Unverified Commit afa31621 authored by Po Yen Chen's avatar Po Yen Chen Committed by GitHub
Browse files

Merge branch 'develop' into feature/support-readfirstlane-for-object-types

parents 1001c731 6eef0755
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2022, Advanced Micro Devices, Inc. All rights reserved.
#include <iostream>
#include <random>
#include "profiler/profile_grouped_gemm_impl.hpp"
namespace {
using ADataType = ck::half_t;
using BDataType = ck::half_t;
using CDataType = ck::half_t;
using AccDataType = float;
using Row = ck::tensor_layout::gemm::RowMajor;
using Col = ck::tensor_layout::gemm::ColumnMajor;
template <typename ALayout, typename BLayout, typename CLayout>
bool TestGroupedGemm()
{
std::mt19937 gen(19391);
std::uniform_int_distribution<> distrib(1, 10);
int group_count = distrib(gen);
// GEMM shape
std::vector<ck::tensor_operation::device::GemmDesc> gemm_descs;
std::vector<const void*> p_a, p_b;
std::vector<void*> p_c;
std::vector<int> Ms, Ns, Ks, StrideAs, StrideBs, StrideCs;
for(int i = 0; i < group_count; i++)
{
Ms.push_back(256 + 256 * distrib(gen));
Ns.push_back(256 + 256 * distrib(gen));
Ks.push_back(128 + 128 * distrib(gen));
StrideAs.push_back(std::is_same<Row, ALayout>::value ? Ks[i] : Ms[i]);
StrideBs.push_back(std::is_same<Row, BLayout>::value ? Ns[i] : Ks[i]);
StrideCs.push_back(std::is_same<Row, CLayout>::value ? Ns[i] : Ms[i]);
}
return ck::profiler::profile_grouped_gemm_impl<ADataType,
BDataType,
CDataType,
AccDataType,
ALayout,
BLayout,
CLayout>(
true, 1, false, 1, Ms, Ns, Ks, StrideAs, StrideBs, StrideCs);
}
} // anonymous namespace
int main()
{
bool res = true;
res = res && TestGroupedGemm<Row, Row, Row>();
res = res && TestGroupedGemm<Row, Col, Row>();
res = res && TestGroupedGemm<Col, Row, Row>();
res = res && TestGroupedGemm<Col, Col, Row>();
std::cout << "TestGroupedGemm ..... " << (res ? "SUCCESS" : "FAILURE") << std::endl;
return res ? 0 : 1;
}
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2023, Advanced Micro Devices, Inc. All rights reserved.
#include <stdexcept>
#include <vector>
#include "gtest/gtest.h"
#include "ck/ck.hpp"
#include "ck/tensor_operation/gpu/device/tensor_layout.hpp"
#include "ck/tensor_operation/gpu/device/gemm_specialization.hpp"
#include "test_grouped_gemm_util.hpp"
class TestGGemmSplitKInterface_MKNKMN : public ::testing::Test
{
protected:
using Row = ck::tensor_layout::gemm::RowMajor;
using Col = ck::tensor_layout::gemm::ColumnMajor;
using ALayout = Row;
using BLayout = Col;
using ELayout = Row;
static constexpr auto GemmDefault = ck::tensor_operation::device::GemmSpecialization::Default;
template <ck::tensor_operation::device::GemmSpecialization GemmSpec,
ck::index_t KPerBlock,
ck::index_t K1,
ck::index_t ABlockTransferSrcScalarPerVector,
ck::index_t BBlockTransferSrcScalarPerVector,
ck::index_t CDEBlockTransferScalarPerVector_NPerBlock>
using GGemmInstance =
ck::test::DeviceGroupedGemmSplitkInstanceWrapper<ALayout,
BLayout,
ELayout,
GemmSpec,
KPerBlock,
K1,
ABlockTransferSrcScalarPerVector,
BBlockTransferSrcScalarPerVector,
CDEBlockTransferScalarPerVector_NPerBlock>;
using DefaultGGemmInstance = GGemmInstance<GemmDefault, 32, 8, 4, 8, 8>;
};
TEST_F(TestGGemmSplitKInterface_MKNKMN, TileSize)
{
std::vector<int> Ms{128, 256, 188, 512};
constexpr int N = 256;
constexpr int K = 128;
std::vector<int> Ns(Ms.size(), N);
std::vector<int> Ks(Ms.size(), K);
std::vector<int> StrideAs(Ms.size(), K);
std::vector<int> StrideBs(Ms.size(), K);
std::vector<int> StrideCs(Ms.size(), N);
// M % MPerBlock
EXPECT_FALSE(DefaultGGemmInstance{}.IsSupported(Ms, Ns, Ks, StrideAs, StrideBs, StrideCs));
Ms = std::vector<int>{256, 128, 128, 512};
Ns = std::vector<int>{256, 177, 128, 512};
// N % NPerBlock
EXPECT_FALSE(DefaultGGemmInstance{}.IsSupported(Ms, Ns, Ks, StrideAs, StrideBs, StrideCs));
}
TEST_F(TestGGemmSplitKInterface_MKNKMN, VectorLoadWidth)
{
static constexpr auto GemmMNKPadding =
ck::tensor_operation::device::GemmSpecialization::MNKPadding;
using PaddedGGemmInstance = GGemmInstance<GemmMNKPadding, 32, 8, 4, 8, 8>;
std::vector<int> Ms{128, 256, 256, 512};
constexpr int N = 256;
constexpr int K = 512;
std::vector<int> Ns(Ms.size(), N);
std::vector<int> Ks(Ms.size(), K);
std::vector<int> StrideAs(Ms.size(), K);
std::vector<int> StrideBs(Ms.size(), K);
std::vector<int> StrideCs(Ms.size(), N);
// K % ABlockTransferSrcScalarPerVector
Ks = std::vector<int>{256, 177, 128, 512};
EXPECT_FALSE(PaddedGGemmInstance{}.IsSupported(Ms, Ns, Ks, StrideAs, StrideBs, StrideCs));
Ks = std::vector<int>{256, 164, 128, 512};
// K % BBlockTransferSrcScalarPerVector
EXPECT_FALSE(PaddedGGemmInstance{}.IsSupported(Ms, Ns, Ks, StrideAs, StrideBs, StrideCs));
Ks = std::vector<int>(4, 128);
Ns = std::vector<int>{256, 127, 128, 512};
// N % CBlockTransferScalarPerVector_NWaveNPerXDL
EXPECT_FALSE(PaddedGGemmInstance{}.IsSupported(Ms, Ns, Ks, StrideAs, StrideBs, StrideCs));
}
TEST_F(TestGGemmSplitKInterface_MKNKMN, KLoops)
{
std::vector<int> Ms{128, 256, 256, 512};
constexpr int N = 256;
constexpr int K = 128;
constexpr int kbatch = 4;
std::vector<int> Ns(Ms.size(), N);
std::vector<int> Ks(Ms.size(), K);
std::vector<int> StrideAs(Ms.size(), K);
std::vector<int> StrideBs(Ms.size(), K);
std::vector<int> StrideCs(Ms.size(), N);
// kloops % 2
Ks = std::vector<int>{256, 512, 320, 768};
EXPECT_FALSE(
DefaultGGemmInstance{}.IsSupported(Ms, Ns, Ks, StrideAs, StrideBs, StrideCs, kbatch));
// Not all gemms have same value for main_k0_block_loop!
Ks = std::vector<int>{256, 512, 512, 512};
EXPECT_THROW(DefaultGGemmInstance{}.Run(Ms, Ns, Ks, StrideAs, StrideBs, StrideCs, kbatch),
std::runtime_error);
}
class TestGGemmSplitKInterface_KMKNNM : public ::testing::Test
{
protected:
using Row = ck::tensor_layout::gemm::RowMajor;
using Col = ck::tensor_layout::gemm::ColumnMajor;
using ALayout = Col;
using BLayout = Row;
using ELayout = Col;
static constexpr auto GemmDefault = ck::tensor_operation::device::GemmSpecialization::Default;
template <ck::tensor_operation::device::GemmSpecialization GemmSpec,
ck::index_t KPerBlock,
ck::index_t K1,
ck::index_t ABlockTransferSrcScalarPerVector,
ck::index_t BBlockTransferSrcScalarPerVector,
ck::index_t CDEBlockTransferScalarPerVector_NPerBlock>
using GGemmInstance =
ck::test::DeviceGroupedGemmSplitkInstanceWrapper<ALayout,
BLayout,
ELayout,
GemmSpec,
KPerBlock,
K1,
ABlockTransferSrcScalarPerVector,
BBlockTransferSrcScalarPerVector,
CDEBlockTransferScalarPerVector_NPerBlock>;
using DefaultGGemmInstance = GGemmInstance<GemmDefault, 32, 8, 4, 8, 4>;
};
TEST_F(TestGGemmSplitKInterface_KMKNNM, TileSize)
{
std::vector<int> Ms{128, 256, 188, 512};
constexpr int N = 256;
constexpr int K = 128;
std::vector<int> Ns(Ms.size(), N);
std::vector<int> Ks(Ms.size(), K);
std::vector<int> StrideAs(Ms.size(), K);
std::vector<int> StrideBs(Ms.size(), K);
std::vector<int> StrideCs(Ms.size(), N);
// M % MPerBlock
EXPECT_FALSE(DefaultGGemmInstance{}.IsSupported(Ms, Ns, Ks, StrideAs, StrideBs, StrideCs));
Ms = std::vector<int>{128, 256, 256, 512};
Ns = std::vector<int>{256, 177, 128, 512};
// N % NPerBlock
EXPECT_FALSE(DefaultGGemmInstance{}.IsSupported(Ms, Ns, Ks, StrideAs, StrideBs, StrideCs));
}
TEST_F(TestGGemmSplitKInterface_KMKNNM, VectorLoadWidth)
{
static constexpr auto GemmMNKPadding =
ck::tensor_operation::device::GemmSpecialization::MNKPadding;
using PaddedGGemmInstance = GGemmInstance<GemmMNKPadding, 32, 8, 2, 8, 4>;
std::vector<int> Ms{128, 256, 256, 512};
constexpr int N = 256;
constexpr int K = 512;
std::vector<int> Ns(Ms.size(), N);
std::vector<int> Ks(Ms.size(), K);
std::vector<int> StrideAs(Ms.size(), K);
std::vector<int> StrideBs(Ms.size(), K);
std::vector<int> StrideCs(Ms.size(), N);
// M % ABlockTransferSrcScalarPerVector
Ms = std::vector<int>{256, 177, 128, 512};
EXPECT_FALSE(PaddedGGemmInstance{}.IsSupported(Ms, Ns, Ks, StrideAs, StrideBs, StrideCs));
Ms = std::vector<int>{128, 256, 256, 512};
Ns = std::vector<int>{256, 164, 128, 512};
// N % BBlockTransferSrcScalarPerVector
EXPECT_FALSE(PaddedGGemmInstance{}.IsSupported(Ms, Ns, Ks, StrideAs, StrideBs, StrideCs));
Ns = std::vector<int>{128, 256, 256, 512};
Ms = std::vector<int>{256, 130, 128, 512};
// M % CBlockTransferScalarPerVector_NWaveNPerXDL
EXPECT_FALSE(PaddedGGemmInstance{}.IsSupported(Ms, Ns, Ks, StrideAs, StrideBs, StrideCs));
}
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment