Commit aea62819 authored by Chaitanya Inumella's avatar Chaitanya Inumella
Browse files

Rebase branch 'develop' of...

Rebase branch 'develop' of https://github.com/ROCmSoftwarePlatform/composable_kernel into contraction_hipTENSOR
parents 75af5450 75ab874e
......@@ -7,7 +7,7 @@
#include <sstream>
#include "ck/tensor_operation/gpu/device/device_base.hpp"
#include "ck/library/host_tensor/host_tensor.hpp"
#include "ck/library/utility/host_tensor.hpp"
namespace ck {
namespace tensor_operation {
......
......@@ -7,7 +7,7 @@
#include <sstream>
#include "ck/tensor_operation/gpu/device/device_base.hpp"
#include "ck/library/host_tensor/host_tensor.hpp"
#include "ck/library/utility/host_tensor.hpp"
namespace ck {
namespace tensor_operation {
......
......@@ -8,7 +8,7 @@
#include "ck/tensor_operation/gpu/device/device_base.hpp"
#include "ck/library/host_tensor/host_tensor.hpp"
#include "ck/library/utility/host_tensor.hpp"
namespace ck {
namespace tensor_operation {
......
......@@ -8,7 +8,7 @@
#include "ck/tensor_operation/gpu/device/device_base.hpp"
#include "ck/library/host_tensor/host_tensor.hpp"
#include "ck/library/utility/host_tensor.hpp"
namespace ck {
namespace tensor_operation {
......
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2022, Advanced Micro Devices, Inc. All rights reserved.
#pragma once
#include <iostream>
#include <sstream>
#include <vector>
#include <algorithm>
#include "ck/tensor_operation/gpu/device/device_base.hpp"
#include "ck/library/utility/host_tensor.hpp"
#include "ck/library/utility/host_tensor_generator.hpp"
namespace ck {
namespace tensor_operation {
namespace host {
template <typename XDataType,
typename GammaDataType,
typename BetaDataType,
typename YDataType,
typename AccDataType,
typename AccElementwiseOperation,
index_t Rank,
index_t NumReduceDim>
struct ReferenceLayernorm : public device::BaseOperator
{
// TODO - support generic layernorm
static_assert((Rank == 2 && NumReduceDim == 1), "Only support 2D version so far");
// Argument
struct Argument : public device::BaseArgument
{
Argument(const Tensor<XDataType>& x_m_n,
const Tensor<GammaDataType>& gamma_n,
const Tensor<BetaDataType>& beta_n,
Tensor<YDataType>& y_m_n,
AccElementwiseOperation acc_elementwise_op,
const std::vector<index_t> lengths,
const std::vector<index_t> reduceDims,
AccDataType epsilon)
: x_m_n_(x_m_n),
gamma_n_(gamma_n),
beta_n_(beta_n),
y_m_n_(y_m_n),
acc_elementwise_op_(acc_elementwise_op),
lengths_(lengths),
reduceDims_(reduceDims),
epsilon_(epsilon)
{
}
const Tensor<XDataType> x_m_n_;
const Tensor<XDataType> gamma_n_;
const Tensor<XDataType> beta_n_;
Tensor<YDataType>& y_m_n_;
AccElementwiseOperation acc_elementwise_op_;
std::vector<index_t> lengths_;
std::vector<index_t> reduceDims_;
AccDataType epsilon_;
};
// Invoker
struct Invoker : public device::BaseInvoker
{
float Run(const Argument& arg)
{
int M = arg.lengths_[0];
int N = arg.lengths_[1];
Tensor<AccDataType> mean({M});
Tensor<AccDataType> var({M});
for(int m = 0; m < M; ++m)
{
mean(m) = 0;
var(m) = 0;
for(int n = 0; n < N; ++n)
{
auto x_val = ck::type_convert<AccDataType>(arg.x_m_n_(m, n));
mean(m) += x_val;
var(m) += x_val * x_val;
}
mean(m) = mean(m) / N;
var(m) = (var(m) / N) - (mean(m) * mean(m));
}
for(int m = 0; m < M; ++m)
{
for(int n = 0; n < N; ++n)
{
auto x_val = ck::type_convert<AccDataType>(arg.x_m_n_(m, n));
auto y_val = (x_val - mean(m)) / sqrt(var(m) + arg.epsilon_);
y_val = (y_val * arg.gamma_n_(n)) + arg.beta_n_(n);
arg.y_m_n_(m, n) = ck::type_convert<YDataType>(y_val);
}
}
return 0;
}
float Run(const device::BaseArgument* p_arg,
const StreamConfig& /* stream_config */ = StreamConfig{}) override
{
return Run(*dynamic_cast<const Argument*>(p_arg));
}
};
static constexpr bool IsValidCompilationParameter()
{
// TODO: properly implement this check
return true;
}
bool IsSupportedArgument(const device::BaseArgument* p_arg) override
{
const Argument* p_arg_ = dynamic_cast<const Argument*>(p_arg);
// TODO - support generic layernorm
if(p_arg_->lengths_.size() != 2)
return false;
if(p_arg_->reduceDims_.size() != 1)
return false;
if(p_arg_->reduceDims_[0] != 1)
return false;
return true;
}
static auto MakeArgument(const Tensor<XDataType>& x_m_n,
const Tensor<GammaDataType>& gamma_n,
const Tensor<BetaDataType>& beta_n,
Tensor<YDataType>& y_m_n,
AccElementwiseOperation acc_elementwise_op,
const std::vector<index_t> lengths,
const std::vector<index_t> reduceDims,
AccDataType epsilon)
{
return Argument{
x_m_n, gamma_n, beta_n, y_m_n, acc_elementwise_op, lengths, reduceDims, epsilon};
}
static auto MakeInvoker() { return Invoker{}; }
virtual std::unique_ptr<device::BaseInvoker> MakeInvokerPointer()
{
return std::make_unique<Invoker>(Invoker{});
}
std::string GetTypeString() const override
{
auto str = std::stringstream();
// clang-format off
str << "ReferenceLayernorm"
<< std::endl;
// clang-format on
return str.str();
}
};
} // namespace host
} // namespace tensor_operation
} // namespace ck
......@@ -9,8 +9,8 @@
#include <algorithm>
#include "ck/tensor_operation/gpu/device/device_base.hpp"
#include "ck/library/host_tensor/host_tensor.hpp"
#include "ck/library/host_tensor/host_tensor_generator.hpp"
#include "ck/library/utility/host_tensor.hpp"
#include "ck/library/utility/host_tensor_generator.hpp"
namespace ck {
namespace tensor_operation {
......
......@@ -10,22 +10,67 @@ namespace tensor_operation {
namespace device {
namespace instance {
// aliasing, for commonly used type
// aliasing, for commonly used data type
using F64 = double;
using F32 = float;
using F16 = ck::half_t;
using BF16 = ck::bhalf_t;
using EMPTY_TUPLE = ck::Tuple<>;
using Empty_Tuple = ck::Tuple<>;
using F16_TUPLE = ck::Tuple<F16>;
using F16_F16_TUPLE = ck::Tuple<F16, F16>;
using F16_Tuple = ck::Tuple<F16>;
using F16_F16_Tuple = ck::Tuple<F16, F16>;
using F32_TUPLE = ck::Tuple<F32>;
using F32_Tuple = ck::Tuple<F32>;
// GEMM layout
using Row = ck::tensor_layout::gemm::RowMajor;
using Col = ck::tensor_layout::gemm::ColumnMajor;
using Row_Tuple = ck::Tuple<Row>;
using Row_Row_Tuple = ck::Tuple<Row, Row>;
// Conv layout
//
using NWC = ck::tensor_layout::convolution::NWC;
using NHWC = ck::tensor_layout::convolution::NHWC;
using NDHWC = ck::tensor_layout::convolution::NDHWC;
using KXC = ck::tensor_layout::convolution::KXC;
using KYXC = ck::tensor_layout::convolution::KYXC;
using KZYXC = ck::tensor_layout::convolution::KZYXC;
using NWK = ck::tensor_layout::convolution::NWK;
using NHWK = ck::tensor_layout::convolution::NHWK;
using NDHWK = ck::tensor_layout::convolution::NDHWK;
//
using GNWC = ck::tensor_layout::convolution::GNWC;
using GNHWC = ck::tensor_layout::convolution::GNHWC;
using GNDHWC = ck::tensor_layout::convolution::GNDHWC;
using GKXC = ck::tensor_layout::convolution::GKXC;
using GKYXC = ck::tensor_layout::convolution::GKYXC;
using GKZYXC = ck::tensor_layout::convolution::GKZYXC;
using GNWK = ck::tensor_layout::convolution::GNWK;
using GNHWK = ck::tensor_layout::convolution::GNHWK;
using GNDHWK = ck::tensor_layout::convolution::GNDHWK;
//
using NWGC = ck::tensor_layout::convolution::NWGC;
using NHWGC = ck::tensor_layout::convolution::NHWGC;
using NDHWGC = ck::tensor_layout::convolution::NDHWGC;
using KXGC = ck::tensor_layout::convolution::KXGC;
using KYXGC = ck::tensor_layout::convolution::KYXGC;
using KZYXGC = ck::tensor_layout::convolution::KZYXGC;
using NWGK = ck::tensor_layout::convolution::NWGK;
using NHWGK = ck::tensor_layout::convolution::NHWGK;
using NDHWGK = ck::tensor_layout::convolution::NDHWGK;
// pointwise functor
using PassThrough = ck::tensor_operation::element_wise::PassThrough;
using Scale = ck::tensor_operation::element_wise::Scale;
using Bilinear = ck::tensor_operation::element_wise::Bilinear;
......
......@@ -25,7 +25,7 @@ void add_device_contraction_bilinear_m2_n2_k2_xdl_c_shuffle_f32_f32_f32_f32_kknn
2,
F32,
F32,
F32_TUPLE,
F32_Tuple,
F32,
PassThrough,
PassThrough,
......@@ -37,7 +37,7 @@ void add_device_contraction_bilinear_m2_n2_k2_xdl_c_shuffle_f32_f32_f32_f32_knnn
2,
F32,
F32,
F32_TUPLE,
F32_Tuple,
F32,
PassThrough,
PassThrough,
......@@ -49,7 +49,7 @@ void add_device_contraction_bilinear_m2_n2_k2_xdl_c_shuffle_f32_f32_f32_f32_mknn
2,
F32,
F32,
F32_TUPLE,
F32_Tuple,
F32,
PassThrough,
PassThrough,
......@@ -61,7 +61,7 @@ void add_device_contraction_bilinear_m2_n2_k2_xdl_c_shuffle_f32_f32_f32_f32_mnnn
2,
F32,
F32,
F32_TUPLE,
F32_Tuple,
F32,
PassThrough,
PassThrough,
......
......@@ -25,7 +25,7 @@ void add_device_contraction_scale_m2_n2_k2_xdl_c_shuffle_f32_f32_f32_kkn_instanc
2,
F32,
F32,
EMPTY_TUPLE,
Empty_Tuple,
F32,
PassThrough,
PassThrough,
......@@ -37,7 +37,7 @@ void add_device_contraction_scale_m2_n2_k2_xdl_c_shuffle_f32_f32_f32_knn_instanc
2,
F32,
F32,
EMPTY_TUPLE,
Empty_Tuple,
F32,
PassThrough,
PassThrough,
......@@ -49,7 +49,7 @@ void add_device_contraction_scale_m2_n2_k2_xdl_c_shuffle_f32_f32_f32_mkn_instanc
2,
F32,
F32,
EMPTY_TUPLE,
Empty_Tuple,
F32,
PassThrough,
PassThrough,
......@@ -61,7 +61,7 @@ void add_device_contraction_scale_m2_n2_k2_xdl_c_shuffle_f32_f32_f32_mnn_instanc
2,
F32,
F32,
EMPTY_TUPLE,
Empty_Tuple,
F32,
PassThrough,
PassThrough,
......
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2022, Advanced Micro Devices, Inc. All rights reserved.
#pragma once
#include <cstdlib>
#include "ck/ck.hpp"
#include "ck/tensor_operation/gpu/device/tensor_layout.hpp"
#include "ck/tensor_operation/gpu/device/device_conv_bwd_data.hpp"
#include "ck/tensor_operation/gpu/element/element_wise_operation.hpp"
#include "ck/library/tensor_operation_instance/device_operation_instance_factory.hpp"
namespace ck {
namespace tensor_operation {
namespace device {
namespace instance {
// conv1d backward data
void add_device_conv1d_bwd_data_xdl_nwc_kxc_nwk_bf16_instances(
std::vector<std::unique_ptr<DeviceConvBwdData<1,
NWC,
KXC,
NWK,
BF16,
BF16,
BF16,
PassThrough,
PassThrough,
PassThrough>>>& instances);
void add_device_conv1d_bwd_data_xdl_nwc_kxc_nwk_f16_instances(
std::vector<std::unique_ptr<
DeviceConvBwdData<1, NWC, KXC, NWK, F16, F16, F16, PassThrough, PassThrough, PassThrough>>>&
instances);
void add_device_conv1d_bwd_data_xdl_nwc_kxc_nwk_f32_instances(
std::vector<std::unique_ptr<
DeviceConvBwdData<1, NWC, KXC, NWK, F32, F32, F32, PassThrough, PassThrough, PassThrough>>>&
instances);
void add_device_conv1d_bwd_data_xdl_nwc_kxc_nwk_int8_instances(
std::vector<std::unique_ptr<DeviceConvBwdData<1,
NWC,
KXC,
NWK,
int8_t,
int8_t,
int8_t,
PassThrough,
PassThrough,
PassThrough>>>& instances);
// conv2d backward data
void add_device_conv2d_bwd_data_xdl_nhwc_kyxc_nhwk_bf16_instances(
std::vector<std::unique_ptr<DeviceConvBwdData<2,
NHWC,
KYXC,
NHWK,
BF16,
BF16,
BF16,
PassThrough,
PassThrough,
PassThrough>>>& instances);
void add_device_conv2d_bwd_data_xdl_nhwc_kyxc_nhwk_f16_instances(
std::vector<std::unique_ptr<DeviceConvBwdData<2,
NHWC,
KYXC,
NHWK,
F16,
F16,
F16,
PassThrough,
PassThrough,
PassThrough>>>& instances);
void add_device_conv2d_bwd_data_xdl_nhwc_kyxc_nhwk_f32_instances(
std::vector<std::unique_ptr<DeviceConvBwdData<2,
NHWC,
KYXC,
NHWK,
F32,
F32,
F32,
PassThrough,
PassThrough,
PassThrough>>>& instances);
void add_device_conv2d_bwd_data_xdl_nhwc_kyxc_nhwk_int8_instances(
std::vector<std::unique_ptr<DeviceConvBwdData<2,
NHWC,
KYXC,
NHWK,
int8_t,
int8_t,
int8_t,
PassThrough,
PassThrough,
PassThrough>>>& instances);
// conv3d backward data
void add_device_conv3d_bwd_data_xdl_ndhwc_kzyxc_ndhwk_bf16_instances(
std::vector<std::unique_ptr<DeviceConvBwdData<3,
NDHWC,
KZYXC,
NDHWK,
BF16,
BF16,
BF16,
PassThrough,
PassThrough,
PassThrough>>>& instances);
void add_device_conv3d_bwd_data_xdl_ndhwc_kzyxc_ndhwk_f16_instances(
std::vector<std::unique_ptr<DeviceConvBwdData<3,
NDHWC,
KZYXC,
NDHWK,
F16,
F16,
F16,
PassThrough,
PassThrough,
PassThrough>>>& instances);
void add_device_conv3d_bwd_data_xdl_ndhwc_kzyxc_ndhwk_f32_instances(
std::vector<std::unique_ptr<DeviceConvBwdData<3,
NDHWC,
KZYXC,
NDHWK,
F32,
F32,
F32,
PassThrough,
PassThrough,
PassThrough>>>& instances);
void add_device_conv3d_bwd_data_xdl_ndhwc_kzyxc_ndhwk_int8_instances(
std::vector<std::unique_ptr<DeviceConvBwdData<3,
NDHWC,
KZYXC,
NDHWK,
int8_t,
int8_t,
int8_t,
PassThrough,
PassThrough,
PassThrough>>>& instances);
template <ck::index_t NumDimSpatial,
typename InLayout,
typename WeiLayout,
typename OutLayout,
typename InDataType,
typename WeiDataType,
typename OutDataType>
struct DeviceOperationInstanceFactory<ck::tensor_operation::device::DeviceConvBwdData<
NumDimSpatial,
InLayout,
WeiLayout,
OutLayout,
InDataType,
WeiDataType,
OutDataType,
ck::tensor_operation::element_wise::PassThrough,
ck::tensor_operation::element_wise::PassThrough,
ck::tensor_operation::element_wise::PassThrough>>
{
using DeviceOp = DeviceConvBwdData<NumDimSpatial,
InLayout,
WeiLayout,
OutLayout,
InDataType,
WeiDataType,
OutDataType,
ck::tensor_operation::element_wise::PassThrough,
ck::tensor_operation::element_wise::PassThrough,
ck::tensor_operation::element_wise::PassThrough>;
static auto GetInstances()
{
std::vector<std::unique_ptr<DeviceOp>> op_ptrs;
if constexpr(NumDimSpatial == 1 && is_same_v<InLayout, NWC> && is_same_v<WeiLayout, KXC> &&
is_same_v<OutLayout, NWK>)
{
if constexpr(is_same_v<InDataType, float> && is_same_v<WeiDataType, float> &&
is_same_v<OutDataType, float>)
{
add_device_conv1d_bwd_data_xdl_nwc_kxc_nwk_f32_instances(op_ptrs);
}
else if constexpr(is_same_v<InDataType, half_t> && is_same_v<WeiDataType, half_t> &&
is_same_v<OutDataType, half_t>)
{
add_device_conv1d_bwd_data_xdl_nwc_kxc_nwk_f16_instances(op_ptrs);
}
else if constexpr(is_same_v<InDataType, ck::bhalf_t> &&
is_same_v<WeiDataType, ck::bhalf_t> &&
is_same_v<OutDataType, ck::bhalf_t>)
{
add_device_conv1d_bwd_data_xdl_nwc_kxc_nwk_bf16_instances(op_ptrs);
}
else if constexpr(is_same_v<InDataType, int8_t> && is_same_v<WeiDataType, int8_t> &&
is_same_v<OutDataType, int8_t>)
{
add_device_conv1d_bwd_data_xdl_nwc_kxc_nwk_int8_instances(op_ptrs);
}
}
else if constexpr(NumDimSpatial == 2 && is_same_v<InLayout, NHWC> &&
is_same_v<WeiLayout, KYXC> && is_same_v<OutLayout, NHWK>)
{
if constexpr(is_same_v<InDataType, float> && is_same_v<WeiDataType, float> &&
is_same_v<OutDataType, float>)
{
add_device_conv2d_bwd_data_xdl_nhwc_kyxc_nhwk_f32_instances(op_ptrs);
}
else if constexpr(is_same_v<InDataType, half_t> && is_same_v<WeiDataType, half_t> &&
is_same_v<OutDataType, half_t>)
{
add_device_conv2d_bwd_data_xdl_nhwc_kyxc_nhwk_f16_instances(op_ptrs);
}
else if constexpr(is_same_v<InDataType, ck::bhalf_t> &&
is_same_v<WeiDataType, ck::bhalf_t> &&
is_same_v<OutDataType, ck::bhalf_t>)
{
add_device_conv2d_bwd_data_xdl_nhwc_kyxc_nhwk_bf16_instances(op_ptrs);
}
else if constexpr(is_same_v<InDataType, int8_t> && is_same_v<WeiDataType, int8_t> &&
is_same_v<OutDataType, int8_t>)
{
add_device_conv2d_bwd_data_xdl_nhwc_kyxc_nhwk_int8_instances(op_ptrs);
}
}
else if constexpr(NumDimSpatial == 3 && is_same_v<InLayout, NDHWC> &&
is_same_v<WeiLayout, KZYXC> && is_same_v<OutLayout, NDHWK>)
{
if constexpr(is_same_v<InDataType, float> && is_same_v<WeiDataType, float> &&
is_same_v<OutDataType, float>)
{
add_device_conv3d_bwd_data_xdl_ndhwc_kzyxc_ndhwk_f32_instances(op_ptrs);
}
else if constexpr(is_same_v<InDataType, half_t> && is_same_v<WeiDataType, half_t> &&
is_same_v<OutDataType, half_t>)
{
add_device_conv3d_bwd_data_xdl_ndhwc_kzyxc_ndhwk_f16_instances(op_ptrs);
}
else if constexpr(is_same_v<InDataType, ck::bhalf_t> &&
is_same_v<WeiDataType, ck::bhalf_t> &&
is_same_v<OutDataType, ck::bhalf_t>)
{
add_device_conv3d_bwd_data_xdl_ndhwc_kzyxc_ndhwk_bf16_instances(op_ptrs);
}
else if constexpr(is_same_v<InDataType, int8_t> && is_same_v<WeiDataType, int8_t> &&
is_same_v<OutDataType, int8_t>)
{
add_device_conv3d_bwd_data_xdl_ndhwc_kzyxc_ndhwk_int8_instances(op_ptrs);
}
}
return op_ptrs;
}
};
} // namespace instance
} // namespace device
} // namespace tensor_operation
} // namespace ck
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2022, Advanced Micro Devices, Inc. All rights reserved.
#pragma once
#include <cstdlib>
#include "ck/ck.hpp"
#include "ck/tensor_operation/gpu/device/tensor_layout.hpp"
#include "ck/tensor_operation/gpu/device/device_conv_bwd_weight.hpp"
#include "ck/tensor_operation/gpu/element/element_wise_operation.hpp"
#include "ck/library/tensor_operation_instance/device_operation_instance_factory.hpp"
namespace ck {
namespace tensor_operation {
namespace device {
namespace instance {
// conv1d backward weight
void add_device_conv1d_bwd_weight_xdl_nwc_kxc_nwk_bf16_f32_bf16_instances(
std::vector<std::unique_ptr<DeviceConvBwdWeight<1,
NWC,
KXC,
NWK,
BF16,
F32,
BF16,
PassThrough,
PassThrough,
PassThrough>>>& instances);
void add_device_conv1d_bwd_weight_xdl_nwc_kxc_nwk_f16_instances(
std::vector<std::unique_ptr<DeviceConvBwdWeight<1,
NWC,
KXC,
NWK,
F16,
F16,
F16,
PassThrough,
PassThrough,
PassThrough>>>& instances);
void add_device_conv1d_bwd_weight_xdl_nwc_kxc_nwk_f32_instances(
std::vector<std::unique_ptr<DeviceConvBwdWeight<1,
NWC,
KXC,
NWK,
F32,
F32,
F32,
PassThrough,
PassThrough,
PassThrough>>>& instances);
// conv2d backward weight
void add_device_conv2d_bwd_weight_xdl_nhwc_kyxc_nhwk_bf16_f32_bf16_instances(
std::vector<std::unique_ptr<DeviceConvBwdWeight<2,
NHWC,
KYXC,
NHWK,
BF16,
F32,
BF16,
PassThrough,
PassThrough,
PassThrough>>>& instances);
void add_device_conv2d_bwd_weight_xdl_nhwc_kyxc_nhwk_f16_instances(
std::vector<std::unique_ptr<DeviceConvBwdWeight<2,
NHWC,
KYXC,
NHWK,
F16,
F16,
F16,
PassThrough,
PassThrough,
PassThrough>>>& instances);
void add_device_conv2d_bwd_weight_xdl_nhwc_kyxc_nhwk_f32_instances(
std::vector<std::unique_ptr<DeviceConvBwdWeight<2,
NHWC,
KYXC,
NHWK,
F32,
F32,
F32,
PassThrough,
PassThrough,
PassThrough>>>& instances);
// conv3d backward weight
void add_device_conv3d_bwd_weight_xdl_ndhwc_kzyxc_ndhwk_bf16_f32_bf16_instances(
std::vector<std::unique_ptr<DeviceConvBwdWeight<3,
NDHWC,
KZYXC,
NDHWK,
BF16,
F32,
BF16,
PassThrough,
PassThrough,
PassThrough>>>& instances);
void add_device_conv3d_bwd_weight_xdl_ndhwc_kzyxc_ndhwk_f16_instances(
std::vector<std::unique_ptr<DeviceConvBwdWeight<3,
NDHWC,
KZYXC,
NDHWK,
F16,
F16,
F16,
PassThrough,
PassThrough,
PassThrough>>>& instances);
void add_device_conv3d_bwd_weight_xdl_ndhwc_kzyxc_ndhwk_f32_instances(
std::vector<std::unique_ptr<DeviceConvBwdWeight<3,
NDHWC,
KZYXC,
NDHWK,
F32,
F32,
F32,
PassThrough,
PassThrough,
PassThrough>>>& instances);
template <ck::index_t NumDimSpatial,
typename InLayout,
typename WeiLayout,
typename OutLayout,
typename InDataType,
typename WeiDataType,
typename OutDataType>
struct DeviceOperationInstanceFactory<ck::tensor_operation::device::DeviceConvBwdWeight<
NumDimSpatial,
InLayout,
WeiLayout,
OutLayout,
InDataType,
WeiDataType,
OutDataType,
ck::tensor_operation::element_wise::PassThrough,
ck::tensor_operation::element_wise::PassThrough,
ck::tensor_operation::element_wise::PassThrough>>
{
using DeviceOp = DeviceConvBwdWeight<NumDimSpatial,
InLayout,
WeiLayout,
OutLayout,
InDataType,
WeiDataType,
OutDataType,
ck::tensor_operation::element_wise::PassThrough,
ck::tensor_operation::element_wise::PassThrough,
ck::tensor_operation::element_wise::PassThrough>;
static auto GetInstances()
{
std::vector<std::unique_ptr<DeviceOp>> op_ptrs;
if constexpr(NumDimSpatial == 1 && is_same_v<InLayout, NWC> && is_same_v<WeiLayout, KXC> &&
is_same_v<OutLayout, NWK>)
{
if constexpr(is_same_v<InDataType, float> && is_same_v<WeiDataType, float> &&
is_same_v<OutDataType, float>)
{
add_device_conv1d_bwd_weight_xdl_nwc_kxc_nwk_f32_instances(op_ptrs);
}
else if constexpr(is_same_v<InDataType, half_t> && is_same_v<WeiDataType, half_t> &&
is_same_v<OutDataType, half_t>)
{
add_device_conv1d_bwd_weight_xdl_nwc_kxc_nwk_f16_instances(op_ptrs);
}
else if constexpr(is_same_v<InDataType, ck::bhalf_t> && is_same_v<WeiDataType, float> &&
is_same_v<OutDataType, ck::bhalf_t>)
{
add_device_conv1d_bwd_weight_xdl_nwc_kxc_nwk_bf16_f32_bf16_instances(op_ptrs);
}
}
else if constexpr(NumDimSpatial == 2 && is_same_v<InLayout, NHWC> &&
is_same_v<WeiLayout, KYXC> && is_same_v<OutLayout, NHWK>)
{
if constexpr(is_same_v<InDataType, float> && is_same_v<WeiDataType, float> &&
is_same_v<OutDataType, float>)
{
add_device_conv2d_bwd_weight_xdl_nhwc_kyxc_nhwk_f32_instances(op_ptrs);
}
else if constexpr(is_same_v<InDataType, half_t> && is_same_v<WeiDataType, half_t> &&
is_same_v<OutDataType, half_t>)
{
add_device_conv2d_bwd_weight_xdl_nhwc_kyxc_nhwk_f16_instances(op_ptrs);
}
else if constexpr(is_same_v<InDataType, ck::bhalf_t> && is_same_v<WeiDataType, float> &&
is_same_v<OutDataType, ck::bhalf_t>)
{
add_device_conv2d_bwd_weight_xdl_nhwc_kyxc_nhwk_bf16_f32_bf16_instances(op_ptrs);
}
}
else if constexpr(NumDimSpatial == 3 && is_same_v<InLayout, NDHWC> &&
is_same_v<WeiLayout, KZYXC> && is_same_v<OutLayout, NDHWK>)
{
if constexpr(is_same_v<InDataType, float> && is_same_v<WeiDataType, float> &&
is_same_v<OutDataType, float>)
{
add_device_conv3d_bwd_weight_xdl_ndhwc_kzyxc_ndhwk_f32_instances(op_ptrs);
}
else if constexpr(is_same_v<InDataType, half_t> && is_same_v<WeiDataType, half_t> &&
is_same_v<OutDataType, half_t>)
{
add_device_conv3d_bwd_weight_xdl_ndhwc_kzyxc_ndhwk_f16_instances(op_ptrs);
}
else if constexpr(is_same_v<InDataType, ck::bhalf_t> && is_same_v<WeiDataType, float> &&
is_same_v<OutDataType, ck::bhalf_t>)
{
add_device_conv3d_bwd_weight_xdl_ndhwc_kzyxc_ndhwk_bf16_f32_bf16_instances(op_ptrs);
}
}
return op_ptrs;
}
};
} // namespace instance
} // namespace device
} // namespace tensor_operation
} // namespace ck
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2022, Advanced Micro Devices, Inc. All rights reserved.
#pragma once
#include <cstdlib>
#include "ck/ck.hpp"
#include "ck/tensor_operation/gpu/device/tensor_layout.hpp"
#include "ck/tensor_operation/gpu/device/device_conv_fwd.hpp"
#include "ck/tensor_operation/gpu/element/element_wise_operation.hpp"
#include "ck/library/tensor_operation_instance/device_operation_instance_factory.hpp"
namespace ck {
namespace tensor_operation {
namespace device {
namespace instance {
// conv2d forward
void add_device_conv2d_fwd_xdl_c_shuffle_nhwc_kyxc_nhwk_f16_instances(
std::vector<std::unique_ptr<
DeviceConvFwd<2, NHWC, KYXC, NHWK, F16, F16, F16, PassThrough, PassThrough, PassThrough>>>&
instances);
void add_device_conv2d_fwd_xdl_nhwc_kyxc_nhwk_bf16_instances(
std::vector<std::unique_ptr<DeviceConvFwd<2,
NHWC,
KYXC,
NHWK,
BF16,
BF16,
BF16,
PassThrough,
PassThrough,
PassThrough>>>& instances);
void add_device_conv2d_fwd_xdl_nhwc_kyxc_nhwk_f16_instances(
std::vector<std::unique_ptr<
DeviceConvFwd<2, NHWC, KYXC, NHWK, F16, F16, F16, PassThrough, PassThrough, PassThrough>>>&
instances);
void add_device_conv2d_fwd_xdl_nhwc_kyxc_nhwk_f32_instances(
std::vector<std::unique_ptr<
DeviceConvFwd<2, NHWC, KYXC, NHWK, F32, F32, F32, PassThrough, PassThrough, PassThrough>>>&
instances);
void add_device_conv2d_fwd_xdl_nhwc_kyxc_nhwk_int8_instances(
std::vector<std::unique_ptr<DeviceConvFwd<2,
NHWC,
KYXC,
NHWK,
int8_t,
int8_t,
int8_t,
PassThrough,
PassThrough,
PassThrough>>>& instances);
template <ck::index_t NumDimSpatial,
typename InLayout,
typename WeiLayout,
typename OutLayout,
typename InDataType,
typename WeiDataType,
typename OutDataType>
struct DeviceOperationInstanceFactory<
ck::tensor_operation::device::DeviceConvFwd<NumDimSpatial,
InLayout,
WeiLayout,
OutLayout,
InDataType,
WeiDataType,
OutDataType,
ck::tensor_operation::element_wise::PassThrough,
ck::tensor_operation::element_wise::PassThrough,
ck::tensor_operation::element_wise::PassThrough>>
{
using DeviceOp = DeviceConvFwd<NumDimSpatial,
InLayout,
WeiLayout,
OutLayout,
InDataType,
WeiDataType,
OutDataType,
ck::tensor_operation::element_wise::PassThrough,
ck::tensor_operation::element_wise::PassThrough,
ck::tensor_operation::element_wise::PassThrough>;
static auto GetInstances()
{
std::vector<std::unique_ptr<DeviceOp>> op_ptrs;
if constexpr(NumDimSpatial == 2 && is_same_v<InLayout, NHWC> &&
is_same_v<WeiLayout, KYXC> && is_same_v<OutLayout, NHWK>)
{
if constexpr(is_same_v<InDataType, float> && is_same_v<WeiDataType, float> &&
is_same_v<OutDataType, float>)
{
add_device_conv2d_fwd_xdl_nhwc_kyxc_nhwk_f32_instances(op_ptrs);
}
else if constexpr(is_same_v<InDataType, half_t> && is_same_v<WeiDataType, half_t> &&
is_same_v<OutDataType, half_t>)
{
add_device_conv2d_fwd_xdl_nhwc_kyxc_nhwk_f16_instances(op_ptrs);
add_device_conv2d_fwd_xdl_c_shuffle_nhwc_kyxc_nhwk_f16_instances(op_ptrs);
}
else if constexpr(is_same_v<InDataType, ck::bhalf_t> &&
is_same_v<WeiDataType, ck::bhalf_t> &&
is_same_v<OutDataType, ck::bhalf_t>)
{
add_device_conv2d_fwd_xdl_nhwc_kyxc_nhwk_bf16_instances(op_ptrs);
}
else if constexpr(is_same_v<InDataType, int8_t> && is_same_v<WeiDataType, int8_t> &&
is_same_v<OutDataType, int8_t>)
{
add_device_conv2d_fwd_xdl_nhwc_kyxc_nhwk_int8_instances(op_ptrs);
}
}
return op_ptrs;
}
};
} // namespace instance
} // namespace device
} // namespace tensor_operation
} // namespace ck
......@@ -19,49 +19,53 @@ namespace tensor_operation {
namespace device {
namespace instance {
void add_device_gemm_add_add_fastgelu_xdl_c_shuffle_f16_f16_f16_mk_kn_mn_instances(
void add_device_gemm_add_add_fastgelu_xdl_c_shuffle_f16_f16_f16_f16_f16_mk_kn_mn_mn_mn_instances(
std::vector<std::unique_ptr<DeviceGemmMultipleD<Row,
Row,
Row_Row_Tuple,
Row,
F16,
F16,
F16_F16_TUPLE,
F16_F16_Tuple,
F16,
PassThrough,
PassThrough,
AddAddFastGelu>>>&);
void add_device_gemm_add_add_fastgelu_xdl_c_shuffle_f16_f16_f16_mk_nk_mn_instances(
void add_device_gemm_add_add_fastgelu_xdl_c_shuffle_f16_f16_f16_f16_f16_mk_nk_mn_mn_mn_instances(
std::vector<std::unique_ptr<DeviceGemmMultipleD<Row,
Col,
Row_Row_Tuple,
Row,
F16,
F16,
F16_F16_TUPLE,
F16_F16_Tuple,
F16,
PassThrough,
PassThrough,
AddAddFastGelu>>>&);
void add_device_gemm_add_add_fastgelu_xdl_c_shuffle_f16_f16_f16_km_kn_mn_instances(
void add_device_gemm_add_add_fastgelu_xdl_c_shuffle_f16_f16_f16_f16_f16_km_kn_mn_mn_mn_instances(
std::vector<std::unique_ptr<DeviceGemmMultipleD<Col,
Row,
Row_Row_Tuple,
Row,
F16,
F16,
F16_F16_TUPLE,
F16_F16_Tuple,
F16,
PassThrough,
PassThrough,
AddAddFastGelu>>>&);
void add_device_gemm_add_add_fastgelu_xdl_c_shuffle_f16_f16_f16_km_nk_mn_instances(
void add_device_gemm_add_add_fastgelu_xdl_c_shuffle_f16_f16_f16_f16_f16_km_nk_mn_mn_mn_instances(
std::vector<std::unique_ptr<DeviceGemmMultipleD<Col,
Col,
Row_Row_Tuple,
Row,
F16,
F16,
F16_F16_TUPLE,
F16_F16_Tuple,
F16,
PassThrough,
PassThrough,
......@@ -70,7 +74,9 @@ void add_device_gemm_add_add_fastgelu_xdl_c_shuffle_f16_f16_f16_km_nk_mn_instanc
// GEMM + Add + Add + FastGelu
template <typename ALayout,
typename BLayout,
typename DELayout,
typename D0Layout,
typename D1Layout,
typename ELayout,
typename ADataType,
typename BDataType,
typename D0DataType,
......@@ -79,7 +85,8 @@ template <typename ALayout,
struct DeviceOperationInstanceFactory<ck::tensor_operation::device::DeviceGemmMultipleD<
ALayout,
BLayout,
DELayout,
ck::Tuple<D0Layout, D1Layout>,
ELayout,
ADataType,
BDataType,
ck::Tuple<D0DataType, D1DataType>,
......@@ -90,7 +97,8 @@ struct DeviceOperationInstanceFactory<ck::tensor_operation::device::DeviceGemmMu
{
using DeviceOp = DeviceGemmMultipleD<ALayout,
BLayout,
DELayout,
ck::Tuple<D0Layout, D1Layout>,
ELayout,
ADataType,
BDataType,
ck::Tuple<D0DataType, D1DataType>,
......@@ -108,27 +116,31 @@ struct DeviceOperationInstanceFactory<ck::tensor_operation::device::DeviceGemmMu
is_same_v<EDataType, half_t>)
{
if constexpr(is_same_v<ALayout, Row> && is_same_v<BLayout, Row> &&
is_same_v<DELayout, Row>)
is_same_v<D0Layout, Row> && is_same_v<D1Layout, Row> &&
is_same_v<ELayout, Row>)
{
add_device_gemm_add_add_fastgelu_xdl_c_shuffle_f16_f16_f16_mk_kn_mn_instances(
add_device_gemm_add_add_fastgelu_xdl_c_shuffle_f16_f16_f16_f16_f16_mk_kn_mn_mn_mn_instances(
op_ptrs);
}
else if constexpr(is_same_v<ALayout, Row> && is_same_v<BLayout, Col> &&
is_same_v<DELayout, Row>)
is_same_v<D0Layout, Row> && is_same_v<D1Layout, Row> &&
is_same_v<ELayout, Row>)
{
add_device_gemm_add_add_fastgelu_xdl_c_shuffle_f16_f16_f16_mk_nk_mn_instances(
add_device_gemm_add_add_fastgelu_xdl_c_shuffle_f16_f16_f16_f16_f16_mk_nk_mn_mn_mn_instances(
op_ptrs);
}
else if constexpr(is_same_v<ALayout, Col> && is_same_v<BLayout, Row> &&
is_same_v<DELayout, Row>)
is_same_v<D0Layout, Row> && is_same_v<D1Layout, Row> &&
is_same_v<ELayout, Row>)
{
add_device_gemm_add_add_fastgelu_xdl_c_shuffle_f16_f16_f16_km_kn_mn_instances(
add_device_gemm_add_add_fastgelu_xdl_c_shuffle_f16_f16_f16_f16_f16_km_kn_mn_mn_mn_instances(
op_ptrs);
}
else if constexpr(is_same_v<ALayout, Col> && is_same_v<BLayout, Col> &&
is_same_v<DELayout, Row>)
is_same_v<D0Layout, Row> && is_same_v<D1Layout, Row> &&
is_same_v<ELayout, Row>)
{
add_device_gemm_add_add_fastgelu_xdl_c_shuffle_f16_f16_f16_km_nk_mn_instances(
add_device_gemm_add_add_fastgelu_xdl_c_shuffle_f16_f16_f16_f16_f16_km_nk_mn_mn_mn_instances(
op_ptrs);
}
}
......
......@@ -19,49 +19,53 @@ namespace tensor_operation {
namespace device {
namespace instance {
void add_device_gemm_bilinear_xdl_c_shuffle_f16_f16_f16_km_kn_mn_instances(
void add_device_gemm_bilinear_xdl_c_shuffle_f16_f16_f16_f16_km_kn_mn_mn_instances(
std::vector<std::unique_ptr<DeviceGemmMultipleD<Col,
Row,
Row_Tuple,
Row,
F16,
F16,
F16_TUPLE,
F16_Tuple,
F16,
PassThrough,
PassThrough,
Bilinear>>>& instances);
void add_device_gemm_bilinear_xdl_c_shuffle_f16_f16_f16_km_nk_mn_instances(
void add_device_gemm_bilinear_xdl_c_shuffle_f16_f16_f16_f16_km_nk_mn_mn_instances(
std::vector<std::unique_ptr<DeviceGemmMultipleD<Col,
Col,
Row_Tuple,
Row,
F16,
F16,
F16_TUPLE,
F16_Tuple,
F16,
PassThrough,
PassThrough,
Bilinear>>>& instances);
void add_device_gemm_bilinear_xdl_c_shuffle_f16_f16_f16_mk_kn_mn_instances(
void add_device_gemm_bilinear_xdl_c_shuffle_f16_f16_f16_f16_mk_kn_mn_mn_instances(
std::vector<std::unique_ptr<DeviceGemmMultipleD<Row,
Row,
Row_Tuple,
Row,
F16,
F16,
F16_TUPLE,
F16_Tuple,
F16,
PassThrough,
PassThrough,
Bilinear>>>& instances);
void add_device_gemm_bilinear_xdl_c_shuffle_f16_f16_f16_mk_nk_mn_instances(
void add_device_gemm_bilinear_xdl_c_shuffle_f16_f16_f16_f16_mk_nk_mn_mn_instances(
std::vector<std::unique_ptr<DeviceGemmMultipleD<Row,
Col,
Row_Tuple,
Row,
F16,
F16,
F16_TUPLE,
F16_Tuple,
F16,
PassThrough,
PassThrough,
......@@ -70,7 +74,8 @@ void add_device_gemm_bilinear_xdl_c_shuffle_f16_f16_f16_mk_nk_mn_instances(
// GEMM + Bilinear
template <typename ALayout,
typename BLayout,
typename DELayout,
typename DLayout,
typename ELayout,
typename ADataType,
typename BDataType,
typename DDataType,
......@@ -78,7 +83,8 @@ template <typename ALayout,
struct DeviceOperationInstanceFactory<ck::tensor_operation::device::DeviceGemmMultipleD<
ALayout,
BLayout,
DELayout,
ck::Tuple<DLayout>,
ELayout,
ADataType,
BDataType,
ck::Tuple<DDataType>,
......@@ -89,7 +95,8 @@ struct DeviceOperationInstanceFactory<ck::tensor_operation::device::DeviceGemmMu
{
using DeviceOp = DeviceGemmMultipleD<ALayout,
BLayout,
DELayout,
ck::Tuple<DLayout>,
ELayout,
ADataType,
BDataType,
ck::Tuple<DDataType>,
......@@ -106,24 +113,28 @@ struct DeviceOperationInstanceFactory<ck::tensor_operation::device::DeviceGemmMu
is_same_v<DDataType, half_t> && is_same_v<EDataType, half_t>)
{
if constexpr(is_same_v<ALayout, Row> && is_same_v<BLayout, Row> &&
is_same_v<DELayout, Row>)
is_same_v<DLayout, Row> && is_same_v<ELayout, Row>)
{
add_device_gemm_bilinear_xdl_c_shuffle_f16_f16_f16_mk_kn_mn_instances(op_ptrs);
add_device_gemm_bilinear_xdl_c_shuffle_f16_f16_f16_f16_mk_kn_mn_mn_instances(
op_ptrs);
}
else if constexpr(is_same_v<ALayout, Row> && is_same_v<BLayout, Col> &&
is_same_v<DELayout, Row>)
is_same_v<DLayout, Row> && is_same_v<ELayout, Row>)
{
add_device_gemm_bilinear_xdl_c_shuffle_f16_f16_f16_mk_nk_mn_instances(op_ptrs);
add_device_gemm_bilinear_xdl_c_shuffle_f16_f16_f16_f16_mk_nk_mn_mn_instances(
op_ptrs);
}
else if constexpr(is_same_v<ALayout, Col> && is_same_v<BLayout, Row> &&
is_same_v<DELayout, Row>)
is_same_v<DLayout, Row> && is_same_v<ELayout, Row>)
{
add_device_gemm_bilinear_xdl_c_shuffle_f16_f16_f16_km_kn_mn_instances(op_ptrs);
add_device_gemm_bilinear_xdl_c_shuffle_f16_f16_f16_f16_km_kn_mn_mn_instances(
op_ptrs);
}
else if constexpr(is_same_v<ALayout, Col> && is_same_v<BLayout, Col> &&
is_same_v<DELayout, Row>)
is_same_v<DLayout, Row> && is_same_v<ELayout, Row>)
{
add_device_gemm_bilinear_xdl_c_shuffle_f16_f16_f16_km_nk_mn_instances(op_ptrs);
add_device_gemm_bilinear_xdl_c_shuffle_f16_f16_f16_f16_km_nk_mn_mn_instances(
op_ptrs);
}
}
......
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2022, Advanced Micro Devices, Inc. All rights reserved.
#pragma once
#include <cstdlib>
#include "ck/ck.hpp"
#include "ck/tensor_operation/gpu/device/tensor_layout.hpp"
#include "ck/tensor_operation/gpu/device/device_conv_fwd.hpp"
#include "ck/tensor_operation/gpu/element/element_wise_operation.hpp"
#include "ck/library/tensor_operation_instance/device_operation_instance_factory.hpp"
namespace ck {
namespace tensor_operation {
namespace device {
namespace instance {
// grouped conv1d forward, GNWC/GKXC/GNWK
void add_device_grouped_conv1d_fwd_xdl_gnwc_gkxc_gnwk_bf16_instances(
std::vector<std::unique_ptr<DeviceGroupedConvFwdMultipleD<1,
GNWC,
GKXC,
Empty_Tuple,
GNWK,
BF16,
BF16,
Empty_Tuple,
BF16,
PassThrough,
PassThrough,
PassThrough>>>& instances);
void add_device_grouped_conv1d_fwd_xdl_gnwc_gkxc_gnwk_f16_instances(
std::vector<std::unique_ptr<DeviceGroupedConvFwdMultipleD<1,
GNWC,
GKXC,
Empty_Tuple,
GNWK,
F16,
F16,
Empty_Tuple,
F16,
PassThrough,
PassThrough,
PassThrough>>>& instances);
void add_device_grouped_conv1d_fwd_xdl_gnwc_gkxc_gnwk_f32_instances(
std::vector<std::unique_ptr<DeviceGroupedConvFwdMultipleD<1,
GNWC,
GKXC,
Empty_Tuple,
GNWK,
F32,
F32,
Empty_Tuple,
F32,
PassThrough,
PassThrough,
PassThrough>>>& instances);
void add_device_grouped_conv1d_fwd_xdl_gnwc_gkxc_gnwk_int8_instances(
std::vector<std::unique_ptr<DeviceGroupedConvFwdMultipleD<1,
GNWC,
GKXC,
Empty_Tuple,
GNWK,
int8_t,
int8_t,
Empty_Tuple,
int8_t,
PassThrough,
PassThrough,
PassThrough>>>& instances);
// grouped conv2d forward, GNHWC/GKYXC/GNHWK
void add_device_grouped_conv1d_fwd_xdl_gnhwc_gkyxc_gnhwk_bf16_instances(
std::vector<std::unique_ptr<DeviceGroupedConvFwdMultipleD<2,
GNHWC,
GKYXC,
Empty_Tuple,
GNHWK,
BF16,
BF16,
Empty_Tuple,
BF16,
PassThrough,
PassThrough,
PassThrough>>>& instances);
void add_device_grouped_conv2d_fwd_xdl_gnhwc_gkyxc_gnhwk_f16_instances(
std::vector<std::unique_ptr<DeviceGroupedConvFwdMultipleD<2,
GNHWC,
GKYXC,
Empty_Tuple,
GNHWK,
F16,
F16,
Empty_Tuple,
F16,
PassThrough,
PassThrough,
PassThrough>>>& instances);
void add_device_grouped_conv2d_fwd_xdl_gnhwc_gkyxc_gnhwk_f32_instances(
std::vector<std::unique_ptr<DeviceGroupedConvFwdMultipleD<2,
GNHWC,
GKYXC,
Empty_Tuple,
GNHWK,
F32,
F32,
Empty_Tuple,
F32,
PassThrough,
PassThrough,
PassThrough>>>& instances);
void add_device_grouped_conv2d_fwd_xdl_gnhwc_gkyxc_gnhwk_int8_instances(
std::vector<std::unique_ptr<DeviceGroupedConvFwdMultipleD<2,
GNHWC,
GKYXC,
Empty_Tuple,
GNHWK,
int8_t,
int8_t,
Empty_Tuple,
int8_t,
PassThrough,
PassThrough,
PassThrough>>>& instances);
// grouped conv2d forward, NHWGC/KYXGC/NHWGK
void add_device_grouped_conv2d_fwd_xdl_nhwgc_kyxgc_nhwgk_f16_instances(
std::vector<std::unique_ptr<DeviceGroupedConvFwdMultipleD<2,
NHWGC,
KYXGC,
Empty_Tuple,
NHWGK,
F16,
F16,
Empty_Tuple,
F16,
PassThrough,
PassThrough,
PassThrough>>>& instances);
// grouped conv3d forward, GNDHWC/GKZYXC/GNDHWK
void add_device_grouped_conv3d_fwd_xdl_gndhwc_gkzyxc_gndhwk_bf16_instances(
std::vector<std::unique_ptr<DeviceGroupedConvFwdMultipleD<3,
GNDHWC,
GKZYXC,
Empty_Tuple,
GNDHWK,
BF16,
BF16,
Empty_Tuple,
BF16,
PassThrough,
PassThrough,
PassThrough>>>& instances);
void add_device_grouped_conv3d_fwd_xdl_gndhwc_gkzyxc_gndhwk_f16_instances(
std::vector<std::unique_ptr<DeviceGroupedConvFwdMultipleD<3,
GNDHWC,
GKZYXC,
Empty_Tuple,
GNDHWK,
F16,
F16,
Empty_Tuple,
F16,
PassThrough,
PassThrough,
PassThrough>>>& instances);
void add_device_grouped_conv3d_fwd_xdl_gndhwc_gkzyxc_gndhwk_f32_instances(
std::vector<std::unique_ptr<DeviceGroupedConvFwdMultipleD<3,
GNDHWC,
GKZYXC,
Empty_Tuple,
GNDHWK,
F32,
F32,
Empty_Tuple,
F32,
PassThrough,
PassThrough,
PassThrough>>>& instances);
void add_device_grouped_conv3d_fwd_xdl_gndhwc_gkzyxc_gndhwk_int8_instances(
std::vector<std::unique_ptr<DeviceGroupedConvFwdMultipleD<3,
GNDHWC,
GKZYXC,
Empty_Tuple,
GNDHWK,
int8_t,
int8_t,
Empty_Tuple,
int8_t,
PassThrough,
PassThrough,
PassThrough>>>& instances);
template <ck::index_t NumDimSpatial,
typename InLayout,
typename WeiLayout,
typename OutLayout,
typename InDataType,
typename WeiDataType,
typename OutDataType>
struct DeviceOperationInstanceFactory<ck::tensor_operation::device::DeviceGroupedConvFwdMultipleD<
NumDimSpatial,
InLayout,
WeiLayout,
Empty_Tuple,
OutLayout,
InDataType,
WeiDataType,
Empty_Tuple,
OutDataType,
ck::tensor_operation::element_wise::PassThrough,
ck::tensor_operation::element_wise::PassThrough,
ck::tensor_operation::element_wise::PassThrough>>
{
using DeviceOp = DeviceGroupedConvFwdMultipleD<NumDimSpatial,
InLayout,
WeiLayout,
Empty_Tuple,
OutLayout,
InDataType,
WeiDataType,
Empty_Tuple,
OutDataType,
ck::tensor_operation::element_wise::PassThrough,
ck::tensor_operation::element_wise::PassThrough,
ck::tensor_operation::element_wise::PassThrough>;
static auto GetInstances()
{
std::vector<std::unique_ptr<DeviceOp>> op_ptrs;
if constexpr(NumDimSpatial == 1 && is_same_v<InLayout, GNWC> &&
is_same_v<WeiLayout, GKXC> && is_same_v<OutLayout, GNWK>)
{
if constexpr(is_same_v<InDataType, float> && is_same_v<WeiDataType, float> &&
is_same_v<OutDataType, float>)
{
add_device_grouped_conv1d_fwd_xdl_gnwc_gkxc_gnwk_f32_instances(op_ptrs);
}
else if constexpr(is_same_v<InDataType, half_t> && is_same_v<WeiDataType, half_t> &&
is_same_v<OutDataType, half_t>)
{
add_device_grouped_conv1d_fwd_xdl_gnwc_gkxc_gnwk_f16_instances(op_ptrs);
}
else if constexpr(is_same_v<InDataType, ck::bhalf_t> &&
is_same_v<WeiDataType, ck::bhalf_t> &&
is_same_v<OutDataType, ck::bhalf_t>)
{
add_device_grouped_conv1d_fwd_xdl_gnwc_gkxc_gnwk_bf16_instances(op_ptrs);
}
else if constexpr(is_same_v<InDataType, int8_t> && is_same_v<WeiDataType, int8_t> &&
is_same_v<OutDataType, int8_t>)
{
add_device_grouped_conv1d_fwd_xdl_gnwc_gkxc_gnwk_int8_instances(op_ptrs);
}
}
else if constexpr(NumDimSpatial == 2 && is_same_v<InLayout, GNHWC> &&
is_same_v<WeiLayout, GKYXC> && is_same_v<OutLayout, GNHWK>)
{
if constexpr(is_same_v<InDataType, float> && is_same_v<WeiDataType, float> &&
is_same_v<OutDataType, float>)
{
add_device_grouped_conv2d_fwd_xdl_gnhwc_gkyxc_gnhwk_f32_instances(op_ptrs);
}
else if constexpr(is_same_v<InDataType, half_t> && is_same_v<WeiDataType, half_t> &&
is_same_v<OutDataType, half_t>)
{
add_device_grouped_conv2d_fwd_xdl_gnhwc_gkyxc_gnhwk_f16_instances(op_ptrs);
}
else if constexpr(is_same_v<InDataType, ck::bhalf_t> &&
is_same_v<WeiDataType, ck::bhalf_t> &&
is_same_v<OutDataType, ck::bhalf_t>)
{
add_device_grouped_conv1d_fwd_xdl_gnhwc_gkyxc_gnhwk_bf16_instances(op_ptrs);
}
else if constexpr(is_same_v<InDataType, int8_t> && is_same_v<WeiDataType, int8_t> &&
is_same_v<OutDataType, int8_t>)
{
add_device_grouped_conv2d_fwd_xdl_gnhwc_gkyxc_gnhwk_int8_instances(op_ptrs);
}
}
else if constexpr(NumDimSpatial == 2 && is_same_v<InLayout, NHWGC> &&
is_same_v<WeiLayout, KYXGC> && is_same_v<OutLayout, NHWGK>)
{
if constexpr(is_same_v<InDataType, float> && is_same_v<WeiDataType, float> &&
is_same_v<OutDataType, float>)
{
// no instance
}
else if constexpr(is_same_v<InDataType, half_t> && is_same_v<WeiDataType, half_t> &&
is_same_v<OutDataType, half_t>)
{
add_device_grouped_conv2d_fwd_xdl_nhwgc_kyxgc_nhwgk_f16_instances(op_ptrs);
}
else if constexpr(is_same_v<InDataType, ck::bhalf_t> &&
is_same_v<WeiDataType, ck::bhalf_t> &&
is_same_v<OutDataType, ck::bhalf_t>)
{
// no instance
}
else if constexpr(is_same_v<InDataType, int8_t> && is_same_v<WeiDataType, int8_t> &&
is_same_v<OutDataType, int8_t>)
{
// no instance
}
}
else if constexpr(NumDimSpatial == 3 && is_same_v<InLayout, GNDHWC> &&
is_same_v<WeiLayout, GKZYXC> && is_same_v<OutLayout, GNDHWK>)
{
if constexpr(is_same_v<InDataType, float> && is_same_v<WeiDataType, float> &&
is_same_v<OutDataType, float>)
{
add_device_grouped_conv3d_fwd_xdl_gndhwc_gkzyxc_gndhwk_f32_instances(op_ptrs);
}
else if constexpr(is_same_v<InDataType, half_t> && is_same_v<WeiDataType, half_t> &&
is_same_v<OutDataType, half_t>)
{
add_device_grouped_conv3d_fwd_xdl_gndhwc_gkzyxc_gndhwk_f16_instances(op_ptrs);
}
else if constexpr(is_same_v<InDataType, ck::bhalf_t> &&
is_same_v<WeiDataType, ck::bhalf_t> &&
is_same_v<OutDataType, ck::bhalf_t>)
{
add_device_grouped_conv3d_fwd_xdl_gndhwc_gkzyxc_gndhwk_bf16_instances(op_ptrs);
}
else if constexpr(is_same_v<InDataType, int8_t> && is_same_v<WeiDataType, int8_t> &&
is_same_v<OutDataType, int8_t>)
{
add_device_grouped_conv3d_fwd_xdl_gndhwc_gkzyxc_gndhwk_int8_instances(op_ptrs);
}
}
return op_ptrs;
}
};
} // namespace instance
} // namespace device
} // namespace tensor_operation
} // namespace ck
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2022, Advanced Micro Devices, Inc. All rights reserved.
#pragma once
#include <cstdlib>
#include "ck/ck.hpp"
#include "ck/tensor_operation/gpu/device/tensor_layout.hpp"
#include "ck/tensor_operation/gpu/device/device_grouped_gemm.hpp"
#include "ck/library/tensor_operation_instance/device_operation_instance_factory.hpp"
namespace ck {
namespace tensor_operation {
namespace device {
namespace instance {
void add_device_grouped_gemm_xdl_f16_f16_f16_mk_kn_mn_instances(
std::vector<std::unique_ptr<DeviceGroupedGemm<Row,
Row,
Empty_Tuple,
Row,
F16,
F16,
Empty_Tuple,
F16,
PassThrough,
PassThrough,
PassThrough>>>& instances);
void add_device_grouped_gemm_xdl_f16_f16_f16_mk_nk_mn_instances(
std::vector<std::unique_ptr<DeviceGroupedGemm<Row,
Col,
Empty_Tuple,
Row,
F16,
F16,
Empty_Tuple,
F16,
PassThrough,
PassThrough,
PassThrough>>>& instances);
void add_device_grouped_gemm_xdl_f16_f16_f16_km_kn_mn_instances(
std::vector<std::unique_ptr<DeviceGroupedGemm<Col,
Row,
Empty_Tuple,
Row,
F16,
F16,
Empty_Tuple,
F16,
PassThrough,
PassThrough,
PassThrough>>>& instances);
void add_device_grouped_gemm_xdl_f16_f16_f16_km_nk_mn_instances(
std::vector<std::unique_ptr<DeviceGroupedGemm<Col,
Col,
Empty_Tuple,
Row,
F16,
F16,
Empty_Tuple,
F16,
PassThrough,
PassThrough,
PassThrough>>>& instances);
template <typename ALayout,
typename BLayout,
typename ELayout,
typename ADataType,
typename BDataType,
typename EDataType>
struct DeviceOperationInstanceFactory<ck::tensor_operation::device::DeviceGroupedGemm<
ALayout,
BLayout,
Empty_Tuple,
ELayout,
ADataType,
BDataType,
Empty_Tuple,
EDataType,
ck::tensor_operation::element_wise::PassThrough,
ck::tensor_operation::element_wise::PassThrough,
ck::tensor_operation::element_wise::PassThrough>>
{
using DeviceOp = DeviceGroupedGemm<ALayout,
BLayout,
Empty_Tuple,
ELayout,
ADataType,
BDataType,
Empty_Tuple,
EDataType,
ck::tensor_operation::element_wise::PassThrough,
ck::tensor_operation::element_wise::PassThrough,
ck::tensor_operation::element_wise::PassThrough>;
static auto GetInstances()
{
std::vector<std::unique_ptr<DeviceOp>> op_ptrs;
if constexpr(is_same_v<ADataType, half_t> && is_same_v<BDataType, half_t> &&
is_same_v<EDataType, half_t>)
{
if constexpr(is_same_v<ALayout, Row> && is_same_v<BLayout, Row> &&
is_same_v<ELayout, Row>)
{
add_device_grouped_gemm_xdl_f16_f16_f16_mk_kn_mn_instances(op_ptrs);
}
else if constexpr(is_same_v<ALayout, Row> && is_same_v<BLayout, Col> &&
is_same_v<ELayout, Row>)
{
add_device_grouped_gemm_xdl_f16_f16_f16_mk_nk_mn_instances(op_ptrs);
}
else if constexpr(is_same_v<ALayout, Col> && is_same_v<BLayout, Row> &&
is_same_v<ELayout, Row>)
{
add_device_grouped_gemm_xdl_f16_f16_f16_km_kn_mn_instances(op_ptrs);
}
else if constexpr(is_same_v<ALayout, Col> && is_same_v<BLayout, Col> &&
is_same_v<ELayout, Row>)
{
add_device_grouped_gemm_xdl_f16_f16_f16_km_nk_mn_instances(op_ptrs);
}
}
return op_ptrs;
}
};
} // namespace instance
} // namespace device
} // namespace tensor_operation
} // namespace ck
......@@ -13,7 +13,9 @@
#include <type_traits>
#include <vector>
#include "ck/ck.hpp"
#include "ck/utility/data_type.hpp"
#include "ck/host_utility/io.hpp"
namespace ck {
namespace utils {
......@@ -29,9 +31,8 @@ check_err(const std::vector<T>& out,
{
if(out.size() != ref.size())
{
std::cout << "out.size() != ref.size(), :" << out.size() << " != " << ref.size()
<< std::endl
<< msg << std::endl;
std::cout << msg << " out.size() != ref.size(), :" << out.size() << " != " << ref.size()
<< std::endl;
return false;
}
......@@ -48,9 +49,8 @@ check_err(const std::vector<T>& out,
err_count++;
if(err_count < 5)
{
std::cout << std::setw(12) << std::setprecision(7) << "out[" << i << "] != ref["
<< i << "]: " << out[i] << " != " << ref[i] << std::endl
<< msg << std::endl;
std::cout << msg << std::setw(12) << std::setprecision(7) << " out[" << i
<< "] != ref[" << i << "]: " << out[i] << " != " << ref[i] << std::endl;
}
res = false;
}
......@@ -72,9 +72,8 @@ check_err(const std::vector<T>& out,
{
if(out.size() != ref.size())
{
std::cout << "out.size() != ref.size(), :" << out.size() << " != " << ref.size()
<< std::endl
<< msg << std::endl;
std::cout << msg << " out.size() != ref.size(), :" << out.size() << " != " << ref.size()
<< std::endl;
return false;
}
......@@ -94,9 +93,8 @@ check_err(const std::vector<T>& out,
err_count++;
if(err_count < 5)
{
std::cout << std::setw(12) << std::setprecision(7) << "out[" << i << "] != ref["
<< i << "]: " << o << " != " << r << std::endl
<< msg << std::endl;
std::cout << msg << std::setw(12) << std::setprecision(7) << " out[" << i
<< "] != ref[" << i << "]: " << o << " != " << r << std::endl;
}
res = false;
}
......@@ -118,9 +116,8 @@ check_err(const std::vector<T>& out,
{
if(out.size() != ref.size())
{
std::cout << "out.size() != ref.size(), :" << out.size() << " != " << ref.size()
<< std::endl
<< msg << std::endl;
std::cout << msg << " out.size() != ref.size(), :" << out.size() << " != " << ref.size()
<< std::endl;
return false;
}
......@@ -139,9 +136,8 @@ check_err(const std::vector<T>& out,
err_count++;
if(err_count < 5)
{
std::cout << std::setw(12) << std::setprecision(7) << "out[" << i << "] != ref["
<< i << "]: " << o << " != " << r << std::endl
<< msg << std::endl;
std::cout << msg << std::setw(12) << std::setprecision(7) << " out[" << i
<< "] != ref[" << i << "]: " << o << " != " << r << std::endl;
}
res = false;
}
......@@ -163,9 +159,8 @@ check_err(const std::vector<T>& out,
{
if(out.size() != ref.size())
{
std::cout << "out.size() != ref.size(), :" << out.size() << " != " << ref.size()
<< std::endl
<< msg << std::endl;
std::cout << msg << " out.size() != ref.size(), :" << out.size() << " != " << ref.size()
<< std::endl;
return false;
}
......@@ -185,9 +180,9 @@ check_err(const std::vector<T>& out,
err_count++;
if(err_count < 5)
{
std::cout << "out[" << i << "] != ref[" << i << "]: " << static_cast<int>(out[i])
<< " != " << static_cast<int>(ref[i]) << std::endl
<< msg << std::endl;
std::cout << msg << " out[" << i << "] != ref[" << i
<< "]: " << static_cast<int>(out[i]) << " != " << static_cast<int>(ref[i])
<< std::endl;
}
res = false;
}
......@@ -201,10 +196,3 @@ check_err(const std::vector<T>& out,
} // namespace utils
} // namespace ck
template <typename T>
std::ostream& operator<<(std::ostream& os, const std::vector<T>& v)
{
std::copy(std::begin(v), std::end(v), std::ostream_iterator<T>(os, " "));
return os;
}
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2022, Advanced Micro Devices, Inc. All rights reserved.
#pragma once
#include <cstdlib>
#include <functional>
#include <iterator>
#include <numeric>
#include <sstream>
#include <tuple>
#include <type_traits>
#include <vector>
#include "ck/ck.hpp"
#include "ck/tensor_operation/gpu/device/tensor_layout.hpp"
#include "ck/tensor_operation/gpu/device/device_conv_fwd.hpp"
#include "ck/tensor_operation/gpu/element/element_wise_operation.hpp"
#include "ck/library/utility/check_err.hpp"
#include "ck/library/utility/fill.hpp"
#include "ck/library/utility/op_instance_engine.hpp"
#include "ck/library/host_tensor/device_memory.hpp"
#include "ck/library/host_tensor/host_tensor.hpp"
#include "ck/library/reference_tensor_operation/cpu/reference_conv_fwd.hpp"
namespace ck {
namespace tensor_operation {
namespace device {
using DeviceConvFwdNoOpPtr = DeviceConvFwdPtr<element_wise::PassThrough,
element_wise::PassThrough,
element_wise::PassThrough>;
namespace instance {
void add_device_conv1d_fwd_xdl_nwc_kxc_nwk_bf16_instances(std::vector<DeviceConvFwdNoOpPtr>&);
void add_device_conv1d_fwd_xdl_nwc_kxc_nwk_f16_instances(std::vector<DeviceConvFwdNoOpPtr>&);
void add_device_conv1d_fwd_xdl_nwc_kxc_nwk_f32_instances(std::vector<DeviceConvFwdNoOpPtr>&);
void add_device_conv1d_fwd_xdl_nwc_kxc_nwk_int8_instances(std::vector<DeviceConvFwdNoOpPtr>&);
} // namespace instance
namespace instance {
void add_device_conv2d_fwd_xdl_nhwc_kyxc_nhwk_bf16_instances(std::vector<DeviceConvFwdNoOpPtr>&);
void add_device_conv2d_fwd_xdl_nhwc_kyxc_nhwk_f16_instances(std::vector<DeviceConvFwdNoOpPtr>&);
void add_device_conv2d_fwd_xdl_c_shuffle_nhwc_kyxc_nhwk_f16_instances(
std::vector<DeviceConvFwdNoOpPtr>&);
void add_device_conv2d_fwd_xdl_nhwc_kyxc_nhwk_f32_instances(std::vector<DeviceConvFwdNoOpPtr>&);
void add_device_conv2d_fwd_xdl_nhwc_kyxc_nhwk_int8_instances(std::vector<DeviceConvFwdNoOpPtr>&);
} // namespace instance
namespace instance {
void add_device_conv3d_fwd_xdl_ndhwc_kzyxc_ndhwk_bf16_instances(std::vector<DeviceConvFwdNoOpPtr>&);
void add_device_conv3d_fwd_xdl_ndhwc_kzyxc_ndhwk_f16_instances(std::vector<DeviceConvFwdNoOpPtr>&);
void add_device_conv3d_fwd_xdl_ndhwc_kzyxc_ndhwk_f32_instances(std::vector<DeviceConvFwdNoOpPtr>&);
void add_device_conv3d_fwd_xdl_ndhwc_kzyxc_ndhwk_int8_instances(std::vector<DeviceConvFwdNoOpPtr>&);
} // namespace instance
} // namespace device
} // namespace tensor_operation
} // namespace ck
namespace ck {
namespace utils {
namespace conv {
using DeviceConvFwdNoOpPtr =
ck::tensor_operation::device::DeviceConvFwdPtr<ck::tensor_operation::element_wise::PassThrough,
ck::tensor_operation::element_wise::PassThrough,
ck::tensor_operation::element_wise::PassThrough>;
/**
* @brief Calculate number of FLOPs for Convolution
*
* @param[in] N Batch size.
* @param[in] C Number of input channels.
* @param[in] K Number of output channels.
* @param[in] filter_spatial_lengths Filter spatial dimensions lengths.
* @param[in] output_spatial_lengths Convolution output spatial dimensions
* lengths.
*
* @return The number of flops.
*/
std::size_t get_flops(ck::index_t N,
ck::index_t C,
ck::index_t K,
const std::vector<ck::index_t>& filter_spatial_lengths,
const std::vector<ck::index_t>& output_spatial_lengths);
/**
* @brief Calculate number of bytes read/write by convolution algorithm.
*
* @param[in] N Batch size.
* @param[in] C Number of input channels.
* @param[in] K Number of output channels.
* @param[in] input_spatial_lengths Input spatial dimensions lengths.
* @param[in] filter_spatial_lengths Filter spatial dimensions lengths.
* @param[in] output_spatial_lengths Output spatial dimensions lengths
*
* @tparam InDataType Input tensor data type.
* @tparam WeiDataType Weights tensor data type.
* @tparam OutDataType Output tensor data type.
*
* @return The number of used bytes.
*/
template <typename InDataType = float,
typename WeiDataType = InDataType,
typename OutDataType = InDataType>
std::size_t get_btype(ck::index_t N,
ck::index_t C,
ck::index_t K,
const std::vector<ck::index_t>& input_spatial_lengths,
const std::vector<ck::index_t>& filter_spatial_lengths,
const std::vector<ck::index_t>& output_spatial_lengths)
{
// sizeof(InDataType) * (N * C * <input spatial lengths product>) +
// sizeof(WeiDataType) * (K * C * <filter spatial lengths product>) +
// sizeof(OutDataType) * (N * K * <output spatial lengths product>);
return sizeof(InDataType) * (N * C *
std::accumulate(std::begin(input_spatial_lengths),
std::end(input_spatial_lengths),
static_cast<std::size_t>(1),
std::multiplies<std::size_t>())) +
sizeof(WeiDataType) * (K * C *
std::accumulate(std::begin(filter_spatial_lengths),
std::end(filter_spatial_lengths),
static_cast<std::size_t>(1),
std::multiplies<std::size_t>())) +
sizeof(OutDataType) * (N * K *
std::accumulate(std::begin(output_spatial_lengths),
std::end(output_spatial_lengths),
static_cast<std::size_t>(1),
std::multiplies<std::size_t>()));
}
struct ConvParams
{
ConvParams();
ConvParams(ck::index_t n_dim,
ck::index_t n_batch,
ck::index_t n_out_channels,
ck::index_t n_in_channels,
const std::vector<ck::index_t>& filters_len,
const std::vector<ck::index_t>& input_len,
const std::vector<ck::index_t>& strides,
const std::vector<ck::index_t>& dilations,
const std::vector<ck::index_t>& left_pads,
const std::vector<ck::index_t>& right_pads);
ck::index_t num_dim_spatial_;
ck::index_t N_;
ck::index_t K_;
ck::index_t C_;
std::vector<ck::index_t> filter_spatial_lengths_;
std::vector<ck::index_t> input_spatial_lengths_;
std::vector<ck::index_t> conv_filter_strides_;
std::vector<ck::index_t> conv_filter_dilations_;
std::vector<ck::index_t> input_left_pads_;
std::vector<ck::index_t> input_right_pads_;
std::vector<ck::index_t> GetOutputSpatialLengths() const;
};
ConvParams parse_conv_params(int num_dim_spatial, int arg_idx, char* const argv[]);
/**
* @brief Gets the host tensor descriptor.
*
* @param[in] dims The tensor dimensions lengths. Always in NCHW format.
* @param[in] layout The tensor data layout.
*
* @tparam TensorLayout Layout type.
*
* @return The host tensor descriptor object.
*/
template <typename TensorLayout>
HostTensorDescriptor get_host_tensor_descriptor(const std::vector<std::size_t>& dims,
const TensorLayout& layout)
{
std::size_t C = dims[1];
// 1D
if constexpr(std::is_same<TensorLayout, ck::tensor_layout::convolution::NCW>::value ||
std::is_same<TensorLayout, ck::tensor_layout::convolution::KCX>::value ||
std::is_same<TensorLayout, ck::tensor_layout::convolution::NKW>::value)
{
return HostTensorDescriptor(dims, std::vector<std::size_t>{C * dims[2], dims[2], 1});
}
else if constexpr(std::is_same<TensorLayout, ck::tensor_layout::convolution::NWC>::value ||
std::is_same<TensorLayout, ck::tensor_layout::convolution::KXC>::value ||
std::is_same<TensorLayout, ck::tensor_layout::convolution::NWK>::value)
{
return HostTensorDescriptor(dims, std::vector<std::size_t>{C * dims[2], 1, C});
}
// 2D
else if constexpr(std::is_same<TensorLayout, ck::tensor_layout::convolution::NCHW>::value ||
std::is_same<TensorLayout, ck::tensor_layout::convolution::KCYX>::value ||
std::is_same<TensorLayout, ck::tensor_layout::convolution::NKHW>::value)
{
return HostTensorDescriptor(
dims, std::vector<std::size_t>{C * dims[2] * dims[3], dims[2] * dims[3], dims[3], 1});
}
else if constexpr(std::is_same<TensorLayout, ck::tensor_layout::convolution::NHWC>::value ||
std::is_same<TensorLayout, ck::tensor_layout::convolution::KYXC>::value ||
std::is_same<TensorLayout, ck::tensor_layout::convolution::NHWK>::value)
{
return HostTensorDescriptor(
dims, std::vector<std::size_t>{C * dims[2] * dims[3], 1, dims[3] * C, C});
}
// 3D
else if constexpr(std::is_same<TensorLayout, ck::tensor_layout::convolution::NCDHW>::value ||
std::is_same<TensorLayout, ck::tensor_layout::convolution::KCZYX>::value ||
std::is_same<TensorLayout, ck::tensor_layout::convolution::NKDHW>::value)
{
return HostTensorDescriptor(dims,
std::vector<std::size_t>{C * dims[2] * dims[3] * dims[4],
dims[2] * dims[3] * dims[4],
dims[3] * dims[4],
dims[4],
1});
}
else if constexpr(std::is_same<TensorLayout, ck::tensor_layout::convolution::NDHWC>::value ||
std::is_same<TensorLayout, ck::tensor_layout::convolution::KZYXC>::value ||
std::is_same<TensorLayout, ck::tensor_layout::convolution::NDHWK>::value)
{
return HostTensorDescriptor(
dims,
std::vector<std::size_t>{
C * dims[2] * dims[3] * dims[4], 1, C * dims[3] * dims[4], C * dims[4], C});
}
std::stringstream err_msg;
err_msg << "Unsupported data layout provided: " << layout << "!";
throw std::runtime_error(err_msg.str());
}
HostTensorDescriptor get_output_host_tensor_descriptor(const std::vector<std::size_t>& dims,
int num_dim_spatial = 2);
HostTensorDescriptor get_filters_host_tensor_descriptor(const std::vector<std::size_t>& dims,
int num_dim_spatial = 2);
HostTensorDescriptor get_input_host_tensor_descriptor(const std::vector<std::size_t>& dims,
int num_dim_spatial = 2);
template <ck::index_t NDim,
typename InDataType = float,
typename WeiDataType = float,
typename OutDataType = float>
void run_reference_convolution_forward(const ConvParams& params,
const Tensor<InDataType>& input,
const Tensor<WeiDataType>& weights,
Tensor<OutDataType>& output)
{
using PassThrough = ck::tensor_operation::element_wise::PassThrough;
auto ref_conv = ck::tensor_operation::host::ReferenceConvFwd<InDataType,
WeiDataType,
OutDataType,
PassThrough,
PassThrough,
PassThrough,
NDim>();
auto ref_invoker = ref_conv.MakeInvoker();
auto ref_argument = ref_conv.MakeArgument(input,
weights,
output,
params.conv_filter_strides_,
params.conv_filter_dilations_,
params.input_left_pads_,
params.input_right_pads_,
PassThrough{},
PassThrough{},
PassThrough{});
ref_invoker.Run(ref_argument);
}
template <typename InDataType, typename WeiDataType, typename OutDataType>
struct ConvolutionFwdInstances;
template <>
struct ConvolutionFwdInstances<float, float, float>
{
template <int NumDimSpatial,
typename std::enable_if<NumDimSpatial >= 1 && NumDimSpatial <= 3, bool>::type = false>
static std::vector<DeviceConvFwdNoOpPtr> Get()
{
std::vector<DeviceConvFwdNoOpPtr> conv_ptrs;
if constexpr(NumDimSpatial == 1)
{
ck::tensor_operation::device::instance::
add_device_conv1d_fwd_xdl_nwc_kxc_nwk_f32_instances(conv_ptrs);
}
else if constexpr(NumDimSpatial == 2)
{
ck::tensor_operation::device::instance::
add_device_conv2d_fwd_xdl_nhwc_kyxc_nhwk_f32_instances(conv_ptrs);
}
else if constexpr(NumDimSpatial == 3)
{
ck::tensor_operation::device::instance::
add_device_conv3d_fwd_xdl_ndhwc_kzyxc_ndhwk_f32_instances(conv_ptrs);
}
return conv_ptrs;
}
};
template <>
struct ConvolutionFwdInstances<half_t, half_t, half_t>
{
template <int NumDimSpatial,
typename std::enable_if<NumDimSpatial >= 1 && NumDimSpatial <= 3, bool>::type = false>
static std::vector<DeviceConvFwdNoOpPtr> Get()
{
std::vector<DeviceConvFwdNoOpPtr> conv_ptrs;
if constexpr(NumDimSpatial == 1)
{
ck::tensor_operation::device::instance::
add_device_conv1d_fwd_xdl_nwc_kxc_nwk_f16_instances(conv_ptrs);
return conv_ptrs;
}
else if constexpr(NumDimSpatial == 2)
{
ck::tensor_operation::device::instance::
add_device_conv2d_fwd_xdl_nhwc_kyxc_nhwk_f16_instances(conv_ptrs);
ck::tensor_operation::device::instance::
add_device_conv2d_fwd_xdl_c_shuffle_nhwc_kyxc_nhwk_f16_instances(conv_ptrs);
}
else if constexpr(NumDimSpatial == 3)
{
ck::tensor_operation::device::instance::
add_device_conv3d_fwd_xdl_ndhwc_kzyxc_ndhwk_f16_instances(conv_ptrs);
}
return conv_ptrs;
}
};
template <>
struct ConvolutionFwdInstances<bhalf_t, bhalf_t, bhalf_t>
{
template <int NumDimSpatial,
typename std::enable_if<NumDimSpatial >= 1 && NumDimSpatial <= 3, bool>::type = false>
static std::vector<DeviceConvFwdNoOpPtr> Get()
{
std::vector<DeviceConvFwdNoOpPtr> conv_ptrs;
if constexpr(NumDimSpatial == 1)
{
ck::tensor_operation::device::instance::
add_device_conv1d_fwd_xdl_nwc_kxc_nwk_bf16_instances(conv_ptrs);
}
else if constexpr(NumDimSpatial == 2)
{
ck::tensor_operation::device::instance::
add_device_conv2d_fwd_xdl_nhwc_kyxc_nhwk_bf16_instances(conv_ptrs);
}
else if constexpr(NumDimSpatial == 3)
{
ck::tensor_operation::device::instance::
add_device_conv3d_fwd_xdl_ndhwc_kzyxc_ndhwk_bf16_instances(conv_ptrs);
}
return conv_ptrs;
}
};
template <>
struct ConvolutionFwdInstances<int8_t, int8_t, int8_t>
{
template <int NumDimSpatial,
typename std::enable_if<NumDimSpatial >= 1 && NumDimSpatial <= 3, bool>::type = false>
static std::vector<DeviceConvFwdNoOpPtr> Get()
{
std::vector<DeviceConvFwdNoOpPtr> conv_ptrs;
if constexpr(NumDimSpatial == 1)
{
ck::tensor_operation::device::instance::
add_device_conv1d_fwd_xdl_nwc_kxc_nwk_int8_instances(conv_ptrs);
}
else if constexpr(NumDimSpatial == 2)
{
ck::tensor_operation::device::instance::
add_device_conv2d_fwd_xdl_nhwc_kyxc_nhwk_int8_instances(conv_ptrs);
}
else if constexpr(NumDimSpatial == 3)
{
ck::tensor_operation::device::instance::
add_device_conv3d_fwd_xdl_ndhwc_kzyxc_ndhwk_int8_instances(conv_ptrs);
}
return conv_ptrs;
}
};
template <typename InDataType,
typename WeiDataType,
typename OutDataType,
typename InLayout = ck::tensor_layout::convolution::NHWC,
typename WeiLayout = ck::tensor_layout::convolution::KYXC,
typename OutLayout = ck::tensor_layout::convolution::NHWK,
typename InElementwiseOp = ck::tensor_operation::element_wise::PassThrough,
typename WeiElementwiseOp = ck::tensor_operation::element_wise::PassThrough,
typename OutElementwiseOp = ck::tensor_operation::element_wise::PassThrough,
typename InputInitFun = FillUniformDistribution<InDataType>,
typename WeightsInitFun = FillUniformDistribution<WeiDataType>>
class ConvFwdOpInstance : public ck::utils::OpInstance<OutDataType, InDataType, WeiDataType>
{
using DeviceConvFwdOp = tensor_operation::device::
DeviceConvFwd<InElementwiseOp, WeiElementwiseOp, OutElementwiseOp>;
using DeviceMemPtr = std::unique_ptr<DeviceMem>;
using DeviceBuffers = std::vector<DeviceMemPtr>;
using BaseType = ck::utils::OpInstance<OutDataType, InDataType, WeiDataType>;
template <typename T>
using TensorPtr = std::unique_ptr<Tensor<T>>;
using InTensorsTuple = std::tuple<TensorPtr<InDataType>, TensorPtr<WeiDataType>>;
public:
ConvFwdOpInstance() = delete;
ConvFwdOpInstance(const ConvFwdOpInstance&) = default;
ConvFwdOpInstance& operator=(const ConvFwdOpInstance&) = default;
ConvFwdOpInstance(const ConvParams& params,
bool do_init = true,
const InputInitFun& input_init_f = InputInitFun(),
const WeightsInitFun& weights_init_f = WeightsInitFun())
: BaseType(),
params_{params},
output_spatial_lengths_{params.GetOutputSpatialLengths()},
do_init_{do_init},
input_init_f_{input_init_f},
weights_init_f_{weights_init_f}
{
}
virtual ~ConvFwdOpInstance() override{};
virtual InTensorsTuple GetInputTensors() const override
{
std::vector<std::size_t> input_dims{static_cast<std::size_t>(params_.N_),
static_cast<std::size_t>(params_.C_)};
input_dims.insert(std::end(input_dims),
std::begin(params_.input_spatial_lengths_),
std::end(params_.input_spatial_lengths_));
std::vector<std::size_t> filter_dims{static_cast<std::size_t>(params_.K_),
static_cast<std::size_t>(params_.C_)};
filter_dims.insert(std::end(filter_dims),
std::begin(params_.filter_spatial_lengths_),
std::end(params_.filter_spatial_lengths_));
auto input = std::make_unique<Tensor<InDataType>>(
get_host_tensor_descriptor(input_dims, InLayout{}));
auto weights = std::make_unique<Tensor<WeiDataType>>(
get_host_tensor_descriptor(filter_dims, WeiLayout{}));
if(do_init_)
{
input_init_f_(input->begin(), input->end());
weights_init_f_(weights->begin(), weights->end());
}
return std::make_tuple(std::move(input), std::move(weights));
}
virtual TensorPtr<OutDataType> GetOutputTensor() const override
{
std::vector<std::size_t> output_dims{static_cast<std::size_t>(params_.N_),
static_cast<std::size_t>(params_.K_)};
output_dims.insert(std::end(output_dims),
std::begin(output_spatial_lengths_),
std::end(output_spatial_lengths_));
auto output = std::make_unique<Tensor<OutDataType>>(
get_host_tensor_descriptor(output_dims, OutLayout{}));
if(do_init_)
{
std::fill(output->begin(), output->end(), OutDataType(0.f));
}
return output;
}
virtual std::unique_ptr<tensor_operation::device::BaseInvoker>
MakeInvokerPointer(tensor_operation::device::BaseOperator* op_ptr) const override
{
static_assert(
std::is_same_v<InElementwiseOp, ck::tensor_operation::element_wise::PassThrough>);
static_assert(
std::is_same_v<OutElementwiseOp, ck::tensor_operation::element_wise::PassThrough>);
static_assert(
std::is_same_v<WeiElementwiseOp, ck::tensor_operation::element_wise::PassThrough>);
auto conv_ptr = dynamic_cast<DeviceConvFwdOp*>(op_ptr);
if(!conv_ptr)
{
throw std::runtime_error(
"[ConvFwdOpInstance]: couldn't cast op_ptr to DeviceConvFwdNoOpPtr type!");
}
return conv_ptr->MakeInvokerPointer();
}
virtual std::unique_ptr<tensor_operation::device::BaseArgument>
MakeArgumentPointer(tensor_operation::device::BaseOperator* op_ptr,
const DeviceBuffers& in_device_buffers,
const DeviceMemPtr& out_device_buffer) const override
{
static_assert(
std::is_same_v<InElementwiseOp, ck::tensor_operation::element_wise::PassThrough>);
static_assert(
std::is_same_v<OutElementwiseOp, ck::tensor_operation::element_wise::PassThrough>);
static_assert(
std::is_same_v<WeiElementwiseOp, ck::tensor_operation::element_wise::PassThrough>);
auto conv_ptr = dynamic_cast<DeviceConvFwdOp*>(op_ptr);
if(!conv_ptr)
{
throw std::runtime_error(
"[ConvFwdOpInstance]: couldn't cast op_ptr to DeviceConvFwdNoOpPtr type!");
}
return conv_ptr->MakeArgumentPointer(
static_cast<InDataType*>(in_device_buffers[0]->GetDeviceBuffer()),
static_cast<WeiDataType*>(in_device_buffers[1]->GetDeviceBuffer()),
static_cast<OutDataType*>(out_device_buffer->GetDeviceBuffer()),
params_.N_,
params_.K_,
params_.C_,
params_.input_spatial_lengths_,
params_.filter_spatial_lengths_,
output_spatial_lengths_,
params_.conv_filter_strides_,
params_.conv_filter_dilations_,
params_.input_left_pads_,
params_.input_right_pads_,
InElementwiseOp{},
WeiElementwiseOp{},
OutElementwiseOp{});
}
virtual std::size_t GetFlops() const override
{
return get_flops(params_.N_,
params_.C_,
params_.K_,
params_.filter_spatial_lengths_,
output_spatial_lengths_);
}
virtual std::size_t GetBtype() const override
{
return get_btype<InDataType, WeiDataType, OutDataType>(params_.N_,
params_.C_,
params_.K_,
params_.input_spatial_lengths_,
params_.filter_spatial_lengths_,
output_spatial_lengths_);
}
private:
const ConvParams& params_;
const std::vector<ck::index_t> output_spatial_lengths_;
const bool do_init_;
InputInitFun input_init_f_;
WeightsInitFun weights_init_f_;
};
} // namespace conv
} // namespace utils
} // namespace ck
std::ostream& operator<<(std::ostream& os, const ck::utils::conv::ConvParams& p);
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2022, Advanced Micro Devices, Inc. All rights reserved.
#pragma once
#include "ck/ck.hpp"
#include "ck/tensor_operation/gpu/device/tensor_layout.hpp"
#include "ck/library/utility/convolution_parameter.hpp"
namespace ck {
namespace utils {
namespace conv {
namespace detail {
template <typename OldLayout>
std::vector<std::size_t> get_layout_transpose_gnchw_to_old()
{
// HACK: NHWC/KYXC/NHWK, which is treated as GNHWC/GKYXC/GNHWK by this function,
// is used by some legacy kernel. New kernel should use GNHWK/GKYXC/GNHWK
// TODO: remove this branch after removing legacy kernel
if constexpr(ck::is_same_v<OldLayout, ck::tensor_layout::convolution::NWC> ||
ck::is_same_v<OldLayout, ck::tensor_layout::convolution::KXC> ||
ck::is_same_v<OldLayout, ck::tensor_layout::convolution::NWK>)
{
return {0, 1, 3, 2};
}
else if constexpr(ck::is_same_v<OldLayout, ck::tensor_layout::convolution::NHWC> ||
ck::is_same_v<OldLayout, ck::tensor_layout::convolution::KYXC> ||
ck::is_same_v<OldLayout, ck::tensor_layout::convolution::NHWK>)
{
return {0, 1, 4, 2, 3};
}
else if constexpr(ck::is_same_v<OldLayout, ck::tensor_layout::convolution::NDHWC> ||
ck::is_same_v<OldLayout, ck::tensor_layout::convolution::KZYXC> ||
ck::is_same_v<OldLayout, ck::tensor_layout::convolution::NDHWK>)
{
return {0, 1, 5, 2, 3, 4};
}
// separate from legacy code above
else if constexpr(ck::is_same_v<OldLayout, ck::tensor_layout::convolution::GNCW> ||
ck::is_same_v<OldLayout, ck::tensor_layout::convolution::GKCX> ||
ck::is_same_v<OldLayout, ck::tensor_layout::convolution::GNKW>)
{
return {0, 1, 2, 3};
}
else if constexpr(ck::is_same_v<OldLayout, ck::tensor_layout::convolution::GNCHW> ||
ck::is_same_v<OldLayout, ck::tensor_layout::convolution::GKCYX> ||
ck::is_same_v<OldLayout, ck::tensor_layout::convolution::GNKHW>)
{
return {0, 1, 2, 3, 4};
}
else if constexpr(ck::is_same_v<OldLayout, ck::tensor_layout::convolution::GNCDHW> ||
ck::is_same_v<OldLayout, ck::tensor_layout::convolution::GKCZYX> ||
ck::is_same_v<OldLayout, ck::tensor_layout::convolution::GNKDHW>)
{
return {0, 1, 2, 3, 4, 5};
}
if constexpr(ck::is_same_v<OldLayout, ck::tensor_layout::convolution::GNWC> ||
ck::is_same_v<OldLayout, ck::tensor_layout::convolution::GKXC> ||
ck::is_same_v<OldLayout, ck::tensor_layout::convolution::GNWK>)
{
return {0, 1, 3, 2};
}
else if constexpr(ck::is_same_v<OldLayout, ck::tensor_layout::convolution::GNHWC> ||
ck::is_same_v<OldLayout, ck::tensor_layout::convolution::GKYXC> ||
ck::is_same_v<OldLayout, ck::tensor_layout::convolution::GNHWK>)
{
return {0, 1, 4, 2, 3};
}
else if constexpr(ck::is_same_v<OldLayout, ck::tensor_layout::convolution::GNDHWC> ||
ck::is_same_v<OldLayout, ck::tensor_layout::convolution::GKZYXC> ||
ck::is_same_v<OldLayout, ck::tensor_layout::convolution::GNDHWK>)
{
return {0, 1, 5, 2, 3, 4};
}
else if constexpr(ck::is_same_v<OldLayout, ck::tensor_layout::convolution::NWGC> ||
ck::is_same_v<OldLayout, ck::tensor_layout::convolution::KXGC> ||
ck::is_same_v<OldLayout, ck::tensor_layout::convolution::NWGK>)
{
return {2, 0, 3, 1};
}
else if constexpr(ck::is_same_v<OldLayout, ck::tensor_layout::convolution::NHWGC> ||
ck::is_same_v<OldLayout, ck::tensor_layout::convolution::KYXGC> ||
ck::is_same_v<OldLayout, ck::tensor_layout::convolution::NHWGK>)
{
return {3, 0, 4, 1, 2};
}
else if constexpr(ck::is_same_v<OldLayout, ck::tensor_layout::convolution::NDHWGC> ||
ck::is_same_v<OldLayout, ck::tensor_layout::convolution::KZYXGC> ||
ck::is_same_v<OldLayout, ck::tensor_layout::convolution::NDHWGK>)
{
return {4, 0, 5, 1, 2, 3};
}
else
{
printf("%s\n", __func__);
throw std::runtime_error("wrong! unsupported layout");
}
}
} // namespace detail
// make tensor descriptor for packed input tensor, and order the dimension in the order of GNCHW
// regardless of physical layout
template <typename InLayout>
HostTensorDescriptor
make_input_host_tensor_descriptor_g_n_c_wis_packed(const ck::utils::conv::ConvParam& param)
{
std::vector<std::size_t> physical_lengths;
// HACK: NHWC/KYXC/NHWK, which is treated as GNHWC/GKYXC/GNHWK by this function,
// is used by some legacy kernel. New kernel should use GNHWK/GKYXC/GNHWK
// TODO: remove this branch after removing legacy kernel
if constexpr(ck::is_same_v<InLayout, ck::tensor_layout::convolution::NWC> ||
ck::is_same_v<InLayout, ck::tensor_layout::convolution::NHWC> ||
ck::is_same_v<InLayout, ck::tensor_layout::convolution::NDHWC>)
{
if(param.G_ != 1)
{
throw std::runtime_error("wrong! G != 1");
}
physical_lengths = std::vector<std::size_t>{static_cast<std::size_t>(param.G_),
static_cast<std::size_t>(param.N_),
static_cast<std::size_t>(param.C_)};
physical_lengths.insert(physical_lengths.begin() + 2,
param.input_spatial_lengths_.begin(),
param.input_spatial_lengths_.begin() + param.num_dim_spatial_);
}
// separate from legacy code above
else if constexpr(ck::is_same_v<InLayout, ck::tensor_layout::convolution::GNCW> ||
ck::is_same_v<InLayout, ck::tensor_layout::convolution::GNCHW> ||
ck::is_same_v<InLayout, ck::tensor_layout::convolution::GNCDHW>)
{
physical_lengths = std::vector<std::size_t>{static_cast<std::size_t>(param.G_),
static_cast<std::size_t>(param.N_),
static_cast<std::size_t>(param.C_)};
physical_lengths.insert(physical_lengths.end(),
param.input_spatial_lengths_.begin(),
param.input_spatial_lengths_.begin() + param.num_dim_spatial_);
}
else if constexpr(ck::is_same_v<InLayout, ck::tensor_layout::convolution::GNWC> ||
ck::is_same_v<InLayout, ck::tensor_layout::convolution::GNHWC> ||
ck::is_same_v<InLayout, ck::tensor_layout::convolution::GNDHWC>)
{
physical_lengths = std::vector<std::size_t>{static_cast<std::size_t>(param.G_),
static_cast<std::size_t>(param.N_),
static_cast<std::size_t>(param.C_)};
physical_lengths.insert(physical_lengths.begin() + 2,
param.input_spatial_lengths_.begin(),
param.input_spatial_lengths_.begin() + param.num_dim_spatial_);
}
else if constexpr(ck::is_same_v<InLayout, ck::tensor_layout::convolution::NWGC> ||
ck::is_same_v<InLayout, ck::tensor_layout::convolution::NHWGC> ||
ck::is_same_v<InLayout, ck::tensor_layout::convolution::NDHWGC>)
{
physical_lengths = std::vector<std::size_t>{static_cast<std::size_t>(param.N_),
static_cast<std::size_t>(param.G_),
static_cast<std::size_t>(param.C_)};
physical_lengths.insert(physical_lengths.begin() + 1,
param.input_spatial_lengths_.begin(),
param.input_spatial_lengths_.begin() + param.num_dim_spatial_);
}
else
{
printf("%s\n", __func__);
printf("%s\n", InLayout::name);
throw std::runtime_error("wrong! unsupported layout");
}
return transpose_host_tensor_descriptor_given_new2old(
HostTensorDescriptor(physical_lengths),
detail::get_layout_transpose_gnchw_to_old<InLayout>());
}
// make tensor descriptor for packed weight tensor, and order the dimension in the order of GKCYX
// regardless of physical layout
template <typename WeiLayout>
HostTensorDescriptor
make_weight_host_tensor_descriptor_g_k_c_xs_packed(const ck::utils::conv::ConvParam& param)
{
std::vector<std::size_t> physical_lengths;
// HACK: NHWC/KYXC/NHWK, which is treated as GNHWC/GKYXC/GNHWK by this function,
// is used by some legacy kernel. New kernel should use GNHWK/GKYXC/GNHWK
// TODO: remove this branch after removing legacy kernel
if constexpr(ck::is_same_v<WeiLayout, ck::tensor_layout::convolution::KXC> ||
ck::is_same_v<WeiLayout, ck::tensor_layout::convolution::KYXC> ||
ck::is_same_v<WeiLayout, ck::tensor_layout::convolution::KZYXC>)
{
if(param.G_ != 1)
{
throw std::runtime_error("wrong! G != 1");
}
physical_lengths = std::vector<std::size_t>{static_cast<std::size_t>(param.G_),
static_cast<std::size_t>(param.K_),
static_cast<std::size_t>(param.C_)};
physical_lengths.insert(physical_lengths.begin() + 2,
param.filter_spatial_lengths_.begin(),
param.filter_spatial_lengths_.begin() + param.num_dim_spatial_);
}
// separate from legacy code above
else if constexpr(ck::is_same_v<WeiLayout, ck::tensor_layout::convolution::KXC> ||
ck::is_same_v<WeiLayout, ck::tensor_layout::convolution::KYXC> ||
ck::is_same_v<WeiLayout, ck::tensor_layout::convolution::KZYXC>)
{
if(param.G_ != 1)
{
throw std::runtime_error("wrong! G != 1");
}
physical_lengths = std::vector<std::size_t>{static_cast<std::size_t>(param.K_),
static_cast<std::size_t>(param.C_)};
physical_lengths.insert(physical_lengths.end(),
param.filter_spatial_lengths_.begin(),
param.filter_spatial_lengths_.begin() + param.num_dim_spatial_);
}
else if constexpr(ck::is_same_v<WeiLayout, ck::tensor_layout::convolution::GKCX> ||
ck::is_same_v<WeiLayout, ck::tensor_layout::convolution::GKCYX> ||
ck::is_same_v<WeiLayout, ck::tensor_layout::convolution::GKCZYX>)
{
physical_lengths = std::vector<std::size_t>{static_cast<std::size_t>(param.G_),
static_cast<std::size_t>(param.K_),
static_cast<std::size_t>(param.C_)};
physical_lengths.insert(physical_lengths.end(),
param.filter_spatial_lengths_.begin(),
param.filter_spatial_lengths_.begin() + param.num_dim_spatial_);
}
else if constexpr(ck::is_same_v<WeiLayout, ck::tensor_layout::convolution::GKXC> ||
ck::is_same_v<WeiLayout, ck::tensor_layout::convolution::GKYXC> ||
ck::is_same_v<WeiLayout, ck::tensor_layout::convolution::GKZYXC>)
{
physical_lengths = std::vector<std::size_t>{static_cast<std::size_t>(param.G_),
static_cast<std::size_t>(param.K_),
static_cast<std::size_t>(param.C_)};
physical_lengths.insert(physical_lengths.begin() + 2,
param.filter_spatial_lengths_.begin(),
param.filter_spatial_lengths_.begin() + param.num_dim_spatial_);
}
else if constexpr(ck::is_same_v<WeiLayout, ck::tensor_layout::convolution::KXGC> ||
ck::is_same_v<WeiLayout, ck::tensor_layout::convolution::KYXGC> ||
ck::is_same_v<WeiLayout, ck::tensor_layout::convolution::KZYXGC>)
{
physical_lengths = std::vector<std::size_t>{static_cast<std::size_t>(param.K_),
static_cast<std::size_t>(param.G_),
static_cast<std::size_t>(param.C_)};
physical_lengths.insert(physical_lengths.begin() + 1,
param.filter_spatial_lengths_.begin(),
param.filter_spatial_lengths_.begin() + param.num_dim_spatial_);
}
else
{
printf("%s\n", __func__);
printf("%s\n", WeiLayout::name);
throw std::runtime_error("wrong! unsupported layout");
}
return transpose_host_tensor_descriptor_given_new2old(
HostTensorDescriptor(physical_lengths),
detail::get_layout_transpose_gnchw_to_old<WeiLayout>());
}
// make tensor descriptor for packed output tensor, and order the dimension in the order of GNKHW
// regardless of physical layout
template <typename OutLayout>
HostTensorDescriptor
make_output_host_tensor_descriptor_g_n_k_wos_packed(const ck::utils::conv::ConvParam& param)
{
std::vector<std::size_t> physical_lengths;
// HACK: NHWC/KYXC/NHWK, which is treated as GNHWC/GKYXC/GNHWK by this function,
// is used by some legacy kernel. New kernel should use GNHWK/GKYXC/GNHWK
// TODO: remove this branch after removing legacy kernel
if constexpr(ck::is_same_v<OutLayout, ck::tensor_layout::convolution::NWK> ||
ck::is_same_v<OutLayout, ck::tensor_layout::convolution::NHWK> ||
ck::is_same_v<OutLayout, ck::tensor_layout::convolution::NDHWK>)
{
if(param.G_ != 1)
{
throw std::runtime_error("wrong! G != 1");
}
physical_lengths = std::vector<std::size_t>{static_cast<std::size_t>(param.G_),
static_cast<std::size_t>(param.N_),
static_cast<std::size_t>(param.K_)};
physical_lengths.insert(physical_lengths.begin() + 2,
param.output_spatial_lengths_.begin(),
param.output_spatial_lengths_.begin() + param.num_dim_spatial_);
}
// separate from legacy code above
else if constexpr(ck::is_same_v<OutLayout, ck::tensor_layout::convolution::GNKW> ||
ck::is_same_v<OutLayout, ck::tensor_layout::convolution::GNKHW> ||
ck::is_same_v<OutLayout, ck::tensor_layout::convolution::GNKDHW>)
{
physical_lengths = std::vector<std::size_t>{static_cast<std::size_t>(param.G_),
static_cast<std::size_t>(param.N_),
static_cast<std::size_t>(param.K_)};
physical_lengths.insert(physical_lengths.end(),
param.output_spatial_lengths_.begin(),
param.output_spatial_lengths_.begin() + param.num_dim_spatial_);
}
else if constexpr(ck::is_same_v<OutLayout, ck::tensor_layout::convolution::GNWK> ||
ck::is_same_v<OutLayout, ck::tensor_layout::convolution::GNHWK> ||
ck::is_same_v<OutLayout, ck::tensor_layout::convolution::GNDHWK>)
{
physical_lengths = std::vector<std::size_t>{static_cast<std::size_t>(param.G_),
static_cast<std::size_t>(param.N_),
static_cast<std::size_t>(param.K_)};
physical_lengths.insert(physical_lengths.begin() + 2,
param.output_spatial_lengths_.begin(),
param.output_spatial_lengths_.begin() + param.num_dim_spatial_);
}
else if constexpr(ck::is_same_v<OutLayout, ck::tensor_layout::convolution::NWGK> ||
ck::is_same_v<OutLayout, ck::tensor_layout::convolution::NHWGK> ||
ck::is_same_v<OutLayout, ck::tensor_layout::convolution::NDHWGK>)
{
physical_lengths = std::vector<std::size_t>{static_cast<std::size_t>(param.N_),
static_cast<std::size_t>(param.G_),
static_cast<std::size_t>(param.K_)};
physical_lengths.insert(physical_lengths.begin() + 1,
param.output_spatial_lengths_.begin(),
param.output_spatial_lengths_.begin() + param.num_dim_spatial_);
}
else
{
printf("%s\n", __func__);
printf("%s\n", OutLayout::name);
throw std::runtime_error("wrong! unsupported layout");
}
return transpose_host_tensor_descriptor_given_new2old(
HostTensorDescriptor(physical_lengths),
detail::get_layout_transpose_gnchw_to_old<OutLayout>());
}
} // namespace conv
} // namespace utils
} // namespace ck
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment