Commit b097be17 authored by root's avatar root
Browse files

merge changes for upstream/latest update

parents 8a891bbd a49115b9
......@@ -42,8 +42,7 @@ using ABDataType = F16;
using CDataType = F16;
using EltwiseComputeDataType = F32;
using Add = ck::tensor_operation::binary_element_wise::
Add<EltwiseComputeDataType, EltwiseComputeDataType, EltwiseComputeDataType>;
using Add = ck::tensor_operation::element_wise::Add;
using DeviceElementwiseAddInstance =
ck::tensor_operation::device::DeviceBinaryElementwise<ABDataType,
......
add_example_executable(example_convnd_bwd_weight_xdl convnd_bwd_weight_xdl.cpp)
target_link_libraries(example_convnd_bwd_weight_xdl PRIVATE conv_util)
\ No newline at end of file
add_example_executable(example_convnd_bwd_weight_xdl_bf16_splitk convnd_bwd_weight_xdl_bf16_splitk.cpp)
target_link_libraries(example_convnd_bwd_weight_xdl PRIVATE conv_util)
target_link_libraries(example_convnd_bwd_weight_xdl_bf16_splitk PRIVATE conv_util)
\ No newline at end of file
......@@ -297,52 +297,15 @@ int main(int argc, char* argv[])
split_k);
// alloc work space
size_t bwd_weight_workspace_size = conv->GetWorkSpaceSize(argument.get());
float ave_time = 0.f;
if(std::is_same<InDataType, ck::bhalf_t>::value && split_k > 1)
float ave_time = 0.f;
if(!conv->IsSupportedArgument(argument.get()))
{
DeviceMem wei_work_space_device_buf(bwd_weight_workspace_size);
wei_work_space_device_buf.SetZero();
argument = conv->MakeArgumentPointer(
static_cast<InDataType*>(in_device_buf.GetDeviceBuffer()),
static_cast<AccDataType*>(wei_work_space_device_buf.GetDeviceBuffer()),
static_cast<OutDataType*>(out_device_buf.GetDeviceBuffer()),
params.N_,
params.K_,
params.C_,
params.input_spatial_lengths_,
params.filter_spatial_lengths_,
output_spatial_lengths,
params.conv_filter_strides_,
params.conv_filter_dilations_,
params.input_left_pads_,
params.input_right_pads_,
InElementOp{},
WeiElementOp{},
OutElementOp{},
split_k);
if(!conv->IsSupportedArgument(argument.get()))
{
std::cout << "wrong! device_conv with the specified compilation parameters does "
"not support this Conv problem"
<< std::endl;
return 1;
}
ave_time = invoker->Run(argument.get(), StreamConfig{nullptr, time_kernel});
}
else
{
if(!conv->IsSupportedArgument(argument.get()))
{
std::cout << "wrong! device_conv with the specified compilation parameters does "
"not support this Conv problem"
<< std::endl;
return 1;
}
ave_time = invoker->Run(argument.get(), StreamConfig{nullptr, time_kernel});
std::cout << "wrong! device_conv with the specified compilation parameters does "
"not support this Conv problem"
<< std::endl;
return 1;
}
ave_time = invoker->Run(argument.get(), StreamConfig{nullptr, time_kernel});
std::size_t flop = ck::utils::conv::get_flops(
params.N_, params.C_, params.K_, params.filter_spatial_lengths_, output_spatial_lengths);
......
#include <iostream>
#include <numeric>
#include <initializer_list>
#include <cstdlib>
#include <stdlib.h>
#include <half.hpp>
#include "check_err.hpp"
#include "conv_util.hpp"
#include "config.hpp"
#include "print.hpp"
#include "device.hpp"
#include "host_tensor.hpp"
#include "host_tensor_generator.hpp"
#include "device_tensor.hpp"
#include "tensor_layout.hpp"
#include "element_wise_operation.hpp"
#include "device_unary_elementwise.hpp"
#include "device_convnd_backward_weight_xdl_c_shuffle_nhwc_kyxc_nhwk.hpp"
#include "reference_conv_backward_weight.hpp"
using InDataType = ck::bhalf_t;
using WeiDataType = ck::bhalf_t;
using OutDataType = ck::bhalf_t;
using AccDataType = float;
template <ck::index_t... Is>
using S = ck::Sequence<Is...>;
using InElementOp = ck::tensor_operation::element_wise::PassThrough;
using WeiElementOp = ck::tensor_operation::element_wise::PassThrough;
using OutElementOp = ck::tensor_operation::element_wise::PassThrough;
using UnaryTypeConvert = ck::tensor_operation::element_wise::UnaryTypeConvert<ck::bhalf_t, float>;
using DeviceUnaryElementwiseTypeConvertInstance = ck::tensor_operation::device::
DeviceUnaryElementwise<AccDataType, WeiDataType, UnaryTypeConvert, 1, 4>;
static constexpr auto ConvBwdWeightDefault =
ck::tensor_operation::device::ConvolutionBackwardWeightSpecialization::Default;
using DeviceConvBwdWeightBasePtr =
ck::tensor_operation::device::DeviceConvBwdWeightPtr<InElementOp, WeiElementOp, OutElementOp>;
// clang-format off
template <ck::index_t NumDimSpatial>
using DeviceConvndBwdWeightInstance_bf16_splitk = ck::tensor_operation::device::
DeviceConvndBwdWeightXdl_C_Shuffle_Input_N_Hi_Wi_C_Weight_K_Y_X_C_Output_N_Ho_Wo_K<
InDataType, // InDataType
AccDataType, // WeiDataType
OutDataType, // OutDataType
AccDataType, // AccDataType
InElementOp, // InElementwiseOperation
WeiElementOp, // WeiElementwiseOperation
OutElementOp, // OutElementwiseOperation
ConvBwdWeightDefault, // ConvolutionBackwardWeightSpecialization
NumDimSpatial, // NumDimSpatial
256, // BlockSize
128, // MPerBlock
128, // NPerBlock
4, // K0PerBlock
8, // K1
32, // MPerXdl
32, // NPerXdl
2, // MXdlPerWave
2, // NXdlPerWave
S<1, 4, 16, 4>, // ABlockTransferThreadClusterLengths_K0_M_K1
S<0, 3, 1, 2>, // ABlockTransferThreadClusterArrangeOrder
S<0, 2, 1, 3>, // ABlockTransferSrcAccessOrder
2, // ABlockTransferSrcVectorDim
8, // ABlockTransferSrcScalarPerVector
2, // ABlockTransferDstScalarPerVector_K1
true, // ABlockLdsAddExtraM
S<1, 4, 16, 4>, // BBlockTransferThreadClusterLengths_K0_N_K1
S<0, 3, 1, 2>, // BBlockTransferThreadClusterArrangeOrder
S<0, 2, 1, 3>, // BBlockTransferSrcAccessOrder
2, // BBlockTransferSrcVectorDim
8, // BBlockTransferSrcScalarPerVector
2, // BBlockTransferDstScalarPerVector_K1
true, // BBlockLdsAddExtraN
1, // CShuffleMXdlPerWavePerShuffle
1, // CShuffleNXdlPerWavePerShuffle
S<1, 32, 1, 4>, // CBlockTransferClusterLengths_MBlock_MPerBlock_NBlock_NPerBlock
4>; // CBlockTransferScalarPerVector_NWaveNPerXdl
// clang-format on
template <ck::index_t NumDimSpatial>
using ReferenceConvBwdWeightInstance =
ck::tensor_operation::host::ReferenceConvBwdWeight<InDataType,
WeiDataType,
OutDataType,
InElementOp,
WeiElementOp,
OutElementOp,
NumDimSpatial>;
template <typename HostTensorB, typename HostTensorA, typename Functor>
void host_elementwise(HostTensorB& B,
const HostTensorA& A,
const std::vector<std::size_t>& shape,
Functor functor)
{
size_t tensor_size = std::accumulate(shape.begin(), shape.end(), 1, std::multiplies<int>{});
std::cout << __LINE__ << ":" << tensor_size << ", " << A.mData[0] << std::endl;
for(std::size_t n = 0; n < tensor_size; ++n)
{
B.mData[n] = functor(A.mData[n]);
}
}
void print_use_msg()
{
std::cout << "arg1: verification (0=no, 1=yes)\n"
<< "arg2: initialization (0=no init, 1=random value, 2= init to 1 )\n"
<< "arg3: time kernel (0=n0, 1=yes)\n"
<< "arg4: is show log (0=no, 1=yes)\n"
<< "arg5: split-k : in this example split-k must be larger than 1\n"
<< "arg6: N spatial dimensions (default 2)\n"
<< "Following arguments (depending on number of spatial dims):\n"
<< " N, K, C, \n"
<< " <filter spatial dimensions>, (ie Y, X for 2D)\n"
<< " <input image spatial dimensions>, (ie Hi, Wi for 2D)\n"
<< " <strides>, (ie Sy, Sx for 2D)\n"
<< " <dilations>, (ie Dy, Dx for 2D)\n"
<< " <left padding>, (ie LeftPy, LeftPx for 2D)\n"
<< " <right padding>, (ie RightPy, RightPx for 2D)\n"
<< std::endl;
}
ck::utils::conv::ConvParams parse_conv_params(int num_dim_spatial, char* argv[])
{
// (N, K, C) + num_dim_spatial * 6 (filter, input, strides, dilations, pad left, pad right)
ck::utils::conv::ConvParams params;
int arg_idx = 7;
params.num_dim_spatial_ = num_dim_spatial;
params.N_ = std::stoi(argv[arg_idx++]);
params.K_ = std::stoi(argv[arg_idx++]);
params.C_ = std::stoi(argv[arg_idx++]);
params.filter_spatial_lengths_.resize(num_dim_spatial);
for(int i = 0; i < num_dim_spatial; ++i)
{
params.filter_spatial_lengths_[i] = std::stoi(argv[arg_idx++]);
}
params.input_spatial_lengths_.resize(num_dim_spatial);
for(int i = 0; i < num_dim_spatial; ++i)
{
params.input_spatial_lengths_[i] = std::stoi(argv[arg_idx++]);
}
params.conv_filter_strides_.resize(num_dim_spatial);
for(int i = 0; i < num_dim_spatial; ++i)
{
params.conv_filter_strides_[i] = std::stoi(argv[arg_idx++]);
}
params.conv_filter_dilations_.resize(num_dim_spatial);
for(int i = 0; i < num_dim_spatial; ++i)
{
params.conv_filter_dilations_[i] = std::stoi(argv[arg_idx++]);
}
params.input_left_pads_.resize(num_dim_spatial);
for(int i = 0; i < num_dim_spatial; ++i)
{
params.input_left_pads_[i] = std::stoi(argv[arg_idx++]);
}
params.input_right_pads_.resize(num_dim_spatial);
for(int i = 0; i < num_dim_spatial; ++i)
{
params.input_right_pads_[i] = std::stoi(argv[arg_idx++]);
}
return params;
}
DeviceConvBwdWeightBasePtr get_conv_instance(int num_dim_spatial)
{
switch(num_dim_spatial)
{
case 3: {
return std::make_unique<DeviceConvndBwdWeightInstance_bf16_splitk<3>>();
}
case 2: {
return std::make_unique<DeviceConvndBwdWeightInstance_bf16_splitk<2>>();
}
case 1: {
return std::make_unique<DeviceConvndBwdWeightInstance_bf16_splitk<1>>();
}
default: {
throw std::runtime_error("Unsupported number of spatial dimensions provided!");
}
}
}
int main(int argc, char* argv[])
{
bool do_verification = true;
int init_method = 1;
bool time_kernel = false;
int num_dim_spatial = 2;
int do_log = 0;
int split_k = 2;
ck::utils::conv::ConvParams params;
params.C_ = 128;
if(argc == 6)
{
do_verification = std::stoi(argv[1]);
init_method = std::stoi(argv[2]);
time_kernel = std::stoi(argv[3]);
do_log = std::stoi(argv[4]);
split_k = std::stoi(argv[5]);
}
else if(argc > 6)
{
do_verification = std::stoi(argv[1]);
init_method = std::stoi(argv[2]);
time_kernel = std::stoi(argv[3]);
do_log = std::stoi(argv[4]);
split_k = std::stoi(argv[5]);
num_dim_spatial = std::stoi(argv[6]);
// check args number
int conv_args = 3 + num_dim_spatial * 6;
int cmdline_nargs = conv_args + 7;
if(cmdline_nargs != argc)
{
print_use_msg();
exit(1);
}
params = parse_conv_params(num_dim_spatial, argv);
}
else if(argc != 1)
{
print_use_msg();
exit(1);
}
if(split_k <= 1)
{
print_use_msg();
exit(1);
}
std::vector<std::size_t> input_dims{static_cast<std::size_t>(params.N_),
static_cast<std::size_t>(params.C_)};
input_dims.insert(std::end(input_dims),
std::begin(params.input_spatial_lengths_),
std::end(params.input_spatial_lengths_));
std::vector<std::size_t> filter_dims{static_cast<std::size_t>(params.K_),
static_cast<std::size_t>(params.C_)};
filter_dims.insert(std::end(filter_dims),
std::begin(params.filter_spatial_lengths_),
std::end(params.filter_spatial_lengths_));
const std::vector<ck::index_t>& output_spatial_lengths = params.GetOutputSpatialLengths();
std::vector<std::size_t> output_dims{static_cast<std::size_t>(params.N_),
static_cast<std::size_t>(params.K_)};
output_dims.insert(std::end(output_dims),
std::begin(output_spatial_lengths),
std::end(output_spatial_lengths));
Tensor<InDataType> in_n_c_hi_wi(
ck::utils::conv::get_input_host_tensor_descriptor(input_dims, num_dim_spatial));
Tensor<WeiDataType> wei_k_c_y_x_host_result(
ck::utils::conv::get_filters_host_tensor_descriptor(filter_dims, num_dim_spatial));
Tensor<WeiDataType> wei_k_c_y_x_device_result(
ck::utils::conv::get_filters_host_tensor_descriptor(filter_dims, num_dim_spatial));
Tensor<OutDataType> out_n_k_ho_wo(
ck::utils::conv::get_output_host_tensor_descriptor(output_dims, num_dim_spatial));
std::cout << "in_n_c_hi_wi: " << in_n_c_hi_wi.mDesc << std::endl;
std::cout << "wei_k_c_y_x: " << wei_k_c_y_x_device_result.mDesc << std::endl;
std::cout << "out_n_k_ho_wo: " << out_n_k_ho_wo.mDesc << std::endl;
std::cout << "in_n_c_hi_wi: " << in_n_c_hi_wi.mDesc << std::endl;
std::cout << "wei_k_c_y_x: " << wei_k_c_y_x_host_result.mDesc << std::endl;
std::cout << "out_n_k_ho_wo: " << out_n_k_ho_wo.mDesc << std::endl;
switch(init_method)
{
case 0: break;
case 1:
out_n_k_ho_wo.GenerateTensorValue(GeneratorTensor_2<OutDataType>{-2, 2});
in_n_c_hi_wi.GenerateTensorValue(GeneratorTensor_2<InDataType>{-2, 2});
break;
default:
out_n_k_ho_wo.GenerateTensorValue(GeneratorTensor_1<OutDataType>{1});
in_n_c_hi_wi.GenerateTensorValue(GeneratorTensor_1<InDataType>{1});
}
DeviceMem in_device_buf(sizeof(InDataType) * in_n_c_hi_wi.mDesc.GetElementSpace());
DeviceMem wei_device_buf(sizeof(WeiDataType) *
wei_k_c_y_x_device_result.mDesc.GetElementSpace());
DeviceMem out_device_buf(sizeof(OutDataType) * out_n_k_ho_wo.mDesc.GetElementSpace());
in_device_buf.ToDevice(in_n_c_hi_wi.mData.data());
out_device_buf.ToDevice(out_n_k_ho_wo.mData.data());
// reset input to zero
wei_device_buf.SetZero();
// do GEMM
auto conv = get_conv_instance(num_dim_spatial);
auto invoker = conv->MakeInvokerPointer();
auto argument =
conv->MakeArgumentPointer(static_cast<InDataType*>(in_device_buf.GetDeviceBuffer()),
static_cast<WeiDataType*>(wei_device_buf.GetDeviceBuffer()),
static_cast<OutDataType*>(out_device_buf.GetDeviceBuffer()),
params.N_,
params.K_,
params.C_,
params.input_spatial_lengths_,
params.filter_spatial_lengths_,
output_spatial_lengths,
params.conv_filter_strides_,
params.conv_filter_dilations_,
params.input_left_pads_,
params.input_right_pads_,
InElementOp{},
WeiElementOp{},
OutElementOp{},
split_k);
// alloc work space
size_t bwd_weight_workspace_size = conv->GetWorkSpaceSize(argument.get());
if(bwd_weight_workspace_size <= 0)
{
print_use_msg();
exit(1);
}
float conv_ave_time = 0.f;
DeviceMem wei_work_space_device_buf(bwd_weight_workspace_size);
wei_work_space_device_buf.SetZero();
conv->SetWorkSpacePointer(argument.get(), wei_work_space_device_buf.GetDeviceBuffer());
if(!conv->IsSupportedArgument(argument.get()))
{
std::cout << "wrong! device_conv with the specified compilation parameters does "
"not support this Conv problem"
<< std::endl;
return 1;
}
conv_ave_time = invoker->Run(argument.get(), StreamConfig{nullptr, time_kernel});
std::size_t flop = ck::utils::conv::get_flops(
params.N_, params.C_, params.K_, params.filter_spatial_lengths_, output_spatial_lengths);
std::size_t num_btype = ck::utils::conv::get_btype<InDataType, WeiDataType, OutDataType>(
params.N_,
params.C_,
params.K_,
params.input_spatial_lengths_,
params.filter_spatial_lengths_,
output_spatial_lengths);
float tflops = static_cast<float>(flop) / 1.E9 / conv_ave_time;
float gb_per_sec = num_btype / 1.E6 / conv_ave_time;
std::cout << "Perf: conv: " << conv_ave_time << " ms, " << tflops << " TFlops, " << gb_per_sec
<< " GB/s" << std::endl;
if(do_verification)
{
auto verify_f = [&](const auto& ref_conv) {
auto ref_invoker = ref_conv.MakeInvoker();
auto ref_argument = ref_conv.MakeArgument(in_n_c_hi_wi,
wei_k_c_y_x_host_result,
out_n_k_ho_wo,
params.conv_filter_strides_,
params.conv_filter_dilations_,
params.input_left_pads_,
params.input_right_pads_,
InElementOp{},
WeiElementOp{},
OutElementOp{});
ref_invoker.Run(ref_argument);
wei_device_buf.FromDevice(wei_k_c_y_x_device_result.mData.data());
if(do_log)
{
LogRangeAsType<float>(std::cout << "out: ", out_n_k_ho_wo.mData, ",") << std::endl;
LogRangeAsType<float>(std::cout << "in : ", in_n_c_hi_wi.mData, ",") << std::endl;
LogRangeAsType<float>(
std::cout << "wei_device(after): ", wei_k_c_y_x_device_result.mData, ",")
<< std::endl;
LogRangeAsType<float>(
std::cout << "wei_host : ", wei_k_c_y_x_host_result.mData, ",")
<< std::endl;
}
return ck::utils::check_err(wei_k_c_y_x_device_result.mData,
wei_k_c_y_x_host_result.mData)
? 0
: 1;
};
switch(num_dim_spatial)
{
case 3: {
auto ref_conv = ReferenceConvBwdWeightInstance<3>();
verify_f(ref_conv);
break;
}
case 2: {
auto ref_conv = ReferenceConvBwdWeightInstance<2>();
verify_f(ref_conv);
break;
}
case 1: {
auto ref_conv = ReferenceConvBwdWeightInstance<1>();
verify_f(ref_conv);
break;
}
default: {
throw std::runtime_error("Unsupported number of spatial dimensions provided!");
}
}
}
return 0;
}
add_example_executable(example_gemm_bias_relu_add_layernorm_xdl_fp16 gemm_bias_relu_add_layernorm_xdl_fp16.cpp)
add_example_executable(example_gemm_layernorm_xdl_fp16 gemm_layernorm_xdl_fp16.cpp)
#include <iostream>
#include <numeric>
#include <initializer_list>
#include <cstdlib>
#include "check_err.hpp"
#include "config.hpp"
#include "device.hpp"
#include "host_tensor.hpp"
#include "host_tensor_generator.hpp"
#include "device_tensor.hpp"
#include "device_5ary_elementwise.hpp"
#include "device_gemm_bias_add_reduce_xdl_cshuffle.hpp"
#include "element_wise_operation.hpp"
#include "reference_gemm.hpp"
#include "gemm_specialization.hpp"
template <ck::index_t... Is>
using S = ck::Sequence<Is...>;
using F16 = ck::half_t;
using F32 = float;
using Row = ck::tensor_layout::gemm::RowMajor;
using Col = ck::tensor_layout::gemm::ColumnMajor;
using ADataType = F16;
using BDataType = F16;
using CDataType = F16;
using C0DataType = F32;
using C1DataType = F16;
using GemmAccDataType = F32;
using ReduceAccDataType = F32;
using DDataType = F32;
using DPtrsGlobal = ck::Tuple<DDataType*, DDataType*>;
using GammaDataType = F16;
using BetaDataType = F16;
using LayerNormOutDataType = F16;
using NormalizeComputeDataType = F32;
using ALayout = ck::tensor_layout::gemm::RowMajor;
using BLayout = ck::tensor_layout::gemm::ColumnMajor;
using CLayout = ck::tensor_layout::gemm::RowMajor;
using PassThrough = ck::tensor_operation::element_wise::PassThrough;
using AElementOp = PassThrough;
using BElementOp = PassThrough;
using CElementOp = ck::tensor_operation::element_wise::Relu;
using C1ElementOp = PassThrough;
using ReduceSumOp = ck::reduce::Add;
using DxsReduceOp = ck::Tuple<ReduceSumOp, ReduceSumOp>;
using UnaryIdenticElementOp = ck::tensor_operation::element_wise::PassThrough;
using UnaryDivElementOp = ck::tensor_operation::element_wise::UnaryDivide;
using UnarySquareElementOp = ck::tensor_operation::element_wise::UnarySquare;
using DxsInElementOps = ck::Tuple<UnaryIdenticElementOp, UnarySquareElementOp>;
using DxsOutElementOps = ck::Tuple<UnaryDivElementOp, UnaryDivElementOp>;
using DxsGlobalMemOp =
ck::InMemoryDataOperationEnumSequence<ck::InMemoryDataOperationEnum::AtomicAdd,
ck::InMemoryDataOperationEnum::AtomicAdd>;
static constexpr auto GemmSpecialization =
ck::tensor_operation::device::GemmSpecialization::Default;
// clang-format off
using DeviceGemmBiasAddReduceInstance = ck::tensor_operation::device::DeviceGemmBiasAddReduce_Xdl_CShuffle
//######| ALayout| BLayout| CLayout|AData| BData| CData|C0Data|C1Data| GemmAcc| CShuffle| ReduceAcc| DData| A| B| C| C1| Dxs| DxsInEleOp| DxsAccEleOp| D| GEMM| NumGemmK| Block| MPer| NPer| KPer| AK1| BK1| MPer| NPer| MXdl| NXdl| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockLds| BBlockTransfer| BBlockTransfer| BBlockTransfer| BlockTransfer| BBlockTransfer| BBlockTransfer| BBlockLds| CShuffle| CShuffle| CBlockTransferClusterLengths| CBlockTransfer| CReduce| CReduceThreadLds2VGprCopy| CReduceThreadVgpr2GlobalCopy|
//######| | | | Type| Type| Type| Type| Type| DataType| DataType| DataType| Type Tuple| Elementwise| Elementwise| Elementwise| Elementwise| Reduce| | | MemoryData| Spacialization| Prefetch| Size| Block| Block| Block| | | XDL| XDL| Per| Per| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| ExtraM| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| ExtraN| MXdlPerWave| NXdlPerWave| _MBlock_MPerBlock| ScalarPerVector| ThreadClusterLengths| SrcDstScalarPerVector| SrcDstScalarPerVector|
//######| | | | | | | | | | | | | Operation| Operation| Operation| Operation| Operation| | | Operation| | Stage| | | | | | | | | Wave| Wave| Lengths_K0_M_K1| ArrangeOrder| | | PerVector| PerVector_K1| | Lengths_K0_N_K1| ArrangeOrder| | | PerVector| PerVector_K1| | PerShuffle| PerShuffle| _NBlock_NPerBlock| _NPerBlock| _MPerBlock_NPerBlock| _NPerBlock| _MPerBlock|
//######| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
< Row, Col, Row, F16, F16, F16, F32, F16, F32, F32, F32, DPtrsGlobal, AElementOp, BElementOp, CElementOp, C1ElementOp, DxsReduceOp, DxsInElementOps, DxsOutElementOps, DxsGlobalMemOp, GemmSpecialization, 1, 256, 256, 128, 32, 8, 8, 32, 32, 4, 2, S<4, 64, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, 1, S<4, 64, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, 1, 1, 1, S<1, 32, 1, 8>, 8, S<64, 4>, 4, 1>;
// clang-format on
using ReferenceGemmInstance = ck::tensor_operation::host::ReferenceGemm<ADataType,
BDataType,
CDataType,
GemmAccDataType,
AElementOp,
BElementOp,
PassThrough>;
using NormalizeFunctor = ck::tensor_operation::element_wise::Normalize;
// A:x, B:E[x], C:E[x^2], D:Gamma, E:Beta , F:y
using DeviceNormalizeInstance =
ck::tensor_operation::device::Device5AryElementwise<CDataType,
DDataType,
DDataType,
GammaDataType,
BetaDataType,
LayerNormOutDataType,
NormalizeComputeDataType,
NormalizeFunctor,
2,
8,
8, // scalarPerVector: gemm_out
1, // scalarPerVector: reduce_mean
1, // scalarPerVector: reduce_mean_square
8, // scalarPerVector: Gamma
8, // scalarPerVector: Beta
8>; // scalarPerVector: LayerNorm_out
auto f_host_tensor_descriptor1d = [](std::size_t len, std::size_t stride) {
return HostTensorDescriptor(std::vector<std::size_t>({len}),
std::vector<std::size_t>({stride}));
};
auto f_host_tensor_descriptor2d =
[](std::size_t row, std::size_t col, std::size_t stride, auto layout) {
if(std::is_same<decltype(layout), ck::tensor_layout::gemm::RowMajor>::value)
{
return HostTensorDescriptor(std::vector<std::size_t>({row, col}),
std::vector<std::size_t>({stride, 1}));
}
else
{
return HostTensorDescriptor(std::vector<std::size_t>({row, col}),
std::vector<std::size_t>({1, stride}));
}
};
template <typename CDataType,
typename DDataType,
typename AccDataType,
typename C0DataType,
typename C1DataType,
typename A_functor,
typename B_functor,
typename C_functor,
typename C1_functor>
void host_gemm_layernorm(Tensor<LayerNormOutDataType>& out_m_n,
const Tensor<ADataType>& a_m_k,
const Tensor<ADataType>& b_k_n,
const Tensor<C0DataType>& bias_n,
const Tensor<C1DataType>& c1_m_n,
const Tensor<GammaDataType>& gamma_n,
const Tensor<GammaDataType>& beta_n,
A_functor a_element_op,
B_functor b_element_op,
C_functor c_element_op,
C1_functor c1_element_op,
int M,
int N)
{
int StrideC = N;
Tensor<CDataType> c_m_n(f_host_tensor_descriptor2d(M, N, StrideC, CLayout{}));
Tensor<DDataType> mean_m(f_host_tensor_descriptor1d(M, 1));
Tensor<DDataType> meanSquare_m(f_host_tensor_descriptor1d(M, 1));
auto averageOpInst = UnaryDivElementOp{N};
auto ref_gemm = ReferenceGemmInstance{};
auto ref_invoker = ref_gemm.MakeInvoker();
auto ref_argument =
ref_gemm.MakeArgument(a_m_k, b_k_n, c_m_n, a_element_op, b_element_op, PassThrough{});
ref_invoker.Run(ref_argument);
// c = activation(c + bias) + c1_functor(c1)
for(int m = 0; m < M; ++m)
for(int n = 0; n < N; ++n)
{
AccDataType acc =
static_cast<AccDataType>(c_m_n(m, n)) + static_cast<AccDataType>(bias_n(n));
AccDataType c1 = static_cast<AccDataType>(c1_m_n(m, n));
c_element_op(acc, acc);
c1_element_op(c1, c1);
acc += c1;
c_m_n(m, n) = static_cast<CDataType>(acc);
}
// reduce_mean and reduce_square_mean
auto reduceSumOpInst = ReduceSumOp{};
for(int m = 0; m < M; ++m)
{
auto mean_acc = reduceSumOpInst.GetIdentityValue<AccDataType>();
auto square_mean_acc = reduceSumOpInst.GetIdentityValue<AccDataType>();
for(int n = 0; n < N; ++n)
{
AccDataType c_val = ck::type_convert<AccDataType>(c_m_n(m, n));
AccDataType square_c_val = 0;
UnarySquareElementOp{}(square_c_val, c_val);
reduceSumOpInst(mean_acc, c_val);
reduceSumOpInst(square_mean_acc, square_c_val);
}
averageOpInst(mean_acc, mean_acc);
averageOpInst(square_mean_acc, square_mean_acc);
mean_m(m) = ck::type_convert<DDataType>(mean_acc);
meanSquare_m(m) = ck::type_convert<DDataType>(square_mean_acc);
}
// LayerNorm
auto layerNormInst = NormalizeFunctor{};
for(int m = 0; m < M; ++m)
{
for(int n = 0; n < N; ++n)
{
AccDataType out_acc = 0;
layerNormInst(out_acc,
static_cast<AccDataType>(c_m_n(m, n)),
static_cast<AccDataType>(mean_m(m)),
static_cast<AccDataType>(meanSquare_m(m)),
static_cast<AccDataType>(gamma_n(n)),
static_cast<AccDataType>(beta_n(n)));
out_m_n(m, n) = static_cast<DDataType>(out_acc);
}
}
}
template <typename ADataType,
typename BDataType,
typename CDataType,
typename C0DataType,
typename C1DataType,
typename DDataType,
typename GammaDataType,
typename BetaDataType,
typename NormalizeDataType>
void DumpGemmLayerNormPerf(float gemm_reduce_time, float normalize_time, int M, int N, int K)
{
std::size_t gemm_flop = std::size_t(2) * M * N * K + std::size_t(2) * M * N;
std::size_t gemm_num_byte = sizeof(ADataType) * M * K + sizeof(BDataType) * K * N +
sizeof(CDataType) * M * N + sizeof(C0DataType) * M * N +
sizeof(C1DataType) * M * N + sizeof(DDataType) * M +
sizeof(DDataType) * M;
std::size_t normalize_num_byte = sizeof(CDataType) * M * N + sizeof(DDataType) * M +
sizeof(DDataType) * M + sizeof(GammaDataType) * N +
sizeof(BetaDataType) * N + sizeof(NormalizeDataType) * M * N;
float tflops = static_cast<float>(gemm_flop) / 1.E9 / gemm_reduce_time;
float gemm_gb_per_sec = gemm_num_byte / 1.E6 / gemm_reduce_time;
float normalize_gb_per_sec = normalize_num_byte / 1.E6 / normalize_time;
std::cout << "gemm + reduce_mean + reduce_square_mean Perf: " << gemm_reduce_time << " ms, "
<< tflops << " TFlops, " << gemm_gb_per_sec << " GB/s, " << std::endl;
std::cout << "5-ary elementwise Perf: " << normalize_time << " ms, " << normalize_gb_per_sec
<< " GB/s, " << std::endl;
}
int main()
{
// GEMM shape
ck::index_t M = 1024;
ck::index_t N = 1024;
ck::index_t K = 1024;
ck::index_t StrideA = 1024;
ck::index_t StrideB = 1024;
ck::index_t StrideC = 1024;
ck::index_t StrideC1 = 1024;
Tensor<ADataType> a_m_k(f_host_tensor_descriptor2d(M, K, StrideA, ALayout{}));
Tensor<BDataType> b_k_n(f_host_tensor_descriptor2d(K, N, StrideB, BLayout{}));
Tensor<CDataType> c_m_n(f_host_tensor_descriptor2d(M, N, StrideC, CLayout{}));
Tensor<C0DataType> bias_n(f_host_tensor_descriptor1d(N, 1));
Tensor<C1DataType> c1_m_n(f_host_tensor_descriptor2d(M, N, StrideC, CLayout{}));
Tensor<DDataType> reduceMean_m(f_host_tensor_descriptor1d(M, 1));
Tensor<DDataType> reduceMeanSquare_m(f_host_tensor_descriptor1d(M, 1));
Tensor<GammaDataType> gamma_n(f_host_tensor_descriptor1d(N, 1));
Tensor<BetaDataType> beta_n(f_host_tensor_descriptor1d(N, 1));
Tensor<LayerNormOutDataType> layerNorm_m_n(
f_host_tensor_descriptor2d(M, N, StrideC, CLayout{}));
a_m_k.GenerateTensorValue(GeneratorTensor_3<ADataType>{-1, 1});
b_k_n.GenerateTensorValue(GeneratorTensor_3<BDataType>{-1, 1});
bias_n.GenerateTensorValue(GeneratorTensor_3<C0DataType>{-1, 1});
c1_m_n.GenerateTensorValue(GeneratorTensor_3<C1DataType>{-5, 5});
gamma_n.GenerateTensorValue(GeneratorTensor_3<GammaDataType>{-1, 1});
beta_n.GenerateTensorValue(GeneratorTensor_3<BetaDataType>{-1, 1});
DeviceMem a_device_buf(sizeof(ADataType) * a_m_k.mDesc.GetElementSpace());
DeviceMem b_device_buf(sizeof(BDataType) * b_k_n.mDesc.GetElementSpace());
DeviceMem c_device_buf(sizeof(CDataType) * c_m_n.mDesc.GetElementSpace());
DeviceMem bias_device_buf(sizeof(C0DataType) * bias_n.mDesc.GetElementSpace());
DeviceMem c1_device_buf(sizeof(C1DataType) * c1_m_n.mDesc.GetElementSpace());
DeviceMem reduceMean_device_buf(sizeof(DDataType) * reduceMean_m.mDesc.GetElementSpace());
DeviceMem reduceMeanSquare_device_buf(sizeof(DDataType) *
reduceMeanSquare_m.mDesc.GetElementSpace());
DeviceMem gamma_device_buf(sizeof(GammaDataType) * gamma_n.mDesc.GetElementSpace());
DeviceMem beta_device_buf(sizeof(BetaDataType) * beta_n.mDesc.GetElementSpace());
DeviceMem layerNorm_device_buf(sizeof(LayerNormOutDataType) *
layerNorm_m_n.mDesc.GetElementSpace());
a_device_buf.ToDevice(a_m_k.mData.data());
b_device_buf.ToDevice(b_k_n.mData.data());
bias_device_buf.ToDevice(bias_n.mData.data());
c1_device_buf.ToDevice(c1_m_n.mData.data());
gamma_device_buf.ToDevice(gamma_n.mData.data());
beta_device_buf.ToDevice(beta_n.mData.data());
auto a_element_op = AElementOp{};
auto b_element_op = BElementOp{};
auto c_element_op = CElementOp{};
auto c1_element_op = C1ElementOp{};
auto dxs_global =
ck::make_tuple(static_cast<DDataType*>(reduceMean_device_buf.GetDeviceBuffer()),
static_cast<DDataType*>(reduceMeanSquare_device_buf.GetDeviceBuffer()));
auto dxs_in_element_op = DxsInElementOps{};
auto dxs_out_element_op = DxsOutElementOps{N, N};
// Prepare GEMM, reduce_mean, reduce_mean_square
auto gemmReduce = DeviceGemmBiasAddReduceInstance{};
auto gemmReduce_invoker = gemmReduce.MakeInvoker();
auto gemmReduce_argument =
gemmReduce.MakeArgument(static_cast<ADataType*>(a_device_buf.GetDeviceBuffer()),
static_cast<BDataType*>(b_device_buf.GetDeviceBuffer()),
static_cast<CDataType*>(c_device_buf.GetDeviceBuffer()),
static_cast<C0DataType*>(bias_device_buf.GetDeviceBuffer()),
static_cast<C1DataType*>(c1_device_buf.GetDeviceBuffer()),
dxs_global,
M,
N,
K,
StrideA,
StrideB,
StrideC,
StrideC1,
a_element_op,
b_element_op,
c_element_op,
c1_element_op,
dxs_in_element_op,
dxs_out_element_op);
if(!gemmReduce.IsSupportedArgument(gemmReduce_argument))
{
throw std::runtime_error(
"wrong! device_gemm with the specified compilation parameters does "
"not support this GEMM problem");
}
reduceMean_device_buf.SetZero();
reduceMeanSquare_device_buf.SetZero();
// Prepare LayerNorm
auto normalize = DeviceNormalizeInstance{};
auto normalize_invoker = normalize.MakeInvoker();
auto normalize_argument = normalize.MakeArgument(
static_cast<CDataType*>(c_device_buf.GetDeviceBuffer()),
static_cast<DDataType*>(reduceMean_device_buf.GetDeviceBuffer()),
static_cast<DDataType*>(reduceMeanSquare_device_buf.GetDeviceBuffer()),
static_cast<GammaDataType*>(gamma_device_buf.GetDeviceBuffer()),
static_cast<BetaDataType*>(beta_device_buf.GetDeviceBuffer()),
static_cast<LayerNormOutDataType*>(layerNorm_device_buf.GetDeviceBuffer()),
{M, N},
{StrideC, 1},
{1, 0},
{1, 0},
{0, 1},
{0, 1},
{StrideC, 1},
NormalizeFunctor{});
if(!normalize.IsSupportedArgument(normalize_argument))
{
throw std::runtime_error("The runtime parameters seems not supported by the "
"Device5AryElementwise instance, exiting!");
}
// run kernel
gemmReduce_invoker.Run(gemmReduce_argument, StreamConfig{nullptr, false});
normalize_invoker.Run(normalize_argument, StreamConfig{nullptr, false});
bool pass = true;
{
// verification
Tensor<LayerNormOutDataType> host_layerNorm_m_n(
f_host_tensor_descriptor2d(M, N, StrideC, CLayout{}));
host_gemm_layernorm<CDataType, DDataType, ReduceAccDataType>(host_layerNorm_m_n,
a_m_k,
b_k_n,
bias_n,
c1_m_n,
gamma_n,
beta_n,
a_element_op,
b_element_op,
c_element_op,
c1_element_op,
M,
N);
layerNorm_device_buf.FromDevice(layerNorm_m_n.mData.data());
pass &= ck::utils::check_err(layerNorm_m_n.mData,
host_layerNorm_m_n.mData,
"Error: Incorrect results layerNorm_m_n",
1e-2,
1e-2);
}
{
// evaluate kernel perf
bool time_kernel = true;
float gemm_reduce_mean_reduce_square_mean_ave_time =
gemmReduce_invoker.Run(gemmReduce_argument, StreamConfig{nullptr, time_kernel});
float normalize_ave_time =
normalize_invoker.Run(normalize_argument, StreamConfig{nullptr, time_kernel});
if(time_kernel)
DumpGemmLayerNormPerf<ADataType,
BDataType,
CDataType,
C0DataType,
C1DataType,
DDataType,
GammaDataType,
BetaDataType,
LayerNormOutDataType>(
gemm_reduce_mean_reduce_square_mean_ave_time, normalize_ave_time, M, N, K);
}
return pass ? 0 : 1;
}
......@@ -2,7 +2,6 @@
#include <numeric>
#include <initializer_list>
#include <cstdlib>
#include <stdlib.h>
#include "check_err.hpp"
#include "config.hpp"
......@@ -15,7 +14,6 @@
#include "element_wise_operation.hpp"
#include "reference_gemm.hpp"
#include "gemm_specialization.hpp"
#include "element_wise_reduce_operation.hpp"
template <ck::index_t... Is>
using S = ck::Sequence<Is...>;
......@@ -45,17 +43,14 @@ using CLayout = ck::tensor_layout::gemm::RowMajor;
using AElementOp = ck::tensor_operation::element_wise::PassThrough;
using BElementOp = ck::tensor_operation::element_wise::PassThrough;
using CElementOp = ck::tensor_operation::element_wise::PassThrough;
using ReduceSumOp = ck::reduce::Add<ReduceAccDataType>;
using ReduceSumOp = ck::reduce::Add;
using DxsReduceOp = ck::Tuple<ReduceSumOp, ReduceSumOp>;
using UnaryIdenticElementOp =
ck::tensor_operation::element_wise::UnaryIdentic<ReduceAccDataType, ReduceAccDataType, false>;
using UnaryDivElementOp =
ck::tensor_operation::element_wise::UnaryIdentic<ReduceAccDataType, ReduceAccDataType, true>;
using UnarySquareElementOp =
ck::tensor_operation::element_wise::UnarySquare<ReduceAccDataType, ReduceAccDataType, false>;
using DxsInElementOp = ck::Tuple<UnaryIdenticElementOp, UnarySquareElementOp>;
using DxsOutElementOp = ck::Tuple<UnaryDivElementOp, UnaryDivElementOp>;
using UnaryIdenticElementOp = ck::tensor_operation::element_wise::PassThrough;
using UnaryDivElementOp = ck::tensor_operation::element_wise::UnaryDivide;
using UnarySquareElementOp = ck::tensor_operation::element_wise::UnarySquare;
using DxsInElementOps = ck::Tuple<UnaryIdenticElementOp, UnarySquareElementOp>;
using DxsOutElementOps = ck::Tuple<UnaryDivElementOp, UnaryDivElementOp>;
using DxsGlobalMemOp =
ck::InMemoryDataOperationEnumSequence<ck::InMemoryDataOperationEnum::AtomicAdd,
......@@ -70,7 +65,7 @@ using DeviceGemmReduceInstance = ck::tensor_operation::device::DeviceGemmReduce_
//######| | | | Type| Type| Type| DataType| DataType| DataType| Type Tuple| Elementwise| Elementwise| Elementwise| Reduce| | | MemoryData| Spacialization| Prefetch| Size| Block| Block| Block| | | XDL| XDL| Per| Per| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| ExtraM| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| ExtraN| MXdlPerWave| NXdlPerWave| _MBlock_MPerBlock| ScalarPerVector| ThreadClusterLengths| SrcDstScalarPerVector| SrcDstScalarPerVector|
//######| | | | | | | | | | | Operation| Operation| Operation| Operation| | | Operation| | Stage| | | | | | | | | Wave| Wave| Lengths_K0_M_K1| ArrangeOrder| | | PerVector| PerVector_K1| | Lengths_K0_N_K1| ArrangeOrder| | | PerVector| PerVector_K1| | PerShuffle| PerShuffle| _NBlock_NPerBlock| _NPerBlock| _MPerBlock_NPerBlock| _NPerBlock| _MPerBlock|
//######| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
< Row, Col, Row, F16, F16, F16, F32, F32, F32, DPtrsGlobal, AElementOp, BElementOp, CElementOp, DxsReduceOp, DxsInElementOp, DxsOutElementOp, DxsGlobalMemOp, GemmSpecialization, 1, 256, 256, 128, 32, 8, 8, 32, 32, 4, 2, S<4, 64, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, 1, S<4, 64, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, 1, 1, 1, S<1, 32, 1, 8>, 8, S<64, 4>, 4, 1>;
< Row, Col, Row, F16, F16, F16, F32, F32, F32, DPtrsGlobal, AElementOp, BElementOp, CElementOp, DxsReduceOp, DxsInElementOps, DxsOutElementOps, DxsGlobalMemOp, GemmSpecialization, 1, 256, 256, 128, 32, 8, 8, 32, 32, 4, 2, S<4, 64, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, 1, S<4, 64, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, 1, 1, 1, S<1, 32, 1, 8>, 8, S<64, 4>, 4, 1>;
// clang-format on
using ReferenceGemmInstance = ck::tensor_operation::host::ReferenceGemm<ADataType,
......@@ -143,7 +138,7 @@ void host_gemm_layernorm(Tensor<LayerNormOutDataType>& out_m_n,
Tensor<CDataType> c_m_n(f_host_tensor_descriptor2d(M, N, StrideC, CLayout{}));
Tensor<DDataType> mean_m(f_host_tensor_descriptor1d(M, 1));
Tensor<DDataType> meanSquare_m(f_host_tensor_descriptor1d(M, 1));
auto averageOpInst = UnaryDivElementOp{M};
auto averageOpInst = UnaryDivElementOp{N};
auto ref_gemm = ReferenceGemmInstance{};
auto ref_invoker = ref_gemm.MakeInvoker();
......@@ -157,13 +152,14 @@ void host_gemm_layernorm(Tensor<LayerNormOutDataType>& out_m_n,
auto reduceSumOpInst = ReduceSumOp{};
for(int m = 0; m < M; ++m)
{
float mean_acc = reduceSumOpInst.GetIdentityValue();
float square_mean_acc = reduceSumOpInst.GetIdentityValue();
auto mean_acc = reduceSumOpInst.GetIdentityValue<ReduceAccDataType>();
auto square_mean_acc = reduceSumOpInst.GetIdentityValue<ReduceAccDataType>();
for(int n = 0; n < N; ++n)
{
ReduceAccDataType c_val = ck::type_convert<float>(c_m_n(m, n));
ReduceAccDataType square_c_val = 0;
auto c_val = ck::type_convert<ReduceAccDataType>(c_m_n(m, n));
auto square_c_val = reduceSumOpInst.GetIdentityValue<ReduceAccDataType>();
UnarySquareElementOp{}(square_c_val, c_val);
reduceSumOpInst(mean_acc, c_val);
......@@ -183,7 +179,12 @@ void host_gemm_layernorm(Tensor<LayerNormOutDataType>& out_m_n,
for(int n = 0; n < N; ++n)
{
float out_f32 = 0;
layerNormInst(out_f32, c_m_n(m, n), mean_m(m), meanSquare_m(m), gamma_n(n), beta_n(n));
layerNormInst(out_f32,
static_cast<float>(c_m_n(m, n)),
static_cast<float>(mean_m(m)),
static_cast<float>(meanSquare_m(m)),
static_cast<float>(gamma_n(n)),
static_cast<float>(beta_n(n)));
out_m_n(m, n) = static_cast<out_type>(out_f32);
}
}
......@@ -267,8 +268,8 @@ int main()
ck::make_tuple(static_cast<DDataType*>(reduceMean_device_buf.GetDeviceBuffer()),
static_cast<DDataType*>(reduceMeanSquare_device_buf.GetDeviceBuffer()));
auto dxs_in_element_op = DxsInElementOp{};
auto dxs_out_element_op = DxsOutElementOp{M, M};
auto dxs_in_element_op = DxsInElementOps{};
auto dxs_out_element_op = DxsOutElementOps{N, N};
// Prepare GEMM, reduce_mean, reduce_mean_square
auto gemmReduce = DeviceGemmReduceInstance{};
......
add_example_executable(example_softmax_blockwise softmax_blockwise.cpp)
\ No newline at end of file
# Instructions for ```example_softmax_blockwise```
## Run ```example_softmax_blockwise```
```bash
# -D <xxx> : input 3-d tensor lengths
# -v <x> : verification (0=no, 1=yes)
#arg1: initialization (0=no init, 1=single integer value, 2=scope integer value, 3=decimal value)
#arg2: time kernel (0=no, 1=yes)
example_softmax_blockwise -D 4,128,2048 -v 1 1 1
```
Result
```
launch_and_time_kernel: grid_dim {64, 1, 1}, block_dim {256, 1, 1}
Warm up 1 time
Start running 10 times...
Perf: 0.0242877 ms, 259.039 GB/s, DeviceReduceSoftmax<256,M_C8_S1,K_C32_S8,InSrcVectorDim_1_InSrcVectorSize_8_OutDstVectorSize_8>
```
#include <iostream>
#include <numeric>
#include <initializer_list>
#include <cstdlib>
#include <getopt.h>
#include "check_err.hpp"
#include "config.hpp"
#include "print.hpp"
#include "device.hpp"
#include "host_tensor.hpp"
#include "host_tensor_generator.hpp"
#include "device_tensor.hpp"
#include "device_base.hpp"
#include "device_softmax.hpp"
#include "host_common_util.hpp"
#include "reference_softmax.hpp"
#include "reduction_enums.hpp"
#include "reduction_operator_mapping.hpp"
using namespace ck;
using namespace ck::tensor_operation::device;
using InDataType = ck::half_t;
using OutDataType = ck::half_t;
using AccDataType = float;
constexpr int Rank = 3;
constexpr int NumReduceDim = 1;
using DeviceInstance = DeviceSoftmax<InDataType,
AccDataType,
OutDataType,
Rank,
NumReduceDim,
256, // BlockSize
8, // ClusterM
32, // ClusterK
1, // SliceM
8, // SliceK
1, // SrcVecDim (0=M, 1=K)
8, // SrcScalarPerVector
8>; // OutScalarPerVector
static struct option long_options[] = {{"inLengths", required_argument, nullptr, 'D'},
{"verify", required_argument, nullptr, 'v'},
{"help", no_argument, nullptr, '?'},
{nullptr, 0, nullptr, 0}};
class SimpleAppArgs
{
private:
int option_index = 0;
public:
std::vector<size_t> inLengths = {8, 128, 2048};
std::vector<AccDataType> scales = {2.0f, 2.0f};
bool do_verification = true;
int init_method = 2;
bool time_kernel = true;
public:
void show_usage(const char* cmd)
{
std::cout << "Usage of " << cmd << std::endl;
std::cout << "--inLengths or -D, comma separated list of input tensor dimension lengths"
<< std::endl;
std::cout << "--verify or -v, 1/0 to indicate whether to verify the reduction result by "
"comparing with the host-based reduction"
<< std::endl;
std::cout << "Arg1 -- init method (0=no init, 1=single integer value, 2=scope integer "
"value, 3=decimal value)"
<< std::endl;
std::cout << "Arg2 -- time kernel (0=no, 1=yes)" << std::endl;
};
int processArgs(int argc, char* argv[])
{
using ck::host_common::getTypeValuesFromString;
int ch;
while(1)
{
ch = getopt_long(argc, argv, "D:v:l:", long_options, &option_index);
if(ch == -1)
break;
switch(ch)
{
case 'D':
if(!optarg)
throw std::runtime_error("Invalid option format!");
inLengths = getTypeValuesFromString<size_t>(optarg);
break;
case 'v':
if(!optarg)
throw std::runtime_error("Invalid option format!");
do_verification = static_cast<bool>(std::atoi(optarg));
break;
case '?':
if(std::string(long_options[option_index].name) == "help")
{
show_usage(argv[0]);
return (-1);
};
break;
default: show_usage(argv[0]); return (-1);
};
};
if(optind + 2 > argc)
throw std::runtime_error("Invalid cmd-line arguments, more argumetns are needed!");
init_method = std::atoi(argv[optind++]);
time_kernel = static_cast<bool>(std::atoi(argv[optind]));
if(scales.empty())
{
scales.push_back(1.0f);
scales.push_back(0.0f);
};
return (0);
};
};
int main(int argc, char* argv[])
{
// Example: batched gemm C[G, M, N] applies max/sum reduction along N internally
const std::vector<int> invariantDims{0, 1};
const std::vector<int> reduceDims{2};
SimpleAppArgs args;
if(argc > 1)
{
if(args.processArgs(argc, argv) < 0)
return (-1);
};
Tensor<InDataType> in(args.inLengths);
Tensor<OutDataType> out_ref(args.inLengths);
Tensor<OutDataType> out(args.inLengths);
auto inStrides = in.mDesc.GetStrides();
auto outStrides = out.mDesc.GetStrides();
AccDataType alpha = args.scales[0];
AccDataType beta = args.scales[1];
std::size_t num_thread = 1;
if(args.do_verification)
{
switch(args.init_method)
{
case 0: break;
case 1:
in.GenerateTensorValue(GeneratorTensor_1<InDataType>{1}, num_thread);
if(beta != 0.0f)
out_ref.GenerateTensorValue(GeneratorTensor_1<OutDataType>{1}, num_thread);
break;
case 2:
in.GenerateTensorValue(GeneratorTensor_2<InDataType>{-5, 5}, num_thread);
if(beta != 0.0f)
out_ref.GenerateTensorValue(GeneratorTensor_2<OutDataType>{-5, 5}, num_thread);
break;
default:
in.GenerateTensorValue(GeneratorTensor_3<InDataType>{-5.0, 5.0}, num_thread);
if(beta != 0.0f)
out_ref.GenerateTensorValue(GeneratorTensor_3<OutDataType>{-5.0, 5.0}, num_thread);
}
if(beta != 0.0f)
for(size_t i = 0; i < out_ref.mDesc.GetElementSpace(); i++)
out.mData[i] = out_ref.mData[i];
};
// std::cout << "beta = " << beta << std::endl;
// LogRangeAsType<float>(std::cout << "tensor in: " , in.mData, ",") << std::endl;
// LogRangeAsType<float>(std::cout << "tensor prior out: " , out.mData, ",") << std::endl;
// these buffers are usually provided by the user application
DeviceMem in_dev(sizeof(InDataType) * in.mDesc.GetElementSpace());
DeviceMem out_dev(sizeof(OutDataType) * out.mDesc.GetElementSpace());
in_dev.ToDevice(in.mData.data());
if(beta != 0.0f)
out_dev.ToDevice(out.mData.data());
if(args.do_verification)
{
using ReferenceInstance =
tensor_operation::host::ReferenceSoftmax<InDataType, OutDataType, AccDataType>;
ReferenceInstance ref;
auto ref_arg = ref.MakeArgument(in, out_ref, alpha, beta, Rank, reduceDims);
auto invoker = ref.MakeInvoker();
invoker.Run(ref_arg);
// LogRangeAsType<float>(std::cout << "tensor out_ref: ", out_ref.mData, ",") << std::endl;
};
std::vector<ck::index_t> i_inLengths;
std::vector<ck::index_t> i_inStrides;
i_inLengths.assign(args.inLengths.begin(), args.inLengths.end());
i_inStrides.assign(inStrides.begin(), inStrides.end());
auto device_instance = DeviceInstance{};
auto argument_ptr = device_instance.MakeArgumentPointer(i_inLengths,
i_inStrides,
reduceDims,
alpha,
beta,
in_dev.GetDeviceBuffer(),
out_dev.GetDeviceBuffer());
if(!device_instance.IsSupportedArgument(argument_ptr.get()))
{
std::cout
<< "The runtime parameters seems not supported by the DeviceReduce instance, exiting!"
<< std::endl;
return 1;
};
std::string instance_name = device_instance.GetTypeString();
auto invoker_ptr = device_instance.MakeInvokerPointer();
bool pass = true;
if(args.do_verification)
{
invoker_ptr->Run(argument_ptr.get(), StreamConfig{nullptr, false});
out_dev.FromDevice(out.mData.data());
// LogRangeAsType<float>(std::cout << "tensor out: " , out.mData, ",") << std::endl;
pass = pass && ck::utils::check_err(out.mData, out_ref.mData);
};
float avg_time = invoker_ptr->Run(argument_ptr.get(), StreamConfig{nullptr, args.time_kernel});
std::size_t num_bytes =
in.mDesc.GetElementSize() * sizeof(InDataType) +
(beta == 0.0f ? 1 : 2) * out.mDesc.GetElementSize() * sizeof(OutDataType);
float gb_per_sec = num_bytes / 1.E6 / avg_time;
std::cout << "Perf: " << avg_time << " ms, " << gb_per_sec << " GB/s, " << instance_name
<< std::endl;
return (pass ? 0 : 1);
}
......@@ -39,7 +39,7 @@ endfunction(add_example_executable_no_testing EXAMPLE_NAME)
add_subdirectory(01_gemm)
add_subdirectory(02_gemm_alpha_beta)
add_subdirectory(03_gemm_bias_relu)
add_subdirectory(04_gemm_bias_relu_add)
add_subdirectory(04_gemm_add_add_fastgelu)
add_subdirectory(06_conv2d_fwd_bias_relu)
add_subdirectory(07_conv2d_fwd_bias_relu_add)
add_subdirectory(09_convnd_fwd)
......@@ -56,3 +56,4 @@ add_subdirectory(19_binary_elementwise)
add_subdirectory(20_convnd_bwd_weight_xdl)
add_subdirectory(21_gemm_layernorm)
add_subdirectory(22_cgemm)
add_subdirectory(23_softmax)
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2022, Advanced Micro Devices, Inc. All rights reserved.
#ifndef CK_CONFIG_AMD_HPP
#define CK_CONFIG_AMD_HPP
......@@ -141,10 +144,6 @@
// tuning parameter
#define CK_WORKAROUND_SWDEV_325164 1
// workaround for verification failure ConvNd forward
// https://github.com/ROCmSoftwarePlatform/composable_kernel/issues/135
#define CK_WORKAROUND_GITHUB_135 1
namespace ck {
enum struct InMemoryDataOperationEnum
......
......@@ -136,7 +136,11 @@ struct TensorAdaptor
using ElementSize = remove_cv_t<decltype(InitializeElementSize(Transforms{}))>;
public:
#if 0 // workaround compiler complaint about constexpr
__host__ __device__ constexpr TensorAdaptor() = default;
#else
__host__ __device__ constexpr TensorAdaptor() : transforms_{}, element_size_{} {}
#endif
__host__ __device__ constexpr TensorAdaptor(const Transforms& transforms)
: transforms_{transforms}, element_size_{InitializeElementSize(transforms)}
......
......@@ -111,7 +111,14 @@ struct TensorDescriptor
using ElementSize = remove_cv_t<decltype(InitializeElementSize(Transforms{}))>;
public:
#if 0 // workaround compiler complaint about constexpr
__host__ __device__ constexpr TensorDescriptor() = default;
#else
__host__ __device__ constexpr TensorDescriptor()
: transforms_{}, element_size_{}, element_space_size_{}
{
}
#endif
__host__ __device__ constexpr TensorDescriptor(const Transforms& transforms,
ElementSpaceSize element_space_size)
......
......@@ -437,7 +437,7 @@ struct BlockwiseGemmXdlopsInterwave_k0mk1_k0nk1_m0n0m1n1m2m3m4n2_v1
make_tuple(n0, I0, I0, I0),
b_thread_buf);
});
__builtin_amdgcn_sched_barrier();
__builtin_amdgcn_sched_barrier(0);
// NOTE: Synchronize threads in a workgroup at the start of each MAC cluster, but except
// the first, as we can shorten non-MAC cluster a bit and there's no observable negative
// impact. The desired effect is waves in a workgroup executing MAC in sync. This avoids
......@@ -447,7 +447,7 @@ struct BlockwiseGemmXdlopsInterwave_k0mk1_k0nk1_m0n0m1n1m2m3m4n2_v1
if constexpr(k.value != 0 || KPerInnerLoop == KPerThread)
{
asm volatile("s_barrier" ::);
__builtin_amdgcn_sched_barrier();
__builtin_amdgcn_sched_barrier(0);
}
static_for<0, KPerInnerLoop, KPack>{}([&](auto k_) {
static_for<0, MRepeat, 1>{}([&](auto m0) {
......@@ -479,9 +479,9 @@ struct BlockwiseGemmXdlopsInterwave_k0mk1_k0nk1_m0n0m1n1m2m3m4n2_v1
k_.value == KPerInnerLoop - KPack && m0.value == MRepeat - 1 &&
n0.value == NRepeat - 1)
{
__builtin_amdgcn_sched_barrier();
__builtin_amdgcn_sched_barrier(0);
block_sync_lds();
__builtin_amdgcn_sched_barrier();
__builtin_amdgcn_sched_barrier(0);
}
// TODO: insert setprio in more precise manner since we
......@@ -492,16 +492,16 @@ struct BlockwiseGemmXdlopsInterwave_k0mk1_k0nk1_m0n0m1n1m2m3m4n2_v1
c_thread_buf.GetVectorTypeReference(Number<c_offset>{}));
if constexpr(k_.value == 0 && m0.value == 0 && n0.value == 0)
{
__builtin_amdgcn_sched_barrier();
__builtin_amdgcn_sched_barrier(0);
__builtin_amdgcn_s_setprio(1);
__builtin_amdgcn_sched_barrier();
__builtin_amdgcn_sched_barrier(0);
}
});
});
});
__builtin_amdgcn_sched_barrier();
__builtin_amdgcn_sched_barrier(0);
__builtin_amdgcn_s_setprio(0);
__builtin_amdgcn_sched_barrier();
__builtin_amdgcn_sched_barrier(0);
});
}
......
......@@ -45,7 +45,9 @@ template <typename AccDataType,
typename ThreadClusterLengths_M_K,
typename ThreadClusterArrangeOrder,
typename OpReduce,
bool PropagateNan>
bool PropagateNan,
typename Accumulation =
detail::AccumulateWithNanCheck<PropagateNan, OpReduce, AccDataType>>
struct PartitionedBlockwiseReduction
{
static_assert(BlockSize == ThreadClusterLengths_M_K::At(0) * ThreadClusterLengths_M_K::At(1),
......@@ -62,8 +64,6 @@ struct PartitionedBlockwiseReduction
static constexpr auto thread_cluster_desc =
make_cluster_descriptor(ThreadClusterLengths_M_K{}, ThreadClusterArrangeOrder{});
using Accumulation = detail::AccumulateWithNanCheck<PropagateNan, OpReduce, AccDataType>;
template <typename BufferType>
__device__ static void Reduce(BufferType& work_buffer, AccDataType& in_out_value)
{
......@@ -113,13 +113,16 @@ struct PartitionedBlockwiseReduction
// 3) in_out_value/in_out_index is the input data in vgpr from each thread
// 4) in_out_value/in_out_index is the over-written reduced output in vgpr for each thread
// clang-format on
template <typename AccDataType,
typename IndexDataType,
index_t BlockSize,
typename ThreadClusterLengths_M_K,
typename ThreadClusterArrangeOrder,
typename OpReduce,
bool PropagateNan>
template <
typename AccDataType,
typename IndexDataType,
index_t BlockSize,
typename ThreadClusterLengths_M_K,
typename ThreadClusterArrangeOrder,
typename OpReduce,
bool PropagateNan,
typename Accumulation =
detail::AccumulateWithIndexAndNanCheck<PropagateNan, OpReduce, AccDataType, IndexDataType>>
struct PartitionedBlockwiseReductionWithIndex
{
static_assert(BlockSize == ThreadClusterLengths_M_K::At(0) * ThreadClusterLengths_M_K::At(1),
......@@ -136,9 +139,6 @@ struct PartitionedBlockwiseReductionWithIndex
static constexpr auto thread_cluster_desc =
make_cluster_descriptor(ThreadClusterLengths_M_K{}, ThreadClusterArrangeOrder{});
using Accumulation =
detail::AccumulateWithIndexAndNanCheck<PropagateNan, OpReduce, AccDataType, IndexDataType>;
// This interface accumulates on both data values and indices
template <typename BufferType, typename IdxBufferType>
__device__ static void Reduce(BufferType& work_val_buffer,
......
#pragma once
#include "common_header.hpp"
#include "tensor_descriptor.hpp"
#include "tensor_descriptor_helper.hpp"
#include "cluster_descriptor.hpp"
#include "threadwise_tensor_slice_transfer_v7.hpp"
namespace ck {
// Thread-group level multi-source, multi-destination tensor slice data movement
// Assume:
// 1. All sources and destinations are DynamicBuffer
// 2. Same VectorDim and ScalerPerVector for all sources and destinations
// 3. DstInMemOps are per destination tensor
// 4. ThreadTransferSrcResetCoordinateAfterRunFlags are per source tensor
// 5. ThreadTransferDstResetCoordinateAfterRunFlags are per destination tensor
//
// Does following things to avoid scratch memory issue
// 1. Pass tensor descritpors by reference (or tuple of references)
// 2. Does not keep reference to tensor descriptor
// 3. Does not construct new tensor coordinate when call Run()
template <typename ThreadGroup,
typename SrcDatas,
typename DstDatas,
typename SrcDescs,
typename DstDescs,
typename ElementwiseOperation,
typename DstInMemOps, // Sequence<InMemoryDataOperationEnum ...>
typename SliceLengths,
typename ThreadClusterLengths,
typename ThreadClusterArrangeOrder,
typename DimAccessOrder,
index_t VectorDim,
index_t ScalarPerVector,
typename ThreadTransferSrcResetCoordinateAfterRunFlags,
typename ThreadTransferDstResetCoordinateAfterRunFlags>
struct ThreadGroupTensorSliceTransfer_v7
{
static constexpr index_t nDim =
remove_cvref_t<tuple_element_t<0, SrcDescs>>::GetNumOfDimension();
static constexpr index_t nSrc = remove_cvref_t<SrcDescs>::Size();
static constexpr index_t nDst = remove_cvref_t<DstDescs>::Size();
using Index = MultiIndex<nDim>;
static constexpr auto thread_slice_lengths = SliceLengths{} / ThreadClusterLengths{};
__device__ constexpr ThreadGroupTensorSliceTransfer_v7(
const SrcDescs& src_descs,
const StaticallyIndexedArray<Index, nSrc>& src_block_slice_origins,
const DstDescs& dst_descs,
const StaticallyIndexedArray<Index, nDst>& dst_block_slice_origins,
const ElementwiseOperation& element_op)
: threadwise_transfer_(src_descs,
StaticallyIndexedArray<Index, nSrc>{},
dst_descs,
StaticallyIndexedArray<Index, nDst>{},
element_op)
{
static_assert(nSrc == SrcDatas::Size() && nSrc == SrcDescs::Size() &&
nSrc == ThreadTransferSrcResetCoordinateAfterRunFlags::Size() &&
nDst == DstDatas::Size() && nDst == DstDescs::Size() &&
nDst == ThreadTransferDstResetCoordinateAfterRunFlags::Size(),
"wrong!");
static_for<0, nSrc, 1>{}([&](auto i) {
static_assert(
nDim == remove_cvref_t<tuple_element_t<i.value, SrcDescs>>::GetNumOfDimension(),
"wrong!");
});
static_for<0, nDst, 1>{}([&](auto i) {
static_assert(
nDim == remove_cvref_t<tuple_element_t<i.value, DstDescs>>::GetNumOfDimension(),
"wrong!");
});
static_assert(nDim == ThreadClusterLengths::Size() &&
nDim == ThreadClusterArrangeOrder::Size() &&
nDim == DimAccessOrder::Size(),
"wrong! nDim not consistent");
static_assert(
is_same<SliceLengths, decltype(thread_slice_lengths * ThreadClusterLengths{})>{},
"wrong! threads should be mapped to cover entire slicing window");
static_assert(ThreadGroup::GetNumOfThread() >= thread_cluster_desc_.GetElementSize(),
"wrong! ThreadGroup::GetNumOfThread() too small");
if(ThreadGroup::GetNumOfThread() == thread_cluster_desc_.GetElementSize() or
ThreadGroup::GetThreadId() < thread_cluster_desc_.GetElementSize())
{
const auto thread_cluster_idx = thread_cluster_desc_.CalculateBottomIndex(
make_multi_index(get_thread_local_1d_id()));
const auto thread_data_idx_begin = thread_cluster_idx * thread_slice_lengths;
const auto src_thread_slice_origins = generate_tuple(
[&](auto i) { return src_block_slice_origins[i] + thread_data_idx_begin; },
Number<nSrc>{});
const auto dst_thread_slice_origins = generate_tuple(
[&](auto i) { return dst_block_slice_origins[i] + thread_data_idx_begin; },
Number<nDst>{});
threadwise_transfer_.SetSrcSliceOrigins(src_descs, src_thread_slice_origins);
threadwise_transfer_.SetDstSliceOrigins(dst_descs, dst_thread_slice_origins);
}
}
template <typename SrcBuffers, typename DstBuffers>
__device__ void Run(const SrcDescs& src_descs,
const SrcBuffers& src_bufs,
const DstDescs& dst_descs,
DstBuffers dst_bufs)
{
if(ThreadGroup::GetNumOfThread() == thread_cluster_desc_.GetElementSize() or
ThreadGroup::GetThreadId() < thread_cluster_desc_.GetElementSize())
{
threadwise_transfer_.Run(src_descs, src_bufs, dst_descs, dst_bufs);
}
}
template <index_t ISrc>
__device__ void
MoveSrcSliceWindow(const SrcDescs& src_descs, Number<ISrc> iSrc, const Index& step)
{
if(ThreadGroup::GetNumOfThread() == thread_cluster_desc_.GetElementSize() or
ThreadGroup::GetThreadId() < thread_cluster_desc_.GetElementSize())
{
threadwise_transfer_.MoveSrcSliceWindow(src_descs, iSrc, step);
}
}
template <index_t IDst>
__device__ void
MoveDstSliceWindow(const DstDescs& dst_descs, Number<IDst> iDst, const Index& step)
{
if(ThreadGroup::GetNumOfThread() == thread_cluster_desc_.GetElementSize() or
ThreadGroup::GetThreadId() < thread_cluster_desc_.GetElementSize())
{
threadwise_transfer_.MoveDstSliceWindow(dst_descs, iDst, step);
}
}
private:
static constexpr auto thread_cluster_desc_ =
make_cluster_descriptor(ThreadClusterLengths{}, ThreadClusterArrangeOrder{});
using ThreadwiseTransfer =
ThreadwiseTensorSliceTransfer_v7<SrcDatas,
DstDatas,
SrcDescs,
DstDescs,
ElementwiseOperation,
DstInMemOps,
decltype(thread_slice_lengths),
DimAccessOrder,
VectorDim,
ScalarPerVector,
ThreadTransferSrcResetCoordinateAfterRunFlags,
ThreadTransferDstResetCoordinateAfterRunFlags>;
ThreadwiseTransfer threadwise_transfer_;
};
} // namespace ck
......@@ -3,7 +3,6 @@
#include <sstream>
#include "device.hpp"
#include "device_base.hpp"
#include "common_header.hpp"
#include "gridwise_5ary_Elementwise_1d.hpp"
#include "tensor_layout.hpp"
#include "tensor_descriptor.hpp"
......
......@@ -15,6 +15,8 @@ struct BaseArgument
BaseArgument& operator=(const BaseArgument&) = default;
virtual ~BaseArgument() {}
void* p_workspace_ = nullptr;
};
struct BaseInvoker
......@@ -42,7 +44,11 @@ struct BaseOperator
virtual size_t GetWorkSpaceSize(const BaseArgument*) const { return 0; }
virtual void SetWorkSpacePointer(BaseArgument*, void*) const {}
virtual void SetWorkSpacePointer(BaseArgument* p_arg, void* p_workspace) const
{
assert(p_arg);
p_arg->p_workspace_ = p_workspace;
}
virtual ~BaseOperator() {}
};
......
......@@ -22,7 +22,7 @@ template <typename GridwiseGemm,
typename BElementwiseOperation,
typename CElementwiseOperation,
typename DxsInElementwiseOperation,
typename DxsAccElementwiseOperation,
typename DxsReduceAccElementwiseOperation,
typename AGridDesc_AK0_M_AK1,
typename BGridDesc_BK0_N_BK1,
typename CGridDescriptor_MBlock_MPerBlock_NBlock_NPerBlock,
......@@ -44,7 +44,7 @@ __global__ void
const BElementwiseOperation b_element_op,
const CElementwiseOperation c_element_op,
const DxsInElementwiseOperation dxs_in_element_op,
const DxsAccElementwiseOperation dxs_out_element_op,
const DxsReduceAccElementwiseOperation dxs_out_element_op,
const AGridDesc_AK0_M_AK1 a_grid_desc_ak0_m_ak1,
const BGridDesc_BK0_N_BK1 b_grid_desc_bk0_n_bk1,
const CGridDescriptor_MBlock_MPerBlock_NBlock_NPerBlock
......@@ -126,7 +126,7 @@ template <typename ALayout,
typename CElementwiseOperation,
typename DxsReduceOperation,
typename DxsInElementwiseOperation,
typename DxsAccElementwiseOperation,
typename DxsReduceAccElementwiseOperation,
typename DGlobalMemoryDataOperation,
GemmSpecialization GemmSpec,
index_t NumGemmKPrefetchStage,
......@@ -162,12 +162,12 @@ template <typename ALayout,
index_t CReduceThreadLds2VGprCopySrcDstScalarPerVector_NPerBlock,
index_t CReduceThreadVgpr2GlobalCopySrcDstScalarPerVector_MPerBlock,
LoopScheduler LoopSched = make_default_loop_scheduler()>
struct DeviceBatchedGemmReduce_Xdl_CShuffle : public DeviceGemmReduce<DPtrsGlobal,
AElementwiseOperation,
BElementwiseOperation,
CElementwiseOperation,
DxsInElementwiseOperation,
DxsAccElementwiseOperation>
struct DeviceBatchedGemmReduce_Xdl_CShuffle
: public DeviceGemmReduce<AElementwiseOperation,
BElementwiseOperation,
CElementwiseOperation,
DxsInElementwiseOperation,
DxsReduceAccElementwiseOperation>
{
using DeviceOp = DeviceBatchedGemmReduce_Xdl_CShuffle;
......@@ -527,7 +527,7 @@ struct DeviceBatchedGemmReduce_Xdl_CShuffle : public DeviceGemmReduce<DPtrsGloba
CElementwiseOperation,
DxsReduceOperation,
DxsInElementwiseOperation,
DxsAccElementwiseOperation,
DxsReduceAccElementwiseOperation,
InMemoryDataOperationEnum::Set,
DGlobalMemoryDataOperation,
AGridDesc_AK0_M_AK1,
......@@ -587,7 +587,7 @@ struct DeviceBatchedGemmReduce_Xdl_CShuffle : public DeviceGemmReduce<DPtrsGloba
BElementwiseOperation b_element_op,
CElementwiseOperation c_element_op,
DxsInElementwiseOperation dxs_in_element_op,
DxsAccElementwiseOperation dxs_out_element_op,
DxsReduceAccElementwiseOperation dxs_out_element_op,
index_t BatchCount)
: p_a_grid_{p_a_grid},
p_b_grid_{p_b_grid},
......@@ -645,7 +645,7 @@ struct DeviceBatchedGemmReduce_Xdl_CShuffle : public DeviceGemmReduce<DPtrsGloba
BElementwiseOperation b_element_op_;
CElementwiseOperation c_element_op_;
DxsInElementwiseOperation dxs_in_element_op_;
DxsAccElementwiseOperation dxs_out_element_op_;
DxsReduceAccElementwiseOperation dxs_out_element_op_;
};
// Invoker
......@@ -703,7 +703,7 @@ struct DeviceBatchedGemmReduce_Xdl_CShuffle : public DeviceGemmReduce<DPtrsGloba
BElementwiseOperation,
CElementwiseOperation,
DxsInElementwiseOperation,
DxsAccElementwiseOperation,
DxsReduceAccElementwiseOperation,
DeviceOp::AGridDesc_AK0_M_AK1,
DeviceOp::BGridDesc_BK0_N_BK1,
typename GridwiseGemm::CGridDescriptor_MBlock_MPerBlock_NBlock_NPerBlock,
......@@ -746,7 +746,7 @@ struct DeviceBatchedGemmReduce_Xdl_CShuffle : public DeviceGemmReduce<DPtrsGloba
BElementwiseOperation,
CElementwiseOperation,
DxsInElementwiseOperation,
DxsAccElementwiseOperation,
DxsReduceAccElementwiseOperation,
DeviceOp::AGridDesc_AK0_M_AK1,
DeviceOp::BGridDesc_BK0_N_BK1,
typename GridwiseGemm::CGridDescriptor_MBlock_MPerBlock_NBlock_NPerBlock,
......@@ -832,7 +832,7 @@ struct DeviceBatchedGemmReduce_Xdl_CShuffle : public DeviceGemmReduce<DPtrsGloba
BElementwiseOperation b_element_op,
CElementwiseOperation c_element_op,
DxsInElementwiseOperation dxs_in_element_op,
DxsAccElementwiseOperation dxs_out_element_op,
DxsReduceAccElementwiseOperation dxs_out_element_op,
index_t BatchCount)
{
return Argument{p_a,
......@@ -856,27 +856,29 @@ struct DeviceBatchedGemmReduce_Xdl_CShuffle : public DeviceGemmReduce<DPtrsGloba
static auto MakeInvoker() { return Invoker{}; }
// polymorphic
std::unique_ptr<BaseArgument> MakeArgumentPointer(const void* p_a,
const void* p_b,
void* p_c,
DPtrsGlobal p_dxs,
index_t MRaw,
index_t NRaw,
index_t KRaw,
index_t StrideA,
index_t StrideB,
index_t StrideC,
AElementwiseOperation a_element_op,
BElementwiseOperation b_element_op,
CElementwiseOperation c_element_op,
DxsInElementwiseOperation dxs_in_element_op,
DxsAccElementwiseOperation dxs_out_element_op,
index_t BatchCount) override
std::unique_ptr<BaseArgument>
MakeArgumentPointer(const void* p_a,
const void* p_b,
void* p_c,
void* p_dxs,
index_t MRaw,
index_t NRaw,
index_t KRaw,
index_t StrideA,
index_t StrideB,
index_t StrideC,
AElementwiseOperation a_element_op,
BElementwiseOperation b_element_op,
CElementwiseOperation c_element_op,
DxsInElementwiseOperation dxs_in_element_op,
DxsReduceAccElementwiseOperation dxs_out_element_op,
index_t BatchCount) override
{
DPtrsGlobal dxs_tuple = *(static_cast<DPtrsGlobal*>(p_dxs));
return std::make_unique<Argument>(static_cast<const ADataType*>(p_a),
static_cast<const BDataType*>(p_b),
static_cast<CDataType*>(p_c),
p_dxs,
dxs_tuple,
MRaw,
NRaw,
KRaw,
......
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment