Skip to content
GitLab
Menu
Projects
Groups
Snippets
Loading...
Help
Help
Support
Community forum
Keyboard shortcuts
?
Submit feedback
Contribute to GitLab
Sign in / Register
Toggle navigation
Menu
Open sidebar
gaoqiong
composable_kernel
Commits
ae8b307a
Unverified
Commit
ae8b307a
authored
May 29, 2023
by
Po Yen Chen
Committed by
GitHub
May 29, 2023
Browse files
Merge branch 'develop' into feature/support-readfirstlane-for-object-types
parents
ad8bc60b
ac9e01e2
Changes
129
Hide whitespace changes
Inline
Side-by-side
Showing
20 changed files
with
361 additions
and
1374 deletions
+361
-1374
include/ck/tensor_operation/gpu/thread/threadwise_tensor_slice_transfer_v3r3.hpp
...tion/gpu/thread/threadwise_tensor_slice_transfer_v3r3.hpp
+0
-886
include/ck/utility/amd_llvm_intrinsic.hpp
include/ck/utility/amd_llvm_intrinsic.hpp
+0
-14
include/ck/utility/print.hpp
include/ck/utility/print.hpp
+0
-25
library/include/ck/library/reference_tensor_operation/cpu/reference_gemm_bias_2d.hpp
...reference_tensor_operation/cpu/reference_gemm_bias_2d.hpp
+0
-136
library/include/ck/library/reference_tensor_operation/cpu/reference_gemm_bias_activation.hpp
...e_tensor_operation/cpu/reference_gemm_bias_activation.hpp
+0
-140
library/include/ck/library/reference_tensor_operation/cpu/reference_gemm_bias_activation_add.hpp
...nsor_operation/cpu/reference_gemm_bias_activation_add.hpp
+0
-148
library/include/ck/library/reference_tensor_operation/cpu/reference_pool_fwd.hpp
...ary/reference_tensor_operation/cpu/reference_pool_fwd.hpp
+345
-0
library/include/ck/library/tensor_operation_instance/gpu/batched_gemm.hpp
...ck/library/tensor_operation_instance/gpu/batched_gemm.hpp
+2
-2
library/include/ck/library/tensor_operation_instance/gpu/batched_gemm_add_relu_gemm_add.hpp
...operation_instance/gpu/batched_gemm_add_relu_gemm_add.hpp
+2
-2
library/include/ck/library/tensor_operation_instance/gpu/batched_gemm_bias_softmax_gemm_permute.hpp
...n_instance/gpu/batched_gemm_bias_softmax_gemm_permute.hpp
+2
-2
library/include/ck/library/tensor_operation_instance/gpu/batched_gemm_gemm.hpp
...brary/tensor_operation_instance/gpu/batched_gemm_gemm.hpp
+2
-2
library/include/ck/library/tensor_operation_instance/gpu/batched_gemm_softmax_gemm_permute.hpp
...ration_instance/gpu/batched_gemm_softmax_gemm_permute.hpp
+2
-2
library/include/ck/library/tensor_operation_instance/gpu/contraction_bilinear.hpp
...ry/tensor_operation_instance/gpu/contraction_bilinear.hpp
+0
-2
library/include/ck/library/tensor_operation_instance/gpu/contraction_scale.hpp
...brary/tensor_operation_instance/gpu/contraction_scale.hpp
+0
-2
library/include/ck/library/tensor_operation_instance/gpu/convolution_backward_data.hpp
...nsor_operation_instance/gpu/convolution_backward_data.hpp
+2
-2
library/include/ck/library/tensor_operation_instance/gpu/convolution_forward.hpp
...ary/tensor_operation_instance/gpu/convolution_forward.hpp
+2
-2
library/include/ck/library/tensor_operation_instance/gpu/device_elementwise_instance.hpp
...or_operation_instance/gpu/device_elementwise_instance.hpp
+1
-2
library/include/ck/library/tensor_operation_instance/gpu/device_gemm_mean_squaremean_instance.hpp
...ion_instance/gpu/device_gemm_mean_squaremean_instance.hpp
+1
-1
library/include/ck/library/tensor_operation_instance/gpu/gemm.hpp
...include/ck/library/tensor_operation_instance/gpu/gemm.hpp
+0
-2
library/include/ck/library/tensor_operation_instance/gpu/gemm_add_add_fastgelu.hpp
...y/tensor_operation_instance/gpu/gemm_add_add_fastgelu.hpp
+0
-2
No files found.
include/ck/tensor_operation/gpu/thread/threadwise_tensor_slice_transfer_v3r3.hpp
deleted
100644 → 0
View file @
ad8bc60b
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2022, Advanced Micro Devices, Inc. All rights reserved.
#ifndef CK_THREADWISE_TENSOR_SLICE_TRANSFER_V3R3_HPP
#define CK_THREADWISE_TENSOR_SLICE_TRANSFER_V3R3_HPP
#include "common_header.hpp"
#include "tensor_descriptor.hpp"
#include "tensor_descriptor_helper.hpp"
#include "static_tensor.hpp"
namespace
ck
{
namespace
detail
{
// TODO: How to fix this? It uses an struct instead of lambda because lambda
// doesn't have constructor
template
<
index_t
SrcVectorDim
,
index_t
SrcScalarPerVector
,
index_t
DstVectorDim
,
index_t
DstScalarPerVector
>
struct
lambda_scalar_per_access_for_src_and_dst
{
__host__
__device__
constexpr
auto
operator
()(
index_t
i
)
const
{
if
(
i
==
SrcVectorDim
&&
i
==
DstVectorDim
)
{
return
math
::
lcm
(
SrcScalarPerVector
,
DstScalarPerVector
);
}
else
if
(
i
==
SrcVectorDim
)
{
return
SrcScalarPerVector
;
}
else
if
(
i
==
DstVectorDim
)
{
return
DstScalarPerVector
;
}
else
{
return
1
;
}
}
};
}
// namespace detail
// Assume:
// 1. src_desc and dst_desc are not known at compile-time
// 2. SrcBuffer and DstBuffer are DynamicBuffer
// 3. src_slice_origin and dst_slice_origin are not known at compile-time,
// 4. Use thread buffer
template
<
typename
SliceLengths
,
typename
SrcElementwiseOperation
,
typename
DstElementwiseOperation
,
InMemoryDataOperationEnum
DstInMemOp
,
typename
SrcData
,
typename
DstData
,
typename
SrcDesc
,
typename
DstDesc
,
typename
Dst0Desc
,
typename
Dst1Desc
,
typename
SrcDimAccessOrder
,
typename
DstDimAccessOrder
,
index_t
SrcVectorDim
,
index_t
DstVectorDim
,
index_t
SrcScalarPerVector
,
index_t
DstScalarPerVector
,
index_t
SrcScalarStrideInVector
,
index_t
DstScalarStrideInVector
,
bool
SrcResetCoordinateAfterRun
,
// control whether to move back src coordinate after each
// RunRead(), will be fused with MoveSrcSliceWindow to
// save addr computation
bool
DstResetCoordinateAfterRun
>
// control whether to move back dst coordinate after each
// RunWrite(), will be fused with MoveDstSliceWindow to
// save addr computation
struct
ThreadwiseTensorSliceTransfer_v3r3
{
static
constexpr
index_t
nDim
=
SliceLengths
::
Size
();
using
Index
=
MultiIndex
<
nDim
>
;
using
SrcCoord
=
decltype
(
make_tensor_coordinate
(
SrcDesc
{},
Index
{}));
using
DstCoord
=
decltype
(
make_tensor_coordinate
(
DstDesc
{},
Index
{}));
using
Dst0Coord
=
decltype
(
make_tensor_coordinate
(
Dst0Desc
{},
Index
{}));
using
Dst1Coord
=
decltype
(
make_tensor_coordinate
(
Dst1Desc
{},
Index
{}));
using
SrcCoordStep
=
decltype
(
make_tensor_coordinate_step
(
SrcDesc
{},
Index
{}));
using
DstCoordStep
=
decltype
(
make_tensor_coordinate_step
(
DstDesc
{},
Index
{}));
using
Dst0CoordStep
=
decltype
(
make_tensor_coordinate_step
(
Dst0Desc
{},
Index
{}));
using
Dst1CoordStep
=
decltype
(
make_tensor_coordinate_step
(
Dst1Desc
{},
Index
{}));
__device__
constexpr
ThreadwiseTensorSliceTransfer_v3r3
(
const
SrcDesc
&
src_desc
,
const
Index
&
src_slice_origin
,
const
SrcElementwiseOperation
&
src_element_op
,
const
DstDesc
&
dst_desc
,
const
Dst0Desc
&
dst0_desc
,
const
Dst1Desc
&
dst1_desc
,
const
Index
&
dst_slice_origin
,
const
DstElementwiseOperation
&
dst_element_op
)
:
src_coord_
(
make_tensor_coordinate
(
src_desc
,
src_slice_origin
)),
dst_coord_
(
make_tensor_coordinate
(
dst_desc
,
dst_slice_origin
)),
dst0_coord_
(
make_tensor_coordinate
(
dst0_desc
,
dst_slice_origin
)),
dst1_coord_
(
make_tensor_coordinate
(
dst1_desc
,
dst_slice_origin
)),
src_element_op_
(
src_element_op
),
dst_element_op_
(
dst_element_op
)
{
}
__device__
void
SetSrcSliceOrigin
(
const
SrcDesc
&
src_desc
,
const
Index
&
src_slice_origin_idx
)
{
src_coord_
=
make_tensor_coordinate
(
src_desc
,
src_slice_origin_idx
);
}
__device__
void
SetDstSliceOrigin
(
const
DstDesc
&
dst_desc
,
const
Dst0Desc
&
dst0_desc
,
const
Dst1Desc
&
dst1_desc
,
const
Index
&
dst_slice_origin_idx
)
{
dst_coord_
=
make_tensor_coordinate
(
dst_desc
,
dst_slice_origin_idx
);
dst0_coord_
=
make_tensor_coordinate
(
dst0_desc
,
dst_slice_origin_idx
);
dst1_coord_
=
make_tensor_coordinate
(
dst1_desc
,
dst_slice_origin_idx
);
}
template
<
typename
SrcBuffer
>
__device__
void
RunRead
(
const
SrcDesc
&
src_desc
,
const
SrcBuffer
&
src_buf
)
{
static_assert
(
SrcBuffer
::
GetAddressSpace
()
==
AddressSpaceEnum
::
Global
or
SrcBuffer
::
GetAddressSpace
()
==
AddressSpaceEnum
::
Lds
,
"wrong!"
);
static_assert
(
is_same
<
remove_cvref_t
<
typename
SrcBuffer
::
type
>
,
remove_cvref_t
<
SrcData
>>::
value
,
"wrong! SrcBuffer and SrcData data type are inconsistent"
);
constexpr
auto
I0
=
Number
<
0
>
{};
constexpr
auto
I1
=
Number
<
1
>
{};
// scalar per access on each dim
// TODO: don't use lambda_scalar_per_access
constexpr
auto
src_scalar_per_access
=
generate_sequence
(
detail
::
lambda_scalar_per_access
<
SrcVectorDim
,
SrcScalarPerVector
>
{},
Number
<
nDim
>
{});
constexpr
auto
src_access_lengths
=
SliceLengths
{}
/
src_scalar_per_access
;
constexpr
auto
src_dim_access_order
=
SrcDimAccessOrder
{};
constexpr
auto
ordered_src_access_lengths
=
container_reorder_given_new2old
(
src_access_lengths
,
src_dim_access_order
);
// make forward steps
const
auto
src_forward_steps
=
generate_tuple
(
[
&
](
auto
i
)
{
Index
forward_step_idx
;
static_for
<
0
,
nDim
,
1
>
{}([
&
](
auto
j
)
{
forward_step_idx
(
j
)
=
(
i
.
value
==
j
.
value
)
?
src_scalar_per_access
[
i
]
:
0
;
});
return
make_tensor_coordinate_step
(
src_desc
,
forward_step_idx
);
},
Number
<
nDim
>
{});
// make backward steps
const
auto
src_backward_steps
=
generate_tuple
(
[
&
](
auto
i
)
{
Index
backward_step_idx
;
static_for
<
0
,
nDim
,
1
>
{}([
&
](
auto
j
)
{
backward_step_idx
(
j
)
=
(
i
.
value
==
j
.
value
)
?
-
src_scalar_per_access
[
i
]
:
0
;
});
return
make_tensor_coordinate_step
(
src_desc
,
backward_step_idx
);
},
Number
<
nDim
>
{});
// loop over tensor and copy
static_ford
<
decltype
(
ordered_src_access_lengths
)
>
{}([
&
](
auto
ordered_src_access_idx
)
{
// judge move forward or move backward
constexpr
auto
forward_sweep
=
[
&
]()
{
StaticallyIndexedArray
<
bool
,
nDim
>
forward_sweep_
;
forward_sweep_
(
I0
)
=
true
;
static_for
<
1
,
nDim
,
1
>
{}([
&
](
auto
i
)
{
index_t
tmp
=
ordered_src_access_idx
[
I0
];
static_for
<
1
,
i
,
1
>
{}([
&
](
auto
j
)
{
tmp
=
tmp
*
ordered_src_access_lengths
[
j
]
+
ordered_src_access_idx
[
j
];
});
forward_sweep_
(
i
)
=
tmp
%
2
==
0
;
});
return
forward_sweep_
;
}();
// calculate src data index
constexpr
auto
src_data_idx
=
[
&
]()
{
Index
ordered_idx
;
static_for
<
0
,
nDim
,
1
>
{}([
&
](
auto
i
)
{
ordered_idx
(
i
)
=
forward_sweep
[
i
]
?
ordered_src_access_idx
[
i
]
:
ordered_src_access_lengths
[
i
]
-
1
-
ordered_src_access_idx
[
i
];
});
return
container_reorder_given_old2new
(
ordered_idx
,
src_dim_access_order
)
*
src_scalar_per_access
;
}();
constexpr
auto
src_data_idx_seq
=
generate_sequence_v2
(
[
&
](
auto
i
)
{
return
Number
<
src_data_idx
[
i
]
>
{};
},
Number
<
src_data_idx
.
Size
()
>
{});
const
bool
is_src_valid
=
coordinate_has_valid_offset_assuming_visible_index_is_valid
(
src_desc
,
src_coord_
);
using
src_vector_type
=
vector_type_maker_t
<
SrcData
,
SrcScalarPerVector
>
;
using
src_vector_t
=
typename
src_vector_type
::
type
;
// copy data from src_buf into src_vector_container
auto
src_vector_container
=
src_vector_type
{
src_buf
.
template
Get
<
src_vector_t
>(
src_coord_
.
GetOffset
(),
is_src_valid
)};
// apply SrcElementwiseOperation on src_vector_container
static_for
<
0
,
SrcScalarPerVector
,
1
>
{}([
&
](
auto
i
)
{
src_vector_container
.
template
AsType
<
SrcData
>()(
i
)
=
src_element_op_
(
src_vector_container
.
template
AsType
<
SrcData
>()[
i
]);
});
// copy data from src_vector_container into src_thread_scratch_
src_thread_scratch_
.
template
SetAsType
<
src_vector_t
>(
src_data_idx_seq
,
src_vector_container
.
template
AsType
<
src_vector_t
>()[
I0
]);
constexpr
auto
move_on_dim
=
[
&
]()
constexpr
{
StaticallyIndexedArray
<
bool
,
nDim
>
move_on_dim_
;
static_for
<
0
,
nDim
,
1
>
{}([
&
](
auto
i
)
{
move_on_dim_
(
i
)
=
ordered_src_access_idx
[
i
]
<
ordered_src_access_lengths
[
i
]
-
1
;
static_for
<
i
+
1
,
nDim
,
1
>
{}([
&
](
auto
j
)
{
move_on_dim_
(
i
)
&=
ordered_src_access_idx
[
j
]
==
ordered_src_access_lengths
[
j
]
-
1
;
});
});
return
move_on_dim_
;
}
();
// move src coord
static_for
<
0
,
nDim
,
1
>
{}([
&
](
auto
i
)
{
if
constexpr
(
move_on_dim
[
i
])
{
if
constexpr
(
forward_sweep
[
i
])
{
move_tensor_coordinate
(
src_desc
,
src_coord_
,
src_forward_steps
[
src_dim_access_order
[
i
]]);
}
else
{
move_tensor_coordinate
(
src_desc
,
src_coord_
,
src_backward_steps
[
src_dim_access_order
[
i
]]);
}
}
});
});
// move src coordinate back to slice origin (or not)
if
constexpr
(
SrcResetCoordinateAfterRun
)
{
const
auto
src_reset_step
=
make_tensor_coordinate_step
(
src_desc
,
GetSrcCoordinateResetStep
());
move_tensor_coordinate
(
src_desc
,
src_coord_
,
src_reset_step
);
}
}
__device__
void
TransferDataFromSrcThreadScratchToDstThreadScratch
()
{
#if !CK_EXPERIMENTAL_USE_IN_REGISTER_SUB_DWORD_TRANSPOSE
static_ford
<
SliceLengths
>
{}([
&
](
auto
idx
)
{
// convert from SrcData to DstData here
dst_thread_scratch_
(
idx
)
=
type_convert
<
DstData
>
(
src_thread_scratch_
[
idx
]);
});
#else
// sub-dword transpose between src_thread_scratch_ and dst_thread_scratch_
// TODO make this logic more generic for more sub-dword datatype
if
constexpr
(
SrcVectorDim
!=
DstVectorDim
&&
is_same
<
half_t
,
remove_cvref_t
<
SrcData
>>::
value
&&
is_same
<
half_t
,
remove_cvref_t
<
DstData
>>::
value
&&
SrcScalarPerVector
%
2
==
0
&&
DstScalarPerVector
%
2
==
0
)
{
// each transpose does
// DstScalarPerVector # of src vectors in src_thread_scratch_
// SrcScalarPerVector # of dst vectors in dst_thread_scratch_
constexpr
index_t
num_src_vector
=
Number
<
DstScalarPerVector
>
{};
constexpr
index_t
num_dst_vector
=
Number
<
SrcScalarPerVector
>
{};
// Assume SrcVectorDim is not the same as DstVectorDim, so we do transpose
// TODO: make this logic generic for all scenario
static_assert
(
SrcVectorDim
!=
DstVectorDim
,
"wrong"
);
constexpr
auto
src_scalar_step_in_vector
=
generate_sequence
(
detail
::
lambda_scalar_step_in_vector
<
SrcVectorDim
>
{},
Number
<
nDim
>
{});
constexpr
auto
dst_scalar_step_in_vector
=
generate_sequence
(
detail
::
lambda_scalar_step_in_vector
<
DstVectorDim
>
{},
Number
<
nDim
>
{});
constexpr
auto
scalar_per_access
=
generate_sequence
(
detail
::
lambda_scalar_per_access_for_src_and_dst
<
SrcVectorDim
,
SrcScalarPerVector
,
DstVectorDim
,
DstScalarPerVector
>
{},
Number
<
nDim
>
{});
constexpr
auto
access_lengths
=
SliceLengths
{}
/
scalar_per_access
;
static_ford
<
decltype
(
access_lengths
)
>
{}([
&
](
auto
access_idx
)
{
constexpr
auto
data_idx
=
access_idx
*
scalar_per_access
;
constexpr
auto
data_idx_seq
=
generate_sequence_v2
(
[
&
](
auto
i
)
{
return
Number
<
data_idx
[
i
]
>
{};
},
Number
<
nDim
>
{});
// TODO type_convert is not used yet!!!!!
using
src_vector_t
=
vector_type_maker_t
<
SrcData
,
SrcScalarPerVector
>
;
using
dst_vector_t
=
vector_type_maker_t
<
DstData
,
DstScalarPerVector
>
;
// get DstScalarPerVector # of read-only references to src vectors from
// src_thread_scratch_
const
auto
src_vector_refs
=
generate_tie
(
[
&
](
auto
i
)
->
const
src_vector_t
&
{
// i increment corresponds to movement in DstVectorDim
return
src_thread_scratch_
.
GetVectorTypeReference
(
data_idx_seq
+
i
*
dst_scalar_step_in_vector
);
},
Number
<
num_src_vector
>
{});
// get SrcScalarPerVector # of references to dst vectors from dst_thread_scratch_
auto
dst_vector_refs
=
generate_tie
(
[
&
](
auto
i
)
->
dst_vector_t
&
{
// i increment corresponds to movement in SrcVectorDim
return
dst_thread_scratch_
.
GetVectorTypeReference
(
data_idx_seq
+
i
*
src_scalar_step_in_vector
);
},
Number
<
num_dst_vector
>
{});
// do data transpose
// TODO type_convert is not used yet!!!!!
transpose_vectors
<
SrcData
,
DstScalarPerVector
,
SrcScalarPerVector
>
{}(
src_vector_refs
,
dst_vector_refs
);
});
}
else
{
static_ford
<
SliceLengths
>
{}([
&
](
auto
idx
)
{
// convert from SrcData to DstData here
dst_thread_scratch_
(
idx
)
=
type_convert
<
DstData
>
(
src_thread_scratch_
[
idx
]);
});
}
#endif
}
template
<
typename
DstBuffer
,
typename
Dst0Buffer
,
typename
Dst1Buffer
>
__device__
void
RunWrite
(
const
DstDesc
&
dst_desc
,
DstBuffer
&
dst_buf
,
const
Dst0Desc
&
dst0_desc
,
const
Dst0Buffer
&
dst0_buf
,
const
Dst1Desc
&
dst1_desc
,
const
Dst1Buffer
&
dst1_buf
)
{
// if there is transpose, it's done here
// TODO move this elsewhere
TransferDataFromSrcThreadScratchToDstThreadScratch
();
static_assert
(
DstBuffer
::
GetAddressSpace
()
==
AddressSpaceEnum
::
Global
or
DstBuffer
::
GetAddressSpace
()
==
AddressSpaceEnum
::
Lds
,
"wrong!"
);
static_assert
(
is_same
<
remove_cvref_t
<
typename
DstBuffer
::
type
>
,
remove_cvref_t
<
DstData
>>::
value
,
"wrong! SrcBuffer or DstBuffer data type is wrong"
);
constexpr
auto
I0
=
Number
<
0
>
{};
constexpr
auto
I1
=
Number
<
1
>
{};
// src scalar per access on each dim
// TODO: don't use this
constexpr
auto
dst_scalar_per_access
=
generate_sequence
(
detail
::
lambda_scalar_per_access
<
DstVectorDim
,
DstScalarPerVector
>
{},
Number
<
nDim
>
{});
constexpr
auto
dst_access_lengths
=
SliceLengths
{}
/
dst_scalar_per_access
;
constexpr
auto
dst_dim_access_order
=
DstDimAccessOrder
{};
constexpr
auto
ordered_dst_access_lengths
=
container_reorder_given_new2old
(
dst_access_lengths
,
dst_dim_access_order
);
// make forward steps
const
auto
dst_forward_steps
=
generate_tuple
(
[
&
](
auto
i
)
{
Index
forward_step_idx
;
static_for
<
0
,
nDim
,
1
>
{}([
&
](
auto
j
)
{
forward_step_idx
(
j
)
=
(
i
.
value
==
j
.
value
)
?
dst_scalar_per_access
[
i
]
:
0
;
});
return
make_tensor_coordinate_step
(
dst_desc
,
forward_step_idx
);
},
Number
<
nDim
>
{});
// make forward steps: dst0
// WARNING!!!!!!: this logic is only correct if dst/dst0/dst1 can use the same
// DstScalarPerVector
// TODO: fix this
const
auto
dst0_forward_steps
=
generate_tuple
(
[
&
](
auto
i
)
{
Index
forward_step_idx
;
static_for
<
0
,
nDim
,
1
>
{}([
&
](
auto
j
)
{
forward_step_idx
(
j
)
=
(
i
.
value
==
j
.
value
)
?
dst_scalar_per_access
[
i
]
:
0
;
});
return
make_tensor_coordinate_step
(
dst0_desc
,
forward_step_idx
);
},
Number
<
nDim
>
{});
// make forward steps: dst1
// WARNING!!!!!!: this logic is only correct if dst/dst0/dst1 can use the same
// DstScalarPerVector
// TODO: fix this
const
auto
dst1_forward_steps
=
generate_tuple
(
[
&
](
auto
i
)
{
Index
forward_step_idx
;
static_for
<
0
,
nDim
,
1
>
{}([
&
](
auto
j
)
{
forward_step_idx
(
j
)
=
(
i
.
value
==
j
.
value
)
?
dst_scalar_per_access
[
i
]
:
0
;
});
return
make_tensor_coordinate_step
(
dst1_desc
,
forward_step_idx
);
},
Number
<
nDim
>
{});
// make backward steps
const
auto
dst_backward_steps
=
generate_tuple
(
[
&
](
auto
i
)
{
Index
backward_step_idx
;
static_for
<
0
,
nDim
,
1
>
{}([
&
](
auto
j
)
{
backward_step_idx
(
j
)
=
(
i
.
value
==
j
.
value
)
?
-
dst_scalar_per_access
[
i
]
:
0
;
});
return
make_tensor_coordinate_step
(
dst_desc
,
backward_step_idx
);
},
Number
<
nDim
>
{});
// make backward steps: dst0
// WARNING!!!!!!: this logic is only correct if dst/dst0/dst1 can use the same
// DstScalarPerVector
// TODO: fix this
const
auto
dst0_backward_steps
=
generate_tuple
(
[
&
](
auto
i
)
{
Index
backward_step_idx
;
static_for
<
0
,
nDim
,
1
>
{}([
&
](
auto
j
)
{
backward_step_idx
(
j
)
=
(
i
.
value
==
j
.
value
)
?
-
dst_scalar_per_access
[
i
]
:
0
;
});
return
make_tensor_coordinate_step
(
dst0_desc
,
backward_step_idx
);
},
Number
<
nDim
>
{});
// make backward steps: dst1
// WARNING!!!!!!: this logic is only correct if dst/dst0/dst1 can use the same
// DstScalarPerVector
// TODO: fix this
const
auto
dst1_backward_steps
=
generate_tuple
(
[
&
](
auto
i
)
{
Index
backward_step_idx
;
static_for
<
0
,
nDim
,
1
>
{}([
&
](
auto
j
)
{
backward_step_idx
(
j
)
=
(
i
.
value
==
j
.
value
)
?
-
dst_scalar_per_access
[
i
]
:
0
;
});
return
make_tensor_coordinate_step
(
dst1_desc
,
backward_step_idx
);
},
Number
<
nDim
>
{});
// loop over tensor and copy
static_ford
<
decltype
(
ordered_dst_access_lengths
)
>
{}([
&
](
auto
ordered_dst_access_idx
)
{
// judge move forward or move backward
constexpr
auto
forward_sweep
=
[
&
]()
{
StaticallyIndexedArray
<
bool
,
nDim
>
forward_sweep_
;
forward_sweep_
(
I0
)
=
true
;
static_for
<
1
,
nDim
,
1
>
{}([
&
](
auto
i
)
{
index_t
tmp
=
ordered_dst_access_idx
[
I0
];
static_for
<
1
,
i
,
1
>
{}([
&
](
auto
j
)
{
tmp
=
tmp
*
ordered_dst_access_lengths
[
j
]
+
ordered_dst_access_idx
[
j
];
});
forward_sweep_
(
i
)
=
tmp
%
2
==
0
;
});
return
forward_sweep_
;
}();
// calculate dst data index
constexpr
auto
dst_data_idx
=
[
&
]()
{
Index
ordered_idx
;
static_for
<
0
,
nDim
,
1
>
{}([
&
](
auto
i
)
{
ordered_idx
(
i
)
=
forward_sweep
[
i
]
?
ordered_dst_access_idx
[
i
]
:
ordered_dst_access_lengths
[
i
]
-
1
-
ordered_dst_access_idx
[
i
];
});
return
container_reorder_given_old2new
(
ordered_idx
,
dst_dim_access_order
)
*
dst_scalar_per_access
;
}();
constexpr
auto
dst_data_idx_seq
=
generate_sequence_v2
(
[
&
](
auto
i
)
{
return
Number
<
dst_data_idx
[
i
]
>
{};
},
Number
<
dst_data_idx
.
Size
()
>
{});
const
bool
is_dst_valid
=
coordinate_has_valid_offset_assuming_visible_index_is_valid
(
dst_desc
,
dst_coord_
);
using
dst_vector_type
=
vector_type_maker_t
<
DstData
,
DstScalarPerVector
>
;
using
dst_vector_t
=
typename
dst_vector_type
::
type
;
// copy data from dst_thread_scratch_ into dst_vector_container
auto
dst_vector_container
=
dst_vector_type
{
dst_thread_scratch_
.
template
GetAsType
<
dst_vector_t
>(
dst_data_idx_seq
)};
// apply DstElementwiseOperation on dst_vector_container
static_for
<
0
,
DstScalarPerVector
,
1
>
{}([
&
](
auto
i
)
{
dst_vector_container
.
template
AsType
<
DstData
>()(
i
)
=
dst_element_op_
(
dst_vector_container
.
template
AsType
<
DstData
>()[
i
]);
});
// copy data from dst_vector_container to dst_buf
dst_buf
.
template
Set
<
dst_vector_t
>(
dst_coord_
.
GetOffset
(),
is_dst_valid
,
dst_vector_container
.
template
AsType
<
dst_vector_t
>()[
I0
]);
constexpr
auto
move_on_dim
=
[
&
]()
constexpr
{
StaticallyIndexedArray
<
bool
,
nDim
>
move_on_dim_
;
static_for
<
0
,
nDim
,
1
>
{}([
&
](
auto
i
)
{
move_on_dim_
(
i
)
=
ordered_dst_access_idx
[
i
]
<
ordered_dst_access_lengths
[
i
]
-
1
;
static_for
<
i
+
1
,
nDim
,
1
>
{}([
&
](
auto
j
)
{
move_on_dim_
(
i
)
&=
ordered_dst_access_idx
[
j
]
==
ordered_dst_access_lengths
[
j
]
-
1
;
});
});
return
move_on_dim_
;
}
();
// move dst coord
static_for
<
0
,
nDim
,
1
>
{}([
&
](
auto
i
)
{
if
constexpr
(
move_on_dim
[
i
])
{
if
constexpr
(
forward_sweep
[
i
])
{
move_tensor_coordinate
(
dst_desc
,
dst_coord_
,
dst_forward_steps
[
dst_dim_access_order
[
i
]]);
}
else
{
move_tensor_coordinate
(
dst_desc
,
dst_coord_
,
dst_backward_steps
[
dst_dim_access_order
[
i
]]);
}
}
});
});
// move dst coordinate back to slice origin (or not)
if
constexpr
(
DstResetCoordinateAfterRun
)
{
const
auto
dst_reset_step
=
make_tensor_coordinate_step
(
dst_desc
,
GetDstCoordinateResetStep
());
move_tensor_coordinate
(
dst_desc
,
dst_coord_
,
dst_reset_step
);
}
}
__device__
static
constexpr
auto
GetSrcCoordinateResetStep
()
{
constexpr
auto
I0
=
Number
<
0
>
{};
// scalar per access on each dim
// TODO: don't use lambda_scalar_per_access
constexpr
auto
src_scalar_per_access
=
generate_sequence
(
detail
::
lambda_scalar_per_access
<
SrcVectorDim
,
SrcScalarPerVector
>
{},
Number
<
nDim
>
{});
constexpr
auto
src_access_lengths
=
SliceLengths
{}
/
src_scalar_per_access
;
constexpr
auto
src_dim_access_order
=
SrcDimAccessOrder
{};
constexpr
auto
ordered_src_access_lengths
=
container_reorder_given_new2old
(
src_access_lengths
,
src_dim_access_order
);
// judge move forward or move backward during the last iteration
constexpr
auto
forward_sweep
=
[
&
]()
{
StaticallyIndexedArray
<
bool
,
nDim
>
forward_sweep_
;
forward_sweep_
(
I0
)
=
true
;
// TODO: BUG: should start at 1
static_for
<
1
,
nDim
,
1
>
{}([
&
](
auto
i
)
{
index_t
tmp
=
ordered_src_access_lengths
[
I0
]
-
1
;
static_for
<
1
,
i
,
1
>
{}([
&
](
auto
j
)
{
tmp
=
tmp
*
ordered_src_access_lengths
[
j
]
+
ordered_src_access_lengths
[
j
]
-
1
;
});
forward_sweep_
(
i
)
=
tmp
%
2
==
0
;
});
return
forward_sweep_
;
}();
// calculate src data index after last iteration in RunRead(), if it has not being reset by
// RunRead()
constexpr
auto
src_data_idx
=
[
&
]()
{
Index
ordered_idx
;
static_for
<
0
,
nDim
,
1
>
{}([
&
](
auto
i
)
{
ordered_idx
(
i
)
=
forward_sweep
[
i
]
?
ordered_src_access_lengths
[
i
]
-
1
:
0
;
});
return
container_reorder_given_old2new
(
ordered_idx
,
src_dim_access_order
)
*
src_scalar_per_access
;
}();
//
constexpr
auto
reset_src_data_step
=
[
&
]()
{
Index
reset_src_data_step_
;
static_for
<
0
,
nDim
,
1
>
{}([
&
](
auto
i
)
{
reset_src_data_step_
(
i
)
=
-
src_data_idx
[
i
];
});
return
reset_src_data_step_
;
}();
return
reset_src_data_step
;
}
__device__
static
constexpr
auto
GetDstCoordinateResetStep
()
{
constexpr
auto
I0
=
Number
<
0
>
{};
// scalar per access on each dim
// TODO: don't use lambda_scalar_per_access
constexpr
auto
dst_scalar_per_access
=
generate_sequence
(
detail
::
lambda_scalar_per_access
<
DstVectorDim
,
DstScalarPerVector
>
{},
Number
<
nDim
>
{});
constexpr
auto
dst_access_lengths
=
SliceLengths
{}
/
dst_scalar_per_access
;
constexpr
auto
dst_dim_access_order
=
DstDimAccessOrder
{};
constexpr
auto
ordered_dst_access_lengths
=
container_reorder_given_new2old
(
dst_access_lengths
,
dst_dim_access_order
);
// judge move forward or move backward during the last iteration
constexpr
auto
forward_sweep
=
[
&
]()
{
StaticallyIndexedArray
<
bool
,
nDim
>
forward_sweep_
;
forward_sweep_
(
I0
)
=
true
;
static_for
<
1
,
nDim
,
1
>
{}([
&
](
auto
i
)
{
index_t
tmp
=
ordered_dst_access_lengths
[
I0
]
-
1
;
static_for
<
1
,
i
,
1
>
{}([
&
](
auto
j
)
{
tmp
=
tmp
*
ordered_dst_access_lengths
[
j
]
+
ordered_dst_access_lengths
[
j
]
-
1
;
});
forward_sweep_
(
i
)
=
tmp
%
2
==
0
;
});
return
forward_sweep_
;
}();
// calculate dst data index after last iteration in RunWrite(), if it has not being reset by
// RunWrite()
constexpr
auto
dst_data_idx
=
[
&
]()
{
Index
ordered_idx
;
static_for
<
0
,
nDim
,
1
>
{}([
&
](
auto
i
)
{
ordered_idx
(
i
)
=
forward_sweep
[
i
]
?
ordered_dst_access_lengths
[
i
]
-
1
:
0
;
});
return
container_reorder_given_old2new
(
ordered_idx
,
dst_dim_access_order
)
*
dst_scalar_per_access
;
}();
//
constexpr
auto
reset_dst_data_step
=
[
&
]()
{
Index
reset_dst_data_step_
;
static_for
<
0
,
nDim
,
1
>
{}([
&
](
auto
i
)
{
reset_dst_data_step_
(
i
)
=
-
dst_data_idx
[
i
];
});
return
reset_dst_data_step_
;
}();
return
reset_dst_data_step
;
}
// src_slice_origin_step_idx need to be known at compile-time, for performance reason
__device__
void
MoveSrcSliceWindow
(
const
SrcDesc
&
src_desc
,
const
Index
&
src_slice_origin_step_idx
)
{
// if src coord was not reset by RunRead(), then need to adjust the step here
const
auto
adjusted_step_idx
=
SrcResetCoordinateAfterRun
?
src_slice_origin_step_idx
:
src_slice_origin_step_idx
+
GetSrcCoordinateResetStep
();
// is it OK to construct a new step every time?
const
auto
adjusted_step
=
make_tensor_coordinate_step
(
src_desc
,
adjusted_step_idx
);
move_tensor_coordinate
(
src_desc
,
src_coord_
,
adjusted_step
);
}
// src_slice_origin_step_idx need to be known at compile-time, for performance reason
__device__
void
MoveSrcSliceWindow
(
const
SrcDesc
&
src_desc
,
const
Index
&
src_slice_origin_step_idx
)
{
// if src coord was not reset by RunRead(), then need to adjust the step here
const
auto
adjusted_step_idx
=
SrcResetCoordinateAfterRun
?
src_slice_origin_step_idx
:
src_slice_origin_step_idx
+
GetSrcCoordinateResetStep
();
// is it OK to construct a new step every time?
const
auto
adjusted_step
=
make_tensor_coordinate_step
(
src_desc
,
adjusted_step_idx
);
move_tensor_coordinate
(
src_desc
,
src_coord_
,
adjusted_step
);
}
// dst_slice_origin_step_idx need to be known at compile-time, for performance reason
__device__
void
MoveDstSliceWindow
(
const
DstDesc
&
dst_desc
,
const
Dst0Desc
dst0_desc
,
const
Dst1Desc
dst1_desc
,
const
Index
&
dst_slice_origin_step_idx
)
{
// if dst coord was not reset by RunWrite(), then need to adjust the step here
const
auto
adjusted_step_idx
=
DstResetCoordinateAfterRun
?
dst_slice_origin_step_idx
:
dst_slice_origin_step_idx
+
GetDstCoordinateResetStep
();
// is it OK to construct a new step every time?
const
auto
adjusted_step
=
make_tensor_coordinate_step
(
dst_desc
,
adjusted_step_idx
);
move_tensor_coordinate
(
dst_desc
,
dst_coord_
,
adjusted_step
);
move_tensor_coordinate
(
dst0_desc
,
dst0_coord_
,
adjusted_step
);
move_tensor_coordinate
(
dst1_desc
,
dst1_coord_
,
adjusted_step
);
}
__device__
static
constexpr
auto
GetSrcThreadScratchDescriptor
()
{
constexpr
auto
src_scalar_per_access
=
generate_sequence
(
detail
::
lambda_scalar_per_access
<
SrcVectorDim
,
SrcScalarPerVector
>
{},
Number
<
nDim
>
{});
constexpr
auto
src_access_lengths
=
SliceLengths
{}
/
src_scalar_per_access
;
constexpr
auto
src_access_lengths_and_vector_length
=
container_push_back
(
sequence_to_tuple_of_number
(
src_access_lengths
),
Number
<
SrcScalarPerVector
>
{});
// 1st stage of transforms
constexpr
auto
desc0
=
make_naive_tensor_descriptor_packed
(
src_access_lengths_and_vector_length
);
// 2nd stage of transforms
constexpr
auto
transforms
=
generate_tuple
(
[
&
](
auto
i
)
{
if
constexpr
(
i
==
SrcVectorDim
)
{
return
make_merge_transform_v3_division_mod
(
make_tuple
(
src_access_lengths_and_vector_length
[
i
],
src_access_lengths_and_vector_length
[
Number
<
nDim
>
{}]));
}
else
{
return
make_pass_through_transform
(
src_access_lengths_and_vector_length
[
i
]);
}
},
Number
<
nDim
>
{});
constexpr
auto
low_dim_idss
=
generate_tuple
(
[
&
](
auto
i
)
{
if
constexpr
(
i
==
SrcVectorDim
)
{
return
Sequence
<
i
.
value
,
nDim
>
{};
}
else
{
return
Sequence
<
i
.
value
>
{};
}
},
Number
<
nDim
>
{});
constexpr
auto
up_dim_idss
=
generate_tuple
([
&
](
auto
i
)
{
return
Sequence
<
i
.
value
>
{};
},
Number
<
nDim
>
{});
return
transform_tensor_descriptor
(
desc0
,
transforms
,
low_dim_idss
,
up_dim_idss
);
}
__device__
static
constexpr
auto
GetDstThreadScratchDescriptor
()
{
// 1st stage of transforms
constexpr
auto
dst_scalar_per_access
=
generate_sequence
(
detail
::
lambda_scalar_per_access
<
DstVectorDim
,
DstScalarPerVector
>
{},
Number
<
nDim
>
{});
constexpr
auto
dst_access_lengths
=
SliceLengths
{}
/
dst_scalar_per_access
;
constexpr
auto
dst_access_lengths_and_vector_length
=
container_push_back
(
sequence_to_tuple_of_number
(
dst_access_lengths
),
Number
<
DstScalarPerVector
>
{});
constexpr
auto
desc0
=
make_naive_tensor_descriptor_packed
(
dst_access_lengths_and_vector_length
);
// 2nd stage of transforms
constexpr
auto
transforms
=
generate_tuple
(
[
&
](
auto
i
)
{
if
constexpr
(
i
==
DstVectorDim
)
{
return
make_merge_transform_v3_division_mod
(
make_tuple
(
dst_access_lengths_and_vector_length
[
i
],
dst_access_lengths_and_vector_length
[
Number
<
nDim
>
{}]));
}
else
{
return
make_pass_through_transform
(
dst_access_lengths_and_vector_length
[
i
]);
}
},
Number
<
nDim
>
{});
constexpr
auto
low_dim_idss
=
generate_tuple
(
[
&
](
auto
i
)
{
if
constexpr
(
i
==
DstVectorDim
)
{
return
Sequence
<
i
.
value
,
nDim
>
{};
}
else
{
return
Sequence
<
i
.
value
>
{};
}
},
Number
<
nDim
>
{});
constexpr
auto
up_dim_idss
=
generate_tuple
([
&
](
auto
i
)
{
return
Sequence
<
i
.
value
>
{};
},
Number
<
nDim
>
{});
return
transform_tensor_descriptor
(
desc0
,
transforms
,
low_dim_idss
,
up_dim_idss
);
}
private:
static
constexpr
auto
src_thread_scratch_desc_
=
decltype
(
GetSrcThreadScratchDescriptor
()){};
static
constexpr
auto
dst_thread_scratch_desc_
=
decltype
(
GetDstThreadScratchDescriptor
()){};
StaticTensorTupleOfVectorBuffer
<
AddressSpaceEnum
::
Vgpr
,
SrcData
,
SrcScalarPerVector
,
decltype
(
src_thread_scratch_desc_
),
true
>
src_thread_scratch_
;
StaticTensorTupleOfVectorBuffer
<
AddressSpaceEnum
::
Vgpr
,
DstData
,
DstScalarPerVector
,
decltype
(
dst_thread_scratch_desc_
),
true
>
dst_thread_scratch_
;
SrcCoord
src_coord_
;
DstCoord
dst_coord_
;
const
SrcElementwiseOperation
src_element_op_
;
const
DstElementwiseOperation
dst_element_op_
;
};
}
// namespace ck
#endif
include/ck/utility/amd_llvm_intrinsic.hpp
deleted
100644 → 0
View file @
ad8bc60b
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2022, Advanced Micro Devices, Inc. All rights reserved.
#ifndef CK_AMD_LLVM_INTRINSIC_HPP
#define CK_AMD_LLVM_INTRINSIC_HPP
#include "data_type.hpp"
namespace
ck
{
__device__
int32_t
llvm_amdgcn_readfirstlane_i32
(
int32_t
i
)
__asm
(
"llvm.amdgcn.readfirstlane"
);
}
// namespace ck
#endif
include/ck/utility/print.hpp
deleted
100644 → 0
View file @
ad8bc60b
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2022, Advanced Micro Devices, Inc. All rights reserved.
#ifndef CK_PRINT_HPP
#define CK_PRINT_HPP
#include "array.hpp"
#include "statically_indexed_array.hpp"
#include "container_helper.hpp"
#include "sequence.hpp"
namespace
ck
{
template
<
typename
T
>
__host__
__device__
void
print_array
(
const
char
*
s
,
T
a
)
{
constexpr
index_t
nsize
=
a
.
Size
();
printf
(
"%s size %d, {"
,
s
,
nsize
);
static_for
<
0
,
nsize
,
1
>
{}([
&
a
](
auto
i
)
constexpr
{
printf
(
"%d, "
,
int32_t
{
a
[
i
]});
});
printf
(
"}
\n
"
);
}
}
// namespace ck
#endif
library/include/ck/library/reference_tensor_operation/cpu/reference_gemm_bias_2d.hpp
deleted
100644 → 0
View file @
ad8bc60b
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2022, Advanced Micro Devices, Inc. All rights reserved.
#pragma once
#include <iostream>
#include <sstream>
#include "ck/tensor_operation/gpu/device/device_base.hpp"
#include "ck/library/utility/host_tensor.hpp"
namespace
ck
{
namespace
tensor_operation
{
namespace
host
{
template
<
typename
ADataType
,
typename
BDataType
,
typename
C0DataType
,
typename
CDataType
,
typename
AccDataType
,
typename
AElementwiseOperation
,
typename
BElementwiseOperation
,
typename
CElementwiseOperation
>
struct
ReferenceGemmBias2D
:
public
device
::
BaseOperator
{
// Argument
struct
Argument
:
public
device
::
BaseArgument
{
Argument
(
const
Tensor
<
ADataType
>&
a_m_k
,
const
Tensor
<
BDataType
>&
b_k_n
,
const
Tensor
<
C0DataType
>&
c0_m_n
,
Tensor
<
CDataType
>&
c_m_n
,
AElementwiseOperation
a_element_op
,
BElementwiseOperation
b_element_op
,
CElementwiseOperation
c_element_op
)
:
a_m_k_
{
a_m_k
},
b_k_n_
{
b_k_n
},
c0_m_n_
{
c0_m_n
},
c_m_n_
{
c_m_n
},
a_element_op_
{
a_element_op
},
b_element_op_
{
b_element_op
},
c_element_op_
{
c_element_op
}
{
}
const
Tensor
<
ADataType
>&
a_m_k_
;
const
Tensor
<
BDataType
>&
b_k_n_
;
const
Tensor
<
CDataType
>&
c0_m_n_
;
Tensor
<
CDataType
>&
c_m_n_
;
AElementwiseOperation
a_element_op_
;
BElementwiseOperation
b_element_op_
;
CElementwiseOperation
c_element_op_
;
};
// Invoker
struct
Invoker
:
public
device
::
BaseInvoker
{
using
Argument
=
ReferenceGemmBias2D
::
Argument
;
float
Run
(
const
Argument
&
arg
)
{
auto
f_mk_kn_mn
=
[
&
](
auto
m
,
auto
n
)
{
const
int
K
=
arg
.
a_m_k_
.
mDesc
.
GetLengths
()[
1
];
AccDataType
a
=
0
;
AccDataType
b
=
0
;
AccDataType
acc
=
0
;
for
(
int
k
=
0
;
k
<
K
;
++
k
)
{
arg
.
a_element_op_
(
a
,
ck
::
type_convert
<
AccDataType
>
(
arg
.
a_m_k_
(
m
,
k
)));
arg
.
b_element_op_
(
b
,
ck
::
type_convert
<
AccDataType
>
(
arg
.
b_k_n_
(
k
,
n
)));
acc
+=
a
*
b
;
}
CDataType
cast_acc
=
static_cast
<
CDataType
>
(
acc
);
arg
.
c_element_op_
(
arg
.
c_m_n_
(
m
,
n
),
cast_acc
,
arg
.
c0_m_n_
(
m
,
n
));
};
make_ParallelTensorFunctor
(
f_mk_kn_mn
,
arg
.
c_m_n_
.
mDesc
.
GetLengths
()[
0
],
arg
.
c_m_n_
.
mDesc
.
GetLengths
()[
1
])(
std
::
thread
::
hardware_concurrency
());
return
0
;
}
float
Run
(
const
device
::
BaseArgument
*
p_arg
,
const
StreamConfig
&
/* stream_config */
=
StreamConfig
{})
override
{
return
Run
(
*
dynamic_cast
<
const
Argument
*>
(
p_arg
));
}
};
static
constexpr
bool
IsValidCompilationParameter
()
{
// TODO: properly implement this check
return
true
;
}
bool
IsSupportedArgument
(
const
device
::
BaseArgument
*
)
override
{
return
true
;
}
static
auto
MakeArgument
(
const
Tensor
<
ADataType
>&
a_m_k
,
const
Tensor
<
BDataType
>&
b_k_n
,
const
Tensor
<
C0DataType
>&
c0_m_n
,
Tensor
<
CDataType
>&
c_m_n
,
AElementwiseOperation
a_element_op
,
BElementwiseOperation
b_element_op
,
CElementwiseOperation
c_element_op
)
{
return
Argument
{
a_m_k
,
b_k_n
,
c0_m_n
,
c_m_n
,
a_element_op
,
b_element_op
,
c_element_op
};
}
static
auto
MakeInvoker
()
{
return
Invoker
{};
}
virtual
std
::
unique_ptr
<
device
::
BaseInvoker
>
MakeInvokerPointer
()
{
return
std
::
make_unique
<
Invoker
>
(
Invoker
{});
}
std
::
string
GetTypeString
()
const
override
{
auto
str
=
std
::
stringstream
();
// clang-format off
str
<<
"ReferenceGemmBias2D"
<<
std
::
endl
;
// clang-format on
return
str
.
str
();
}
};
}
// namespace host
}
// namespace tensor_operation
}
// namespace ck
library/include/ck/library/reference_tensor_operation/cpu/reference_gemm_bias_activation.hpp
deleted
100644 → 0
View file @
ad8bc60b
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2022, Advanced Micro Devices, Inc. All rights reserved.
#pragma once
#include <iostream>
#include <sstream>
#include "ck/tensor_operation/gpu/device/device_base.hpp"
#include "ck/library/utility/host_tensor.hpp"
namespace
ck
{
namespace
tensor_operation
{
namespace
host
{
template
<
typename
ADataType
,
typename
BDataType
,
typename
CDataType
,
typename
AElementwiseOperation
,
typename
BElementwiseOperation
,
typename
CElementwiseOperation
>
struct
ReferenceGemmBiasActivation
:
public
device
::
BaseOperator
{
// Argument
struct
Argument
:
public
device
::
BaseArgument
{
Argument
(
const
Tensor
<
ADataType
>&
a_m_k
,
const
Tensor
<
BDataType
>&
b_k_n
,
Tensor
<
CDataType
>&
c_m_n
,
const
Tensor
<
CDataType
>&
c0_n
,
AElementwiseOperation
a_element_op
,
BElementwiseOperation
b_element_op
,
CElementwiseOperation
c_element_op
)
:
a_m_k_
{
a_m_k
},
b_k_n_
{
b_k_n
},
c_m_n_
{
c_m_n
},
c0_n_
{
c0_n
},
a_element_op_
{
a_element_op
},
b_element_op_
{
b_element_op
},
c_element_op_
{
c_element_op
}
{
}
const
Tensor
<
ADataType
>&
a_m_k_
;
const
Tensor
<
BDataType
>&
b_k_n_
;
Tensor
<
CDataType
>&
c_m_n_
;
const
Tensor
<
CDataType
>&
c0_n_
;
AElementwiseOperation
a_element_op_
;
BElementwiseOperation
b_element_op_
;
CElementwiseOperation
c_element_op_
;
};
// Invoker
struct
Invoker
:
public
device
::
BaseInvoker
{
using
Argument
=
ReferenceGemmBiasActivation
::
Argument
;
float
Run
(
const
Argument
&
arg
)
{
auto
f_mk_kn_mn
=
[
&
](
auto
m
,
auto
n
)
{
const
int
K
=
arg
.
a_m_k_
.
mDesc
.
GetLengths
()[
1
];
float
v_acc
=
0
;
for
(
int
k
=
0
;
k
<
K
;
++
k
)
{
float
v_a
;
float
v_b
;
arg
.
a_element_op_
(
v_a
,
static_cast
<
const
float
>
(
arg
.
a_m_k_
(
m
,
k
)));
arg
.
b_element_op_
(
v_b
,
static_cast
<
const
float
>
(
arg
.
b_k_n_
(
k
,
n
)));
v_acc
+=
v_a
*
v_b
;
}
float
v_c
;
arg
.
c_element_op_
(
v_c
,
v_acc
,
static_cast
<
float
>
(
arg
.
c0_n_
(
n
)));
arg
.
c_m_n_
(
m
,
n
)
=
v_c
;
};
make_ParallelTensorFunctor
(
f_mk_kn_mn
,
arg
.
c_m_n_
.
mDesc
.
GetLengths
()[
0
],
arg
.
c_m_n_
.
mDesc
.
GetLengths
()[
1
])(
std
::
thread
::
hardware_concurrency
());
return
0
;
}
float
Run
(
const
device
::
BaseArgument
*
p_arg
,
const
StreamConfig
&
/* stream_config */
=
StreamConfig
{})
override
{
return
Run
(
*
dynamic_cast
<
const
Argument
*>
(
p_arg
));
}
};
static
constexpr
bool
IsValidCompilationParameter
()
{
// TODO: properly implement this check
return
true
;
}
bool
IsSupportedArgument
(
const
device
::
BaseArgument
*
)
override
{
return
true
;
}
static
auto
MakeArgument
(
const
Tensor
<
ADataType
>&
a_m_k
,
const
Tensor
<
BDataType
>&
b_k_n
,
Tensor
<
CDataType
>&
c_m_n
,
const
Tensor
<
CDataType
>&
c0_n
,
AElementwiseOperation
a_element_op
,
BElementwiseOperation
b_element_op
,
CElementwiseOperation
c_element_op
)
{
return
Argument
{
a_m_k
,
b_k_n
,
c_m_n
,
c0_n
,
a_element_op
,
b_element_op
,
c_element_op
};
}
static
auto
MakeInvoker
()
{
return
Invoker
{};
}
virtual
std
::
unique_ptr
<
device
::
BaseInvoker
>
MakeInvokerPointer
()
{
return
std
::
make_unique
<
Invoker
>
(
Invoker
{});
}
std
::
string
GetTypeString
()
const
override
{
auto
str
=
std
::
stringstream
();
// clang-format off
str
<<
"ReferenceGemmBiasActivation"
<<
std
::
endl
;
// clang-format on
return
str
.
str
();
}
};
}
// namespace host
}
// namespace tensor_operation
}
// namespace ck
library/include/ck/library/reference_tensor_operation/cpu/reference_gemm_bias_activation_add.hpp
deleted
100644 → 0
View file @
ad8bc60b
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2022, Advanced Micro Devices, Inc. All rights reserved.
#pragma once
#include <iostream>
#include <sstream>
#include "ck/tensor_operation/gpu/device/device_base.hpp"
#include "ck/library/utility/host_tensor.hpp"
namespace
ck
{
namespace
tensor_operation
{
namespace
host
{
template
<
typename
ADataType
,
typename
BDataType
,
typename
CDataType
,
typename
AElementwiseOperation
,
typename
BElementwiseOperation
,
typename
CElementwiseOperation
>
struct
ReferenceGemmBiasActivationAdd
:
public
device
::
BaseOperator
{
// Argument
struct
Argument
:
public
device
::
BaseArgument
{
Argument
(
const
Tensor
<
ADataType
>&
a_m_k
,
const
Tensor
<
BDataType
>&
b_k_n
,
Tensor
<
CDataType
>&
c_m_n
,
const
Tensor
<
CDataType
>&
c0_n
,
const
Tensor
<
CDataType
>&
c1_m_n
,
AElementwiseOperation
a_element_op
,
BElementwiseOperation
b_element_op
,
CElementwiseOperation
c_element_op
)
:
a_m_k_
{
a_m_k
},
b_k_n_
{
b_k_n
},
c_m_n_
{
c_m_n
},
c0_n_
{
c0_n
},
c1_m_n_
{
c1_m_n
},
a_element_op_
{
a_element_op
},
b_element_op_
{
b_element_op
},
c_element_op_
{
c_element_op
}
{
}
const
Tensor
<
ADataType
>&
a_m_k_
;
const
Tensor
<
BDataType
>&
b_k_n_
;
Tensor
<
CDataType
>&
c_m_n_
;
const
Tensor
<
CDataType
>&
c0_n_
;
const
Tensor
<
CDataType
>&
c1_m_n_
;
AElementwiseOperation
a_element_op_
;
BElementwiseOperation
b_element_op_
;
CElementwiseOperation
c_element_op_
;
};
// Invoker
struct
Invoker
:
public
device
::
BaseInvoker
{
using
Argument
=
ReferenceGemmBiasActivationAdd
::
Argument
;
float
Run
(
const
Argument
&
arg
)
{
auto
f_mk_kn_mn
=
[
&
](
auto
m
,
auto
n
)
{
const
int
K
=
arg
.
a_m_k_
.
mDesc
.
GetLengths
()[
1
];
float
v_acc
=
0
;
for
(
int
k
=
0
;
k
<
K
;
++
k
)
{
float
v_a
;
float
v_b
;
arg
.
a_element_op_
(
v_a
,
static_cast
<
const
float
>
(
arg
.
a_m_k_
(
m
,
k
)));
arg
.
b_element_op_
(
v_b
,
static_cast
<
const
float
>
(
arg
.
b_k_n_
(
k
,
n
)));
v_acc
+=
v_a
*
v_b
;
}
float
v_c
;
arg
.
c_element_op_
(
v_c
,
v_acc
,
static_cast
<
float
>
(
arg
.
c0_n_
(
n
)),
static_cast
<
float
>
(
arg
.
c1_m_n_
(
m
,
n
)));
arg
.
c_m_n_
(
m
,
n
)
=
v_c
;
};
make_ParallelTensorFunctor
(
f_mk_kn_mn
,
arg
.
c_m_n_
.
mDesc
.
GetLengths
()[
0
],
arg
.
c_m_n_
.
mDesc
.
GetLengths
()[
1
])(
std
::
thread
::
hardware_concurrency
());
return
0
;
}
float
Run
(
const
device
::
BaseArgument
*
p_arg
,
const
StreamConfig
&
/* stream_config */
=
StreamConfig
{})
override
{
return
Run
(
*
dynamic_cast
<
const
Argument
*>
(
p_arg
));
}
};
static
constexpr
bool
IsValidCompilationParameter
()
{
// TODO: properly implement this check
return
true
;
}
bool
IsSupportedArgument
(
const
device
::
BaseArgument
*
)
override
{
return
true
;
}
static
auto
MakeArgument
(
const
Tensor
<
ADataType
>&
a_m_k
,
const
Tensor
<
BDataType
>&
b_k_n
,
Tensor
<
CDataType
>&
c_m_n
,
const
Tensor
<
CDataType
>&
c0_n
,
const
Tensor
<
CDataType
>&
c1_m_n
,
AElementwiseOperation
a_element_op
,
BElementwiseOperation
b_element_op
,
CElementwiseOperation
c_element_op
)
{
return
Argument
{
a_m_k
,
b_k_n
,
c_m_n
,
c0_n
,
c1_m_n
,
a_element_op
,
b_element_op
,
c_element_op
};
}
static
auto
MakeInvoker
()
{
return
Invoker
{};
}
virtual
std
::
unique_ptr
<
device
::
BaseInvoker
>
MakeInvokerPointer
()
{
return
std
::
make_unique
<
Invoker
>
(
Invoker
{});
}
std
::
string
GetTypeString
()
const
override
{
auto
str
=
std
::
stringstream
();
// clang-format off
str
<<
"ReferenceGemmBiasActivationAdd"
<<
std
::
endl
;
// clang-format on
return
str
.
str
();
}
};
}
// namespace host
}
// namespace tensor_operation
}
// namespace ck
library/include/ck/library/reference_tensor_operation/cpu/reference_pool_fwd.hpp
0 → 100644
View file @
ae8b307a
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2022, Advanced Micro Devices, Inc. All rights reserved.
#pragma once
#include <iostream>
#include <sstream>
#include <vector>
#include <algorithm>
#include "ck/tensor_operation/gpu/device/device_base.hpp"
#include "ck/tensor_operation/gpu/device/reduction_operator_mapping.hpp"
#include "ck/utility/reduction_functions_accumulate.hpp"
#include "ck/library/utility/host_tensor.hpp"
#include "ck/library/utility/host_tensor_generator.hpp"
namespace
ck
{
namespace
tensor_operation
{
namespace
host
{
template
<
index_t
InOutRank
,
index_t
WindowRank
,
typename
InDataType
,
typename
OutDataType
,
typename
ComputeDataType
,
typename
IndexDataType
,
ck
::
ReduceTensorOp
ReduceOpId
,
bool
PropagateNan
,
bool
OutputIndex
>
struct
ReferencePoolingFwd
:
public
device
::
BaseOperator
{
using
ReduceOperation
=
typename
ck
::
reduce_binary_operator
<
ReduceOpId
>::
opType
;
// Argument
struct
Argument
:
public
device
::
BaseArgument
{
Argument
(
const
Tensor
<
InDataType
>&
in
,
Tensor
<
OutDataType
>&
out
,
Tensor
<
IndexDataType
>&
out_indices
,
const
std
::
vector
<
ck
::
index_t
>&
window_spatial_lengths
,
const
std
::
vector
<
ck
::
index_t
>&
window_strides
,
const
std
::
vector
<
ck
::
index_t
>&
in_left_pads
,
const
std
::
vector
<
ck
::
index_t
>&
/*in_right_pads*/
)
:
in_
(
in
),
out_
(
out
),
out_indices_
(
out_indices
),
window_spatial_lengths_
(
window_spatial_lengths
),
window_strides_
(
window_strides
),
in_left_pads_
(
in_left_pads
),
reduceLength_
(
1
)
{
static_for
<
0
,
WindowRank
,
1
>
{}(
[
&
](
auto
I
)
{
reduceLength_
*=
window_spatial_lengths
[
I
];
});
}
const
Tensor
<
InDataType
>&
in_
;
Tensor
<
OutDataType
>&
out_
;
Tensor
<
IndexDataType
>&
out_indices_
;
const
std
::
vector
<
ck
::
index_t
>&
window_spatial_lengths_
;
const
std
::
vector
<
ck
::
index_t
>&
window_strides_
;
const
std
::
vector
<
ck
::
index_t
>&
in_left_pads_
;
int
reduceLength_
;
};
// Invoker
struct
Invoker
:
public
device
::
BaseInvoker
{
float
RunPooling3dFwd
(
const
Argument
&
arg
)
{
auto
elementwise_ops
=
ck
::
reduce_unary_operator
<
ReduceOpId
,
true
,
true
>::
GetElementwiseOperator
(
arg
.
reduceLength_
);
auto
in_elementwise_op
=
std
::
get
<
0
>
(
elementwise_ops
);
auto
acc_elementwise_op
=
std
::
get
<
1
>
(
elementwise_ops
);
if
constexpr
(
!
OutputIndex
)
{
using
Accumulation
=
ck
::
detail
::
AccumulateWithNanCheck
<
PropagateNan
,
ReduceOperation
,
ComputeDataType
>
;
auto
f_ncdhw
=
[
&
](
auto
n
,
auto
c
,
auto
do_
,
auto
ho
,
auto
wo
)
{
auto
accuVal
=
ReduceOperation
::
template
GetIdentityValue
<
ComputeDataType
>();
for
(
ck
::
index_t
z
=
0
;
z
<
arg
.
window_spatial_lengths_
[
0
];
++
z
)
{
ck
::
index_t
di
=
do_
*
arg
.
window_strides_
[
0
]
+
z
-
arg
.
in_left_pads_
[
0
];
for
(
ck
::
index_t
y
=
0
;
y
<
arg
.
window_spatial_lengths_
[
1
];
++
y
)
{
ck
::
index_t
hi
=
ho
*
arg
.
window_strides_
[
1
]
+
y
-
arg
.
in_left_pads_
[
1
];
for
(
ck
::
index_t
x
=
0
;
x
<
arg
.
window_spatial_lengths_
[
2
];
++
x
)
{
ck
::
index_t
wi
=
wo
*
arg
.
window_strides_
[
2
]
+
x
-
arg
.
in_left_pads_
[
2
];
if
(
di
>=
0
&&
di
<
static_cast
<
ck
::
index_t
>
(
arg
.
in_
.
mDesc
.
GetLengths
()[
2
])
&&
hi
>=
0
&&
hi
<
static_cast
<
ck
::
index_t
>
(
arg
.
in_
.
mDesc
.
GetLengths
()[
3
])
&&
wi
>=
0
&&
wi
<
static_cast
<
ck
::
index_t
>
(
arg
.
in_
.
mDesc
.
GetLengths
()[
4
]))
{
ComputeDataType
currVal
=
static_cast
<
ComputeDataType
>
(
arg
.
in_
(
n
,
c
,
di
,
hi
,
wi
));
in_elementwise_op
(
currVal
,
currVal
);
Accumulation
::
Calculate
(
accuVal
,
currVal
);
}
}
}
}
acc_elementwise_op
(
accuVal
,
accuVal
);
arg
.
out_
(
n
,
c
,
do_
,
ho
,
wo
)
=
accuVal
;
};
make_ParallelTensorFunctor
(
f_ncdhw
,
arg
.
out_
.
mDesc
.
GetLengths
()[
0
],
arg
.
out_
.
mDesc
.
GetLengths
()[
1
],
arg
.
out_
.
mDesc
.
GetLengths
()[
2
],
arg
.
out_
.
mDesc
.
GetLengths
()[
3
],
arg
.
out_
.
mDesc
.
GetLengths
()[
4
])(
std
::
thread
::
hardware_concurrency
());
}
else
{
using
Accumulation
=
ck
::
detail
::
AccumulateWithIndexAndNanCheck
<
PropagateNan
,
ReduceOperation
,
ComputeDataType
,
IndexDataType
>
;
auto
f_ncdhw
=
[
&
](
auto
n
,
auto
c
,
auto
do_
,
auto
ho
,
auto
wo
)
{
auto
accuVal
=
ReduceOperation
::
template
GetIdentityValue
<
ComputeDataType
>();
IndexDataType
accuIndex
=
0
;
for
(
ck
::
index_t
z
=
0
;
z
<
arg
.
window_spatial_lengths_
[
0
];
++
z
)
{
ck
::
index_t
di
=
do_
*
arg
.
window_strides_
[
0
]
+
z
-
arg
.
in_left_pads_
[
0
];
for
(
ck
::
index_t
y
=
0
;
y
<
arg
.
window_spatial_lengths_
[
1
];
++
y
)
{
ck
::
index_t
hi
=
ho
*
arg
.
window_strides_
[
1
]
+
y
-
arg
.
in_left_pads_
[
1
];
for
(
ck
::
index_t
x
=
0
;
x
<
arg
.
window_spatial_lengths_
[
2
];
++
x
)
{
ck
::
index_t
wi
=
wo
*
arg
.
window_strides_
[
2
]
+
x
-
arg
.
in_left_pads_
[
2
];
if
(
di
>=
0
&&
di
<
static_cast
<
ck
::
index_t
>
(
arg
.
in_
.
mDesc
.
GetLengths
()[
2
])
&&
hi
>=
0
&&
hi
<
static_cast
<
ck
::
index_t
>
(
arg
.
in_
.
mDesc
.
GetLengths
()[
3
])
&&
wi
>=
0
&&
wi
<
static_cast
<
ck
::
index_t
>
(
arg
.
in_
.
mDesc
.
GetLengths
()[
4
]))
{
ComputeDataType
currVal
=
static_cast
<
ComputeDataType
>
(
arg
.
in_
(
n
,
c
,
di
,
hi
,
wi
));
IndexDataType
currIndex
=
arg
.
in_
.
GetOffsetFromMultiIndex
(
n
,
c
,
di
,
hi
,
wi
);
in_elementwise_op
(
currVal
,
currVal
);
Accumulation
::
Calculate
(
accuVal
,
currVal
,
accuIndex
,
currIndex
);
}
}
}
}
acc_elementwise_op
(
accuVal
,
accuVal
);
arg
.
out_
(
n
,
c
,
do_
,
ho
,
wo
)
=
accuVal
;
arg
.
out_indices_
(
n
,
c
,
do_
,
ho
,
wo
)
=
accuIndex
;
};
make_ParallelTensorFunctor
(
f_ncdhw
,
arg
.
out_
.
mDesc
.
GetLengths
()[
0
],
arg
.
out_
.
mDesc
.
GetLengths
()[
1
],
arg
.
out_
.
mDesc
.
GetLengths
()[
2
],
arg
.
out_
.
mDesc
.
GetLengths
()[
3
],
arg
.
out_
.
mDesc
.
GetLengths
()[
4
])(
std
::
thread
::
hardware_concurrency
());
};
return
0
;
}
float
RunPooling2dFwd
(
const
Argument
&
arg
)
{
auto
elementwise_ops
=
ck
::
reduce_unary_operator
<
ReduceOpId
,
true
,
true
>::
GetElementwiseOperator
(
arg
.
reduceLength_
);
auto
in_elementwise_op
=
std
::
get
<
0
>
(
elementwise_ops
);
auto
acc_elementwise_op
=
std
::
get
<
1
>
(
elementwise_ops
);
if
constexpr
(
!
OutputIndex
)
{
using
Accumulation
=
ck
::
detail
::
AccumulateWithNanCheck
<
PropagateNan
,
ReduceOperation
,
ComputeDataType
>
;
auto
f_nchw
=
[
&
](
auto
n
,
auto
c
,
auto
ho
,
auto
wo
)
{
auto
accuVal
=
ReduceOperation
::
template
GetIdentityValue
<
ComputeDataType
>();
for
(
ck
::
index_t
y
=
0
;
y
<
arg
.
window_spatial_lengths_
[
0
];
++
y
)
{
ck
::
index_t
hi
=
ho
*
arg
.
window_strides_
[
0
]
+
y
-
arg
.
in_left_pads_
[
0
];
for
(
ck
::
index_t
x
=
0
;
x
<
arg
.
window_spatial_lengths_
[
1
];
++
x
)
{
ck
::
index_t
wi
=
wo
*
arg
.
window_strides_
[
1
]
+
x
-
arg
.
in_left_pads_
[
1
];
if
(
hi
>=
0
&&
hi
<
static_cast
<
ck
::
index_t
>
(
arg
.
in_
.
mDesc
.
GetLengths
()[
2
])
&&
wi
>=
0
&&
wi
<
static_cast
<
ck
::
index_t
>
(
arg
.
in_
.
mDesc
.
GetLengths
()[
3
]))
{
ComputeDataType
currVal
=
static_cast
<
ComputeDataType
>
(
arg
.
in_
(
n
,
c
,
hi
,
wi
));
in_elementwise_op
(
currVal
,
currVal
);
Accumulation
::
Calculate
(
accuVal
,
currVal
);
}
}
}
acc_elementwise_op
(
accuVal
,
accuVal
);
arg
.
out_
(
n
,
c
,
ho
,
wo
)
=
accuVal
;
};
make_ParallelTensorFunctor
(
f_nchw
,
arg
.
out_
.
mDesc
.
GetLengths
()[
0
],
arg
.
out_
.
mDesc
.
GetLengths
()[
1
],
arg
.
out_
.
mDesc
.
GetLengths
()[
2
],
arg
.
out_
.
mDesc
.
GetLengths
()[
3
])(
std
::
thread
::
hardware_concurrency
());
}
else
{
using
Accumulation
=
ck
::
detail
::
AccumulateWithIndexAndNanCheck
<
PropagateNan
,
ReduceOperation
,
ComputeDataType
,
IndexDataType
>
;
auto
f_nchw
=
[
&
](
auto
n
,
auto
c
,
auto
ho
,
auto
wo
)
{
auto
accuVal
=
ReduceOperation
::
template
GetIdentityValue
<
ComputeDataType
>();
IndexDataType
accuIndex
=
0
;
for
(
ck
::
index_t
y
=
0
;
y
<
arg
.
window_spatial_lengths_
[
0
];
++
y
)
{
ck
::
index_t
hi
=
ho
*
arg
.
window_strides_
[
0
]
+
y
-
arg
.
in_left_pads_
[
0
];
for
(
ck
::
index_t
x
=
0
;
x
<
arg
.
window_spatial_lengths_
[
1
];
++
x
)
{
ck
::
index_t
wi
=
wo
*
arg
.
window_strides_
[
1
]
+
x
-
arg
.
in_left_pads_
[
1
];
if
(
hi
>=
0
&&
hi
<
static_cast
<
ck
::
index_t
>
(
arg
.
in_
.
mDesc
.
GetLengths
()[
2
])
&&
wi
>=
0
&&
wi
<
static_cast
<
ck
::
index_t
>
(
arg
.
in_
.
mDesc
.
GetLengths
()[
3
]))
{
ComputeDataType
currVal
=
static_cast
<
ComputeDataType
>
(
arg
.
in_
(
n
,
c
,
hi
,
wi
));
IndexDataType
currIndex
=
arg
.
in_
.
GetOffsetFromMultiIndex
(
n
,
c
,
hi
,
wi
);
in_elementwise_op
(
currVal
,
currVal
);
Accumulation
::
Calculate
(
accuVal
,
currVal
,
accuIndex
,
currIndex
);
}
}
}
acc_elementwise_op
(
accuVal
,
accuVal
);
arg
.
out_
(
n
,
c
,
ho
,
wo
)
=
accuVal
;
arg
.
out_indices_
(
n
,
c
,
ho
,
wo
)
=
accuIndex
;
};
make_ParallelTensorFunctor
(
f_nchw
,
arg
.
out_
.
mDesc
.
GetLengths
()[
0
],
arg
.
out_
.
mDesc
.
GetLengths
()[
1
],
arg
.
out_
.
mDesc
.
GetLengths
()[
2
],
arg
.
out_
.
mDesc
.
GetLengths
()[
3
])(
std
::
thread
::
hardware_concurrency
());
};
return
0
;
}
float
Run
(
const
Argument
&
arg
)
{
// TODO - support generic pooling
if
constexpr
(
InOutRank
==
5
&&
WindowRank
==
3
)
return
RunPooling3dFwd
(
arg
);
else
if
constexpr
(
InOutRank
==
4
&&
WindowRank
==
2
)
return
RunPooling2dFwd
(
arg
);
else
throw
std
::
runtime_error
(
"Only support pooling3d or pooling2d so far"
);
}
float
Run
(
const
device
::
BaseArgument
*
p_arg
,
const
StreamConfig
&
/* stream_config */
=
StreamConfig
{})
override
{
return
Run
(
*
dynamic_cast
<
const
Argument
*>
(
p_arg
));
}
};
bool
IsSupportedArgument
(
const
device
::
BaseArgument
*
)
override
{
return
true
;
}
static
auto
MakeArgument
(
const
Tensor
<
InDataType
>&
in
,
Tensor
<
OutDataType
>&
out
,
Tensor
<
IndexDataType
>&
out_indices
,
const
std
::
vector
<
ck
::
index_t
>&
window_spatial_lengths
,
const
std
::
vector
<
ck
::
index_t
>&
window_strides
,
const
std
::
vector
<
ck
::
index_t
>&
in_left_pads
,
const
std
::
vector
<
ck
::
index_t
>&
in_right_pads
)
{
return
Argument
{
in
,
out
,
out_indices
,
window_spatial_lengths
,
window_strides
,
in_left_pads
,
in_right_pads
};
}
static
auto
MakeInvoker
()
{
return
Invoker
{};
}
virtual
std
::
unique_ptr
<
device
::
BaseInvoker
>
MakeInvokerPointer
()
{
return
std
::
make_unique
<
Invoker
>
(
Invoker
{});
}
std
::
string
GetTypeString
()
const
override
{
auto
str
=
std
::
stringstream
();
// clang-format off
str
<<
"ReferencePoolingFwd"
<<
std
::
endl
;
// clang-format on
return
str
.
str
();
}
};
}
// namespace host
}
// namespace tensor_operation
}
// namespace ck
library/include/ck/library/tensor_operation_instance/gpu/batched_gemm.hpp
View file @
ae8b307a
...
...
@@ -3,8 +3,8 @@
#pragma once
#include <
cstdlib
>
#include <
vector
>
#include <memory>
#include "ck/ck.hpp"
#include "ck/tensor_operation/gpu/device/tensor_layout.hpp"
#include "ck/tensor_operation/gpu/device/device_batched_gemm.hpp"
...
...
library/include/ck/library/tensor_operation_instance/gpu/batched_gemm_add_relu_gemm_add.hpp
View file @
ae8b307a
...
...
@@ -3,8 +3,8 @@
#pragma once
#include <
cstdlib
>
#include <
vector
>
#include <memory>
#include "ck/ck.hpp"
#include "ck/tensor_operation/gpu/device/tensor_layout.hpp"
#include "ck/tensor_operation/gpu/device/device_batched_gemm_multiple_d_gemm_multiple_d.hpp"
...
...
library/include/ck/library/tensor_operation_instance/gpu/batched_gemm_bias_softmax_gemm_permute.hpp
View file @
ae8b307a
...
...
@@ -3,8 +3,8 @@
#pragma once
#include <
cstdlib
>
#include <
vector
>
#include <memory>
#include "ck/ck.hpp"
#include "ck/tensor_operation/gpu/device/tensor_layout.hpp"
#include "ck/tensor_operation/gpu/device/device_batched_gemm_softmax_gemm_permute.hpp"
...
...
library/include/ck/library/tensor_operation_instance/gpu/batched_gemm_gemm.hpp
View file @
ae8b307a
...
...
@@ -3,8 +3,8 @@
#pragma once
#include <
cstdlib
>
#include <
vector
>
#include <memory>
#include "ck/ck.hpp"
#include "ck/tensor_operation/gpu/device/tensor_layout.hpp"
#include "ck/tensor_operation/gpu/device/device_batched_gemm_gemm.hpp"
...
...
library/include/ck/library/tensor_operation_instance/gpu/batched_gemm_softmax_gemm_permute.hpp
View file @
ae8b307a
...
...
@@ -3,8 +3,8 @@
#pragma once
#include <
cstdlib
>
#include <
vector
>
#include <memory>
#include "ck/ck.hpp"
#include "ck/tensor_operation/gpu/device/tensor_layout.hpp"
#include "ck/tensor_operation/gpu/device/device_batched_gemm_softmax_gemm_permute.hpp"
...
...
library/include/ck/library/tensor_operation_instance/gpu/contraction_bilinear.hpp
View file @
ae8b307a
...
...
@@ -3,10 +3,8 @@
#pragma once
#include <cstdlib>
#include <vector>
#include <memory>
#include "ck/ck.hpp"
#include "ck/tensor_operation/gpu/device/tensor_layout.hpp"
#include "ck/tensor_operation/gpu/device/device_contraction_multiple_d.hpp"
...
...
library/include/ck/library/tensor_operation_instance/gpu/contraction_scale.hpp
View file @
ae8b307a
...
...
@@ -3,10 +3,8 @@
#pragma once
#include <cstdlib>
#include <vector>
#include <memory>
#include "ck/ck.hpp"
#include "ck/tensor_operation/gpu/device/tensor_layout.hpp"
#include "ck/tensor_operation/gpu/device/device_contraction_multiple_d.hpp"
...
...
library/include/ck/library/tensor_operation_instance/gpu/convolution_backward_data.hpp
View file @
ae8b307a
...
...
@@ -3,8 +3,8 @@
#pragma once
#include <
cstdlib
>
#include <
vector
>
#include <memory>
#include "ck/ck.hpp"
#include "ck/tensor_operation/gpu/device/tensor_layout.hpp"
#include "ck/tensor_operation/gpu/device/device_conv_bwd_data.hpp"
...
...
library/include/ck/library/tensor_operation_instance/gpu/convolution_forward.hpp
View file @
ae8b307a
...
...
@@ -3,8 +3,8 @@
#pragma once
#include <
cstdlib
>
#include <
vector
>
#include <memory>
#include "ck/ck.hpp"
#include "ck/tensor_operation/gpu/device/tensor_layout.hpp"
#include "ck/tensor_operation/gpu/device/device_conv_fwd.hpp"
...
...
library/include/ck/library/tensor_operation_instance/gpu/device_elementwise_instance.hpp
View file @
ae8b307a
...
...
@@ -3,8 +3,7 @@
#pragma once
#include <cstdlib>
#include <vector>
#include "ck/ck.hpp"
#include "ck/tensor_operation/gpu/device/tensor_layout.hpp"
#include "ck/tensor_operation/gpu/device/impl/device_elementwise_impl.hpp"
...
...
library/include/ck/library/tensor_operation_instance/gpu/device_gemm_mean_squaremean_instance.hpp
View file @
ae8b307a
...
...
@@ -4,7 +4,7 @@
#pragma once
#include <cstdlib>
#include <vector>
#include "ck/ck.hpp"
#include "ck/tensor_operation/gpu/device/tensor_layout.hpp"
#include "ck/tensor_operation/gpu/device/device_gemm_reduce.hpp"
...
...
library/include/ck/library/tensor_operation_instance/gpu/gemm.hpp
View file @
ae8b307a
...
...
@@ -3,10 +3,8 @@
#pragma once
#include <cstdlib>
#include <memory>
#include <vector>
#include "ck/ck.hpp"
#include "ck/tensor_operation/gpu/device/tensor_layout.hpp"
#include "ck/tensor_operation/gpu/device/device_gemm.hpp"
...
...
library/include/ck/library/tensor_operation_instance/gpu/gemm_add_add_fastgelu.hpp
View file @
ae8b307a
...
...
@@ -3,10 +3,8 @@
#pragma once
#include <cstdlib>
#include <vector>
#include <memory>
#include "ck/ck.hpp"
#include "ck/tensor_operation/gpu/device/tensor_layout.hpp"
#include "ck/tensor_operation/gpu/device/device_gemm_multiple_d.hpp"
...
...
Prev
1
2
3
4
5
6
7
Next
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
.
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment