Commit aea62819 authored by Chaitanya Inumella's avatar Chaitanya Inumella
Browse files

Rebase branch 'develop' of...

Rebase branch 'develop' of https://github.com/ROCmSoftwarePlatform/composable_kernel into contraction_hipTENSOR
parents 75af5450 75ab874e
......@@ -13,9 +13,9 @@
#include "ck/tensor_operation/gpu/device/device_5ary_elementwise.hpp"
#include "ck/tensor_operation/gpu/element/element_wise_operation.hpp"
#include "ck/library/host_tensor/device_memory.hpp"
#include "ck/library/host_tensor/host_tensor.hpp"
#include "ck/library/host_tensor/host_tensor_generator.hpp"
#include "ck/library/utility/device_memory.hpp"
#include "ck/library/utility/host_tensor.hpp"
#include "ck/library/utility/host_tensor_generator.hpp"
#include "ck/library/reference_tensor_operation/cpu/reference_gemm.hpp"
#include "ck/library/utility/check_err.hpp"
......@@ -129,7 +129,7 @@ void host_gemm_layernorm(Tensor<LayerNormOutDataType>& out_m_n,
const Tensor<ADataType>& a_m_k,
const Tensor<ADataType>& b_k_n,
const Tensor<GammaDataType>& gamma_n,
const Tensor<GammaDataType>& beta_n,
const Tensor<BetaDataType>& beta_n,
A_functor a_element_op,
B_functor b_element_op,
C_functor c_element_op,
......@@ -249,16 +249,17 @@ int main()
gamma_n.GenerateTensorValue(GeneratorTensor_3<GammaDataType>{-1, 1});
beta_n.GenerateTensorValue(GeneratorTensor_3<BetaDataType>{-1, 1});
DeviceMem a_device_buf(sizeof(ADataType) * a_m_k.mDesc.GetElementSpace());
DeviceMem b_device_buf(sizeof(BDataType) * b_k_n.mDesc.GetElementSpace());
DeviceMem c_device_buf(sizeof(CDataType) * c_m_n.mDesc.GetElementSpace());
DeviceMem reduceMean_device_buf(sizeof(ReduceDataType) * reduceMean_m.mDesc.GetElementSpace());
DeviceMem a_device_buf(sizeof(ADataType) * a_m_k.mDesc.GetElementSpaceSize());
DeviceMem b_device_buf(sizeof(BDataType) * b_k_n.mDesc.GetElementSpaceSize());
DeviceMem c_device_buf(sizeof(CDataType) * c_m_n.mDesc.GetElementSpaceSize());
DeviceMem reduceMean_device_buf(sizeof(ReduceDataType) *
reduceMean_m.mDesc.GetElementSpaceSize());
DeviceMem reduceMeanSquare_device_buf(sizeof(ReduceDataType) *
reduceMeanSquare_m.mDesc.GetElementSpace());
DeviceMem gamma_device_buf(sizeof(GammaDataType) * gamma_n.mDesc.GetElementSpace());
DeviceMem beta_device_buf(sizeof(BetaDataType) * beta_n.mDesc.GetElementSpace());
reduceMeanSquare_m.mDesc.GetElementSpaceSize());
DeviceMem gamma_device_buf(sizeof(GammaDataType) * gamma_n.mDesc.GetElementSpaceSize());
DeviceMem beta_device_buf(sizeof(BetaDataType) * beta_n.mDesc.GetElementSpaceSize());
DeviceMem layerNorm_device_buf(sizeof(LayerNormOutDataType) *
layerNorm_m_n.mDesc.GetElementSpace());
layerNorm_m_n.mDesc.GetElementSpaceSize());
a_device_buf.ToDevice(a_m_k.mData.data());
b_device_buf.ToDevice(b_k_n.mData.data());
......
......@@ -7,9 +7,9 @@
#include "ck/ck.hpp"
#include "ck/library/utility/check_err.hpp"
#include "ck/library/host_tensor/device_memory.hpp"
#include "ck/library/host_tensor/host_tensor.hpp"
#include "ck/library/host_tensor/host_tensor_generator.hpp"
#include "ck/library/utility/device_memory.hpp"
#include "ck/library/utility/host_tensor.hpp"
#include "ck/library/utility/host_tensor_generator.hpp"
#include "ck/tensor_operation/gpu/device/tensor_layout.hpp"
#include "ck/tensor_operation/gpu/device/device_gemm_xdl_layernorm_cshuffle.hpp"
#include "ck/tensor_operation/gpu/element/element_wise_operation.hpp"
......@@ -185,13 +185,13 @@ int main(int argc, char* argv[])
c_m_n_host_result.GenerateTensorValue(GeneratorTensor_1<CDataType>{0});
acc_m_n_host_result.GenerateTensorValue(GeneratorTensor_1<AccDataType>{0});
DeviceMem a_device_buf(sizeof(ADataType) * a_m_k.mDesc.GetElementSpace());
DeviceMem b_device_buf(sizeof(BDataType) * b_k_n.mDesc.GetElementSpace());
DeviceMem c_device_buf(sizeof(CDataType) * c_m_n_device_result.mDesc.GetElementSpace());
DeviceMem c0_bias_buf(sizeof(C0DataType) * c0_n_bias.mDesc.GetElementSpace());
DeviceMem c0_add_buf(sizeof(C0DataType) * c0_m_n_add.mDesc.GetElementSpace());
DeviceMem c0_gamma_buf(sizeof(C0DataType) * c0_n_gamma.mDesc.GetElementSpace());
DeviceMem c0_beta_buf(sizeof(C0DataType) * c0_n_beta.mDesc.GetElementSpace());
DeviceMem a_device_buf(sizeof(ADataType) * a_m_k.mDesc.GetElementSpaceSize());
DeviceMem b_device_buf(sizeof(BDataType) * b_k_n.mDesc.GetElementSpaceSize());
DeviceMem c_device_buf(sizeof(CDataType) * c_m_n_device_result.mDesc.GetElementSpaceSize());
DeviceMem c0_bias_buf(sizeof(C0DataType) * c0_n_bias.mDesc.GetElementSpaceSize());
DeviceMem c0_add_buf(sizeof(C0DataType) * c0_m_n_add.mDesc.GetElementSpaceSize());
DeviceMem c0_gamma_buf(sizeof(C0DataType) * c0_n_gamma.mDesc.GetElementSpaceSize());
DeviceMem c0_beta_buf(sizeof(C0DataType) * c0_n_beta.mDesc.GetElementSpaceSize());
a_device_buf.ToDevice(a_m_k.mData.data());
b_device_buf.ToDevice(b_k_n.mData.data());
......
add_custom_target(example_cgemm_xdl)
add_example_executable(example_cgemm_xdl_bf16 cgemm_xdl_bf16.cpp)
add_example_executable(example_cgemm_xdl_fp16 cgemm_xdl_fp16.cpp)
add_example_executable(example_cgemm_xdl_fp32 cgemm_xdl_fp32.cpp)
add_example_executable(example_cgemm_xdl_int8 cgemm_xdl_int8.cpp)
add_dependencies(example_cgemm_xdl example_cgemm_xdl_bf16)
add_dependencies(example_cgemm_xdl example_cgemm_xdl_fp16)
add_dependencies(example_cgemm_xdl example_cgemm_xdl_fp32)
add_dependencies(example_cgemm_xdl example_cgemm_xdl_int8)
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2022, Advanced Micro Devices, Inc. All rights reserved.
#include <iostream>
#include "cgemm_xdl_common.hpp"
#include "ck/library/reference_tensor_operation/cpu/reference_cgemm.hpp"
#include "ck/tensor_operation/gpu/element/element_wise_operation.hpp"
#include "ck/tensor_operation/gpu/device/device_cgemm_4gemm_xdl_cshuffle.hpp"
#include "ck/tensor_operation/gpu/device/gemm_specialization.hpp"
using ADataType = BF16;
using BDataType = BF16;
using CDataType = BF16;
using AccDataType = F32;
using ALayout = ck::tensor_layout::gemm::RowMajor;
using BLayout = ck::tensor_layout::gemm::ColumnMajor;
using CLayout = ck::tensor_layout::gemm::RowMajor;
using PassThrough = ck::tensor_operation::element_wise::PassThrough;
static constexpr auto GemmDefault = ck::tensor_operation::device::GemmSpecialization::Default;
using ReferenceCGemmInstance = ck::tensor_operation::host::
ReferenceCGemm<ADataType, BDataType, CDataType, PassThrough, PassThrough, PassThrough>;
// clang-format off
using DeviceCGemmInstance = ck::tensor_operation::device::DeviceCGemm_4Gemm_Xdl_CShuffle
<ALayout, // typename ALayout
BLayout, // typename BLayout
CLayout, // typename CLayout
ADataType, // typename ADataType
BDataType, // typename BDataType
CDataType, // typename CDataType
AccDataType, // typename GemmAccDataType
CDataType, // typename CShuffleDataType
PassThrough, // typename AElementwiseOperation
PassThrough, // typename BElementwiseOperation
PassThrough, // typename CElementwiseOperation
GemmDefault, // GemmSpecialization GemmSpec
1, // index_t NumGemmKPrefetchStage
256, // index_t BlockSize
256, // index_t MPerBlock
128, // index_t NPerBlock
32, // index_t KPerBlock
8, // index_t AK1
8, // index_t BK1
32, // index_t MPerXDL
32, // index_t NPerXDL
4, // index_t MXdlPerWave
2, // index_t NXdlPerWave
S<4, 64, 1>, // typename ABlockTransferThreadClusterLengths_AK0_M_AK1
S<1, 0, 2>, // typename ABlockTransferThreadClusterArrangeOrder
S<1, 0, 2>, // typename ABlockTransferSrcAccessOrder
2, // index_t ABlockTransferSrcVectorDim
8, // index_t ABlockTransferSrcScalarPerVector
8, // index_t ABlockTransferDstScalarPerVector_AK1
1, // index_t ABlockLdsExtraM
S<4, 64, 1>, // typename BBlockTransferThreadClusterLengths_BK0_N_BK1
S<1, 0, 2>, // typename BBlockTransferThreadClusterArrangeOrder
S<1, 0, 2>, // typename BBlockTransferSrcAccessOrder
2, // index_t BBlockTransferSrcVectorDim
8, // index_t BBlockTransferSrcScalarPerVector
8, // index_t BBlockTransferDstScalarPerVector_BK1
1, // index_t BBlockLdsExtraN
1, // index_t CShuffleMXdlPerWavePerShuffle
1, // index_t CShuffleNXdlPerWavePerShuffle
S<1, 32, 1, 8>, // typename CShuffleBlockTransferClusterLengths_MBlock_MPerBlock_NBlock_NPerBlock
8>; // index_t CShuffleBlockTransferScalarPerVector_NPerBlock
// clang-format on
int main(int argc, char* argv[])
{
bool do_verification = true;
int init_method = 1;
bool time_kernel = false;
// CGEMM shape
ck::index_t M = 3840;
ck::index_t N = 4096;
ck::index_t K = 416;
ck::index_t StrideA = 4096;
ck::index_t StrideB = 4096;
ck::index_t StrideC = 4096;
if(argc == 4)
{
do_verification = std::stoi(argv[1]);
init_method = std::stoi(argv[2]);
time_kernel = std::stoi(argv[3]);
}
else if(argc == 10)
{
do_verification = std::stoi(argv[1]);
init_method = std::stoi(argv[2]);
time_kernel = std::stoi(argv[3]);
M = std::stoi(argv[4]);
N = std::stoi(argv[5]);
K = std::stoi(argv[6]);
StrideA = std::stoi(argv[7]);
StrideB = std::stoi(argv[8]);
StrideC = std::stoi(argv[9]);
}
else
{
std::cout << "arg1: verification (0=no, 1=yes)\n"
<< "arg2: initialization (0=no init, 1=integer value, 2=decimal value)\n"
<< "arg3: run kernel # of times (>1)\n"
<< "arg4 to 9: M (256x), N(128x), K(32x), StrideA, StrideB, StrideC\n"
<< std::endl;
exit(0);
}
return run_cgemm_xdl<ADataType,
BDataType,
CDataType,
ALayout,
BLayout,
CLayout,
PassThrough,
PassThrough,
PassThrough,
DeviceCGemmInstance,
ReferenceCGemmInstance>(
M, N, K, StrideA, StrideB, StrideC, do_verification, init_method, time_kernel);
}
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2022, Advanced Micro Devices, Inc. All rights reserved.
#include <numeric>
#include <initializer_list>
#include <cstdlib>
#include "ck/ck.hpp"
#include "ck/stream_config.hpp"
#include "ck/library/utility/check_err.hpp"
#include "ck/library/utility/device_memory.hpp"
#include "ck/library/utility/host_tensor.hpp"
#include "ck/library/utility/host_tensor_generator.hpp"
#include "ck/tensor_operation/gpu/device/tensor_layout.hpp"
template <ck::index_t... Is>
using S = ck::Sequence<Is...>;
using F16 = ck::half_t;
using F32 = float;
using BF16 = ck::bhalf_t;
using INT8 = std::int8_t;
using INT32 = std::int32_t;
template <typename ADataType,
typename BDataType,
typename CDataType,
typename ALayout,
typename BLayout,
typename CLayout,
typename AElementwiseOperation,
typename BElementwiseOperation,
typename CElementwiseOperation,
typename DeviceCGemmInstance,
typename ReferenceCGemmInstance>
int run_cgemm_xdl(ck::index_t M,
ck::index_t N,
ck::index_t K,
ck::index_t StrideA,
ck::index_t StrideB,
ck::index_t StrideC,
bool do_verification,
int init_method,
bool time_kernel)
{
auto f_host_tensor_descriptor =
[](std::size_t row, std::size_t col, std::size_t stride, auto layout) {
if(std::is_same<decltype(layout), ck::tensor_layout::gemm::RowMajor>::value)
{
return HostTensorDescriptor(std::vector<std::size_t>({row, col}),
std::vector<std::size_t>({stride, 1}));
}
else
{
return HostTensorDescriptor(std::vector<std::size_t>({row, col}),
std::vector<std::size_t>({1, stride}));
}
};
Tensor<ADataType> a_m_k_real(f_host_tensor_descriptor(M, K, StrideA, ALayout{}));
Tensor<ADataType> a_m_k_imag(f_host_tensor_descriptor(M, K, StrideA, ALayout{}));
Tensor<BDataType> b_k_n_real(f_host_tensor_descriptor(K, N, StrideB, BLayout{}));
Tensor<BDataType> b_k_n_imag(f_host_tensor_descriptor(K, N, StrideB, BLayout{}));
Tensor<CDataType> c_m_n_real_device_result(f_host_tensor_descriptor(M, N, StrideC, CLayout{}));
Tensor<CDataType> c_m_n_imag_device_result(f_host_tensor_descriptor(M, N, StrideC, CLayout{}));
std::cout << "a_m_k_real: " << a_m_k_real.mDesc << std::endl;
std::cout << "a_m_k_imag: " << a_m_k_imag.mDesc << std::endl;
std::cout << "b_k_n_real: " << b_k_n_real.mDesc << std::endl;
std::cout << "b_k_n_imag: " << b_k_n_imag.mDesc << std::endl;
std::cout << "c_m_n_real: " << c_m_n_real_device_result.mDesc << std::endl;
std::cout << "c_m_n_imag: " << c_m_n_imag_device_result.mDesc << std::endl;
switch(init_method)
{
case 0: break;
case 1:
a_m_k_real.GenerateTensorValue(GeneratorTensor_2<ADataType>{-2, 2});
a_m_k_imag.GenerateTensorValue(GeneratorTensor_2<ADataType>{-2, 2});
b_k_n_real.GenerateTensorValue(GeneratorTensor_2<BDataType>{-2, 2});
b_k_n_imag.GenerateTensorValue(GeneratorTensor_2<BDataType>{-2, 2});
break;
default:
a_m_k_real.GenerateTensorValue(GeneratorTensor_3<ADataType>{-0.5, 0.5});
a_m_k_imag.GenerateTensorValue(GeneratorTensor_3<ADataType>{-0.5, 0.5});
b_k_n_real.GenerateTensorValue(GeneratorTensor_3<BDataType>{-0.5, 0.5});
b_k_n_imag.GenerateTensorValue(GeneratorTensor_3<BDataType>{-0.5, 0.5});
}
auto cgemm = DeviceCGemmInstance{};
DeviceMem a_m_k_real_device_buf(sizeof(ADataType) * a_m_k_real.mDesc.GetElementSpaceSize());
DeviceMem a_m_k_imag_device_buf(sizeof(ADataType) * a_m_k_imag.mDesc.GetElementSpaceSize());
DeviceMem b_k_n_real_device_buf(sizeof(BDataType) * b_k_n_real.mDesc.GetElementSpaceSize());
DeviceMem b_k_n_imag_device_buf(sizeof(BDataType) * b_k_n_imag.mDesc.GetElementSpaceSize());
DeviceMem c_m_n_real_device_buf(sizeof(CDataType) *
c_m_n_real_device_result.mDesc.GetElementSpaceSize());
DeviceMem c_m_n_imag_device_buf(sizeof(CDataType) *
c_m_n_imag_device_result.mDesc.GetElementSpaceSize());
DeviceMem workspace_device_buf(cgemm.GetWorkspaceSize(M, N, K, StrideA, StrideB, StrideC));
a_m_k_real_device_buf.ToDevice(a_m_k_real.mData.data());
a_m_k_imag_device_buf.ToDevice(a_m_k_imag.mData.data());
b_k_n_real_device_buf.ToDevice(b_k_n_real.mData.data());
b_k_n_imag_device_buf.ToDevice(b_k_n_imag.mData.data());
auto a_element_op = AElementwiseOperation{};
auto b_element_op = BElementwiseOperation{};
auto c_element_op = CElementwiseOperation{};
// do GEMM
auto invoker = cgemm.MakeInvoker();
auto argument =
cgemm.MakeArgument(static_cast<ADataType*>(a_m_k_real_device_buf.GetDeviceBuffer()),
static_cast<ADataType*>(a_m_k_imag_device_buf.GetDeviceBuffer()),
static_cast<BDataType*>(b_k_n_real_device_buf.GetDeviceBuffer()),
static_cast<BDataType*>(b_k_n_imag_device_buf.GetDeviceBuffer()),
static_cast<CDataType*>(c_m_n_real_device_buf.GetDeviceBuffer()),
static_cast<CDataType*>(c_m_n_imag_device_buf.GetDeviceBuffer()),
static_cast<CDataType*>(workspace_device_buf.GetDeviceBuffer()),
M,
N,
K,
StrideA,
StrideB,
StrideC,
a_element_op,
b_element_op,
c_element_op);
if(!cgemm.IsSupportedArgument(argument))
{
throw std::runtime_error(
"wrong! device_cgemm with the specified compilation parameters does "
"not support this CGEMM problem");
}
float ave_time = invoker.Run(argument, StreamConfig{nullptr, time_kernel});
std::size_t flop = std::size_t(8) * M * N * K;
std::size_t num_btype =
std::size_t(2) *
(sizeof(ADataType) * M * K + sizeof(BDataType) * K * N + sizeof(CDataType) * M * N);
float tflops = static_cast<float>(flop) / 1.E9 / ave_time;
float gb_per_sec = num_btype / 1.E6 / ave_time;
std::cout << "Perf: " << ave_time << " ms, " << tflops << " TFlops, " << gb_per_sec << " GB/s, "
<< cgemm.GetTypeString() << std::endl;
c_m_n_real_device_buf.FromDevice(c_m_n_real_device_result.mData.data());
c_m_n_imag_device_buf.FromDevice(c_m_n_imag_device_result.mData.data());
if(do_verification)
{
Tensor<CDataType> c_m_n_real_host_result(
f_host_tensor_descriptor(M, N, StrideC, CLayout{}));
Tensor<CDataType> c_m_n_imag_host_result(
f_host_tensor_descriptor(M, N, StrideC, CLayout{}));
auto ref_cgemm = ReferenceCGemmInstance{};
auto ref_invoker = ref_cgemm.MakeInvoker();
auto ref_argument = ref_cgemm.MakeArgument(a_m_k_real,
a_m_k_imag,
b_k_n_real,
b_k_n_imag,
c_m_n_real_host_result,
c_m_n_imag_host_result,
a_element_op,
b_element_op,
c_element_op);
ref_invoker.Run(ref_argument);
bool result = true;
result = ck::utils::check_err(c_m_n_real_device_result.mData,
c_m_n_real_host_result.mData,
"Verification error: incorrect results in real part!",
1e-2f,
1e-1f);
result = result &&
ck::utils::check_err(c_m_n_imag_device_result.mData,
c_m_n_imag_host_result.mData,
"Verification error: incorrect results in imaginary part!",
1e-2f,
1e-1f);
return result ? 0 : 1;
}
return 0;
}
......@@ -2,43 +2,30 @@
// Copyright (c) 2018-2022, Advanced Micro Devices, Inc. All rights reserved.
#include <iostream>
#include <numeric>
#include <initializer_list>
#include <cstdlib>
#include "ck/ck.hpp"
#include "cgemm_xdl_common.hpp"
#include "ck/library/reference_tensor_operation/cpu/reference_cgemm.hpp"
#include "ck/tensor_operation/gpu/element/element_wise_operation.hpp"
#include "ck/tensor_operation/gpu/device/gemm_specialization.hpp"
#include "ck/tensor_operation/gpu/device/device_cgemm_4gemm_xdl_cshuffle.hpp"
#include "ck/tensor_operation/gpu/device/gemm_specialization.hpp"
#include "ck/library/utility/check_err.hpp"
#include "ck/library/host_tensor/device_memory.hpp"
#include "ck/library/host_tensor/host_tensor.hpp"
#include "ck/library/host_tensor/host_tensor_generator.hpp"
#include "ck/library/reference_tensor_operation/cpu/reference_cgemm.hpp"
template <ck::index_t... Is>
using S = ck::Sequence<Is...>;
using F16 = ck::half_t;
using F32 = float;
using Row = ck::tensor_layout::gemm::RowMajor;
using Col = ck::tensor_layout::gemm::ColumnMajor;
using PassThrough = ck::tensor_operation::element_wise::PassThrough;
using ADataType = F16;
using BDataType = F16;
using CDataType = F16;
using AccDataType = F32;
using ADataType = F16;
using BDataType = F16;
using CDataType = F16;
using AccDataType = F32;
using CShuffleDataType = F32;
using ALayout = ck::tensor_layout::gemm::RowMajor;
using BLayout = ck::tensor_layout::gemm::ColumnMajor;
using CLayout = ck::tensor_layout::gemm::RowMajor;
using PassThrough = ck::tensor_operation::element_wise::PassThrough;
static constexpr auto GemmDefault = ck::tensor_operation::device::GemmSpecialization::Default;
using ReferenceCGemmInstance = ck::tensor_operation::host::
ReferenceCGemm<ADataType, BDataType, CDataType, PassThrough, PassThrough, PassThrough>;
// clang-format off
using DeviceCGemmInstance = ck::tensor_operation::device::DeviceCGemm_4Gemm_Xdl_CShuffle
<ALayout, // typename ALayout
......@@ -48,7 +35,7 @@ using DeviceCGemmInstance = ck::tensor_operation::device::DeviceCGemm_4Gemm_Xdl_
BDataType, // typename BDataType
CDataType, // typename CDataType
AccDataType, // typename GemmAccDataType
CDataType, // typename CShuffleDataType
CShuffleDataType, // typename CShuffleDataType
PassThrough, // typename AElementwiseOperation
PassThrough, // typename BElementwiseOperation
PassThrough, // typename CElementwiseOperation
......@@ -84,9 +71,6 @@ using DeviceCGemmInstance = ck::tensor_operation::device::DeviceCGemm_4Gemm_Xdl_
8>; // index_t CShuffleBlockTransferScalarPerVector_NPerBlock
// clang-format on
using ReferenceCGemmInstance = ck::tensor_operation::host::
ReferenceCGemm<ADataType, BDataType, CDataType, PassThrough, PassThrough, PassThrough>;
int main(int argc, char* argv[])
{
bool do_verification = true;
......@@ -124,155 +108,24 @@ int main(int argc, char* argv[])
}
else
{
printf("arg1: verification (0=no, 1=yes)\n");
printf("arg2: initialization (0=no init, 1=integer value, 2=decimal value)\n");
printf("arg3: run kernel # of times (>1)\n");
printf("arg4 to 9: M (256x), N(128x), K(32x), StrideA, StrideB, StrideC\n");
std::cout << "arg1: verification (0=no, 1=yes)\n"
<< "arg2: initialization (0=no init, 1=integer value, 2=decimal value)\n"
<< "arg3: run kernel # of times (>1)\n"
<< "arg4 to 9: M (256x), N(128x), K(32x), StrideA, StrideB, StrideC\n"
<< std::endl;
exit(0);
}
auto f_host_tensor_descriptor =
[](std::size_t row, std::size_t col, std::size_t stride, auto layout) {
if(std::is_same<decltype(layout), ck::tensor_layout::gemm::RowMajor>::value)
{
return HostTensorDescriptor(std::vector<std::size_t>({row, col}),
std::vector<std::size_t>({stride, 1}));
}
else
{
return HostTensorDescriptor(std::vector<std::size_t>({row, col}),
std::vector<std::size_t>({1, stride}));
}
};
Tensor<ADataType> a_m_k_real(f_host_tensor_descriptor(M, K, StrideA, ALayout{}));
Tensor<ADataType> a_m_k_imag(f_host_tensor_descriptor(M, K, StrideA, ALayout{}));
Tensor<BDataType> b_k_n_real(f_host_tensor_descriptor(K, N, StrideB, BLayout{}));
Tensor<BDataType> b_k_n_imag(f_host_tensor_descriptor(K, N, StrideB, BLayout{}));
Tensor<CDataType> c_m_n_real_device_result(f_host_tensor_descriptor(M, N, StrideC, CLayout{}));
Tensor<CDataType> c_m_n_imag_device_result(f_host_tensor_descriptor(M, N, StrideC, CLayout{}));
std::cout << "a_m_k_real: " << a_m_k_real.mDesc << std::endl;
std::cout << "a_m_k_imag: " << a_m_k_imag.mDesc << std::endl;
std::cout << "b_k_n_real: " << b_k_n_real.mDesc << std::endl;
std::cout << "b_k_n_imag: " << b_k_n_imag.mDesc << std::endl;
std::cout << "c_m_n_real: " << c_m_n_real_device_result.mDesc << std::endl;
std::cout << "c_m_n_imag: " << c_m_n_imag_device_result.mDesc << std::endl;
switch(init_method)
{
case 0: break;
case 1:
a_m_k_real.GenerateTensorValue(GeneratorTensor_2<ADataType>{-2, 2});
a_m_k_imag.GenerateTensorValue(GeneratorTensor_2<ADataType>{-2, 2});
b_k_n_real.GenerateTensorValue(GeneratorTensor_2<BDataType>{-2, 2});
b_k_n_imag.GenerateTensorValue(GeneratorTensor_2<BDataType>{-2, 2});
break;
default:
a_m_k_real.GenerateTensorValue(GeneratorTensor_3<ADataType>{-0.5, 0.5});
a_m_k_imag.GenerateTensorValue(GeneratorTensor_3<ADataType>{-0.5, 0.5});
b_k_n_real.GenerateTensorValue(GeneratorTensor_3<BDataType>{-0.5, 0.5});
b_k_n_imag.GenerateTensorValue(GeneratorTensor_3<BDataType>{-0.5, 0.5});
}
auto cgemm = DeviceCGemmInstance{};
DeviceMem a_m_k_real_device_buf(sizeof(ADataType) * a_m_k_real.mDesc.GetElementSpace());
DeviceMem a_m_k_imag_device_buf(sizeof(ADataType) * a_m_k_imag.mDesc.GetElementSpace());
DeviceMem b_k_n_real_device_buf(sizeof(BDataType) * b_k_n_real.mDesc.GetElementSpace());
DeviceMem b_k_n_imag_device_buf(sizeof(BDataType) * b_k_n_imag.mDesc.GetElementSpace());
DeviceMem c_m_n_real_device_buf(sizeof(CDataType) *
c_m_n_real_device_result.mDesc.GetElementSpace());
DeviceMem c_m_n_imag_device_buf(sizeof(CDataType) *
c_m_n_imag_device_result.mDesc.GetElementSpace());
DeviceMem workspace_device_buf(cgemm.GetWorkspaceSize(M, N, K, StrideA, StrideB, StrideC));
a_m_k_real_device_buf.ToDevice(a_m_k_real.mData.data());
a_m_k_imag_device_buf.ToDevice(a_m_k_imag.mData.data());
b_k_n_real_device_buf.ToDevice(b_k_n_real.mData.data());
b_k_n_imag_device_buf.ToDevice(b_k_n_imag.mData.data());
auto a_element_op = PassThrough{};
auto b_element_op = PassThrough{};
auto c_element_op = PassThrough{};
// do GEMM
auto invoker = cgemm.MakeInvoker();
auto argument =
cgemm.MakeArgument(static_cast<ADataType*>(a_m_k_real_device_buf.GetDeviceBuffer()),
static_cast<ADataType*>(a_m_k_imag_device_buf.GetDeviceBuffer()),
static_cast<BDataType*>(b_k_n_real_device_buf.GetDeviceBuffer()),
static_cast<BDataType*>(b_k_n_imag_device_buf.GetDeviceBuffer()),
static_cast<CDataType*>(c_m_n_real_device_buf.GetDeviceBuffer()),
static_cast<CDataType*>(c_m_n_imag_device_buf.GetDeviceBuffer()),
static_cast<CDataType*>(workspace_device_buf.GetDeviceBuffer()),
M,
N,
K,
StrideA,
StrideB,
StrideC,
a_element_op,
b_element_op,
c_element_op);
if(!cgemm.IsSupportedArgument(argument))
{
throw std::runtime_error(
"wrong! device_cgemm with the specified compilation parameters does "
"not support this CGEMM problem");
}
float ave_time = invoker.Run(argument, StreamConfig{nullptr, time_kernel});
std::size_t flop = std::size_t(8) * M * N * K;
std::size_t num_btype =
std::size_t(2) *
(sizeof(ADataType) * M * K + sizeof(BDataType) * K * N + sizeof(CDataType) * M * N);
float tflops = static_cast<float>(flop) / 1.E9 / ave_time;
float gb_per_sec = num_btype / 1.E6 / ave_time;
std::cout << "Perf: " << ave_time << " ms, " << tflops << " TFlops, " << gb_per_sec << " GB/s, "
<< cgemm.GetTypeString() << std::endl;
c_m_n_real_device_buf.FromDevice(c_m_n_real_device_result.mData.data());
c_m_n_imag_device_buf.FromDevice(c_m_n_imag_device_result.mData.data());
if(do_verification)
{
Tensor<CDataType> c_m_n_real_host_result(
f_host_tensor_descriptor(M, N, StrideC, CLayout{}));
Tensor<CDataType> c_m_n_imag_host_result(
f_host_tensor_descriptor(M, N, StrideC, CLayout{}));
auto ref_cgemm = ReferenceCGemmInstance{};
auto ref_invoker = ref_cgemm.MakeInvoker();
auto ref_argument = ref_cgemm.MakeArgument(a_m_k_real,
a_m_k_imag,
b_k_n_real,
b_k_n_imag,
c_m_n_real_host_result,
c_m_n_imag_host_result,
a_element_op,
b_element_op,
c_element_op);
ref_invoker.Run(ref_argument);
ck::utils::check_err(c_m_n_real_device_result.mData,
c_m_n_real_host_result.mData,
"Verification error: incorrect results in real part!",
1e-2f,
1e-1f);
ck::utils::check_err(c_m_n_imag_device_result.mData,
c_m_n_imag_host_result.mData,
"Verification error: incorrect results in imaginary part!",
1e-2f,
1e-1f);
}
return 0;
return run_cgemm_xdl<ADataType,
BDataType,
CDataType,
ALayout,
BLayout,
CLayout,
PassThrough,
PassThrough,
PassThrough,
DeviceCGemmInstance,
ReferenceCGemmInstance>(
M, N, K, StrideA, StrideB, StrideC, do_verification, init_method, time_kernel);
}
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2022, Advanced Micro Devices, Inc. All rights reserved.
#include <iostream>
#include "cgemm_xdl_common.hpp"
#include "ck/library/reference_tensor_operation/cpu/reference_cgemm.hpp"
#include "ck/tensor_operation/gpu/element/element_wise_operation.hpp"
#include "ck/tensor_operation/gpu/device/device_cgemm_4gemm_xdl_cshuffle.hpp"
#include "ck/tensor_operation/gpu/device/gemm_specialization.hpp"
using ADataType = F32;
using BDataType = F32;
using CDataType = F32;
using AccDataType = F32;
using ALayout = ck::tensor_layout::gemm::RowMajor;
using BLayout = ck::tensor_layout::gemm::ColumnMajor;
using CLayout = ck::tensor_layout::gemm::RowMajor;
using PassThrough = ck::tensor_operation::element_wise::PassThrough;
static constexpr auto GemmDefault = ck::tensor_operation::device::GemmSpecialization::Default;
using ReferenceCGemmInstance = ck::tensor_operation::host::
ReferenceCGemm<ADataType, BDataType, CDataType, PassThrough, PassThrough, PassThrough>;
// clang-format off
using DeviceCGemmInstance = ck::tensor_operation::device::DeviceCGemm_4Gemm_Xdl_CShuffle
<ALayout, // typename ALayout
BLayout, // typename BLayout
CLayout, // typename CLayout
ADataType, // typename ADataType
BDataType, // typename BDataType
CDataType, // typename CDataType
AccDataType, // typename GemmAccDataType
CDataType, // typename CShuffleDataType
PassThrough, // typename AElementwiseOperation
PassThrough, // typename BElementwiseOperation
PassThrough, // typename CElementwiseOperation
GemmDefault, // GemmSpecialization GemmSpec
1, // index_t NumGemmKPrefetchStage
256, // index_t BlockSize
256, // index_t MPerBlock
128, // index_t NPerBlock
16, // index_t KPerBlock
4, // index_t AK1
4, // index_t BK1
32, // index_t MPerXDL
32, // index_t NPerXDL
4, // index_t MXdlPerWave
2, // index_t NXdlPerWave
S<4, 64, 1>, // typename ABlockTransferThreadClusterLengths_AK0_M_AK1
S<1, 0, 2>, // typename ABlockTransferThreadClusterArrangeOrder
S<1, 0, 2>, // typename ABlockTransferSrcAccessOrder
2, // index_t ABlockTransferSrcVectorDim
4, // index_t ABlockTransferSrcScalarPerVector
4, // index_t ABlockTransferDstScalarPerVector_AK1
1, // index_t ABlockLdsExtraM
S<4, 64, 1>, // typename BBlockTransferThreadClusterLengths_BK0_N_BK1
S<1, 0, 2>, // typename BBlockTransferThreadClusterArrangeOrder
S<1, 0, 2>, // typename BBlockTransferSrcAccessOrder
2, // index_t BBlockTransferSrcVectorDim
4, // index_t BBlockTransferSrcScalarPerVector
4, // index_t BBlockTransferDstScalarPerVector_BK1
1, // index_t BBlockLdsExtraN
1, // index_t CShuffleMXdlPerWavePerShuffle
1, // index_t CShuffleNXdlPerWavePerShuffle
S<1, 16, 1, 16>, // typename CShuffleBlockTransferClusterLengths_MBlock_MPerBlock_NBlock_NPerBlock
4>; // index_t CShuffleBlockTransferScalarPerVector_NPerBlock
// clang-format on
int main(int argc, char* argv[])
{
bool do_verification = true;
int init_method = 1;
bool time_kernel = false;
// CGEMM shape
ck::index_t M = 3840;
ck::index_t N = 4096;
ck::index_t K = 4096;
ck::index_t StrideA = 4096;
ck::index_t StrideB = 4096;
ck::index_t StrideC = 4096;
if(argc == 4)
{
do_verification = std::stoi(argv[1]);
init_method = std::stoi(argv[2]);
time_kernel = std::stoi(argv[3]);
}
else if(argc == 10)
{
do_verification = std::stoi(argv[1]);
init_method = std::stoi(argv[2]);
time_kernel = std::stoi(argv[3]);
M = std::stoi(argv[4]);
N = std::stoi(argv[5]);
K = std::stoi(argv[6]);
StrideA = std::stoi(argv[7]);
StrideB = std::stoi(argv[8]);
StrideC = std::stoi(argv[9]);
}
else
{
std::cout << "arg1: verification (0=no, 1=yes)\n"
<< "arg2: initialization (0=no init, 1=integer value, 2=decimal value)\n"
<< "arg3: run kernel # of times (>1)\n"
<< "arg4 to 9: M (256x), N(128x), K(32x), StrideA, StrideB, StrideC\n"
<< std::endl;
exit(0);
}
return run_cgemm_xdl<ADataType,
BDataType,
CDataType,
ALayout,
BLayout,
CLayout,
PassThrough,
PassThrough,
PassThrough,
DeviceCGemmInstance,
ReferenceCGemmInstance>(
M, N, K, StrideA, StrideB, StrideC, do_verification, init_method, time_kernel);
}
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2022, Advanced Micro Devices, Inc. All rights reserved.
#include <iostream>
#include "cgemm_xdl_common.hpp"
#include "ck/library/reference_tensor_operation/cpu/reference_cgemm.hpp"
#include "ck/tensor_operation/gpu/element/element_wise_operation.hpp"
#include "ck/tensor_operation/gpu/device/device_cgemm_4gemm_xdl_cshuffle.hpp"
#include "ck/tensor_operation/gpu/device/gemm_specialization.hpp"
using ADataType = INT8;
using BDataType = INT8;
using CDataType = INT8;
using AccDataType = INT32;
using ALayout = ck::tensor_layout::gemm::RowMajor;
using BLayout = ck::tensor_layout::gemm::ColumnMajor;
using CLayout = ck::tensor_layout::gemm::RowMajor;
using PassThrough = ck::tensor_operation::element_wise::PassThrough;
static constexpr auto GemmDefault = ck::tensor_operation::device::GemmSpecialization::Default;
using ReferenceCGemmInstance = ck::tensor_operation::host::
ReferenceCGemm<ADataType, BDataType, CDataType, PassThrough, PassThrough, PassThrough>;
// clang-format off
using DeviceCGemmInstance = ck::tensor_operation::device::DeviceCGemm_4Gemm_Xdl_CShuffle
<ALayout, // typename ALayout
BLayout, // typename BLayout
CLayout, // typename CLayout
ADataType, // typename ADataType
BDataType, // typename BDataType
CDataType, // typename CDataType
AccDataType, // typename GemmAccDataType
CDataType, // typename CShuffleDataType
PassThrough, // typename AElementwiseOperation
PassThrough, // typename BElementwiseOperation
PassThrough, // typename CElementwiseOperation
GemmDefault, // GemmSpecialization GemmSpec
1, // index_t NumGemmKPrefetchStage
256, // index_t BlockSize
256, // index_t MPerBlock
128, // index_t NPerBlock
64, // index_t KPerBlock
16, // index_t AK1
16, // index_t BK1
32, // index_t MPerXDL
32, // index_t NPerXDL
4, // index_t MXdlPerWave
2, // index_t NXdlPerWave
S<4, 64, 1>, // typename ABlockTransferThreadClusterLengths_AK0_M_AK1
S<1, 0, 2>, // typename ABlockTransferThreadClusterArrangeOrder
S<1, 0, 2>, // typename ABlockTransferSrcAccessOrder
2, // index_t ABlockTransferSrcVectorDim
16, // index_t ABlockTransferSrcScalarPerVector
16, // index_t ABlockTransferDstScalarPerVector_AK1
1, // index_t ABlockLdsExtraM
S<4, 64, 1>, // typename BBlockTransferThreadClusterLengths_BK0_N_BK1
S<1, 0, 2>, // typename BBlockTransferThreadClusterArrangeOrder
S<1, 0, 2>, // typename BBlockTransferSrcAccessOrder
2, // index_t BBlockTransferSrcVectorDim
8, // index_t BBlockTransferSrcScalarPerVector
8, // index_t BBlockTransferDstScalarPerVector_BK1
1, // index_t BBlockLdsExtraN
1, // index_t CShuffleMXdlPerWavePerShuffle
1, // index_t CShuffleNXdlPerWavePerShuffle
S<1, 64, 1, 4>, // typename CShuffleBlockTransferClusterLengths_MBlock_MPerBlock_NBlock_NPerBlock
16>; // index_t CShuffleBlockTransferScalarPerVector_NPerBlock
// clang-format on
int main(int argc, char* argv[])
{
bool do_verification = true;
int init_method = 1;
bool time_kernel = false;
// CGEMM shape
ck::index_t M = 3840;
ck::index_t N = 4096;
ck::index_t K = 4096;
ck::index_t StrideA = 4096;
ck::index_t StrideB = 4096;
ck::index_t StrideC = 4096;
if(argc == 4)
{
do_verification = std::stoi(argv[1]);
init_method = std::stoi(argv[2]);
time_kernel = std::stoi(argv[3]);
}
else if(argc == 10)
{
do_verification = std::stoi(argv[1]);
init_method = std::stoi(argv[2]);
time_kernel = std::stoi(argv[3]);
M = std::stoi(argv[4]);
N = std::stoi(argv[5]);
K = std::stoi(argv[6]);
StrideA = std::stoi(argv[7]);
StrideB = std::stoi(argv[8]);
StrideC = std::stoi(argv[9]);
}
else
{
std::cout << "arg1: verification (0=no, 1=yes)\n"
<< "arg2: initialization (0=no init, 1=integer value, 2=decimal value)\n"
<< "arg3: run kernel # of times (>1)\n"
<< "arg4 to 9: M (256x), N(128x), K(32x), StrideA, StrideB, StrideC\n"
<< std::endl;
exit(0);
}
return run_cgemm_xdl<ADataType,
BDataType,
CDataType,
ALayout,
BLayout,
CLayout,
PassThrough,
PassThrough,
PassThrough,
DeviceCGemmInstance,
ReferenceCGemmInstance>(
M, N, K, StrideA, StrideB, StrideC, do_verification, init_method, time_kernel);
}
......@@ -13,8 +13,8 @@
#include "ck/tensor_operation/gpu/device/reduction_operator_mapping.hpp"
#include "ck/library/utility/check_err.hpp"
#include "ck/library/host_tensor/device_memory.hpp"
#include "ck/library/host_tensor/host_common_util.hpp"
#include "ck/library/utility/device_memory.hpp"
#include "ck/library/utility/host_common_util.hpp"
#include "ck/library/reference_tensor_operation/cpu/reference_softmax.hpp"
using namespace ck;
......@@ -177,7 +177,7 @@ int main(int argc, char* argv[])
}
if(beta != 0.0f)
for(size_t i = 0; i < out_ref.mDesc.GetElementSpace(); i++)
for(size_t i = 0; i < out_ref.mDesc.GetElementSpaceSize(); i++)
out.mData[i] = out_ref.mData[i];
};
// std::cout << "beta = " << beta << std::endl;
......@@ -185,8 +185,8 @@ int main(int argc, char* argv[])
// LogRangeAsType<float>(std::cout << "tensor prior out: " , out.mData, ",") << std::endl;
// these buffers are usually provided by the user application
DeviceMem in_dev(sizeof(InDataType) * in.mDesc.GetElementSpace());
DeviceMem out_dev(sizeof(OutDataType) * out.mDesc.GetElementSpace());
DeviceMem in_dev(sizeof(InDataType) * in.mDesc.GetElementSpaceSize());
DeviceMem out_dev(sizeof(OutDataType) * out.mDesc.GetElementSpaceSize());
in_dev.ToDevice(in.mData.data());
......@@ -212,6 +212,8 @@ int main(int argc, char* argv[])
auto device_instance = DeviceInstance{};
std::cout << i_inLengths.size() << ", " << i_inStrides.size() << std::endl;
auto argument_ptr = device_instance.MakeArgumentPointer(i_inLengths,
i_inStrides,
reduceDims,
......
add_example_executable(example_batched_gemm_c_permute_xdl_fp16 batched_gemm_c_permute_xdl_fp16.cpp)
add_example_executable(example_batched_gemm_e_permute_xdl_fp16 batched_gemm_e_permute_xdl_fp16.cpp)
......@@ -6,13 +6,13 @@
#include "ck/ck.hpp"
#include "ck/tensor_operation/gpu/device/tensor_layout.hpp"
#include "ck/tensor_operation/gpu/device/gemm_specialization.hpp"
#include "ck/tensor_operation/gpu/device/device_batched_gemm_c_permute_xdl.hpp"
#include "ck/tensor_operation/gpu/device/device_batched_gemm_e_permute_xdl.hpp"
#include "ck/tensor_operation/gpu/element/element_wise_operation.hpp"
#include "ck/library/utility/check_err.hpp"
#include "ck/library/host_tensor/device_memory.hpp"
#include "ck/library/host_tensor/host_tensor.hpp"
#include "ck/library/host_tensor/host_tensor_generator.hpp"
#include "ck/library/utility/device_memory.hpp"
#include "ck/library/utility/host_tensor.hpp"
#include "ck/library/utility/host_tensor_generator.hpp"
#include "ck/library/reference_tensor_operation/cpu/reference_batched_gemm.hpp"
template <ck::index_t... Is>
......@@ -26,35 +26,33 @@ using Col = ck::tensor_layout::gemm::ColumnMajor;
using PassThrough = ck::tensor_operation::element_wise::PassThrough;
using ADataType = ck::half_t;
using BDataType = ck::half_t;
using CDataType = ck::half_t;
using AccDataType = float;
using ALayout = ck::tensor_layout::gemm::RowMajor;
using BLayout = ck::tensor_layout::gemm::ColumnMajor;
using CLayout = ck::tensor_layout::gemm::RowMajor;
using AElementOp = ck::tensor_operation::element_wise::PassThrough;
using BElementOp = ck::tensor_operation::element_wise::PassThrough;
using CElementOp = ck::tensor_operation::element_wise::PassThrough;
// static constexpr auto GemmDefault = ck::tensor_operation::device::GemmSpecialization::Default;
// static constexpr auto MNPadding = ck::tensor_operation::device::GemmSpecialization::MNPadding;
static constexpr auto MNKPadding = ck::tensor_operation::device::GemmSpecialization::MNKPadding;
// clang-format off
using DeviceGemmInstance = ck::tensor_operation::device::DeviceBatchedGemmCPermuteXdl
//######| ALayout| BLayout| AData| BData| CData| AccData| A| B| C| GEMM| Num| Block| MPer| NPer| KPer| AK1| BK1| MPer| NPer| MXdl| NXdl| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockLds| BBlockTransfer| BBlockTransfer| BBlockTransfer| BlockTransfer| BBlockTransfer| BBlockTransfer| BBlockLds| CShuffle| CShuffle| CBlockTransferClusterLengths| CBlockTransfer|
//######| | | Type| Type| Type| Type| Elementwise| Elementwise| Elementwise|Spacialization| Prefetch| Size| Block| Block| Block| | | XDL| XDL| Per| Per| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| AddExtraM| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| AddExtraN| MXdlPerWave| NXdlPerWave| _MBlock_MWaveMPerXdl| ScalarPerVector|
//######| | | | | | | Operation| Operation| Operation| | | | | | | | | | | Wave| Wave| Lengths_K0_M_K1| ArrangeOrder| | | PerVector| PerVector_K1| | Lengths_K0_N_K1| ArrangeOrder| | | PerVector| PerVector_K1| | PerShuffle| PerShuffle| _NBlock_NWaveNPerXdl| _NWaveNPerXdl|
//######| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
// < Row, Col, F16, F16, F16, F32, PassThrough, PassThrough, PassThrough, MNPadding, 1, 256, 256, 128, 32, 8, 8, 32, 32, 4, 2, S<4, 64, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, true, S<4, 64, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, true, 1, 1, S<1, 32, 1, 8>, 8>;
< Row, Col, F16, F16, F16, F32, PassThrough, PassThrough, PassThrough, MNKPadding, 1, 256, 128, 64, 32, 8, 8, 32, 32, 2, 1, S<4, 64, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, true, S<4, 32, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, true, 1, 1, S<1, 32, 1, 8>, 8>;
using ADataType = F16;
using BDataType = F16;
using AccDataType = F32;
using CShuffleDataType = F16;
using EDataType = F16;
using ALayout = Row;
using BLayout = Col;
using ELayout = Row;
using AElementOp = PassThrough;
using BElementOp = PassThrough;
using CDEElementOp = PassThrough;
static constexpr auto GemmDefault = ck::tensor_operation::device::GemmSpecialization::Default;
using DeviceGemmInstance = ck::tensor_operation::device::DeviceBatchedGemmEPermuteXdl
// clang-format off
//######| ALayout| BLayout| ELayout| AData| BData| AccData| CShuffle| EData| A| B| CDE| GEMM| NumGemmK| Block| MPer| NPer| KPer| AK1| BK1| MPer| NPer| MXdl| NXdl| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockLds| BBlockTransfer| BBlockTransfer| BBlockTransfer| BlockTransfer| BBlockTransfer| BBlockTransfer| BBlockLds| CShuffle| CShuffle| CBlockTransferClusterLengths| CBlockTransfer|
//######| | | | Type| Type| Type| DataType| Type| Elementwise| Elementwise| Elementwise| Spacialization| Prefetch| Size| Block| Block| Block| | | XDL| XDL| Per| Per| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| AddExtraM| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| AddExtraN| MXdlPerWave| NXdlPerWave| _MBlock_MWaveMPerXdl| ScalarPerVector|
//######| | | | | | | | | Operation| Operation| Operation| | Stage| | | | | | | | | Wave| Wave| Lengths_K0_M_K1| ArrangeOrder| | | PerVector| PerVector_K1| | Lengths_K0_N_K1| ArrangeOrder| | | PerVector| PerVector_K1| | PerShuffle| PerShuffle| _NBlock_NWaveNPerXdl| _NWaveNPerXdl|
//######| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
< ALayout, BLayout, ELayout, ADataType, BDataType, AccDataType, CShuffleDataType, EDataType, AElementOp, BElementOp, CDEElementOp, GemmDefault, 1, 256, 256, 128, 32, 8, 8, 32, 32, 4, 2, S<4, 64, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, 1, S<4, 64, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, 1, 1, 1, S<1, 32, 1, 8>, 8>;
// clang-format on
using ReferenceBatchedGemmInstance = ck::tensor_operation::host::
ReferenceBatchedGemm<ADataType, BDataType, CDataType, AElementOp, BElementOp, CElementOp>;
ReferenceBatchedGemm<ADataType, BDataType, EDataType, AElementOp, BElementOp, CDEElementOp>;
int main(int argc, char* argv[])
{
......@@ -62,15 +60,18 @@ int main(int argc, char* argv[])
int init_method = 1;
bool time_kernel = false;
const int M = 88;
const int N = 64;
const int K = 88;
const int M = 256;
const int N = 128;
const int K = 64;
const int stride_A = K;
const int stride_B = K;
const int G0 = 1024;
const int G1 = 10;
const int batch_stride_A = M * K;
const int batch_stride_B = K * N;
const int G0 = 16;
const int G1 = 8;
const int batch_count = G0 * G1;
......@@ -95,30 +96,33 @@ int main(int argc, char* argv[])
}
// GEMM shape
ck::tensor_operation::device::BatchedGemmCPermuteDesc batched_gemm_c_permute_desc{
ck::tensor_operation::device::BatchedGemmEPermuteDesc batched_gemm_e_permute_desc{
G0, G1, M, N, stride_G0, stride_G1, stride_M, stride_N};
auto f_host_tensor_descriptor = [](std::size_t batch_count_,
std::size_t row,
std::size_t col,
std::size_t stride,
std::size_t batch_stride,
auto layout) {
if(std::is_same<decltype(layout), ck::tensor_layout::gemm::RowMajor>::value)
{
return HostTensorDescriptor(std::vector<std::size_t>({batch_count_, row, col}),
std::vector<std::size_t>({row * stride, stride, 1}));
std::vector<std::size_t>({batch_stride, stride, 1}));
}
else
{
return HostTensorDescriptor(std::vector<std::size_t>({batch_count_, row, col}),
std::vector<std::size_t>({col * stride, 1, stride}));
std::vector<std::size_t>({batch_stride, 1, stride}));
}
};
Tensor<ADataType> a_g_m_k(f_host_tensor_descriptor(batch_count, M, K, stride_A, ALayout{}));
Tensor<BDataType> b_g_k_n(f_host_tensor_descriptor(batch_count, K, N, stride_B, BLayout{}));
Tensor<ADataType> a_g_m_k(
f_host_tensor_descriptor(batch_count, M, K, stride_A, batch_stride_A, ALayout{}));
Tensor<BDataType> b_g_k_n(
f_host_tensor_descriptor(batch_count, K, N, stride_B, batch_stride_B, BLayout{}));
auto f_host_c_tensor_descriptor = [](std::size_t G0_,
auto f_host_e_tensor_descriptor = [](std::size_t G0_,
std::size_t G1_,
std::size_t M_,
std::size_t N_,
......@@ -131,15 +135,15 @@ int main(int argc, char* argv[])
std::vector<std::size_t>({stride_G0_, stride_G1_, stride_M_, stride_N_}));
};
Tensor<CDataType> c_g0_g1_m_n_host_result(
f_host_c_tensor_descriptor(G0, G1, M, N, stride_G0, stride_G1, stride_M, stride_N));
Tensor<EDataType> e_g0_g1_m_n_host_result(
f_host_e_tensor_descriptor(G0, G1, M, N, stride_G0, stride_G1, stride_M, stride_N));
Tensor<CDataType> c_g0_g1_m_n_device_result(
f_host_c_tensor_descriptor(G0, G1, M, N, stride_G0, stride_G1, stride_M, stride_N));
Tensor<EDataType> e_g0_g1_m_n_device_result(
f_host_e_tensor_descriptor(G0, G1, M, N, stride_G0, stride_G1, stride_M, stride_N));
std::cout << "a_g_m_k: " << a_g_m_k.mDesc << std::endl;
std::cout << "b_g_k_n: " << b_g_k_n.mDesc << std::endl;
std::cout << "c_g0_g1_m_n: " << c_g0_g1_m_n_host_result.mDesc << std::endl;
std::cout << "e_g0_g1_m_n: " << e_g0_g1_m_n_host_result.mDesc << std::endl;
switch(init_method)
{
......@@ -154,34 +158,37 @@ int main(int argc, char* argv[])
break;
}
DeviceMem a_device_buf(sizeof(ADataType) * a_g_m_k.mDesc.GetElementSpace());
DeviceMem b_device_buf(sizeof(BDataType) * b_g_k_n.mDesc.GetElementSpace());
DeviceMem c_device_buf(sizeof(CDataType) * c_g0_g1_m_n_device_result.mDesc.GetElementSpace());
DeviceMem a_device_buf(sizeof(ADataType) * a_g_m_k.mDesc.GetElementSpaceSize());
DeviceMem b_device_buf(sizeof(BDataType) * b_g_k_n.mDesc.GetElementSpaceSize());
DeviceMem e_device_buf(sizeof(EDataType) *
e_g0_g1_m_n_device_result.mDesc.GetElementSpaceSize());
a_device_buf.ToDevice(a_g_m_k.mData.data());
b_device_buf.ToDevice(b_g_k_n.mData.data());
auto a_element_op = AElementOp{};
auto b_element_op = BElementOp{};
auto c_element_op = CElementOp{};
auto a_element_op = AElementOp{};
auto b_element_op = BElementOp{};
auto cde_element_op = CDEElementOp{};
auto gemm = DeviceGemmInstance{};
auto invoker = gemm.MakeInvoker();
// do GEMM
// do GEM
auto argument = gemm.MakeArgument(static_cast<ADataType*>(a_device_buf.GetDeviceBuffer()),
static_cast<BDataType*>(b_device_buf.GetDeviceBuffer()),
static_cast<CDataType*>(c_device_buf.GetDeviceBuffer()),
static_cast<EDataType*>(e_device_buf.GetDeviceBuffer()),
M,
N,
K,
stride_A,
stride_B,
batched_gemm_c_permute_desc,
batch_stride_A,
batch_stride_B,
batched_gemm_e_permute_desc,
batch_count,
a_element_op,
b_element_op,
c_element_op,
batch_count);
cde_element_op);
if(!gemm.IsSupportedArgument(argument))
{
......@@ -195,7 +202,7 @@ int main(int argc, char* argv[])
std::size_t flop = std::size_t(2) * batch_count * M * N * K;
std::size_t num_btype = sizeof(ADataType) * batch_count * M * K +
sizeof(BDataType) * batch_count * K * N +
sizeof(CDataType) * batch_count * M * N;
sizeof(EDataType) * batch_count * M * N;
float tflops = static_cast<float>(flop) / 1.E9 / ave_time;
......@@ -208,16 +215,16 @@ int main(int argc, char* argv[])
if(do_verification)
{
c_device_buf.FromDevice(c_g0_g1_m_n_device_result.mData.data());
e_device_buf.FromDevice(e_g0_g1_m_n_device_result.mData.data());
auto ref_batched_gemm = ReferenceBatchedGemmInstance{};
auto ref_invoker = ref_batched_gemm.MakeInvoker();
Tensor<CDataType> c_g_m_n_host_result = HostTensorDescriptor(
Tensor<EDataType> c_g_m_n_host_result = HostTensorDescriptor(
std::vector<std::size_t>({batch_count, M, N}), std::vector<std::size_t>({M * N, N, 1}));
auto ref_argument = ref_batched_gemm.MakeArgument(
a_g_m_k, b_g_k_n, c_g_m_n_host_result, a_element_op, b_element_op, c_element_op);
a_g_m_k, b_g_k_n, c_g_m_n_host_result, a_element_op, b_element_op, cde_element_op);
ref_invoker.Run(ref_argument);
......@@ -229,15 +236,16 @@ int main(int argc, char* argv[])
{
for(int n = 0; n < N; n++)
{
int g = g0 * G1 + g1;
c_g0_g1_m_n_host_result(g0, g1, m, n) = c_g_m_n_host_result(g, m, n);
int g = g0 * G1 + g1;
e_g0_g1_m_n_host_result(g0, g1, m, n) = c_g_m_n_host_result(g, m, n);
}
}
}
}
pass = ck::utils::check_err(c_g0_g1_m_n_host_result.mData,
c_g0_g1_m_n_device_result.mData,
pass = ck::utils::check_err(e_g0_g1_m_n_host_result.mData,
e_g0_g1_m_n_device_result.mData,
"Error: Incorrect results c");
}
......
add_example_executable(example_gemm_bias_c_permute_xdl_fp16 gemm_bias_c_permute_xdl_fp16.cpp)
add_example_executable(example_gemm_bias_e_permute_xdl_fp16 gemm_bias_e_permute_xdl_fp16.cpp)
......@@ -9,12 +9,12 @@
#include "ck/ck.hpp"
#include "ck/tensor_operation/gpu/device/tensor_layout.hpp"
#include "ck/tensor_operation/gpu/device/gemm_specialization.hpp"
#include "ck/tensor_operation/gpu/device/device_gemm_bias_c_permute_xdl.hpp"
#include "ck/tensor_operation/gpu/device/device_gemm_bias_e_permute_xdl.hpp"
#include "ck/tensor_operation/gpu/element/binary_element_wise_operation.hpp"
#include "ck/library/host_tensor/device_memory.hpp"
#include "ck/library/host_tensor/host_tensor.hpp"
#include "ck/library/host_tensor/host_tensor_generator.hpp"
#include "ck/library/utility/device_memory.hpp"
#include "ck/library/utility/host_tensor.hpp"
#include "ck/library/utility/host_tensor_generator.hpp"
#include "ck/library/reference_tensor_operation/cpu/reference_gemm.hpp"
#include "ck/library/utility/check_err.hpp"
......@@ -49,7 +49,7 @@ using CDEElementOp = Add;
static constexpr auto GemmDefault = ck::tensor_operation::device::GemmSpecialization::Default;
// clang-format off
using DeviceOpInstance = ck::tensor_operation::device::DeviceGemmBiasCPermute_Xdl
using DeviceOpInstance = ck::tensor_operation::device::DeviceGemmBiasEPermute_Xdl
//######| ALayout| BLayout| ELayout| AData| BData| AccData| CShuffle| DsData| EData| A| B| CDE| GEMM| NumGemmK| Block| MPer| NPer| KPer| AK1| BK1| MPer| NPer| MXdl| NXdl| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockLds| BBlockTransfer| BBlockTransfer| BBlockTransfer| BlockTransfer| BBlockTransfer| BBlockTransfer| BBlockLds| CShuffle| CShuffle| CBlockTransferClusterLengths| CBlockTransfer|
//######| | | | Type| Type| Type| DataType| Type| Type| Elementwise| Elementwise| Elementwise| Spacialization| Prefetch| Size| Block| Block| Block| | | XDL| XDL| Per| Per| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| AddExtraM| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| AddExtraN| MXdlPerWave| NXdlPerWave| _MBlock_MWaveMPerXdl| ScalarPerVector|
//######| | | | | | | | | | Operation| Operation| Operation| | Stage| | | | | | | | | Wave| Wave| Lengths_K0_M_K1| ArrangeOrder| | | PerVector| PerVector_K1| | Lengths_K0_N_K1| ArrangeOrder| | | PerVector| PerVector_K1| | PerShuffle| PerShuffle| _NBlock_NWaveNPerXdl| _NWaveNPerXdl|
......@@ -186,12 +186,12 @@ int main(int argc, char* argv[])
d_m0_m1_m2_n0_n1.GenerateTensorValue(GeneratorTensor_3<DDataType>{0.0, 1.0});
}
DeviceMem a_m_k_device_buf(sizeof(ADataType) * a_m_k.mDesc.GetElementSpace());
DeviceMem b_k_n_device_buf(sizeof(BDataType) * b_k_n.mDesc.GetElementSpace());
DeviceMem a_m_k_device_buf(sizeof(ADataType) * a_m_k.mDesc.GetElementSpaceSize());
DeviceMem b_k_n_device_buf(sizeof(BDataType) * b_k_n.mDesc.GetElementSpaceSize());
DeviceMem d_m0_m1_m2_n0_n1_device_buf(sizeof(DDataType) *
d_m0_m1_m2_n0_n1.mDesc.GetElementSpace());
DeviceMem e_m0_m1_m2_n0_n1_device_buf(sizeof(EDataType) *
e_m0_m1_m2_n0_n1_device_result.mDesc.GetElementSpace());
d_m0_m1_m2_n0_n1.mDesc.GetElementSpaceSize());
DeviceMem e_m0_m1_m2_n0_n1_device_buf(
sizeof(EDataType) * e_m0_m1_m2_n0_n1_device_result.mDesc.GetElementSpaceSize());
a_m_k_device_buf.ToDevice(a_m_k.mData.data());
b_k_n_device_buf.ToDevice(b_k_n.mData.data());
......
......@@ -12,9 +12,9 @@
#include "ck/tensor_operation/gpu/element/element_wise_operation.hpp"
#include "ck/library/utility/check_err.hpp"
#include "ck/library/host_tensor/device_memory.hpp"
#include "ck/library/host_tensor/host_tensor.hpp"
#include "ck/library/host_tensor/host_tensor_generator.hpp"
#include "ck/library/utility/device_memory.hpp"
#include "ck/library/utility/host_tensor.hpp"
#include "ck/library/utility/host_tensor_generator.hpp"
template <ck::index_t... Is>
using S = ck::Sequence<Is...>;
......@@ -324,10 +324,10 @@ int main(int argc, char* argv[])
break;
}
DeviceMem a_device_buf(sizeof(ADataType) * a_ms_ks.mDesc.GetElementSpace());
DeviceMem b_device_buf(sizeof(BDataType) * b_ns_ks.mDesc.GetElementSpace());
DeviceMem d_device_buf(sizeof(DDataType) * d_ms_ns.mDesc.GetElementSpace());
DeviceMem e_device_buf(sizeof(EDataType) * e_ms_ns_device_result.mDesc.GetElementSpace());
DeviceMem a_device_buf(sizeof(ADataType) * a_ms_ks.mDesc.GetElementSpaceSize());
DeviceMem b_device_buf(sizeof(BDataType) * b_ns_ks.mDesc.GetElementSpaceSize());
DeviceMem d_device_buf(sizeof(DDataType) * d_ms_ns.mDesc.GetElementSpaceSize());
DeviceMem e_device_buf(sizeof(EDataType) * e_ms_ns_device_result.mDesc.GetElementSpaceSize());
a_device_buf.ToDevice(a_ms_ks.mData.data());
b_device_buf.ToDevice(b_ns_ks.mData.data());
......
......@@ -12,9 +12,9 @@
#include "ck/tensor_operation/gpu/element/element_wise_operation.hpp"
#include "ck/library/utility/check_err.hpp"
#include "ck/library/host_tensor/device_memory.hpp"
#include "ck/library/host_tensor/host_tensor.hpp"
#include "ck/library/host_tensor/host_tensor_generator.hpp"
#include "ck/library/utility/device_memory.hpp"
#include "ck/library/utility/host_tensor.hpp"
#include "ck/library/utility/host_tensor_generator.hpp"
template <ck::index_t... Is>
using S = ck::Sequence<Is...>;
......@@ -260,16 +260,16 @@ int main(int argc, char* argv[])
e_ms_ns_lengths = {M0, M1, N0, N1};
e_ms_ns_strides = {
std::stoi(argv[22]), std::stoi(argv[23]), std::stoi(argv[24]), std::stoi(argv[25])};
std::stoi(argv[18]), std::stoi(argv[19]), std::stoi(argv[20]), std::stoi(argv[21])};
scale = std::stof(argv[26]);
scale = std::stof(argv[22]);
}
else
{
printf("arg1: verification (0=no, 1=yes)\n");
printf("arg2: initialization (0=no init, 1=integer value, 2=decimal value)\n");
printf("arg3: time kernel (0=no, 1=yes)\n");
printf("arg4 to 7: M0, M1, N0, N1, K0, K1\n");
printf("arg4 to 9: M0, M1, N0, N1, K0, K1\n");
printf("arg10 to 13: Stride_A_M0, Stride_A_M1, Stride_A_K0, Stride_A_K1\n");
printf("arg14 to 17: Stride_B_N0, Stride_B_N1, Stride_B_K0, Stride_B_K1\n");
printf("arg18 to 21: Stride_E_M0, Stride_E_M1, Stride_E_N0, Stride_E_N1\n");
......@@ -307,9 +307,9 @@ int main(int argc, char* argv[])
break;
}
DeviceMem a_device_buf(sizeof(ADataType) * a_ms_ks.mDesc.GetElementSpace());
DeviceMem b_device_buf(sizeof(BDataType) * b_ns_ks.mDesc.GetElementSpace());
DeviceMem e_device_buf(sizeof(EDataType) * e_ms_ns_device_result.mDesc.GetElementSpace());
DeviceMem a_device_buf(sizeof(ADataType) * a_ms_ks.mDesc.GetElementSpaceSize());
DeviceMem b_device_buf(sizeof(BDataType) * b_ns_ks.mDesc.GetElementSpaceSize());
DeviceMem e_device_buf(sizeof(EDataType) * e_ms_ns_device_result.mDesc.GetElementSpaceSize());
a_device_buf.ToDevice(a_ms_ks.mData.data());
b_device_buf.ToDevice(b_ns_ks.mData.data());
......
add_example_executable(example_layernorm_blockwise layernorm_blockwise.cpp)
\ No newline at end of file
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2022, Advanced Micro Devices, Inc. All rights reserved.
#include <iostream>
#include <numeric>
#include <initializer_list>
#include <cstdlib>
#include <getopt.h>
#include "ck/ck.hpp"
#include "ck/utility/reduction_enums.hpp"
#include "ck/tensor_operation/gpu/device/device_layernorm.hpp"
#include "ck/tensor_operation/gpu/device/reduction_operator_mapping.hpp"
#include "ck/library/utility/check_err.hpp"
#include "ck/library/utility/device_memory.hpp"
#include "ck/library/utility/host_common_util.hpp"
#include "ck/library/utility/host_tensor.hpp"
#include "ck/library/utility/host_tensor_generator.hpp"
#include "ck/library/reference_tensor_operation/cpu/reference_layernorm.hpp"
using XDataType = ck::half_t;
using GammaDataType = ck::half_t;
using BetaDataType = ck::half_t;
using YDataType = ck::half_t;
using AccDataType = float;
using PassThrough = ck::tensor_operation::element_wise::PassThrough;
constexpr int Rank = 2;
constexpr int NumReduceDim = 1;
using DeviceInstance = ck::tensor_operation::device::DeviceLayernorm<XDataType,
GammaDataType,
BetaDataType,
AccDataType,
YDataType,
PassThrough,
Rank,
NumReduceDim,
256, // BlockSize
8, // ClusterM
32, // ClusterK
1, // SliceM
8, // SliceK
1, // SrcVecDim (0=M, 1=K)
8, // SrcScalarPerVector
8, // GammaScalarPerVector
8, // BetaScalarPerVector
1>; // OutScalarPerVector
int main()
{
bool time_kernel = false;
ck::index_t M = 1024;
ck::index_t N = 1024;
ck::index_t Stride = N;
auto f_host_tensor_descriptor1d = [](std::size_t len, std::size_t stride) {
return HostTensorDescriptor(std::vector<std::size_t>({len}),
std::vector<std::size_t>({stride}));
};
auto f_host_tensor_descriptor2d = [](std::size_t row, std::size_t col, std::size_t stride) {
return HostTensorDescriptor(std::vector<std::size_t>({row, col}),
std::vector<std::size_t>({stride, 1}));
};
Tensor<XDataType> x(f_host_tensor_descriptor2d(M, N, Stride));
Tensor<GammaDataType> gamma(f_host_tensor_descriptor1d(N, 1));
Tensor<BetaDataType> beta(f_host_tensor_descriptor1d(N, 1));
Tensor<YDataType> y(f_host_tensor_descriptor2d(M, N, Stride));
x.GenerateTensorValue(GeneratorTensor_3<XDataType>{0.0, 1.0});
gamma.GenerateTensorValue(GeneratorTensor_3<GammaDataType>{0.0, 1.0});
beta.GenerateTensorValue(GeneratorTensor_3<BetaDataType>{0.0, 1.0});
DeviceMem x_dev(sizeof(XDataType) * x.mDesc.GetElementSpaceSize());
DeviceMem gamma_dev(sizeof(GammaDataType) * gamma.mDesc.GetElementSpaceSize());
DeviceMem beta_dev(sizeof(BetaDataType) * beta.mDesc.GetElementSpaceSize());
DeviceMem y_dev(sizeof(YDataType) * y.mDesc.GetElementSpaceSize());
x_dev.ToDevice(x.mData.data());
gamma_dev.ToDevice(gamma.mData.data());
beta_dev.ToDevice(beta.mData.data());
auto device_instance = DeviceInstance{};
auto argument_ptr = device_instance.MakeArgumentPointer(
{M, N},
std::vector<ck::index_t>{x.mDesc.GetStrides().begin(), x.mDesc.GetStrides().end()},
std::vector<ck::index_t>{gamma.mDesc.GetStrides().begin(), gamma.mDesc.GetStrides().end()},
std::vector<ck::index_t>{beta.mDesc.GetStrides().begin(), beta.mDesc.GetStrides().end()},
{1},
1e-4,
x_dev.GetDeviceBuffer(),
gamma_dev.GetDeviceBuffer(),
beta_dev.GetDeviceBuffer(),
y_dev.GetDeviceBuffer(),
PassThrough{});
if(!device_instance.IsSupportedArgument(argument_ptr.get()))
{
std::cout << "The runtime parameters are not supported" << std::endl;
return 1;
};
auto invoker_ptr = device_instance.MakeInvokerPointer();
invoker_ptr->Run(argument_ptr.get(), StreamConfig{nullptr, time_kernel});
bool pass = true;
{
Tensor<YDataType> host_y(f_host_tensor_descriptor2d(M, N, Stride));
using ReferenceInstance = ck::tensor_operation::host::ReferenceLayernorm<XDataType,
GammaDataType,
BetaDataType,
YDataType,
AccDataType,
PassThrough,
Rank,
NumReduceDim>;
ReferenceInstance ref;
auto ref_argument =
ref.MakeArgument(x, gamma, beta, host_y, PassThrough{}, {M, N}, {1}, 1e-4);
auto ref_invoker = ref.MakeInvoker();
ref_invoker.Run(ref_argument);
y_dev.FromDevice(y.mData.data());
pass &=
ck::utils::check_err(y.mData, host_y.mData, "Error: Incorrect results d1", 1e-3, 1e-3);
}
return (pass ? 0 : 1);
}
add_example_executable(example_grouped_gemm_bias_xdl_fp16 grouped_gemm_bias_xdl_fp16.cpp)
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment