Skip to content
GitLab
Menu
Projects
Groups
Snippets
Loading...
Help
Help
Support
Community forum
Keyboard shortcuts
?
Submit feedback
Contribute to GitLab
Sign in / Register
Toggle navigation
Menu
Open sidebar
gaoqiong
composable_kernel
Commits
ae8b307a
Unverified
Commit
ae8b307a
authored
May 29, 2023
by
Po Yen Chen
Committed by
GitHub
May 29, 2023
Browse files
Merge branch 'develop' into feature/support-readfirstlane-for-object-types
parents
ad8bc60b
ac9e01e2
Changes
129
Hide whitespace changes
Inline
Side-by-side
Showing
20 changed files
with
338 additions
and
1973 deletions
+338
-1973
example/30_grouped_conv_fwd_multiple_d/CMakeLists.txt
example/30_grouped_conv_fwd_multiple_d/CMakeLists.txt
+17
-19
example/31_batched_gemm_gemm/CMakeLists.txt
example/31_batched_gemm_gemm/CMakeLists.txt
+11
-9
example/35_splitK_gemm/CMakeLists.txt
example/35_splitK_gemm/CMakeLists.txt
+11
-10
example/38_grouped_conv_bwd_data_multiple_d/CMakeLists.txt
example/38_grouped_conv_bwd_data_multiple_d/CMakeLists.txt
+7
-6
example/40_conv2d_fwd_quantization/CMakeLists.txt
example/40_conv2d_fwd_quantization/CMakeLists.txt
+7
-5
example/41_grouped_conv_conv_fwd/CMakeLists.txt
example/41_grouped_conv_conv_fwd/CMakeLists.txt
+10
-8
example/47_gemm_bias_softmax_gemm_permute/CMakeLists.txt
example/47_gemm_bias_softmax_gemm_permute/CMakeLists.txt
+3
-1
example/48_pool3d_fwd/CMakeLists.txt
example/48_pool3d_fwd/CMakeLists.txt
+2
-0
example/48_pool3d_fwd/pool3d_fwd_common.hpp
example/48_pool3d_fwd/pool3d_fwd_common.hpp
+187
-0
example/48_pool3d_fwd/pool3d_fwd_fp16.cpp
example/48_pool3d_fwd/pool3d_fwd_fp16.cpp
+83
-0
include/ck/problem_transform/transform_backward_data_convolution_into_gemm_v4r1_nhwc_kyxc_nhwk.hpp
...ckward_data_convolution_into_gemm_v4r1_nhwc_kyxc_nhwk.hpp
+0
-275
include/ck/problem_transform/transform_backward_data_convolution_into_gemm_v4r1r2_nhwc_kyxc_nhwk.hpp
...ward_data_convolution_into_gemm_v4r1r2_nhwc_kyxc_nhwk.hpp
+0
-355
include/ck/problem_transform/transform_backward_weight_convolution_into_gemm_v4r4r2_atomic_nchw_kcyx_nkhw.hpp
...ht_convolution_into_gemm_v4r4r2_atomic_nchw_kcyx_nkhw.hpp
+0
-150
include/ck/problem_transform/transform_backward_weight_convolution_into_gemm_v4r4r2_nchw_kcyx_nkhw.hpp
...rd_weight_convolution_into_gemm_v4r4r2_nchw_kcyx_nkhw.hpp
+0
-132
include/ck/problem_transform/transform_backward_weight_convolution_into_gemm_v4r4r4_atomic_nhwc_kyxc_nhwk.hpp
...ht_convolution_into_gemm_v4r4r4_atomic_nhwc_kyxc_nhwk.hpp
+0
-150
include/ck/problem_transform/transform_backward_weight_convolution_into_gemm_v4r4r4_nhwc_kyxc_nhwk.hpp
...rd_weight_convolution_into_gemm_v4r4r4_nhwc_kyxc_nhwk.hpp
+0
-135
include/ck/problem_transform/transform_backward_weight_convolution_into_gemm_v4r4r5_nhwc_kyxc_nhwk.hpp
...rd_weight_convolution_into_gemm_v4r4r5_nhwc_kyxc_nhwk.hpp
+0
-147
include/ck/problem_transform/transform_forward_convolution_into_gemm_v4r4_nchw_kcyx_nkhw.hpp
...orm_forward_convolution_into_gemm_v4r4_nchw_kcyx_nkhw.hpp
+0
-260
include/ck/problem_transform/transform_forward_convolution_into_gemm_v4r4_nhwc_kyxc_nhwk.hpp
...orm_forward_convolution_into_gemm_v4r4_nhwc_kyxc_nhwk.hpp
+0
-179
include/ck/problem_transform/transform_forward_convolution_into_gemm_v4r4r2_nchw_kcyx_nkhw.hpp
...m_forward_convolution_into_gemm_v4r4r2_nchw_kcyx_nkhw.hpp
+0
-132
No files found.
example/30_grouped_conv_fwd_multiple_d/CMakeLists.txt
View file @
ae8b307a
add_custom_target
(
example_grouped_conv_fwd_multiple_d
)
if
(
GPU_TARGETS MATCHES
"gfx908"
OR GPU_TARGETS MATCHES
"gfx90a"
OR GPU_TARGETS MATCHES
"gfx940"
)
add_custom_target
(
example_grouped_conv_fwd_multiple_d
)
add_example_executable
(
example_grouped_conv_fwd_bias_relu_add_xdl_fp16 grouped_conv_fwd_bias_relu_add_xdl_fp16.cpp
)
add_example_executable
(
example_grouped_conv_fwd_bias_relu_add_xdl_fp16 grouped_conv_fwd_bias_relu_add_xdl_fp16.cpp
)
add_example_executable
(
example_grouped_conv_fwd_bias_relu_add_xdl_fp32 grouped_conv_fwd_bias_relu_add_xdl_fp32.cpp
)
add_example_executable
(
example_grouped_conv_fwd_bias_relu_add_xdl_fp32 grouped_conv_fwd_bias_relu_add_xdl_fp32.cpp
)
add_example_executable
(
example_grouped_conv_fwd_bias_relu_add_xdl_bf16 grouped_conv_fwd_bias_relu_add_xdl_bf16.cpp
)
add_example_executable
(
example_grouped_conv_fwd_bias_relu_add_xdl_bf16 grouped_conv_fwd_bias_relu_add_xdl_bf16.cpp
)
add_example_executable
(
example_grouped_conv_fwd_bias_relu_add_xdl_int8 grouped_conv_fwd_bias_relu_add_xdl_int8.cpp
)
add_example_executable
(
example_grouped_conv_fwd_bias_relu_add_xdl_int8 grouped_conv_fwd_bias_relu_add_xdl_int8.cpp
)
add_dependencies
(
example_grouped_conv_fwd_multiple_d example_grouped_conv_fwd_bias_relu_add_xdl_fp16
)
add_dependencies
(
example_grouped_conv_fwd_multiple_d example_grouped_conv_fwd_bias_relu_add_xdl_fp16
)
add_dependencies
(
example_grouped_conv_fwd_multiple_d example_grouped_conv_fwd_bias_relu_add_xdl_fp32
)
add_dependencies
(
example_grouped_conv_fwd_multiple_d example_grouped_conv_fwd_bias_relu_add_xdl_fp32
)
add_dependencies
(
example_grouped_conv_fwd_multiple_d example_grouped_conv_fwd_bias_relu_add_xdl_bf16
)
add_dependencies
(
example_grouped_conv_fwd_multiple_d example_grouped_conv_fwd_bias_relu_add_xdl_bf16
)
add_dependencies
(
example_grouped_conv_fwd_multiple_d example_grouped_conv_fwd_bias_relu_add_xdl_int8
)
add_dependencies
(
example_grouped_conv_fwd_multiple_d example_grouped_conv_fwd_bias_relu_add_xdl_int8
)
if
(
USE_BITINT_EXTENSION_INT4
)
add_example_executable
(
example_grouped_conv_fwd_bias_relu_add_xdl_int4 grouped_conv_fwd_bias_relu_add_xdl_int4.cpp
)
add_dependencies
(
example_grouped_conv_fwd_multiple_d example_grouped_conv_fwd_bias_relu_add_xdl_int4
)
endif
()
# USE_BITINT_EXTENSION_INT4
if
(
USE_BITINT_EXTENSION_INT4
)
add_example_executable
(
example_grouped_conv_fwd_bias_relu_add_xdl_int4 grouped_conv_fwd_bias_relu_add_xdl_int4.cpp
)
add_dependencies
(
example_grouped_conv_fwd_multiple_d example_grouped_conv_fwd_bias_relu_add_xdl_int4
)
endif
()
# USE_BITINT_EXTENSION_INT4
add_example_executable
(
example_grouped_conv_fwd_xdl_fp16 grouped_conv_fwd_xdl_fp16.cpp
)
add_dependencies
(
example_grouped_conv_fwd_multiple_d example_grouped_conv_fwd_xdl_fp16
)
endif
()
if
(
GPU_TARGETS MATCHES
"gfx1100"
OR GPU_TARGETS MATCHES
"gfx1101"
OR GPU_TARGETS MATCHES
"gfx1102"
)
if
(
GPU_TARGETS MATCHES
"gfx1100"
OR GPU_TARGETS MATCHES
"gfx1101"
OR GPU_TARGETS MATCHES
"gfx1102"
)
add_example_executable
(
example_grouped_conv_fwd_bias_relu_add_wmma_fp16 grouped_conv_fwd_bias_relu_add_wmma_fp16.cpp
)
add_example_executable
(
example_grouped_conv_fwd_bias_relu_add_wmma_fp16 grouped_conv_fwd_bias_relu_add_wmma_fp16.cpp
)
endif
()
endif
()
add_example_executable
(
example_grouped_conv_fwd_xdl_fp16 grouped_conv_fwd_xdl_fp16.cpp
)
add_dependencies
(
example_grouped_conv_fwd_multiple_d example_grouped_conv_fwd_xdl_fp16
)
example/31_batched_gemm_gemm/CMakeLists.txt
View file @
ae8b307a
add_example_executable
(
example_batched_gemm_gemm_xdl_fp32 batched_gemm_gemm_xdl_fp32.cpp
)
if
(
GPU_TARGETS MATCHES
"gfx908"
OR GPU_TARGETS MATCHES
"gfx90a"
OR GPU_TARGETS MATCHES
"gfx940"
)
add_example_executable
(
example_batched_gemm_gemm_xdl_fp16 batched_gemm_gemm_xdl_fp16.cpp
)
add_example_executable
(
example_batched_gemm_gemm_xdl_fp32 batched_gemm_gemm_xdl_fp32.cpp
)
add_example_executable
(
example_batched_gemm_gemm_xdl_bf16 batched_gemm_gemm_xdl_bf16.cpp
)
add_example_executable
(
example_batched_gemm_gemm_xdl_fp16 batched_gemm_gemm_xdl_fp16.cpp
)
if
(
NOT GPU_TARGETS MATCHES
"gfx940"
)
add_example_executable
(
example_batched_gemm_gemm_xdl_bf16 batched_gemm_gemm_xdl_bf16.cpp
)
add_example_executable
(
example_batched_gemm_gemm_xdl_int8 batched_gemm_gemm_xdl_int8.cpp
)
if
(
NOT GPU_TARGETS MATCHES
"gfx940"
)
endif
()
add_example_executable
(
example_batched_gemm_gemm_xdl_int8 batched_gemm_gemm_xdl_int8.cpp
)
endif
()
if
(
USE_BITINT_EXTENSION_INT4
)
if
(
USE_BITINT_EXTENSION_INT4
)
add_example_executable
(
example_batched_gemm_gemm_xdl_int4 batched_gemm_gemm_xdl_int4.cpp
)
add_example_executable
(
example_batched_gemm_gemm_xdl_int4 batched_gemm_gemm_xdl_int4.cpp
)
endif
(
USE_BITINT_EXTENSION_INT4
)
endif
(
USE_BITINT_EXTENSION_INT4
)
endif
()
\ No newline at end of file
example/35_splitK_gemm/CMakeLists.txt
View file @
ae8b307a
add_custom_target
(
example_splitK_gemm_xdl
)
if
(
GPU_TARGETS MATCHES
"gfx908"
OR GPU_TARGETS MATCHES
"gfx90a"
OR GPU_TARGETS MATCHES
"gfx940"
)
add_custom_target
(
example_splitK_gemm_xdl
)
add_example_executable
(
example_splitK_gemm_xdl_fp32 splitK_gemm_xdl_fp32.cpp
)
add_example_executable
(
example_splitK_gemm_xdl_fp16 splitK_gemm_xdl_fp16.cpp
)
add_example_executable
(
example_splitK_gemm_xdl_bfp16 splitK_gemm_xdl_bfp16.cpp
)
add_example_executable
(
example_splitK_gemm_xdl_int8 splitK_gemm_xdl_int8.cpp
)
add_example_executable
(
example_splitK_gemm_xdl_fp32 splitK_gemm_xdl_fp32.cpp
)
add_dependencies
(
example_splitK_gemm_xdl
add_example_executable
(
example_splitK_gemm_xdl_fp16 splitK_gemm_xdl_fp16.cpp
)
add_example_executable
(
example_splitK_gemm_xdl_bfp16 splitK_gemm_xdl_bfp16.cpp
)
add_example_executable
(
example_splitK_gemm_xdl_int8 splitK_gemm_xdl_int8.cpp
)
add_dependencies
(
example_splitK_gemm_xdl
example_splitK_gemm_xdl_fp32
example_splitK_gemm_xdl_fp32
example_splitK_gemm_xdl_fp16
example_splitK_gemm_xdl_fp16
example_splitK_gemm_xdl_bfp16
example_splitK_gemm_xdl_bfp16
example_splitK_gemm_xdl_int8
)
example_splitK_gemm_xdl_int8
)
if
(
USE_BITINT_EXTENSION_INT4
)
if
(
USE_BITINT_EXTENSION_INT4
)
add_example_executable
(
example_splitK_gemm_xdl_int4 splitK_gemm_xdl_int4.cpp
)
add_example_executable
(
example_splitK_gemm_xdl_int4 splitK_gemm_xdl_int4.cpp
)
add_dependencies
(
example_splitK_gemm_xdl example_splitK_gemm_xdl_int4
)
add_dependencies
(
example_splitK_gemm_xdl example_splitK_gemm_xdl_int4
)
endif
()
endif
()
endif
()
example/38_grouped_conv_bwd_data_multiple_d/CMakeLists.txt
View file @
ae8b307a
add_custom_target
(
example_grouped_conv_bwd_data
)
if
(
GPU_TARGETS MATCHES
"gfx908"
OR GPU_TARGETS MATCHES
"gfx90a"
OR GPU_TARGETS MATCHES
"gfx940"
)
add_custom_target
(
example_grouped_conv_bwd_data
)
add_example_executable
(
example_grouped_conv_bwd_data_fp16 grouped_conv_bwd_data_fp16.cpp
)
add_example_executable
(
example_grouped_conv_bwd_data_bias_relu_fp16 grouped_conv_bwd_data_bias_relu_fp16.cpp
)
add_example_executable
(
example_grouped_conv_bwd_data_fp16 grouped_conv_bwd_data_fp16.cpp
)
add_dependencies
(
example_grouped_conv_bwd_data example_grouped_conv_bwd_data_fp16
)
add_example_executable
(
example_grouped_conv_bwd_data_bias_relu_fp16 grouped_conv_bwd_data_bias_relu_fp16.cpp
)
add_dependencies
(
example_grouped_conv_bwd_data example_grouped_conv_bwd_data_bias_relu_fp16
)
endif
()
add_dependencies
(
example_grouped_conv_bwd_data example_grouped_conv_bwd_data_fp16
)
\ No newline at end of file
add_dependencies
(
example_grouped_conv_bwd_data example_grouped_conv_bwd_data_bias_relu_fp16
)
example/40_conv2d_fwd_quantization/CMakeLists.txt
View file @
ae8b307a
if
(
GPU_TARGETS MATCHES
"gfx908"
OR GPU_TARGETS MATCHES
"gfx90a"
OR GPU_TARGETS MATCHES
"gfx940"
)
add_example_executable
(
example_conv2d_fwd_xdl_perlayer_quantization_int8 conv2d_fwd_xdl_perlayer_quantization_int8.cpp
)
add_example_executable
(
example_conv2d_fwd_xdl_perchannel_quantization_int8 conv2d_fwd_xdl_perchannel_quantization_int8.cpp
)
add_example_executable
(
example_conv2d_fwd_xdl_bias_relu_perlayer_quantization_int8 conv2d_fwd_xdl_bias_relu_perlayer_quantization_int8.cpp
)
add_example_executable
(
example_conv2d_fwd_xdl_bias_relu_perchannel_quantization_int8 conv2d_fwd_xdl_bias_relu_perchannel_quantization_int8.cpp
)
endif
()
# Conv perlayer quantization
# Conv perlayer quantization
add_example_executable
(
example_conv2d_fwd_dl_perlayer_quantization_int8 conv2d_fwd_dl_perlayer_quantization_int8.cpp
)
add_example_executable
(
example_conv2d_fwd_dl_perlayer_quantization_int8 conv2d_fwd_dl_perlayer_quantization_int8.cpp
)
add_example_executable
(
example_conv2d_fwd_xdl_perlayer_quantization_int8 conv2d_fwd_xdl_perlayer_quantization_int8.cpp
)
# Conv perchannel quantization
# Conv perchannel quantization
add_example_executable
(
example_conv2d_fwd_dl_perchannel_quantization_int8 conv2d_fwd_dl_perchannel_quantization_int8.cpp
)
add_example_executable
(
example_conv2d_fwd_dl_perchannel_quantization_int8 conv2d_fwd_dl_perchannel_quantization_int8.cpp
)
add_example_executable
(
example_conv2d_fwd_xdl_perchannel_quantization_int8 conv2d_fwd_xdl_perchannel_quantization_int8.cpp
)
# Conv + bias + relu perlayer quantization
# Conv + bias + relu perlayer quantization
add_example_executable
(
example_conv2d_fwd_dl_bias_relu_perlayer_quantization_int8 conv2d_fwd_dl_bias_relu_perlayer_quantization_int8.cpp
)
add_example_executable
(
example_conv2d_fwd_dl_bias_relu_perlayer_quantization_int8 conv2d_fwd_dl_bias_relu_perlayer_quantization_int8.cpp
)
add_example_executable
(
example_conv2d_fwd_xdl_bias_relu_perlayer_quantization_int8 conv2d_fwd_xdl_bias_relu_perlayer_quantization_int8.cpp
)
# Conv + bias + relu perchannel quantization
# Conv + bias + relu perchannel quantization
add_example_executable
(
example_conv2d_fwd_dl_bias_relu_perchannel_quantization_int8 conv2d_fwd_dl_bias_relu_perchannel_quantization_int8.cpp
)
add_example_executable
(
example_conv2d_fwd_dl_bias_relu_perchannel_quantization_int8 conv2d_fwd_dl_bias_relu_perchannel_quantization_int8.cpp
)
add_example_executable
(
example_conv2d_fwd_xdl_bias_relu_perchannel_quantization_int8 conv2d_fwd_xdl_bias_relu_perchannel_quantization_int8.cpp
)
# Conv + bias + tanh perlayer quantization
# Conv + bias + tanh perlayer quantization
add_example_executable
(
example_conv2d_fwd_dl_bias_tanh_perlayer_quantization_int8 conv2d_fwd_dl_bias_tanh_perlayer_quantization_int8.cpp
)
add_example_executable
(
example_conv2d_fwd_dl_bias_tanh_perlayer_quantization_int8 conv2d_fwd_dl_bias_tanh_perlayer_quantization_int8.cpp
)
# Conv + bias + tanh perchannel quantization
# Conv + bias + tanh perchannel quantization
add_example_executable
(
example_conv2d_fwd_dl_bias_tanh_perchannel_quantization_int8 conv2d_fwd_dl_bias_tanh_perchannel_quantization_int8.cpp
)
add_example_executable
(
example_conv2d_fwd_dl_bias_tanh_perchannel_quantization_int8 conv2d_fwd_dl_bias_tanh_perchannel_quantization_int8.cpp
)
\ No newline at end of file
example/41_grouped_conv_conv_fwd/CMakeLists.txt
View file @
ae8b307a
add_example_executable
(
example_grouped_conv_conv_fwd_xdl_fp32 grouped_conv_conv_fwd_xdl_fp32.cpp
)
if
(
GPU_TARGETS MATCHES
"gfx908"
OR GPU_TARGETS MATCHES
"gfx90a"
OR GPU_TARGETS MATCHES
"gfx940"
)
add_example_executable
(
example_grouped_conv_conv_fwd_xdl_fp16 grouped_conv_conv_fwd_xdl_fp16.cpp
)
add_example_executable
(
example_grouped_conv_conv_fwd_xdl_fp32 grouped_conv_conv_fwd_xdl_fp32.cpp
)
add_example_executable
(
example_grouped_conv_conv_fwd_xdl_bf16 grouped_conv_conv_fwd_xdl_bf16.cpp
)
add_example_executable
(
example_grouped_conv_conv_fwd_xdl_fp16 grouped_conv_conv_fwd_xdl_fp16.cpp
)
if
(
NOT GPU_TARGETS MATCHES
"gfx940"
)
add_example_executable
(
example_grouped_conv_conv_fwd_xdl_bf16 grouped_conv_conv_fwd_xdl_bf16.cpp
)
add_example_executable
(
example_grouped_conv_conv_fwd_xdl_int8 grouped_conv_conv_fwd_xdl_int8.cpp
)
if
(
NOT GPU_TARGETS MATCHES
"gfx940"
)
add_example_executable
(
example_grouped_conv_conv_fwd_xdl_int8 grouped_conv_conv_fwd_xdl_int8.cpp
)
endif
()
if
(
USE_BITINT_EXTENSION_INT4
)
add_example_executable
(
example_grouped_conv_conv_fwd_xdl_int4 grouped_conv_conv_fwd_xdl_int4.cpp
)
endif
(
USE_BITINT_EXTENSION_INT4
)
endif
()
endif
()
if
(
USE_BITINT_EXTENSION_INT4
)
add_example_executable
(
example_grouped_conv_conv_fwd_xdl_int4 grouped_conv_conv_fwd_xdl_int4.cpp
)
endif
(
USE_BITINT_EXTENSION_INT4
)
example/47_gemm_bias_softmax_gemm_permute/CMakeLists.txt
View file @
ae8b307a
add_example_executable
(
example_gemm_bias_softmax_gemm_permute gemm_bias_softmax_gemm_permute.cpp
)
if
(
GPU_TARGETS MATCHES
"gfx908"
OR GPU_TARGETS MATCHES
"gfx90a"
OR GPU_TARGETS MATCHES
"gfx940"
)
add_example_executable
(
example_gemm_bias_softmax_gemm_permute gemm_bias_softmax_gemm_permute.cpp
)
endif
()
example/48_pool3d_fwd/CMakeLists.txt
0 → 100644
View file @
ae8b307a
add_example_executable
(
example_pool3d_fwd_fp16 pool3d_fwd_fp16.cpp
)
example/48_pool3d_fwd/pool3d_fwd_common.hpp
0 → 100644
View file @
ae8b307a
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2022, Advanced Micro Devices, Inc. All rights reserved.
#pragma once
#include <iostream>
#include "ck/ck.hpp"
#include "ck/utility/reduction_enums.hpp"
#include "ck/utility/reduction_functions_accumulate.hpp"
#include "ck/tensor_operation/gpu/device/reduction_operator_mapping.hpp"
#include "ck/tensor_operation/gpu/device/impl/device_pool3d_fwd_ndhwc_ndhwc.hpp"
#include "ck/tensor_operation/gpu/element/element_wise_operation.hpp"
#include "ck/library/utility/check_err.hpp"
#include "ck/library/utility/device_memory.hpp"
#include "ck/library/utility/host_tensor.hpp"
#include "ck/library/utility/host_tensor_generator.hpp"
#include "ck/library/utility/literals.hpp"
#include "ck/library/reference_tensor_operation/cpu/reference_pool_fwd.hpp"
template
<
typename
InDataType
,
typename
OutDataType
,
typename
ComputeDataType
,
typename
IndexDataType
,
typename
InLayout
,
typename
OutLayout
,
ck
::
ReduceTensorOp
ReduceOpId
,
bool
PropagateNan
,
bool
OutputIndex
>
bool
pool3d_test
(
bool
do_verification
,
bool
time_kernel
,
ck
::
index_t
N
,
ck
::
index_t
C
,
ck
::
index_t
Z
,
ck
::
index_t
Y
,
ck
::
index_t
X
,
ck
::
index_t
Di
,
ck
::
index_t
Hi
,
ck
::
index_t
Wi
,
ck
::
index_t
window_stride_d
,
ck
::
index_t
window_stride_h
,
ck
::
index_t
window_stride_w
,
ck
::
index_t
in_left_pad_d
,
ck
::
index_t
in_left_pad_h
,
ck
::
index_t
in_left_pad_w
,
ck
::
index_t
in_right_pad_d
,
ck
::
index_t
in_right_pad_h
,
ck
::
index_t
in_right_pad_w
)
{
using
DevicePoolFwdInstance
=
ck
::
tensor_operation
::
device
::
DevicePool3dFwd_Input_N_Di_Hi_Wi_C_Output_N_Do_Ho_Wo_C
<
InDataType
,
// InDataType
OutDataType
,
// OutDataType
IndexDataType
,
// IndexDataType
ComputeDataType
,
// ComputeDataType
ReduceOpId
,
OutputIndex
,
64
,
// BlockSize
64
,
// ReduceMThreadClusterSize
1
,
// ReduceKThreadClusterSize
4
,
// ReduceMThreadSliceSize
1
,
// ReduceKThreadSliceSize
4
>
;
// InSrcOutDstVectorSize
const
ck
::
index_t
Do
=
(
Di
+
in_left_pad_d
+
in_right_pad_d
-
Z
)
/
window_stride_d
+
1
;
const
ck
::
index_t
Ho
=
(
Hi
+
in_left_pad_h
+
in_right_pad_h
-
Y
)
/
window_stride_h
+
1
;
const
ck
::
index_t
Wo
=
(
Wi
+
in_left_pad_w
+
in_right_pad_w
-
X
)
/
window_stride_w
+
1
;
const
std
::
vector
<
ck
::
index_t
>
window_spatial_lengths
{
Z
,
Y
,
X
};
const
std
::
vector
<
ck
::
index_t
>
window_strides
{
window_stride_d
,
window_stride_h
,
window_stride_w
};
const
std
::
vector
<
ck
::
index_t
>
input_left_pads
{
in_left_pad_d
,
in_left_pad_h
,
in_left_pad_w
};
const
std
::
vector
<
ck
::
index_t
>
input_right_pads
{
in_right_pad_d
,
in_right_pad_h
,
in_right_pad_w
};
// tensor layout
auto
f_host_tensor_descriptor
=
[](
std
::
size_t
N_
,
std
::
size_t
C_
,
std
::
size_t
D
,
std
::
size_t
H
,
std
::
size_t
W
,
auto
layout
)
{
using
namespace
ck
::
literals
;
if
constexpr
(
ck
::
is_same
<
decltype
(
layout
),
ck
::
tensor_layout
::
convolution
::
NCDHW
>::
value
)
{
return
HostTensorDescriptor
({
N_
,
C_
,
D
,
H
,
W
},
{
C_
*
D
*
H
*
W
,
D
*
H
*
W
,
H
*
W
,
W
,
1
_uz
});
}
else
if
constexpr
(
ck
::
is_same
<
decltype
(
layout
),
ck
::
tensor_layout
::
convolution
::
NDHWC
>::
value
)
{
return
HostTensorDescriptor
({
N_
,
C_
,
D
,
H
,
W
},
{
D
*
C_
*
H
*
W
,
1
_uz
,
C_
*
H
*
W
,
W
*
C_
,
C_
});
}
};
Tensor
<
InDataType
>
in_n_c_di_hi_wi
(
f_host_tensor_descriptor
(
N
,
C
,
Di
,
Hi
,
Wi
,
InLayout
{}));
Tensor
<
OutDataType
>
out_n_c_do_ho_wo_host
(
f_host_tensor_descriptor
(
N
,
C
,
Do
,
Ho
,
Wo
,
OutLayout
{}));
Tensor
<
IndexDataType
>
out_indices_n_c_do_ho_wo_host
(
f_host_tensor_descriptor
(
N
,
C
,
Do
,
Ho
,
Wo
,
OutLayout
{}));
Tensor
<
OutDataType
>
out_n_c_do_ho_wo_device
(
f_host_tensor_descriptor
(
N
,
C
,
Do
,
Ho
,
Wo
,
OutLayout
{}));
Tensor
<
IndexDataType
>
out_indices_n_c_do_ho_wo_device
(
f_host_tensor_descriptor
(
N
,
C
,
Do
,
Ho
,
Wo
,
OutLayout
{}));
std
::
cout
<<
"in_n_c_di_hi_wi: "
<<
in_n_c_di_hi_wi
.
mDesc
<<
std
::
endl
;
std
::
cout
<<
"out_n_c_do_ho_wo: "
<<
out_n_c_do_ho_wo_host
.
mDesc
<<
std
::
endl
;
in_n_c_di_hi_wi
.
GenerateTensorValue
(
GeneratorTensor_3
<
InDataType
>
{
-
1.0
,
1.0
});
DeviceMem
in_device_buf
(
sizeof
(
InDataType
)
*
in_n_c_di_hi_wi
.
mDesc
.
GetElementSpaceSize
());
DeviceMem
out_device_buf
(
sizeof
(
OutDataType
)
*
out_n_c_do_ho_wo_device
.
mDesc
.
GetElementSpaceSize
());
DeviceMem
out_indices_device_buf
(
sizeof
(
IndexDataType
)
*
out_indices_n_c_do_ho_wo_device
.
mDesc
.
GetElementSpaceSize
());
in_device_buf
.
ToDevice
(
in_n_c_di_hi_wi
.
mData
.
data
());
auto
pool
=
DevicePoolFwdInstance
{};
auto
invoker_ptr
=
pool
.
MakeInvokerPointer
();
auto
argument_ptr
=
pool
.
MakeArgumentPointer
(
static_cast
<
InDataType
*>
(
in_device_buf
.
GetDeviceBuffer
()),
static_cast
<
OutDataType
*>
(
out_device_buf
.
GetDeviceBuffer
()),
static_cast
<
IndexDataType
*>
(
out_indices_device_buf
.
GetDeviceBuffer
()),
{
N
,
C
,
Di
,
Hi
,
Wi
},
{
Z
,
Y
,
X
},
{
N
,
C
,
Do
,
Ho
,
Wo
},
{
Di
*
C
*
Hi
*
Wi
,
1
,
C
*
Hi
*
Wi
,
Wi
*
C
,
C
},
{
Do
*
C
*
Ho
*
Wo
,
1
,
C
*
Ho
*
Wo
,
Wo
*
C
,
C
},
{
Do
*
C
*
Ho
*
Wo
,
1
,
C
*
Ho
*
Wo
,
Wo
*
C
,
C
},
window_strides
,
input_left_pads
,
input_right_pads
,
{
2
,
3
,
4
});
if
(
!
pool
.
IsSupportedArgument
(
argument_ptr
.
get
()))
{
throw
std
::
runtime_error
(
"wrong! device_op with the specified compilation parameters does "
"not support this problem"
);
}
float
ave_time
=
invoker_ptr
->
Run
(
argument_ptr
.
get
(),
StreamConfig
{
nullptr
,
time_kernel
});
std
::
cout
<<
"Perf: "
<<
ave_time
<<
std
::
endl
;
bool
pass
=
true
;
if
(
do_verification
)
{
using
ReferencePoolingFwdInstance
=
ck
::
tensor_operation
::
host
::
ReferencePoolingFwd
<
5
,
3
,
InDataType
,
OutDataType
,
ComputeDataType
,
IndexDataType
,
ReduceOpId
,
PropagateNan
,
OutputIndex
>
;
auto
ref_pooling
=
ReferencePoolingFwdInstance
{};
auto
ref_pooling_invoker
=
ref_pooling
.
MakeInvoker
();
auto
ref_pooling_argument
=
ref_pooling
.
MakeArgument
(
in_n_c_di_hi_wi
,
out_n_c_do_ho_wo_host
,
out_indices_n_c_do_ho_wo_host
,
window_spatial_lengths
,
window_strides
,
input_left_pads
,
input_right_pads
);
ref_pooling_invoker
.
Run
(
ref_pooling_argument
);
out_device_buf
.
FromDevice
(
out_n_c_do_ho_wo_device
.
mData
.
data
());
pass
=
pass
&&
ck
::
utils
::
check_err
(
out_n_c_do_ho_wo_device
,
out_n_c_do_ho_wo_host
);
if
constexpr
(
OutputIndex
)
{
out_indices_device_buf
.
FromDevice
(
out_indices_n_c_do_ho_wo_device
.
mData
.
data
());
pass
=
pass
&&
ck
::
utils
::
check_err
(
out_indices_n_c_do_ho_wo_device
,
out_indices_n_c_do_ho_wo_host
);
};
}
return
(
pass
);
};
example/48_pool3d_fwd/pool3d_fwd_fp16.cpp
0 → 100644
View file @
ae8b307a
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2022, Advanced Micro Devices, Inc. All rights reserved.
#include <iostream>
#include "ck/ck.hpp"
#include "ck/tensor_operation/gpu/device/tensor_layout.hpp"
#include "ck/utility/reduction_enums.hpp"
#include "pool3d_fwd_common.hpp"
using
InDataType
=
ck
::
half_t
;
using
OutDataType
=
ck
::
half_t
;
using
ComputeDataType
=
float
;
using
IndexDataType
=
int32_t
;
using
InLayout
=
ck
::
tensor_layout
::
convolution
::
NDHWC
;
using
OutLayout
=
ck
::
tensor_layout
::
convolution
::
NDHWC
;
#if 1
static
constexpr
auto
ReduceOpId
=
ck
::
ReduceTensorOp
::
MAX
;
#else
static
constexpr
auto
ReduceOpId
=
ck
::
ReduceTensorOp
::
AVG
;
#endif
static
constexpr
bool
OutputIndex
=
false
;
static
constexpr
bool
PropagateNan
=
false
;
int
main
()
{
bool
do_verification
=
true
;
bool
time_kernel
=
false
;
// Pool shape
ck
::
index_t
N
=
2
;
ck
::
index_t
C
=
32
;
ck
::
index_t
Z
=
2
;
ck
::
index_t
Y
=
2
;
ck
::
index_t
X
=
2
;
ck
::
index_t
Di
=
30
;
ck
::
index_t
Hi
=
30
;
ck
::
index_t
Wi
=
30
;
ck
::
index_t
window_stride_d
=
2
;
ck
::
index_t
window_stride_h
=
2
;
ck
::
index_t
window_stride_w
=
2
;
ck
::
index_t
in_left_pad_d
=
1
;
ck
::
index_t
in_left_pad_h
=
1
;
ck
::
index_t
in_left_pad_w
=
1
;
ck
::
index_t
in_right_pad_d
=
1
;
ck
::
index_t
in_right_pad_h
=
1
;
ck
::
index_t
in_right_pad_w
=
1
;
bool
pass
=
pool3d_test
<
InDataType
,
OutDataType
,
ComputeDataType
,
IndexDataType
,
InLayout
,
OutLayout
,
ReduceOpId
,
PropagateNan
,
OutputIndex
>
(
do_verification
,
time_kernel
,
N
,
C
,
Z
,
Y
,
X
,
Di
,
Hi
,
Wi
,
window_stride_d
,
window_stride_h
,
window_stride_w
,
in_left_pad_d
,
in_left_pad_h
,
in_left_pad_w
,
in_right_pad_d
,
in_right_pad_h
,
in_right_pad_w
);
return
(
pass
?
0
:
1
);
}
include/ck/problem_transform/transform_backward_data_convolution_into_gemm_v4r1_nhwc_kyxc_nhwk.hpp
deleted
100644 → 0
View file @
ad8bc60b
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2022, Advanced Micro Devices, Inc. All rights reserved.
#ifndef CK_TRANSFORM_BACKWARD_DATA_CONVOLUTION_INTO_GEMM_V4R1_NHWC_KYXC_NHWK_HPP
#define CK_TRANSFORM_BACKWARD_DATA_CONVOLUTION_INTO_GEMM_V4R1_NHWC_KYXC_NHWK_HPP
#include "common_header.hpp"
#include "tensor_descriptor.hpp"
#include "tensor_descriptor_helper.hpp"
namespace
ck
{
// Number of GEMMs = YTilde * XTilde
// GemmM = C
// GemmN = N * HTildeSlice * WTildeSlice
// GemmK = K * YDotSlice * XDotSlice
template
<
typename
...
Wei
,
typename
...
In
,
typename
...
Out
,
typename
ConvStrides
,
typename
ConvDilations
,
typename
InLeftPads
,
typename
InRightPads
,
index_t
IYTildeValue
,
index_t
IXTildeValue
,
index_t
GemmK1Value
>
__host__
__device__
constexpr
auto
transform_backward_data_convolution_into_gemm_v4r1_nhwc_kyxc_nhwk
(
const
TensorDescriptor
<
Wei
...
>&
wei_k_y_x_c_grid_desc
,
const
TensorDescriptor
<
Out
...
>&
out_n_ho_wo_k_grid_desc
,
const
TensorDescriptor
<
In
...
>&
in_n_hi_wi_c_grid_desc
,
const
ConvStrides
&
conv_strides
,
const
ConvDilations
&
conv_dilations
,
const
InLeftPads
&
in_left_pads
,
const
InRightPads
&
in_right_pads
,
Number
<
IYTildeValue
>
,
Number
<
IXTildeValue
>
,
Number
<
GemmK1Value
>
)
{
constexpr
auto
I0
=
Number
<
0
>
{};
constexpr
auto
I1
=
Number
<
1
>
{};
constexpr
auto
I2
=
Number
<
2
>
{};
constexpr
auto
I3
=
Number
<
3
>
{};
constexpr
auto
GemmK1
=
Number
<
GemmK1Value
>
{};
constexpr
auto
IYTilde
=
Number
<
IYTildeValue
>
{};
constexpr
auto
IXTilde
=
Number
<
IXTildeValue
>
{};
const
auto
N
=
in_n_hi_wi_c_grid_desc
.
GetLength
(
I0
);
const
auto
C
=
in_n_hi_wi_c_grid_desc
.
GetLength
(
I3
);
const
auto
K
=
out_n_ho_wo_k_grid_desc
.
GetLength
(
I3
);
const
auto
Hi
=
in_n_hi_wi_c_grid_desc
.
GetLength
(
I1
);
const
auto
Wi
=
in_n_hi_wi_c_grid_desc
.
GetLength
(
I2
);
const
auto
Ho
=
out_n_ho_wo_k_grid_desc
.
GetLength
(
I1
);
const
auto
Wo
=
out_n_ho_wo_k_grid_desc
.
GetLength
(
I2
);
const
auto
Y
=
wei_k_y_x_c_grid_desc
.
GetLength
(
I1
);
const
auto
X
=
wei_k_y_x_c_grid_desc
.
GetLength
(
I2
);
const
auto
ConvStrideH
=
conv_strides
[
I0
];
const
auto
ConvStrideW
=
conv_strides
[
I1
];
const
auto
ConvDilationH
=
conv_dilations
[
I0
];
const
auto
ConvDilationW
=
conv_dilations
[
I1
];
const
auto
InLeftPadH
=
in_left_pads
[
I0
];
const
auto
InLeftPadW
=
in_left_pads
[
I1
];
const
auto
InRightPadH
=
in_right_pads
[
I0
];
const
auto
InRightPadW
=
in_right_pads
[
I1
];
const
auto
GcdStrideDilationH
=
math
::
gcd
(
ConvStrideH
,
ConvDilationH
);
const
auto
GcdStrideDilationW
=
math
::
gcd
(
ConvStrideW
,
ConvDilationW
);
const
auto
YTilde
=
ConvStrideH
/
GcdStrideDilationH
;
const
auto
XTilde
=
ConvStrideW
/
GcdStrideDilationW
;
const
auto
YDot
=
math
::
integer_divide_ceil
(
Y
,
YTilde
);
const
auto
XDot
=
math
::
integer_divide_ceil
(
X
,
XTilde
);
const
auto
HTilde
=
Ho
+
math
::
integer_divide_ceil
(
ConvDilationH
*
(
Y
-
I1
),
ConvStrideH
);
const
auto
WTilde
=
Wo
+
math
::
integer_divide_ceil
(
ConvDilationW
*
(
X
-
I1
),
ConvStrideW
);
// only work on HTilde and WTilde that contribute to non-padding area of input tensor
const
auto
IHTildeSliceBegin
=
math
::
integer_divide_floor
(
math
::
max
(
I0
,
InLeftPadH
-
ConvDilationH
*
(
YTilde
-
I1
)),
ConvStrideH
);
const
auto
IWTildeSliceBegin
=
math
::
integer_divide_floor
(
math
::
max
(
I0
,
InLeftPadW
-
ConvDilationW
*
(
XTilde
-
I1
)),
ConvStrideW
);
const
auto
IHTildeSliceEnd
=
math
::
min
(
HTilde
,
math
::
integer_divide_ceil
(
InLeftPadH
+
Hi
-
I1
,
ConvStrideH
)
+
I1
);
const
auto
IWTildeSliceEnd
=
math
::
min
(
WTilde
,
math
::
integer_divide_ceil
(
InLeftPadW
+
Wi
-
I1
,
ConvStrideW
)
+
I1
);
const
auto
HTildeSlice
=
IHTildeSliceEnd
-
IHTildeSliceBegin
;
const
auto
WTildeSlice
=
IWTildeSliceEnd
-
IWTildeSliceBegin
;
// GemmK is different for each GEMM
const
auto
YDotSlice
=
math
::
integer_divide_ceil
(
Y
-
IYTilde
,
YTilde
);
const
auto
XDotSlice
=
math
::
integer_divide_ceil
(
X
-
IXTilde
,
XTilde
);
const
auto
K1
=
GemmK1
;
const
auto
K0
=
K
/
K1
;
// weight tensor
const
auto
wei_k_ydot_ytilde_xdot_xtilde_c_grid_desc
=
transform_tensor_descriptor
(
wei_k_y_x_c_grid_desc
,
make_tuple
(
make_pass_through_transform
(
K
),
make_embed_transform
(
make_tuple
(
YDot
,
YTilde
),
make_tuple
(
ConvStrideH
/
GcdStrideDilationH
,
I1
)),
make_embed_transform
(
make_tuple
(
XDot
,
XTilde
),
make_tuple
(
ConvStrideW
/
GcdStrideDilationW
,
I1
)),
make_pass_through_transform
(
C
)),
make_tuple
(
Sequence
<
0
>
{},
Sequence
<
1
>
{},
Sequence
<
2
>
{},
Sequence
<
3
>
{}),
make_tuple
(
Sequence
<
0
>
{},
Sequence
<
1
,
2
>
{},
Sequence
<
3
,
4
>
{},
Sequence
<
5
>
{}));
const
auto
wei_k0_k1_ydotslice_xdotslice_c_grid_desc
=
transform_tensor_descriptor
(
wei_k_ydot_ytilde_xdot_xtilde_c_grid_desc
,
make_tuple
(
make_unmerge_transform
(
make_tuple
(
K0
,
K1
)),
make_slice_transform
(
YDot
,
I0
,
YDotSlice
),
make_slice_transform
(
XDot
,
I0
,
XDotSlice
),
make_freeze_transform
(
IYTilde
),
make_freeze_transform
(
IXTilde
),
make_pass_through_transform
(
C
)),
make_tuple
(
Sequence
<
0
>
{},
Sequence
<
1
>
{},
Sequence
<
3
>
{},
Sequence
<
2
>
{},
Sequence
<
4
>
{},
Sequence
<
5
>
{}),
make_tuple
(
Sequence
<
0
,
1
>
{},
Sequence
<
2
>
{},
Sequence
<
3
>
{},
Sequence
<>
{},
Sequence
<>
{},
Sequence
<
4
>
{}));
#if 1
const
auto
wei_gemmk0_gemmm_gemmk1_grid_desc
=
transform_tensor_descriptor
(
wei_k0_k1_ydotslice_xdotslice_c_grid_desc
,
make_tuple
(
make_merge_transform
(
make_tuple
(
YDotSlice
,
XDotSlice
,
K0
)),
make_pass_through_transform
(
C
),
make_pass_through_transform
(
K1
)),
make_tuple
(
Sequence
<
2
,
3
,
0
>
{},
Sequence
<
4
>
{},
Sequence
<
1
>
{}),
make_tuple
(
Sequence
<
0
>
{},
Sequence
<
1
>
{},
Sequence
<
2
>
{}));
#else
const
auto
wei_gemmk0_gemmm_gemmk1_grid_desc
=
transform_tensor_descriptor
(
wei_k0_k1_ydotslice_xdotslice_c_grid_desc
,
make_tuple
(
make_merge_transform
(
make_tuple
(
K0
,
YDotSlice
,
XDotSlice
)),
make_pass_through_transform
(
C
),
make_pass_through_transform
(
K1
)),
make_tuple
(
Sequence
<
0
,
2
,
3
>
{},
Sequence
<
4
>
{},
Sequence
<
1
>
{}),
make_tuple
(
Sequence
<
0
>
{},
Sequence
<
1
>
{},
Sequence
<
2
>
{}));
#endif
// output tensor
// this add padding check
const
auto
out_n_hop_wop_k_grid_desc
=
transform_tensor_descriptor
(
out_n_ho_wo_k_grid_desc
,
make_tuple
(
make_pass_through_transform
(
N
),
make_pad_transform
(
Ho
,
I0
,
I0
),
make_pad_transform
(
Wo
,
I0
,
I0
),
make_pass_through_transform
(
K
)),
make_tuple
(
Sequence
<
0
>
{},
Sequence
<
1
>
{},
Sequence
<
2
>
{},
Sequence
<
3
>
{}),
make_tuple
(
Sequence
<
0
>
{},
Sequence
<
1
>
{},
Sequence
<
2
>
{},
Sequence
<
3
>
{}));
const
auto
out_n_ydot_htilde_xdot_wtilde_k_grid_desc
=
transform_tensor_descriptor
(
out_n_hop_wop_k_grid_desc
,
make_tuple
(
make_pass_through_transform
(
N
),
make_embed_transform
(
make_tuple
(
YDot
,
HTilde
),
make_tuple
(
-
ConvDilationH
/
GcdStrideDilationH
,
I1
)),
make_embed_transform
(
make_tuple
(
XDot
,
WTilde
),
make_tuple
(
-
ConvDilationW
/
GcdStrideDilationW
,
I1
)),
make_pass_through_transform
(
K
)),
make_tuple
(
Sequence
<
0
>
{},
Sequence
<
1
>
{},
Sequence
<
2
>
{},
Sequence
<
3
>
{}),
make_tuple
(
Sequence
<
0
>
{},
Sequence
<
1
,
2
>
{},
Sequence
<
3
,
4
>
{},
Sequence
<
5
>
{}));
const
auto
out_n_ydotslice_htildeslice_xdotslice_wtildeslice_k0_k1_grid_desc
=
transform_tensor_descriptor
(
out_n_ydot_htilde_xdot_wtilde_k_grid_desc
,
make_tuple
(
make_pass_through_transform
(
N
),
make_slice_transform
(
YDot
,
I0
,
YDotSlice
),
make_slice_transform
(
HTilde
,
IHTildeSliceBegin
,
HTildeSlice
),
make_slice_transform
(
XDot
,
I0
,
XDotSlice
),
make_slice_transform
(
WTilde
,
IWTildeSliceBegin
,
WTildeSlice
),
make_unmerge_transform
(
make_tuple
(
K0
,
K1
))),
make_tuple
(
Sequence
<
0
>
{},
Sequence
<
1
>
{},
Sequence
<
2
>
{},
Sequence
<
3
>
{},
Sequence
<
4
>
{},
Sequence
<
5
>
{}),
make_tuple
(
Sequence
<
0
>
{},
Sequence
<
1
>
{},
Sequence
<
2
>
{},
Sequence
<
3
>
{},
Sequence
<
4
>
{},
Sequence
<
5
,
6
>
{}));
#if 1
const
auto
out_gemmk0_gemmn_gemmk1_grid_desc
=
transform_tensor_descriptor
(
out_n_ydotslice_htildeslice_xdotslice_wtildeslice_k0_k1_grid_desc
,
make_tuple
(
make_merge_transform
(
make_tuple
(
YDotSlice
,
XDotSlice
,
K0
)),
make_merge_transform
(
make_tuple
(
N
,
HTildeSlice
,
WTildeSlice
)),
make_pass_through_transform
(
K1
)),
make_tuple
(
Sequence
<
1
,
3
,
5
>
{},
Sequence
<
0
,
2
,
4
>
{},
Sequence
<
6
>
{}),
make_tuple
(
Sequence
<
0
>
{},
Sequence
<
1
>
{},
Sequence
<
2
>
{}));
#else
const
auto
out_gemmk0_gemmn_gemmk1_grid_desc
=
transform_tensor_descriptor
(
out_n_ydotslice_htildeslice_xdotslice_wtildeslice_k0_k1_grid_desc
,
make_tuple
(
make_merge_transform
(
make_tuple
(
K0
,
YDotSlice
,
XDotSlice
)),
make_merge_transform
(
make_tuple
(
N
,
HTildeSlice
,
WTildeSlice
)),
make_pass_through_transform
(
K1
)),
make_tuple
(
Sequence
<
5
,
1
,
3
>
{},
Sequence
<
0
,
2
,
4
>
{},
Sequence
<
6
>
{}),
make_tuple
(
Sequence
<
0
>
{},
Sequence
<
1
>
{},
Sequence
<
2
>
{}));
#endif
// input tensor
const
auto
in_n_hip_wip_c_grid_desc
=
transform_tensor_descriptor
(
in_n_hi_wi_c_grid_desc
,
make_tuple
(
make_pass_through_transform
(
N
),
make_pad_transform
(
Hi
,
InLeftPadH
,
InRightPadH
),
make_pad_transform
(
Wi
,
InLeftPadW
,
InRightPadW
),
make_pass_through_transform
(
C
)),
make_tuple
(
Sequence
<
0
>
{},
Sequence
<
1
>
{},
Sequence
<
2
>
{},
Sequence
<
3
>
{}),
make_tuple
(
Sequence
<
0
>
{},
Sequence
<
1
>
{},
Sequence
<
2
>
{},
Sequence
<
3
>
{}));
const
auto
in_n_ytilde_htilde_xtilde_wtilde_c_grid_desc
=
transform_tensor_descriptor
(
in_n_hip_wip_c_grid_desc
,
make_tuple
(
make_pass_through_transform
(
N
),
make_embed_transform
(
make_tuple
(
YTilde
,
HTilde
),
make_tuple
(
ConvDilationH
,
ConvStrideH
)),
make_embed_transform
(
make_tuple
(
XTilde
,
WTilde
),
make_tuple
(
ConvDilationW
,
ConvStrideW
)),
make_pass_through_transform
(
C
)),
make_tuple
(
Sequence
<
0
>
{},
Sequence
<
1
>
{},
Sequence
<
2
>
{},
Sequence
<
3
>
{}),
make_tuple
(
Sequence
<
0
>
{},
Sequence
<
1
,
2
>
{},
Sequence
<
3
,
4
>
{},
Sequence
<
5
>
{}));
const
auto
in_n_htildeslice_wtildeslice_c_grid_desc
=
transform_tensor_descriptor
(
in_n_ytilde_htilde_xtilde_wtilde_c_grid_desc
,
make_tuple
(
make_pass_through_transform
(
N
),
make_freeze_transform
(
IYTilde
),
make_slice_transform
(
HTilde
,
IHTildeSliceBegin
,
HTildeSlice
),
make_freeze_transform
(
IXTilde
),
make_slice_transform
(
WTilde
,
IWTildeSliceBegin
,
WTildeSlice
),
make_pass_through_transform
(
C
)),
make_tuple
(
Sequence
<
0
>
{},
Sequence
<
1
>
{},
Sequence
<
2
>
{},
Sequence
<
3
>
{},
Sequence
<
4
>
{},
Sequence
<
5
>
{}),
make_tuple
(
Sequence
<
0
>
{},
Sequence
<>
{},
Sequence
<
1
>
{},
Sequence
<>
{},
Sequence
<
2
>
{},
Sequence
<
3
>
{}));
const
auto
in_gemmm_gemmn_grid_desc
=
transform_tensor_descriptor
(
in_n_htildeslice_wtildeslice_c_grid_desc
,
make_tuple
(
make_pass_through_transform
(
C
),
make_merge_transform
(
make_tuple
(
N
,
HTildeSlice
,
WTildeSlice
))),
make_tuple
(
Sequence
<
3
>
{},
Sequence
<
0
,
1
,
2
>
{}),
make_tuple
(
Sequence
<
0
>
{},
Sequence
<
1
>
{}));
return
make_tuple
(
wei_gemmk0_gemmm_gemmk1_grid_desc
,
out_gemmk0_gemmn_gemmk1_grid_desc
,
in_gemmm_gemmn_grid_desc
);
}
}
// namespace ck
#endif
include/ck/problem_transform/transform_backward_data_convolution_into_gemm_v4r1r2_nhwc_kyxc_nhwk.hpp
deleted
100644 → 0
View file @
ad8bc60b
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2022, Advanced Micro Devices, Inc. All rights reserved.
#ifndef CK_TRANSFORM_BACKWARD_DATA_CONVOLUTION_INTO_GEMM_V4R1R2_NHWC_KYXC_NHWK_HPP
#define CK_TRANSFORM_BACKWARD_DATA_CONVOLUTION_INTO_GEMM_V4R1R2_NHWC_KYXC_NHWK_HPP
#include "common_header.hpp"
#include "tensor_descriptor.hpp"
#include "tensor_descriptor_helper.hpp"
namespace
ck
{
// A: out
// B: wei
// C: in
// Number of GEMMs = YTilde * XTilde
// GemmM = N * HTildeSlice * WTildeSlice
// GemmN = C
// GemmK = K * YDotSlice * XDotSlice
template
<
typename
...
Wei
,
typename
...
In
,
typename
...
Out
,
typename
ConvStrides
,
typename
ConvDilations
,
typename
InLeftPads
,
typename
InRightPads
,
typename
IYTilde
,
typename
IXTilde
,
index_t
GemmK1Value
>
__host__
__device__
constexpr
auto
transform_backward_data_convolution_into_gemm_v4r1r2_nhwc_kyxc_nhwk
(
const
TensorDescriptor
<
Out
...
>&
out_n_ho_wo_k_grid_desc
,
const
TensorDescriptor
<
Wei
...
>&
wei_k_y_x_c_grid_desc
,
const
TensorDescriptor
<
In
...
>&
in_n_hi_wi_c_grid_desc
,
const
ConvStrides
&
conv_strides
,
const
ConvDilations
&
conv_dilations
,
const
InLeftPads
&
in_left_pads
,
const
InRightPads
&
in_right_pads
,
IYTilde
i_ytilde
,
IXTilde
i_xtilde
,
Number
<
GemmK1Value
>
)
{
constexpr
auto
I0
=
Number
<
0
>
{};
constexpr
auto
I1
=
Number
<
1
>
{};
constexpr
auto
I2
=
Number
<
2
>
{};
constexpr
auto
I3
=
Number
<
3
>
{};
constexpr
auto
GemmK1
=
Number
<
GemmK1Value
>
{};
const
auto
N
=
in_n_hi_wi_c_grid_desc
.
GetLength
(
I0
);
const
auto
C
=
in_n_hi_wi_c_grid_desc
.
GetLength
(
I3
);
const
auto
K
=
out_n_ho_wo_k_grid_desc
.
GetLength
(
I3
);
const
auto
Hi
=
in_n_hi_wi_c_grid_desc
.
GetLength
(
I1
);
const
auto
Wi
=
in_n_hi_wi_c_grid_desc
.
GetLength
(
I2
);
const
auto
Ho
=
out_n_ho_wo_k_grid_desc
.
GetLength
(
I1
);
const
auto
Wo
=
out_n_ho_wo_k_grid_desc
.
GetLength
(
I2
);
const
auto
Y
=
wei_k_y_x_c_grid_desc
.
GetLength
(
I1
);
const
auto
X
=
wei_k_y_x_c_grid_desc
.
GetLength
(
I2
);
const
auto
ConvStrideH
=
conv_strides
[
I0
];
const
auto
ConvStrideW
=
conv_strides
[
I1
];
const
auto
ConvDilationH
=
conv_dilations
[
I0
];
const
auto
ConvDilationW
=
conv_dilations
[
I1
];
const
auto
InLeftPadH
=
in_left_pads
[
I0
];
const
auto
InLeftPadW
=
in_left_pads
[
I1
];
const
auto
InRightPadH
=
in_right_pads
[
I0
];
const
auto
InRightPadW
=
in_right_pads
[
I1
];
const
auto
GcdStrideDilationH
=
math
::
gcd
(
ConvStrideH
,
ConvDilationH
);
const
auto
GcdStrideDilationW
=
math
::
gcd
(
ConvStrideW
,
ConvDilationW
);
const
auto
YTilde
=
ConvStrideH
/
GcdStrideDilationH
;
const
auto
XTilde
=
ConvStrideW
/
GcdStrideDilationW
;
const
auto
YDot
=
math
::
integer_divide_ceil
(
Y
,
YTilde
);
const
auto
XDot
=
math
::
integer_divide_ceil
(
X
,
XTilde
);
const
auto
HTilde
=
Ho
+
math
::
integer_divide_ceil
(
ConvDilationH
*
(
Y
-
I1
),
ConvStrideH
);
const
auto
WTilde
=
Wo
+
math
::
integer_divide_ceil
(
ConvDilationW
*
(
X
-
I1
),
ConvStrideW
);
// only work on HTilde and WTilde that contribute to non-padding area of input tensor
const
auto
IHTildeSliceBegin
=
math
::
integer_divide_floor
(
math
::
max
(
I0
,
InLeftPadH
-
ConvDilationH
*
(
YTilde
-
I1
)),
ConvStrideH
);
const
auto
IWTildeSliceBegin
=
math
::
integer_divide_floor
(
math
::
max
(
I0
,
InLeftPadW
-
ConvDilationW
*
(
XTilde
-
I1
)),
ConvStrideW
);
const
auto
IHTildeSliceEnd
=
math
::
min
(
HTilde
,
math
::
integer_divide_ceil
(
InLeftPadH
+
Hi
-
I1
,
ConvStrideH
)
+
I1
);
const
auto
IWTildeSliceEnd
=
math
::
min
(
WTilde
,
math
::
integer_divide_ceil
(
InLeftPadW
+
Wi
-
I1
,
ConvStrideW
)
+
I1
);
const
auto
HTildeSlice
=
IHTildeSliceEnd
-
IHTildeSliceBegin
;
const
auto
WTildeSlice
=
IWTildeSliceEnd
-
IWTildeSliceBegin
;
// GemmK is different for each GEMM
const
auto
YDotSlice
=
math
::
integer_divide_ceil
(
Y
-
i_ytilde
,
YTilde
);
const
auto
XDotSlice
=
math
::
integer_divide_ceil
(
X
-
i_xtilde
,
XTilde
);
const
auto
K1
=
GemmK1
;
const
auto
K0
=
K
/
K1
;
// A: output tensor
// this add padding check
const
auto
out_n_hop_wop_k_grid_desc
=
transform_tensor_descriptor
(
out_n_ho_wo_k_grid_desc
,
make_tuple
(
make_pass_through_transform
(
N
),
make_pad_transform
(
Ho
,
I0
,
I0
),
make_pad_transform
(
Wo
,
I0
,
I0
),
make_pass_through_transform
(
K
)),
make_tuple
(
Sequence
<
0
>
{},
Sequence
<
1
>
{},
Sequence
<
2
>
{},
Sequence
<
3
>
{}),
make_tuple
(
Sequence
<
0
>
{},
Sequence
<
1
>
{},
Sequence
<
2
>
{},
Sequence
<
3
>
{}));
const
auto
out_n_ydot_htilde_xdot_wtilde_k_grid_desc
=
transform_tensor_descriptor
(
out_n_hop_wop_k_grid_desc
,
make_tuple
(
make_pass_through_transform
(
N
),
make_embed_transform
(
make_tuple
(
YDot
,
HTilde
),
make_tuple
(
-
ConvDilationH
/
GcdStrideDilationH
,
I1
)),
make_embed_transform
(
make_tuple
(
XDot
,
WTilde
),
make_tuple
(
-
ConvDilationW
/
GcdStrideDilationW
,
I1
)),
make_pass_through_transform
(
K
)),
make_tuple
(
Sequence
<
0
>
{},
Sequence
<
1
>
{},
Sequence
<
2
>
{},
Sequence
<
3
>
{}),
make_tuple
(
Sequence
<
0
>
{},
Sequence
<
1
,
2
>
{},
Sequence
<
3
,
4
>
{},
Sequence
<
5
>
{}));
const
auto
out_n_ydotslice_htildeslice_xdotslice_wtildeslice_k0_k1_grid_desc
=
transform_tensor_descriptor
(
out_n_ydot_htilde_xdot_wtilde_k_grid_desc
,
make_tuple
(
make_pass_through_transform
(
N
),
make_slice_transform
(
YDot
,
I0
,
YDotSlice
),
make_slice_transform
(
HTilde
,
IHTildeSliceBegin
,
HTildeSlice
),
make_slice_transform
(
XDot
,
I0
,
XDotSlice
),
make_slice_transform
(
WTilde
,
IWTildeSliceBegin
,
WTildeSlice
),
make_unmerge_transform
(
make_tuple
(
K0
,
K1
))),
make_tuple
(
Sequence
<
0
>
{},
Sequence
<
1
>
{},
Sequence
<
2
>
{},
Sequence
<
3
>
{},
Sequence
<
4
>
{},
Sequence
<
5
>
{}),
make_tuple
(
Sequence
<
0
>
{},
Sequence
<
1
>
{},
Sequence
<
2
>
{},
Sequence
<
3
>
{},
Sequence
<
4
>
{},
Sequence
<
5
,
6
>
{}));
#if 1
const
auto
out_gemmk0_gemmm_gemmk1_grid_desc
=
transform_tensor_descriptor
(
out_n_ydotslice_htildeslice_xdotslice_wtildeslice_k0_k1_grid_desc
,
make_tuple
(
make_merge_transform
(
make_tuple
(
YDotSlice
,
XDotSlice
,
K0
)),
make_merge_transform
(
make_tuple
(
N
,
HTildeSlice
,
WTildeSlice
)),
make_pass_through_transform
(
K1
)),
make_tuple
(
Sequence
<
1
,
3
,
5
>
{},
Sequence
<
0
,
2
,
4
>
{},
Sequence
<
6
>
{}),
make_tuple
(
Sequence
<
0
>
{},
Sequence
<
1
>
{},
Sequence
<
2
>
{}));
#else
const
auto
out_gemmk0_gemmm_gemmk1_grid_desc
=
transform_tensor_descriptor
(
out_n_ydotslice_htildeslice_xdotslice_wtildeslice_k0_k1_grid_desc
,
make_tuple
(
make_merge_transform
(
make_tuple
(
K0
,
YDotSlice
,
XDotSlice
)),
make_merge_transform
(
make_tuple
(
N
,
HTildeSlice
,
WTildeSlice
)),
make_pass_through_transform
(
K1
)),
make_tuple
(
Sequence
<
5
,
1
,
3
>
{},
Sequence
<
0
,
2
,
4
>
{},
Sequence
<
6
>
{}),
make_tuple
(
Sequence
<
0
>
{},
Sequence
<
1
>
{},
Sequence
<
2
>
{}));
#endif
// B: weight tensor
const
auto
wei_k_ydot_ytilde_xdot_xtilde_c_grid_desc
=
transform_tensor_descriptor
(
wei_k_y_x_c_grid_desc
,
make_tuple
(
make_pass_through_transform
(
K
),
make_embed_transform
(
make_tuple
(
YDot
,
YTilde
),
make_tuple
(
ConvStrideH
/
GcdStrideDilationH
,
I1
)),
make_embed_transform
(
make_tuple
(
XDot
,
XTilde
),
make_tuple
(
ConvStrideW
/
GcdStrideDilationW
,
I1
)),
make_pass_through_transform
(
C
)),
make_tuple
(
Sequence
<
0
>
{},
Sequence
<
1
>
{},
Sequence
<
2
>
{},
Sequence
<
3
>
{}),
make_tuple
(
Sequence
<
0
>
{},
Sequence
<
1
,
2
>
{},
Sequence
<
3
,
4
>
{},
Sequence
<
5
>
{}));
const
auto
wei_k0_k1_ydotslice_xdotslice_c_grid_desc
=
transform_tensor_descriptor
(
wei_k_ydot_ytilde_xdot_xtilde_c_grid_desc
,
make_tuple
(
make_unmerge_transform
(
make_tuple
(
K0
,
K1
)),
make_slice_transform
(
YDot
,
I0
,
YDotSlice
),
make_slice_transform
(
XDot
,
I0
,
XDotSlice
),
make_freeze_transform
(
i_ytilde
),
make_freeze_transform
(
i_xtilde
),
make_pass_through_transform
(
C
)),
make_tuple
(
Sequence
<
0
>
{},
Sequence
<
1
>
{},
Sequence
<
3
>
{},
Sequence
<
2
>
{},
Sequence
<
4
>
{},
Sequence
<
5
>
{}),
make_tuple
(
Sequence
<
0
,
1
>
{},
Sequence
<
2
>
{},
Sequence
<
3
>
{},
Sequence
<>
{},
Sequence
<>
{},
Sequence
<
4
>
{}));
#if 1
const
auto
wei_gemmk0_gemmn_gemmk1_grid_desc
=
transform_tensor_descriptor
(
wei_k0_k1_ydotslice_xdotslice_c_grid_desc
,
make_tuple
(
make_merge_transform
(
make_tuple
(
YDotSlice
,
XDotSlice
,
K0
)),
make_pass_through_transform
(
C
),
make_pass_through_transform
(
K1
)),
make_tuple
(
Sequence
<
2
,
3
,
0
>
{},
Sequence
<
4
>
{},
Sequence
<
1
>
{}),
make_tuple
(
Sequence
<
0
>
{},
Sequence
<
1
>
{},
Sequence
<
2
>
{}));
#else
const
auto
wei_gemmk0_gemmn_gemmk1_grid_desc
=
transform_tensor_descriptor
(
wei_k0_k1_ydotslice_xdotslice_c_grid_desc
,
make_tuple
(
make_merge_transform
(
make_tuple
(
K0
,
YDotSlice
,
XDotSlice
)),
make_pass_through_transform
(
C
),
make_pass_through_transform
(
K1
)),
make_tuple
(
Sequence
<
0
,
2
,
3
>
{},
Sequence
<
4
>
{},
Sequence
<
1
>
{}),
make_tuple
(
Sequence
<
0
>
{},
Sequence
<
1
>
{},
Sequence
<
2
>
{}));
#endif
// C: input tensor
const
auto
in_n_hip_wip_c_grid_desc
=
transform_tensor_descriptor
(
in_n_hi_wi_c_grid_desc
,
make_tuple
(
make_pass_through_transform
(
N
),
make_pad_transform
(
Hi
,
InLeftPadH
,
InRightPadH
),
make_pad_transform
(
Wi
,
InLeftPadW
,
InRightPadW
),
make_pass_through_transform
(
C
)),
make_tuple
(
Sequence
<
0
>
{},
Sequence
<
1
>
{},
Sequence
<
2
>
{},
Sequence
<
3
>
{}),
make_tuple
(
Sequence
<
0
>
{},
Sequence
<
1
>
{},
Sequence
<
2
>
{},
Sequence
<
3
>
{}));
const
auto
in_n_ytilde_htilde_xtilde_wtilde_c_grid_desc
=
transform_tensor_descriptor
(
in_n_hip_wip_c_grid_desc
,
make_tuple
(
make_pass_through_transform
(
N
),
make_embed_transform
(
make_tuple
(
YTilde
,
HTilde
),
make_tuple
(
ConvDilationH
,
ConvStrideH
)),
make_embed_transform
(
make_tuple
(
XTilde
,
WTilde
),
make_tuple
(
ConvDilationW
,
ConvStrideW
)),
make_pass_through_transform
(
C
)),
make_tuple
(
Sequence
<
0
>
{},
Sequence
<
1
>
{},
Sequence
<
2
>
{},
Sequence
<
3
>
{}),
make_tuple
(
Sequence
<
0
>
{},
Sequence
<
1
,
2
>
{},
Sequence
<
3
,
4
>
{},
Sequence
<
5
>
{}));
const
auto
in_n_htildeslice_wtildeslice_c_grid_desc
=
transform_tensor_descriptor
(
in_n_ytilde_htilde_xtilde_wtilde_c_grid_desc
,
make_tuple
(
make_pass_through_transform
(
N
),
make_freeze_transform
(
i_ytilde
),
make_slice_transform
(
HTilde
,
IHTildeSliceBegin
,
HTildeSlice
),
make_freeze_transform
(
i_xtilde
),
make_slice_transform
(
WTilde
,
IWTildeSliceBegin
,
WTildeSlice
),
make_pass_through_transform
(
C
)),
make_tuple
(
Sequence
<
0
>
{},
Sequence
<
1
>
{},
Sequence
<
2
>
{},
Sequence
<
3
>
{},
Sequence
<
4
>
{},
Sequence
<
5
>
{}),
make_tuple
(
Sequence
<
0
>
{},
Sequence
<>
{},
Sequence
<
1
>
{},
Sequence
<>
{},
Sequence
<
2
>
{},
Sequence
<
3
>
{}));
const
auto
in_gemmm_gemmn_grid_desc
=
transform_tensor_descriptor
(
in_n_htildeslice_wtildeslice_c_grid_desc
,
make_tuple
(
make_merge_transform
(
make_tuple
(
N
,
HTildeSlice
,
WTildeSlice
)),
make_pass_through_transform
(
C
)),
make_tuple
(
Sequence
<
0
,
1
,
2
>
{},
Sequence
<
3
>
{}),
make_tuple
(
Sequence
<
0
>
{},
Sequence
<
1
>
{}));
return
make_tuple
(
out_gemmk0_gemmm_gemmk1_grid_desc
,
wei_gemmk0_gemmn_gemmk1_grid_desc
,
in_gemmm_gemmn_grid_desc
);
}
// A: out
// B: wei
// C: in
// Number of GEMMs = 1
// GemmM = N * Ho * Wo
// GemmN = C
// GemmK = K
template
<
typename
...
Wei
,
typename
...
In
,
typename
...
Out
,
typename
ConvStrides
,
index_t
GemmK1Value
>
__host__
__device__
constexpr
auto
transform_backward_data_convolution_into_gemm_v4r1r2_nhwc_kyxc_nhwk_1x1
(
const
TensorDescriptor
<
Out
...
>&
out_n_ho_wo_k_grid_desc
,
const
TensorDescriptor
<
Wei
...
>&
/* wei_k_y_x_c_grid_desc */
,
const
TensorDescriptor
<
In
...
>&
in_n_hi_wi_c_grid_desc
,
const
ConvStrides
&
conv_strides
,
Number
<
GemmK1Value
>
)
{
constexpr
auto
I0
=
Number
<
0
>
{};
constexpr
auto
I1
=
Number
<
1
>
{};
constexpr
auto
I2
=
Number
<
2
>
{};
constexpr
auto
I3
=
Number
<
3
>
{};
constexpr
auto
GemmK1
=
Number
<
GemmK1Value
>
{};
const
auto
N
=
in_n_hi_wi_c_grid_desc
.
GetLength
(
I0
);
const
auto
C
=
in_n_hi_wi_c_grid_desc
.
GetLength
(
I3
);
const
auto
K
=
out_n_ho_wo_k_grid_desc
.
GetLength
(
I3
);
const
auto
Ho
=
out_n_ho_wo_k_grid_desc
.
GetLength
(
I1
);
const
auto
Wo
=
out_n_ho_wo_k_grid_desc
.
GetLength
(
I2
);
const
auto
ConvStrideH
=
conv_strides
[
I0
];
const
auto
ConvStrideW
=
conv_strides
[
I1
];
const
auto
K1
=
GemmK1
;
const
auto
K0
=
K
/
K1
;
// A: output tensor
const
auto
out_gemmk0_gemmm_gemmk1_grid_desc
=
transform_tensor_descriptor
(
make_naive_tensor_descriptor_packed
(
make_tuple
(
N
*
Ho
*
Wo
,
K
)),
make_tuple
(
make_pass_through_transform
(
N
*
Ho
*
Wo
),
make_unmerge_transform
(
make_tuple
(
K0
,
K1
))),
make_tuple
(
Sequence
<
0
>
{},
Sequence
<
1
>
{}),
make_tuple
(
Sequence
<
1
>
{},
Sequence
<
0
,
2
>
{}));
// B: weight tensor
const
auto
wei_gemmk0_gemmn_gemmk1_grid_desc
=
transform_tensor_descriptor
(
make_naive_tensor_descriptor_packed
(
make_tuple
(
K
,
C
)),
make_tuple
(
make_unmerge_transform
(
make_tuple
(
K0
,
K1
)),
make_pass_through_transform
(
C
)),
make_tuple
(
Sequence
<
0
>
{},
Sequence
<
1
>
{}),
make_tuple
(
Sequence
<
0
,
2
>
{},
Sequence
<
1
>
{}));
// C: input tensor
const
auto
in_n_y_ho_x_wo_c_grid_desc
=
transform_tensor_descriptor
(
in_n_hi_wi_c_grid_desc
,
make_tuple
(
make_pass_through_transform
(
N
),
make_embed_transform
(
make_tuple
(
I1
,
Ho
),
make_tuple
(
I1
,
ConvStrideH
)),
make_embed_transform
(
make_tuple
(
I1
,
Wo
),
make_tuple
(
I1
,
ConvStrideW
)),
make_pass_through_transform
(
C
)),
make_tuple
(
Sequence
<
0
>
{},
Sequence
<
1
>
{},
Sequence
<
2
>
{},
Sequence
<
3
>
{}),
make_tuple
(
Sequence
<
0
>
{},
Sequence
<
1
,
2
>
{},
Sequence
<
3
,
4
>
{},
Sequence
<
5
>
{}));
const
auto
in_gemmm_gemmn_grid_desc
=
transform_tensor_descriptor
(
in_n_y_ho_x_wo_c_grid_desc
,
make_tuple
(
make_freeze_transform
(
I0
),
make_freeze_transform
(
I0
),
make_merge_transform
(
make_tuple
(
N
,
Ho
,
Wo
)),
make_pass_through_transform
(
C
)),
make_tuple
(
Sequence
<
1
>
{},
Sequence
<
3
>
{},
Sequence
<
0
,
2
,
4
>
{},
Sequence
<
5
>
{}),
make_tuple
(
Sequence
<>
{},
Sequence
<>
{},
Sequence
<
0
>
{},
Sequence
<
1
>
{}));
return
make_tuple
(
out_gemmk0_gemmm_gemmk1_grid_desc
,
wei_gemmk0_gemmn_gemmk1_grid_desc
,
in_gemmm_gemmn_grid_desc
);
}
}
// namespace ck
#endif
include/ck/problem_transform/transform_backward_weight_convolution_into_gemm_v4r4r2_atomic_nchw_kcyx_nkhw.hpp
deleted
100644 → 0
View file @
ad8bc60b
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2022, Advanced Micro Devices, Inc. All rights reserved.
#ifndef CK_TRANSFORM_BACKWARD_WEIGHT_CONVOLUTION_INTO_GEMM_V4R4R2_ATOMIC_NCHW_KCYX_NKHW_HPP
#define CK_TRANSFORM_BACKWARD_WEIGHT_CONVOLUTION_INTO_GEMM_V4R4R2_ATOMIC_NCHW_KCYX_NKHW_HPP
#include "common_header.hpp"
#include "tensor_descriptor.hpp"
#include "tensor_descriptor_helper.hpp"
namespace
ck
{
// GemmM = K
// GemmK = N * Ho * Wo
// GemmN = C * Y * X
template
<
typename
...
Wei
,
typename
...
In
,
typename
...
Out
,
typename
ConvStrides
,
typename
ConvDilations
,
typename
InLeftPads
,
typename
InRightPads
,
index_t
GemmK1Value
,
typename
GemmKBatchType
,
typename
GemmKPadType
>
__host__
__device__
constexpr
auto
transform_backward_weight_convolution_into_gemm_v4r4r2_atomic_nchw_kcyx_nkhw_pad
(
const
TensorDescriptor
<
Wei
...
>&
wei_k_c_y_x_grid_desc
,
const
TensorDescriptor
<
In
...
>&
in_n_c_hi_wi_grid_desc
,
const
TensorDescriptor
<
Out
...
>&
out_n_k_ho_wo_grid_desc
,
const
ConvStrides
&
conv_strides
,
const
ConvDilations
&
conv_dilations
,
const
InLeftPads
&
in_left_pads
,
const
InRightPads
&
in_right_pads
,
Number
<
GemmK1Value
>
,
GemmKBatchType
GemmKBatch
,
GemmKPadType
GemmKPad
)
{
constexpr
auto
I0
=
Number
<
0
>
{};
constexpr
auto
I1
=
Number
<
1
>
{};
constexpr
auto
I2
=
Number
<
2
>
{};
constexpr
auto
I3
=
Number
<
3
>
{};
constexpr
auto
GemmK1
=
Number
<
GemmK1Value
>
{};
const
auto
N
=
in_n_c_hi_wi_grid_desc
.
GetLength
(
I0
);
const
auto
C
=
in_n_c_hi_wi_grid_desc
.
GetLength
(
I1
);
const
auto
K
=
out_n_k_ho_wo_grid_desc
.
GetLength
(
I1
);
const
auto
Hi
=
in_n_c_hi_wi_grid_desc
.
GetLength
(
I2
);
const
auto
Wi
=
in_n_c_hi_wi_grid_desc
.
GetLength
(
I3
);
const
auto
Ho
=
out_n_k_ho_wo_grid_desc
.
GetLength
(
I2
);
const
auto
Wo
=
out_n_k_ho_wo_grid_desc
.
GetLength
(
I3
);
const
auto
Y
=
wei_k_c_y_x_grid_desc
.
GetLength
(
I2
);
const
auto
X
=
wei_k_c_y_x_grid_desc
.
GetLength
(
I3
);
const
auto
ConvStrideH
=
conv_strides
[
I0
];
const
auto
ConvStrideW
=
conv_strides
[
I1
];
const
auto
ConvDilationH
=
conv_dilations
[
I0
];
const
auto
ConvDilationW
=
conv_dilations
[
I1
];
const
auto
InLeftPadH
=
in_left_pads
[
I0
];
const
auto
InLeftPadW
=
in_left_pads
[
I1
];
const
auto
InRightPadH
=
in_right_pads
[
I0
];
const
auto
InRightPadW
=
in_right_pads
[
I1
];
const
auto
GemmM
=
K
;
const
auto
GemmN
=
C
*
Y
*
X
;
const
auto
GemmKTotal
=
N
*
Ho
*
Wo
;
const
index_t
GemmK0
=
GemmKPad
/
(
GemmKBatch
*
GemmK1
);
// A: output tensor
const
auto
out_gemmktotal_gemmm_grid_desc
=
transform_tensor_descriptor
(
make_naive_tensor_descriptor_packed
(
make_tuple
(
N
,
K
,
Ho
*
Wo
)),
make_tuple
(
make_pass_through_transform
(
K
),
make_merge_transform
(
make_tuple
(
N
,
Ho
*
Wo
))),
make_tuple
(
Sequence
<
1
>
{},
Sequence
<
0
,
2
>
{}),
make_tuple
(
Sequence
<
1
>
{},
Sequence
<
0
>
{}));
const
auto
out_gemmkpad_gemmm_grid_desc
=
transform_tensor_descriptor
(
out_gemmktotal_gemmm_grid_desc
,
make_tuple
(
make_right_pad_transform
(
GemmKTotal
,
GemmKPad
-
GemmKTotal
),
make_pass_through_transform
(
GemmM
)),
make_tuple
(
Sequence
<
0
>
{},
Sequence
<
1
>
{}),
make_tuple
(
Sequence
<
0
>
{},
Sequence
<
1
>
{}));
const
auto
out_gemmkbatch_gemmk0_gemmm_gemmk1_grid_desc
=
transform_tensor_descriptor
(
out_gemmkpad_gemmm_grid_desc
,
make_tuple
(
make_unmerge_transform
(
make_tuple
(
GemmKBatch
,
GemmK0
,
GemmK1
)),
make_pass_through_transform
(
GemmM
)),
make_tuple
(
Sequence
<
0
>
{},
Sequence
<
1
>
{}),
make_tuple
(
Sequence
<
0
,
1
,
3
>
{},
Sequence
<
2
>
{}));
// B: input tensor
const
auto
in_n_c_hip_wip_grid_desc
=
transform_tensor_descriptor
(
in_n_c_hi_wi_grid_desc
,
make_tuple
(
make_pass_through_transform
(
N
),
make_pass_through_transform
(
C
),
make_pad_transform
(
Hi
,
InLeftPadH
,
InRightPadH
),
make_pad_transform
(
Wi
,
InLeftPadW
,
InRightPadW
)),
make_tuple
(
Sequence
<
0
>
{},
Sequence
<
1
>
{},
Sequence
<
2
>
{},
Sequence
<
3
>
{}),
make_tuple
(
Sequence
<
0
>
{},
Sequence
<
1
>
{},
Sequence
<
2
>
{},
Sequence
<
3
>
{}));
const
auto
in_n_c_y_ho_x_wo_grid_desc
=
transform_tensor_descriptor
(
in_n_c_hip_wip_grid_desc
,
make_tuple
(
make_pass_through_transform
(
N
),
make_pass_through_transform
(
C
),
make_embed_transform
(
make_tuple
(
Y
,
Ho
),
make_tuple
(
ConvDilationH
,
ConvStrideH
)),
make_embed_transform
(
make_tuple
(
X
,
Wo
),
make_tuple
(
ConvDilationW
,
ConvStrideW
))),
make_tuple
(
Sequence
<
0
>
{},
Sequence
<
1
>
{},
Sequence
<
2
>
{},
Sequence
<
3
>
{}),
make_tuple
(
Sequence
<
0
>
{},
Sequence
<
1
>
{},
Sequence
<
2
,
3
>
{},
Sequence
<
4
,
5
>
{}));
const
auto
in_gemmktotal_gemmn_grid_desc
=
transform_tensor_descriptor
(
in_n_c_y_ho_x_wo_grid_desc
,
make_tuple
(
make_merge_transform
(
make_tuple
(
C
,
Y
,
X
)),
make_merge_transform
(
make_tuple
(
N
,
Ho
,
Wo
))),
make_tuple
(
Sequence
<
1
,
2
,
4
>
{},
Sequence
<
0
,
3
,
5
>
{}),
make_tuple
(
Sequence
<
1
>
{},
Sequence
<
0
>
{}));
const
auto
in_gemmkpad_gemmn_grid_desc
=
transform_tensor_descriptor
(
in_gemmktotal_gemmn_grid_desc
,
make_tuple
(
make_right_pad_transform
(
GemmKTotal
,
GemmKPad
-
GemmKTotal
),
make_pass_through_transform
(
GemmN
)),
make_tuple
(
Sequence
<
0
>
{},
Sequence
<
1
>
{}),
make_tuple
(
Sequence
<
0
>
{},
Sequence
<
1
>
{}));
const
auto
in_gemmkbatch_gemmk0_gemmn_gemmk1_grid_desc
=
transform_tensor_descriptor
(
in_gemmkpad_gemmn_grid_desc
,
make_tuple
(
make_unmerge_transform
(
make_tuple
(
GemmKBatch
,
GemmK0
,
GemmK1
)),
make_pass_through_transform
(
GemmN
)),
make_tuple
(
Sequence
<
0
>
{},
Sequence
<
1
>
{}),
make_tuple
(
Sequence
<
0
,
1
,
3
>
{},
Sequence
<
2
>
{}));
// C: weight tensor
const
auto
wei_gemmm_gemmn_grid_desc
=
transform_tensor_descriptor
(
make_naive_tensor_descriptor_packed
(
make_tuple
(
K
,
C
*
Y
*
X
)),
make_tuple
(
make_pass_through_transform
(
K
),
make_pass_through_transform
(
C
*
Y
*
X
)),
make_tuple
(
Sequence
<
0
>
{},
Sequence
<
1
>
{}),
make_tuple
(
Sequence
<
0
>
{},
Sequence
<
1
>
{}));
return
make_tuple
(
out_gemmkbatch_gemmk0_gemmm_gemmk1_grid_desc
,
in_gemmkbatch_gemmk0_gemmn_gemmk1_grid_desc
,
wei_gemmm_gemmn_grid_desc
);
}
}
// namespace ck
#endif
include/ck/problem_transform/transform_backward_weight_convolution_into_gemm_v4r4r2_nchw_kcyx_nkhw.hpp
deleted
100644 → 0
View file @
ad8bc60b
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2022, Advanced Micro Devices, Inc. All rights reserved.
#ifndef CK_TRANSFORM_BACKWARD_WEIGHT_CONVOLUTION_INTO_GEMM_V4R4R2_NCHW_KCYX_NKHW_HPP
#define CK_TRANSFORM_BACKWARD_WEIGHT_CONVOLUTION_INTO_GEMM_V4R4R2_NCHW_KCYX_NKHW_HPP
#include "common_header.hpp"
#include "tensor_descriptor.hpp"
#include "tensor_descriptor_helper.hpp"
namespace
ck
{
// GemmM = K
// GemmK = N * Ho * Wo
// GemmN = C * Y * X
template
<
typename
...
Wei
,
typename
...
In
,
typename
...
Out
,
typename
ConvStrides
,
typename
ConvDilations
,
typename
InLeftPads
,
typename
InRightPads
,
index_t
GemmK1Value
>
__host__
__device__
constexpr
auto
transform_backward_weight_convolution_into_gemm_v4r4r2_nchw_kcyx_nkhw_pad
(
const
TensorDescriptor
<
Wei
...
>&
wei_k_c_y_x_grid_desc
,
const
TensorDescriptor
<
In
...
>&
in_n_c_hi_wi_grid_desc
,
const
TensorDescriptor
<
Out
...
>&
out_n_k_ho_wo_grid_desc
,
const
ConvStrides
&
conv_strides
,
const
ConvDilations
&
conv_dilations
,
const
InLeftPads
&
in_left_pads
,
const
InRightPads
&
in_right_pads
,
Number
<
GemmK1Value
>
)
{
constexpr
auto
I0
=
Number
<
0
>
{};
constexpr
auto
I1
=
Number
<
1
>
{};
constexpr
auto
I2
=
Number
<
2
>
{};
constexpr
auto
I3
=
Number
<
3
>
{};
constexpr
auto
GemmK1
=
Number
<
GemmK1Value
>
{};
const
auto
N
=
in_n_c_hi_wi_grid_desc
.
GetLength
(
I0
);
const
auto
C
=
in_n_c_hi_wi_grid_desc
.
GetLength
(
I1
);
const
auto
K
=
out_n_k_ho_wo_grid_desc
.
GetLength
(
I1
);
const
auto
Hi
=
in_n_c_hi_wi_grid_desc
.
GetLength
(
I2
);
const
auto
Wi
=
in_n_c_hi_wi_grid_desc
.
GetLength
(
I3
);
const
auto
Ho
=
out_n_k_ho_wo_grid_desc
.
GetLength
(
I2
);
const
auto
Wo
=
out_n_k_ho_wo_grid_desc
.
GetLength
(
I3
);
const
auto
Y
=
wei_k_c_y_x_grid_desc
.
GetLength
(
I2
);
const
auto
X
=
wei_k_c_y_x_grid_desc
.
GetLength
(
I3
);
const
auto
ConvStrideH
=
conv_strides
[
I0
];
const
auto
ConvStrideW
=
conv_strides
[
I1
];
const
auto
ConvDilationH
=
conv_dilations
[
I0
];
const
auto
ConvDilationW
=
conv_dilations
[
I1
];
const
auto
InLeftPadH
=
in_left_pads
[
I0
];
const
auto
InLeftPadW
=
in_left_pads
[
I1
];
const
auto
InRightPadH
=
in_right_pads
[
I0
];
const
auto
InRightPadW
=
in_right_pads
[
I1
];
const
auto
GemmM
=
K
;
const
auto
GemmN
=
C
*
Y
*
X
;
const
auto
GemmK
=
N
*
Ho
*
Wo
;
const
auto
GemmK0
=
GemmK
/
GemmK1
;
// weight tensor
const
auto
wei_gemmm_gemmn_grid_desc
=
transform_tensor_descriptor
(
make_naive_tensor_descriptor_packed
(
make_tuple
(
K
,
C
*
Y
*
X
)),
make_tuple
(
make_pass_through_transform
(
K
),
make_pass_through_transform
(
C
*
Y
*
X
)),
make_tuple
(
Sequence
<
0
>
{},
Sequence
<
1
>
{}),
make_tuple
(
Sequence
<
0
>
{},
Sequence
<
1
>
{}));
// input tensor
const
auto
in_n_c_hip_wip_grid_desc
=
transform_tensor_descriptor
(
in_n_c_hi_wi_grid_desc
,
make_tuple
(
make_pass_through_transform
(
N
),
make_pass_through_transform
(
C
),
make_pad_transform
(
Hi
,
InLeftPadH
,
InRightPadH
),
make_pad_transform
(
Wi
,
InLeftPadW
,
InRightPadW
)),
make_tuple
(
Sequence
<
0
>
{},
Sequence
<
1
>
{},
Sequence
<
2
>
{},
Sequence
<
3
>
{}),
make_tuple
(
Sequence
<
0
>
{},
Sequence
<
1
>
{},
Sequence
<
2
>
{},
Sequence
<
3
>
{}));
const
auto
in_n_c_y_ho_x_wo_grid_desc
=
transform_tensor_descriptor
(
in_n_c_hip_wip_grid_desc
,
make_tuple
(
make_pass_through_transform
(
N
),
make_pass_through_transform
(
C
),
make_embed_transform
(
make_tuple
(
Y
,
Ho
),
make_tuple
(
ConvDilationH
,
ConvStrideH
)),
make_embed_transform
(
make_tuple
(
X
,
Wo
),
make_tuple
(
ConvDilationW
,
ConvStrideW
))),
make_tuple
(
Sequence
<
0
>
{},
Sequence
<
1
>
{},
Sequence
<
2
>
{},
Sequence
<
3
>
{}),
make_tuple
(
Sequence
<
0
>
{},
Sequence
<
1
>
{},
Sequence
<
2
,
3
>
{},
Sequence
<
4
,
5
>
{}));
const
auto
in_gemmk_gemmn_grid_desc
=
transform_tensor_descriptor
(
in_n_c_y_ho_x_wo_grid_desc
,
make_tuple
(
make_merge_transform
(
make_tuple
(
C
,
Y
,
X
)),
make_merge_transform
(
make_tuple
(
N
,
Ho
,
Wo
))),
make_tuple
(
Sequence
<
1
,
2
,
4
>
{},
Sequence
<
0
,
3
,
5
>
{}),
make_tuple
(
Sequence
<
1
>
{},
Sequence
<
0
>
{}));
const
auto
in_gemmk0_gemmn_gemmk1_grid_desc
=
transform_tensor_descriptor
(
in_gemmk_gemmn_grid_desc
,
make_tuple
(
make_unmerge_transform
(
make_tuple
(
GemmK0
,
GemmK1
)),
make_pass_through_transform
(
GemmN
)),
make_tuple
(
Sequence
<
0
>
{},
Sequence
<
1
>
{}),
make_tuple
(
Sequence
<
0
,
2
>
{},
Sequence
<
1
>
{}));
// output tensor
const
auto
out_gemmk_gemmm_grid_desc
=
transform_tensor_descriptor
(
make_naive_tensor_descriptor_packed
(
make_tuple
(
N
,
K
,
Ho
*
Wo
)),
make_tuple
(
make_pass_through_transform
(
K
),
make_merge_transform
(
make_tuple
(
N
,
Ho
*
Wo
))),
make_tuple
(
Sequence
<
1
>
{},
Sequence
<
0
,
2
>
{}),
make_tuple
(
Sequence
<
1
>
{},
Sequence
<
0
>
{}));
const
auto
out_gemmk0_gemmm_gemmk1_grid_desc
=
transform_tensor_descriptor
(
out_gemmk_gemmm_grid_desc
,
make_tuple
(
make_unmerge_transform
(
make_tuple
(
GemmK0
,
GemmK1
)),
make_pass_through_transform
(
GemmM
)),
make_tuple
(
Sequence
<
0
>
{},
Sequence
<
1
>
{}),
make_tuple
(
Sequence
<
0
,
2
>
{},
Sequence
<
1
>
{}));
return
make_tuple
(
out_gemmk0_gemmm_gemmk1_grid_desc
,
in_gemmk0_gemmn_gemmk1_grid_desc
,
wei_gemmm_gemmn_grid_desc
);
}
}
// namespace ck
#endif
include/ck/problem_transform/transform_backward_weight_convolution_into_gemm_v4r4r4_atomic_nhwc_kyxc_nhwk.hpp
deleted
100644 → 0
View file @
ad8bc60b
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2022, Advanced Micro Devices, Inc. All rights reserved.
#ifndef CK_TRANSFORM_BACKWARD_WEIGHT_CONVOLUTION_INTO_GEMM_V4R4R4_ATOMIC_NHWC_KYXC_NHWK_HPP
#define CK_TRANSFORM_BACKWARD_WEIGHT_CONVOLUTION_INTO_GEMM_V4R4R4_ATOMIC_NHWC_KYXC_NHWK_HPP
#include "common_header.hpp"
#include "tensor_descriptor.hpp"
#include "tensor_descriptor_helper.hpp"
namespace
ck
{
// A: in
// B: wei
// C: out
// GemmM = N * Ho * Wo
// GemmN = K
// GemmK = Y * X * C
template
<
typename
...
In
,
typename
...
Wei
,
typename
...
Out
,
typename
ConvStrides
,
typename
ConvDilations
,
typename
InLeftPads
,
typename
InRightPads
,
index_t
GemmK1Value
,
typename
GemmKBatchType
,
typename
GemmKPadType
>
__host__
__device__
constexpr
auto
transform_backward_weight_convolution_into_gemm_v4r4r4_atomic_nhwc_kyxc_nhwk_pad
(
const
TensorDescriptor
<
In
...
>&
in_n_hi_wi_c_grid_desc
,
const
TensorDescriptor
<
Wei
...
>&
wei_k_y_x_c_grid_desc
,
const
TensorDescriptor
<
Out
...
>&
out_n_ho_wo_k_grid_desc
,
const
ConvStrides
&
conv_strides
,
const
ConvDilations
&
conv_dilations
,
const
InLeftPads
&
in_left_pads
,
const
InRightPads
&
in_right_pads
,
Number
<
GemmK1Value
>
,
GemmKBatchType
GemmKBatch
,
GemmKPadType
GemmKPad
)
{
constexpr
auto
I0
=
Number
<
0
>
{};
constexpr
auto
I1
=
Number
<
1
>
{};
constexpr
auto
I2
=
Number
<
2
>
{};
constexpr
auto
I3
=
Number
<
3
>
{};
constexpr
auto
GemmK1
=
Number
<
GemmK1Value
>
{};
const
auto
N
=
in_n_hi_wi_c_grid_desc
.
GetLength
(
I0
);
const
auto
C
=
in_n_hi_wi_c_grid_desc
.
GetLength
(
I3
);
const
auto
K
=
out_n_ho_wo_k_grid_desc
.
GetLength
(
I3
);
const
auto
Hi
=
in_n_hi_wi_c_grid_desc
.
GetLength
(
I1
);
const
auto
Wi
=
in_n_hi_wi_c_grid_desc
.
GetLength
(
I2
);
const
auto
Ho
=
out_n_ho_wo_k_grid_desc
.
GetLength
(
I1
);
const
auto
Wo
=
out_n_ho_wo_k_grid_desc
.
GetLength
(
I2
);
const
auto
Y
=
wei_k_y_x_c_grid_desc
.
GetLength
(
I1
);
const
auto
X
=
wei_k_y_x_c_grid_desc
.
GetLength
(
I2
);
const
auto
ConvStrideH
=
conv_strides
[
I0
];
const
auto
ConvStrideW
=
conv_strides
[
I1
];
const
auto
ConvDilationH
=
conv_dilations
[
I0
];
const
auto
ConvDilationW
=
conv_dilations
[
I1
];
const
auto
InLeftPadH
=
in_left_pads
[
I0
];
const
auto
InLeftPadW
=
in_left_pads
[
I1
];
const
auto
InRightPadH
=
in_right_pads
[
I0
];
const
auto
InRightPadW
=
in_right_pads
[
I1
];
const
auto
GemmM
=
Y
*
X
*
C
;
const
auto
GemmN
=
K
;
const
auto
GemmKTotal
=
N
*
Ho
*
Wo
;
const
index_t
GemmK0
=
GemmKPad
/
(
GemmKBatch
*
GemmK1
);
// A: input tensor
const
auto
in_n_hip_wip_c_grid_desc
=
transform_tensor_descriptor
(
in_n_hi_wi_c_grid_desc
,
make_tuple
(
make_pass_through_transform
(
N
),
make_pad_transform
(
Hi
,
InLeftPadH
,
InRightPadH
),
make_pad_transform
(
Wi
,
InLeftPadW
,
InRightPadW
),
make_pass_through_transform
(
C
)),
make_tuple
(
Sequence
<
0
>
{},
Sequence
<
1
>
{},
Sequence
<
2
>
{},
Sequence
<
3
>
{}),
make_tuple
(
Sequence
<
0
>
{},
Sequence
<
1
>
{},
Sequence
<
2
>
{},
Sequence
<
3
>
{}));
const
auto
in_n_y_ho_x_wo_c_grid_desc
=
transform_tensor_descriptor
(
in_n_hip_wip_c_grid_desc
,
make_tuple
(
make_pass_through_transform
(
N
),
make_embed_transform
(
make_tuple
(
Y
,
Ho
),
make_tuple
(
ConvDilationH
,
ConvStrideH
)),
make_embed_transform
(
make_tuple
(
X
,
Wo
),
make_tuple
(
ConvDilationW
,
ConvStrideW
)),
make_pass_through_transform
(
C
)),
make_tuple
(
Sequence
<
0
>
{},
Sequence
<
1
>
{},
Sequence
<
2
>
{},
Sequence
<
3
>
{}),
make_tuple
(
Sequence
<
0
>
{},
Sequence
<
1
,
2
>
{},
Sequence
<
3
,
4
>
{},
Sequence
<
5
>
{}));
const
auto
in_gemmktotal_gemmm_grid_desc
=
transform_tensor_descriptor
(
in_n_y_ho_x_wo_c_grid_desc
,
make_tuple
(
make_merge_transform
(
make_tuple
(
Y
,
X
,
C
)),
make_merge_transform
(
make_tuple
(
N
,
Ho
,
Wo
))),
make_tuple
(
Sequence
<
1
,
3
,
5
>
{},
Sequence
<
0
,
2
,
4
>
{}),
make_tuple
(
Sequence
<
1
>
{},
Sequence
<
0
>
{}));
const
auto
in_gemmkpad_gemmm_grid_desc
=
transform_tensor_descriptor
(
in_gemmktotal_gemmm_grid_desc
,
make_tuple
(
make_right_pad_transform
(
GemmKTotal
,
GemmKPad
-
GemmKTotal
),
make_pass_through_transform
(
GemmM
)),
make_tuple
(
Sequence
<
0
>
{},
Sequence
<
1
>
{}),
make_tuple
(
Sequence
<
0
>
{},
Sequence
<
1
>
{}));
const
auto
in_gemmkbatch_gemmk0_gemmm_gemmk1_grid_desc
=
transform_tensor_descriptor
(
in_gemmkpad_gemmm_grid_desc
,
make_tuple
(
make_unmerge_transform
(
make_tuple
(
GemmKBatch
,
GemmK0
,
GemmK1
)),
make_pass_through_transform
(
GemmM
)),
make_tuple
(
Sequence
<
0
>
{},
Sequence
<
1
>
{}),
make_tuple
(
Sequence
<
0
,
1
,
3
>
{},
Sequence
<
2
>
{}));
// B: output tensor
const
auto
out_gemmktotal_gemmn_grid_desc
=
make_naive_tensor_descriptor_packed
(
make_tuple
(
N
*
Ho
*
Wo
,
K
));
const
auto
out_gemmkpad_gemmn_grid_desc
=
transform_tensor_descriptor
(
out_gemmktotal_gemmn_grid_desc
,
make_tuple
(
make_right_pad_transform
(
GemmKTotal
,
GemmKPad
-
GemmKTotal
),
make_pass_through_transform
(
GemmN
)),
make_tuple
(
Sequence
<
0
>
{},
Sequence
<
1
>
{}),
make_tuple
(
Sequence
<
0
>
{},
Sequence
<
1
>
{}));
const
auto
out_gemmkbatch_gemmk0_gemmn_gemmk1_grid_desc
=
transform_tensor_descriptor
(
out_gemmkpad_gemmn_grid_desc
,
make_tuple
(
make_unmerge_transform
(
make_tuple
(
GemmKBatch
,
GemmK0
,
GemmK1
)),
make_pass_through_transform
(
GemmN
)),
make_tuple
(
Sequence
<
0
>
{},
Sequence
<
1
>
{}),
make_tuple
(
Sequence
<
0
,
1
,
3
>
{},
Sequence
<
2
>
{}));
// C: weight tensor
const
auto
wei_gemmm_gemmn_grid_desc
=
transform_tensor_descriptor
(
make_naive_tensor_descriptor_packed
(
make_tuple
(
K
,
Y
*
X
*
C
)),
make_tuple
(
make_pass_through_transform
(
K
),
make_pass_through_transform
(
Y
*
X
*
C
)),
make_tuple
(
Sequence
<
0
>
{},
Sequence
<
1
>
{}),
make_tuple
(
Sequence
<
1
>
{},
Sequence
<
0
>
{}));
return
make_tuple
(
in_gemmkbatch_gemmk0_gemmm_gemmk1_grid_desc
,
out_gemmkbatch_gemmk0_gemmn_gemmk1_grid_desc
,
wei_gemmm_gemmn_grid_desc
);
}
}
// namespace ck
#endif
include/ck/problem_transform/transform_backward_weight_convolution_into_gemm_v4r4r4_nhwc_kyxc_nhwk.hpp
deleted
100644 → 0
View file @
ad8bc60b
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2022, Advanced Micro Devices, Inc. All rights reserved.
#ifndef CK_TRANSFORM_BACKWARD_WEIGHT_CONVOLUTION_INTO_GEMM_V4R4R4_NHWC_KYXC_NHWK_HPP
#define CK_TRANSFORM_BACKWARD_WEIGHT_CONVOLUTION_INTO_GEMM_V4R4R4_NHWC_KYXC_NHWK_HPP
#include "common_header.hpp"
#include "tensor_descriptor.hpp"
#include "tensor_descriptor_helper.hpp"
namespace
ck
{
// A: in
// B: wei
// C: out
// GemmM = N * Ho * Wo
// GemmN = K
// GemmK = Y * X * C
template
<
typename
...
In
,
typename
...
Wei
,
typename
...
Out
,
typename
ConvStrides
,
typename
ConvDilations
,
typename
InLeftPads
,
typename
InRightPads
,
index_t
GemmK1Value
>
__host__
__device__
constexpr
auto
transform_backward_weight_convolution_into_gemm_v4r4r4_nhwc_kyxc_nhwk_pad
(
const
TensorDescriptor
<
In
...
>&
in_n_hi_wi_c_grid_desc
,
const
TensorDescriptor
<
Wei
...
>&
wei_k_y_x_c_grid_desc
,
const
TensorDescriptor
<
Out
...
>&
out_n_ho_wo_k_grid_desc
,
const
ConvStrides
&
conv_strides
,
const
ConvDilations
&
conv_dilations
,
const
InLeftPads
&
in_left_pads
,
const
InRightPads
&
in_right_pads
,
Number
<
GemmK1Value
>
)
{
constexpr
auto
I0
=
Number
<
0
>
{};
constexpr
auto
I1
=
Number
<
1
>
{};
constexpr
auto
I2
=
Number
<
2
>
{};
constexpr
auto
I3
=
Number
<
3
>
{};
constexpr
auto
GemmK1
=
Number
<
GemmK1Value
>
{};
const
auto
N
=
in_n_hi_wi_c_grid_desc
.
GetLength
(
I0
);
const
auto
C
=
in_n_hi_wi_c_grid_desc
.
GetLength
(
I3
);
const
auto
K
=
out_n_ho_wo_k_grid_desc
.
GetLength
(
I3
);
const
auto
Hi
=
in_n_hi_wi_c_grid_desc
.
GetLength
(
I1
);
const
auto
Wi
=
in_n_hi_wi_c_grid_desc
.
GetLength
(
I2
);
const
auto
Ho
=
out_n_ho_wo_k_grid_desc
.
GetLength
(
I1
);
const
auto
Wo
=
out_n_ho_wo_k_grid_desc
.
GetLength
(
I2
);
const
auto
Y
=
wei_k_y_x_c_grid_desc
.
GetLength
(
I1
);
const
auto
X
=
wei_k_y_x_c_grid_desc
.
GetLength
(
I2
);
const
auto
ConvStrideH
=
conv_strides
[
I0
];
const
auto
ConvStrideW
=
conv_strides
[
I1
];
const
auto
ConvDilationH
=
conv_dilations
[
I0
];
const
auto
ConvDilationW
=
conv_dilations
[
I1
];
const
auto
InLeftPadH
=
in_left_pads
[
I0
];
const
auto
InLeftPadW
=
in_left_pads
[
I1
];
const
auto
InRightPadH
=
in_right_pads
[
I0
];
const
auto
InRightPadW
=
in_right_pads
[
I1
];
const
auto
GemmM
=
Y
*
X
*
C
;
const
auto
GemmN
=
K
;
const
auto
GemmK
=
N
*
Ho
*
Wo
;
const
auto
GemmK0
=
GemmK
/
GemmK1
;
// A: input tensor
const
auto
in_n_hip_wip_c_grid_desc
=
transform_tensor_descriptor
(
in_n_hi_wi_c_grid_desc
,
make_tuple
(
make_pass_through_transform
(
N
),
make_pad_transform
(
Hi
,
InLeftPadH
,
InRightPadH
),
make_pad_transform
(
Wi
,
InLeftPadW
,
InRightPadW
),
make_pass_through_transform
(
C
)),
make_tuple
(
Sequence
<
0
>
{},
Sequence
<
1
>
{},
Sequence
<
2
>
{},
Sequence
<
3
>
{}),
make_tuple
(
Sequence
<
0
>
{},
Sequence
<
1
>
{},
Sequence
<
2
>
{},
Sequence
<
3
>
{}));
const
auto
in_n_y_ho_x_wo_c_grid_desc
=
transform_tensor_descriptor
(
in_n_hip_wip_c_grid_desc
,
make_tuple
(
make_pass_through_transform
(
N
),
make_embed_transform
(
make_tuple
(
Y
,
Ho
),
make_tuple
(
ConvDilationH
,
ConvStrideH
)),
make_embed_transform
(
make_tuple
(
X
,
Wo
),
make_tuple
(
ConvDilationW
,
ConvStrideW
)),
make_pass_through_transform
(
C
)),
make_tuple
(
Sequence
<
0
>
{},
Sequence
<
1
>
{},
Sequence
<
2
>
{},
Sequence
<
3
>
{}),
make_tuple
(
Sequence
<
0
>
{},
Sequence
<
1
,
2
>
{},
Sequence
<
3
,
4
>
{},
Sequence
<
5
>
{}));
const
auto
in_gemmk_gemmm_grid_desc
=
transform_tensor_descriptor
(
in_n_y_ho_x_wo_c_grid_desc
,
make_tuple
(
make_merge_transform
(
make_tuple
(
Y
,
X
,
C
)),
make_merge_transform
(
make_tuple
(
N
,
Ho
,
Wo
))),
make_tuple
(
Sequence
<
1
,
3
,
5
>
{},
Sequence
<
0
,
2
,
4
>
{}),
make_tuple
(
Sequence
<
1
>
{},
Sequence
<
0
>
{}));
const
auto
in_gemmk0_gemmm_gemmk1_grid_desc
=
transform_tensor_descriptor
(
in_gemmk_gemmm_grid_desc
,
make_tuple
(
make_unmerge_transform
(
make_tuple
(
GemmK0
,
GemmK1
)),
make_pass_through_transform
(
GemmM
)),
make_tuple
(
Sequence
<
0
>
{},
Sequence
<
1
>
{}),
make_tuple
(
Sequence
<
0
,
2
>
{},
Sequence
<
1
>
{}));
// B: output tensor
const
auto
out_gemmk_gemmn_grid_desc
=
transform_tensor_descriptor
(
make_naive_tensor_descriptor_packed
(
make_tuple
(
N
*
Ho
*
Wo
,
K
)),
make_tuple
(
make_pass_through_transform
(
N
*
Ho
*
Wo
),
make_pass_through_transform
(
K
)),
make_tuple
(
Sequence
<
0
>
{},
Sequence
<
1
>
{}),
make_tuple
(
Sequence
<
0
>
{},
Sequence
<
1
>
{}));
const
auto
out_gemmk0_gemmn_gemmk1_grid_desc
=
transform_tensor_descriptor
(
out_gemmk_gemmn_grid_desc
,
make_tuple
(
make_unmerge_transform
(
make_tuple
(
GemmK0
,
GemmK1
)),
make_pass_through_transform
(
GemmN
)),
make_tuple
(
Sequence
<
0
>
{},
Sequence
<
1
>
{}),
make_tuple
(
Sequence
<
0
,
2
>
{},
Sequence
<
1
>
{}));
// C: weight tensor
const
auto
wei_gemmm_gemmn_grid_desc
=
transform_tensor_descriptor
(
make_naive_tensor_descriptor_packed
(
make_tuple
(
K
,
Y
*
X
*
C
)),
make_tuple
(
make_pass_through_transform
(
K
),
make_pass_through_transform
(
Y
*
X
*
C
)),
make_tuple
(
Sequence
<
0
>
{},
Sequence
<
1
>
{}),
make_tuple
(
Sequence
<
1
>
{},
Sequence
<
0
>
{}));
return
make_tuple
(
in_gemmk0_gemmm_gemmk1_grid_desc
,
out_gemmk0_gemmn_gemmk1_grid_desc
,
wei_gemmm_gemmn_grid_desc
);
}
}
// namespace ck
#endif
include/ck/problem_transform/transform_backward_weight_convolution_into_gemm_v4r4r5_nhwc_kyxc_nhwk.hpp
deleted
100644 → 0
View file @
ad8bc60b
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2022, Advanced Micro Devices, Inc. All rights reserved.
#ifndef CK_TRANSFORM_BACKWARD_WEIGHT_CONVOLUTION_INTO_GEMM_V4R4R5_NHWC_KYXC_NHWK_HPP
#define CK_TRANSFORM_BACKWARD_WEIGHT_CONVOLUTION_INTO_GEMM_V4R4R5_NHWC_KYXC_NHWK_HPP
#include "common_header.hpp"
#include "tensor_descriptor.hpp"
#include "tensor_descriptor_helper.hpp"
namespace
ck
{
// A: out
// B: in
// C: wei
// GemmM = K
// GemmN = Y * X * C
// GemmKTotal = N * Ho * Wo
template
<
typename
...
In
,
typename
...
Wei
,
typename
...
Out
,
typename
ConvStrides
,
typename
ConvDilations
,
typename
InLeftPads
,
typename
InRightPads
,
index_t
GemmK1Value
,
typename
GemmKBatchType
,
typename
GemmKPadType
>
__host__
__device__
constexpr
auto
transform_backward_weight_convolution_into_gemm_v4r4r5_nhwc_kyxc_nhwk_pad
(
const
TensorDescriptor
<
In
...
>&
in_n_hi_wi_c_grid_desc
,
const
TensorDescriptor
<
Wei
...
>&
wei_k_y_x_c_grid_desc
,
const
TensorDescriptor
<
Out
...
>&
out_n_ho_wo_k_grid_desc
,
const
ConvStrides
&
conv_strides
,
const
ConvDilations
&
conv_dilations
,
const
InLeftPads
&
in_left_pads
,
const
InRightPads
&
in_right_pads
,
Number
<
GemmK1Value
>
,
GemmKBatchType
GemmKBatch
,
GemmKPadType
GemmKPad
)
{
constexpr
auto
I0
=
Number
<
0
>
{};
constexpr
auto
I1
=
Number
<
1
>
{};
constexpr
auto
I2
=
Number
<
2
>
{};
constexpr
auto
I3
=
Number
<
3
>
{};
constexpr
auto
GemmK1
=
Number
<
GemmK1Value
>
{};
const
auto
N
=
in_n_hi_wi_c_grid_desc
.
GetLength
(
I0
);
const
auto
C
=
in_n_hi_wi_c_grid_desc
.
GetLength
(
I3
);
const
auto
K
=
out_n_ho_wo_k_grid_desc
.
GetLength
(
I3
);
const
auto
Hi
=
in_n_hi_wi_c_grid_desc
.
GetLength
(
I1
);
const
auto
Wi
=
in_n_hi_wi_c_grid_desc
.
GetLength
(
I2
);
const
auto
Ho
=
out_n_ho_wo_k_grid_desc
.
GetLength
(
I1
);
const
auto
Wo
=
out_n_ho_wo_k_grid_desc
.
GetLength
(
I2
);
const
auto
Y
=
wei_k_y_x_c_grid_desc
.
GetLength
(
I1
);
const
auto
X
=
wei_k_y_x_c_grid_desc
.
GetLength
(
I2
);
const
auto
ConvStrideH
=
conv_strides
[
I0
];
const
auto
ConvStrideW
=
conv_strides
[
I1
];
const
auto
ConvDilationH
=
conv_dilations
[
I0
];
const
auto
ConvDilationW
=
conv_dilations
[
I1
];
const
auto
InLeftPadH
=
in_left_pads
[
I0
];
const
auto
InLeftPadW
=
in_left_pads
[
I1
];
const
auto
InRightPadH
=
in_right_pads
[
I0
];
const
auto
InRightPadW
=
in_right_pads
[
I1
];
const
auto
GemmM
=
K
;
const
auto
GemmN
=
Y
*
X
*
C
;
const
auto
GemmKTotal
=
N
*
Ho
*
Wo
;
const
index_t
GemmK0
=
GemmKPad
/
(
GemmKBatch
*
GemmK1
);
// A: output tensor
const
auto
out_gemmktotal_gemmm_grid_desc
=
make_naive_tensor_descriptor_packed
(
make_tuple
(
N
*
Ho
*
Wo
,
K
));
const
auto
out_gemmkpad_gemmm_grid_desc
=
transform_tensor_descriptor
(
out_gemmktotal_gemmm_grid_desc
,
make_tuple
(
make_right_pad_transform
(
GemmKTotal
,
GemmKPad
-
GemmKTotal
),
make_pass_through_transform
(
GemmM
)),
make_tuple
(
Sequence
<
0
>
{},
Sequence
<
1
>
{}),
make_tuple
(
Sequence
<
0
>
{},
Sequence
<
1
>
{}));
const
auto
out_gemmkbatch_gemmk0_gemmm_gemmk1_grid_desc
=
transform_tensor_descriptor
(
out_gemmkpad_gemmm_grid_desc
,
make_tuple
(
make_unmerge_transform
(
make_tuple
(
GemmKBatch
,
GemmK0
,
GemmK1
)),
make_pass_through_transform
(
GemmM
)),
make_tuple
(
Sequence
<
0
>
{},
Sequence
<
1
>
{}),
make_tuple
(
Sequence
<
0
,
1
,
3
>
{},
Sequence
<
2
>
{}));
// B: input tensor
const
auto
in_n_hip_wip_c_grid_desc
=
transform_tensor_descriptor
(
in_n_hi_wi_c_grid_desc
,
make_tuple
(
make_pass_through_transform
(
N
),
make_pad_transform
(
Hi
,
InLeftPadH
,
InRightPadH
),
make_pad_transform
(
Wi
,
InLeftPadW
,
InRightPadW
),
make_pass_through_transform
(
C
)),
make_tuple
(
Sequence
<
0
>
{},
Sequence
<
1
>
{},
Sequence
<
2
>
{},
Sequence
<
3
>
{}),
make_tuple
(
Sequence
<
0
>
{},
Sequence
<
1
>
{},
Sequence
<
2
>
{},
Sequence
<
3
>
{}));
const
auto
in_n_y_ho_x_wo_c_grid_desc
=
transform_tensor_descriptor
(
in_n_hip_wip_c_grid_desc
,
make_tuple
(
make_pass_through_transform
(
N
),
make_embed_transform
(
make_tuple
(
Y
,
Ho
),
make_tuple
(
ConvDilationH
,
ConvStrideH
)),
make_embed_transform
(
make_tuple
(
X
,
Wo
),
make_tuple
(
ConvDilationW
,
ConvStrideW
)),
make_pass_through_transform
(
C
)),
make_tuple
(
Sequence
<
0
>
{},
Sequence
<
1
>
{},
Sequence
<
2
>
{},
Sequence
<
3
>
{}),
make_tuple
(
Sequence
<
0
>
{},
Sequence
<
1
,
2
>
{},
Sequence
<
3
,
4
>
{},
Sequence
<
5
>
{}));
const
auto
in_gemmktotal_gemmn_grid_desc
=
transform_tensor_descriptor
(
in_n_y_ho_x_wo_c_grid_desc
,
make_tuple
(
make_merge_transform
(
make_tuple
(
Y
,
X
,
C
)),
make_merge_transform
(
make_tuple
(
N
,
Ho
,
Wo
))),
make_tuple
(
Sequence
<
1
,
3
,
5
>
{},
Sequence
<
0
,
2
,
4
>
{}),
make_tuple
(
Sequence
<
1
>
{},
Sequence
<
0
>
{}));
const
auto
in_gemmkpad_gemmn_grid_desc
=
transform_tensor_descriptor
(
in_gemmktotal_gemmn_grid_desc
,
make_tuple
(
make_right_pad_transform
(
GemmKTotal
,
GemmKPad
-
GemmKTotal
),
make_pass_through_transform
(
GemmN
)),
make_tuple
(
Sequence
<
0
>
{},
Sequence
<
1
>
{}),
make_tuple
(
Sequence
<
0
>
{},
Sequence
<
1
>
{}));
const
auto
in_gemmkbatch_gemmk0_gemmn_gemmk1_grid_desc
=
transform_tensor_descriptor
(
in_gemmkpad_gemmn_grid_desc
,
make_tuple
(
make_unmerge_transform
(
make_tuple
(
GemmKBatch
,
GemmK0
,
GemmK1
)),
make_pass_through_transform
(
GemmN
)),
make_tuple
(
Sequence
<
0
>
{},
Sequence
<
1
>
{}),
make_tuple
(
Sequence
<
0
,
1
,
3
>
{},
Sequence
<
2
>
{}));
// C: weight tensor
const
auto
wei_gemmm_gemmn_grid_desc
=
make_naive_tensor_descriptor_packed
(
make_tuple
(
K
,
Y
*
X
*
C
));
return
make_tuple
(
out_gemmkbatch_gemmk0_gemmm_gemmk1_grid_desc
,
in_gemmkbatch_gemmk0_gemmn_gemmk1_grid_desc
,
wei_gemmm_gemmn_grid_desc
);
}
}
// namespace ck
#endif
include/ck/problem_transform/transform_forward_convolution_into_gemm_v4r4_nchw_kcyx_nkhw.hpp
deleted
100644 → 0
View file @
ad8bc60b
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2022, Advanced Micro Devices, Inc. All rights reserved.
#ifndef CK_TRANSFORM_FORWARD_CONVOLUTION_INTO_GEMM_V4R4_NCHW_KCYX_NKHW_HPP
#define CK_TRANSFORM_FORWARD_CONVOLUTION_INTO_GEMM_V4R4_NCHW_KCYX_NKHW_HPP
#include "common_header.hpp"
#include "tensor_descriptor.hpp"
#include "tensor_descriptor_helper.hpp"
namespace
ck
{
// GemmM = K
// GemmN = N * Ho * Wo
// GemmK = C * Y * X
template
<
typename
...
Wei
,
typename
...
In
,
typename
...
Out
,
typename
ConvStrides
,
typename
ConvDilations
,
typename
InLeftPads
,
typename
InRightPads
>
__host__
__device__
constexpr
auto
transform_forward_convolution_into_gemm_v4r4_nchw_kcyx_nkhw_pad
(
const
TensorDescriptor
<
Wei
...
>&
wei_k_c_y_x_global_desc
,
const
TensorDescriptor
<
In
...
>&
in_n_c_hi_wi_global_desc
,
const
TensorDescriptor
<
Out
...
>&
out_n_k_ho_wo_global_desc
,
const
ConvStrides
&
conv_strides
,
const
ConvDilations
&
conv_dilations
,
const
InLeftPads
&
in_left_pads
,
const
InRightPads
&
in_right_pads
)
{
constexpr
auto
I0
=
Number
<
0
>
{};
constexpr
auto
I1
=
Number
<
1
>
{};
constexpr
auto
I2
=
Number
<
2
>
{};
constexpr
auto
I3
=
Number
<
3
>
{};
const
auto
N
=
in_n_c_hi_wi_global_desc
.
GetLength
(
I0
);
const
auto
C
=
in_n_c_hi_wi_global_desc
.
GetLength
(
I1
);
const
auto
K
=
out_n_k_ho_wo_global_desc
.
GetLength
(
I1
);
const
auto
Hi
=
in_n_c_hi_wi_global_desc
.
GetLength
(
I2
);
const
auto
Wi
=
in_n_c_hi_wi_global_desc
.
GetLength
(
I3
);
const
auto
Ho
=
out_n_k_ho_wo_global_desc
.
GetLength
(
I2
);
const
auto
Wo
=
out_n_k_ho_wo_global_desc
.
GetLength
(
I3
);
const
auto
Y
=
wei_k_c_y_x_global_desc
.
GetLength
(
I2
);
const
auto
X
=
wei_k_c_y_x_global_desc
.
GetLength
(
I3
);
const
auto
ConvStrideH
=
conv_strides
[
I0
];
const
auto
ConvStrideW
=
conv_strides
[
I1
];
const
auto
ConvDilationH
=
conv_dilations
[
I0
];
const
auto
ConvDilationW
=
conv_dilations
[
I1
];
const
auto
InLeftPadH
=
in_left_pads
[
I0
];
const
auto
InLeftPadW
=
in_left_pads
[
I1
];
const
auto
InRightPadH
=
in_right_pads
[
I0
];
const
auto
InRightPadW
=
in_right_pads
[
I1
];
// weight tensor
const
auto
wei_gemmk_gemmm_global_desc
=
transform_tensor_descriptor
(
make_naive_tensor_descriptor_packed
(
make_tuple
(
K
,
C
*
Y
*
X
)),
make_tuple
(
make_pass_through_transform
(
K
),
make_pass_through_transform
(
C
*
Y
*
X
)),
make_tuple
(
Sequence
<
0
>
{},
Sequence
<
1
>
{}),
make_tuple
(
Sequence
<
1
>
{},
Sequence
<
0
>
{}));
// input tensor
const
auto
in_n_c_hip_wip_global_desc
=
transform_tensor_descriptor
(
in_n_c_hi_wi_global_desc
,
make_tuple
(
make_pass_through_transform
(
N
),
make_pass_through_transform
(
C
),
make_pad_transform
(
Hi
,
InLeftPadH
,
InRightPadH
),
make_pad_transform
(
Wi
,
InLeftPadW
,
InRightPadW
)),
make_tuple
(
Sequence
<
0
>
{},
Sequence
<
1
>
{},
Sequence
<
2
>
{},
Sequence
<
3
>
{}),
make_tuple
(
Sequence
<
0
>
{},
Sequence
<
1
>
{},
Sequence
<
2
>
{},
Sequence
<
3
>
{}));
const
auto
in_n_c_y_ho_x_wo_global_desc
=
transform_tensor_descriptor
(
in_n_c_hip_wip_global_desc
,
make_tuple
(
make_pass_through_transform
(
N
),
make_pass_through_transform
(
C
),
make_embed_transform
(
make_tuple
(
Y
,
Ho
),
make_tuple
(
ConvDilationH
,
ConvStrideH
)),
make_embed_transform
(
make_tuple
(
X
,
Wo
),
make_tuple
(
ConvDilationW
,
ConvStrideW
))),
make_tuple
(
Sequence
<
0
>
{},
Sequence
<
1
>
{},
Sequence
<
2
>
{},
Sequence
<
3
>
{}),
make_tuple
(
Sequence
<
0
>
{},
Sequence
<
1
>
{},
Sequence
<
2
,
3
>
{},
Sequence
<
4
,
5
>
{}));
const
auto
in_gemmk_gemmn_global_desc
=
transform_tensor_descriptor
(
in_n_c_y_ho_x_wo_global_desc
,
make_tuple
(
make_merge_transform
(
make_tuple
(
C
,
Y
,
X
)),
make_merge_transform
(
make_tuple
(
N
,
Ho
,
Wo
))),
make_tuple
(
Sequence
<
1
,
2
,
4
>
{},
Sequence
<
0
,
3
,
5
>
{}),
make_tuple
(
Sequence
<
0
>
{},
Sequence
<
1
>
{}));
// output tensor
const
auto
out_gemmm_gemmn_global_desc
=
transform_tensor_descriptor
(
make_naive_tensor_descriptor_packed
(
make_tuple
(
N
,
K
,
Ho
*
Wo
)),
make_tuple
(
make_pass_through_transform
(
K
),
make_merge_transform
(
make_tuple
(
N
,
Ho
*
Wo
))),
make_tuple
(
Sequence
<
1
>
{},
Sequence
<
0
,
2
>
{}),
make_tuple
(
Sequence
<
0
>
{},
Sequence
<
1
>
{}));
return
make_tuple
(
wei_gemmk_gemmm_global_desc
,
in_gemmk_gemmn_global_desc
,
out_gemmm_gemmn_global_desc
);
}
template
<
typename
...
Wei
,
typename
...
In
,
typename
...
Out
,
typename
ConvStrides
,
typename
ConvDilations
,
typename
InLeftPads
,
typename
InRightPads
>
__host__
__device__
constexpr
auto
transform_forward_convolution_into_gemm_v4r4_nchw_kcyx_nkhw_no_pad
(
const
TensorDescriptor
<
Wei
...
>&
wei_k_c_y_x_global_desc
,
const
TensorDescriptor
<
In
...
>&
in_n_c_hi_wi_global_desc
,
const
TensorDescriptor
<
Out
...
>&
out_n_k_ho_wo_global_desc
,
const
ConvStrides
&
conv_strides
,
const
ConvDilations
&
conv_dilations
,
const
InLeftPads
&
in_left_pads
,
const
InRightPads
&
in_right_pads
)
{
constexpr
auto
I0
=
Number
<
0
>
{};
constexpr
auto
I1
=
Number
<
1
>
{};
constexpr
auto
I2
=
Number
<
2
>
{};
constexpr
auto
I3
=
Number
<
3
>
{};
const
auto
N
=
in_n_c_hi_wi_global_desc
.
GetLength
(
I0
);
const
auto
C
=
in_n_c_hi_wi_global_desc
.
GetLength
(
I1
);
const
auto
K
=
out_n_k_ho_wo_global_desc
.
GetLength
(
I1
);
const
auto
Ho
=
out_n_k_ho_wo_global_desc
.
GetLength
(
I2
);
const
auto
Wo
=
out_n_k_ho_wo_global_desc
.
GetLength
(
I3
);
const
auto
Y
=
wei_k_c_y_x_global_desc
.
GetLength
(
I2
);
const
auto
X
=
wei_k_c_y_x_global_desc
.
GetLength
(
I3
);
const
auto
ConvStrideH
=
conv_strides
[
I0
];
const
auto
ConvStrideW
=
conv_strides
[
I1
];
const
auto
ConvDilationH
=
conv_dilations
[
I0
];
const
auto
ConvDilationW
=
conv_dilations
[
I1
];
const
auto
InLeftPadH
=
in_left_pads
[
I0
];
const
auto
InLeftPadW
=
in_left_pads
[
I1
];
const
auto
InRightPadH
=
in_right_pads
[
I0
];
const
auto
InRightPadW
=
in_right_pads
[
I1
];
assert
(
InLeftPadH
==
0
&&
InLeftPadW
==
0
&&
InRightPadH
==
0
&&
InRightPadW
==
0
);
// weight tensor
const
auto
wei_gemmk_gemmm_global_desc
=
transform_tensor_descriptor
(
make_naive_tensor_descriptor_packed
(
make_tuple
(
K
,
C
*
Y
*
X
)),
make_tuple
(
make_pass_through_transform
(
K
),
make_pass_through_transform
(
C
*
Y
*
X
)),
make_tuple
(
Sequence
<
0
>
{},
Sequence
<
1
>
{}),
make_tuple
(
Sequence
<
1
>
{},
Sequence
<
0
>
{}));
// input tensor
const
auto
in_n_c_y_ho_x_wo_global_desc
=
transform_tensor_descriptor
(
in_n_c_hi_wi_global_desc
,
make_tuple
(
make_pass_through_transform
(
N
),
make_pass_through_transform
(
C
),
make_embed_transform
(
make_tuple
(
Y
,
Ho
),
make_tuple
(
ConvDilationH
,
ConvStrideH
)),
make_embed_transform
(
make_tuple
(
X
,
Wo
),
make_tuple
(
ConvDilationW
,
ConvStrideW
))),
make_tuple
(
Sequence
<
0
>
{},
Sequence
<
1
>
{},
Sequence
<
2
>
{},
Sequence
<
3
>
{}),
make_tuple
(
Sequence
<
0
>
{},
Sequence
<
1
>
{},
Sequence
<
2
,
3
>
{},
Sequence
<
4
,
5
>
{}));
const
auto
in_gemmk_gemmn_global_desc
=
transform_tensor_descriptor
(
in_n_c_y_ho_x_wo_global_desc
,
make_tuple
(
make_merge_transform
(
make_tuple
(
C
,
Y
,
X
)),
make_merge_transform
(
make_tuple
(
N
,
Ho
,
Wo
))),
make_tuple
(
Sequence
<
1
,
2
,
4
>
{},
Sequence
<
0
,
3
,
5
>
{}),
make_tuple
(
Sequence
<
0
>
{},
Sequence
<
1
>
{}));
// output tensor
const
auto
out_gemmm_gemmn_global_desc
=
transform_tensor_descriptor
(
make_naive_tensor_descriptor_packed
(
make_tuple
(
N
,
K
,
Ho
*
Wo
)),
make_tuple
(
make_pass_through_transform
(
K
),
make_merge_transform
(
make_tuple
(
N
,
Ho
*
Wo
))),
make_tuple
(
Sequence
<
1
>
{},
Sequence
<
0
,
2
>
{}),
make_tuple
(
Sequence
<
0
>
{},
Sequence
<
1
>
{}));
return
make_tuple
(
wei_gemmk_gemmm_global_desc
,
in_gemmk_gemmn_global_desc
,
out_gemmm_gemmn_global_desc
);
}
template
<
typename
...
Wei
,
typename
...
In
,
typename
...
Out
,
typename
ConvStrides
,
typename
ConvDilations
,
typename
InLeftPads
,
typename
InRightPads
>
__host__
__device__
constexpr
auto
transform_forward_convolution_into_gemm_v4r4_nchw_kcyx_nkhw_1x1
(
const
TensorDescriptor
<
Wei
...
>&
wei_k_c_y_x_global_desc
,
const
TensorDescriptor
<
In
...
>&
in_n_c_hi_wi_global_desc
,
const
TensorDescriptor
<
Out
...
>&
out_n_k_ho_wo_global_desc
,
const
ConvStrides
&
conv_strides
,
const
ConvDilations
&
conv_dilations
,
const
InLeftPads
&
in_left_pads
,
const
InRightPads
&
in_right_pads
)
{
constexpr
auto
I0
=
Number
<
0
>
{};
constexpr
auto
I1
=
Number
<
1
>
{};
constexpr
auto
I2
=
Number
<
2
>
{};
constexpr
auto
I3
=
Number
<
3
>
{};
const
auto
N
=
in_n_c_hi_wi_global_desc
.
GetLength
(
I0
);
const
auto
C
=
in_n_c_hi_wi_global_desc
.
GetLength
(
I1
);
const
auto
K
=
out_n_k_ho_wo_global_desc
.
GetLength
(
I1
);
const
auto
Ho
=
out_n_k_ho_wo_global_desc
.
GetLength
(
I2
);
const
auto
Wo
=
out_n_k_ho_wo_global_desc
.
GetLength
(
I3
);
const
auto
Y
=
wei_k_c_y_x_global_desc
.
GetLength
(
I2
);
const
auto
X
=
wei_k_c_y_x_global_desc
.
GetLength
(
I3
);
const
auto
ConvStrideH
=
conv_strides
[
I0
];
const
auto
ConvStrideW
=
conv_strides
[
I1
];
const
auto
ConvDilationH
=
conv_dilations
[
I0
];
const
auto
ConvDilationW
=
conv_dilations
[
I1
];
const
auto
InLeftPadH
=
in_left_pads
[
I0
];
const
auto
InLeftPadW
=
in_left_pads
[
I1
];
const
auto
InRightPadH
=
in_right_pads
[
I0
];
const
auto
InRightPadW
=
in_right_pads
[
I1
];
assert
(
Y
==
1
&&
X
==
1
&&
ConvStrideH
==
1
&&
ConvStrideW
==
1
&&
ConvDilationH
==
1
&&
ConvDilationW
==
1
&&
InLeftPadH
==
0
&&
InLeftPadW
==
0
&&
InRightPadH
==
0
&&
InRightPadW
==
0
);
// weight tensor
const
auto
wei_gemmk_gemmm_global_desc
=
transform_tensor_descriptor
(
make_naive_tensor_descriptor_packed
(
make_tuple
(
K
,
C
)),
make_tuple
(
make_pass_through_transform
(
K
),
make_pass_through_transform
(
C
)),
make_tuple
(
Sequence
<
0
>
{},
Sequence
<
1
>
{}),
make_tuple
(
Sequence
<
1
>
{},
Sequence
<
0
>
{}));
// input tensor
const
auto
in_gemmk_gemmn_global_desc
=
transform_tensor_descriptor
(
in_n_c_hi_wi_global_desc
,
make_tuple
(
make_pass_through_transform
(
C
),
make_merge_transform
(
make_tuple
(
N
,
Ho
,
Wo
))),
make_tuple
(
Sequence
<
1
>
{},
Sequence
<
0
,
2
,
3
>
{}),
make_tuple
(
Sequence
<
0
>
{},
Sequence
<
1
>
{}));
// output tensor
const
auto
out_gemmm_gemmn_global_desc
=
transform_tensor_descriptor
(
make_naive_tensor_descriptor_packed
(
make_tuple
(
N
,
K
,
Ho
*
Wo
)),
make_tuple
(
make_pass_through_transform
(
K
),
make_merge_transform
(
make_tuple
(
N
,
Ho
*
Wo
))),
make_tuple
(
Sequence
<
1
>
{},
Sequence
<
0
,
2
>
{}),
make_tuple
(
Sequence
<
0
>
{},
Sequence
<
1
>
{}));
return
make_tuple
(
wei_gemmk_gemmm_global_desc
,
in_gemmk_gemmn_global_desc
,
out_gemmm_gemmn_global_desc
);
}
}
// namespace ck
#endif
include/ck/problem_transform/transform_forward_convolution_into_gemm_v4r4_nhwc_kyxc_nhwk.hpp
deleted
100644 → 0
View file @
ad8bc60b
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2022, Advanced Micro Devices, Inc. All rights reserved.
#ifndef CK_TRANSFORM_FORWARD_CONVOLUTION_INTO_GEMM_V4R4_NHWC_KYXC_NHWK_HPP
#define CK_TRANSFORM_FORWARD_CONVOLUTION_INTO_GEMM_V4R4_NHWC_KYXC_NHWK_HPP
#include "common_header.hpp"
#include "tensor_descriptor.hpp"
#include "tensor_descriptor_helper.hpp"
namespace
ck
{
// GemmM = K
// GemmN = N * Ho * Wo
// GemmK = C * Y * X
template
<
typename
...
Wei
,
typename
...
In
,
typename
...
Out
,
typename
ConvStrides
,
typename
ConvDilations
,
typename
InLeftPads
,
typename
InRightPads
>
__host__
__device__
constexpr
auto
transform_forward_convolution_into_gemm_v4r4_nhwc_kyxc_nhwk_pad
(
const
TensorDescriptor
<
Wei
...
>&
wei_k_y_x_c_grid_desc
,
const
TensorDescriptor
<
In
...
>&
in_n_hi_wi_c_grid_desc
,
const
TensorDescriptor
<
Out
...
>&
out_n_ho_wo_k_grid_desc
,
const
ConvStrides
&
conv_strides
,
const
ConvDilations
&
conv_dilations
,
const
InLeftPads
&
in_left_pads
,
const
InRightPads
&
in_right_pads
)
{
constexpr
auto
I0
=
Number
<
0
>
{};
constexpr
auto
I1
=
Number
<
1
>
{};
constexpr
auto
I2
=
Number
<
2
>
{};
constexpr
auto
I3
=
Number
<
3
>
{};
const
auto
N
=
in_n_hi_wi_c_grid_desc
.
GetLength
(
I0
);
const
auto
C
=
in_n_hi_wi_c_grid_desc
.
GetLength
(
I3
);
const
auto
K
=
out_n_ho_wo_k_grid_desc
.
GetLength
(
I3
);
const
auto
Hi
=
in_n_hi_wi_c_grid_desc
.
GetLength
(
I1
);
const
auto
Wi
=
in_n_hi_wi_c_grid_desc
.
GetLength
(
I2
);
const
auto
Ho
=
out_n_ho_wo_k_grid_desc
.
GetLength
(
I1
);
const
auto
Wo
=
out_n_ho_wo_k_grid_desc
.
GetLength
(
I2
);
const
auto
Y
=
wei_k_y_x_c_grid_desc
.
GetLength
(
I1
);
const
auto
X
=
wei_k_y_x_c_grid_desc
.
GetLength
(
I2
);
const
auto
ConvStrideH
=
conv_strides
[
I0
];
const
auto
ConvStrideW
=
conv_strides
[
I1
];
const
auto
ConvDilationH
=
conv_dilations
[
I0
];
const
auto
ConvDilationW
=
conv_dilations
[
I1
];
const
auto
InLeftPadH
=
in_left_pads
[
I0
];
const
auto
InLeftPadW
=
in_left_pads
[
I1
];
const
auto
InRightPadH
=
in_right_pads
[
I0
];
const
auto
InRightPadW
=
in_right_pads
[
I1
];
// weight tensor
const
auto
wei_gemmk_gemmm_grid_desc
=
transform_tensor_descriptor
(
make_naive_tensor_descriptor_packed
(
make_tuple
(
K
,
Y
*
X
*
C
)),
make_tuple
(
make_pass_through_transform
(
K
),
make_pass_through_transform
(
Y
*
X
*
C
)),
make_tuple
(
Sequence
<
0
>
{},
Sequence
<
1
>
{}),
make_tuple
(
Sequence
<
1
>
{},
Sequence
<
0
>
{}));
// input tensor
const
auto
in_n_hip_wip_c_grid_desc
=
transform_tensor_descriptor
(
in_n_hi_wi_c_grid_desc
,
make_tuple
(
make_pass_through_transform
(
N
),
make_pad_transform
(
Hi
,
InLeftPadH
,
InRightPadH
),
make_pad_transform
(
Wi
,
InLeftPadW
,
InRightPadW
),
make_pass_through_transform
(
C
)),
make_tuple
(
Sequence
<
0
>
{},
Sequence
<
1
>
{},
Sequence
<
2
>
{},
Sequence
<
3
>
{}),
make_tuple
(
Sequence
<
0
>
{},
Sequence
<
1
>
{},
Sequence
<
2
>
{},
Sequence
<
3
>
{}));
const
auto
in_n_y_ho_x_wo_c_grid_desc
=
transform_tensor_descriptor
(
in_n_hip_wip_c_grid_desc
,
make_tuple
(
make_pass_through_transform
(
N
),
make_embed_transform
(
make_tuple
(
Y
,
Ho
),
make_tuple
(
ConvDilationH
,
ConvStrideH
)),
make_embed_transform
(
make_tuple
(
X
,
Wo
),
make_tuple
(
ConvDilationW
,
ConvStrideW
)),
make_pass_through_transform
(
C
)),
make_tuple
(
Sequence
<
0
>
{},
Sequence
<
1
>
{},
Sequence
<
2
>
{},
Sequence
<
3
>
{}),
make_tuple
(
Sequence
<
0
>
{},
Sequence
<
1
,
2
>
{},
Sequence
<
3
,
4
>
{},
Sequence
<
5
>
{}));
const
auto
in_gemmk_gemmn_grid_desc
=
transform_tensor_descriptor
(
in_n_y_ho_x_wo_c_grid_desc
,
make_tuple
(
make_merge_transform
(
make_tuple
(
Y
,
X
,
C
)),
make_merge_transform
(
make_tuple
(
N
,
Ho
,
Wo
))),
make_tuple
(
Sequence
<
1
,
3
,
5
>
{},
Sequence
<
0
,
2
,
4
>
{}),
make_tuple
(
Sequence
<
0
>
{},
Sequence
<
1
>
{}));
// output tensor
const
auto
out_gemmm_gemmn_grid_desc
=
transform_tensor_descriptor
(
make_naive_tensor_descriptor_packed
(
make_tuple
(
N
*
Ho
*
Wo
,
K
)),
make_tuple
(
make_pass_through_transform
(
N
*
Ho
*
Wo
),
make_pass_through_transform
(
K
)),
make_tuple
(
Sequence
<
0
>
{},
Sequence
<
1
>
{}),
make_tuple
(
Sequence
<
1
>
{},
Sequence
<
0
>
{}));
return
make_tuple
(
wei_gemmk_gemmm_grid_desc
,
in_gemmk_gemmn_grid_desc
,
out_gemmm_gemmn_grid_desc
);
}
template
<
typename
...
Wei
,
typename
...
In
,
typename
...
Out
,
typename
ConvStrides
,
typename
ConvDilations
,
typename
InLeftPads
,
typename
InRightPads
>
__host__
__device__
constexpr
auto
transform_forward_convolution_into_gemm_v4r4_nhwc_kyxc_nhwk_1x1
(
const
TensorDescriptor
<
Wei
...
>&
wei_k_y_x_c_grid_desc
,
const
TensorDescriptor
<
In
...
>&
in_n_hi_wi_c_grid_desc
,
const
TensorDescriptor
<
Out
...
>&
out_n_ho_wo_k_grid_desc
,
const
ConvStrides
&
conv_strides
,
const
ConvDilations
&
conv_dilations
,
const
InLeftPads
&
in_left_pads
,
const
InRightPads
&
in_right_pads
)
{
constexpr
auto
I0
=
Number
<
0
>
{};
constexpr
auto
I1
=
Number
<
1
>
{};
constexpr
auto
I2
=
Number
<
2
>
{};
constexpr
auto
I3
=
Number
<
3
>
{};
const
auto
N
=
in_n_hi_wi_c_grid_desc
.
GetLength
(
I0
);
const
auto
C
=
in_n_hi_wi_c_grid_desc
.
GetLength
(
I3
);
const
auto
K
=
out_n_ho_wo_k_grid_desc
.
GetLength
(
I3
);
const
auto
Ho
=
out_n_ho_wo_k_grid_desc
.
GetLength
(
I1
);
const
auto
Wo
=
out_n_ho_wo_k_grid_desc
.
GetLength
(
I2
);
const
auto
Y
=
wei_k_y_x_c_grid_desc
.
GetLength
(
I1
);
const
auto
X
=
wei_k_y_x_c_grid_desc
.
GetLength
(
I2
);
const
auto
ConvStrideH
=
conv_strides
[
I0
];
const
auto
ConvStrideW
=
conv_strides
[
I1
];
const
auto
ConvDilationH
=
conv_dilations
[
I0
];
const
auto
ConvDilationW
=
conv_dilations
[
I1
];
const
auto
InLeftPadH
=
in_left_pads
[
I0
];
const
auto
InLeftPadW
=
in_left_pads
[
I1
];
const
auto
InRightPadH
=
in_right_pads
[
I0
];
const
auto
InRightPadW
=
in_right_pads
[
I1
];
assert
(
Y
==
1
&&
X
==
1
&&
ConvStrideH
==
1
&&
ConvStrideW
==
1
&&
ConvDilationH
==
1
&&
ConvDilationW
==
1
&&
InLeftPadH
==
0
&&
InLeftPadW
==
0
&&
InRightPadH
==
0
&&
InRightPadW
==
0
);
// weight tensor
const
auto
wei_gemmk_gemmm_grid_desc
=
transform_tensor_descriptor
(
make_naive_tensor_descriptor_packed
(
make_tuple
(
K
,
C
)),
make_tuple
(
make_pass_through_transform
(
K
),
make_pass_through_transform
(
C
)),
make_tuple
(
Sequence
<
0
>
{},
Sequence
<
1
>
{}),
make_tuple
(
Sequence
<
1
>
{},
Sequence
<
0
>
{}));
// input tensor
const
auto
in_gemmk_gemmn_grid_desc
=
transform_tensor_descriptor
(
make_naive_tensor_descriptor_packed
(
make_tuple
(
N
*
Ho
*
Wo
,
C
)),
make_tuple
(
make_pass_through_transform
(
N
*
Ho
*
Wo
),
make_pass_through_transform
(
C
)),
make_tuple
(
Sequence
<
0
>
{},
Sequence
<
1
>
{}),
make_tuple
(
Sequence
<
1
>
{},
Sequence
<
0
>
{}));
// output tensor
const
auto
out_gemmm_gemmn_grid_desc
=
transform_tensor_descriptor
(
make_naive_tensor_descriptor_packed
(
make_tuple
(
N
*
Ho
*
Wo
,
K
)),
make_tuple
(
make_pass_through_transform
(
N
*
Ho
*
Wo
),
make_pass_through_transform
(
K
)),
make_tuple
(
Sequence
<
0
>
{},
Sequence
<
1
>
{}),
make_tuple
(
Sequence
<
1
>
{},
Sequence
<
0
>
{}));
return
make_tuple
(
wei_gemmk_gemmm_grid_desc
,
in_gemmk_gemmn_grid_desc
,
out_gemmm_gemmn_grid_desc
);
}
}
// namespace ck
#endif
include/ck/problem_transform/transform_forward_convolution_into_gemm_v4r4r2_nchw_kcyx_nkhw.hpp
deleted
100644 → 0
View file @
ad8bc60b
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2022, Advanced Micro Devices, Inc. All rights reserved.
#ifndef CK_TRANSFORM_FORWARD_CONVOLUTION_INTO_GEMM_V4R4R2_NCHW_KCYX_NKHW_HPP
#define CK_TRANSFORM_FORWARD_CONVOLUTION_INTO_GEMM_V4R4R2_NCHW_KCYX_NKHW_HPP
#include "common_header.hpp"
#include "tensor_descriptor.hpp"
#include "tensor_descriptor_helper.hpp"
namespace
ck
{
// GemmM = K
// GemmN = N * Ho * Wo
// GemmK = C * Y * X
template
<
typename
...
Wei
,
typename
...
In
,
typename
...
Out
,
typename
ConvStrides
,
typename
ConvDilations
,
typename
InLeftPads
,
typename
InRightPads
,
index_t
GemmK1Value
>
__host__
__device__
constexpr
auto
transform_forward_convolution_into_gemm_v4r4r2_nchw_kcyx_nkhw_pad
(
const
TensorDescriptor
<
Wei
...
>&
wei_k_c_y_x_grid_desc
,
const
TensorDescriptor
<
In
...
>&
in_n_c_hi_wi_grid_desc
,
const
TensorDescriptor
<
Out
...
>&
out_n_k_ho_wo_grid_desc
,
const
ConvStrides
&
conv_strides
,
const
ConvDilations
&
conv_dilations
,
const
InLeftPads
&
in_left_pads
,
const
InRightPads
&
in_right_pads
,
Number
<
GemmK1Value
>
)
{
constexpr
auto
I0
=
Number
<
0
>
{};
constexpr
auto
I1
=
Number
<
1
>
{};
constexpr
auto
I2
=
Number
<
2
>
{};
constexpr
auto
I3
=
Number
<
3
>
{};
constexpr
auto
GemmK1
=
Number
<
GemmK1Value
>
{};
const
auto
N
=
in_n_c_hi_wi_grid_desc
.
GetLength
(
I0
);
const
auto
C
=
in_n_c_hi_wi_grid_desc
.
GetLength
(
I1
);
const
auto
K
=
out_n_k_ho_wo_grid_desc
.
GetLength
(
I1
);
const
auto
Hi
=
in_n_c_hi_wi_grid_desc
.
GetLength
(
I2
);
const
auto
Wi
=
in_n_c_hi_wi_grid_desc
.
GetLength
(
I3
);
const
auto
Ho
=
out_n_k_ho_wo_grid_desc
.
GetLength
(
I2
);
const
auto
Wo
=
out_n_k_ho_wo_grid_desc
.
GetLength
(
I3
);
const
auto
Y
=
wei_k_c_y_x_grid_desc
.
GetLength
(
I2
);
const
auto
X
=
wei_k_c_y_x_grid_desc
.
GetLength
(
I3
);
const
auto
ConvStrideH
=
conv_strides
[
I0
];
const
auto
ConvStrideW
=
conv_strides
[
I1
];
const
auto
ConvDilationH
=
conv_dilations
[
I0
];
const
auto
ConvDilationW
=
conv_dilations
[
I1
];
const
auto
InLeftPadH
=
in_left_pads
[
I0
];
const
auto
InLeftPadW
=
in_left_pads
[
I1
];
const
auto
InRightPadH
=
in_right_pads
[
I0
];
const
auto
InRightPadW
=
in_right_pads
[
I1
];
const
auto
GemmM
=
K
;
const
auto
GemmN
=
N
*
Ho
*
Wo
;
const
auto
GemmK
=
C
*
Y
*
X
;
const
auto
GemmK0
=
GemmK
/
GemmK1
;
// weight tensor
const
auto
wei_gemmk_gemmm_grid_desc
=
transform_tensor_descriptor
(
make_naive_tensor_descriptor_packed
(
make_tuple
(
K
,
C
*
Y
*
X
)),
make_tuple
(
make_pass_through_transform
(
K
),
make_pass_through_transform
(
C
*
Y
*
X
)),
make_tuple
(
Sequence
<
0
>
{},
Sequence
<
1
>
{}),
make_tuple
(
Sequence
<
1
>
{},
Sequence
<
0
>
{}));
const
auto
wei_gemmk0_gemmm_gemmk1_grid_desc
=
transform_tensor_descriptor
(
wei_gemmk_gemmm_grid_desc
,
make_tuple
(
make_unmerge_transform
(
make_tuple
(
GemmK0
,
GemmK1
)),
make_pass_through_transform
(
GemmM
)),
make_tuple
(
Sequence
<
0
>
{},
Sequence
<
1
>
{}),
make_tuple
(
Sequence
<
0
,
2
>
{},
Sequence
<
1
>
{}));
// input tensor
const
auto
in_n_c_hip_wip_grid_desc
=
transform_tensor_descriptor
(
in_n_c_hi_wi_grid_desc
,
make_tuple
(
make_pass_through_transform
(
N
),
make_pass_through_transform
(
C
),
make_pad_transform
(
Hi
,
InLeftPadH
,
InRightPadH
),
make_pad_transform
(
Wi
,
InLeftPadW
,
InRightPadW
)),
make_tuple
(
Sequence
<
0
>
{},
Sequence
<
1
>
{},
Sequence
<
2
>
{},
Sequence
<
3
>
{}),
make_tuple
(
Sequence
<
0
>
{},
Sequence
<
1
>
{},
Sequence
<
2
>
{},
Sequence
<
3
>
{}));
const
auto
in_n_c_y_ho_x_wo_grid_desc
=
transform_tensor_descriptor
(
in_n_c_hip_wip_grid_desc
,
make_tuple
(
make_pass_through_transform
(
N
),
make_pass_through_transform
(
C
),
make_embed_transform
(
make_tuple
(
Y
,
Ho
),
make_tuple
(
ConvDilationH
,
ConvStrideH
)),
make_embed_transform
(
make_tuple
(
X
,
Wo
),
make_tuple
(
ConvDilationW
,
ConvStrideW
))),
make_tuple
(
Sequence
<
0
>
{},
Sequence
<
1
>
{},
Sequence
<
2
>
{},
Sequence
<
3
>
{}),
make_tuple
(
Sequence
<
0
>
{},
Sequence
<
1
>
{},
Sequence
<
2
,
3
>
{},
Sequence
<
4
,
5
>
{}));
const
auto
in_gemmk_gemmn_grid_desc
=
transform_tensor_descriptor
(
in_n_c_y_ho_x_wo_grid_desc
,
make_tuple
(
make_merge_transform
(
make_tuple
(
C
,
Y
,
X
)),
make_merge_transform
(
make_tuple
(
N
,
Ho
,
Wo
))),
make_tuple
(
Sequence
<
1
,
2
,
4
>
{},
Sequence
<
0
,
3
,
5
>
{}),
make_tuple
(
Sequence
<
0
>
{},
Sequence
<
1
>
{}));
const
auto
in_gemmk0_gemmn_gemmk1_grid_desc
=
transform_tensor_descriptor
(
in_gemmk_gemmn_grid_desc
,
make_tuple
(
make_unmerge_transform
(
make_tuple
(
GemmK0
,
GemmK1
)),
make_pass_through_transform
(
GemmN
)),
make_tuple
(
Sequence
<
0
>
{},
Sequence
<
1
>
{}),
make_tuple
(
Sequence
<
0
,
2
>
{},
Sequence
<
1
>
{}));
// output tensor
const
auto
out_gemmm_gemmn_grid_desc
=
transform_tensor_descriptor
(
make_naive_tensor_descriptor_packed
(
make_tuple
(
N
,
K
,
Ho
*
Wo
)),
make_tuple
(
make_pass_through_transform
(
K
),
make_merge_transform
(
make_tuple
(
N
,
Ho
*
Wo
))),
make_tuple
(
Sequence
<
1
>
{},
Sequence
<
0
,
2
>
{}),
make_tuple
(
Sequence
<
0
>
{},
Sequence
<
1
>
{}));
return
make_tuple
(
wei_gemmk0_gemmm_gemmk1_grid_desc
,
in_gemmk0_gemmn_gemmk1_grid_desc
,
out_gemmm_gemmn_grid_desc
);
}
}
// namespace ck
#endif
Prev
1
2
3
4
5
6
7
Next
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
.
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment