Skip to content
GitLab
Menu
Projects
Groups
Snippets
Loading...
Help
Help
Support
Community forum
Keyboard shortcuts
?
Submit feedback
Contribute to GitLab
Sign in / Register
Toggle navigation
Menu
Open sidebar
gaoqiong
composable_kernel
Commits
b097be17
Commit
b097be17
authored
Jun 23, 2022
by
root
Browse files
merge changes for upstream/latest update
parents
8a891bbd
a49115b9
Changes
140
Hide whitespace changes
Inline
Side-by-side
Showing
20 changed files
with
1406 additions
and
127 deletions
+1406
-127
example/19_binary_elementwise/elementwise_add_4d.cpp
example/19_binary_elementwise/elementwise_add_4d.cpp
+1
-2
example/20_convnd_bwd_weight_xdl/CMakeLists.txt
example/20_convnd_bwd_weight_xdl/CMakeLists.txt
+3
-1
example/20_convnd_bwd_weight_xdl/convnd_bwd_weight_xdl.cpp
example/20_convnd_bwd_weight_xdl/convnd_bwd_weight_xdl.cpp
+7
-44
example/20_convnd_bwd_weight_xdl/convnd_bwd_weight_xdl_bf16_splitk.cpp
...nvnd_bwd_weight_xdl/convnd_bwd_weight_xdl_bf16_splitk.cpp
+427
-0
example/21_gemm_layernorm/CMakeLists.txt
example/21_gemm_layernorm/CMakeLists.txt
+1
-0
example/21_gemm_layernorm/gemm_bias_relu_add_layernorm_xdl_fp16.cpp
..._gemm_layernorm/gemm_bias_relu_add_layernorm_xdl_fp16.cpp
+425
-0
example/21_gemm_layernorm/gemm_layernorm_xdl_fp16.cpp
example/21_gemm_layernorm/gemm_layernorm_xdl_fp16.cpp
+21
-20
example/23_softmax/CMakeLists.txt
example/23_softmax/CMakeLists.txt
+1
-0
example/23_softmax/README.md
example/23_softmax/README.md
+18
-0
example/23_softmax/softmax_blockwise.cpp
example/23_softmax/softmax_blockwise.cpp
+255
-0
example/CMakeLists.txt
example/CMakeLists.txt
+2
-1
include/ck/config.hpp
include/ck/config.hpp
+3
-4
include/ck/tensor_description/tensor_adaptor.hpp
include/ck/tensor_description/tensor_adaptor.hpp
+4
-0
include/ck/tensor_description/tensor_descriptor.hpp
include/ck/tensor_description/tensor_descriptor.hpp
+7
-0
include/ck/tensor_operation/gpu/block/blockwise_gemm_xdlops.hpp
...e/ck/tensor_operation/gpu/block/blockwise_gemm_xdlops.hpp
+8
-8
include/ck/tensor_operation/gpu/block/reduction_functions_blockwise.hpp
...sor_operation/gpu/block/reduction_functions_blockwise.hpp
+13
-13
include/ck/tensor_operation/gpu/block/thread_group_tensor_slice_transfer_v7.hpp
...ation/gpu/block/thread_group_tensor_slice_transfer_v7.hpp
+169
-0
include/ck/tensor_operation/gpu/device/device_5ary_elementwise.hpp
...k/tensor_operation/gpu/device/device_5ary_elementwise.hpp
+0
-1
include/ck/tensor_operation/gpu/device/device_base.hpp
include/ck/tensor_operation/gpu/device/device_base.hpp
+7
-1
include/ck/tensor_operation/gpu/device/device_batched_gemm_reduce_xdl_cshuffle.hpp
...on/gpu/device/device_batched_gemm_reduce_xdl_cshuffle.hpp
+34
-32
No files found.
example/19_binary_elementwise/elementwise_add_4d.cpp
View file @
b097be17
...
...
@@ -42,8 +42,7 @@ using ABDataType = F16;
using
CDataType
=
F16
;
using
EltwiseComputeDataType
=
F32
;
using
Add
=
ck
::
tensor_operation
::
binary_element_wise
::
Add
<
EltwiseComputeDataType
,
EltwiseComputeDataType
,
EltwiseComputeDataType
>
;
using
Add
=
ck
::
tensor_operation
::
element_wise
::
Add
;
using
DeviceElementwiseAddInstance
=
ck
::
tensor_operation
::
device
::
DeviceBinaryElementwise
<
ABDataType
,
...
...
example/20_convnd_bwd_weight_xdl/CMakeLists.txt
View file @
b097be17
add_example_executable
(
example_convnd_bwd_weight_xdl convnd_bwd_weight_xdl.cpp
)
target_link_libraries
(
example_convnd_bwd_weight_xdl PRIVATE conv_util
)
\ No newline at end of file
add_example_executable
(
example_convnd_bwd_weight_xdl_bf16_splitk convnd_bwd_weight_xdl_bf16_splitk.cpp
)
target_link_libraries
(
example_convnd_bwd_weight_xdl PRIVATE conv_util
)
target_link_libraries
(
example_convnd_bwd_weight_xdl_bf16_splitk PRIVATE conv_util
)
\ No newline at end of file
example/20_convnd_bwd_weight_xdl/convnd_bwd_weight_xdl.cpp
View file @
b097be17
...
...
@@ -297,52 +297,15 @@ int main(int argc, char* argv[])
split_k
);
// alloc work space
size_t
bwd_weight_workspace_size
=
conv
->
GetWorkSpaceSize
(
argument
.
get
());
float
ave_time
=
0.
f
;
if
(
std
::
is_same
<
InDataType
,
ck
::
bhalf_t
>::
value
&&
split_k
>
1
)
float
ave_time
=
0.
f
;
if
(
!
conv
->
IsSupportedArgument
(
argument
.
get
()))
{
DeviceMem
wei_work_space_device_buf
(
bwd_weight_workspace_size
);
wei_work_space_device_buf
.
SetZero
();
argument
=
conv
->
MakeArgumentPointer
(
static_cast
<
InDataType
*>
(
in_device_buf
.
GetDeviceBuffer
()),
static_cast
<
AccDataType
*>
(
wei_work_space_device_buf
.
GetDeviceBuffer
()),
static_cast
<
OutDataType
*>
(
out_device_buf
.
GetDeviceBuffer
()),
params
.
N_
,
params
.
K_
,
params
.
C_
,
params
.
input_spatial_lengths_
,
params
.
filter_spatial_lengths_
,
output_spatial_lengths
,
params
.
conv_filter_strides_
,
params
.
conv_filter_dilations_
,
params
.
input_left_pads_
,
params
.
input_right_pads_
,
InElementOp
{},
WeiElementOp
{},
OutElementOp
{},
split_k
);
if
(
!
conv
->
IsSupportedArgument
(
argument
.
get
()))
{
std
::
cout
<<
"wrong! device_conv with the specified compilation parameters does "
"not support this Conv problem"
<<
std
::
endl
;
return
1
;
}
ave_time
=
invoker
->
Run
(
argument
.
get
(),
StreamConfig
{
nullptr
,
time_kernel
});
}
else
{
if
(
!
conv
->
IsSupportedArgument
(
argument
.
get
()))
{
std
::
cout
<<
"wrong! device_conv with the specified compilation parameters does "
"not support this Conv problem"
<<
std
::
endl
;
return
1
;
}
ave_time
=
invoker
->
Run
(
argument
.
get
(),
StreamConfig
{
nullptr
,
time_kernel
});
std
::
cout
<<
"wrong! device_conv with the specified compilation parameters does "
"not support this Conv problem"
<<
std
::
endl
;
return
1
;
}
ave_time
=
invoker
->
Run
(
argument
.
get
(),
StreamConfig
{
nullptr
,
time_kernel
});
std
::
size_t
flop
=
ck
::
utils
::
conv
::
get_flops
(
params
.
N_
,
params
.
C_
,
params
.
K_
,
params
.
filter_spatial_lengths_
,
output_spatial_lengths
);
...
...
example/20_convnd_bwd_weight_xdl/convnd_bwd_weight_xdl_bf16_splitk.cpp
0 → 100644
View file @
b097be17
#include <iostream>
#include <numeric>
#include <initializer_list>
#include <cstdlib>
#include <stdlib.h>
#include <half.hpp>
#include "check_err.hpp"
#include "conv_util.hpp"
#include "config.hpp"
#include "print.hpp"
#include "device.hpp"
#include "host_tensor.hpp"
#include "host_tensor_generator.hpp"
#include "device_tensor.hpp"
#include "tensor_layout.hpp"
#include "element_wise_operation.hpp"
#include "device_unary_elementwise.hpp"
#include "device_convnd_backward_weight_xdl_c_shuffle_nhwc_kyxc_nhwk.hpp"
#include "reference_conv_backward_weight.hpp"
using
InDataType
=
ck
::
bhalf_t
;
using
WeiDataType
=
ck
::
bhalf_t
;
using
OutDataType
=
ck
::
bhalf_t
;
using
AccDataType
=
float
;
template
<
ck
::
index_t
...
Is
>
using
S
=
ck
::
Sequence
<
Is
...
>
;
using
InElementOp
=
ck
::
tensor_operation
::
element_wise
::
PassThrough
;
using
WeiElementOp
=
ck
::
tensor_operation
::
element_wise
::
PassThrough
;
using
OutElementOp
=
ck
::
tensor_operation
::
element_wise
::
PassThrough
;
using
UnaryTypeConvert
=
ck
::
tensor_operation
::
element_wise
::
UnaryTypeConvert
<
ck
::
bhalf_t
,
float
>
;
using
DeviceUnaryElementwiseTypeConvertInstance
=
ck
::
tensor_operation
::
device
::
DeviceUnaryElementwise
<
AccDataType
,
WeiDataType
,
UnaryTypeConvert
,
1
,
4
>
;
static
constexpr
auto
ConvBwdWeightDefault
=
ck
::
tensor_operation
::
device
::
ConvolutionBackwardWeightSpecialization
::
Default
;
using
DeviceConvBwdWeightBasePtr
=
ck
::
tensor_operation
::
device
::
DeviceConvBwdWeightPtr
<
InElementOp
,
WeiElementOp
,
OutElementOp
>
;
// clang-format off
template
<
ck
::
index_t
NumDimSpatial
>
using
DeviceConvndBwdWeightInstance_bf16_splitk
=
ck
::
tensor_operation
::
device
::
DeviceConvndBwdWeightXdl_C_Shuffle_Input_N_Hi_Wi_C_Weight_K_Y_X_C_Output_N_Ho_Wo_K
<
InDataType
,
// InDataType
AccDataType
,
// WeiDataType
OutDataType
,
// OutDataType
AccDataType
,
// AccDataType
InElementOp
,
// InElementwiseOperation
WeiElementOp
,
// WeiElementwiseOperation
OutElementOp
,
// OutElementwiseOperation
ConvBwdWeightDefault
,
// ConvolutionBackwardWeightSpecialization
NumDimSpatial
,
// NumDimSpatial
256
,
// BlockSize
128
,
// MPerBlock
128
,
// NPerBlock
4
,
// K0PerBlock
8
,
// K1
32
,
// MPerXdl
32
,
// NPerXdl
2
,
// MXdlPerWave
2
,
// NXdlPerWave
S
<
1
,
4
,
16
,
4
>
,
// ABlockTransferThreadClusterLengths_K0_M_K1
S
<
0
,
3
,
1
,
2
>
,
// ABlockTransferThreadClusterArrangeOrder
S
<
0
,
2
,
1
,
3
>
,
// ABlockTransferSrcAccessOrder
2
,
// ABlockTransferSrcVectorDim
8
,
// ABlockTransferSrcScalarPerVector
2
,
// ABlockTransferDstScalarPerVector_K1
true
,
// ABlockLdsAddExtraM
S
<
1
,
4
,
16
,
4
>
,
// BBlockTransferThreadClusterLengths_K0_N_K1
S
<
0
,
3
,
1
,
2
>
,
// BBlockTransferThreadClusterArrangeOrder
S
<
0
,
2
,
1
,
3
>
,
// BBlockTransferSrcAccessOrder
2
,
// BBlockTransferSrcVectorDim
8
,
// BBlockTransferSrcScalarPerVector
2
,
// BBlockTransferDstScalarPerVector_K1
true
,
// BBlockLdsAddExtraN
1
,
// CShuffleMXdlPerWavePerShuffle
1
,
// CShuffleNXdlPerWavePerShuffle
S
<
1
,
32
,
1
,
4
>
,
// CBlockTransferClusterLengths_MBlock_MPerBlock_NBlock_NPerBlock
4
>
;
// CBlockTransferScalarPerVector_NWaveNPerXdl
// clang-format on
template
<
ck
::
index_t
NumDimSpatial
>
using
ReferenceConvBwdWeightInstance
=
ck
::
tensor_operation
::
host
::
ReferenceConvBwdWeight
<
InDataType
,
WeiDataType
,
OutDataType
,
InElementOp
,
WeiElementOp
,
OutElementOp
,
NumDimSpatial
>
;
template
<
typename
HostTensorB
,
typename
HostTensorA
,
typename
Functor
>
void
host_elementwise
(
HostTensorB
&
B
,
const
HostTensorA
&
A
,
const
std
::
vector
<
std
::
size_t
>&
shape
,
Functor
functor
)
{
size_t
tensor_size
=
std
::
accumulate
(
shape
.
begin
(),
shape
.
end
(),
1
,
std
::
multiplies
<
int
>
{});
std
::
cout
<<
__LINE__
<<
":"
<<
tensor_size
<<
", "
<<
A
.
mData
[
0
]
<<
std
::
endl
;
for
(
std
::
size_t
n
=
0
;
n
<
tensor_size
;
++
n
)
{
B
.
mData
[
n
]
=
functor
(
A
.
mData
[
n
]);
}
}
void
print_use_msg
()
{
std
::
cout
<<
"arg1: verification (0=no, 1=yes)
\n
"
<<
"arg2: initialization (0=no init, 1=random value, 2= init to 1 )
\n
"
<<
"arg3: time kernel (0=n0, 1=yes)
\n
"
<<
"arg4: is show log (0=no, 1=yes)
\n
"
<<
"arg5: split-k : in this example split-k must be larger than 1
\n
"
<<
"arg6: N spatial dimensions (default 2)
\n
"
<<
"Following arguments (depending on number of spatial dims):
\n
"
<<
" N, K, C,
\n
"
<<
" <filter spatial dimensions>, (ie Y, X for 2D)
\n
"
<<
" <input image spatial dimensions>, (ie Hi, Wi for 2D)
\n
"
<<
" <strides>, (ie Sy, Sx for 2D)
\n
"
<<
" <dilations>, (ie Dy, Dx for 2D)
\n
"
<<
" <left padding>, (ie LeftPy, LeftPx for 2D)
\n
"
<<
" <right padding>, (ie RightPy, RightPx for 2D)
\n
"
<<
std
::
endl
;
}
ck
::
utils
::
conv
::
ConvParams
parse_conv_params
(
int
num_dim_spatial
,
char
*
argv
[])
{
// (N, K, C) + num_dim_spatial * 6 (filter, input, strides, dilations, pad left, pad right)
ck
::
utils
::
conv
::
ConvParams
params
;
int
arg_idx
=
7
;
params
.
num_dim_spatial_
=
num_dim_spatial
;
params
.
N_
=
std
::
stoi
(
argv
[
arg_idx
++
]);
params
.
K_
=
std
::
stoi
(
argv
[
arg_idx
++
]);
params
.
C_
=
std
::
stoi
(
argv
[
arg_idx
++
]);
params
.
filter_spatial_lengths_
.
resize
(
num_dim_spatial
);
for
(
int
i
=
0
;
i
<
num_dim_spatial
;
++
i
)
{
params
.
filter_spatial_lengths_
[
i
]
=
std
::
stoi
(
argv
[
arg_idx
++
]);
}
params
.
input_spatial_lengths_
.
resize
(
num_dim_spatial
);
for
(
int
i
=
0
;
i
<
num_dim_spatial
;
++
i
)
{
params
.
input_spatial_lengths_
[
i
]
=
std
::
stoi
(
argv
[
arg_idx
++
]);
}
params
.
conv_filter_strides_
.
resize
(
num_dim_spatial
);
for
(
int
i
=
0
;
i
<
num_dim_spatial
;
++
i
)
{
params
.
conv_filter_strides_
[
i
]
=
std
::
stoi
(
argv
[
arg_idx
++
]);
}
params
.
conv_filter_dilations_
.
resize
(
num_dim_spatial
);
for
(
int
i
=
0
;
i
<
num_dim_spatial
;
++
i
)
{
params
.
conv_filter_dilations_
[
i
]
=
std
::
stoi
(
argv
[
arg_idx
++
]);
}
params
.
input_left_pads_
.
resize
(
num_dim_spatial
);
for
(
int
i
=
0
;
i
<
num_dim_spatial
;
++
i
)
{
params
.
input_left_pads_
[
i
]
=
std
::
stoi
(
argv
[
arg_idx
++
]);
}
params
.
input_right_pads_
.
resize
(
num_dim_spatial
);
for
(
int
i
=
0
;
i
<
num_dim_spatial
;
++
i
)
{
params
.
input_right_pads_
[
i
]
=
std
::
stoi
(
argv
[
arg_idx
++
]);
}
return
params
;
}
DeviceConvBwdWeightBasePtr
get_conv_instance
(
int
num_dim_spatial
)
{
switch
(
num_dim_spatial
)
{
case
3
:
{
return
std
::
make_unique
<
DeviceConvndBwdWeightInstance_bf16_splitk
<
3
>>
();
}
case
2
:
{
return
std
::
make_unique
<
DeviceConvndBwdWeightInstance_bf16_splitk
<
2
>>
();
}
case
1
:
{
return
std
::
make_unique
<
DeviceConvndBwdWeightInstance_bf16_splitk
<
1
>>
();
}
default:
{
throw
std
::
runtime_error
(
"Unsupported number of spatial dimensions provided!"
);
}
}
}
int
main
(
int
argc
,
char
*
argv
[])
{
bool
do_verification
=
true
;
int
init_method
=
1
;
bool
time_kernel
=
false
;
int
num_dim_spatial
=
2
;
int
do_log
=
0
;
int
split_k
=
2
;
ck
::
utils
::
conv
::
ConvParams
params
;
params
.
C_
=
128
;
if
(
argc
==
6
)
{
do_verification
=
std
::
stoi
(
argv
[
1
]);
init_method
=
std
::
stoi
(
argv
[
2
]);
time_kernel
=
std
::
stoi
(
argv
[
3
]);
do_log
=
std
::
stoi
(
argv
[
4
]);
split_k
=
std
::
stoi
(
argv
[
5
]);
}
else
if
(
argc
>
6
)
{
do_verification
=
std
::
stoi
(
argv
[
1
]);
init_method
=
std
::
stoi
(
argv
[
2
]);
time_kernel
=
std
::
stoi
(
argv
[
3
]);
do_log
=
std
::
stoi
(
argv
[
4
]);
split_k
=
std
::
stoi
(
argv
[
5
]);
num_dim_spatial
=
std
::
stoi
(
argv
[
6
]);
// check args number
int
conv_args
=
3
+
num_dim_spatial
*
6
;
int
cmdline_nargs
=
conv_args
+
7
;
if
(
cmdline_nargs
!=
argc
)
{
print_use_msg
();
exit
(
1
);
}
params
=
parse_conv_params
(
num_dim_spatial
,
argv
);
}
else
if
(
argc
!=
1
)
{
print_use_msg
();
exit
(
1
);
}
if
(
split_k
<=
1
)
{
print_use_msg
();
exit
(
1
);
}
std
::
vector
<
std
::
size_t
>
input_dims
{
static_cast
<
std
::
size_t
>
(
params
.
N_
),
static_cast
<
std
::
size_t
>
(
params
.
C_
)};
input_dims
.
insert
(
std
::
end
(
input_dims
),
std
::
begin
(
params
.
input_spatial_lengths_
),
std
::
end
(
params
.
input_spatial_lengths_
));
std
::
vector
<
std
::
size_t
>
filter_dims
{
static_cast
<
std
::
size_t
>
(
params
.
K_
),
static_cast
<
std
::
size_t
>
(
params
.
C_
)};
filter_dims
.
insert
(
std
::
end
(
filter_dims
),
std
::
begin
(
params
.
filter_spatial_lengths_
),
std
::
end
(
params
.
filter_spatial_lengths_
));
const
std
::
vector
<
ck
::
index_t
>&
output_spatial_lengths
=
params
.
GetOutputSpatialLengths
();
std
::
vector
<
std
::
size_t
>
output_dims
{
static_cast
<
std
::
size_t
>
(
params
.
N_
),
static_cast
<
std
::
size_t
>
(
params
.
K_
)};
output_dims
.
insert
(
std
::
end
(
output_dims
),
std
::
begin
(
output_spatial_lengths
),
std
::
end
(
output_spatial_lengths
));
Tensor
<
InDataType
>
in_n_c_hi_wi
(
ck
::
utils
::
conv
::
get_input_host_tensor_descriptor
(
input_dims
,
num_dim_spatial
));
Tensor
<
WeiDataType
>
wei_k_c_y_x_host_result
(
ck
::
utils
::
conv
::
get_filters_host_tensor_descriptor
(
filter_dims
,
num_dim_spatial
));
Tensor
<
WeiDataType
>
wei_k_c_y_x_device_result
(
ck
::
utils
::
conv
::
get_filters_host_tensor_descriptor
(
filter_dims
,
num_dim_spatial
));
Tensor
<
OutDataType
>
out_n_k_ho_wo
(
ck
::
utils
::
conv
::
get_output_host_tensor_descriptor
(
output_dims
,
num_dim_spatial
));
std
::
cout
<<
"in_n_c_hi_wi: "
<<
in_n_c_hi_wi
.
mDesc
<<
std
::
endl
;
std
::
cout
<<
"wei_k_c_y_x: "
<<
wei_k_c_y_x_device_result
.
mDesc
<<
std
::
endl
;
std
::
cout
<<
"out_n_k_ho_wo: "
<<
out_n_k_ho_wo
.
mDesc
<<
std
::
endl
;
std
::
cout
<<
"in_n_c_hi_wi: "
<<
in_n_c_hi_wi
.
mDesc
<<
std
::
endl
;
std
::
cout
<<
"wei_k_c_y_x: "
<<
wei_k_c_y_x_host_result
.
mDesc
<<
std
::
endl
;
std
::
cout
<<
"out_n_k_ho_wo: "
<<
out_n_k_ho_wo
.
mDesc
<<
std
::
endl
;
switch
(
init_method
)
{
case
0
:
break
;
case
1
:
out_n_k_ho_wo
.
GenerateTensorValue
(
GeneratorTensor_2
<
OutDataType
>
{
-
2
,
2
});
in_n_c_hi_wi
.
GenerateTensorValue
(
GeneratorTensor_2
<
InDataType
>
{
-
2
,
2
});
break
;
default:
out_n_k_ho_wo
.
GenerateTensorValue
(
GeneratorTensor_1
<
OutDataType
>
{
1
});
in_n_c_hi_wi
.
GenerateTensorValue
(
GeneratorTensor_1
<
InDataType
>
{
1
});
}
DeviceMem
in_device_buf
(
sizeof
(
InDataType
)
*
in_n_c_hi_wi
.
mDesc
.
GetElementSpace
());
DeviceMem
wei_device_buf
(
sizeof
(
WeiDataType
)
*
wei_k_c_y_x_device_result
.
mDesc
.
GetElementSpace
());
DeviceMem
out_device_buf
(
sizeof
(
OutDataType
)
*
out_n_k_ho_wo
.
mDesc
.
GetElementSpace
());
in_device_buf
.
ToDevice
(
in_n_c_hi_wi
.
mData
.
data
());
out_device_buf
.
ToDevice
(
out_n_k_ho_wo
.
mData
.
data
());
// reset input to zero
wei_device_buf
.
SetZero
();
// do GEMM
auto
conv
=
get_conv_instance
(
num_dim_spatial
);
auto
invoker
=
conv
->
MakeInvokerPointer
();
auto
argument
=
conv
->
MakeArgumentPointer
(
static_cast
<
InDataType
*>
(
in_device_buf
.
GetDeviceBuffer
()),
static_cast
<
WeiDataType
*>
(
wei_device_buf
.
GetDeviceBuffer
()),
static_cast
<
OutDataType
*>
(
out_device_buf
.
GetDeviceBuffer
()),
params
.
N_
,
params
.
K_
,
params
.
C_
,
params
.
input_spatial_lengths_
,
params
.
filter_spatial_lengths_
,
output_spatial_lengths
,
params
.
conv_filter_strides_
,
params
.
conv_filter_dilations_
,
params
.
input_left_pads_
,
params
.
input_right_pads_
,
InElementOp
{},
WeiElementOp
{},
OutElementOp
{},
split_k
);
// alloc work space
size_t
bwd_weight_workspace_size
=
conv
->
GetWorkSpaceSize
(
argument
.
get
());
if
(
bwd_weight_workspace_size
<=
0
)
{
print_use_msg
();
exit
(
1
);
}
float
conv_ave_time
=
0.
f
;
DeviceMem
wei_work_space_device_buf
(
bwd_weight_workspace_size
);
wei_work_space_device_buf
.
SetZero
();
conv
->
SetWorkSpacePointer
(
argument
.
get
(),
wei_work_space_device_buf
.
GetDeviceBuffer
());
if
(
!
conv
->
IsSupportedArgument
(
argument
.
get
()))
{
std
::
cout
<<
"wrong! device_conv with the specified compilation parameters does "
"not support this Conv problem"
<<
std
::
endl
;
return
1
;
}
conv_ave_time
=
invoker
->
Run
(
argument
.
get
(),
StreamConfig
{
nullptr
,
time_kernel
});
std
::
size_t
flop
=
ck
::
utils
::
conv
::
get_flops
(
params
.
N_
,
params
.
C_
,
params
.
K_
,
params
.
filter_spatial_lengths_
,
output_spatial_lengths
);
std
::
size_t
num_btype
=
ck
::
utils
::
conv
::
get_btype
<
InDataType
,
WeiDataType
,
OutDataType
>
(
params
.
N_
,
params
.
C_
,
params
.
K_
,
params
.
input_spatial_lengths_
,
params
.
filter_spatial_lengths_
,
output_spatial_lengths
);
float
tflops
=
static_cast
<
float
>
(
flop
)
/
1.E9
/
conv_ave_time
;
float
gb_per_sec
=
num_btype
/
1.E6
/
conv_ave_time
;
std
::
cout
<<
"Perf: conv: "
<<
conv_ave_time
<<
" ms, "
<<
tflops
<<
" TFlops, "
<<
gb_per_sec
<<
" GB/s"
<<
std
::
endl
;
if
(
do_verification
)
{
auto
verify_f
=
[
&
](
const
auto
&
ref_conv
)
{
auto
ref_invoker
=
ref_conv
.
MakeInvoker
();
auto
ref_argument
=
ref_conv
.
MakeArgument
(
in_n_c_hi_wi
,
wei_k_c_y_x_host_result
,
out_n_k_ho_wo
,
params
.
conv_filter_strides_
,
params
.
conv_filter_dilations_
,
params
.
input_left_pads_
,
params
.
input_right_pads_
,
InElementOp
{},
WeiElementOp
{},
OutElementOp
{});
ref_invoker
.
Run
(
ref_argument
);
wei_device_buf
.
FromDevice
(
wei_k_c_y_x_device_result
.
mData
.
data
());
if
(
do_log
)
{
LogRangeAsType
<
float
>
(
std
::
cout
<<
"out: "
,
out_n_k_ho_wo
.
mData
,
","
)
<<
std
::
endl
;
LogRangeAsType
<
float
>
(
std
::
cout
<<
"in : "
,
in_n_c_hi_wi
.
mData
,
","
)
<<
std
::
endl
;
LogRangeAsType
<
float
>
(
std
::
cout
<<
"wei_device(after): "
,
wei_k_c_y_x_device_result
.
mData
,
","
)
<<
std
::
endl
;
LogRangeAsType
<
float
>
(
std
::
cout
<<
"wei_host : "
,
wei_k_c_y_x_host_result
.
mData
,
","
)
<<
std
::
endl
;
}
return
ck
::
utils
::
check_err
(
wei_k_c_y_x_device_result
.
mData
,
wei_k_c_y_x_host_result
.
mData
)
?
0
:
1
;
};
switch
(
num_dim_spatial
)
{
case
3
:
{
auto
ref_conv
=
ReferenceConvBwdWeightInstance
<
3
>
();
verify_f
(
ref_conv
);
break
;
}
case
2
:
{
auto
ref_conv
=
ReferenceConvBwdWeightInstance
<
2
>
();
verify_f
(
ref_conv
);
break
;
}
case
1
:
{
auto
ref_conv
=
ReferenceConvBwdWeightInstance
<
1
>
();
verify_f
(
ref_conv
);
break
;
}
default:
{
throw
std
::
runtime_error
(
"Unsupported number of spatial dimensions provided!"
);
}
}
}
return
0
;
}
example/21_gemm_layernorm/CMakeLists.txt
View file @
b097be17
add_example_executable
(
example_gemm_bias_relu_add_layernorm_xdl_fp16 gemm_bias_relu_add_layernorm_xdl_fp16.cpp
)
add_example_executable
(
example_gemm_layernorm_xdl_fp16 gemm_layernorm_xdl_fp16.cpp
)
example/21_gemm_layernorm/gemm_bias_relu_add_layernorm_xdl_fp16.cpp
0 → 100644
View file @
b097be17
#include <iostream>
#include <numeric>
#include <initializer_list>
#include <cstdlib>
#include "check_err.hpp"
#include "config.hpp"
#include "device.hpp"
#include "host_tensor.hpp"
#include "host_tensor_generator.hpp"
#include "device_tensor.hpp"
#include "device_5ary_elementwise.hpp"
#include "device_gemm_bias_add_reduce_xdl_cshuffle.hpp"
#include "element_wise_operation.hpp"
#include "reference_gemm.hpp"
#include "gemm_specialization.hpp"
template
<
ck
::
index_t
...
Is
>
using
S
=
ck
::
Sequence
<
Is
...
>
;
using
F16
=
ck
::
half_t
;
using
F32
=
float
;
using
Row
=
ck
::
tensor_layout
::
gemm
::
RowMajor
;
using
Col
=
ck
::
tensor_layout
::
gemm
::
ColumnMajor
;
using
ADataType
=
F16
;
using
BDataType
=
F16
;
using
CDataType
=
F16
;
using
C0DataType
=
F32
;
using
C1DataType
=
F16
;
using
GemmAccDataType
=
F32
;
using
ReduceAccDataType
=
F32
;
using
DDataType
=
F32
;
using
DPtrsGlobal
=
ck
::
Tuple
<
DDataType
*
,
DDataType
*>
;
using
GammaDataType
=
F16
;
using
BetaDataType
=
F16
;
using
LayerNormOutDataType
=
F16
;
using
NormalizeComputeDataType
=
F32
;
using
ALayout
=
ck
::
tensor_layout
::
gemm
::
RowMajor
;
using
BLayout
=
ck
::
tensor_layout
::
gemm
::
ColumnMajor
;
using
CLayout
=
ck
::
tensor_layout
::
gemm
::
RowMajor
;
using
PassThrough
=
ck
::
tensor_operation
::
element_wise
::
PassThrough
;
using
AElementOp
=
PassThrough
;
using
BElementOp
=
PassThrough
;
using
CElementOp
=
ck
::
tensor_operation
::
element_wise
::
Relu
;
using
C1ElementOp
=
PassThrough
;
using
ReduceSumOp
=
ck
::
reduce
::
Add
;
using
DxsReduceOp
=
ck
::
Tuple
<
ReduceSumOp
,
ReduceSumOp
>
;
using
UnaryIdenticElementOp
=
ck
::
tensor_operation
::
element_wise
::
PassThrough
;
using
UnaryDivElementOp
=
ck
::
tensor_operation
::
element_wise
::
UnaryDivide
;
using
UnarySquareElementOp
=
ck
::
tensor_operation
::
element_wise
::
UnarySquare
;
using
DxsInElementOps
=
ck
::
Tuple
<
UnaryIdenticElementOp
,
UnarySquareElementOp
>
;
using
DxsOutElementOps
=
ck
::
Tuple
<
UnaryDivElementOp
,
UnaryDivElementOp
>
;
using
DxsGlobalMemOp
=
ck
::
InMemoryDataOperationEnumSequence
<
ck
::
InMemoryDataOperationEnum
::
AtomicAdd
,
ck
::
InMemoryDataOperationEnum
::
AtomicAdd
>
;
static
constexpr
auto
GemmSpecialization
=
ck
::
tensor_operation
::
device
::
GemmSpecialization
::
Default
;
// clang-format off
using
DeviceGemmBiasAddReduceInstance
=
ck
::
tensor_operation
::
device
::
DeviceGemmBiasAddReduce_Xdl_CShuffle
//######| ALayout| BLayout| CLayout|AData| BData| CData|C0Data|C1Data| GemmAcc| CShuffle| ReduceAcc| DData| A| B| C| C1| Dxs| DxsInEleOp| DxsAccEleOp| D| GEMM| NumGemmK| Block| MPer| NPer| KPer| AK1| BK1| MPer| NPer| MXdl| NXdl| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockLds| BBlockTransfer| BBlockTransfer| BBlockTransfer| BlockTransfer| BBlockTransfer| BBlockTransfer| BBlockLds| CShuffle| CShuffle| CBlockTransferClusterLengths| CBlockTransfer| CReduce| CReduceThreadLds2VGprCopy| CReduceThreadVgpr2GlobalCopy|
//######| | | | Type| Type| Type| Type| Type| DataType| DataType| DataType| Type Tuple| Elementwise| Elementwise| Elementwise| Elementwise| Reduce| | | MemoryData| Spacialization| Prefetch| Size| Block| Block| Block| | | XDL| XDL| Per| Per| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| ExtraM| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| ExtraN| MXdlPerWave| NXdlPerWave| _MBlock_MPerBlock| ScalarPerVector| ThreadClusterLengths| SrcDstScalarPerVector| SrcDstScalarPerVector|
//######| | | | | | | | | | | | | Operation| Operation| Operation| Operation| Operation| | | Operation| | Stage| | | | | | | | | Wave| Wave| Lengths_K0_M_K1| ArrangeOrder| | | PerVector| PerVector_K1| | Lengths_K0_N_K1| ArrangeOrder| | | PerVector| PerVector_K1| | PerShuffle| PerShuffle| _NBlock_NPerBlock| _NPerBlock| _MPerBlock_NPerBlock| _NPerBlock| _MPerBlock|
//######| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
<
Row
,
Col
,
Row
,
F16
,
F16
,
F16
,
F32
,
F16
,
F32
,
F32
,
F32
,
DPtrsGlobal
,
AElementOp
,
BElementOp
,
CElementOp
,
C1ElementOp
,
DxsReduceOp
,
DxsInElementOps
,
DxsOutElementOps
,
DxsGlobalMemOp
,
GemmSpecialization
,
1
,
256
,
256
,
128
,
32
,
8
,
8
,
32
,
32
,
4
,
2
,
S
<
4
,
64
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
8
,
8
,
1
,
S
<
4
,
64
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
8
,
8
,
1
,
1
,
1
,
S
<
1
,
32
,
1
,
8
>
,
8
,
S
<
64
,
4
>
,
4
,
1
>
;
// clang-format on
using
ReferenceGemmInstance
=
ck
::
tensor_operation
::
host
::
ReferenceGemm
<
ADataType
,
BDataType
,
CDataType
,
GemmAccDataType
,
AElementOp
,
BElementOp
,
PassThrough
>
;
using
NormalizeFunctor
=
ck
::
tensor_operation
::
element_wise
::
Normalize
;
// A:x, B:E[x], C:E[x^2], D:Gamma, E:Beta , F:y
using
DeviceNormalizeInstance
=
ck
::
tensor_operation
::
device
::
Device5AryElementwise
<
CDataType
,
DDataType
,
DDataType
,
GammaDataType
,
BetaDataType
,
LayerNormOutDataType
,
NormalizeComputeDataType
,
NormalizeFunctor
,
2
,
8
,
8
,
// scalarPerVector: gemm_out
1
,
// scalarPerVector: reduce_mean
1
,
// scalarPerVector: reduce_mean_square
8
,
// scalarPerVector: Gamma
8
,
// scalarPerVector: Beta
8
>
;
// scalarPerVector: LayerNorm_out
auto
f_host_tensor_descriptor1d
=
[](
std
::
size_t
len
,
std
::
size_t
stride
)
{
return
HostTensorDescriptor
(
std
::
vector
<
std
::
size_t
>
({
len
}),
std
::
vector
<
std
::
size_t
>
({
stride
}));
};
auto
f_host_tensor_descriptor2d
=
[](
std
::
size_t
row
,
std
::
size_t
col
,
std
::
size_t
stride
,
auto
layout
)
{
if
(
std
::
is_same
<
decltype
(
layout
),
ck
::
tensor_layout
::
gemm
::
RowMajor
>::
value
)
{
return
HostTensorDescriptor
(
std
::
vector
<
std
::
size_t
>
({
row
,
col
}),
std
::
vector
<
std
::
size_t
>
({
stride
,
1
}));
}
else
{
return
HostTensorDescriptor
(
std
::
vector
<
std
::
size_t
>
({
row
,
col
}),
std
::
vector
<
std
::
size_t
>
({
1
,
stride
}));
}
};
template
<
typename
CDataType
,
typename
DDataType
,
typename
AccDataType
,
typename
C0DataType
,
typename
C1DataType
,
typename
A_functor
,
typename
B_functor
,
typename
C_functor
,
typename
C1_functor
>
void
host_gemm_layernorm
(
Tensor
<
LayerNormOutDataType
>&
out_m_n
,
const
Tensor
<
ADataType
>&
a_m_k
,
const
Tensor
<
ADataType
>&
b_k_n
,
const
Tensor
<
C0DataType
>&
bias_n
,
const
Tensor
<
C1DataType
>&
c1_m_n
,
const
Tensor
<
GammaDataType
>&
gamma_n
,
const
Tensor
<
GammaDataType
>&
beta_n
,
A_functor
a_element_op
,
B_functor
b_element_op
,
C_functor
c_element_op
,
C1_functor
c1_element_op
,
int
M
,
int
N
)
{
int
StrideC
=
N
;
Tensor
<
CDataType
>
c_m_n
(
f_host_tensor_descriptor2d
(
M
,
N
,
StrideC
,
CLayout
{}));
Tensor
<
DDataType
>
mean_m
(
f_host_tensor_descriptor1d
(
M
,
1
));
Tensor
<
DDataType
>
meanSquare_m
(
f_host_tensor_descriptor1d
(
M
,
1
));
auto
averageOpInst
=
UnaryDivElementOp
{
N
};
auto
ref_gemm
=
ReferenceGemmInstance
{};
auto
ref_invoker
=
ref_gemm
.
MakeInvoker
();
auto
ref_argument
=
ref_gemm
.
MakeArgument
(
a_m_k
,
b_k_n
,
c_m_n
,
a_element_op
,
b_element_op
,
PassThrough
{});
ref_invoker
.
Run
(
ref_argument
);
// c = activation(c + bias) + c1_functor(c1)
for
(
int
m
=
0
;
m
<
M
;
++
m
)
for
(
int
n
=
0
;
n
<
N
;
++
n
)
{
AccDataType
acc
=
static_cast
<
AccDataType
>
(
c_m_n
(
m
,
n
))
+
static_cast
<
AccDataType
>
(
bias_n
(
n
));
AccDataType
c1
=
static_cast
<
AccDataType
>
(
c1_m_n
(
m
,
n
));
c_element_op
(
acc
,
acc
);
c1_element_op
(
c1
,
c1
);
acc
+=
c1
;
c_m_n
(
m
,
n
)
=
static_cast
<
CDataType
>
(
acc
);
}
// reduce_mean and reduce_square_mean
auto
reduceSumOpInst
=
ReduceSumOp
{};
for
(
int
m
=
0
;
m
<
M
;
++
m
)
{
auto
mean_acc
=
reduceSumOpInst
.
GetIdentityValue
<
AccDataType
>
();
auto
square_mean_acc
=
reduceSumOpInst
.
GetIdentityValue
<
AccDataType
>
();
for
(
int
n
=
0
;
n
<
N
;
++
n
)
{
AccDataType
c_val
=
ck
::
type_convert
<
AccDataType
>
(
c_m_n
(
m
,
n
));
AccDataType
square_c_val
=
0
;
UnarySquareElementOp
{}(
square_c_val
,
c_val
);
reduceSumOpInst
(
mean_acc
,
c_val
);
reduceSumOpInst
(
square_mean_acc
,
square_c_val
);
}
averageOpInst
(
mean_acc
,
mean_acc
);
averageOpInst
(
square_mean_acc
,
square_mean_acc
);
mean_m
(
m
)
=
ck
::
type_convert
<
DDataType
>
(
mean_acc
);
meanSquare_m
(
m
)
=
ck
::
type_convert
<
DDataType
>
(
square_mean_acc
);
}
// LayerNorm
auto
layerNormInst
=
NormalizeFunctor
{};
for
(
int
m
=
0
;
m
<
M
;
++
m
)
{
for
(
int
n
=
0
;
n
<
N
;
++
n
)
{
AccDataType
out_acc
=
0
;
layerNormInst
(
out_acc
,
static_cast
<
AccDataType
>
(
c_m_n
(
m
,
n
)),
static_cast
<
AccDataType
>
(
mean_m
(
m
)),
static_cast
<
AccDataType
>
(
meanSquare_m
(
m
)),
static_cast
<
AccDataType
>
(
gamma_n
(
n
)),
static_cast
<
AccDataType
>
(
beta_n
(
n
)));
out_m_n
(
m
,
n
)
=
static_cast
<
DDataType
>
(
out_acc
);
}
}
}
template
<
typename
ADataType
,
typename
BDataType
,
typename
CDataType
,
typename
C0DataType
,
typename
C1DataType
,
typename
DDataType
,
typename
GammaDataType
,
typename
BetaDataType
,
typename
NormalizeDataType
>
void
DumpGemmLayerNormPerf
(
float
gemm_reduce_time
,
float
normalize_time
,
int
M
,
int
N
,
int
K
)
{
std
::
size_t
gemm_flop
=
std
::
size_t
(
2
)
*
M
*
N
*
K
+
std
::
size_t
(
2
)
*
M
*
N
;
std
::
size_t
gemm_num_byte
=
sizeof
(
ADataType
)
*
M
*
K
+
sizeof
(
BDataType
)
*
K
*
N
+
sizeof
(
CDataType
)
*
M
*
N
+
sizeof
(
C0DataType
)
*
M
*
N
+
sizeof
(
C1DataType
)
*
M
*
N
+
sizeof
(
DDataType
)
*
M
+
sizeof
(
DDataType
)
*
M
;
std
::
size_t
normalize_num_byte
=
sizeof
(
CDataType
)
*
M
*
N
+
sizeof
(
DDataType
)
*
M
+
sizeof
(
DDataType
)
*
M
+
sizeof
(
GammaDataType
)
*
N
+
sizeof
(
BetaDataType
)
*
N
+
sizeof
(
NormalizeDataType
)
*
M
*
N
;
float
tflops
=
static_cast
<
float
>
(
gemm_flop
)
/
1.E9
/
gemm_reduce_time
;
float
gemm_gb_per_sec
=
gemm_num_byte
/
1.E6
/
gemm_reduce_time
;
float
normalize_gb_per_sec
=
normalize_num_byte
/
1.E6
/
normalize_time
;
std
::
cout
<<
"gemm + reduce_mean + reduce_square_mean Perf: "
<<
gemm_reduce_time
<<
" ms, "
<<
tflops
<<
" TFlops, "
<<
gemm_gb_per_sec
<<
" GB/s, "
<<
std
::
endl
;
std
::
cout
<<
"5-ary elementwise Perf: "
<<
normalize_time
<<
" ms, "
<<
normalize_gb_per_sec
<<
" GB/s, "
<<
std
::
endl
;
}
int
main
()
{
// GEMM shape
ck
::
index_t
M
=
1024
;
ck
::
index_t
N
=
1024
;
ck
::
index_t
K
=
1024
;
ck
::
index_t
StrideA
=
1024
;
ck
::
index_t
StrideB
=
1024
;
ck
::
index_t
StrideC
=
1024
;
ck
::
index_t
StrideC1
=
1024
;
Tensor
<
ADataType
>
a_m_k
(
f_host_tensor_descriptor2d
(
M
,
K
,
StrideA
,
ALayout
{}));
Tensor
<
BDataType
>
b_k_n
(
f_host_tensor_descriptor2d
(
K
,
N
,
StrideB
,
BLayout
{}));
Tensor
<
CDataType
>
c_m_n
(
f_host_tensor_descriptor2d
(
M
,
N
,
StrideC
,
CLayout
{}));
Tensor
<
C0DataType
>
bias_n
(
f_host_tensor_descriptor1d
(
N
,
1
));
Tensor
<
C1DataType
>
c1_m_n
(
f_host_tensor_descriptor2d
(
M
,
N
,
StrideC
,
CLayout
{}));
Tensor
<
DDataType
>
reduceMean_m
(
f_host_tensor_descriptor1d
(
M
,
1
));
Tensor
<
DDataType
>
reduceMeanSquare_m
(
f_host_tensor_descriptor1d
(
M
,
1
));
Tensor
<
GammaDataType
>
gamma_n
(
f_host_tensor_descriptor1d
(
N
,
1
));
Tensor
<
BetaDataType
>
beta_n
(
f_host_tensor_descriptor1d
(
N
,
1
));
Tensor
<
LayerNormOutDataType
>
layerNorm_m_n
(
f_host_tensor_descriptor2d
(
M
,
N
,
StrideC
,
CLayout
{}));
a_m_k
.
GenerateTensorValue
(
GeneratorTensor_3
<
ADataType
>
{
-
1
,
1
});
b_k_n
.
GenerateTensorValue
(
GeneratorTensor_3
<
BDataType
>
{
-
1
,
1
});
bias_n
.
GenerateTensorValue
(
GeneratorTensor_3
<
C0DataType
>
{
-
1
,
1
});
c1_m_n
.
GenerateTensorValue
(
GeneratorTensor_3
<
C1DataType
>
{
-
5
,
5
});
gamma_n
.
GenerateTensorValue
(
GeneratorTensor_3
<
GammaDataType
>
{
-
1
,
1
});
beta_n
.
GenerateTensorValue
(
GeneratorTensor_3
<
BetaDataType
>
{
-
1
,
1
});
DeviceMem
a_device_buf
(
sizeof
(
ADataType
)
*
a_m_k
.
mDesc
.
GetElementSpace
());
DeviceMem
b_device_buf
(
sizeof
(
BDataType
)
*
b_k_n
.
mDesc
.
GetElementSpace
());
DeviceMem
c_device_buf
(
sizeof
(
CDataType
)
*
c_m_n
.
mDesc
.
GetElementSpace
());
DeviceMem
bias_device_buf
(
sizeof
(
C0DataType
)
*
bias_n
.
mDesc
.
GetElementSpace
());
DeviceMem
c1_device_buf
(
sizeof
(
C1DataType
)
*
c1_m_n
.
mDesc
.
GetElementSpace
());
DeviceMem
reduceMean_device_buf
(
sizeof
(
DDataType
)
*
reduceMean_m
.
mDesc
.
GetElementSpace
());
DeviceMem
reduceMeanSquare_device_buf
(
sizeof
(
DDataType
)
*
reduceMeanSquare_m
.
mDesc
.
GetElementSpace
());
DeviceMem
gamma_device_buf
(
sizeof
(
GammaDataType
)
*
gamma_n
.
mDesc
.
GetElementSpace
());
DeviceMem
beta_device_buf
(
sizeof
(
BetaDataType
)
*
beta_n
.
mDesc
.
GetElementSpace
());
DeviceMem
layerNorm_device_buf
(
sizeof
(
LayerNormOutDataType
)
*
layerNorm_m_n
.
mDesc
.
GetElementSpace
());
a_device_buf
.
ToDevice
(
a_m_k
.
mData
.
data
());
b_device_buf
.
ToDevice
(
b_k_n
.
mData
.
data
());
bias_device_buf
.
ToDevice
(
bias_n
.
mData
.
data
());
c1_device_buf
.
ToDevice
(
c1_m_n
.
mData
.
data
());
gamma_device_buf
.
ToDevice
(
gamma_n
.
mData
.
data
());
beta_device_buf
.
ToDevice
(
beta_n
.
mData
.
data
());
auto
a_element_op
=
AElementOp
{};
auto
b_element_op
=
BElementOp
{};
auto
c_element_op
=
CElementOp
{};
auto
c1_element_op
=
C1ElementOp
{};
auto
dxs_global
=
ck
::
make_tuple
(
static_cast
<
DDataType
*>
(
reduceMean_device_buf
.
GetDeviceBuffer
()),
static_cast
<
DDataType
*>
(
reduceMeanSquare_device_buf
.
GetDeviceBuffer
()));
auto
dxs_in_element_op
=
DxsInElementOps
{};
auto
dxs_out_element_op
=
DxsOutElementOps
{
N
,
N
};
// Prepare GEMM, reduce_mean, reduce_mean_square
auto
gemmReduce
=
DeviceGemmBiasAddReduceInstance
{};
auto
gemmReduce_invoker
=
gemmReduce
.
MakeInvoker
();
auto
gemmReduce_argument
=
gemmReduce
.
MakeArgument
(
static_cast
<
ADataType
*>
(
a_device_buf
.
GetDeviceBuffer
()),
static_cast
<
BDataType
*>
(
b_device_buf
.
GetDeviceBuffer
()),
static_cast
<
CDataType
*>
(
c_device_buf
.
GetDeviceBuffer
()),
static_cast
<
C0DataType
*>
(
bias_device_buf
.
GetDeviceBuffer
()),
static_cast
<
C1DataType
*>
(
c1_device_buf
.
GetDeviceBuffer
()),
dxs_global
,
M
,
N
,
K
,
StrideA
,
StrideB
,
StrideC
,
StrideC1
,
a_element_op
,
b_element_op
,
c_element_op
,
c1_element_op
,
dxs_in_element_op
,
dxs_out_element_op
);
if
(
!
gemmReduce
.
IsSupportedArgument
(
gemmReduce_argument
))
{
throw
std
::
runtime_error
(
"wrong! device_gemm with the specified compilation parameters does "
"not support this GEMM problem"
);
}
reduceMean_device_buf
.
SetZero
();
reduceMeanSquare_device_buf
.
SetZero
();
// Prepare LayerNorm
auto
normalize
=
DeviceNormalizeInstance
{};
auto
normalize_invoker
=
normalize
.
MakeInvoker
();
auto
normalize_argument
=
normalize
.
MakeArgument
(
static_cast
<
CDataType
*>
(
c_device_buf
.
GetDeviceBuffer
()),
static_cast
<
DDataType
*>
(
reduceMean_device_buf
.
GetDeviceBuffer
()),
static_cast
<
DDataType
*>
(
reduceMeanSquare_device_buf
.
GetDeviceBuffer
()),
static_cast
<
GammaDataType
*>
(
gamma_device_buf
.
GetDeviceBuffer
()),
static_cast
<
BetaDataType
*>
(
beta_device_buf
.
GetDeviceBuffer
()),
static_cast
<
LayerNormOutDataType
*>
(
layerNorm_device_buf
.
GetDeviceBuffer
()),
{
M
,
N
},
{
StrideC
,
1
},
{
1
,
0
},
{
1
,
0
},
{
0
,
1
},
{
0
,
1
},
{
StrideC
,
1
},
NormalizeFunctor
{});
if
(
!
normalize
.
IsSupportedArgument
(
normalize_argument
))
{
throw
std
::
runtime_error
(
"The runtime parameters seems not supported by the "
"Device5AryElementwise instance, exiting!"
);
}
// run kernel
gemmReduce_invoker
.
Run
(
gemmReduce_argument
,
StreamConfig
{
nullptr
,
false
});
normalize_invoker
.
Run
(
normalize_argument
,
StreamConfig
{
nullptr
,
false
});
bool
pass
=
true
;
{
// verification
Tensor
<
LayerNormOutDataType
>
host_layerNorm_m_n
(
f_host_tensor_descriptor2d
(
M
,
N
,
StrideC
,
CLayout
{}));
host_gemm_layernorm
<
CDataType
,
DDataType
,
ReduceAccDataType
>
(
host_layerNorm_m_n
,
a_m_k
,
b_k_n
,
bias_n
,
c1_m_n
,
gamma_n
,
beta_n
,
a_element_op
,
b_element_op
,
c_element_op
,
c1_element_op
,
M
,
N
);
layerNorm_device_buf
.
FromDevice
(
layerNorm_m_n
.
mData
.
data
());
pass
&=
ck
::
utils
::
check_err
(
layerNorm_m_n
.
mData
,
host_layerNorm_m_n
.
mData
,
"Error: Incorrect results layerNorm_m_n"
,
1e-2
,
1e-2
);
}
{
// evaluate kernel perf
bool
time_kernel
=
true
;
float
gemm_reduce_mean_reduce_square_mean_ave_time
=
gemmReduce_invoker
.
Run
(
gemmReduce_argument
,
StreamConfig
{
nullptr
,
time_kernel
});
float
normalize_ave_time
=
normalize_invoker
.
Run
(
normalize_argument
,
StreamConfig
{
nullptr
,
time_kernel
});
if
(
time_kernel
)
DumpGemmLayerNormPerf
<
ADataType
,
BDataType
,
CDataType
,
C0DataType
,
C1DataType
,
DDataType
,
GammaDataType
,
BetaDataType
,
LayerNormOutDataType
>
(
gemm_reduce_mean_reduce_square_mean_ave_time
,
normalize_ave_time
,
M
,
N
,
K
);
}
return
pass
?
0
:
1
;
}
example/21_gemm_layernorm/gemm_layernorm_xdl_fp16.cpp
View file @
b097be17
...
...
@@ -2,7 +2,6 @@
#include <numeric>
#include <initializer_list>
#include <cstdlib>
#include <stdlib.h>
#include "check_err.hpp"
#include "config.hpp"
...
...
@@ -15,7 +14,6 @@
#include "element_wise_operation.hpp"
#include "reference_gemm.hpp"
#include "gemm_specialization.hpp"
#include "element_wise_reduce_operation.hpp"
template
<
ck
::
index_t
...
Is
>
using
S
=
ck
::
Sequence
<
Is
...
>
;
...
...
@@ -45,17 +43,14 @@ using CLayout = ck::tensor_layout::gemm::RowMajor;
using
AElementOp
=
ck
::
tensor_operation
::
element_wise
::
PassThrough
;
using
BElementOp
=
ck
::
tensor_operation
::
element_wise
::
PassThrough
;
using
CElementOp
=
ck
::
tensor_operation
::
element_wise
::
PassThrough
;
using
ReduceSumOp
=
ck
::
reduce
::
Add
<
ReduceAccDataType
>
;
using
ReduceSumOp
=
ck
::
reduce
::
Add
;
using
DxsReduceOp
=
ck
::
Tuple
<
ReduceSumOp
,
ReduceSumOp
>
;
using
UnaryIdenticElementOp
=
ck
::
tensor_operation
::
element_wise
::
UnaryIdentic
<
ReduceAccDataType
,
ReduceAccDataType
,
false
>
;
using
UnaryDivElementOp
=
ck
::
tensor_operation
::
element_wise
::
UnaryIdentic
<
ReduceAccDataType
,
ReduceAccDataType
,
true
>
;
using
UnarySquareElementOp
=
ck
::
tensor_operation
::
element_wise
::
UnarySquare
<
ReduceAccDataType
,
ReduceAccDataType
,
false
>
;
using
DxsInElementOp
=
ck
::
Tuple
<
UnaryIdenticElementOp
,
UnarySquareElementOp
>
;
using
DxsOutElementOp
=
ck
::
Tuple
<
UnaryDivElementOp
,
UnaryDivElementOp
>
;
using
UnaryIdenticElementOp
=
ck
::
tensor_operation
::
element_wise
::
PassThrough
;
using
UnaryDivElementOp
=
ck
::
tensor_operation
::
element_wise
::
UnaryDivide
;
using
UnarySquareElementOp
=
ck
::
tensor_operation
::
element_wise
::
UnarySquare
;
using
DxsInElementOps
=
ck
::
Tuple
<
UnaryIdenticElementOp
,
UnarySquareElementOp
>
;
using
DxsOutElementOps
=
ck
::
Tuple
<
UnaryDivElementOp
,
UnaryDivElementOp
>
;
using
DxsGlobalMemOp
=
ck
::
InMemoryDataOperationEnumSequence
<
ck
::
InMemoryDataOperationEnum
::
AtomicAdd
,
...
...
@@ -70,7 +65,7 @@ using DeviceGemmReduceInstance = ck::tensor_operation::device::DeviceGemmReduce_
//######| | | | Type| Type| Type| DataType| DataType| DataType| Type Tuple| Elementwise| Elementwise| Elementwise| Reduce| | | MemoryData| Spacialization| Prefetch| Size| Block| Block| Block| | | XDL| XDL| Per| Per| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| ExtraM| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| ExtraN| MXdlPerWave| NXdlPerWave| _MBlock_MPerBlock| ScalarPerVector| ThreadClusterLengths| SrcDstScalarPerVector| SrcDstScalarPerVector|
//######| | | | | | | | | | | Operation| Operation| Operation| Operation| | | Operation| | Stage| | | | | | | | | Wave| Wave| Lengths_K0_M_K1| ArrangeOrder| | | PerVector| PerVector_K1| | Lengths_K0_N_K1| ArrangeOrder| | | PerVector| PerVector_K1| | PerShuffle| PerShuffle| _NBlock_NPerBlock| _NPerBlock| _MPerBlock_NPerBlock| _NPerBlock| _MPerBlock|
//######| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
<
Row
,
Col
,
Row
,
F16
,
F16
,
F16
,
F32
,
F32
,
F32
,
DPtrsGlobal
,
AElementOp
,
BElementOp
,
CElementOp
,
DxsReduceOp
,
DxsInElementOp
,
DxsOutElementOp
,
DxsGlobalMemOp
,
GemmSpecialization
,
1
,
256
,
256
,
128
,
32
,
8
,
8
,
32
,
32
,
4
,
2
,
S
<
4
,
64
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
8
,
8
,
1
,
S
<
4
,
64
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
8
,
8
,
1
,
1
,
1
,
S
<
1
,
32
,
1
,
8
>
,
8
,
S
<
64
,
4
>
,
4
,
1
>
;
<
Row
,
Col
,
Row
,
F16
,
F16
,
F16
,
F32
,
F32
,
F32
,
DPtrsGlobal
,
AElementOp
,
BElementOp
,
CElementOp
,
DxsReduceOp
,
DxsInElementOp
s
,
DxsOutElementOp
s
,
DxsGlobalMemOp
,
GemmSpecialization
,
1
,
256
,
256
,
128
,
32
,
8
,
8
,
32
,
32
,
4
,
2
,
S
<
4
,
64
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
8
,
8
,
1
,
S
<
4
,
64
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
8
,
8
,
1
,
1
,
1
,
S
<
1
,
32
,
1
,
8
>
,
8
,
S
<
64
,
4
>
,
4
,
1
>
;
// clang-format on
using
ReferenceGemmInstance
=
ck
::
tensor_operation
::
host
::
ReferenceGemm
<
ADataType
,
...
...
@@ -143,7 +138,7 @@ void host_gemm_layernorm(Tensor<LayerNormOutDataType>& out_m_n,
Tensor
<
CDataType
>
c_m_n
(
f_host_tensor_descriptor2d
(
M
,
N
,
StrideC
,
CLayout
{}));
Tensor
<
DDataType
>
mean_m
(
f_host_tensor_descriptor1d
(
M
,
1
));
Tensor
<
DDataType
>
meanSquare_m
(
f_host_tensor_descriptor1d
(
M
,
1
));
auto
averageOpInst
=
UnaryDivElementOp
{
M
};
auto
averageOpInst
=
UnaryDivElementOp
{
N
};
auto
ref_gemm
=
ReferenceGemmInstance
{};
auto
ref_invoker
=
ref_gemm
.
MakeInvoker
();
...
...
@@ -157,13 +152,14 @@ void host_gemm_layernorm(Tensor<LayerNormOutDataType>& out_m_n,
auto
reduceSumOpInst
=
ReduceSumOp
{};
for
(
int
m
=
0
;
m
<
M
;
++
m
)
{
float
mean_acc
=
reduceSumOpInst
.
GetIdentityValue
();
float
square_mean_acc
=
reduceSumOpInst
.
GetIdentityValue
();
auto
mean_acc
=
reduceSumOpInst
.
GetIdentityValue
<
ReduceAccDataType
>
();
auto
square_mean_acc
=
reduceSumOpInst
.
GetIdentityValue
<
ReduceAccDataType
>
();
for
(
int
n
=
0
;
n
<
N
;
++
n
)
{
ReduceAccDataType
c_val
=
ck
::
type_convert
<
float
>
(
c_m_n
(
m
,
n
));
ReduceAccDataType
square_c_val
=
0
;
auto
c_val
=
ck
::
type_convert
<
ReduceAccDataType
>
(
c_m_n
(
m
,
n
));
auto
square_c_val
=
reduceSumOpInst
.
GetIdentityValue
<
ReduceAccDataType
>
();
UnarySquareElementOp
{}(
square_c_val
,
c_val
);
reduceSumOpInst
(
mean_acc
,
c_val
);
...
...
@@ -183,7 +179,12 @@ void host_gemm_layernorm(Tensor<LayerNormOutDataType>& out_m_n,
for
(
int
n
=
0
;
n
<
N
;
++
n
)
{
float
out_f32
=
0
;
layerNormInst
(
out_f32
,
c_m_n
(
m
,
n
),
mean_m
(
m
),
meanSquare_m
(
m
),
gamma_n
(
n
),
beta_n
(
n
));
layerNormInst
(
out_f32
,
static_cast
<
float
>
(
c_m_n
(
m
,
n
)),
static_cast
<
float
>
(
mean_m
(
m
)),
static_cast
<
float
>
(
meanSquare_m
(
m
)),
static_cast
<
float
>
(
gamma_n
(
n
)),
static_cast
<
float
>
(
beta_n
(
n
)));
out_m_n
(
m
,
n
)
=
static_cast
<
out_type
>
(
out_f32
);
}
}
...
...
@@ -267,8 +268,8 @@ int main()
ck
::
make_tuple
(
static_cast
<
DDataType
*>
(
reduceMean_device_buf
.
GetDeviceBuffer
()),
static_cast
<
DDataType
*>
(
reduceMeanSquare_device_buf
.
GetDeviceBuffer
()));
auto
dxs_in_element_op
=
DxsInElementOp
{};
auto
dxs_out_element_op
=
DxsOutElementOp
{
M
,
M
};
auto
dxs_in_element_op
=
DxsInElementOp
s
{};
auto
dxs_out_element_op
=
DxsOutElementOp
s
{
N
,
N
};
// Prepare GEMM, reduce_mean, reduce_mean_square
auto
gemmReduce
=
DeviceGemmReduceInstance
{};
...
...
example/23_softmax/CMakeLists.txt
0 → 100644
View file @
b097be17
add_example_executable
(
example_softmax_blockwise softmax_blockwise.cpp
)
\ No newline at end of file
example/23_softmax/README.md
0 → 100644
View file @
b097be17
# Instructions for ```example_softmax_blockwise```
## Run ```example_softmax_blockwise```
```
bash
# -D <xxx> : input 3-d tensor lengths
# -v <x> : verification (0=no, 1=yes)
#arg1: initialization (0=no init, 1=single integer value, 2=scope integer value, 3=decimal value)
#arg2: time kernel (0=no, 1=yes)
example_softmax_blockwise
-D
4,128,2048
-v
1 1 1
```
Result
```
launch_and_time_kernel: grid_dim {64, 1, 1}, block_dim {256, 1, 1}
Warm up 1 time
Start running 10 times...
Perf: 0.0242877 ms, 259.039 GB/s, DeviceReduceSoftmax<256,M_C8_S1,K_C32_S8,InSrcVectorDim_1_InSrcVectorSize_8_OutDstVectorSize_8>
```
example/23_softmax/softmax_blockwise.cpp
0 → 100644
View file @
b097be17
#include <iostream>
#include <numeric>
#include <initializer_list>
#include <cstdlib>
#include <getopt.h>
#include "check_err.hpp"
#include "config.hpp"
#include "print.hpp"
#include "device.hpp"
#include "host_tensor.hpp"
#include "host_tensor_generator.hpp"
#include "device_tensor.hpp"
#include "device_base.hpp"
#include "device_softmax.hpp"
#include "host_common_util.hpp"
#include "reference_softmax.hpp"
#include "reduction_enums.hpp"
#include "reduction_operator_mapping.hpp"
using
namespace
ck
;
using
namespace
ck
::
tensor_operation
::
device
;
using
InDataType
=
ck
::
half_t
;
using
OutDataType
=
ck
::
half_t
;
using
AccDataType
=
float
;
constexpr
int
Rank
=
3
;
constexpr
int
NumReduceDim
=
1
;
using
DeviceInstance
=
DeviceSoftmax
<
InDataType
,
AccDataType
,
OutDataType
,
Rank
,
NumReduceDim
,
256
,
// BlockSize
8
,
// ClusterM
32
,
// ClusterK
1
,
// SliceM
8
,
// SliceK
1
,
// SrcVecDim (0=M, 1=K)
8
,
// SrcScalarPerVector
8
>
;
// OutScalarPerVector
static
struct
option
long_options
[]
=
{{
"inLengths"
,
required_argument
,
nullptr
,
'D'
},
{
"verify"
,
required_argument
,
nullptr
,
'v'
},
{
"help"
,
no_argument
,
nullptr
,
'?'
},
{
nullptr
,
0
,
nullptr
,
0
}};
class
SimpleAppArgs
{
private:
int
option_index
=
0
;
public:
std
::
vector
<
size_t
>
inLengths
=
{
8
,
128
,
2048
};
std
::
vector
<
AccDataType
>
scales
=
{
2.0
f
,
2.0
f
};
bool
do_verification
=
true
;
int
init_method
=
2
;
bool
time_kernel
=
true
;
public:
void
show_usage
(
const
char
*
cmd
)
{
std
::
cout
<<
"Usage of "
<<
cmd
<<
std
::
endl
;
std
::
cout
<<
"--inLengths or -D, comma separated list of input tensor dimension lengths"
<<
std
::
endl
;
std
::
cout
<<
"--verify or -v, 1/0 to indicate whether to verify the reduction result by "
"comparing with the host-based reduction"
<<
std
::
endl
;
std
::
cout
<<
"Arg1 -- init method (0=no init, 1=single integer value, 2=scope integer "
"value, 3=decimal value)"
<<
std
::
endl
;
std
::
cout
<<
"Arg2 -- time kernel (0=no, 1=yes)"
<<
std
::
endl
;
};
int
processArgs
(
int
argc
,
char
*
argv
[])
{
using
ck
::
host_common
::
getTypeValuesFromString
;
int
ch
;
while
(
1
)
{
ch
=
getopt_long
(
argc
,
argv
,
"D:v:l:"
,
long_options
,
&
option_index
);
if
(
ch
==
-
1
)
break
;
switch
(
ch
)
{
case
'D'
:
if
(
!
optarg
)
throw
std
::
runtime_error
(
"Invalid option format!"
);
inLengths
=
getTypeValuesFromString
<
size_t
>
(
optarg
);
break
;
case
'v'
:
if
(
!
optarg
)
throw
std
::
runtime_error
(
"Invalid option format!"
);
do_verification
=
static_cast
<
bool
>
(
std
::
atoi
(
optarg
));
break
;
case
'?'
:
if
(
std
::
string
(
long_options
[
option_index
].
name
)
==
"help"
)
{
show_usage
(
argv
[
0
]);
return
(
-
1
);
};
break
;
default:
show_usage
(
argv
[
0
]);
return
(
-
1
);
};
};
if
(
optind
+
2
>
argc
)
throw
std
::
runtime_error
(
"Invalid cmd-line arguments, more argumetns are needed!"
);
init_method
=
std
::
atoi
(
argv
[
optind
++
]);
time_kernel
=
static_cast
<
bool
>
(
std
::
atoi
(
argv
[
optind
]));
if
(
scales
.
empty
())
{
scales
.
push_back
(
1.0
f
);
scales
.
push_back
(
0.0
f
);
};
return
(
0
);
};
};
int
main
(
int
argc
,
char
*
argv
[])
{
// Example: batched gemm C[G, M, N] applies max/sum reduction along N internally
const
std
::
vector
<
int
>
invariantDims
{
0
,
1
};
const
std
::
vector
<
int
>
reduceDims
{
2
};
SimpleAppArgs
args
;
if
(
argc
>
1
)
{
if
(
args
.
processArgs
(
argc
,
argv
)
<
0
)
return
(
-
1
);
};
Tensor
<
InDataType
>
in
(
args
.
inLengths
);
Tensor
<
OutDataType
>
out_ref
(
args
.
inLengths
);
Tensor
<
OutDataType
>
out
(
args
.
inLengths
);
auto
inStrides
=
in
.
mDesc
.
GetStrides
();
auto
outStrides
=
out
.
mDesc
.
GetStrides
();
AccDataType
alpha
=
args
.
scales
[
0
];
AccDataType
beta
=
args
.
scales
[
1
];
std
::
size_t
num_thread
=
1
;
if
(
args
.
do_verification
)
{
switch
(
args
.
init_method
)
{
case
0
:
break
;
case
1
:
in
.
GenerateTensorValue
(
GeneratorTensor_1
<
InDataType
>
{
1
},
num_thread
);
if
(
beta
!=
0.0
f
)
out_ref
.
GenerateTensorValue
(
GeneratorTensor_1
<
OutDataType
>
{
1
},
num_thread
);
break
;
case
2
:
in
.
GenerateTensorValue
(
GeneratorTensor_2
<
InDataType
>
{
-
5
,
5
},
num_thread
);
if
(
beta
!=
0.0
f
)
out_ref
.
GenerateTensorValue
(
GeneratorTensor_2
<
OutDataType
>
{
-
5
,
5
},
num_thread
);
break
;
default:
in
.
GenerateTensorValue
(
GeneratorTensor_3
<
InDataType
>
{
-
5.0
,
5.0
},
num_thread
);
if
(
beta
!=
0.0
f
)
out_ref
.
GenerateTensorValue
(
GeneratorTensor_3
<
OutDataType
>
{
-
5.0
,
5.0
},
num_thread
);
}
if
(
beta
!=
0.0
f
)
for
(
size_t
i
=
0
;
i
<
out_ref
.
mDesc
.
GetElementSpace
();
i
++
)
out
.
mData
[
i
]
=
out_ref
.
mData
[
i
];
};
// std::cout << "beta = " << beta << std::endl;
// LogRangeAsType<float>(std::cout << "tensor in: " , in.mData, ",") << std::endl;
// LogRangeAsType<float>(std::cout << "tensor prior out: " , out.mData, ",") << std::endl;
// these buffers are usually provided by the user application
DeviceMem
in_dev
(
sizeof
(
InDataType
)
*
in
.
mDesc
.
GetElementSpace
());
DeviceMem
out_dev
(
sizeof
(
OutDataType
)
*
out
.
mDesc
.
GetElementSpace
());
in_dev
.
ToDevice
(
in
.
mData
.
data
());
if
(
beta
!=
0.0
f
)
out_dev
.
ToDevice
(
out
.
mData
.
data
());
if
(
args
.
do_verification
)
{
using
ReferenceInstance
=
tensor_operation
::
host
::
ReferenceSoftmax
<
InDataType
,
OutDataType
,
AccDataType
>
;
ReferenceInstance
ref
;
auto
ref_arg
=
ref
.
MakeArgument
(
in
,
out_ref
,
alpha
,
beta
,
Rank
,
reduceDims
);
auto
invoker
=
ref
.
MakeInvoker
();
invoker
.
Run
(
ref_arg
);
// LogRangeAsType<float>(std::cout << "tensor out_ref: ", out_ref.mData, ",") << std::endl;
};
std
::
vector
<
ck
::
index_t
>
i_inLengths
;
std
::
vector
<
ck
::
index_t
>
i_inStrides
;
i_inLengths
.
assign
(
args
.
inLengths
.
begin
(),
args
.
inLengths
.
end
());
i_inStrides
.
assign
(
inStrides
.
begin
(),
inStrides
.
end
());
auto
device_instance
=
DeviceInstance
{};
auto
argument_ptr
=
device_instance
.
MakeArgumentPointer
(
i_inLengths
,
i_inStrides
,
reduceDims
,
alpha
,
beta
,
in_dev
.
GetDeviceBuffer
(),
out_dev
.
GetDeviceBuffer
());
if
(
!
device_instance
.
IsSupportedArgument
(
argument_ptr
.
get
()))
{
std
::
cout
<<
"The runtime parameters seems not supported by the DeviceReduce instance, exiting!"
<<
std
::
endl
;
return
1
;
};
std
::
string
instance_name
=
device_instance
.
GetTypeString
();
auto
invoker_ptr
=
device_instance
.
MakeInvokerPointer
();
bool
pass
=
true
;
if
(
args
.
do_verification
)
{
invoker_ptr
->
Run
(
argument_ptr
.
get
(),
StreamConfig
{
nullptr
,
false
});
out_dev
.
FromDevice
(
out
.
mData
.
data
());
// LogRangeAsType<float>(std::cout << "tensor out: " , out.mData, ",") << std::endl;
pass
=
pass
&&
ck
::
utils
::
check_err
(
out
.
mData
,
out_ref
.
mData
);
};
float
avg_time
=
invoker_ptr
->
Run
(
argument_ptr
.
get
(),
StreamConfig
{
nullptr
,
args
.
time_kernel
});
std
::
size_t
num_bytes
=
in
.
mDesc
.
GetElementSize
()
*
sizeof
(
InDataType
)
+
(
beta
==
0.0
f
?
1
:
2
)
*
out
.
mDesc
.
GetElementSize
()
*
sizeof
(
OutDataType
);
float
gb_per_sec
=
num_bytes
/
1.E6
/
avg_time
;
std
::
cout
<<
"Perf: "
<<
avg_time
<<
" ms, "
<<
gb_per_sec
<<
" GB/s, "
<<
instance_name
<<
std
::
endl
;
return
(
pass
?
0
:
1
);
}
example/CMakeLists.txt
View file @
b097be17
...
...
@@ -39,7 +39,7 @@ endfunction(add_example_executable_no_testing EXAMPLE_NAME)
add_subdirectory
(
01_gemm
)
add_subdirectory
(
02_gemm_alpha_beta
)
add_subdirectory
(
03_gemm_bias_relu
)
add_subdirectory
(
04_gemm_
bias_relu_add
)
add_subdirectory
(
04_gemm_
add_add_fastgelu
)
add_subdirectory
(
06_conv2d_fwd_bias_relu
)
add_subdirectory
(
07_conv2d_fwd_bias_relu_add
)
add_subdirectory
(
09_convnd_fwd
)
...
...
@@ -56,3 +56,4 @@ add_subdirectory(19_binary_elementwise)
add_subdirectory
(
20_convnd_bwd_weight_xdl
)
add_subdirectory
(
21_gemm_layernorm
)
add_subdirectory
(
22_cgemm
)
add_subdirectory
(
23_softmax
)
include/ck/config.hpp
View file @
b097be17
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2022, Advanced Micro Devices, Inc. All rights reserved.
#ifndef CK_CONFIG_AMD_HPP
#define CK_CONFIG_AMD_HPP
...
...
@@ -141,10 +144,6 @@
// tuning parameter
#define CK_WORKAROUND_SWDEV_325164 1
// workaround for verification failure ConvNd forward
// https://github.com/ROCmSoftwarePlatform/composable_kernel/issues/135
#define CK_WORKAROUND_GITHUB_135 1
namespace
ck
{
enum
struct
InMemoryDataOperationEnum
...
...
include/ck/tensor_description/tensor_adaptor.hpp
View file @
b097be17
...
...
@@ -136,7 +136,11 @@ struct TensorAdaptor
using
ElementSize
=
remove_cv_t
<
decltype
(
InitializeElementSize
(
Transforms
{}))
>
;
public:
#if 0 // workaround compiler complaint about constexpr
__host__ __device__ constexpr TensorAdaptor() = default;
#else
__host__
__device__
constexpr
TensorAdaptor
()
:
transforms_
{},
element_size_
{}
{}
#endif
__host__
__device__
constexpr
TensorAdaptor
(
const
Transforms
&
transforms
)
:
transforms_
{
transforms
},
element_size_
{
InitializeElementSize
(
transforms
)}
...
...
include/ck/tensor_description/tensor_descriptor.hpp
View file @
b097be17
...
...
@@ -111,7 +111,14 @@ struct TensorDescriptor
using
ElementSize
=
remove_cv_t
<
decltype
(
InitializeElementSize
(
Transforms
{}))
>
;
public:
#if 0 // workaround compiler complaint about constexpr
__host__ __device__ constexpr TensorDescriptor() = default;
#else
__host__
__device__
constexpr
TensorDescriptor
()
:
transforms_
{},
element_size_
{},
element_space_size_
{}
{
}
#endif
__host__
__device__
constexpr
TensorDescriptor
(
const
Transforms
&
transforms
,
ElementSpaceSize
element_space_size
)
...
...
include/ck/tensor_operation/gpu/block/blockwise_gemm_xdlops.hpp
View file @
b097be17
...
...
@@ -437,7 +437,7 @@ struct BlockwiseGemmXdlopsInterwave_k0mk1_k0nk1_m0n0m1n1m2m3m4n2_v1
make_tuple
(
n0
,
I0
,
I0
,
I0
),
b_thread_buf
);
});
__builtin_amdgcn_sched_barrier
();
__builtin_amdgcn_sched_barrier
(
0
);
// NOTE: Synchronize threads in a workgroup at the start of each MAC cluster, but except
// the first, as we can shorten non-MAC cluster a bit and there's no observable negative
// impact. The desired effect is waves in a workgroup executing MAC in sync. This avoids
...
...
@@ -447,7 +447,7 @@ struct BlockwiseGemmXdlopsInterwave_k0mk1_k0nk1_m0n0m1n1m2m3m4n2_v1
if
constexpr
(
k
.
value
!=
0
||
KPerInnerLoop
==
KPerThread
)
{
asm
volatile
(
"s_barrier"
::
);
__builtin_amdgcn_sched_barrier
();
__builtin_amdgcn_sched_barrier
(
0
);
}
static_for
<
0
,
KPerInnerLoop
,
KPack
>
{}([
&
](
auto
k_
)
{
static_for
<
0
,
MRepeat
,
1
>
{}([
&
](
auto
m0
)
{
...
...
@@ -479,9 +479,9 @@ struct BlockwiseGemmXdlopsInterwave_k0mk1_k0nk1_m0n0m1n1m2m3m4n2_v1
k_
.
value
==
KPerInnerLoop
-
KPack
&&
m0
.
value
==
MRepeat
-
1
&&
n0
.
value
==
NRepeat
-
1
)
{
__builtin_amdgcn_sched_barrier
();
__builtin_amdgcn_sched_barrier
(
0
);
block_sync_lds
();
__builtin_amdgcn_sched_barrier
();
__builtin_amdgcn_sched_barrier
(
0
);
}
// TODO: insert setprio in more precise manner since we
...
...
@@ -492,16 +492,16 @@ struct BlockwiseGemmXdlopsInterwave_k0mk1_k0nk1_m0n0m1n1m2m3m4n2_v1
c_thread_buf
.
GetVectorTypeReference
(
Number
<
c_offset
>{}));
if
constexpr
(
k_
.
value
==
0
&&
m0
.
value
==
0
&&
n0
.
value
==
0
)
{
__builtin_amdgcn_sched_barrier
();
__builtin_amdgcn_sched_barrier
(
0
);
__builtin_amdgcn_s_setprio
(
1
);
__builtin_amdgcn_sched_barrier
();
__builtin_amdgcn_sched_barrier
(
0
);
}
});
});
});
__builtin_amdgcn_sched_barrier
();
__builtin_amdgcn_sched_barrier
(
0
);
__builtin_amdgcn_s_setprio
(
0
);
__builtin_amdgcn_sched_barrier
();
__builtin_amdgcn_sched_barrier
(
0
);
});
}
...
...
include/ck/tensor_operation/gpu/block/reduction_functions_blockwise.hpp
View file @
b097be17
...
...
@@ -45,7 +45,9 @@ template <typename AccDataType,
typename
ThreadClusterLengths_M_K
,
typename
ThreadClusterArrangeOrder
,
typename
OpReduce
,
bool
PropagateNan
>
bool
PropagateNan
,
typename
Accumulation
=
detail
::
AccumulateWithNanCheck
<
PropagateNan
,
OpReduce
,
AccDataType
>
>
struct
PartitionedBlockwiseReduction
{
static_assert
(
BlockSize
==
ThreadClusterLengths_M_K
::
At
(
0
)
*
ThreadClusterLengths_M_K
::
At
(
1
),
...
...
@@ -62,8 +64,6 @@ struct PartitionedBlockwiseReduction
static
constexpr
auto
thread_cluster_desc
=
make_cluster_descriptor
(
ThreadClusterLengths_M_K
{},
ThreadClusterArrangeOrder
{});
using
Accumulation
=
detail
::
AccumulateWithNanCheck
<
PropagateNan
,
OpReduce
,
AccDataType
>
;
template
<
typename
BufferType
>
__device__
static
void
Reduce
(
BufferType
&
work_buffer
,
AccDataType
&
in_out_value
)
{
...
...
@@ -113,13 +113,16 @@ struct PartitionedBlockwiseReduction
// 3) in_out_value/in_out_index is the input data in vgpr from each thread
// 4) in_out_value/in_out_index is the over-written reduced output in vgpr for each thread
// clang-format on
template
<
typename
AccDataType
,
typename
IndexDataType
,
index_t
BlockSize
,
typename
ThreadClusterLengths_M_K
,
typename
ThreadClusterArrangeOrder
,
typename
OpReduce
,
bool
PropagateNan
>
template
<
typename
AccDataType
,
typename
IndexDataType
,
index_t
BlockSize
,
typename
ThreadClusterLengths_M_K
,
typename
ThreadClusterArrangeOrder
,
typename
OpReduce
,
bool
PropagateNan
,
typename
Accumulation
=
detail
::
AccumulateWithIndexAndNanCheck
<
PropagateNan
,
OpReduce
,
AccDataType
,
IndexDataType
>
>
struct
PartitionedBlockwiseReductionWithIndex
{
static_assert
(
BlockSize
==
ThreadClusterLengths_M_K
::
At
(
0
)
*
ThreadClusterLengths_M_K
::
At
(
1
),
...
...
@@ -136,9 +139,6 @@ struct PartitionedBlockwiseReductionWithIndex
static
constexpr
auto
thread_cluster_desc
=
make_cluster_descriptor
(
ThreadClusterLengths_M_K
{},
ThreadClusterArrangeOrder
{});
using
Accumulation
=
detail
::
AccumulateWithIndexAndNanCheck
<
PropagateNan
,
OpReduce
,
AccDataType
,
IndexDataType
>
;
// This interface accumulates on both data values and indices
template
<
typename
BufferType
,
typename
IdxBufferType
>
__device__
static
void
Reduce
(
BufferType
&
work_val_buffer
,
...
...
include/ck/tensor_operation/gpu/block/thread_group_tensor_slice_transfer_v7.hpp
0 → 100644
View file @
b097be17
#pragma once
#include "common_header.hpp"
#include "tensor_descriptor.hpp"
#include "tensor_descriptor_helper.hpp"
#include "cluster_descriptor.hpp"
#include "threadwise_tensor_slice_transfer_v7.hpp"
namespace
ck
{
// Thread-group level multi-source, multi-destination tensor slice data movement
// Assume:
// 1. All sources and destinations are DynamicBuffer
// 2. Same VectorDim and ScalerPerVector for all sources and destinations
// 3. DstInMemOps are per destination tensor
// 4. ThreadTransferSrcResetCoordinateAfterRunFlags are per source tensor
// 5. ThreadTransferDstResetCoordinateAfterRunFlags are per destination tensor
//
// Does following things to avoid scratch memory issue
// 1. Pass tensor descritpors by reference (or tuple of references)
// 2. Does not keep reference to tensor descriptor
// 3. Does not construct new tensor coordinate when call Run()
template
<
typename
ThreadGroup
,
typename
SrcDatas
,
typename
DstDatas
,
typename
SrcDescs
,
typename
DstDescs
,
typename
ElementwiseOperation
,
typename
DstInMemOps
,
// Sequence<InMemoryDataOperationEnum ...>
typename
SliceLengths
,
typename
ThreadClusterLengths
,
typename
ThreadClusterArrangeOrder
,
typename
DimAccessOrder
,
index_t
VectorDim
,
index_t
ScalarPerVector
,
typename
ThreadTransferSrcResetCoordinateAfterRunFlags
,
typename
ThreadTransferDstResetCoordinateAfterRunFlags
>
struct
ThreadGroupTensorSliceTransfer_v7
{
static
constexpr
index_t
nDim
=
remove_cvref_t
<
tuple_element_t
<
0
,
SrcDescs
>>::
GetNumOfDimension
();
static
constexpr
index_t
nSrc
=
remove_cvref_t
<
SrcDescs
>::
Size
();
static
constexpr
index_t
nDst
=
remove_cvref_t
<
DstDescs
>::
Size
();
using
Index
=
MultiIndex
<
nDim
>
;
static
constexpr
auto
thread_slice_lengths
=
SliceLengths
{}
/
ThreadClusterLengths
{};
__device__
constexpr
ThreadGroupTensorSliceTransfer_v7
(
const
SrcDescs
&
src_descs
,
const
StaticallyIndexedArray
<
Index
,
nSrc
>&
src_block_slice_origins
,
const
DstDescs
&
dst_descs
,
const
StaticallyIndexedArray
<
Index
,
nDst
>&
dst_block_slice_origins
,
const
ElementwiseOperation
&
element_op
)
:
threadwise_transfer_
(
src_descs
,
StaticallyIndexedArray
<
Index
,
nSrc
>
{},
dst_descs
,
StaticallyIndexedArray
<
Index
,
nDst
>
{},
element_op
)
{
static_assert
(
nSrc
==
SrcDatas
::
Size
()
&&
nSrc
==
SrcDescs
::
Size
()
&&
nSrc
==
ThreadTransferSrcResetCoordinateAfterRunFlags
::
Size
()
&&
nDst
==
DstDatas
::
Size
()
&&
nDst
==
DstDescs
::
Size
()
&&
nDst
==
ThreadTransferDstResetCoordinateAfterRunFlags
::
Size
(),
"wrong!"
);
static_for
<
0
,
nSrc
,
1
>
{}([
&
](
auto
i
)
{
static_assert
(
nDim
==
remove_cvref_t
<
tuple_element_t
<
i
.
value
,
SrcDescs
>>::
GetNumOfDimension
(),
"wrong!"
);
});
static_for
<
0
,
nDst
,
1
>
{}([
&
](
auto
i
)
{
static_assert
(
nDim
==
remove_cvref_t
<
tuple_element_t
<
i
.
value
,
DstDescs
>>::
GetNumOfDimension
(),
"wrong!"
);
});
static_assert
(
nDim
==
ThreadClusterLengths
::
Size
()
&&
nDim
==
ThreadClusterArrangeOrder
::
Size
()
&&
nDim
==
DimAccessOrder
::
Size
(),
"wrong! nDim not consistent"
);
static_assert
(
is_same
<
SliceLengths
,
decltype
(
thread_slice_lengths
*
ThreadClusterLengths
{})
>
{},
"wrong! threads should be mapped to cover entire slicing window"
);
static_assert
(
ThreadGroup
::
GetNumOfThread
()
>=
thread_cluster_desc_
.
GetElementSize
(),
"wrong! ThreadGroup::GetNumOfThread() too small"
);
if
(
ThreadGroup
::
GetNumOfThread
()
==
thread_cluster_desc_
.
GetElementSize
()
or
ThreadGroup
::
GetThreadId
()
<
thread_cluster_desc_
.
GetElementSize
())
{
const
auto
thread_cluster_idx
=
thread_cluster_desc_
.
CalculateBottomIndex
(
make_multi_index
(
get_thread_local_1d_id
()));
const
auto
thread_data_idx_begin
=
thread_cluster_idx
*
thread_slice_lengths
;
const
auto
src_thread_slice_origins
=
generate_tuple
(
[
&
](
auto
i
)
{
return
src_block_slice_origins
[
i
]
+
thread_data_idx_begin
;
},
Number
<
nSrc
>
{});
const
auto
dst_thread_slice_origins
=
generate_tuple
(
[
&
](
auto
i
)
{
return
dst_block_slice_origins
[
i
]
+
thread_data_idx_begin
;
},
Number
<
nDst
>
{});
threadwise_transfer_
.
SetSrcSliceOrigins
(
src_descs
,
src_thread_slice_origins
);
threadwise_transfer_
.
SetDstSliceOrigins
(
dst_descs
,
dst_thread_slice_origins
);
}
}
template
<
typename
SrcBuffers
,
typename
DstBuffers
>
__device__
void
Run
(
const
SrcDescs
&
src_descs
,
const
SrcBuffers
&
src_bufs
,
const
DstDescs
&
dst_descs
,
DstBuffers
dst_bufs
)
{
if
(
ThreadGroup
::
GetNumOfThread
()
==
thread_cluster_desc_
.
GetElementSize
()
or
ThreadGroup
::
GetThreadId
()
<
thread_cluster_desc_
.
GetElementSize
())
{
threadwise_transfer_
.
Run
(
src_descs
,
src_bufs
,
dst_descs
,
dst_bufs
);
}
}
template
<
index_t
ISrc
>
__device__
void
MoveSrcSliceWindow
(
const
SrcDescs
&
src_descs
,
Number
<
ISrc
>
iSrc
,
const
Index
&
step
)
{
if
(
ThreadGroup
::
GetNumOfThread
()
==
thread_cluster_desc_
.
GetElementSize
()
or
ThreadGroup
::
GetThreadId
()
<
thread_cluster_desc_
.
GetElementSize
())
{
threadwise_transfer_
.
MoveSrcSliceWindow
(
src_descs
,
iSrc
,
step
);
}
}
template
<
index_t
IDst
>
__device__
void
MoveDstSliceWindow
(
const
DstDescs
&
dst_descs
,
Number
<
IDst
>
iDst
,
const
Index
&
step
)
{
if
(
ThreadGroup
::
GetNumOfThread
()
==
thread_cluster_desc_
.
GetElementSize
()
or
ThreadGroup
::
GetThreadId
()
<
thread_cluster_desc_
.
GetElementSize
())
{
threadwise_transfer_
.
MoveDstSliceWindow
(
dst_descs
,
iDst
,
step
);
}
}
private:
static
constexpr
auto
thread_cluster_desc_
=
make_cluster_descriptor
(
ThreadClusterLengths
{},
ThreadClusterArrangeOrder
{});
using
ThreadwiseTransfer
=
ThreadwiseTensorSliceTransfer_v7
<
SrcDatas
,
DstDatas
,
SrcDescs
,
DstDescs
,
ElementwiseOperation
,
DstInMemOps
,
decltype
(
thread_slice_lengths
),
DimAccessOrder
,
VectorDim
,
ScalarPerVector
,
ThreadTransferSrcResetCoordinateAfterRunFlags
,
ThreadTransferDstResetCoordinateAfterRunFlags
>
;
ThreadwiseTransfer
threadwise_transfer_
;
};
}
// namespace ck
include/ck/tensor_operation/gpu/device/device_5ary_elementwise.hpp
View file @
b097be17
...
...
@@ -3,7 +3,6 @@
#include <sstream>
#include "device.hpp"
#include "device_base.hpp"
#include "common_header.hpp"
#include "gridwise_5ary_Elementwise_1d.hpp"
#include "tensor_layout.hpp"
#include "tensor_descriptor.hpp"
...
...
include/ck/tensor_operation/gpu/device/device_base.hpp
View file @
b097be17
...
...
@@ -15,6 +15,8 @@ struct BaseArgument
BaseArgument
&
operator
=
(
const
BaseArgument
&
)
=
default
;
virtual
~
BaseArgument
()
{}
void
*
p_workspace_
=
nullptr
;
};
struct
BaseInvoker
...
...
@@ -42,7 +44,11 @@ struct BaseOperator
virtual
size_t
GetWorkSpaceSize
(
const
BaseArgument
*
)
const
{
return
0
;
}
virtual
void
SetWorkSpacePointer
(
BaseArgument
*
,
void
*
)
const
{}
virtual
void
SetWorkSpacePointer
(
BaseArgument
*
p_arg
,
void
*
p_workspace
)
const
{
assert
(
p_arg
);
p_arg
->
p_workspace_
=
p_workspace
;
}
virtual
~
BaseOperator
()
{}
};
...
...
include/ck/tensor_operation/gpu/device/device_batched_gemm_reduce_xdl_cshuffle.hpp
View file @
b097be17
...
...
@@ -22,7 +22,7 @@ template <typename GridwiseGemm,
typename
BElementwiseOperation
,
typename
CElementwiseOperation
,
typename
DxsInElementwiseOperation
,
typename
DxsAccElementwiseOperation
,
typename
Dxs
Reduce
AccElementwiseOperation
,
typename
AGridDesc_AK0_M_AK1
,
typename
BGridDesc_BK0_N_BK1
,
typename
CGridDescriptor_MBlock_MPerBlock_NBlock_NPerBlock
,
...
...
@@ -44,7 +44,7 @@ __global__ void
const
BElementwiseOperation
b_element_op
,
const
CElementwiseOperation
c_element_op
,
const
DxsInElementwiseOperation
dxs_in_element_op
,
const
DxsAccElementwiseOperation
dxs_out_element_op
,
const
Dxs
Reduce
AccElementwiseOperation
dxs_out_element_op
,
const
AGridDesc_AK0_M_AK1
a_grid_desc_ak0_m_ak1
,
const
BGridDesc_BK0_N_BK1
b_grid_desc_bk0_n_bk1
,
const
CGridDescriptor_MBlock_MPerBlock_NBlock_NPerBlock
...
...
@@ -126,7 +126,7 @@ template <typename ALayout,
typename
CElementwiseOperation
,
typename
DxsReduceOperation
,
typename
DxsInElementwiseOperation
,
typename
DxsAccElementwiseOperation
,
typename
Dxs
Reduce
AccElementwiseOperation
,
typename
DGlobalMemoryDataOperation
,
GemmSpecialization
GemmSpec
,
index_t
NumGemmKPrefetchStage
,
...
...
@@ -162,12 +162,12 @@ template <typename ALayout,
index_t
CReduceThreadLds2VGprCopySrcDstScalarPerVector_NPerBlock
,
index_t
CReduceThreadVgpr2GlobalCopySrcDstScalarPerVector_MPerBlock
,
LoopScheduler
LoopSched
=
make_default_loop_scheduler
()>
struct
DeviceBatchedGemmReduce_Xdl_CShuffle
:
public
DeviceGemmReduce
<
DPtrsGlobal
,
AElementwiseOperation
,
BElementwiseOperation
,
CElementwiseOperation
,
DxsInElementwiseOperation
,
DxsAccElementwiseOperation
>
struct
DeviceBatchedGemmReduce_Xdl_CShuffle
:
public
DeviceGemmReduce
<
AElementwiseOperation
,
BElementwiseOperation
,
CElementwiseOperation
,
DxsInElementwiseOperation
,
Dxs
Reduce
AccElementwiseOperation
>
{
using
DeviceOp
=
DeviceBatchedGemmReduce_Xdl_CShuffle
;
...
...
@@ -527,7 +527,7 @@ struct DeviceBatchedGemmReduce_Xdl_CShuffle : public DeviceGemmReduce<DPtrsGloba
CElementwiseOperation
,
DxsReduceOperation
,
DxsInElementwiseOperation
,
DxsAccElementwiseOperation
,
Dxs
Reduce
AccElementwiseOperation
,
InMemoryDataOperationEnum
::
Set
,
DGlobalMemoryDataOperation
,
AGridDesc_AK0_M_AK1
,
...
...
@@ -587,7 +587,7 @@ struct DeviceBatchedGemmReduce_Xdl_CShuffle : public DeviceGemmReduce<DPtrsGloba
BElementwiseOperation
b_element_op
,
CElementwiseOperation
c_element_op
,
DxsInElementwiseOperation
dxs_in_element_op
,
DxsAccElementwiseOperation
dxs_out_element_op
,
Dxs
Reduce
AccElementwiseOperation
dxs_out_element_op
,
index_t
BatchCount
)
:
p_a_grid_
{
p_a_grid
},
p_b_grid_
{
p_b_grid
},
...
...
@@ -645,7 +645,7 @@ struct DeviceBatchedGemmReduce_Xdl_CShuffle : public DeviceGemmReduce<DPtrsGloba
BElementwiseOperation
b_element_op_
;
CElementwiseOperation
c_element_op_
;
DxsInElementwiseOperation
dxs_in_element_op_
;
DxsAccElementwiseOperation
dxs_out_element_op_
;
Dxs
Reduce
AccElementwiseOperation
dxs_out_element_op_
;
};
// Invoker
...
...
@@ -703,7 +703,7 @@ struct DeviceBatchedGemmReduce_Xdl_CShuffle : public DeviceGemmReduce<DPtrsGloba
BElementwiseOperation
,
CElementwiseOperation
,
DxsInElementwiseOperation
,
DxsAccElementwiseOperation
,
Dxs
Reduce
AccElementwiseOperation
,
DeviceOp
::
AGridDesc_AK0_M_AK1
,
DeviceOp
::
BGridDesc_BK0_N_BK1
,
typename
GridwiseGemm
::
CGridDescriptor_MBlock_MPerBlock_NBlock_NPerBlock
,
...
...
@@ -746,7 +746,7 @@ struct DeviceBatchedGemmReduce_Xdl_CShuffle : public DeviceGemmReduce<DPtrsGloba
BElementwiseOperation
,
CElementwiseOperation
,
DxsInElementwiseOperation
,
DxsAccElementwiseOperation
,
Dxs
Reduce
AccElementwiseOperation
,
DeviceOp
::
AGridDesc_AK0_M_AK1
,
DeviceOp
::
BGridDesc_BK0_N_BK1
,
typename
GridwiseGemm
::
CGridDescriptor_MBlock_MPerBlock_NBlock_NPerBlock
,
...
...
@@ -832,7 +832,7 @@ struct DeviceBatchedGemmReduce_Xdl_CShuffle : public DeviceGemmReduce<DPtrsGloba
BElementwiseOperation
b_element_op
,
CElementwiseOperation
c_element_op
,
DxsInElementwiseOperation
dxs_in_element_op
,
DxsAccElementwiseOperation
dxs_out_element_op
,
Dxs
Reduce
AccElementwiseOperation
dxs_out_element_op
,
index_t
BatchCount
)
{
return
Argument
{
p_a
,
...
...
@@ -856,27 +856,29 @@ struct DeviceBatchedGemmReduce_Xdl_CShuffle : public DeviceGemmReduce<DPtrsGloba
static
auto
MakeInvoker
()
{
return
Invoker
{};
}
// polymorphic
std
::
unique_ptr
<
BaseArgument
>
MakeArgumentPointer
(
const
void
*
p_a
,
const
void
*
p_b
,
void
*
p_c
,
DPtrsGlobal
p_dxs
,
index_t
MRaw
,
index_t
NRaw
,
index_t
KRaw
,
index_t
StrideA
,
index_t
StrideB
,
index_t
StrideC
,
AElementwiseOperation
a_element_op
,
BElementwiseOperation
b_element_op
,
CElementwiseOperation
c_element_op
,
DxsInElementwiseOperation
dxs_in_element_op
,
DxsAccElementwiseOperation
dxs_out_element_op
,
index_t
BatchCount
)
override
std
::
unique_ptr
<
BaseArgument
>
MakeArgumentPointer
(
const
void
*
p_a
,
const
void
*
p_b
,
void
*
p_c
,
void
*
p_dxs
,
index_t
MRaw
,
index_t
NRaw
,
index_t
KRaw
,
index_t
StrideA
,
index_t
StrideB
,
index_t
StrideC
,
AElementwiseOperation
a_element_op
,
BElementwiseOperation
b_element_op
,
CElementwiseOperation
c_element_op
,
DxsInElementwiseOperation
dxs_in_element_op
,
DxsReduceAccElementwiseOperation
dxs_out_element_op
,
index_t
BatchCount
)
override
{
DPtrsGlobal
dxs_tuple
=
*
(
static_cast
<
DPtrsGlobal
*>
(
p_dxs
));
return
std
::
make_unique
<
Argument
>
(
static_cast
<
const
ADataType
*>
(
p_a
),
static_cast
<
const
BDataType
*>
(
p_b
),
static_cast
<
CDataType
*>
(
p_c
),
p_
dxs
,
dxs
_tuple
,
MRaw
,
NRaw
,
KRaw
,
...
...
Prev
1
2
3
4
5
6
7
Next
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
.
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment