances
)
TEST_F
(
Conv1dFwdNWCInstances
,
I8_default
)
{
EXPECT_TRUE
(
this
->
test_default
<
int8_t
>
());
}
TEST_F
(
Conv1dFwdNWCInstances
,
I8_filter1x1_stride1_pad0
)
{
EXPECT_TRUE
(
this
->
test_filter1x1_stride1_pad0
<
int8_t
>
());
}
TEST_F
(
Conv1dFwdNWCInstances
,
I8_filter1x1_pad0
)
{
EXPECT_TRUE
(
test_conv1d_nwc_instances
<
int8_t
>
(
ck
::
utils
::
conv
::
ConvolutionFwdInstances
<
int8_t
,
int8_t
,
int8_t
>::
Get
<
1
>
()));
EXPECT_TRUE
(
this
->
test_filter1x1_pad0
<
int8_t
>
());
}
test/convnd_fwd/conv2d_fwd.cpp
View file @
b097be17
#include <half.hpp>
#include <iostream>
#include <tuple>
#include <vector>
#include "gtest/gtest.h"
#include "data_type.hpp"
#include "element_wise_operation.hpp"
#include "ck/library/utility/conv_util.hpp"
#include "config.hpp"
#include "conv_util.hpp"
#include "data_type.hpp"
#include "element_wise_operation.hpp"
#include "fill.hpp"
namespace
{
template
<
typename
T
>
bool
test_conv2d_nhwc_instances
(
const
std
::
vector
<
test
::
conv
::
DeviceConvFwdNoOpPtr
>&
conv_ptrs
)
class
Conv2dFwdNHWCInstances
:
public
::
testing
::
Test
{
public:
template
<
typename
T
>
bool
test_conv2d_nhwc_instances
(
const
std
::
vector
<
test
::
conv
::
DeviceConvFwdNoOpPtr
>&
conv_ptrs
,
const
ck
::
utils
::
conv
::
ConvParams
&
params
)
{
using
namespace
std
::
placeholders
;
using
namespace
ck
::
utils
;
conv
::
ConvFwdOpInstance
<
T
,
T
,
T
,
ck
::
tensor_layout
::
convolution
::
NHWC
,
ck
::
tensor_layout
::
convolution
::
KYXC
,
ck
::
tensor_layout
::
convolution
::
NHWK
,
ck
::
tensor_operation
::
element_wise
::
PassThrough
,
ck
::
tensor_operation
::
element_wise
::
PassThrough
,
ck
::
tensor_operation
::
element_wise
::
PassThrough
,
FillUniformDistributionIntegerValue
<
T
>
,
FillUniformDistributionIntegerValue
<
T
>>
conv_instance
(
params
,
true
,
FillUniformDistributionIntegerValue
<
T
>
{},
FillUniformDistributionIntegerValue
<
T
>
{});
auto
reference_conv_fwd_fun
=
std
::
bind
(
conv
::
run_reference_convolution_forward
<
2
,
T
,
T
,
T
>
,
params
,
_1
,
_2
,
_3
);
OpInstanceRunEngine
<
T
,
T
,
T
>
run_engine
(
conv_instance
,
reference_conv_fwd_fun
);
run_engine
.
SetAtol
(
atol_
);
run_engine
.
SetRtol
(
rtol_
);
return
run_engine
.
Test
(
conv_ptrs
);
}
template
<
typename
T
>
bool
test_default
(
bool
use_convnd
=
false
)
{
if
(
use_convnd
)
{
return
test_conv2d_nhwc_instances
<
T
>
(
test
::
conv
::
ConvolutionNDFwdInstances
<
T
,
T
,
T
>::
Get
(
2
),
params_default_
);
}
else
{
return
test_conv2d_nhwc_instances
<
T
>
(
ck
::
utils
::
conv
::
ConvolutionFwdInstances
<
T
,
T
,
T
>::
template
Get
<
2
>(),
params_default_
);
}
}
template
<
typename
T
>
bool
test_filter1x1_stride1_pad0
(
bool
use_convnd
=
false
)
{
if
(
use_convnd
)
{
return
test_conv2d_nhwc_instances
<
T
>
(
test
::
conv
::
ConvolutionNDFwdInstances
<
T
,
T
,
T
>::
Get
(
2
),
params_filter1x1_stride1_pad0_
);
}
else
{
return
test_conv2d_nhwc_instances
<
T
>
(
ck
::
utils
::
conv
::
ConvolutionFwdInstances
<
T
,
T
,
T
>::
template
Get
<
2
>(),
params_filter1x1_stride1_pad0_
);
}
}
template
<
typename
T
>
bool
test_filter1x1_pad0
(
bool
use_convnd
=
false
)
{
if
(
use_convnd
)
{
return
test_conv2d_nhwc_instances
<
T
>
(
test
::
conv
::
ConvolutionNDFwdInstances
<
T
,
T
,
T
>::
Get
(
2
),
params_filter1x1_pad0_
);
}
else
{
return
test_conv2d_nhwc_instances
<
T
>
(
ck
::
utils
::
conv
::
ConvolutionFwdInstances
<
T
,
T
,
T
>::
template
Get
<
2
>(),
params_filter1x1_pad0_
);
}
}
template
<
typename
T
>
bool
test_oddC
()
{
return
test_conv2d_nhwc_instances
<
T
>
(
ck
::
utils
::
conv
::
ConvolutionFwdInstances
<
T
,
T
,
T
>::
template
Get
<
2
>(),
params_oddC_
);
}
static
inline
ck
::
utils
::
conv
::
ConvParams
params_default_
{
2
,
4
,
256
,
64
,
{
3
,
3
},
{
36
,
36
},
{
2
,
2
},
{
2
,
2
},
{
2
,
2
},
{
2
,
2
}};
static
inline
ck
::
utils
::
conv
::
ConvParams
params_filter1x1_stride1_pad0_
{
2
,
4
,
256
,
64
,
{
1
,
1
},
{
28
,
28
},
{
1
,
1
},
{
1
,
1
},
{
0
,
0
},
{
0
,
0
}};
static
inline
ck
::
utils
::
conv
::
ConvParams
params_filter1x1_pad0_
{
2
,
4
,
256
,
64
,
{
1
,
1
},
{
28
,
28
},
{
2
,
2
},
{
1
,
1
},
{
0
,
0
},
{
0
,
0
}};
static
inline
ck
::
utils
::
conv
::
ConvParams
params_oddC_
{
2
,
4
,
256
,
3
,
{
3
,
3
},
{
28
,
28
},
{
1
,
1
},
{
1
,
1
},
{
0
,
0
},
{
0
,
0
}};
private:
double
atol_
{
1e-5
};
double
rtol_
{
1e-4
};
};
}
// anonymous namespace
TEST
(
Conv2DFwdNHWC
,
IntegerValues
)
{
using
namespace
std
::
placeholders
;
using
namespace
ck
::
utils
;
using
T
=
float
;
conv
::
ConvParams
params
;
params
.
num_dim_spatial_
=
2
;
params
.
filter_spatial_lengths_
=
std
::
vector
<
ck
::
index_t
>
{
3
,
3
};
params
.
input_spatial_lengths_
=
std
::
vector
<
ck
::
index_t
>
{
71
,
71
};
params
.
conv_filter_strides_
=
std
::
vector
<
ck
::
index_t
>
{
2
,
2
};
params
.
conv_filter_dilations_
=
std
::
vector
<
ck
::
index_t
>
{
1
,
1
};
params
.
input_left_pads_
=
std
::
vector
<
ck
::
index_t
>
{
1
,
1
};
params
.
input_right_pads_
=
std
::
vector
<
ck
::
index_t
>
{
1
,
1
};
ck
::
utils
::
conv
::
ConvParams
params
{
2
,
4
,
256
,
64
,
{
3
,
3
},
{
36
,
36
},
{
1
,
1
},
{
2
,
2
},
{
2
,
2
},
{
2
,
2
}};
conv
::
ConvFwdOpInstance
<
T
,
T
,
T
>
conv_instance
(
params
);
std
::
vector
<
test
::
conv
::
DeviceConvFwdNoOpPtr
>
conv_ptrs
;
test
::
conv
::
get_test_convolution_fwd_instance
<
2
,
T
,
T
,
T
,
T
>
(
conv_ptrs
);
conv
::
ConvFwdOpInstance
<
T
,
T
,
T
,
ck
::
tensor_layout
::
convolution
::
NHWC
,
ck
::
tensor_layout
::
convolution
::
KYXC
,
ck
::
tensor_layout
::
convolution
::
NHWK
,
ck
::
tensor_operation
::
element_wise
::
PassThrough
,
ck
::
tensor_operation
::
element_wise
::
PassThrough
,
ck
::
tensor_operation
::
element_wise
::
PassThrough
,
FillUniformDistributionIntegerValue
<
T
>
,
FillUniformDistributionIntegerValue
<
T
>>
conv_instance
(
params
,
true
,
FillUniformDistributionIntegerValue
<
T
>
{},
FillUniformDistributionIntegerValue
<
T
>
{});
auto
reference_conv_fwd_fun
=
std
::
bind
(
conv
::
run_reference_convolution_forward
<
2
,
T
,
T
,
T
>
,
params
,
_1
,
_2
,
_3
);
OpInstanceRunEngine
<
T
,
T
,
T
>
run_engine
(
conv_instance
,
reference_conv_fwd_fun
);
return
run_engine
.
Test
(
conv_ptrs
);
run_engine
.
SetAtol
(
1e-5
);
run_engine
.
SetRtol
(
1e-4
);
EXPECT_TRUE
(
run_engine
.
Test
(
conv_ptrs
));
}
}
// anonymous namespace
TEST
(
Conv2DFwdNHWC
,
TestConv2D
)
TEST
(
Conv2DFwdNHWC
,
FloatingPointValues
)
{
using
namespace
std
::
placeholders
;
using
namespace
ck
::
utils
;
using
T
=
ck
::
half_t
;
ck
::
utils
::
conv
::
ConvParams
params
;
params
.
N_
=
2
;
params
.
K_
=
16
;
params
.
C_
=
4
;
params
.
input_spatial_lengths_
=
std
::
vector
<
ck
::
index_t
>
{
16
,
16
};
params
.
conv_filter_strides_
=
std
::
vector
<
ck
::
index_t
>
{
1
,
1
};
ck
::
utils
::
conv
::
ConvParams
params
{
2
,
4
,
256
,
64
,
{
3
,
3
},
{
36
,
36
},
{
2
,
2
},
{
2
,
2
},
{
2
,
2
},
{
2
,
2
}};
std
::
vector
<
test
::
conv
::
DeviceConvFwdNoOpPtr
>
conv_ptrs
;
test
::
conv
::
get_test_convolution_fwd_instance
<
2
>
(
conv_ptrs
);
conv
::
ConvFwdOpInstance
<
float
,
float
,
float
>
conv_instance
(
params
);
test
::
conv
::
get_test_convolution_fwd_instance
<
2
,
T
,
T
,
T
,
float
>
(
conv_ptrs
);
conv
::
ConvFwdOpInstance
<
T
,
T
,
T
,
ck
::
tensor_layout
::
convolution
::
NHWC
,
ck
::
tensor_layout
::
convolution
::
KYXC
,
ck
::
tensor_layout
::
convolution
::
NHWK
,
ck
::
tensor_operation
::
element_wise
::
PassThrough
,
ck
::
tensor_operation
::
element_wise
::
PassThrough
,
ck
::
tensor_operation
::
element_wise
::
PassThrough
,
FillUniformDistribution
<
T
>
,
FillUniformDistribution
<
T
>>
conv_instance
(
params
,
true
,
FillUniformDistribution
<
T
>
{},
FillUniformDistribution
<
T
>
{});
auto
reference_conv_fwd_fun
=
std
::
bind
(
conv
::
run_reference_convolution_forward
<
2
,
float
,
float
,
float
>
,
params
,
_1
,
_2
,
_3
);
OpInstanceRunEngine
<
float
,
float
,
float
>
run_engine
(
conv_instance
,
reference_conv_fwd_fun
);
run_engine
.
SetAtol
(
1
e-
5
);
run_engine
.
SetRtol
(
1e-
4
);
auto
reference_conv_fwd_fun
=
std
::
bind
(
conv
::
run_reference_convolution_forward
<
2
,
T
,
T
,
T
>
,
params
,
_1
,
_2
,
_3
);
OpInstanceRunEngine
<
T
,
T
,
T
>
run_engine
(
conv_instance
,
reference_conv_fwd_fun
);
run_engine
.
SetAtol
(
2
e-
4
);
run_engine
.
SetRtol
(
1e-
3
);
EXPECT_TRUE
(
run_engine
.
Test
(
conv_ptrs
));
}
TEST
(
Conv2DFwdNHWC
,
Bf16Instances
)
TEST_F
(
Conv2dFwdNHWCInstances
,
BF16_default
)
{
EXPECT_TRUE
(
this
->
test_default
<
ck
::
bhalf_t
>
());
}
TEST_F
(
Conv2dFwdNHWCInstances
,
BF16_filter1x1_stride1_pad0
)
{
EXPECT_TRUE
(
test_conv2d_nhwc_instances
<
ck
::
bhalf_t
>
(
ck
::
utils
::
conv
::
ConvolutionFwdInstances
<
ck
::
bhalf_t
,
ck
::
bhalf_t
,
ck
::
bhalf_t
>::
Get
<
2
>
()));
EXPECT_TRUE
(
this
->
test_filter1x1_stride1_pad0
<
ck
::
bhalf_t
>
());
}
TEST
(
Conv2DFwdNHWC
,
F16Instances
)
TEST_F
(
Conv2dFwdNHWCInstances
,
BF16_filter1x1_pad0
)
{
EXPECT_TRUE
(
test_conv2d_nhwc_instances
<
ck
::
half_t
>
(
ck
::
utils
::
conv
::
ConvolutionFwdInstances
<
ck
::
half_t
,
ck
::
half_t
,
ck
::
half_t
>::
Get
<
2
>
()));
EXPECT_TRUE
(
this
->
test_filter1x1_pad0
<
ck
::
bhalf_t
>
());
}
TEST
(
Conv2
D
FwdNHWC
,
BF32
Instances
)
TEST_F
(
Conv2dFwdNHWCInstances
,
F16_default
)
{
EXPECT_TRUE
(
this
->
test_default
<
ck
::
half_t
>
());
}
TEST
_F
(
Conv2
d
FwdNHWCInstances
,
F16_filter1x1_stride1_pad0
)
{
EXPECT_TRUE
(
test_conv2d_nhwc_instances
<
float
>
(
ck
::
utils
::
conv
::
ConvolutionFwdInstances
<
float
,
float
,
float
>::
Get
<
2
>
()));
EXPECT_TRUE
(
this
->
test_filter1x1_stride1_pad0
<
ck
::
half_t
>
());
}
TEST
(
Conv2DFwdNHWC
,
F32Instances
)
TEST_F
(
Conv2dFwdNHWCInstances
,
F16_filter1x1_pad0
)
{
EXPECT_TRUE
(
this
->
test_filter1x1_pad0
<
ck
::
half_t
>
());
}
TEST_F
(
Conv2dFwdNHWCInstances
,
F16_oddC
)
{
EXPECT_TRUE
(
this
->
test_oddC
<
ck
::
half_t
>
());
}
TEST_F
(
Conv2dFwdNHWCInstances
,
F32_default
)
{
EXPECT_TRUE
(
this
->
test_default
<
float
>
());
}
TEST_F
(
Conv2dFwdNHWCInstances
,
F32_filter1x1_stride1_pad0
)
{
EXPECT_TRUE
(
this
->
test_filter1x1_stride1_pad0
<
float
>
());
}
TEST_F
(
Conv2dFwdNHWCInstances
,
F32_filter1x1_pad0
)
{
EXPECT_TRUE
(
this
->
test_filter1x1_pad0
<
float
>
());
}
TEST_F
(
Conv2dFwdNHWCInstances
,
I8_default
)
{
EXPECT_TRUE
(
this
->
test_default
<
int8_t
>
());
}
TEST_F
(
Conv2dFwdNHWCInstances
,
I8_filter1x1_stride1_pad0
)
{
EXPECT_TRUE
(
test_conv2d_nhwc_instances
<
float
>
(
ck
::
utils
::
conv
::
ConvolutionFwdInstances
<
float
,
float
,
float
>::
Get
<
2
>
()));
EXPECT_TRUE
(
this
->
test_filter1x1_stride1_pad0
<
int8_t
>
());
}
TEST_F
(
Conv2dFwdNHWCInstances
,
I8_filter1x1_pad0
)
{
EXPECT_TRUE
(
this
->
test_filter1x1_pad0
<
int8_t
>
());
}
TEST
(
Conv2DFwdNHWC
,
Int8Instances
)
TEST_F
(
Conv2dFwdNHWCInstances
,
ND_BF16_default
)
{
EXPECT_TRUE
(
this
->
test_default
<
ck
::
bhalf_t
>
(
true
));
}
TEST_F
(
Conv2dFwdNHWCInstances
,
ND_BF16_filter1x1_stride1_pad0
)
{
EXPECT_TRUE
(
this
->
test_filter1x1_stride1_pad0
<
ck
::
bhalf_t
>
(
true
));
}
TEST_F
(
Conv2dFwdNHWCInstances
,
ND_BF16_filter1x1_pad0
)
{
EXPECT_TRUE
(
this
->
test_filter1x1_pad0
<
ck
::
bhalf_t
>
(
true
));
}
TEST_F
(
Conv2dFwdNHWCInstances
,
ND_F16_default
)
{
EXPECT_TRUE
(
this
->
test_default
<
ck
::
half_t
>
(
true
));
}
TEST_F
(
Conv2dFwdNHWCInstances
,
ND_F16_filter1x1_stride1_pad0
)
{
EXPECT_TRUE
(
this
->
test_filter1x1_stride1_pad0
<
ck
::
half_t
>
(
true
));
}
TEST_F
(
Conv2dFwdNHWCInstances
,
ND_F16_filter1x1_pad0
)
{
EXPECT_TRUE
(
this
->
test_filter1x1_pad0
<
ck
::
half_t
>
(
true
));
}
TEST_F
(
Conv2dFwdNHWCInstances
,
ND_F32_default
)
{
EXPECT_TRUE
(
this
->
test_default
<
float
>
(
true
));
}
TEST_F
(
Conv2dFwdNHWCInstances
,
ND_F32_filter1x1_stride1_pad0
)
{
EXPECT_TRUE
(
this
->
test_filter1x1_stride1_pad0
<
float
>
(
true
));
}
TEST_F
(
Conv2dFwdNHWCInstances
,
ND_F32_filter1x1_pad0
)
{
EXPECT_TRUE
(
this
->
test_filter1x1_pad0
<
float
>
(
true
));
}
TEST_F
(
Conv2dFwdNHWCInstances
,
ND_I8_default
)
{
EXPECT_TRUE
(
this
->
test_default
<
int8_t
>
(
true
));
}
TEST_F
(
Conv2dFwdNHWCInstances
,
ND_I8_filter1x1_stride1_pad0
)
{
EXPECT_TRUE
(
this
->
test_filter1x1_stride1_pad0
<
int8_t
>
(
true
));
}
TEST_F
(
Conv2dFwdNHWCInstances
,
ND_I8_filter1x1_pad0
)
{
EXPECT_TRUE
(
test_conv2d_nhwc_instances
<
int8_t
>
(
ck
::
utils
::
conv
::
ConvolutionFwdInstances
<
int8_t
,
int8_t
,
int8_t
>::
Get
<
2
>
()));
EXPECT_TRUE
(
this
->
test_filter1x1_pad0
<
int8_t
>
(
true
));
}
test/convnd_fwd/conv3d_fwd.cpp
View file @
b097be17
...
...
@@ -12,61 +12,143 @@
namespace
{
template
<
typename
T
>
bool
test_conv3d_ndhwc_instances
(
const
std
::
vector
<
test
::
conv
::
DeviceConvFwdNoOpPtr
>&
conv_ptrs
)
class
Conv3dFwdNDHWCInstances
:
public
::
testing
::
Test
{
public:
template
<
typename
T
>
bool
test_conv3d_nwc_instances
(
const
std
::
vector
<
test
::
conv
::
DeviceConvFwdNoOpPtr
>&
conv_ptrs
,
const
ck
::
utils
::
conv
::
ConvParams
&
params
)
{
using
namespace
std
::
placeholders
;
using
namespace
ck
::
utils
;
namespace
ctl
=
ck
::
tensor_layout
::
convolution
;
conv
::
ConvFwdOpInstance
<
T
,
T
,
T
,
ctl
::
NDHWC
,
ctl
::
KZYXC
,
ctl
::
NDHWK
,
ck
::
tensor_operation
::
element_wise
::
PassThrough
,
ck
::
tensor_operation
::
element_wise
::
PassThrough
,
ck
::
tensor_operation
::
element_wise
::
PassThrough
,
FillUniformDistributionIntegerValue
<
T
>
,
FillUniformDistributionIntegerValue
<
T
>>
conv_instance
(
params
,
true
,
FillUniformDistributionIntegerValue
<
T
>
{},
FillUniformDistributionIntegerValue
<
T
>
{});
auto
reference_conv_fwd_fun
=
std
::
bind
(
conv
::
run_reference_convolution_forward
<
3
,
T
,
T
,
T
>
,
params
,
_1
,
_2
,
_3
);
OpInstanceRunEngine
<
T
,
T
,
T
>
run_engine
(
conv_instance
,
reference_conv_fwd_fun
);
run_engine
.
SetAtol
(
atol_
);
run_engine
.
SetRtol
(
rtol_
);
return
run_engine
.
Test
(
conv_ptrs
);
}
template
<
typename
T
>
bool
test_default
()
{
return
test_conv3d_nwc_instances
<
T
>
(
ck
::
utils
::
conv
::
ConvolutionFwdInstances
<
T
,
T
,
T
>::
template
Get
<
3
>(),
params_default_
);
}
template
<
typename
T
>
bool
test_filter1x1_stride1_pad0
()
{
return
test_conv3d_nwc_instances
<
T
>
(
ck
::
utils
::
conv
::
ConvolutionFwdInstances
<
T
,
T
,
T
>::
template
Get
<
3
>(),
params_filter1x1_stride1_pad0_
);
}
template
<
typename
T
>
bool
test_filter1x1_pad0
()
{
return
test_conv3d_nwc_instances
<
T
>
(
ck
::
utils
::
conv
::
ConvolutionFwdInstances
<
T
,
T
,
T
>::
template
Get
<
3
>(),
params_filter1x1_pad0_
);
}
static
inline
ck
::
utils
::
conv
::
ConvParams
params_default_
{
3
,
4
,
256
,
64
,
{
3
,
3
,
3
},
{
28
,
28
,
28
},
{
2
,
2
,
2
},
{
2
,
2
,
2
},
{
2
,
2
,
2
},
{
2
,
2
,
2
}};
static
inline
ck
::
utils
::
conv
::
ConvParams
params_filter1x1_stride1_pad0_
{
3
,
4
,
256
,
64
,
{
1
,
1
,
1
},
{
28
,
28
,
28
},
{
1
,
1
,
1
},
{
1
,
1
,
1
},
{
0
,
0
,
0
},
{
0
,
0
,
0
}};
static
inline
ck
::
utils
::
conv
::
ConvParams
params_filter1x1_pad0_
{
3
,
4
,
256
,
64
,
{
1
,
1
,
1
},
{
28
,
28
,
28
},
{
2
,
2
,
2
},
{
1
,
1
,
1
},
{
0
,
0
,
0
},
{
0
,
0
,
0
}};
private:
double
atol_
{
1e-5
};
double
rtol_
{
1e-4
};
};
}
// anonymous namespace
TEST
(
Conv3DFwdNDHWC
,
IntegerValues
)
{
using
namespace
std
::
placeholders
;
using
namespace
ck
::
utils
;
namespace
ctl
=
ck
::
tensor_layout
::
convolution
;
using
T
=
float
;
conv
::
ConvParams
params
;
params
.
N_
=
64
;
params
.
num_dim_spatial_
=
3
;
params
.
filter_spatial_lengths_
=
std
::
vector
<
ck
::
index_t
>
{
3
,
3
,
2
};
params
.
input_spatial_lengths_
=
std
::
vector
<
ck
::
index_t
>
{
32
,
32
,
2
};
params
.
conv_filter_strides_
=
std
::
vector
<
ck
::
index_t
>
{
2
,
2
,
2
};
params
.
conv_filter_dilations_
=
std
::
vector
<
ck
::
index_t
>
{
1
,
1
,
1
};
params
.
input_left_pads_
=
std
::
vector
<
ck
::
index_t
>
{
1
,
1
,
1
};
params
.
input_right_pads_
=
std
::
vector
<
ck
::
index_t
>
{
1
,
1
,
1
};
ck
::
utils
::
conv
::
ConvParams
params
{
3
,
4
,
256
,
64
,
{
3
,
3
,
3
},
{
18
,
18
,
18
},
{
1
,
1
,
1
},
{
2
,
2
,
2
},
{
2
,
2
,
2
},
{
2
,
2
,
2
}};
conv
::
ConvFwdOpInstance
<
T
,
T
,
T
,
ctl
::
NDHWC
,
ctl
::
KZYXC
,
ctl
::
NDHWK
>
conv_instance
(
params
);
std
::
vector
<
test
::
conv
::
DeviceConvFwdNoOpPtr
>
conv_ptrs
;
test
::
conv
::
get_test_convolution_fwd_instance
<
3
,
T
,
T
,
T
,
T
>
(
conv_ptrs
);
conv
::
ConvFwdOpInstance
<
T
,
T
,
T
,
ctl
::
NDHWC
,
ctl
::
KZYXC
,
ctl
::
NDHWK
,
ck
::
tensor_operation
::
element_wise
::
PassThrough
,
ck
::
tensor_operation
::
element_wise
::
PassThrough
,
ck
::
tensor_operation
::
element_wise
::
PassThrough
,
FillUniformDistributionIntegerValue
<
T
>
,
FillUniformDistributionIntegerValue
<
T
>>
conv_instance
(
params
,
true
,
FillUniformDistributionIntegerValue
<
T
>
{},
FillUniformDistributionIntegerValue
<
T
>
{});
auto
reference_conv_fwd_fun
=
std
::
bind
(
conv
::
run_reference_convolution_forward
<
3
,
T
,
T
,
T
>
,
params
,
_1
,
_2
,
_3
);
OpInstanceRunEngine
<
T
,
T
,
T
>
run_engine
(
conv_instance
,
reference_conv_fwd_fun
);
return
run_engine
.
Test
(
conv_ptrs
);
run_engine
.
SetAtol
(
1e-5
);
run_engine
.
SetRtol
(
1e-3
);
EXPECT_TRUE
(
run_engine
.
Test
(
conv_ptrs
));
}
}
// anonymous namespace
TEST
(
Conv3DFwdNDHWC
,
TestConv3D
)
TEST
(
Conv3DFwdNDHWC
,
FloatingPointValues
)
{
using
namespace
std
::
placeholders
;
using
namespace
ck
::
utils
;
namespace
ctl
=
ck
::
tensor_layout
::
convolution
;
using
T
=
ck
::
half_t
;
conv
::
ConvParams
params
;
params
.
num_dim_spatial_
=
3
;
params
.
N_
=
2
;
params
.
K_
=
16
;
params
.
C_
=
4
;
params
.
filter_spatial_lengths_
=
std
::
vector
<
ck
::
index_t
>
{
3
,
3
,
3
};
params
.
input_spatial_lengths_
=
std
::
vector
<
ck
::
index_t
>
{
16
,
16
,
16
};
params
.
conv_filter_strides_
=
std
::
vector
<
ck
::
index_t
>
{
1
,
1
,
1
};
params
.
conv_filter_dilations_
=
std
::
vector
<
ck
::
index_t
>
{
1
,
1
,
1
};
params
.
input_left_pads_
=
std
::
vector
<
ck
::
index_t
>
{
1
,
1
,
1
};
params
.
input_right_pads_
=
std
::
vector
<
ck
::
index_t
>
{
1
,
1
,
1
};
ck
::
utils
::
conv
::
ConvParams
params
{
3
,
4
,
256
,
64
,
{
3
,
3
,
3
},
{
18
,
18
,
18
},
{
1
,
1
,
1
},
{
2
,
2
,
2
},
{
2
,
2
,
2
},
{
2
,
2
,
2
}};
std
::
vector
<
test
::
conv
::
DeviceConvFwdNoOpPtr
>
conv_ptrs
;
test
::
conv
::
get_test_convolution_fwd_instance
<
3
>
(
conv_ptrs
);
conv
::
ConvFwdOpInstance
<
float
,
float
,
float
,
ctl
::
NDHWC
,
ctl
::
KZYXC
,
ctl
::
NDHWK
>
conv_instance
(
params
);
test
::
conv
::
get_test_convolution_fwd_instance
<
3
,
T
,
T
,
T
,
float
>
(
conv_ptrs
);
conv
::
ConvFwdOpInstance
<
T
,
T
,
T
,
ctl
::
NDHWC
,
ctl
::
KZYXC
,
ctl
::
NDHWK
,
ck
::
tensor_operation
::
element_wise
::
PassThrough
,
ck
::
tensor_operation
::
element_wise
::
PassThrough
,
ck
::
tensor_operation
::
element_wise
::
PassThrough
,
FillUniformDistribution
<
T
>
,
FillUniformDistribution
<
T
>>
conv_instance
(
params
,
true
,
FillUniformDistribution
<
T
>
{},
FillUniformDistribution
<
T
>
{});
auto
reference_conv_fwd_fun
=
std
::
bind
(
conv
::
run_reference_convolution_forward
<
3
,
float
,
float
,
float
>
,
params
,
_1
,
_2
,
_3
);
OpInstanceRunEngine
<
float
,
float
,
float
>
run_engine
(
conv_instance
,
reference_conv_fwd_fun
);
run_engine
.
SetAtol
(
1e-
5
);
run_engine
.
SetRtol
(
1e-
4
);
auto
reference_conv_fwd_fun
=
std
::
bind
(
conv
::
run_reference_convolution_forward
<
3
,
T
,
T
,
T
>
,
params
,
_1
,
_2
,
_3
);
OpInstanceRunEngine
<
T
,
T
,
T
>
run_engine
(
conv_instance
,
reference_conv_fwd_fun
);
run_engine
.
SetAtol
(
1e-
3
);
run_engine
.
SetRtol
(
1e-
3
);
EXPECT_TRUE
(
run_engine
.
Test
(
conv_ptrs
));
}
...
...
@@ -74,6 +156,7 @@ TEST(Conv3DFwdNDHWC, InputOver2GB)
{
using
PassThrough
=
ck
::
tensor_operation
::
element_wise
::
PassThrough
;
using
namespace
ck
::
utils
;
using
T
=
float
;
// >2GB Input
conv
::
ConvParams
params
;
...
...
@@ -89,8 +172,7 @@ TEST(Conv3DFwdNDHWC, InputOver2GB)
params
.
input_right_pads_
=
std
::
vector
<
ck
::
index_t
>
{
1
,
1
,
1
};
std
::
vector
<
test
::
conv
::
DeviceConvFwdNoOpPtr
>
conv_ptrs
;
test
::
conv
::
get_test_convolution_fwd_instance
<
3
>
(
conv_ptrs
);
test
::
conv
::
get_test_convolution_fwd_instance
<
3
,
T
,
T
,
T
,
T
>
(
conv_ptrs
);
auto
arg
=
conv_ptrs
.
back
()
->
MakeArgumentPointer
(
nullptr
,
nullptr
,
nullptr
,
...
...
@@ -114,6 +196,7 @@ TEST(Conv3DFwdNDHWC, FiltersOver2GB)
{
using
PassThrough
=
ck
::
tensor_operation
::
element_wise
::
PassThrough
;
using
namespace
ck
::
utils
;
using
T
=
float
;
// >2GB Filters
conv
::
ConvParams
params
;
...
...
@@ -129,8 +212,7 @@ TEST(Conv3DFwdNDHWC, FiltersOver2GB)
params
.
input_right_pads_
=
std
::
vector
<
ck
::
index_t
>
{
1
,
1
,
1
};
std
::
vector
<
test
::
conv
::
DeviceConvFwdNoOpPtr
>
conv_ptrs
;
test
::
conv
::
get_test_convolution_fwd_instance
<
3
>
(
conv_ptrs
);
test
::
conv
::
get_test_convolution_fwd_instance
<
3
,
T
,
T
,
T
,
T
>
(
conv_ptrs
);
auto
arg
=
conv_ptrs
.
back
()
->
MakeArgumentPointer
(
nullptr
,
nullptr
,
nullptr
,
...
...
@@ -154,6 +236,7 @@ TEST(Conv3DFwdNDHWC, OutputOver2GB)
{
using
PassThrough
=
ck
::
tensor_operation
::
element_wise
::
PassThrough
;
using
namespace
ck
::
utils
;
using
T
=
float
;
// >2GB Output
conv
::
ConvParams
params
;
...
...
@@ -169,7 +252,7 @@ TEST(Conv3DFwdNDHWC, OutputOver2GB)
params
.
input_right_pads_
=
std
::
vector
<
ck
::
index_t
>
{
2
,
2
,
2
};
std
::
vector
<
test
::
conv
::
DeviceConvFwdNoOpPtr
>
conv_ptrs
;
test
::
conv
::
get_test_convolution_fwd_instance
<
3
>
(
conv_ptrs
);
test
::
conv
::
get_test_convolution_fwd_instance
<
3
,
T
,
T
,
T
,
T
>
(
conv_ptrs
);
auto
arg
=
conv_ptrs
.
back
()
->
MakeArgumentPointer
(
nullptr
,
nullptr
,
nullptr
,
...
...
@@ -189,26 +272,42 @@ TEST(Conv3DFwdNDHWC, OutputOver2GB)
EXPECT_FALSE
(
conv_ptrs
.
back
()
->
IsSupportedArgument
(
arg
.
get
()));
}
TEST
(
Conv3DFwdNDHWC
,
Bf16Instances
)
TEST_F
(
Conv3dFwdNDHWCInstances
,
BF16_default
)
{
EXPECT_TRUE
(
this
->
test_default
<
ck
::
bhalf_t
>
());
}
TEST_F
(
Conv3dFwdNDHWCInstances
,
BF16_filter1x1_stride1_pad0
)
{
EXPECT_TRUE
(
test_conv3d_ndhwc_instances
<
ck
::
bhalf_t
>
(
ck
::
utils
::
conv
::
ConvolutionFwdInstances
<
ck
::
bhalf_t
,
ck
::
bhalf_t
,
ck
::
bhalf_t
>::
Get
<
3
>
()));
EXPECT_TRUE
(
this
->
test_filter1x1_stride1_pad0
<
ck
::
bhalf_t
>
());
}
TEST_F
(
Conv3dFwdNDHWCInstances
,
BF16_filter1x1_pad0
)
{
EXPECT_TRUE
(
this
->
test_filter1x1_pad0
<
ck
::
bhalf_t
>
());
}
TEST
(
Conv3DFwdNDHWC
,
F16Instances
)
TEST_F
(
Conv3dFwdNDHWCInstances
,
F16_default
)
{
EXPECT_TRUE
(
this
->
test_default
<
ck
::
half_t
>
());
}
TEST_F
(
Conv3dFwdNDHWCInstances
,
F16_filter1x1_stride1_pad0
)
{
EXPECT_TRUE
(
test_conv3d_ndhwc_instances
<
ck
::
half_t
>
(
ck
::
utils
::
conv
::
ConvolutionFwdInstances
<
ck
::
half_t
,
ck
::
half_t
,
ck
::
half_t
>::
Get
<
3
>
()));
EXPECT_TRUE
(
this
->
test_filter1x1_stride1_pad0
<
ck
::
half_t
>
());
}
TEST_F
(
Conv3dFwdNDHWCInstances
,
F16_filter1x1_pad0
)
{
EXPECT_TRUE
(
this
->
test_filter1x1_pad0
<
ck
::
half_t
>
());
}
TEST
(
Conv3DFwdNDHWC
,
F32Instances
)
TEST_F
(
Conv3dFwdNDHWCInstances
,
F32_default
)
{
EXPECT_TRUE
(
this
->
test_default
<
float
>
());
}
TEST_F
(
Conv3dFwdNDHWCInstances
,
F32_filter1x1_stride1_pad0
)
{
EXPECT_TRUE
(
this
->
test_filter1x1_stride1_pad0
<
float
>
());
}
TEST_F
(
Conv3dFwdNDHWCInstances
,
F32_filter1x1_pad0
)
{
EXPECT_TRUE
(
test_conv3d_ndhwc_instances
<
float
>
(
ck
::
utils
::
conv
::
ConvolutionFwdInstances
<
float
,
float
,
float
>::
Get
<
3
>
()));
EXPECT_TRUE
(
this
->
test_filter1x1_pad0
<
float
>
());
}
TEST
(
Conv3DFwdNDHWC
,
Int8Instances
)
TEST_F
(
Conv3dFwdNDHWCInstances
,
I8_default
)
{
EXPECT_TRUE
(
this
->
test_default
<
int8_t
>
());
}
TEST_F
(
Conv3dFwdNDHWCInstances
,
I8_filter1x1_stride1_pad0
)
{
EXPECT_TRUE
(
this
->
test_filter1x1_stride1_pad0
<
int8_t
>
());
}
TEST_F
(
Conv3dFwdNDHWCInstances
,
I8_filter1x1_pad0
)
{
EXPECT_TRUE
(
test_conv3d_ndhwc_instances
<
int8_t
>
(
ck
::
utils
::
conv
::
ConvolutionFwdInstances
<
int8_t
,
int8_t
,
int8_t
>::
Get
<
3
>
()));
EXPECT_TRUE
(
this
->
test_filter1x1_pad0
<
int8_t
>
());
}
test/convnd_fwd/conv_util.hpp
View file @
b097be17
#ifndef TEST_CONV_UTIL_HPP
#define TEST_CONV_UTIL_HPP
#pragma once
#include <tuple>
#include "config.hpp"
#include "data_type.hpp"
#include "device_convnd_fwd_xdl_nhwc_kyxc_nhwk.hpp"
#include "element_wise_operation.hpp"
#include "host_tensor.hpp"
#include "sequence.hpp"
namespace
ck
{
namespace
tensor_operation
{
namespace
device
{
using
DeviceConvFwdNoOpPtr
=
DeviceConvFwdPtr
<
element_wise
::
PassThrough
,
element_wise
::
PassThrough
,
element_wise
::
PassThrough
>
;
namespace
device_conv2d_fwd_instance
{
void
add_device_convnd_2d_fwd_xdl_nhwc_kyxc_nhwk_bf16_instances
(
std
::
vector
<
DeviceConvFwdNoOpPtr
>&
);
void
add_device_convnd_2d_fwd_xdl_nhwc_kyxc_nhwk_f16_instances
(
std
::
vector
<
DeviceConvFwdNoOpPtr
>&
);
void
add_device_convnd_2d_fwd_xdl_nhwc_kyxc_nhwk_f32_instances
(
std
::
vector
<
DeviceConvFwdNoOpPtr
>&
);
void
add_device_convnd_2d_fwd_xdl_nhwc_kyxc_nhwk_int8_instances
(
std
::
vector
<
DeviceConvFwdNoOpPtr
>&
);
}
// namespace device_conv2d_fwd_instance
}
// namespace device
}
// namespace tensor_operation
}
// namespace ck
namespace
test
{
namespace
conv
{
...
...
@@ -25,57 +44,128 @@ using DeviceConvFwdNoOpPtr =
static
constexpr
auto
ConvFwdDefault
=
ck
::
tensor_operation
::
device
::
ConvolutionForwardSpecialization
::
Default
;
template
<
ck
::
index_t
SpatialDims
,
typename
InDataType
,
typename
WeiDataType
,
typename
OutDataType
>
template
<
ck
::
index_t
SpatialDims
,
typename
InDataType
,
typename
WeiDataType
,
typename
OutDataType
,
typename
AccDataType
>
using
DeviceConvNDFwdInstance
=
ck
::
tensor_operation
::
device
::
DeviceConvNDFwdXdl_Input_N_Hi_Wi_C_Weight_K_Y_X_C_Output_N_Ho_Wo_K
<
// clang-format off
InDataType
,
//
WeiDataType
,
//
OutDataType
,
//
In
DataType
,
//
Acc
DataType
,
//
Accumulator data type.
InElementOp
,
// Input Elementwise Operation
WeiElementOp
,
// Weights Elementwise Operation
OutElementOp
,
// Output Elementwise Operation
ConvFwdDefault
,
// ConvForwardSpecialization
SpatialDims
,
// SptialDims
64
,
// BlockSize
1
6
,
// MPerBlock
1
6
,
// NPerBlock
256
,
// BlockSize
1
28
,
// MPerBlock
25
6
,
// NPerBlock
4
,
// K0PerBlock
1
,
// K1
16
,
// MPerX
DL
16
,
// NPerX
DL
1
,
// MXdlPerWave
1
,
// NXdlPerWave
S
<
1
,
1
6
,
1
>
,
// ABlockTransferThreadClusterLengths_K0_M_K1
8
,
// K1
32
,
// MPerX
dl
32
,
// NPerX
dl
2
,
// MXdlPerWave
4
,
// NXdlPerWave
S
<
4
,
6
4
,
1
>
,
// ABlockTransferThreadClusterLengths_K0_M_K1
S
<
1
,
0
,
2
>
,
// ABlockTransferThreadClusterArrangeOrder
S
<
1
,
0
,
2
>
,
// ABlockTransferSrcAccessOrder
2
,
// ABlockTransferSrcVectorDim
1
,
// ABlockTransferSrcScalarPerVector
1
,
// ABlockTransferDstScalarPerVector_K1
8
,
// ABlockTransferSrcScalarPerVector
8
,
// ABlockTransferDstScalarPerVector_K1
true
,
// ABlockLdsAddExtraM
S
<
1
,
1
6
,
1
>
,
// BBlockTransferThreadClusterLengths_K0_N_K1
S
<
4
,
6
4
,
1
>
,
// BBlockTransferThreadClusterLengths_K0_N_K1
S
<
1
,
0
,
2
>
,
// BBlockTransferThreadClusterArrangeOrder
S
<
1
,
0
,
2
>
,
// BBlockTransferSrcAccessOrder
2
,
// BBlockTransferSrcVectorDim
1
,
// BBlockTransferSrcScalarPerVector
1
,
// BBlockTransferDstScalarPerVector_K1
true
,
// BBlock
Transfer
AddExtraN
8
,
// BBlockTransferSrcScalarPerVector
8
,
// BBlockTransferDstScalarPerVector_K1
true
,
// BBlock
Lds
AddExtraN
7
,
// CThreadTransferSrcDstVectorDim
1
>
;
// CThreadTransferDstScalarPerVector
1
>
;
// CThreadTransferDstScalarPerVector
// clang-format on
template
<
ck
::
index_t
NDim
,
typename
InDataType
=
float
,
typename
WeiDataType
=
float
,
typename
OutDataType
=
float
>
typename
InDataType
,
typename
WeiDataType
,
typename
OutDataType
,
typename
AccDataType
>
void
get_test_convolution_fwd_instance
(
std
::
vector
<
DeviceConvFwdNoOpPtr
>&
instances
)
{
using
ConvInstanceT
=
DeviceConvNDFwdInstance
<
NDim
,
InDataType
,
WeiDataType
,
OutDataType
>
;
using
ConvInstanceT
=
DeviceConvNDFwdInstance
<
NDim
,
InDataType
,
WeiDataType
,
OutDataType
,
AccDataType
>
;
instances
.
emplace_back
(
std
::
make_unique
<
ConvInstanceT
>
());
}
// TODO (aosewski)
// Temporary solution to get all DeviceConvNDFwdXdl_Input_N_Hi_Wi_C_Weight_K_Y_X_C_Output_N_Ho_Wo_K
// instances. When switched over to DeviceConvNDFwdXdl for 2D remove ConvolutionNDFwdInstances
// structures.
template
<
typename
InDataType
,
typename
WeiDataType
,
typename
OutDataType
>
struct
ConvolutionNDFwdInstances
;
template
<
>
struct
ConvolutionNDFwdInstances
<
float
,
float
,
float
>
{
static
std
::
vector
<
DeviceConvFwdNoOpPtr
>
Get
(
std
::
size_t
num_dim_spatial
)
{
std
::
vector
<
DeviceConvFwdNoOpPtr
>
conv_ptrs
;
if
(
num_dim_spatial
==
2
)
{
ck
::
tensor_operation
::
device
::
device_conv2d_fwd_instance
::
add_device_convnd_2d_fwd_xdl_nhwc_kyxc_nhwk_f32_instances
(
conv_ptrs
);
}
return
conv_ptrs
;
}
};
template
<
>
struct
ConvolutionNDFwdInstances
<
ck
::
half_t
,
ck
::
half_t
,
ck
::
half_t
>
{
static
std
::
vector
<
DeviceConvFwdNoOpPtr
>
Get
(
std
::
size_t
num_dim_spatial
)
{
std
::
vector
<
DeviceConvFwdNoOpPtr
>
conv_ptrs
;
if
(
num_dim_spatial
==
2
)
{
ck
::
tensor_operation
::
device
::
device_conv2d_fwd_instance
::
add_device_convnd_2d_fwd_xdl_nhwc_kyxc_nhwk_f16_instances
(
conv_ptrs
);
}
return
conv_ptrs
;
}
};
template
<
>
struct
ConvolutionNDFwdInstances
<
ck
::
bhalf_t
,
ck
::
bhalf_t
,
ck
::
bhalf_t
>
{
static
std
::
vector
<
DeviceConvFwdNoOpPtr
>
Get
(
std
::
size_t
num_dim_spatial
)
{
std
::
vector
<
DeviceConvFwdNoOpPtr
>
conv_ptrs
;
if
(
num_dim_spatial
==
2
)
{
ck
::
tensor_operation
::
device
::
device_conv2d_fwd_instance
::
add_device_convnd_2d_fwd_xdl_nhwc_kyxc_nhwk_bf16_instances
(
conv_ptrs
);
}
return
conv_ptrs
;
}
};
template
<
>
struct
ConvolutionNDFwdInstances
<
int8_t
,
int8_t
,
int8_t
>
{
static
std
::
vector
<
DeviceConvFwdNoOpPtr
>
Get
(
std
::
size_t
num_dim_spatial
)
{
std
::
vector
<
DeviceConvFwdNoOpPtr
>
conv_ptrs
;
if
(
num_dim_spatial
==
2
)
{
ck
::
tensor_operation
::
device
::
device_conv2d_fwd_instance
::
add_device_convnd_2d_fwd_xdl_nhwc_kyxc_nhwk_int8_instances
(
conv_ptrs
);
}
return
conv_ptrs
;
}
};
}
// namespace conv
}
// namespace test
#endif
test/softmax/CMakeLists.txt
0 → 100644
View file @
b097be17
add_custom_target
(
test_softmax
)
add_gtest_executable
(
test_softmax_fp32 test_softmax_fp32.cpp
)
add_gtest_executable
(
test_softmax_fp16 test_softmax_fp16.cpp
)
target_link_libraries
(
test_softmax_fp32 PRIVATE host_tensor
)
target_link_libraries
(
test_softmax_fp16 PRIVATE host_tensor
)
add_dependencies
(
test_softmax test_softmax_fp32
)
add_dependencies
(
test_softmax test_softmax_fp16
)
\ No newline at end of file
test/softmax/test_softmax_fp16.cpp
0 → 100644
View file @
b097be17
#include "gtest/gtest.h"
#include "test_softmax_util.hpp"
template
<
ck
::
index_t
N
>
using
I
=
ck
::
Number
<
N
>
;
template
<
typename
Tuple
>
class
TestSoftmaxFP16
:
public
ck
::
TestSoftmax
<
Tuple
>
{
};
// clang-format off
using
KernelTypes
=
::
testing
::
Types
<
// InDataType, AccDataType, OutDataType, Rank, NumReduceDim, BlockSize, MThreadClusterSize, KThreadClusterSize, MThreadSliceSize, KThreadSliceSize, InSrcVectorDim, InSrcVectorSize, OutDstVectorSize>
std
::
tuple
<
ck
::
half_t
,
float
,
ck
::
half_t
,
I
<
3
>
,
I
<
1
>
,
I
<
256
>
,
I
<
8
>
,
I
<
32
>
,
I
<
1
>
,
I
<
8
>
,
I
<
1
>
,
I
<
8
>
,
I
<
8
>>
,
std
::
tuple
<
ck
::
half_t
,
float
,
ck
::
half_t
,
I
<
3
>
,
I
<
1
>
,
I
<
256
>
,
I
<
4
>
,
I
<
64
>
,
I
<
1
>
,
I
<
8
>
,
I
<
1
>
,
I
<
8
>
,
I
<
8
>>
,
std
::
tuple
<
ck
::
half_t
,
float
,
ck
::
half_t
,
I
<
3
>
,
I
<
1
>
,
I
<
256
>
,
I
<
2
>
,
I
<
128
>
,
I
<
1
>
,
I
<
8
>
,
I
<
1
>
,
I
<
8
>
,
I
<
8
>>
,
std
::
tuple
<
ck
::
half_t
,
float
,
ck
::
half_t
,
I
<
3
>
,
I
<
1
>
,
I
<
256
>
,
I
<
1
>
,
I
<
256
>
,
I
<
1
>
,
I
<
8
>
,
I
<
1
>
,
I
<
8
>
,
I
<
8
>>
,
std
::
tuple
<
ck
::
half_t
,
float
,
ck
::
half_t
,
I
<
3
>
,
I
<
2
>
,
I
<
256
>
,
I
<
8
>
,
I
<
32
>
,
I
<
1
>
,
I
<
8
>
,
I
<
1
>
,
I
<
8
>
,
I
<
8
>>
,
std
::
tuple
<
ck
::
half_t
,
float
,
ck
::
half_t
,
I
<
3
>
,
I
<
2
>
,
I
<
256
>
,
I
<
4
>
,
I
<
64
>
,
I
<
1
>
,
I
<
8
>
,
I
<
1
>
,
I
<
8
>
,
I
<
8
>>
,
std
::
tuple
<
ck
::
half_t
,
float
,
ck
::
half_t
,
I
<
3
>
,
I
<
2
>
,
I
<
256
>
,
I
<
2
>
,
I
<
128
>
,
I
<
1
>
,
I
<
8
>
,
I
<
1
>
,
I
<
8
>
,
I
<
8
>>
,
std
::
tuple
<
ck
::
half_t
,
float
,
ck
::
half_t
,
I
<
3
>
,
I
<
2
>
,
I
<
256
>
,
I
<
1
>
,
I
<
256
>
,
I
<
1
>
,
I
<
8
>
,
I
<
1
>
,
I
<
8
>
,
I
<
8
>>
>
;
// clang-format on
TYPED_TEST_SUITE
(
TestSoftmaxFP16
,
KernelTypes
);
TYPED_TEST
(
TestSoftmaxFP16
,
Test_FP16
)
{
this
->
Run
();
}
test/softmax/test_softmax_fp32.cpp
0 → 100644
View file @
b097be17
#include "gtest/gtest.h"
#include "test_softmax_util.hpp"
template
<
ck
::
index_t
N
>
using
I
=
ck
::
Number
<
N
>
;
template
<
typename
Tuple
>
class
TestSoftmaxFP32
:
public
ck
::
TestSoftmax
<
Tuple
>
{
};
// clang-format off
using
KernelTypes
=
::
testing
::
Types
<
// InDataType, AccDataType, OutDataType, Rank, NumReduceDim, BlockSize, MThreadClusterSize, KThreadClusterSize, MThreadSliceSize, KThreadSliceSize, InSrcVectorDim, InSrcVectorSize, OutDstVectorSize>
std
::
tuple
<
float
,
float
,
float
,
I
<
3
>
,
I
<
1
>
,
I
<
256
>
,
I
<
8
>
,
I
<
32
>
,
I
<
1
>
,
I
<
4
>
,
I
<
1
>
,
I
<
4
>
,
I
<
4
>>
,
std
::
tuple
<
float
,
float
,
float
,
I
<
3
>
,
I
<
1
>
,
I
<
256
>
,
I
<
4
>
,
I
<
64
>
,
I
<
1
>
,
I
<
4
>
,
I
<
1
>
,
I
<
4
>
,
I
<
4
>>
,
std
::
tuple
<
float
,
float
,
float
,
I
<
3
>
,
I
<
1
>
,
I
<
256
>
,
I
<
2
>
,
I
<
128
>
,
I
<
1
>
,
I
<
4
>
,
I
<
1
>
,
I
<
4
>
,
I
<
4
>>
,
std
::
tuple
<
float
,
float
,
float
,
I
<
3
>
,
I
<
1
>
,
I
<
256
>
,
I
<
1
>
,
I
<
256
>
,
I
<
1
>
,
I
<
4
>
,
I
<
1
>
,
I
<
4
>
,
I
<
4
>>
,
std
::
tuple
<
float
,
float
,
float
,
I
<
3
>
,
I
<
2
>
,
I
<
256
>
,
I
<
8
>
,
I
<
32
>
,
I
<
1
>
,
I
<
4
>
,
I
<
1
>
,
I
<
4
>
,
I
<
4
>>
,
std
::
tuple
<
float
,
float
,
float
,
I
<
3
>
,
I
<
2
>
,
I
<
256
>
,
I
<
4
>
,
I
<
64
>
,
I
<
1
>
,
I
<
4
>
,
I
<
1
>
,
I
<
4
>
,
I
<
4
>>
,
std
::
tuple
<
float
,
float
,
float
,
I
<
3
>
,
I
<
2
>
,
I
<
256
>
,
I
<
2
>
,
I
<
128
>
,
I
<
1
>
,
I
<
4
>
,
I
<
1
>
,
I
<
4
>
,
I
<
4
>>
,
std
::
tuple
<
float
,
float
,
float
,
I
<
3
>
,
I
<
2
>
,
I
<
256
>
,
I
<
1
>
,
I
<
256
>
,
I
<
1
>
,
I
<
4
>
,
I
<
1
>
,
I
<
4
>
,
I
<
4
>>
>
;
// clang-format on
TYPED_TEST_SUITE
(
TestSoftmaxFP32
,
KernelTypes
);
TYPED_TEST
(
TestSoftmaxFP32
,
Test_FP32
)
{
this
->
Run
();
}
test/softmax/test_softmax_util.hpp
0 → 100644
View file @
b097be17
#include <vector>
#include <iostream>
#include "gtest/gtest.h"
#include "config.hpp"
#include "host_tensor.hpp"
#include "check_err.hpp"
#include "number.hpp"
#include "reference_softmax.hpp"
#include "device_softmax.hpp"
namespace
ck
{
template
<
typename
Tuple
>
class
TestSoftmax
:
public
::
testing
::
Test
{
protected:
using
InDataType
=
std
::
tuple_element_t
<
0
,
Tuple
>
;
using
AccDataType
=
std
::
tuple_element_t
<
1
,
Tuple
>
;
using
OutDataType
=
std
::
tuple_element_t
<
2
,
Tuple
>
;
static
constexpr
index_t
Rank
=
std
::
tuple_element_t
<
3
,
Tuple
>
{}.
value
;
static
constexpr
index_t
NumReduceDim
=
std
::
tuple_element_t
<
4
,
Tuple
>
{}.
value
;
static
constexpr
index_t
BlockSize
=
std
::
tuple_element_t
<
5
,
Tuple
>
{}.
value
;
static
constexpr
index_t
MThreadClusterSize
=
std
::
tuple_element_t
<
6
,
Tuple
>
{}.
value
;
static
constexpr
index_t
KThreadClusterSize
=
std
::
tuple_element_t
<
7
,
Tuple
>
{}.
value
;
static
constexpr
index_t
MThreadSliceSize
=
std
::
tuple_element_t
<
8
,
Tuple
>
{}.
value
;
static
constexpr
index_t
KThreadSliceSize
=
std
::
tuple_element_t
<
9
,
Tuple
>
{}.
value
;
static
constexpr
index_t
InSrcVectorDim
=
std
::
tuple_element_t
<
10
,
Tuple
>
{}.
value
;
static
constexpr
index_t
InSrcVectorSize
=
std
::
tuple_element_t
<
11
,
Tuple
>
{}.
value
;
static
constexpr
index_t
OutDstVectorSize
=
std
::
tuple_element_t
<
12
,
Tuple
>
{}.
value
;
using
ReferenceInstance
=
tensor_operation
::
host
::
ReferenceSoftmax
<
InDataType
,
OutDataType
,
AccDataType
>
;
using
DeviceInstance
=
tensor_operation
::
device
::
DeviceSoftmax
<
InDataType
,
AccDataType
,
OutDataType
,
Rank
,
NumReduceDim
,
BlockSize
,
MThreadClusterSize
,
KThreadClusterSize
,
MThreadSliceSize
,
KThreadSliceSize
,
InSrcVectorDim
,
InSrcVectorSize
,
OutDstVectorSize
>
;
TestSoftmax
()
:
ref_instance_invoker_
(
ReferenceInstance
{}.
MakeInvoker
())
{}
void
RunSingle
(
std
::
vector
<
index_t
>
in_length
,
AccDataType
alpha
,
AccDataType
beta
)
{
std
::
vector
<
index_t
>
reduce_dims
(
NumReduceDim
);
std
::
iota
(
reduce_dims
.
begin
(),
reduce_dims
.
end
(),
Rank
-
NumReduceDim
);
Tensor
<
InDataType
>
in
(
in_length
);
Tensor
<
OutDataType
>
out
(
in_length
);
in
.
GenerateTensorValue
(
GeneratorTensor_2
<
InDataType
>
{
-
5
,
5
});
out
.
GenerateTensorValue
(
GeneratorTensor_2
<
OutDataType
>
{
-
5
,
5
});
Tensor
<
OutDataType
>
out_ref
(
out
);
DeviceMem
in_dev
(
sizeof
(
InDataType
)
*
in
.
mDesc
.
GetElementSpace
());
DeviceMem
out_dev
(
sizeof
(
OutDataType
)
*
out
.
mDesc
.
GetElementSpace
());
in_dev
.
ToDevice
(
in
.
mData
.
data
());
out_dev
.
ToDevice
(
out
.
mData
.
data
());
std
::
vector
<
index_t
>
i_in_lengths
(
in
.
mDesc
.
GetLengths
().
begin
(),
in
.
mDesc
.
GetLengths
().
end
());
std
::
vector
<
index_t
>
i_in_strides
(
in
.
mDesc
.
GetStrides
().
begin
(),
in
.
mDesc
.
GetStrides
().
end
());
auto
device_instance
=
DeviceInstance
{};
auto
argument_ptr
=
device_instance
.
MakeArgumentPointer
(
i_in_lengths
,
i_in_strides
,
reduce_dims
,
alpha
,
beta
,
in_dev
.
GetDeviceBuffer
(),
out_dev
.
GetDeviceBuffer
());
if
(
!
device_instance
.
IsSupportedArgument
(
argument_ptr
.
get
()))
{
FAIL
()
<<
"Unsupported argument"
;
}
auto
invoker_ptr
=
device_instance
.
MakeInvokerPointer
();
invoker_ptr
->
Run
(
argument_ptr
.
get
());
ref_instance_invoker_
.
Run
({
in
,
out_ref
,
alpha
,
beta
,
Rank
,
reduce_dims
});
out_dev
.
FromDevice
(
out
.
mData
.
data
());
EXPECT_TRUE
(
ck
::
utils
::
check_err
(
out
.
mData
,
out_ref
.
mData
));
}
void
Run
()
{
for
(
auto
in_length
:
this
->
in_lengths_
)
{
for
(
auto
scale
:
this
->
scales_
)
{
this
->
RunSingle
(
in_length
,
std
::
get
<
0
>
(
scale
),
std
::
get
<
1
>
(
scale
));
}
}
}
std
::
vector
<
std
::
vector
<
index_t
>>
in_lengths_
=
{{
1
,
8
,
128
},
{
2
,
128
,
1024
},
{
3
,
9
,
1032
}};
std
::
vector
<
std
::
tuple
<
AccDataType
,
AccDataType
>>
scales_
=
{{
1
,
0
},
{
2
,
2
},
{
0
,
1
}};
typename
ReferenceInstance
::
Invoker
ref_instance_invoker_
;
};
}
// namespace ck
Prev
1
…
3
4
5
6
7
Next
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
.
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment