Skip to content
GitLab
Menu
Projects
Groups
Snippets
Loading...
Help
Help
Support
Community forum
Keyboard shortcuts
?
Submit feedback
Contribute to GitLab
Sign in / Register
Toggle navigation
Menu
Open sidebar
gaoqiong
composable_kernel
Commits
ac76519a
Unverified
Commit
ac76519a
authored
Aug 10, 2023
by
Adam Osewski
Committed by
GitHub
Aug 10, 2023
Browse files
Merge branch 'develop' into aosewski/gemm_tile_loop
parents
a70c6283
578142db
Changes
174
Show whitespace changes
Inline
Side-by-side
Showing
20 changed files
with
543 additions
and
106 deletions
+543
-106
include/ck/tensor_operation/gpu/grid/gridwise_gemm_xdl_cshuffle_v1.hpp
...nsor_operation/gpu/grid/gridwise_gemm_xdl_cshuffle_v1.hpp
+27
-21
include/ck/tensor_operation/gpu/grid/gridwise_put_element_1d.hpp
.../ck/tensor_operation/gpu/grid/gridwise_put_element_1d.hpp
+1
-1
library/include/ck/library/reference_tensor_operation/cpu/reference_avgpool_bwd.hpp
.../reference_tensor_operation/cpu/reference_avgpool_bwd.hpp
+354
-0
library/include/ck/library/reference_tensor_operation/cpu/reference_conv_bwd_data.hpp
...eference_tensor_operation/cpu/reference_conv_bwd_data.hpp
+3
-3
library/include/ck/library/tensor_operation_instance/gpu/batched_gemm.hpp
...ck/library/tensor_operation_instance/gpu/batched_gemm.hpp
+22
-13
library/include/ck/library/tensor_operation_instance/gpu/batched_gemm_add_relu_gemm_add.hpp
...operation_instance/gpu/batched_gemm_add_relu_gemm_add.hpp
+2
-1
library/include/ck/library/tensor_operation_instance/gpu/batched_gemm_bias_permute.hpp
...nsor_operation_instance/gpu/batched_gemm_bias_permute.hpp
+2
-1
library/include/ck/library/tensor_operation_instance/gpu/batched_gemm_bias_softmax_gemm_permute.hpp
...n_instance/gpu/batched_gemm_bias_softmax_gemm_permute.hpp
+8
-4
library/include/ck/library/tensor_operation_instance/gpu/batched_gemm_gemm.hpp
...brary/tensor_operation_instance/gpu/batched_gemm_gemm.hpp
+2
-1
library/include/ck/library/tensor_operation_instance/gpu/batched_gemm_multi_d.hpp
...ry/tensor_operation_instance/gpu/batched_gemm_multi_d.hpp
+8
-5
library/include/ck/library/tensor_operation_instance/gpu/batched_gemm_softmax_gemm.hpp
...nsor_operation_instance/gpu/batched_gemm_softmax_gemm.hpp
+2
-1
library/include/ck/library/tensor_operation_instance/gpu/batched_gemm_softmax_gemm_permute.hpp
...ration_instance/gpu/batched_gemm_softmax_gemm_permute.hpp
+8
-3
library/include/ck/library/tensor_operation_instance/gpu/contraction_bilinear.hpp
...ry/tensor_operation_instance/gpu/contraction_bilinear.hpp
+8
-6
library/include/ck/library/tensor_operation_instance/gpu/contraction_scale.hpp
...brary/tensor_operation_instance/gpu/contraction_scale.hpp
+8
-6
library/include/ck/library/tensor_operation_instance/gpu/convolution_backward_data.hpp
...nsor_operation_instance/gpu/convolution_backward_data.hpp
+60
-29
library/include/ck/library/tensor_operation_instance/gpu/convolution_forward.hpp
...ary/tensor_operation_instance/gpu/convolution_forward.hpp
+18
-8
library/include/ck/library/tensor_operation_instance/gpu/elementwise_normalization.hpp
...nsor_operation_instance/gpu/elementwise_normalization.hpp
+2
-1
library/include/ck/library/tensor_operation_instance/gpu/gemm.hpp
...include/ck/library/tensor_operation_instance/gpu/gemm.hpp
+4
-0
library/include/ck/library/tensor_operation_instance/gpu/gemm_add_relu_add_layernorm.hpp
...or_operation_instance/gpu/gemm_add_relu_add_layernorm.hpp
+2
-1
library/include/ck/library/tensor_operation_instance/gpu/gemm_bilinear.hpp
...k/library/tensor_operation_instance/gpu/gemm_bilinear.hpp
+2
-1
No files found.
include/ck/tensor_operation/gpu/grid/gridwise_gemm_xdl_cshuffle_v1.hpp
View file @
ac76519a
...
...
@@ -35,13 +35,17 @@ __global__ void
#endif // end of if (defined(__gfx908__) || defined(__gfx90a__))
}
template
<
typename
GridwiseGemm
,
typename
FloatAB
,
typename
FloatC
,
bool
HasMainKBlockLoop
>
template
<
typename
GridwiseGemm
,
typename
FloatA
,
typename
FloatB
,
typename
FloatC
,
bool
HasMainKBlockLoop
>
__global__
void
#if CK_USE_LAUNCH_BOUNDS
__launch_bounds__
(
CK_MAX_THREAD_PER_BLOCK
,
CK_MIN_BLOCK_PER_CU
)
#endif
kernel_gemm_xdl_cshuffle_v1
(
const
FloatA
B
*
__restrict__
p_a_grid
,
const
Float
A
B
*
__restrict__
p_b_grid
,
kernel_gemm_xdl_cshuffle_v1
(
const
FloatA
*
__restrict__
p_a_grid
,
const
FloatB
*
__restrict__
p_b_grid
,
FloatC
*
__restrict__
p_c_grid
,
typename
GridwiseGemm
::
Problem
problem
)
{
...
...
@@ -61,7 +65,8 @@ __global__ void
template
<
typename
ALayout
,
typename
BLayout
,
typename
CLayout
,
typename
FloatAB
,
typename
FloatA
,
typename
FloatB
,
typename
FloatGemmAcc
,
typename
FloatCShuffle
,
typename
FloatC
,
...
...
@@ -102,7 +107,8 @@ template <typename ALayout,
typename
CShuffleBlockTransferClusterLengths_MBlock_MPerBlock_NBlock_NPerBlock
,
index_t
CShuffleBlockTransferScalarPerVector_NPerBlock
,
LoopScheduler
LoopSched
,
PipelineVersion
PipelineVer
=
PipelineVersion
::
v1
>
PipelineVersion
PipelineVer
=
PipelineVersion
::
v1
,
typename
ComputeType
=
FloatC
>
struct
GridwiseGemm_k0mk1_k0nk1_mn_xdl_cshuffle_v1
{
static
constexpr
auto
I0
=
Number
<
0
>
{};
...
...
@@ -463,8 +469,8 @@ struct GridwiseGemm_k0mk1_k0nk1_mn_xdl_cshuffle_v1
// Argument
struct
Argument
:
public
tensor_operation
::
device
::
BaseArgument
,
public
Problem
{
__host__
Argument
(
const
FloatA
B
*
p_a_grid_
,
const
Float
A
B
*
p_b_grid_
,
__host__
Argument
(
const
FloatA
*
p_a_grid_
,
const
FloatB
*
p_b_grid_
,
FloatC
*
p_c_grid_
,
index_t
M_
,
index_t
N_
,
...
...
@@ -479,8 +485,8 @@ struct GridwiseGemm_k0mk1_k0nk1_mn_xdl_cshuffle_v1
{
}
const
FloatA
B
*
p_a_grid
;
const
Float
A
B
*
p_b_grid
;
const
FloatA
*
p_a_grid
;
const
FloatB
*
p_b_grid
;
FloatC
*
p_c_grid
;
};
...
...
@@ -541,8 +547,8 @@ struct GridwiseGemm_k0mk1_k0nk1_mn_xdl_cshuffle_v1
constexpr
auto
c_block_size
=
c_shuffle_block_desc_mblock_mperblock_nblock_nperblock
.
GetElementSpaceSize
();
return
math
::
max
((
a_block_space_size_aligned
+
b_block_space_size_aligned
)
*
sizeof
(
FloatAB
),
return
math
::
max
((
a_block_space_size_aligned
*
sizeof
(
ComputeType
)
+
b_block_space_size_aligned
*
sizeof
(
ComputeType
)
),
c_block_size
*
sizeof
(
FloatCShuffle
));
}
...
...
@@ -676,8 +682,8 @@ struct GridwiseGemm_k0mk1_k0nk1_mn_xdl_cshuffle_v1
using
Block2CTileMap
=
BlockToCTileMap_M00_N0_M01Adapt
<
MPerBlock
,
NPerBlock
>
;
template
<
bool
HasMainKBlockLoop
>
__device__
static
void
Run
(
const
FloatA
B
*
__restrict__
p_a_grid
,
const
Float
A
B
*
__restrict__
p_b_grid
,
__device__
static
void
Run
(
const
FloatA
*
__restrict__
p_a_grid
,
const
FloatB
*
__restrict__
p_b_grid
,
FloatC
*
__restrict__
p_c_grid
,
void
*
__restrict__
p_shared
,
const
Problem
&
problem
)
...
...
@@ -743,8 +749,8 @@ struct GridwiseGemm_k0mk1_k0nk1_mn_xdl_cshuffle_v1
Sequence
<
AK0Number
,
MPerBlock
,
AK1Number
>
,
ABlockTransferThreadClusterLengths_AK0_M_AK1
,
ABlockTransferThreadClusterArrangeOrder
,
FloatA
B
,
FloatAB
,
FloatA
,
ComputeType
,
decltype
(
a_grid_desc_ak0_m_ak1
),
decltype
(
a_block_desc_ak0_m_ak1
),
ABlockTransferSrcAccessOrder
,
...
...
@@ -774,8 +780,8 @@ struct GridwiseGemm_k0mk1_k0nk1_mn_xdl_cshuffle_v1
Sequence
<
BK0Number
,
NPerBlock
,
BK1Number
>
,
BBlockTransferThreadClusterLengths_BK0_N_BK1
,
BBlockTransferThreadClusterArrangeOrder
,
Float
A
B
,
FloatAB
,
FloatB
,
ComputeType
,
decltype
(
b_grid_desc_bk0_n_bk1
),
decltype
(
b_block_desc_bk0_n_bk1
),
BBlockTransferSrcAccessOrder
,
...
...
@@ -805,11 +811,11 @@ struct GridwiseGemm_k0mk1_k0nk1_mn_xdl_cshuffle_v1
// sanity check
constexpr
index_t
KPack
=
math
::
max
(
math
::
lcm
(
AK1Number
,
BK1Number
),
MfmaSelector
<
FloatAB
,
MPerXdl
,
NPerXdl
>::
selected_mfma
.
k_per_blk
);
MfmaSelector
<
ComputeType
,
MPerXdl
,
NPerXdl
>::
selected_mfma
.
k_per_blk
);
auto
blockwise_gemm
=
BlockwiseGemmXdlops_k0mk1_k0nk1_m0n0m1n1m2m3m4n2_Selector
<
BlockSize
,
FloatAB
,
ComputeType
,
FloatGemmAcc
,
decltype
(
a_block_desc_ak0_m_ak1
),
decltype
(
b_block_desc_bk0_n_bk1
),
...
...
@@ -827,10 +833,10 @@ struct GridwiseGemm_k0mk1_k0nk1_mn_xdl_cshuffle_v1
a_block_desc_ak0_m_ak1
.
GetElementSpaceSize
(),
max_lds_align
);
auto
a_block_buf
=
make_dynamic_buffer
<
AddressSpaceEnum
::
Lds
>
(
static_cast
<
FloatAB
*>
(
p_shared
),
a_block_desc_ak0_m_ak1
.
GetElementSpaceSize
());
static_cast
<
ComputeType
*>
(
p_shared
),
a_block_desc_ak0_m_ak1
.
GetElementSpaceSize
());
auto
b_block_buf
=
make_dynamic_buffer
<
AddressSpaceEnum
::
Lds
>
(
static_cast
<
FloatAB
*>
(
p_shared
)
+
a_block_space_size_aligned
,
static_cast
<
ComputeType
*>
(
p_shared
)
+
a_block_space_size_aligned
,
b_block_desc_bk0_n_bk1
.
GetElementSpaceSize
());
constexpr
auto
a_block_slice_copy_step
=
make_multi_index
(
KPerBlock
/
AK1Number
,
0
,
0
);
...
...
include/ck/tensor_operation/gpu/grid/gridwise_put_element_1d.hpp
View file @
ac76519a
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-202
2
, Advanced Micro Devices, Inc. All rights reserved.
// Copyright (c) 2018-202
3
, Advanced Micro Devices, Inc. All rights reserved.
#pragma once
...
...
library/include/ck/library/reference_tensor_operation/cpu/reference_avgpool_bwd.hpp
0 → 100644
View file @
ac76519a
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2023, Advanced Micro Devices, Inc. All rights reserved.
#pragma once
#include <iostream>
#include <sstream>
#include "ck/tensor_operation/gpu/device/device_base.hpp"
#include "ck/library/utility/host_tensor.hpp"
namespace
ck
{
namespace
tensor_operation
{
namespace
host
{
// dinput descriptor in [N, C, Do, Ho, Wo] order
// doutput descriptor in [N, C, Di, Hi, Wi] order
// phyiscal layout is irrelavent
template
<
ck
::
index_t
NDimSpatial
,
typename
DInDataType
,
typename
DOutDataType
,
typename
std
::
enable_if
<
NDimSpatial
>
=
1
&&
NDimSpatial
<=
3
,
bool
>::
type
=
false
>
struct
ReferenceAvgPoolBwd
:
public
device
::
BaseOperator
{
// Argument
struct
Argument
:
public
device
::
BaseArgument
{
Argument
(
Tensor
<
DInDataType
>&
dinput
,
const
Tensor
<
DOutDataType
>&
doutput
,
std
::
vector
<
ck
::
index_t
>
window_spatial_lengths
,
std
::
vector
<
ck
::
index_t
>
window_strides
,
std
::
vector
<
ck
::
index_t
>
window_dilations
,
std
::
vector
<
ck
::
index_t
>
dinput_left_pads
,
std
::
vector
<
ck
::
index_t
>
dinput_right_pads
)
:
dinput_
{
dinput
},
doutput_
{
doutput
},
window_spatial_lengths_
{
window_spatial_lengths
},
window_strides_
{
window_strides
},
window_dilations_
{
window_dilations
},
in_left_pads_
{
dinput_left_pads
},
in_right_pads_
{
dinput_right_pads
}
{
}
Tensor
<
DInDataType
>&
dinput_
;
const
Tensor
<
DOutDataType
>&
doutput_
;
std
::
vector
<
ck
::
index_t
>
window_spatial_lengths_
;
std
::
vector
<
index_t
>
window_strides_
;
std
::
vector
<
index_t
>
window_dilations_
;
std
::
vector
<
index_t
>
in_left_pads_
;
std
::
vector
<
index_t
>
in_right_pads_
;
};
// Invoker
struct
Invoker
:
public
device
::
BaseInvoker
{
using
Argument
=
ReferenceAvgPoolBwd
::
Argument
;
template
<
ck
::
index_t
NDimSpatial_
,
typename
std
::
enable_if
<
NDimSpatial_
==
1
,
bool
>
::
type
=
false
>
float
RunAvgPoolBwd
(
const
Argument
&
arg
)
{
// Let input = x, outpu = y
// shape of x = [10], y = [6]
// window_size = 5, pad = 0, stride = 1, dilation = 1
// Forward:
// y0 = 1/5 * (x0 + x1 + x2 + x3 + x4)
// y1 = 1/5 * (x1 + x2 + x3 + x4 + x5)
// ...
// y5 = 1/5 * (x5 + x6 + x7 + x8 + x9)
// y6 = 1/5 * (x6 + x7 + x8 + x9)
// ...
// y9 = 1/5 * (x9)
// Backward:
// shape of dy = [6], dx = [10]
// dx0 = 1/5 * dy0
// dx1 = 1/5 * (dy0 + dy1)
// dx2 = 1/5 * (dy0 + dy1 + dy2)
// ...
// dx4 = 1/5 * (dy0 + dy1 + dy2 + dy3 + dy4)
// dx5 = 1/5 * (dy1 + dy2 + dy3 + dy4 + dy5)
// ...
// dx9 = 1/5 * (dy5 + dy6 + dy7 + dy8 + dy9)
auto
f_ncw
=
[
&
](
auto
n
,
auto
c
,
auto
wi
)
{
std
::
size_t
X
=
arg
.
window_spatial_lengths_
[
0
];
std
::
size_t
Wo
=
arg
.
doutput_
.
GetLengths
()[
2
];
float
v_acc
=
0
;
for
(
std
::
size_t
x
=
0
;
x
<
X
;
++
x
)
{
// Out_Position = (In_Position + pad - x * dilation) / stride
auto
w_tmp
=
static_cast
<
ck
::
long_index_t
>
(
wi
)
+
static_cast
<
ck
::
long_index_t
>
(
arg
.
in_left_pads_
[
0
])
-
static_cast
<
ck
::
long_index_t
>
(
x
*
arg
.
window_dilations_
[
0
]);
// Check the input pixel validity (in perspective of being affected by some
// doutput pixel)
if
(
w_tmp
%
arg
.
window_strides_
[
0
]
==
0
)
{
auto
wo
=
static_cast
<
ck
::
long_index_t
>
(
w_tmp
)
/
static_cast
<
ck
::
long_index_t
>
(
arg
.
window_strides_
[
0
]);
// Get the doutput pixel in valid range to accumulate the gradients for this
// input pixel
if
(
wo
>=
0
&&
ck
::
type_convert
<
std
::
size_t
>
(
wo
)
<
Wo
)
{
v_acc
+=
ck
::
type_convert
<
float
>
(
arg
.
doutput_
(
n
,
c
,
wo
));
}
}
}
v_acc
/=
ck
::
type_convert
<
float
>
(
X
);
arg
.
dinput_
(
n
,
c
,
wi
)
=
ck
::
type_convert
<
DInDataType
>
(
v_acc
);
};
make_ParallelTensorFunctor
(
f_ncw
,
arg
.
dinput_
.
GetLengths
()[
0
],
arg
.
dinput_
.
GetLengths
()[
1
],
arg
.
dinput_
.
GetLengths
()[
2
])(
std
::
thread
::
hardware_concurrency
());
return
0
;
}
template
<
ck
::
index_t
NDimSpatial_
,
typename
std
::
enable_if
<
NDimSpatial_
==
2
,
bool
>
::
type
=
false
>
float
RunAvgPoolBwd
(
const
Argument
&
arg
)
{
auto
f_nchw
=
[
&
](
auto
n
,
auto
c
,
auto
hi
,
auto
wi
)
{
std
::
size_t
Y
=
arg
.
window_spatial_lengths_
[
0
];
std
::
size_t
X
=
arg
.
window_spatial_lengths_
[
1
];
std
::
size_t
Ho
=
arg
.
doutput_
.
GetLengths
()[
2
];
std
::
size_t
Wo
=
arg
.
doutput_
.
GetLengths
()[
3
];
float
v_acc
=
0
;
for
(
std
::
size_t
y
=
0
;
y
<
Y
;
++
y
)
{
// Out_Position = (In_Position + pad - x * dilation) / stride
auto
h_tmp
=
static_cast
<
ck
::
long_index_t
>
(
hi
)
+
static_cast
<
ck
::
long_index_t
>
(
arg
.
in_left_pads_
[
0
])
-
static_cast
<
ck
::
long_index_t
>
(
y
*
arg
.
window_dilations_
[
0
]);
// Check the input pixel validity (in perspective of being affected by some
// doutput pixel)
if
(
h_tmp
%
arg
.
window_strides_
[
0
]
==
0
)
{
auto
ho
=
static_cast
<
ck
::
long_index_t
>
(
h_tmp
)
/
static_cast
<
ck
::
long_index_t
>
(
arg
.
window_strides_
[
0
]);
// Get the doutput pixel in valid range to accumulate the gradients for this
// input pixel
if
(
ho
>=
0
&&
ck
::
type_convert
<
std
::
size_t
>
(
ho
)
<
Ho
)
{
for
(
std
::
size_t
x
=
0
;
x
<
X
;
++
x
)
{
auto
w_tmp
=
static_cast
<
ck
::
long_index_t
>
(
wi
)
+
static_cast
<
ck
::
long_index_t
>
(
arg
.
in_left_pads_
[
1
])
-
static_cast
<
ck
::
long_index_t
>
(
x
*
arg
.
window_dilations_
[
1
]);
if
(
w_tmp
%
arg
.
window_strides_
[
1
]
==
0
)
{
auto
wo
=
static_cast
<
ck
::
long_index_t
>
(
w_tmp
)
/
static_cast
<
ck
::
long_index_t
>
(
arg
.
window_strides_
[
1
]);
if
(
wo
>=
0
&&
ck
::
type_convert
<
std
::
size_t
>
(
wo
)
<
Wo
)
{
v_acc
+=
ck
::
type_convert
<
float
>
(
arg
.
doutput_
(
n
,
c
,
ho
,
wo
));
}
}
}
}
}
}
v_acc
/=
ck
::
type_convert
<
float
>
(
Y
*
X
);
arg
.
dinput_
(
n
,
c
,
hi
,
wi
)
=
ck
::
type_convert
<
DInDataType
>
(
v_acc
);
};
make_ParallelTensorFunctor
(
f_nchw
,
arg
.
dinput_
.
GetLengths
()[
0
],
arg
.
dinput_
.
GetLengths
()[
1
],
arg
.
dinput_
.
GetLengths
()[
2
],
arg
.
dinput_
.
GetLengths
()[
3
])(
std
::
thread
::
hardware_concurrency
());
return
0
;
}
template
<
ck
::
index_t
NDimSpatial_
,
typename
std
::
enable_if
<
NDimSpatial_
==
3
,
bool
>
::
type
=
false
>
float
RunAvgPoolBwd
(
const
Argument
&
arg
)
{
auto
f_ncdhw
=
[
&
](
auto
n
,
auto
c
,
auto
di
,
auto
hi
,
auto
wi
)
{
std
::
size_t
Z
=
arg
.
window_spatial_lengths_
[
0
];
std
::
size_t
Y
=
arg
.
window_spatial_lengths_
[
1
];
std
::
size_t
X
=
arg
.
window_spatial_lengths_
[
2
];
std
::
size_t
Do
=
arg
.
doutput_
.
GetLengths
()[
2
];
std
::
size_t
Ho
=
arg
.
doutput_
.
GetLengths
()[
3
];
std
::
size_t
Wo
=
arg
.
doutput_
.
GetLengths
()[
4
];
float
v_acc
=
0
;
for
(
std
::
size_t
z
=
0
;
z
<
Z
;
++
z
)
{
// Out_Position = (In_Position + pad - x * dilation) / stride
auto
d_tmp
=
static_cast
<
ck
::
long_index_t
>
(
di
)
+
static_cast
<
ck
::
long_index_t
>
(
arg
.
in_left_pads_
[
0
])
-
static_cast
<
ck
::
long_index_t
>
(
z
*
arg
.
window_dilations_
[
0
]);
// Check the input pixel validity (in perspective of being affected by some
// doutput pixel)
if
(
d_tmp
%
arg
.
window_strides_
[
0
]
==
0
)
{
auto
do_
=
static_cast
<
ck
::
long_index_t
>
(
d_tmp
)
/
static_cast
<
ck
::
long_index_t
>
(
arg
.
window_strides_
[
0
]);
// Get the doutput pixel in valid range to accumulate the gradients for this
// input pixel
if
(
do_
>=
0
&&
ck
::
type_convert
<
std
::
size_t
>
(
do_
)
<
Do
)
{
for
(
std
::
size_t
y
=
0
;
y
<
Y
;
++
y
)
{
auto
h_tmp
=
static_cast
<
ck
::
long_index_t
>
(
hi
)
+
static_cast
<
ck
::
long_index_t
>
(
arg
.
in_left_pads_
[
1
])
-
static_cast
<
ck
::
long_index_t
>
(
y
*
arg
.
window_dilations_
[
1
]);
if
(
h_tmp
%
arg
.
window_strides_
[
1
]
==
0
)
{
auto
ho
=
static_cast
<
ck
::
long_index_t
>
(
h_tmp
)
/
static_cast
<
ck
::
long_index_t
>
(
arg
.
window_strides_
[
1
]);
if
(
ho
>=
0
&&
ck
::
type_convert
<
std
::
size_t
>
(
ho
)
<
Ho
)
{
for
(
std
::
size_t
x
=
0
;
x
<
X
;
++
x
)
{
auto
w_tmp
=
static_cast
<
ck
::
long_index_t
>
(
wi
)
+
static_cast
<
ck
::
long_index_t
>
(
arg
.
in_left_pads_
[
2
])
-
static_cast
<
ck
::
long_index_t
>
(
x
*
arg
.
window_dilations_
[
2
]);
if
(
w_tmp
%
arg
.
window_strides_
[
2
]
==
0
)
{
auto
wo
=
static_cast
<
ck
::
long_index_t
>
(
w_tmp
)
/
static_cast
<
ck
::
long_index_t
>
(
arg
.
window_strides_
[
2
]);
if
(
wo
>=
0
&&
ck
::
type_convert
<
std
::
size_t
>
(
wo
)
<
Wo
)
{
v_acc
+=
ck
::
type_convert
<
float
>
(
arg
.
doutput_
(
n
,
c
,
do_
,
ho
,
wo
));
}
}
}
}
}
}
}
}
}
v_acc
/=
ck
::
type_convert
<
float
>
(
Z
*
Y
*
X
);
arg
.
dinput_
(
n
,
c
,
di
,
hi
,
wi
)
=
ck
::
type_convert
<
DInDataType
>
(
v_acc
);
};
make_ParallelTensorFunctor
(
f_ncdhw
,
arg
.
dinput_
.
GetLengths
()[
0
],
arg
.
dinput_
.
GetLengths
()[
1
],
arg
.
dinput_
.
GetLengths
()[
2
],
arg
.
dinput_
.
GetLengths
()[
3
],
arg
.
dinput_
.
GetLengths
()[
4
])(
std
::
thread
::
hardware_concurrency
());
return
0
;
}
float
Run
(
const
Argument
&
arg
)
{
if
(
!
(
arg
.
dinput_
.
GetNumOfDimension
()
==
NDimSpatial
+
2
&&
arg
.
doutput_
.
GetNumOfDimension
()
==
NDimSpatial
+
2
))
{
throw
std
::
runtime_error
(
"wrong! inconsistent dimension"
);
}
return
RunAvgPoolBwd
<
NDimSpatial
>
(
arg
);
}
float
Run
(
const
device
::
BaseArgument
*
p_arg
,
const
StreamConfig
&
/* stream_config */
=
StreamConfig
{})
override
{
return
Run
(
*
dynamic_cast
<
const
Argument
*>
(
p_arg
));
}
};
static
constexpr
bool
IsValidCompilationParameter
()
{
// TODO: properly implement this check
return
true
;
}
bool
IsSupportedArgument
(
const
device
::
BaseArgument
*
)
override
{
return
true
;
}
static
auto
MakeArgument
(
Tensor
<
DInDataType
>&
dinput
,
const
Tensor
<
DOutDataType
>&
doutput
,
std
::
vector
<
ck
::
index_t
>
window_spatial_lengths
,
std
::
vector
<
ck
::
index_t
>
window_strides
,
std
::
vector
<
ck
::
index_t
>
window_dilations
,
std
::
vector
<
ck
::
index_t
>
dinput_left_pads
,
std
::
vector
<
ck
::
index_t
>
dinput_right_pads
)
{
if
(
window_spatial_lengths
.
size
()
!=
NDimSpatial
||
window_strides
.
size
()
!=
NDimSpatial
||
window_dilations
.
size
()
!=
NDimSpatial
||
dinput_left_pads
.
size
()
!=
NDimSpatial
||
dinput_right_pads
.
size
()
!=
NDimSpatial
)
throw
std
::
runtime_error
(
"dimension is incorrect"
);
return
Argument
{
dinput
,
doutput
,
window_spatial_lengths
,
window_strides
,
window_dilations
,
dinput_left_pads
,
dinput_right_pads
};
}
static
auto
MakeInvoker
()
{
return
Invoker
{};
}
virtual
std
::
unique_ptr
<
device
::
BaseInvoker
>
MakeInvokerPointer
()
{
return
std
::
make_unique
<
Invoker
>
(
Invoker
{});
}
std
::
string
GetTypeString
()
const
override
{
auto
str
=
std
::
stringstream
();
// clang-format off
str
<<
"ReferenceAvgPoolBwd"
<<
std
::
endl
;
// clang-format on
return
str
.
str
();
}
};
}
// namespace host
}
// namespace tensor_operation
}
// namespace ck
library/include/ck/library/reference_tensor_operation/cpu/reference_conv_bwd_data.hpp
View file @
ac76519a
...
...
@@ -125,7 +125,7 @@ struct ReferenceConvBwdData : public device::BaseOperator
arg
.
in_element_op_
(
v_in
,
v_acc
);
arg
.
input_
(
g
,
n
,
c
,
wi
)
=
ck
::
type_convert
<
InDataType
>
(
v_
acc
);
arg
.
input_
(
g
,
n
,
c
,
wi
)
=
ck
::
type_convert
<
InDataType
>
(
v_
in
);
};
make_ParallelTensorFunctor
(
f_ncw
,
...
...
@@ -201,7 +201,7 @@ struct ReferenceConvBwdData : public device::BaseOperator
arg
.
in_element_op_
(
v_in
,
v_acc
);
arg
.
input_
(
g
,
n
,
c
,
hi
,
wi
)
=
ck
::
type_convert
<
InDataType
>
(
v_
acc
);
arg
.
input_
(
g
,
n
,
c
,
hi
,
wi
)
=
ck
::
type_convert
<
InDataType
>
(
v_
in
);
};
make_ParallelTensorFunctor
(
f_nchw
,
...
...
@@ -299,7 +299,7 @@ struct ReferenceConvBwdData : public device::BaseOperator
arg
.
in_element_op_
(
v_in
,
v_acc
);
arg
.
input_
(
g
,
n
,
c
,
di
,
hi
,
wi
)
=
ck
::
type_convert
<
InDataType
>
(
v_
acc
);
arg
.
input_
(
g
,
n
,
c
,
di
,
hi
,
wi
)
=
ck
::
type_convert
<
InDataType
>
(
v_
in
);
};
make_ParallelTensorFunctor
(
f_ncdhw
,
...
...
library/include/ck/library/tensor_operation_instance/gpu/batched_gemm.hpp
View file @
ac76519a
...
...
@@ -16,7 +16,7 @@ namespace ck {
namespace
tensor_operation
{
namespace
device
{
namespace
instance
{
#ifdef __bf16__
void
add_device_batched_gemm_xdl_bf16_bf16_bf16_gkm_gkn_gmn_instances
(
std
::
vector
<
std
::
unique_ptr
<
DeviceBatchedGemm
<
Col
,
Row
,
Row
,
BF16
,
BF16
,
BF16
,
PassThrough
,
PassThrough
,
PassThrough
>>>&
...
...
@@ -36,7 +36,8 @@ void add_device_batched_gemm_xdl_bf16_bf16_bf16_gmk_gnk_gmn_instances(
std
::
vector
<
std
::
unique_ptr
<
DeviceBatchedGemm
<
Row
,
Col
,
Row
,
BF16
,
BF16
,
BF16
,
PassThrough
,
PassThrough
,
PassThrough
>>>&
instances
);
#endif
#ifdef __fp16__
void
add_device_batched_gemm_xdl_f16_f16_f16_gkm_gkn_gmn_instances
(
std
::
vector
<
std
::
unique_ptr
<
DeviceBatchedGemm
<
Col
,
Row
,
Row
,
F16
,
F16
,
F16
,
PassThrough
,
PassThrough
,
PassThrough
>>>&
...
...
@@ -56,7 +57,8 @@ void add_device_batched_gemm_xdl_f16_f16_f16_gmk_gnk_gmn_instances(
std
::
vector
<
std
::
unique_ptr
<
DeviceBatchedGemm
<
Row
,
Col
,
Row
,
F16
,
F16
,
F16
,
PassThrough
,
PassThrough
,
PassThrough
>>>&
instances
);
#endif
#ifdef __fp32__
void
add_device_batched_gemm_xdl_f32_f32_f32_gkm_gkn_gmn_instances
(
std
::
vector
<
std
::
unique_ptr
<
DeviceBatchedGemm
<
Col
,
Row
,
Row
,
F32
,
F32
,
F32
,
PassThrough
,
PassThrough
,
PassThrough
>>>&
...
...
@@ -76,7 +78,8 @@ void add_device_batched_gemm_xdl_f32_f32_f32_gmk_gnk_gmn_instances(
std
::
vector
<
std
::
unique_ptr
<
DeviceBatchedGemm
<
Row
,
Col
,
Row
,
F32
,
F32
,
F32
,
PassThrough
,
PassThrough
,
PassThrough
>>>&
instances
);
#endif
#ifdef __int8__
void
add_device_batched_gemm_xdl_int8_int8_int8_gkm_gkn_gmn_instances
(
std
::
vector
<
std
::
unique_ptr
<
DeviceBatchedGemm
<
Col
,
Row
,
...
...
@@ -120,7 +123,7 @@ void add_device_batched_gemm_xdl_int8_int8_int8_gmk_gnk_gmn_instances(
PassThrough
,
PassThrough
,
PassThrough
>>>&
instances
);
#endif
template
<
typename
ALayout
,
typename
BLayout
,
typename
CLayout
,
...
...
@@ -151,7 +154,7 @@ struct DeviceOperationInstanceFactory<ck::tensor_operation::device::DeviceBatche
static
auto
GetInstances
()
{
std
::
vector
<
std
::
unique_ptr
<
DeviceOp
>>
op_ptrs
;
#ifdef __fp32__
if
constexpr
(
is_same_v
<
ADataType
,
float
>
&&
is_same_v
<
BDataType
,
float
>
&&
is_same_v
<
CDataType
,
float
>
)
{
...
...
@@ -176,7 +179,9 @@ struct DeviceOperationInstanceFactory<ck::tensor_operation::device::DeviceBatche
add_device_batched_gemm_xdl_f32_f32_f32_gkm_gnk_gmn_instances
(
op_ptrs
);
}
}
else
if
constexpr
(
is_same_v
<
ADataType
,
half_t
>
&&
is_same_v
<
BDataType
,
half_t
>
&&
#endif
#ifdef __fp16__
if
constexpr
(
is_same_v
<
ADataType
,
half_t
>
&&
is_same_v
<
BDataType
,
half_t
>
&&
is_same_v
<
CDataType
,
half_t
>
)
{
if
constexpr
(
is_same_v
<
ALayout
,
Row
>
&&
is_same_v
<
BLayout
,
Row
>
&&
...
...
@@ -200,7 +205,9 @@ struct DeviceOperationInstanceFactory<ck::tensor_operation::device::DeviceBatche
add_device_batched_gemm_xdl_f16_f16_f16_gkm_gnk_gmn_instances
(
op_ptrs
);
}
}
else
if
constexpr
(
is_same_v
<
ADataType
,
bhalf_t
>
&&
is_same_v
<
BDataType
,
bhalf_t
>
&&
#endif
#ifdef __bf16__
if
constexpr
(
is_same_v
<
ADataType
,
bhalf_t
>
&&
is_same_v
<
BDataType
,
bhalf_t
>
&&
is_same_v
<
CDataType
,
bhalf_t
>
)
{
if
constexpr
(
is_same_v
<
ALayout
,
Row
>
&&
is_same_v
<
BLayout
,
Row
>
&&
...
...
@@ -224,7 +231,9 @@ struct DeviceOperationInstanceFactory<ck::tensor_operation::device::DeviceBatche
add_device_batched_gemm_xdl_bf16_bf16_bf16_gkm_gnk_gmn_instances
(
op_ptrs
);
}
}
else
if
constexpr
(
is_same_v
<
ADataType
,
int8_t
>
&&
is_same_v
<
BDataType
,
int8_t
>
&&
#endif
#ifdef __int8__
if
constexpr
(
is_same_v
<
ADataType
,
int8_t
>
&&
is_same_v
<
BDataType
,
int8_t
>
&&
is_same_v
<
CDataType
,
int8_t
>
)
{
if
constexpr
(
is_same_v
<
ALayout
,
Row
>
&&
is_same_v
<
BLayout
,
Row
>
&&
...
...
@@ -248,7 +257,7 @@ struct DeviceOperationInstanceFactory<ck::tensor_operation::device::DeviceBatche
add_device_batched_gemm_xdl_int8_int8_int8_gkm_gnk_gmn_instances
(
op_ptrs
);
}
}
#endif
return
op_ptrs
;
}
};
...
...
library/include/ck/library/tensor_operation_instance/gpu/batched_gemm_add_relu_gemm_add.hpp
View file @
ac76519a
...
...
@@ -14,7 +14,7 @@
using
CDE0ElementOp
=
ck
::
tensor_operation
::
element_wise
::
AddRelu
;
using
CDE1ElementOp
=
ck
::
tensor_operation
::
element_wise
::
Add
;
#ifdef __fp16__
namespace
ck
{
namespace
tensor_operation
{
namespace
device
{
...
...
@@ -137,3 +137,4 @@ struct DeviceOperationInstanceFactory<
}
// namespace device
}
// namespace tensor_operation
}
// namespace ck
#endif
library/include/ck/library/tensor_operation_instance/gpu/batched_gemm_bias_permute.hpp
View file @
ac76519a
...
...
@@ -13,7 +13,7 @@
#include "ck/tensor_operation/gpu/element/element_wise_operation.hpp"
#include "ck/library/tensor_operation_instance/device_operation_instance_factory.hpp"
#ifdef __fp16__
namespace
ck
{
namespace
tensor_operation
{
namespace
device
{
...
...
@@ -91,3 +91,4 @@ struct DeviceOperationInstanceFactory<
}
// namespace device
}
// namespace tensor_operation
}
// namespace ck
#endif
library/include/ck/library/tensor_operation_instance/gpu/batched_gemm_bias_softmax_gemm_permute.hpp
View file @
ac76519a
...
...
@@ -16,7 +16,7 @@ namespace ck {
namespace
tensor_operation
{
namespace
device
{
namespace
instance
{
#ifdef __fp16__
void
add_device_batched_gemm_bias_masking_softmax_gemm_permute_xdl_cshuffle_f16_f16_f16_f16_gmk_gnk_gno_gmo_instances
(
std
::
vector
<
std
::
unique_ptr
<
DeviceBatchedGemmSoftmaxGemmPermute
<
2
,
...
...
@@ -58,7 +58,8 @@ void add_device_batched_gemm_bias_softmax_gemm_permute_xdl_cshuffle_f16_f16_f16_
PassThrough
,
MaskingSpecialization
::
MaskDisabled
>>>&
instances
);
#endif
#ifdef __bf16__
void
add_device_batched_gemm_bias_masking_softmax_gemm_permute_xdl_cshuffle_bf16_bf16_bf16_bf16_gmk_gnk_gno_gmo_instances
(
std
::
vector
<
std
::
unique_ptr
<
DeviceBatchedGemmSoftmaxGemmPermute
<
2
,
...
...
@@ -100,7 +101,7 @@ void add_device_batched_gemm_bias_softmax_gemm_permute_xdl_cshuffle_bf16_bf16_bf
PassThrough
,
MaskingSpecialization
::
MaskDisabled
>>>&
instances
);
#endif
template
<
typename
ADataType
,
typename
B0DataType
,
typename
B1DataType
,
...
...
@@ -147,7 +148,7 @@ struct DeviceOperationInstanceFactory<
static
auto
GetInstances
()
{
std
::
vector
<
std
::
unique_ptr
<
DeviceOp
>>
op_ptrs
;
#ifdef __fp16__
if
constexpr
(
is_same_v
<
ADataType
,
half_t
>
&&
is_same_v
<
B0DataType
,
half_t
>
&&
is_same_v
<
B1DataType
,
half_t
>
&&
is_same_v
<
CDataType
,
half_t
>
&&
Acc0BiasDataType
::
Size
()
==
1
&&
...
...
@@ -164,6 +165,8 @@ struct DeviceOperationInstanceFactory<
op_ptrs
);
}
}
#endif
#ifdef __bf16__
else
if
constexpr
(
is_same_v
<
ADataType
,
BF16
>
&&
is_same_v
<
B0DataType
,
BF16
>
&&
is_same_v
<
B1DataType
,
BF16
>
&&
is_same_v
<
CDataType
,
BF16
>
&&
Acc0BiasDataType
::
Size
()
==
1
&&
...
...
@@ -180,6 +183,7 @@ struct DeviceOperationInstanceFactory<
op_ptrs
);
}
}
#endif
return
op_ptrs
;
}
};
...
...
library/include/ck/library/tensor_operation_instance/gpu/batched_gemm_gemm.hpp
View file @
ac76519a
...
...
@@ -16,7 +16,7 @@ namespace ck {
namespace
tensor_operation
{
namespace
device
{
namespace
instance
{
#ifdef __fp16__
void
add_device_batched_gemm_gemm_xdl_cshuffle_f16_f16_f16_f16_gmk_gnk_gno_gmo_instance
(
std
::
vector
<
std
::
unique_ptr
<
DeviceBatchedGemmGemm
<
Row
,
Col
,
...
...
@@ -111,3 +111,4 @@ struct DeviceOperationInstanceFactory<
}
// namespace device
}
// namespace tensor_operation
}
// namespace ck
#endif
library/include/ck/library/tensor_operation_instance/gpu/batched_gemm_multi_d.hpp
View file @
ac76519a
...
...
@@ -19,7 +19,7 @@ namespace ck {
namespace
tensor_operation
{
namespace
device
{
namespace
instance
{
#ifdef __fp16__
void
add_device_batched_gemm_multi_d_dl_f16_f16_f16_gkm_gkn_gmn_instances
(
std
::
vector
<
std
::
unique_ptr
<
DeviceBatchedGemmMultiD
<
Col
,
Row
,
...
...
@@ -123,7 +123,8 @@ void add_device_batched_gemm_multi_d_dl_f16_f16_f16_gmk_gnk_gmn_irregular_instan
PassThrough
,
PassThrough
,
PassThrough
>>>&
instances
);
#endif
#ifdef __int8__
void
add_device_batched_gemm_multi_d_dl_i8_i8_i8_gkm_gkn_gmn_instances
(
std
::
vector
<
std
::
unique_ptr
<
DeviceBatchedGemmMultiD
<
Col
,
Row
,
...
...
@@ -227,7 +228,7 @@ void add_device_batched_gemm_multi_d_dl_i8_i8_i8_gmk_gnk_gmn_irregular_instances
PassThrough
,
PassThrough
,
PassThrough
>>>&
instances
);
#endif
template
<
typename
ALayout
,
typename
BLayout
,
typename
ELayout
,
...
...
@@ -262,7 +263,7 @@ struct DeviceOperationInstanceFactory<ck::tensor_operation::device::DeviceBatche
static
auto
GetInstances
()
{
std
::
vector
<
std
::
unique_ptr
<
DeviceOp
>>
op_ptrs
;
#ifdef __fp16__
if
constexpr
(
is_same_v
<
ADataType
,
half_t
>
&&
is_same_v
<
BDataType
,
half_t
>
&&
is_same_v
<
EDataType
,
half_t
>
)
{
...
...
@@ -295,6 +296,8 @@ struct DeviceOperationInstanceFactory<ck::tensor_operation::device::DeviceBatche
op_ptrs
);
}
}
#endif
#ifdef __int8__
else
if
constexpr
(
is_same_v
<
ADataType
,
int8_t
>
&&
is_same_v
<
BDataType
,
int8_t
>
&&
is_same_v
<
EDataType
,
int8_t
>
)
{
...
...
@@ -327,7 +330,7 @@ struct DeviceOperationInstanceFactory<ck::tensor_operation::device::DeviceBatche
op_ptrs
);
}
}
#endif
return
op_ptrs
;
}
};
...
...
library/include/ck/library/tensor_operation_instance/gpu/batched_gemm_softmax_gemm.hpp
View file @
ac76519a
...
...
@@ -11,7 +11,7 @@
#include "ck/tensor_operation/gpu/element/element_wise_operation.hpp"
#include "ck/library/tensor_operation_instance/device_operation_instance_factory.hpp"
#ifdef __fp16__
namespace
ck
{
namespace
tensor_operation
{
namespace
device
{
...
...
@@ -119,3 +119,4 @@ struct DeviceOperationInstanceFactory<
}
// namespace device
}
// namespace tensor_operation
}
// namespace ck
#endif
library/include/ck/library/tensor_operation_instance/gpu/batched_gemm_softmax_gemm_permute.hpp
View file @
ac76519a
...
...
@@ -16,7 +16,7 @@ namespace ck {
namespace
tensor_operation
{
namespace
device
{
namespace
instance
{
#ifdef __fp16__
void
add_device_batched_gemm_masking_softmax_gemm_permute_xdl_cshuffle_f16_f16_f16_f16_gmk_gnk_gno_gmo_instances
(
std
::
vector
<
std
::
unique_ptr
<
DeviceBatchedGemmSoftmaxGemmPermute
<
2
,
...
...
@@ -58,7 +58,8 @@ void add_device_batched_gemm_softmax_gemm_permute_xdl_cshuffle_f16_f16_f16_f16_g
PassThrough
,
MaskingSpecialization
::
MaskDisabled
>>>&
instances
);
#endif
#ifdef __bf16__
void
add_device_batched_gemm_masking_softmax_gemm_permute_xdl_cshuffle_bf16_bf16_bf16_bf16_gmk_gnk_gno_gmo_instances
(
std
::
vector
<
std
::
unique_ptr
<
DeviceBatchedGemmSoftmaxGemmPermute
<
2
,
...
...
@@ -100,6 +101,7 @@ void add_device_batched_gemm_softmax_gemm_permute_xdl_cshuffle_bf16_bf16_bf16_bf
PassThrough
,
MaskingSpecialization
::
MaskDisabled
>>>&
instances
);
#endif
template
<
typename
ADataType
,
typename
B0DataType
,
...
...
@@ -146,7 +148,7 @@ struct DeviceOperationInstanceFactory<
static
auto
GetInstances
()
{
std
::
vector
<
std
::
unique_ptr
<
DeviceOp
>>
op_ptrs
;
#ifdef __fp16__
if
constexpr
(
is_same_v
<
ADataType
,
half_t
>
&&
is_same_v
<
B0DataType
,
half_t
>
&&
is_same_v
<
B1DataType
,
half_t
>
&&
is_same_v
<
CDataType
,
half_t
>
)
{
...
...
@@ -161,6 +163,8 @@ struct DeviceOperationInstanceFactory<
op_ptrs
);
}
}
#endif
#ifdef __bf16__
else
if
constexpr
(
is_same_v
<
ADataType
,
BF16
>
&&
is_same_v
<
B0DataType
,
BF16
>
&&
is_same_v
<
B1DataType
,
BF16
>
&&
is_same_v
<
CDataType
,
BF16
>
)
{
...
...
@@ -175,6 +179,7 @@ struct DeviceOperationInstanceFactory<
op_ptrs
);
}
}
#endif
return
op_ptrs
;
}
};
...
...
library/include/ck/library/tensor_operation_instance/gpu/contraction_bilinear.hpp
View file @
ac76519a
...
...
@@ -16,7 +16,7 @@ namespace ck {
namespace
tensor_operation
{
namespace
device
{
namespace
instance
{
#ifdef __fp32__
// float
void
add_device_contraction_bilinear_m2_n2_k2_xdl_c_shuffle_f32_f32_f32_f32_kknn_instance
(
std
::
vector
<
std
::
unique_ptr
<
DeviceContractionMultipleD
<
2
,
...
...
@@ -65,7 +65,8 @@ void add_device_contraction_bilinear_m2_n2_k2_xdl_c_shuffle_f32_f32_f32_f32_mnnn
PassThrough
,
PassThrough
,
Bilinear
>>>&
instances
);
#endif
#ifdef __fp64__
// double
void
add_device_contraction_bilinear_m2_n2_k2_xdl_c_shuffle_f64_f64_f64_f64_kknn_instance
(
std
::
vector
<
std
::
unique_ptr
<
DeviceContractionMultipleD
<
2
,
...
...
@@ -114,7 +115,7 @@ void add_device_contraction_bilinear_m2_n2_k2_xdl_c_shuffle_f64_f64_f64_f64_mnnn
PassThrough
,
PassThrough
,
Bilinear
>>>&
instances
);
#endif
// Contraction + Bilinear
template
<
index_t
NumDimM
,
index_t
NumDimN
,
...
...
@@ -149,7 +150,7 @@ struct DeviceOperationInstanceFactory<ck::tensor_operation::device::DeviceContra
static
auto
GetInstances
()
{
std
::
vector
<
std
::
unique_ptr
<
DeviceOp
>>
op_ptrs
;
#ifdef __fp32__
if
constexpr
(
is_same_v
<
ADataType
,
float
>
&&
is_same_v
<
BDataType
,
float
>
&&
is_same_v
<
DDataType
,
float
>
&&
is_same_v
<
EDataType
,
float
>
)
{
...
...
@@ -165,7 +166,8 @@ struct DeviceOperationInstanceFactory<ck::tensor_operation::device::DeviceContra
op_ptrs
);
}
}
#endif
#ifdef __fp64__
if
constexpr
(
is_same_v
<
ADataType
,
double
>
&&
is_same_v
<
BDataType
,
double
>
&&
is_same_v
<
DDataType
,
double
>
&&
is_same_v
<
EDataType
,
double
>
)
{
...
...
@@ -181,7 +183,7 @@ struct DeviceOperationInstanceFactory<ck::tensor_operation::device::DeviceContra
op_ptrs
);
}
}
#endif
return
op_ptrs
;
}
};
...
...
library/include/ck/library/tensor_operation_instance/gpu/contraction_scale.hpp
View file @
ac76519a
...
...
@@ -16,7 +16,7 @@ namespace ck {
namespace
tensor_operation
{
namespace
device
{
namespace
instance
{
#ifdef __fp32__
// float
void
add_device_contraction_scale_m2_n2_k2_xdl_c_shuffle_f32_f32_f32_kkn_instance
(
std
::
vector
<
std
::
unique_ptr
<
DeviceContractionMultipleD
<
2
,
...
...
@@ -65,7 +65,8 @@ void add_device_contraction_scale_m2_n2_k2_xdl_c_shuffle_f32_f32_f32_mnn_instanc
PassThrough
,
PassThrough
,
Scale
>>>&
instances
);
#endif
#ifdef __fp64__
// double
void
add_device_contraction_scale_m2_n2_k2_xdl_c_shuffle_f64_f64_f64_kkn_instance
(
std
::
vector
<
std
::
unique_ptr
<
DeviceContractionMultipleD
<
2
,
...
...
@@ -114,7 +115,7 @@ void add_device_contraction_scale_m2_n2_k2_xdl_c_shuffle_f64_f64_f64_mnn_instanc
PassThrough
,
PassThrough
,
Scale
>>>&
instances
);
#endif
// Contraction + Scale
template
<
index_t
NumDimM
,
index_t
NumDimN
,
...
...
@@ -148,7 +149,7 @@ struct DeviceOperationInstanceFactory<ck::tensor_operation::device::DeviceContra
static
auto
GetInstances
()
{
std
::
vector
<
std
::
unique_ptr
<
DeviceOp
>>
op_ptrs
;
#ifdef __fp32__
if
constexpr
(
is_same_v
<
ADataType
,
float
>
&&
is_same_v
<
BDataType
,
float
>
&&
is_same_v
<
EDataType
,
float
>
)
{
...
...
@@ -164,7 +165,8 @@ struct DeviceOperationInstanceFactory<ck::tensor_operation::device::DeviceContra
op_ptrs
);
}
}
#endif
#ifdef __fp64__
if
constexpr
(
is_same_v
<
ADataType
,
double
>
&&
is_same_v
<
BDataType
,
double
>
&&
is_same_v
<
EDataType
,
double
>
)
{
...
...
@@ -180,7 +182,7 @@ struct DeviceOperationInstanceFactory<ck::tensor_operation::device::DeviceContra
op_ptrs
);
}
}
#endif
return
op_ptrs
;
}
};
...
...
library/include/ck/library/tensor_operation_instance/gpu/convolution_backward_data.hpp
View file @
ac76519a
...
...
@@ -16,7 +16,7 @@ namespace ck {
namespace
tensor_operation
{
namespace
device
{
namespace
instance
{
#ifdef __bf16__
// conv1d backward data
void
add_device_conv1d_bwd_data_xdl_nwc_kxc_nwk_bf16_instances
(
std
::
vector
<
std
::
unique_ptr
<
DeviceConvBwdData
<
1
,
...
...
@@ -29,16 +29,19 @@ void add_device_conv1d_bwd_data_xdl_nwc_kxc_nwk_bf16_instances(
PassThrough
,
PassThrough
,
PassThrough
>>>&
instances
);
#endif
#ifdef __fp16__
void
add_device_conv1d_bwd_data_xdl_nwc_kxc_nwk_f16_instances
(
std
::
vector
<
std
::
unique_ptr
<
DeviceConvBwdData
<
1
,
NWC
,
KXC
,
NWK
,
F16
,
F16
,
F16
,
PassThrough
,
PassThrough
,
PassThrough
>>>&
instances
);
#endif
#ifdef __fp32__
void
add_device_conv1d_bwd_data_xdl_nwc_kxc_nwk_f32_instances
(
std
::
vector
<
std
::
unique_ptr
<
DeviceConvBwdData
<
1
,
NWC
,
KXC
,
NWK
,
F32
,
F32
,
F32
,
PassThrough
,
PassThrough
,
PassThrough
>>>&
instances
);
#endif
#ifdef __int8__
void
add_device_conv1d_bwd_data_xdl_nwc_kxc_nwk_int8_instances
(
std
::
vector
<
std
::
unique_ptr
<
DeviceConvBwdData
<
1
,
...
...
@@ -52,6 +55,7 @@ void add_device_conv1d_bwd_data_xdl_nwc_kxc_nwk_int8_instances(
PassThrough
,
PassThrough
>>>&
instances
);
#endif
#ifdef __bf16__
// conv2d backward data
void
add_device_conv2d_bwd_data_xdl_nhwc_kyxc_nhwk_bf16_instances
(
std
::
vector
<
std
::
unique_ptr
<
DeviceConvBwdData
<
2
,
...
...
@@ -64,7 +68,8 @@ void add_device_conv2d_bwd_data_xdl_nhwc_kyxc_nhwk_bf16_instances(
PassThrough
,
PassThrough
,
PassThrough
>>>&
instances
);
#endif
#ifdef __fp16__
void
add_device_conv2d_bwd_data_xdl_nhwc_kyxc_nhwk_f16_instances
(
std
::
vector
<
std
::
unique_ptr
<
DeviceConvBwdData
<
2
,
NHWC
,
...
...
@@ -76,7 +81,8 @@ void add_device_conv2d_bwd_data_xdl_nhwc_kyxc_nhwk_f16_instances(
PassThrough
,
PassThrough
,
PassThrough
>>>&
instances
);
#endif
#ifdef __fp32__
void
add_device_conv2d_bwd_data_xdl_nhwc_kyxc_nhwk_f32_instances
(
std
::
vector
<
std
::
unique_ptr
<
DeviceConvBwdData
<
2
,
NHWC
,
...
...
@@ -88,6 +94,7 @@ void add_device_conv2d_bwd_data_xdl_nhwc_kyxc_nhwk_f32_instances(
PassThrough
,
PassThrough
,
PassThrough
>>>&
instances
);
#endif
#ifdef __int8__
void
add_device_conv2d_bwd_data_xdl_nhwc_kyxc_nhwk_int8_instances
(
std
::
vector
<
std
::
unique_ptr
<
DeviceConvBwdData
<
2
,
...
...
@@ -101,6 +108,8 @@ void add_device_conv2d_bwd_data_xdl_nhwc_kyxc_nhwk_int8_instances(
PassThrough
,
PassThrough
>>>&
instances
);
#endif
#ifdef DL_KERNELS
#ifdef __fp16__
// conv2d dl
void
add_device_conv2d_bwd_data_dl_nhwc_kyxc_nhwk_f16_instances
(
std
::
vector
<
std
::
unique_ptr
<
DeviceConvBwdData
<
2
,
...
...
@@ -113,7 +122,8 @@ void add_device_conv2d_bwd_data_dl_nhwc_kyxc_nhwk_f16_instances(
PassThrough
,
PassThrough
,
PassThrough
>>>&
instances
);
#endif
#ifdef __fp32__
void
add_device_conv2d_bwd_data_dl_nhwc_kyxc_nhwk_f32_instances
(
std
::
vector
<
std
::
unique_ptr
<
DeviceConvBwdData
<
2
,
NHWC
,
...
...
@@ -125,6 +135,7 @@ void add_device_conv2d_bwd_data_dl_nhwc_kyxc_nhwk_f32_instances(
PassThrough
,
PassThrough
,
PassThrough
>>>&
instances
);
#endif
#ifdef __int8__
void
add_device_conv2d_bwd_data_dl_nhwc_kyxc_nhwk_int8_instances
(
std
::
vector
<
std
::
unique_ptr
<
DeviceConvBwdData
<
2
,
...
...
@@ -138,6 +149,8 @@ void add_device_conv2d_bwd_data_dl_nhwc_kyxc_nhwk_int8_instances(
PassThrough
,
PassThrough
>>>&
instances
);
#endif
#endif
#ifdef __bf16__
// conv3d backward data
void
add_device_conv3d_bwd_data_xdl_ndhwc_kzyxc_ndhwk_bf16_instances
(
std
::
vector
<
std
::
unique_ptr
<
DeviceConvBwdData
<
3
,
...
...
@@ -150,7 +163,8 @@ void add_device_conv3d_bwd_data_xdl_ndhwc_kzyxc_ndhwk_bf16_instances(
PassThrough
,
PassThrough
,
PassThrough
>>>&
instances
);
#endif
#ifdef __fp16__
void
add_device_conv3d_bwd_data_xdl_ndhwc_kzyxc_ndhwk_f16_instances
(
std
::
vector
<
std
::
unique_ptr
<
DeviceConvBwdData
<
3
,
NDHWC
,
...
...
@@ -162,7 +176,8 @@ void add_device_conv3d_bwd_data_xdl_ndhwc_kzyxc_ndhwk_f16_instances(
PassThrough
,
PassThrough
,
PassThrough
>>>&
instances
);
#endif
#ifdef __fp32__
void
add_device_conv3d_bwd_data_xdl_ndhwc_kzyxc_ndhwk_f32_instances
(
std
::
vector
<
std
::
unique_ptr
<
DeviceConvBwdData
<
3
,
NDHWC
,
...
...
@@ -174,6 +189,7 @@ void add_device_conv3d_bwd_data_xdl_ndhwc_kzyxc_ndhwk_f32_instances(
PassThrough
,
PassThrough
,
PassThrough
>>>&
instances
);
#endif
#ifdef __int8__
void
add_device_conv3d_bwd_data_xdl_ndhwc_kzyxc_ndhwk_int8_instances
(
std
::
vector
<
std
::
unique_ptr
<
DeviceConvBwdData
<
3
,
...
...
@@ -229,19 +245,22 @@ struct DeviceOperationInstanceFactory<ck::tensor_operation::device::DeviceConvBw
{
add_device_conv1d_bwd_data_xdl_nwc_kxc_nwk_f32_instances
(
op_ptrs
);
}
else
if
constexpr
(
is_same_v
<
InDataType
,
half_t
>
&&
is_same_v
<
WeiDataType
,
half_t
>
&&
#ifdef __fp16__
if
constexpr
(
is_same_v
<
InDataType
,
half_t
>
&&
is_same_v
<
WeiDataType
,
half_t
>
&&
is_same_v
<
OutDataType
,
half_t
>
)
{
add_device_conv1d_bwd_data_xdl_nwc_kxc_nwk_f16_instances
(
op_ptrs
);
}
else
if
constexpr
(
is_same_v
<
InDataType
,
ck
::
bhalf_t
>
&&
is_same_v
<
WeiDataType
,
ck
::
bhalf_t
>
&&
is_same_v
<
OutDataType
,
ck
::
bhalf_t
>
)
#endif
#ifdef __bf16__
if
constexpr
(
is_same_v
<
InDataType
,
ck
::
bhalf_t
>
&&
is_same_v
<
WeiDataType
,
ck
::
bhalf_t
>
&&
is_same_v
<
OutDataType
,
ck
::
bhalf_t
>
)
{
add_device_conv1d_bwd_data_xdl_nwc_kxc_nwk_bf16_instances
(
op_ptrs
);
}
#endif
#ifdef __int8__
else
if
constexpr
(
is_same_v
<
InDataType
,
int8_t
>
&&
is_same_v
<
WeiDataType
,
int8_t
>
&&
if
constexpr
(
is_same_v
<
InDataType
,
int8_t
>
&&
is_same_v
<
WeiDataType
,
int8_t
>
&&
is_same_v
<
OutDataType
,
int8_t
>
)
{
add_device_conv1d_bwd_data_xdl_nwc_kxc_nwk_int8_instances
(
op_ptrs
);
...
...
@@ -255,26 +274,35 @@ struct DeviceOperationInstanceFactory<ck::tensor_operation::device::DeviceConvBw
is_same_v
<
OutDataType
,
float
>
)
{
add_device_conv2d_bwd_data_xdl_nhwc_kyxc_nhwk_f32_instances
(
op_ptrs
);
#ifdef DL_KERNELS
add_device_conv2d_bwd_data_dl_nhwc_kyxc_nhwk_f32_instances
(
op_ptrs
);
#endif
}
else
if
constexpr
(
is_same_v
<
InDataType
,
half_t
>
&&
is_same_v
<
WeiDataType
,
half_t
>
&&
#ifdef __fp16__
if
constexpr
(
is_same_v
<
InDataType
,
half_t
>
&&
is_same_v
<
WeiDataType
,
half_t
>
&&
is_same_v
<
OutDataType
,
half_t
>
)
{
add_device_conv2d_bwd_data_xdl_nhwc_kyxc_nhwk_f16_instances
(
op_ptrs
);
#ifdef DL_KERNELS
add_device_conv2d_bwd_data_dl_nhwc_kyxc_nhwk_f16_instances
(
op_ptrs
);
#endif
}
else
if
constexpr
(
is_same_v
<
InDataType
,
ck
::
bhalf_t
>
&&
is_same_v
<
WeiDataType
,
ck
::
bhalf_t
>
&&
is_same_v
<
OutDataType
,
ck
::
bhalf_t
>
)
#endif
#ifdef __bf16__
if
constexpr
(
is_same_v
<
InDataType
,
ck
::
bhalf_t
>
&&
is_same_v
<
WeiDataType
,
ck
::
bhalf_t
>
&&
is_same_v
<
OutDataType
,
ck
::
bhalf_t
>
)
{
add_device_conv2d_bwd_data_xdl_nhwc_kyxc_nhwk_bf16_instances
(
op_ptrs
);
}
#endif
#ifdef __int8__
else
if
constexpr
(
is_same_v
<
InDataType
,
int8_t
>
&&
is_same_v
<
WeiDataType
,
int8_t
>
&&
if
constexpr
(
is_same_v
<
InDataType
,
int8_t
>
&&
is_same_v
<
WeiDataType
,
int8_t
>
&&
is_same_v
<
OutDataType
,
int8_t
>
)
{
add_device_conv2d_bwd_data_xdl_nhwc_kyxc_nhwk_int8_instances
(
op_ptrs
);
#ifdef DL_KERNELS
add_device_conv2d_bwd_data_dl_nhwc_kyxc_nhwk_int8_instances
(
op_ptrs
);
#endif
}
#endif
}
...
...
@@ -286,19 +314,22 @@ struct DeviceOperationInstanceFactory<ck::tensor_operation::device::DeviceConvBw
{
add_device_conv3d_bwd_data_xdl_ndhwc_kzyxc_ndhwk_f32_instances
(
op_ptrs
);
}
else
if
constexpr
(
is_same_v
<
InDataType
,
half_t
>
&&
is_same_v
<
WeiDataType
,
half_t
>
&&
#ifdef __fp16__
if
constexpr
(
is_same_v
<
InDataType
,
half_t
>
&&
is_same_v
<
WeiDataType
,
half_t
>
&&
is_same_v
<
OutDataType
,
half_t
>
)
{
add_device_conv3d_bwd_data_xdl_ndhwc_kzyxc_ndhwk_f16_instances
(
op_ptrs
);
}
else
if
constexpr
(
is_same_v
<
InDataType
,
ck
::
bhalf_t
>
&&
is_same_v
<
WeiDataType
,
ck
::
bhalf_t
>
&&
is_same_v
<
OutDataType
,
ck
::
bhalf_t
>
)
#endif
#ifdef __bf16__
if
constexpr
(
is_same_v
<
InDataType
,
ck
::
bhalf_t
>
&&
is_same_v
<
WeiDataType
,
ck
::
bhalf_t
>
&&
is_same_v
<
OutDataType
,
ck
::
bhalf_t
>
)
{
add_device_conv3d_bwd_data_xdl_ndhwc_kzyxc_ndhwk_bf16_instances
(
op_ptrs
);
}
#endif
#ifdef __int8__
else
if
constexpr
(
is_same_v
<
InDataType
,
int8_t
>
&&
is_same_v
<
WeiDataType
,
int8_t
>
&&
if
constexpr
(
is_same_v
<
InDataType
,
int8_t
>
&&
is_same_v
<
WeiDataType
,
int8_t
>
&&
is_same_v
<
OutDataType
,
int8_t
>
)
{
add_device_conv3d_bwd_data_xdl_ndhwc_kzyxc_ndhwk_int8_instances
(
op_ptrs
);
...
...
library/include/ck/library/tensor_operation_instance/gpu/convolution_forward.hpp
View file @
ac76519a
...
...
@@ -18,11 +18,17 @@ namespace device {
namespace
instance
{
// conv2d forward
#ifdef __fp16__
void
add_device_conv2d_fwd_xdl_c_shuffle_nhwc_kyxc_nhwk_f16_instances
(
std
::
vector
<
std
::
unique_ptr
<
DeviceConvFwd
<
2
,
NHWC
,
KYXC
,
NHWK
,
F16
,
F16
,
F16
,
PassThrough
,
PassThrough
,
PassThrough
>>>&
instances
);
void
add_device_conv2d_fwd_xdl_nhwc_kyxc_nhwk_f16_instances
(
std
::
vector
<
std
::
unique_ptr
<
DeviceConvFwd
<
2
,
NHWC
,
KYXC
,
NHWK
,
F16
,
F16
,
F16
,
PassThrough
,
PassThrough
,
PassThrough
>>>&
instances
);
#endif
#ifdef __bf16__
void
add_device_conv2d_fwd_xdl_nhwc_kyxc_nhwk_bf16_instances
(
std
::
vector
<
std
::
unique_ptr
<
DeviceConvFwd
<
2
,
NHWC
,
...
...
@@ -34,17 +40,14 @@ void add_device_conv2d_fwd_xdl_nhwc_kyxc_nhwk_bf16_instances(
PassThrough
,
PassThrough
,
PassThrough
>>>&
instances
);
void
add_device_conv2d_fwd_xdl_nhwc_kyxc_nhwk_f16_instances
(
std
::
vector
<
std
::
unique_ptr
<
DeviceConvFwd
<
2
,
NHWC
,
KYXC
,
NHWK
,
F16
,
F16
,
F16
,
PassThrough
,
PassThrough
,
PassThrough
>>>&
instances
);
#endif
#ifdef __fp32__
void
add_device_conv2d_fwd_xdl_nhwc_kyxc_nhwk_f32_instances
(
std
::
vector
<
std
::
unique_ptr
<
DeviceConvFwd
<
2
,
NHWC
,
KYXC
,
NHWK
,
F32
,
F32
,
F32
,
PassThrough
,
PassThrough
,
PassThrough
>>>&
instances
);
#endif
#ifdef __int8__
void
add_device_conv2d_fwd_xdl_nhwc_kyxc_nhwk_int8_instances
(
std
::
vector
<
std
::
unique_ptr
<
DeviceConvFwd
<
2
,
NHWC
,
...
...
@@ -56,6 +59,7 @@ void add_device_conv2d_fwd_xdl_nhwc_kyxc_nhwk_int8_instances(
PassThrough
,
PassThrough
,
PassThrough
>>>&
instances
);
#endif
template
<
ck
::
index_t
NumDimSpatial
,
typename
InLayout
,
...
...
@@ -99,23 +103,29 @@ struct DeviceOperationInstanceFactory<
{
add_device_conv2d_fwd_xdl_nhwc_kyxc_nhwk_f32_instances
(
op_ptrs
);
}
#ifdef __fp16__
else
if
constexpr
(
is_same_v
<
InDataType
,
half_t
>
&&
is_same_v
<
WeiDataType
,
half_t
>
&&
is_same_v
<
OutDataType
,
half_t
>
)
{
add_device_conv2d_fwd_xdl_nhwc_kyxc_nhwk_f16_instances
(
op_ptrs
);
add_device_conv2d_fwd_xdl_c_shuffle_nhwc_kyxc_nhwk_f16_instances
(
op_ptrs
);
}
#endif
#ifdef __bf16__
else
if
constexpr
(
is_same_v
<
InDataType
,
ck
::
bhalf_t
>
&&
is_same_v
<
WeiDataType
,
ck
::
bhalf_t
>
&&
is_same_v
<
OutDataType
,
ck
::
bhalf_t
>
)
{
add_device_conv2d_fwd_xdl_nhwc_kyxc_nhwk_bf16_instances
(
op_ptrs
);
}
#endif
#ifdef __int8__
else
if
constexpr
(
is_same_v
<
InDataType
,
int8_t
>
&&
is_same_v
<
WeiDataType
,
int8_t
>
&&
is_same_v
<
OutDataType
,
int8_t
>
)
{
add_device_conv2d_fwd_xdl_nhwc_kyxc_nhwk_int8_instances
(
op_ptrs
);
}
#endif
}
return
op_ptrs
;
...
...
library/include/ck/library/tensor_operation_instance/gpu/elementwise_normalization.hpp
View file @
ac76519a
...
...
@@ -11,7 +11,7 @@
#include "ck/tensor_operation/gpu/element/element_wise_operation.hpp"
#include "ck/library/tensor_operation_instance/device_operation_instance_factory.hpp"
#ifdef __fp16__
namespace
ck
{
namespace
tensor_operation
{
namespace
device
{
...
...
@@ -77,3 +77,4 @@ struct DeviceOperationInstanceFactory<ck::tensor_operation::device::DeviceElemen
}
// namespace device
}
// namespace tensor_operation
}
// namespace ck
#endif
library/include/ck/library/tensor_operation_instance/gpu/gemm.hpp
View file @
ac76519a
...
...
@@ -343,6 +343,7 @@ struct DeviceOperationInstanceFactory<
add_device_gemm_xdl_c_shuffle_f32_f32_f32_km_nk_mn_instances
(
op_ptrs
);
}
}
#ifdef __fp16__
else
if
constexpr
(
is_same_v
<
ADataType
,
half_t
>
&&
is_same_v
<
BDataType
,
half_t
>
&&
is_same_v
<
CDataType
,
half_t
>
)
{
...
...
@@ -388,6 +389,8 @@ struct DeviceOperationInstanceFactory<
add_device_gemm_xdl_c_shuffle_f16_f16_f16_km_nk_mn_instances
(
op_ptrs
);
}
}
#endif
#ifdef __bf16__
else
if
constexpr
(
is_same_v
<
ADataType
,
ck
::
bhalf_t
>
&&
is_same_v
<
BDataType
,
ck
::
bhalf_t
>
&&
is_same_v
<
CDataType
,
ck
::
bhalf_t
>
)
{
...
...
@@ -412,6 +415,7 @@ struct DeviceOperationInstanceFactory<
add_device_gemm_xdl_c_shuffle_bf16_bf16_bf16_km_nk_mn_instances
(
op_ptrs
);
}
}
#endif
#ifdef __int8__
else
if
constexpr
(
is_same_v
<
ADataType
,
int8_t
>
&&
is_same_v
<
BDataType
,
int8_t
>
&&
is_same_v
<
CDataType
,
int8_t
>
)
...
...
library/include/ck/library/tensor_operation_instance/gpu/gemm_add_relu_add_layernorm.hpp
View file @
ac76519a
...
...
@@ -9,7 +9,7 @@
#include "ck/ck.hpp"
#include "ck/tensor_operation/gpu/device/device_gemm_multiple_d_layernorm.hpp"
#include "ck/library/tensor_operation_instance/device_operation_instance_factory.hpp"
#ifdef __fp16__
namespace
ck
{
namespace
tensor_operation
{
namespace
device
{
...
...
@@ -170,3 +170,4 @@ struct DeviceOperationInstanceFactory<ck::tensor_operation::device::DeviceGemmMu
}
// namespace device
}
// namespace tensor_operation
}
// namespace ck
#endif
library/include/ck/library/tensor_operation_instance/gpu/gemm_bilinear.hpp
View file @
ac76519a
...
...
@@ -11,7 +11,7 @@
#include "ck/tensor_operation/gpu/element/element_wise_operation.hpp"
#include "ck/library/tensor_operation_instance/device_operation_instance_factory.hpp"
#ifdef __fp16__
namespace
ck
{
namespace
tensor_operation
{
namespace
device
{
...
...
@@ -144,3 +144,4 @@ struct DeviceOperationInstanceFactory<ck::tensor_operation::device::DeviceGemmMu
}
// namespace device
}
// namespace tensor_operation
}
// namespace ck
#endif
Prev
1
2
3
4
5
6
7
8
9
Next
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
.
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment