"...composable_kernel_rocm.git" did not exist on "0c15de6a8353c97c289ebc5094752d6e002f0ea4"
Commit ab663329 authored by aska-0096's avatar aska-0096
Browse files

Merge develop

parents 4fec5ad3 8a4253ba
...@@ -90,6 +90,8 @@ int main(int argc, char* argv[]) ...@@ -90,6 +90,8 @@ int main(int argc, char* argv[])
gamma_device_buf.GetDeviceBuffer(), gamma_device_buf.GetDeviceBuffer(),
beta_device_buf.GetDeviceBuffer(), beta_device_buf.GetDeviceBuffer(),
y_device_buf.GetDeviceBuffer(), y_device_buf.GetDeviceBuffer(),
nullptr,
nullptr,
PassThrough{}); PassThrough{});
auto invoker_ptr = op_ptr->MakeInvokerPointer(); auto invoker_ptr = op_ptr->MakeInvokerPointer();
...@@ -143,6 +145,8 @@ int main(int argc, char* argv[]) ...@@ -143,6 +145,8 @@ int main(int argc, char* argv[])
gamma_device_buf.GetDeviceBuffer(), gamma_device_buf.GetDeviceBuffer(),
beta_device_buf.GetDeviceBuffer(), beta_device_buf.GetDeviceBuffer(),
y_device_buf.GetDeviceBuffer(), y_device_buf.GetDeviceBuffer(),
nullptr,
nullptr,
PassThrough{}); PassThrough{});
auto invoker_ptr = op_ptr->MakeInvokerPointer(); auto invoker_ptr = op_ptr->MakeInvokerPointer();
......
add_executable(client_grouped_conv2d_bwd_data grouped_conv2d_bwd_data.cpp)
target_link_libraries(client_grouped_conv2d_bwd_data PRIVATE composable_kernel::device_operations)
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2022, Advanced Micro Devices, Inc. All rights reserved.
#include <cstdlib>
#include <iomanip>
#include <iostream>
#include <iterator>
#include <numeric>
#include <vector>
#include "ck/ck.hpp"
#include "ck/library/tensor_operation_instance/gpu/grouped_convolution_backward_data.hpp"
#include "ck/tensor_operation/gpu/device/tensor_layout.hpp"
#include "ck/tensor_operation/gpu/device/device_conv_fwd.hpp"
#include "ck/tensor_operation/gpu/element/element_wise_operation.hpp"
using InDataType = ck::half_t;
using WeiDataType = ck::half_t;
using OutDataType = ck::half_t;
using InLayout = ck::tensor_layout::convolution::GNHWC;
using WeiLayout = ck::tensor_layout::convolution::GKYXC;
using OutLayout = ck::tensor_layout::convolution::GNHWK;
using PassThrough = ck::tensor_operation::element_wise::PassThrough;
static constexpr ck::index_t NumDimSpatial = 2;
static constexpr ck::index_t G = 32;
static constexpr ck::index_t N = 256;
static constexpr ck::index_t K = 192;
static constexpr ck::index_t C = 192;
static constexpr ck::index_t Y = 3;
static constexpr ck::index_t X = 3;
static constexpr ck::index_t Hi = 28;
static constexpr ck::index_t Wi = 28;
static constexpr ck::index_t Ho = 28;
static constexpr ck::index_t Wo = 28;
struct SimpleDeviceMem
{
SimpleDeviceMem() = delete;
SimpleDeviceMem(std::size_t mem_size) : p_mem_{}
{
(void)hipMalloc(static_cast<void**>(&p_mem_), mem_size);
}
void* GetDeviceBuffer() { return p_mem_; }
~SimpleDeviceMem() { (void)hipFree(p_mem_); }
void* p_mem_;
};
int main()
{
std::array<ck::index_t, NumDimSpatial + 3> in_lengths{G, N, Hi, Wi, C};
std::array<ck::index_t, NumDimSpatial + 3> in_strides{0, 0, 0, 0, 1};
std::array<ck::index_t, NumDimSpatial + 3> wei_lengths{G, K, Y, X, C};
std::array<ck::index_t, NumDimSpatial + 3> wei_strides{0, 0, 0, 0, 1};
std::array<ck::index_t, NumDimSpatial + 3> out_lengths{G, N, Ho, Wo, K};
std::array<ck::index_t, NumDimSpatial + 3> out_strides{0, 0, 0, 0, 1};
std::partial_sum(rbegin(in_lengths),
std::prev(rend(in_lengths)),
std::next(rbegin(in_strides)),
std::multiplies<>{});
std::partial_sum(rbegin(wei_lengths),
std::prev(rend(wei_lengths)),
std::next(rbegin(wei_strides)),
std::multiplies<>{});
std::partial_sum(rbegin(out_lengths),
std::prev(rend(out_lengths)),
std::next(rbegin(out_strides)),
std::multiplies<>{});
// transpose GNHWC/GKYXC/GNHWK to GNCHW/GKCYX/GNCHW
std::rotate(
rbegin(in_lengths), std::next(rbegin(in_lengths)), std::next(rbegin(in_lengths), 3));
std::rotate(
rbegin(in_strides), std::next(rbegin(in_strides)), std::next(rbegin(in_strides), 3));
std::rotate(
rbegin(wei_lengths), std::next(rbegin(wei_lengths)), std::next(rbegin(wei_lengths), 3));
std::rotate(
rbegin(wei_strides), std::next(rbegin(wei_strides)), std::next(rbegin(wei_strides), 3));
std::rotate(
rbegin(out_lengths), std::next(rbegin(out_lengths)), std::next(rbegin(out_lengths), 3));
std::rotate(
rbegin(out_strides), std::next(rbegin(out_strides)), std::next(rbegin(out_strides), 3));
std::array<ck::index_t, NumDimSpatial> filter_strides{1, 1};
std::array<ck::index_t, NumDimSpatial> filter_dilations{1, 1};
std::array<ck::index_t, NumDimSpatial> input_left_pads{1, 1};
std::array<ck::index_t, NumDimSpatial> input_right_pads{1, 1};
SimpleDeviceMem in(sizeof(InDataType) * G * N * Hi * Wi * C);
SimpleDeviceMem wei(sizeof(WeiDataType) * G * K * Y * X * C);
SimpleDeviceMem out(sizeof(OutDataType) * G * N * Ho * Wo * K);
using DeviceOp = ck::tensor_operation::device::DeviceGroupedConvBwdData<NumDimSpatial,
InLayout,
WeiLayout,
OutLayout,
InDataType,
WeiDataType,
OutDataType,
PassThrough,
PassThrough,
PassThrough>;
// get device op instances
const auto op_ptrs = ck::tensor_operation::device::instance::DeviceOperationInstanceFactory<
DeviceOp>::GetInstances();
std::cout << "found " << op_ptrs.size() << " instances" << std::endl;
std::string best_op_name;
int best_op_id = -1;
float best_avg_time = std::numeric_limits<float>::max();
float best_gb_per_sec = 0;
float best_tflops = 0;
// profile device operation instances
std::cout << "Run all instances and do timing" << std::endl;
for(int i = 0; i < op_ptrs.size(); ++i)
{
auto& op_ptr = op_ptrs[i];
auto argument_ptr = op_ptr->MakeArgumentPointer(in.GetDeviceBuffer(),
wei.GetDeviceBuffer(),
out.GetDeviceBuffer(),
in_lengths,
in_strides,
wei_lengths,
wei_strides,
out_lengths,
out_strides,
filter_strides,
filter_dilations,
input_left_pads,
input_right_pads,
PassThrough{},
PassThrough{},
PassThrough{});
auto invoker_ptr = op_ptr->MakeInvokerPointer();
std::string op_name = op_ptr->GetTypeString();
if(op_ptr->IsSupportedArgument(argument_ptr.get()))
{
float avg_time = invoker_ptr->Run(argument_ptr.get(), StreamConfig{nullptr, true});
std::size_t flop = std::size_t(2) * G * N * K * C * Ho * Wo * Y * X;
std::size_t num_bytes = sizeof(InDataType) * G * N * Hi * Wi * C +
sizeof(WeiDataType) * G * K * Y * X * C +
sizeof(OutDataType) * G * N * Ho * Wo * K;
float tflops = static_cast<float>(flop) / 1.E9 / avg_time;
float gb_per_sec = num_bytes / 1.E6 / avg_time;
std::cout << "Perf: " << std::setw(10) << avg_time << " ms, " << tflops << " TFlops, "
<< gb_per_sec << " GB/s, " << op_name << std::endl;
if(tflops > best_tflops)
{
best_op_id = i;
best_op_name = op_name;
best_avg_time = avg_time;
best_gb_per_sec = gb_per_sec;
best_tflops = tflops;
}
}
else
{
std::cerr << op_name << " does not support this problem" << std::endl;
}
}
if(best_op_id < 0)
{
std::cerr << "no suitable instance" << std::endl;
return EXIT_FAILURE;
}
std::cout << "Best Perf: " << std::setw(10) << best_avg_time << " ms, " << best_tflops
<< " TFlops, " << best_gb_per_sec << " GB/s, " << best_op_name << std::endl;
// run the best intance
{
auto& op_ptr = op_ptrs[best_op_id];
std::cout << "Run the best instance without timing: " << op_ptr->GetTypeString()
<< std::endl;
auto argument_ptr = op_ptr->MakeArgumentPointer(in.GetDeviceBuffer(),
wei.GetDeviceBuffer(),
out.GetDeviceBuffer(),
in_lengths,
in_strides,
wei_lengths,
wei_strides,
out_lengths,
out_strides,
filter_strides,
filter_dilations,
input_left_pads,
input_right_pads,
PassThrough{},
PassThrough{},
PassThrough{});
auto invoker_ptr = op_ptr->MakeInvokerPointer();
if(op_ptr->IsSupportedArgument(argument_ptr.get()))
{
invoker_ptr->Run(argument_ptr.get(), StreamConfig{nullptr, false});
}
std::cout << "Done" << std::endl;
}
}
add_executable(client_conv2d_fwd_bias_relu_perlayer_quantization conv2d_fwd_bias_relu_perlayer_quantization.cpp)
target_link_libraries(client_conv2d_fwd_bias_relu_perlayer_quantization PRIVATE composable_kernel::device_operations)
add_executable(client_conv2d_fwd_perlayer_quantization conv2d_fwd_perlayer_quantization.cpp)
target_link_libraries(client_conv2d_fwd_perlayer_quantization PRIVATE composable_kernel::device_operations)
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2022, Advanced Micro Devices, Inc. All rights reserved.
#include <iomanip>
#include <iostream>
#include <vector>
#include "ck/ck.hpp"
#include "ck/library/tensor_operation_instance/gpu/grouped_convolution_bias_forward_perlayer_quantization.hpp"
#include "ck/tensor_operation/gpu/device/tensor_layout.hpp"
#include "ck/tensor_operation/gpu/device/device_conv_fwd.hpp"
#include "ck/tensor_operation/gpu/element/element_wise_operation.hpp"
using InDataType = int8_t;
using WeiDataType = int8_t;
using BiasDataType = int32_t;
using OutDataType = int8_t;
using InLayout = ck::tensor_layout::convolution::GNHWC;
using WeiLayout = ck::tensor_layout::convolution::GKYXC;
using BiasLayout = ck::tensor_layout::convolution::G_K;
using OutLayout = ck::tensor_layout::convolution::GNHWK;
using PassThrough = ck::tensor_operation::element_wise::PassThrough;
using ActivationOp = ck::tensor_operation::element_wise::Relu;
using OutElementOp = ck::tensor_operation::element_wise::Add_Activation_Mul_Clamp<ActivationOp>;
static constexpr ck::index_t NumDimSpatial = 2;
static constexpr ck::index_t G = 1;
static constexpr ck::index_t N = 4;
static constexpr ck::index_t K = 64;
static constexpr ck::index_t C = 32;
static constexpr ck::index_t Y = 3;
static constexpr ck::index_t X = 3;
static constexpr ck::index_t Hi = 71;
static constexpr ck::index_t Wi = 71;
static constexpr ck::index_t Ho = 36;
static constexpr ck::index_t Wo = 36;
struct SimpleDeviceMem
{
SimpleDeviceMem() = delete;
SimpleDeviceMem(std::size_t mem_size) : p_mem_{}
{
(void)hipMalloc(static_cast<void**>(&p_mem_), mem_size);
}
void* GetDeviceBuffer() { return p_mem_; }
~SimpleDeviceMem() { (void)hipFree(p_mem_); }
void* p_mem_;
};
int main(int argc, char* argv[])
{
std::array<ck::index_t, 5> in_lengths{G, N, C, Hi, Wi};
std::array<ck::index_t, 5> in_strides{N * Hi * Wi * C, Hi * Wi * C, 1, Wi * C, C};
std::array<ck::index_t, 5> weight_lengths{G, K, C, Y, X};
std::array<ck::index_t, 5> weight_strides{K * Y * X * C, Y * X * C, 1, X * C, C};
std::array<ck::index_t, 5> bias_lengths{G, N, K, Ho, Wo};
std::array<ck::index_t, 5> bias_strides{K, 0, 1, 0, 0};
std::array<ck::index_t, 5> out_lengths{G, N, C, Ho, Wo};
std::array<ck::index_t, 5> out_strides{N * Ho * Wo * C, Ho * Wo * C, 1, Wo * C, C};
std::array<ck::index_t, 2> in_left_pad{1, 1};
std::array<ck::index_t, 2> in_right_pad{1, 1};
std::array<ck::index_t, 2> conv_strides{2, 2};
std::array<ck::index_t, 2> conv_dilations{1, 1};
SimpleDeviceMem in(sizeof(InDataType) * N * Hi * Wi * C);
SimpleDeviceMem wei(sizeof(WeiDataType) * K * Y * X * C);
SimpleDeviceMem bias(sizeof(BiasDataType) * K * Y * X * C);
SimpleDeviceMem out(sizeof(OutDataType) * N * Ho * Wo * K);
using DeviceOp =
ck::tensor_operation::device::DeviceGroupedConvFwdMultipleD<NumDimSpatial,
InLayout,
WeiLayout,
ck::Tuple<BiasLayout>,
OutLayout,
InDataType,
WeiDataType,
ck::Tuple<BiasDataType>,
OutDataType,
PassThrough,
PassThrough,
OutElementOp>;
// get device op instances
const auto op_ptrs = ck::tensor_operation::device::instance::DeviceOperationInstanceFactory<
DeviceOp>::GetInstances();
std::cout << "found " << op_ptrs.size() << " instances" << std::endl;
std::string best_op_name;
int best_op_id = -1;
float best_avg_time = std::numeric_limits<float>::max();
float best_gb_per_sec = 0;
float best_tflops = 0;
// profile device operation instances
std::cout << "Run all instances and do timing" << std::endl;
for(int i = 0; i < op_ptrs.size(); ++i)
{
auto& op_ptr = op_ptrs[i];
auto argument_ptr = op_ptr->MakeArgumentPointer(in.GetDeviceBuffer(),
wei.GetDeviceBuffer(),
{bias.GetDeviceBuffer()},
out.GetDeviceBuffer(),
in_lengths,
in_strides,
weight_lengths,
weight_strides,
{bias_lengths},
{bias_strides},
out_lengths,
out_strides,
conv_strides,
conv_dilations,
in_left_pad,
in_right_pad,
PassThrough{},
PassThrough{},
OutElementOp{0.5f, ActivationOp{}});
auto invoker_ptr = op_ptr->MakeInvokerPointer();
std::string op_name = op_ptr->GetTypeString();
if(op_ptr->IsSupportedArgument(argument_ptr.get()))
{
float avg_time = invoker_ptr->Run(argument_ptr.get(), StreamConfig{nullptr, true});
std::size_t flop = G * 2 * N * K * C * Ho * Wo * Y * X;
std::size_t num_bytes = G * sizeof(InDataType) * N * Hi * Wi * C +
G * sizeof(WeiDataType) * K * Y * X * C +
G * sizeof(OutDataType) * N * Ho * Wo * K;
float tflops = static_cast<float>(flop) / 1.E9 / avg_time;
float gb_per_sec = num_bytes / 1.E6 / avg_time;
std::cout << "Perf: " << std::setw(10) << avg_time << " ms, " << tflops << " TFlops, "
<< gb_per_sec << " GB/s, " << op_name << std::endl;
if(tflops > best_tflops)
{
best_op_id = i;
best_op_name = op_name;
best_avg_time = avg_time;
best_gb_per_sec = gb_per_sec;
best_tflops = tflops;
}
}
else
{
std::cout << op_name << " does not support this problem" << std::endl;
}
}
std::cout << "Best Perf: " << std::setw(10) << best_avg_time << " ms, " << best_tflops
<< " TFlops, " << best_gb_per_sec << " GB/s, " << best_op_name << std::endl;
// run the best intance
{
auto& op_ptr = op_ptrs[best_op_id];
std::cout << "Run the best instance without timing: " << op_ptr->GetTypeString()
<< std::endl;
auto argument_ptr = op_ptr->MakeArgumentPointer(in.GetDeviceBuffer(),
wei.GetDeviceBuffer(),
{bias.GetDeviceBuffer()},
out.GetDeviceBuffer(),
in_lengths,
in_strides,
weight_lengths,
weight_strides,
{bias_lengths},
{bias_strides},
out_lengths,
out_strides,
conv_strides,
conv_dilations,
in_left_pad,
in_right_pad,
PassThrough{},
PassThrough{},
OutElementOp{0.5f, ActivationOp{}});
auto invoker_ptr = op_ptr->MakeInvokerPointer();
if(op_ptr->IsSupportedArgument(argument_ptr.get()))
{
invoker_ptr->Run(argument_ptr.get(), StreamConfig{nullptr, false});
}
std::cout << "Done" << std::endl;
}
return 0;
}
\ No newline at end of file
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2022, Advanced Micro Devices, Inc. All rights reserved.
#include <iomanip>
#include <iostream>
#include <vector>
#include "ck/ck.hpp"
#include "ck/library/tensor_operation_instance/gpu/grouped_convolution_forward_perlayer_quantization.hpp"
#include "ck/tensor_operation/gpu/device/tensor_layout.hpp"
#include "ck/tensor_operation/gpu/device/device_conv_fwd.hpp"
#include "ck/tensor_operation/gpu/element/element_wise_operation.hpp"
using InDataType = int8_t;
using WeiDataType = int8_t;
using OutDataType = int8_t;
using InLayout = ck::tensor_layout::convolution::GNHWC;
using WeiLayout = ck::tensor_layout::convolution::GKYXC;
using OutLayout = ck::tensor_layout::convolution::GNHWK;
using PassThrough = ck::tensor_operation::element_wise::PassThrough;
using ActivationOp = PassThrough;
using OutElementOp = ck::tensor_operation::element_wise::Activation_Mul_Clamp<ActivationOp>;
static constexpr ck::index_t NumDimSpatial = 2;
static constexpr ck::index_t G = 1;
static constexpr ck::index_t N = 4;
static constexpr ck::index_t K = 64;
static constexpr ck::index_t C = 32;
static constexpr ck::index_t Y = 3;
static constexpr ck::index_t X = 3;
static constexpr ck::index_t Hi = 71;
static constexpr ck::index_t Wi = 71;
static constexpr ck::index_t Ho = 36;
static constexpr ck::index_t Wo = 36;
struct SimpleDeviceMem
{
SimpleDeviceMem() = delete;
SimpleDeviceMem(std::size_t mem_size) : p_mem_{}
{
(void)hipMalloc(static_cast<void**>(&p_mem_), mem_size);
}
void* GetDeviceBuffer() { return p_mem_; }
~SimpleDeviceMem() { (void)hipFree(p_mem_); }
void* p_mem_;
};
int main(int argc, char* argv[])
{
std::array<ck::index_t, 5> in_lengths{G, N, C, Hi, Wi};
std::array<ck::index_t, 5> in_strides{N * Hi * Wi * C, Hi * Wi * C, 1, Wi * C, C};
std::array<ck::index_t, 5> weight_lengths{G, K, C, Y, X};
std::array<ck::index_t, 5> weight_strides{K * Y * X * C, Y * X * C, 1, X * C, C};
std::array<ck::index_t, 5> out_lengths{G, N, C, Ho, Wo};
std::array<ck::index_t, 5> out_strides{N * Ho * Wo * C, Ho * Wo * C, 1, Wo * C, C};
std::array<ck::index_t, 2> in_left_pad{1, 1};
std::array<ck::index_t, 2> in_right_pad{1, 1};
std::array<ck::index_t, 2> conv_strides{2, 2};
std::array<ck::index_t, 2> conv_dilations{1, 1};
SimpleDeviceMem in(sizeof(InDataType) * N * Hi * Wi * C);
SimpleDeviceMem wei(sizeof(WeiDataType) * K * Y * X * C);
SimpleDeviceMem out(sizeof(OutDataType) * N * Ho * Wo * K);
using DeviceOp = ck::tensor_operation::device::DeviceGroupedConvFwdMultipleD<NumDimSpatial,
InLayout,
WeiLayout,
ck::Tuple<>,
OutLayout,
InDataType,
WeiDataType,
ck::Tuple<>,
OutDataType,
PassThrough,
PassThrough,
OutElementOp>;
// get device op instances
const auto op_ptrs = ck::tensor_operation::device::instance::DeviceOperationInstanceFactory<
DeviceOp>::GetInstances();
std::cout << "found " << op_ptrs.size() << " instances" << std::endl;
std::string best_op_name;
int best_op_id = -1;
float best_avg_time = std::numeric_limits<float>::max();
float best_gb_per_sec = 0;
float best_tflops = 0;
// profile device operation instances
std::cout << "Run all instances and do timing" << std::endl;
for(int i = 0; i < op_ptrs.size(); ++i)
{
auto& op_ptr = op_ptrs[i];
auto argument_ptr = op_ptr->MakeArgumentPointer(in.GetDeviceBuffer(),
wei.GetDeviceBuffer(),
{},
out.GetDeviceBuffer(),
in_lengths,
in_strides,
weight_lengths,
weight_strides,
{},
{},
out_lengths,
out_strides,
conv_strides,
conv_dilations,
in_left_pad,
in_right_pad,
PassThrough{},
PassThrough{},
OutElementOp{0.5f, ActivationOp{}});
auto invoker_ptr = op_ptr->MakeInvokerPointer();
std::string op_name = op_ptr->GetTypeString();
if(op_ptr->IsSupportedArgument(argument_ptr.get()))
{
float avg_time = invoker_ptr->Run(argument_ptr.get(), StreamConfig{nullptr, true});
std::size_t flop = G * 2 * N * K * C * Ho * Wo * Y * X;
std::size_t num_bytes = G * sizeof(InDataType) * N * Hi * Wi * C +
G * sizeof(WeiDataType) * K * Y * X * C +
G * sizeof(OutDataType) * N * Ho * Wo * K;
float tflops = static_cast<float>(flop) / 1.E9 / avg_time;
float gb_per_sec = num_bytes / 1.E6 / avg_time;
std::cout << "Perf: " << std::setw(10) << avg_time << " ms, " << tflops << " TFlops, "
<< gb_per_sec << " GB/s, " << op_name << std::endl;
if(tflops > best_tflops)
{
best_op_id = i;
best_op_name = op_name;
best_avg_time = avg_time;
best_gb_per_sec = gb_per_sec;
best_tflops = tflops;
}
}
else
{
std::cout << op_name << " does not support this problem" << std::endl;
}
}
std::cout << "Best Perf: " << std::setw(10) << best_avg_time << " ms, " << best_tflops
<< " TFlops, " << best_gb_per_sec << " GB/s, " << best_op_name << std::endl;
// run the best intance
{
auto& op_ptr = op_ptrs[best_op_id];
std::cout << "Run the best instance without timing: " << op_ptr->GetTypeString()
<< std::endl;
auto argument_ptr = op_ptr->MakeArgumentPointer(in.GetDeviceBuffer(),
wei.GetDeviceBuffer(),
{},
out.GetDeviceBuffer(),
in_lengths,
in_strides,
weight_lengths,
weight_strides,
{},
{},
out_lengths,
out_strides,
conv_strides,
conv_dilations,
in_left_pad,
in_right_pad,
PassThrough{},
PassThrough{},
OutElementOp{0.5f, ActivationOp{}});
auto invoker_ptr = op_ptr->MakeInvokerPointer();
if(op_ptr->IsSupportedArgument(argument_ptr.get()))
{
invoker_ptr->Run(argument_ptr.get(), StreamConfig{nullptr, false});
}
std::cout << "Done" << std::endl;
}
return 0;
}
\ No newline at end of file
...@@ -4,3 +4,7 @@ add_example_executable(example_convnd_fwd_xdl_bf16 convnd_fwd_xdl_bf16.cpp) ...@@ -4,3 +4,7 @@ add_example_executable(example_convnd_fwd_xdl_bf16 convnd_fwd_xdl_bf16.cpp)
add_example_executable(example_convnd_fwd_xdl_int8 convnd_fwd_xdl_int8.cpp) add_example_executable(example_convnd_fwd_xdl_int8 convnd_fwd_xdl_int8.cpp)
# FIXME: re-enable this exampe as test when SWDEV-335738 is fixed # FIXME: re-enable this exampe as test when SWDEV-335738 is fixed
add_example_executable_no_testing(example_convnd_fwd_xdl_fp64 convnd_fwd_xdl_fp64.cpp) add_example_executable_no_testing(example_convnd_fwd_xdl_fp64 convnd_fwd_xdl_fp64.cpp)
add_example_executable(example_convnd_fwd_dl_fp16 convnd_fwd_dl_fp16.cpp)
add_example_executable(example_convnd_fwd_dl_fp32 convnd_fwd_dl_fp32.cpp)
add_example_executable(example_convnd_fwd_dl_int8 convnd_fwd_dl_int8.cpp)
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2022, Advanced Micro Devices, Inc. All rights reserved.
#include <cstdlib>
#include <iostream>
#include <numeric>
#include <type_traits>
#include "ck/ck.hpp"
#include "ck/tensor_operation/gpu/device/tensor_layout.hpp"
#include "ck/tensor_operation/gpu/element/element_wise_operation.hpp"
#include "ck/library/utility/check_err.hpp"
#include "ck/library/utility/device_memory.hpp"
#include "ck/library/utility/host_tensor.hpp"
#include "ck/library/utility/host_tensor_generator.hpp"
#include "ck/library/utility/convolution_parameter.hpp"
#include "ck/library/utility/convolution_host_tensor_descriptor_helper.hpp"
#include "ck/library/reference_tensor_operation/cpu/reference_conv_fwd.hpp"
void print_helper_msg()
{
std::cout << "arg1: verification (0=no, 1=yes)\n"
<< "arg2: initialization (0=no init, 1=integer value, 2=decimal value)\n"
<< "arg3: time kernel (0=no, 1=yes)\n"
<< ck::utils::conv::get_conv_param_parser_helper_msg() << std::endl;
}
template <ck::index_t NDimSpatial,
typename InDataType,
typename WeiDataType,
typename OutDataType,
typename InElementOp,
typename WeiElementOp,
typename OutElementOp,
typename DeviceConvNDFwdInstance>
bool run_grouped_conv_fwd_dl(bool do_verification,
int init_method,
bool time_kernel,
const ck::utils::conv::ConvParam& conv_param,
const HostTensorDescriptor& in_g_n_c_wis_desc,
const HostTensorDescriptor& wei_g_k_c_xs_desc,
const HostTensorDescriptor& out_g_n_k_wos_desc,
const InElementOp& in_element_op,
const WeiElementOp& wei_element_op,
const OutElementOp& out_element_op)
{
Tensor<InDataType> in(in_g_n_c_wis_desc);
Tensor<WeiDataType> wei(wei_g_k_c_xs_desc);
Tensor<OutDataType> out_host(out_g_n_k_wos_desc);
Tensor<OutDataType> out_device(out_g_n_k_wos_desc);
std::cout << "in: " << in.mDesc << std::endl;
std::cout << "wei: " << wei.mDesc << std::endl;
std::cout << "out: " << out_host.mDesc << std::endl;
switch(init_method)
{
case 0: break;
case 1:
in.GenerateTensorValue(GeneratorTensor_2<InDataType>{-5, 5});
wei.GenerateTensorValue(GeneratorTensor_2<WeiDataType>{-5, 5});
break;
case 2:
in.GenerateTensorValue(GeneratorTensor_3<InDataType>{0.0, 1.0});
wei.GenerateTensorValue(GeneratorTensor_3<WeiDataType>{-0.5, 0.5});
break;
default:
in.GenerateTensorValue(GeneratorTensor_1<InDataType>{1});
wei.GenerateTensorValue(GeneratorTensor_1<WeiDataType>{1});
}
DeviceMem in_device_buf(sizeof(InDataType) * in.mDesc.GetElementSpaceSize());
DeviceMem wei_device_buf(sizeof(WeiDataType) * wei.mDesc.GetElementSpaceSize());
DeviceMem out_device_buf(sizeof(OutDataType) * out_device.mDesc.GetElementSpaceSize());
in_device_buf.ToDevice(in.mData.data());
wei_device_buf.ToDevice(wei.mData.data());
std::array<ck::index_t, NDimSpatial + 3> a_g_n_c_wis_lengths{};
std::array<ck::index_t, NDimSpatial + 3> a_g_n_c_wis_strides{};
std::array<ck::index_t, NDimSpatial + 3> b_g_k_c_xs_lengths{};
std::array<ck::index_t, NDimSpatial + 3> b_g_k_c_xs_strides{};
std::array<ck::index_t, NDimSpatial + 3> c_g_n_k_wos_lengths{};
std::array<ck::index_t, NDimSpatial + 3> c_g_n_k_wos_strides{};
std::array<ck::index_t, NDimSpatial> conv_filter_strides{};
std::array<ck::index_t, NDimSpatial> conv_filter_dilations{};
std::array<ck::index_t, NDimSpatial> input_left_pads{};
std::array<ck::index_t, NDimSpatial> input_right_pads{};
auto copy = [](auto& x, auto& y) { std::copy(x.begin(), x.end(), y.begin()); };
copy(in_g_n_c_wis_desc.GetLengths(), a_g_n_c_wis_lengths);
copy(in_g_n_c_wis_desc.GetStrides(), a_g_n_c_wis_strides);
copy(wei_g_k_c_xs_desc.GetLengths(), b_g_k_c_xs_lengths);
copy(wei_g_k_c_xs_desc.GetStrides(), b_g_k_c_xs_strides);
copy(out_g_n_k_wos_desc.GetLengths(), c_g_n_k_wos_lengths);
copy(out_g_n_k_wos_desc.GetStrides(), c_g_n_k_wos_strides);
copy(conv_param.conv_filter_strides_, conv_filter_strides);
copy(conv_param.conv_filter_dilations_, conv_filter_dilations);
copy(conv_param.input_left_pads_, input_left_pads);
copy(conv_param.input_right_pads_, input_right_pads);
// do Conv
auto conv = DeviceConvNDFwdInstance{};
auto invoker = conv.MakeInvoker();
auto argument = conv.MakeArgument(in_device_buf.GetDeviceBuffer(),
wei_device_buf.GetDeviceBuffer(),
out_device_buf.GetDeviceBuffer(),
a_g_n_c_wis_lengths,
a_g_n_c_wis_strides,
b_g_k_c_xs_lengths,
b_g_k_c_xs_strides,
c_g_n_k_wos_lengths,
c_g_n_k_wos_strides,
conv_filter_strides,
conv_filter_dilations,
input_left_pads,
input_right_pads,
in_element_op,
wei_element_op,
out_element_op);
if(!conv.IsSupportedArgument(argument))
{
return true;
}
float avg_time = invoker.Run(argument, StreamConfig{nullptr, time_kernel});
std::size_t flop = conv_param.GetFlops();
std::size_t num_btype = conv_param.GetByte<InDataType, WeiDataType, OutDataType>();
float tflops = static_cast<float>(flop) / 1.E9 / avg_time;
float gb_per_sec = num_btype / 1.E6 / avg_time;
std::cout << "Perf: " << avg_time << " ms, " << tflops << " TFlops, " << gb_per_sec << " GB/s, "
<< conv.GetTypeString() << std::endl;
if(do_verification)
{
auto ref_conv = ck::tensor_operation::host::ReferenceConvFwd<NDimSpatial,
InDataType,
WeiDataType,
OutDataType,
InElementOp,
WeiElementOp,
OutElementOp>();
auto ref_invoker = ref_conv.MakeInvoker();
auto ref_argument = ref_conv.MakeArgument(in,
wei,
out_host,
conv_param.conv_filter_strides_,
conv_param.conv_filter_dilations_,
conv_param.input_left_pads_,
conv_param.input_right_pads_,
in_element_op,
wei_element_op,
out_element_op);
ref_invoker.Run(ref_argument);
out_device_buf.FromDevice(out_device.mData.data());
return ck::utils::check_err(
out_device.mData, out_host.mData, "Error: incorrect results!", 1e-5f, 1e-4f);
}
return true;
}
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2022, Advanced Micro Devices, Inc. All rights reserved.
#include "convnd_fwd_dl_common.hpp"
#include "ck/tensor_operation/gpu/device/device_grouped_conv_fwd_dl_nhwc_kyxc_nhwk.hpp"
#include "ck/library/utility/convolution_host_tensor_descriptor_helper.hpp"
using InDataType = ck::half_t;
using WeiDataType = ck::half_t;
using AccDataType = float;
using OutDataType = ck::half_t;
template <ck::index_t... Is>
using S = ck::Sequence<Is...>;
using InElementOp = ck::tensor_operation::element_wise::PassThrough;
using WeiElementOp = ck::tensor_operation::element_wise::PassThrough;
using OutElementOp = ck::tensor_operation::element_wise::PassThrough;
static constexpr auto ConvSpec =
ck::tensor_operation::device::ConvolutionForwardSpecialization::Default;
static constexpr auto GemmPadingSpec = ck::tensor_operation::device::GemmSpecialization::MNKPadding;
template <ck::index_t NDimSpatial, typename InLayout, typename WeiLayout, typename OutLayout>
// clang-format off
using DeviceGroupedConvNDFwdInstance = ck::tensor_operation::device::DeviceGroupedConvFwdDl_NHWC_KYXC_NHWK
// ######| NDim| InData| WeiData| OutData| AccData| InLayout| WeiLayout| OutLayout| In| Wei| Out| Convolution| GEMM| Block| MPer| NPer| K0Per| K1| M1Per| N1Per| KPer| M11N11Thread| M11N11Thread| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| BBlockTransfer| BBlockTransfer| BBlockTransfer| BBlockTransfer| BBlockTransfer| BBlockTransfer| BBlockTransfer| CThreadTransfer| CThreadTransfer| CThreadTransfer|
// ######| Spatial| Type| Type| Type| Type| | | | Elementwise| Elementwise| Elementwise| Forward| Spacialization| Size| Block| Block| Block| | ThreadM111| ThreadN111| Thread| ClusterM110Xs| ClusterN110Xs| ThreadSliceLengths| ThreadClusterLengths| ThreadCluster| SrcAccess| SrcVectorTensor| SrcVectorTensor| DstVectorTensor| ThreadSliceLengths| ThreadClusterLengths| ThreadCluster| SrcAccess| SrcVectorTensor| SrcVectorTensor| DstVectorTensor| SrcDstAccess| SrcDstVectorDim| DstScalarPerVector|
// ######| | | | | | | | | Operation| Operation| Operation| Specialization| | | | | | | | | | | | K0_M0_M1_K1| K0_M0_M1_K1| ArrangeOrder| Order| Lengths_K0_M0_M1_K1| ContiguousDimOrder| Lengths_K0_M0_M1_K1| K0_N0_N1_K1| K0_N0_N1_K1| ArrangeOrder| Order| Lengths_K0_N0_N1_K1| ContiguousDimOrder| Lengths_K0_N0_N1_K1| Order| | |
// ######| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
< NDimSpatial, InDataType, WeiDataType, OutDataType, AccDataType, InLayout, WeiLayout, OutLayout, InElementOp, WeiElementOp, OutElementOp, ConvSpec, GemmPadingSpec, 256, 128, 128, 16, 2, 4, 4, 1, S<8, 2>, S<8, 2>, S<8, 1, 1, 2>, S<2, 1, 128, 1>, S<1, 2, 0, 3>, S<1, 2, 0, 3>, S<4, 1, 1, 2>, S<1, 2, 0, 3>, S<1, 1, 1, 2>, S<8, 1, 1, 2>, S<2, 1, 128, 1>, S<1, 2, 0, 3>, S<1, 2, 0, 3>, S<4, 1, 1, 2>, S<1, 2, 0, 3>, S<1, 1, 1, 2>, S<0, 1, 2, 3, 4, 5>, 5, 4>;
// clang-format on
#include "run_convnd_fwd_dl_example.inc"
int main(int argc, char* argv[]) { return run_convnd_fwd_dl_example(argc, argv) ? 0 : 1; }
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2022, Advanced Micro Devices, Inc. All rights reserved.
#include "convnd_fwd_dl_common.hpp"
#include "ck/tensor_operation/gpu/device/device_grouped_conv_fwd_dl_nhwc_kyxc_nhwk.hpp"
#include "ck/library/utility/convolution_host_tensor_descriptor_helper.hpp"
using InDataType = float;
using WeiDataType = float;
using AccDataType = float;
using OutDataType = float;
template <ck::index_t... Is>
using S = ck::Sequence<Is...>;
using InElementOp = ck::tensor_operation::element_wise::PassThrough;
using WeiElementOp = ck::tensor_operation::element_wise::PassThrough;
using OutElementOp = ck::tensor_operation::element_wise::PassThrough;
static constexpr auto ConvSpec =
ck::tensor_operation::device::ConvolutionForwardSpecialization::Default;
static constexpr auto GemmPadingSpec = ck::tensor_operation::device::GemmSpecialization::MNKPadding;
template <ck::index_t NDimSpatial, typename InLayout, typename WeiLayout, typename OutLayout>
// clang-format off
using DeviceGroupedConvNDFwdInstance = ck::tensor_operation::device::DeviceGroupedConvFwdDl_NHWC_KYXC_NHWK
// ######| NDim| InData| WeiData| OutData| AccData| InLayout| WeiLayout| OutLayout| In| Wei| Out| Convolution| GEMM| Block| MPer| NPer| K0Per| K1| M1Per| N1Per| KPer| M11N11Thread| M11N11Thread| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| BBlockTransfer| BBlockTransfer| BBlockTransfer| BBlockTransfer| BBlockTransfer| BBlockTransfer| BBlockTransfer| CThreadTransfer| CThreadTransfer| CThreadTransfer|
// ######| Spatial| Type| Type| Type| Type| | | | Elementwise| Elementwise| Elementwise| Forward| Spacialization| Size| Block| Block| Block| | ThreadM111| ThreadN111| Thread| ClusterM110Xs| ClusterN110Xs| ThreadSliceLengths| ThreadClusterLengths| ThreadCluster| SrcAccess| SrcVectorTensor| SrcVectorTensor| DstVectorTensor| ThreadSliceLengths| ThreadClusterLengths| ThreadCluster| SrcAccess| SrcVectorTensor| SrcVectorTensor| DstVectorTensor| SrcDstAccess| SrcDstVectorDim| DstScalarPerVector|
// ######| | | | | | | | | Operation| Operation| Operation| Specialization| | | | | | | | | | | | K0_M0_M1_K1| K0_M0_M1_K1| ArrangeOrder| Order| Lengths_K0_M0_M1_K1| ContiguousDimOrder| Lengths_K0_M0_M1_K1| K0_N0_N1_K1| K0_N0_N1_K1| ArrangeOrder| Order| Lengths_K0_N0_N1_K1| ContiguousDimOrder| Lengths_K0_N0_N1_K1| Order| | |
// ######| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
< NDimSpatial, InDataType, WeiDataType, OutDataType, AccDataType, InLayout, WeiLayout, OutLayout, InElementOp, WeiElementOp, OutElementOp, ConvSpec, GemmPadingSpec, 256, 128, 128, 16, 1, 4, 4, 1, S<8, 2>, S<8, 2>, S<8, 1, 1, 1>, S<2, 1, 128, 1>, S<1, 2, 0, 3>, S<1, 2, 0, 3>, S<4, 1, 1, 1>, S<1, 2, 0, 3>, S<1, 1, 1, 1>, S<8, 1, 1, 1>, S<2, 1, 128, 1>, S<1, 2, 0, 3>, S<1, 2, 0, 3>, S<4, 1, 1, 1>, S<1, 2, 0, 3>, S<1, 1, 1, 1>, S<0, 1, 2, 3, 4, 5>, 5, 4>;
// clang-format on
#include "run_convnd_fwd_dl_example.inc"
int main(int argc, char* argv[]) { return run_convnd_fwd_dl_example(argc, argv) ? 0 : 1; }
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2022, Advanced Micro Devices, Inc. All rights reserved.
#include "convnd_fwd_dl_common.hpp"
#include "ck/tensor_operation/gpu/device/device_grouped_conv_fwd_dl_nhwc_kyxc_nhwk.hpp"
#include "ck/library/utility/convolution_host_tensor_descriptor_helper.hpp"
using InDataType = int8_t;
using WeiDataType = int8_t;
using AccDataType = int32_t;
using OutDataType = int8_t;
template <ck::index_t... Is>
using S = ck::Sequence<Is...>;
using InElementOp = ck::tensor_operation::element_wise::PassThrough;
using WeiElementOp = ck::tensor_operation::element_wise::PassThrough;
using OutElementOp = ck::tensor_operation::element_wise::PassThrough;
static constexpr auto ConvSpec =
ck::tensor_operation::device::ConvolutionForwardSpecialization::Default;
static constexpr auto GemmPadingSpec = ck::tensor_operation::device::GemmSpecialization::MNKPadding;
template <ck::index_t NDimSpatial, typename InLayout, typename WeiLayout, typename OutLayout>
// clang-format off
using DeviceGroupedConvNDFwdInstance = ck::tensor_operation::device::DeviceGroupedConvFwdDl_NHWC_KYXC_NHWK
// ######| NDim| InData| WeiData| OutData| AccData| InLayout| WeiLayout| OutLayout| In| Wei| Out| Convolution| GEMM| Block| MPer| NPer| K0Per| K1| M1Per| N1Per| KPer| M11N11Thread| M11N11Thread| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| BBlockTransfer| BBlockTransfer| BBlockTransfer| BBlockTransfer| BBlockTransfer| BBlockTransfer| BBlockTransfer| CThreadTransfer| CThreadTransfer| CThreadTransfer|
// ######| Spatial| Type| Type| Type| Type| | | | Elementwise| Elementwise| Elementwise| Forward| Spacialization| Size| Block| Block| Block| | ThreadM111| ThreadN111| Thread| ClusterM110Xs| ClusterN110Xs| ThreadSliceLengths| ThreadClusterLengths| ThreadCluster| SrcAccess| SrcVectorTensor| SrcVectorTensor| DstVectorTensor| ThreadSliceLengths| ThreadClusterLengths| ThreadCluster| SrcAccess| SrcVectorTensor| SrcVectorTensor| DstVectorTensor| SrcDstAccess| SrcDstVectorDim| DstScalarPerVector|
// ######| | | | | | | | | Operation| Operation| Operation| Specialization| | | | | | | | | | | | K0_M0_M1_K1| K0_M0_M1_K1| ArrangeOrder| Order| Lengths_K0_M0_M1_K1| ContiguousDimOrder| Lengths_K0_M0_M1_K1| K0_N0_N1_K1| K0_N0_N1_K1| ArrangeOrder| Order| Lengths_K0_N0_N1_K1| ContiguousDimOrder| Lengths_K0_N0_N1_K1| Order| | |
// ######| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
< NDimSpatial, InDataType, WeiDataType, OutDataType, AccDataType, InLayout, WeiLayout, OutLayout, InElementOp, WeiElementOp, OutElementOp, ConvSpec, GemmPadingSpec, 256, 128, 128, 16, 4, 4, 4, 1, S<8, 2>, S<8, 2>, S<8, 1, 1, 4>, S<2, 1, 128, 1>, S<1, 2, 0, 3>, S<1, 2, 0, 3>, S<4, 1, 1, 4>, S<1, 2, 0, 3>, S<1, 1, 1, 4>, S<8, 1, 1, 4>, S<2, 1, 128, 1>, S<1, 2, 0, 3>, S<1, 2, 0, 3>, S<4, 1, 1, 4>, S<1, 2, 0, 3>, S<1, 1, 1, 4>, S<0, 1, 2, 3, 4, 5>, 5, 4>;
// clang-format on
#include "run_convnd_fwd_dl_example.inc"
int main(int argc, char* argv[]) { return run_convnd_fwd_dl_example(argc, argv) ? 0 : 1; }
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2022, Advanced Micro Devices, Inc. All rights reserved.
#pragma once
bool run_convnd_fwd_dl_example(int argc, char* argv[])
{
print_helper_msg();
bool do_verification = true;
int init_method = 1;
bool time_kernel = false;
ck::utils::conv::ConvParam conv_param{
2, 1, 128, 256, 192, {3, 3}, {71, 71}, {2, 2}, {1, 1}, {1, 1}, {1, 1}};
if(argc == 1)
{
// use default
}
else if(argc == 4)
{
do_verification = std::stoi(argv[1]);
init_method = std::stoi(argv[2]);
time_kernel = std::stoi(argv[3]);
}
else
{
do_verification = std::stoi(argv[1]);
init_method = std::stoi(argv[2]);
time_kernel = std::stoi(argv[3]);
const ck::index_t num_dim_spatial = std::stoi(argv[4]);
conv_param = ck::utils::conv::parse_conv_param(num_dim_spatial, 5, argv);
}
const auto in_element_op = InElementOp{};
const auto wei_element_op = WeiElementOp{};
const auto out_element_op = OutElementOp{};
const auto run = [&](auto ndim_spatial, auto in_layout, auto wei_layout, auto out_layout) {
constexpr ck::index_t ndim_spatial_value = ndim_spatial.value;
std::cout << "ndim_spatial_value: " << ndim_spatial_value << std::endl;
using InLayout = decltype(in_layout);
using WeiLayout = decltype(wei_layout);
using OutLayout = decltype(out_layout);
const auto in_g_n_c_wis_desc =
ck::utils::conv::make_input_host_tensor_descriptor_g_n_c_wis_packed<InLayout>(
conv_param);
const auto wei_g_k_c_xs_desc =
ck::utils::conv::make_weight_host_tensor_descriptor_g_k_c_xs_packed<WeiLayout>(
conv_param);
const auto out_g_n_k_wos_desc =
ck::utils::conv::make_output_host_tensor_descriptor_g_n_k_wos_packed<OutLayout>(
conv_param);
return run_grouped_conv_fwd_dl<
ndim_spatial_value,
InDataType,
WeiDataType,
OutDataType,
InElementOp,
WeiElementOp,
OutElementOp,
DeviceGroupedConvNDFwdInstance<ndim_spatial_value, InLayout, WeiLayout, OutLayout>>(
do_verification,
init_method,
time_kernel,
conv_param,
in_g_n_c_wis_desc,
wei_g_k_c_xs_desc,
out_g_n_k_wos_desc,
in_element_op,
wei_element_op,
out_element_op);
};
namespace ctc = ck::tensor_layout::convolution;
if(conv_param.num_dim_spatial_ == 1)
{
return run(ck::Number<1>{}, ctc::GNWC{}, ctc::GKXC{}, ctc::GNWK{});
}
else if(conv_param.num_dim_spatial_ == 2)
{
return run(ck::Number<2>{}, ctc::GNHWC{}, ctc::GKYXC{}, ctc::GNHWK{});
}
else if(conv_param.num_dim_spatial_ == 3)
{
return run(ck::Number<3>{}, ctc::GNDHWC{}, ctc::GKZYXC{}, ctc::GNDHWK{});
}
return true;
}
add_example_executable(example_gemm_xdl_relu_quantization_int8 gemm_xdl_relu_quantization_int8.cpp)
\ No newline at end of file
...@@ -18,30 +18,12 @@ ...@@ -18,30 +18,12 @@
#include "ck/library/reference_tensor_operation/cpu/reference_gemm.hpp" #include "ck/library/reference_tensor_operation/cpu/reference_gemm.hpp"
#include "ck/library/utility/check_err.hpp" #include "ck/library/utility/check_err.hpp"
struct RequantReluRequant
{
// FIXME: We just need one scale for Relu / Leaky Relu / PRelu
RequantReluRequant(float scaleGemm, float scaleRelu)
: scaleGemm_(scaleGemm), scaleRelu_(scaleRelu)
{
}
__host__ __device__ constexpr void operator()(float& y, const float& x) const
{
float gemm_requant = scaleGemm_ * x;
float relu = gemm_requant > 0 ? gemm_requant : 0;
float relu_requant = scaleRelu_ * relu;
y = relu_requant > 127 ? 127 : relu_requant < -128 ? -128 : relu_requant;
}
float scaleGemm_;
float scaleRelu_;
};
template <ck::index_t... Is> template <ck::index_t... Is>
using S = ck::Sequence<Is...>; using S = ck::Sequence<Is...>;
using PassThrough = ck::tensor_operation::element_wise::PassThrough; using PassThrough = ck::tensor_operation::element_wise::PassThrough;
using ActivationOp = ck::tensor_operation::element_wise::Relu;
using CElementOp = ck::tensor_operation::element_wise::Activation_Mul_Clamp<ActivationOp>;
using ADataType = int8_t; using ADataType = int8_t;
using BDataType = int8_t; using BDataType = int8_t;
...@@ -67,7 +49,7 @@ using DeviceGemmInstance = ck::tensor_operation::device::DeviceGemm_Xdl_CShuffle ...@@ -67,7 +49,7 @@ using DeviceGemmInstance = ck::tensor_operation::device::DeviceGemm_Xdl_CShuffle
CShuffleDataType, // typename CShuffleDataType, CShuffleDataType, // typename CShuffleDataType,
PassThrough, // typename AElementwiseOperation, PassThrough, // typename AElementwiseOperation,
PassThrough, // typename BElementwiseOperation, PassThrough, // typename BElementwiseOperation,
RequantReluRequant, // typename CElementwiseOperation, CElementOp, // typename CElementwiseOperation,
GemmDefault, // GemmSpecialization GemmSpec, GemmDefault, // GemmSpecialization GemmSpec,
1, // index_t NumGemmKPrefetchStage, 1, // index_t NumGemmKPrefetchStage,
256, // index_t BlockSize, 256, // index_t BlockSize,
...@@ -100,13 +82,8 @@ using DeviceGemmInstance = ck::tensor_operation::device::DeviceGemm_Xdl_CShuffle ...@@ -100,13 +82,8 @@ using DeviceGemmInstance = ck::tensor_operation::device::DeviceGemm_Xdl_CShuffle
16>; // index_t CShuffleBlockTransferScalarPerVector_NPerBlock> 16>; // index_t CShuffleBlockTransferScalarPerVector_NPerBlock>
// clang-format on // clang-format on
using ReferenceGemmInstance = ck::tensor_operation::host::ReferenceGemm<ADataType, using ReferenceGemmInstance = ck::tensor_operation::host::
BDataType, ReferenceGemm<ADataType, BDataType, CDataType, float, PassThrough, PassThrough, CElementOp>;
CDataType,
float,
PassThrough,
PassThrough,
RequantReluRequant>;
int main(int argc, char* argv[]) int main(int argc, char* argv[])
{ {
...@@ -123,8 +100,7 @@ int main(int argc, char* argv[]) ...@@ -123,8 +100,7 @@ int main(int argc, char* argv[])
ck::index_t StrideB = 4096; ck::index_t StrideB = 4096;
ck::index_t StrideC = 4096; ck::index_t StrideC = 4096;
float scale_gemm = 0.03; float quant_multiplier = 0.03;
float scale_relu = 1;
if(argc == 4) if(argc == 4)
{ {
...@@ -199,7 +175,7 @@ int main(int argc, char* argv[]) ...@@ -199,7 +175,7 @@ int main(int argc, char* argv[])
auto a_element_op = PassThrough{}; auto a_element_op = PassThrough{};
auto b_element_op = PassThrough{}; auto b_element_op = PassThrough{};
auto c_element_op = RequantReluRequant{scale_gemm, scale_relu}; auto c_element_op = CElementOp{quant_multiplier, ActivationOp{}};
// do GEMM // do GEMM
auto gemm = DeviceGemmInstance{}; auto gemm = DeviceGemmInstance{};
......
add_example_executable(example_gemm_xdl_requant_relu_requant_int8 gemm_xdl_requant_relu_requant_int8.cpp)
\ No newline at end of file
...@@ -100,6 +100,8 @@ int main() ...@@ -100,6 +100,8 @@ int main()
gamma_dev.GetDeviceBuffer(), gamma_dev.GetDeviceBuffer(),
beta_dev.GetDeviceBuffer(), beta_dev.GetDeviceBuffer(),
y_dev.GetDeviceBuffer(), y_dev.GetDeviceBuffer(),
nullptr,
nullptr,
PassThrough{}); PassThrough{});
if(!device_instance.IsSupportedArgument(argument_ptr.get())) if(!device_instance.IsSupportedArgument(argument_ptr.get()))
......
add_example_executable(example_grouped_conv_bwd_data_bias_relu_fp16 grouped_conv_bwd_data_bias_relu_fp16.cpp)
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2022, Advanced Micro Devices, Inc. All rights reserved.
#include "grouped_conv_bwd_data_bias_relu_common.hpp"
#include "ck/tensor_operation/gpu/device/device_grouped_conv_bwd_data_multiple_d.hpp"
#include "ck/tensor_operation/gpu/device/impl/device_grouped_conv_bwd_data_multiple_d_xdl_cshuffle_v1.hpp"
template <ck::index_t... Is>
using S = ck::Sequence<Is...>;
using OutDataType = ck::half_t;
using WeiDataType = ck::half_t;
using AccDataType = float;
using CShuffleDataType = ck::half_t;
using BiasDataType = ck::half_t; // bias
using InDataType = ck::half_t;
using OutLayout = ck::tensor_layout::convolution::GNHWK;
using WeiLayout = ck::tensor_layout::convolution::GKYXC;
using BiasLayout = ck::tensor_layout::convolution::G_C;
using InLayout = ck::tensor_layout::convolution::GNHWC;
using OutElementOp = ck::tensor_operation::element_wise::PassThrough;
using WeiElementOp = ck::tensor_operation::element_wise::PassThrough;
using CBiasInElementOp = ck::tensor_operation::element_wise::AddRelu;
static constexpr auto ConvBwdDataDefault =
ck::tensor_operation::device::ConvolutionBackwardDataSpecialization::Default;
template <ck::index_t NDimSpatial>
using DeviceConvNdBwdDataInstance =
ck::tensor_operation::device::DeviceGroupedConvBwdDataMultipleD_Xdl_CShuffle_v1<
NDimSpatial,
OutLayout,
WeiLayout,
ck::Tuple<BiasLayout>,
InLayout,
OutDataType,
WeiDataType,
AccDataType,
CShuffleDataType,
ck::Tuple<BiasDataType>,
InDataType,
OutElementOp,
WeiElementOp,
CBiasInElementOp,
ConvBwdDataDefault,
true, // DoPadGemmM
true, // DoPadGemmN
1,
256,
128,
256,
32,
8,
2,
32,
32,
2,
4,
S<4, 64, 1>,
S<1, 0, 2>,
S<1, 0, 2>,
2,
8,
8,
1,
S<4, 64, 1>,
S<0, 2, 1>,
S<0, 2, 1>,
1,
4,
2,
0,
1,
1,
S<1, 32, 1, 8>,
8>;
int main(int argc, char* argv[])
{
namespace ctc = ck::tensor_layout::convolution;
print_helper_msg();
bool do_verification = true;
int init_method = 1;
bool time_kernel = false;
ck::utils::conv::ConvParam conv_param{
2, 2, 128, 256, 256, {3, 3}, {14, 14}, {2, 2}, {1, 1}, {1, 1}, {1, 1}};
if(argc == 1)
{
// use default
}
else if(argc == 4)
{
do_verification = std::stoi(argv[1]);
init_method = std::stoi(argv[2]);
time_kernel = std::stoi(argv[3]);
}
else
{
do_verification = std::stoi(argv[1]);
init_method = std::stoi(argv[2]);
time_kernel = std::stoi(argv[3]);
const ck::index_t num_dim_spatial = std::stoi(argv[4]);
conv_param = ck::utils::conv::parse_conv_param(num_dim_spatial, 5, argv);
}
const auto in_element_op = CBiasInElementOp{};
const auto wei_element_op = WeiElementOp{};
const auto out_element_op = OutElementOp{};
if(conv_param.num_dim_spatial_ == 2)
{
// output image: GNHWK
const auto out_g_n_k_wos_desc =
ck::utils::conv::make_output_host_tensor_descriptor_g_n_k_wos_packed<OutLayout>(
conv_param);
// weight: GKYXC
const auto wei_g_k_c_xs_desc =
ck::utils::conv::make_weight_host_tensor_descriptor_g_k_c_xs_packed<WeiLayout>(
conv_param);
// input image bias: G_C
const auto bias_g_n_c_wis_desc =
HostTensorDescriptor({conv_param.G_,
conv_param.N_,
conv_param.C_,
conv_param.input_spatial_lengths_[0],
conv_param.input_spatial_lengths_[1]},
{
conv_param.C_, // g
0, // n
1, // c
0, // hi
0 // wi
});
// input image: GNHWC
const auto in_g_n_c_wis_desc =
ck::utils::conv::make_input_host_tensor_descriptor_g_n_c_wis_packed<InLayout>(
conv_param);
using DeviceInstance = DeviceConvNdBwdDataInstance<2>;
run_conv_bwd_data_bias_relu<2,
OutDataType,
WeiDataType,
BiasDataType,
InDataType,
OutElementOp,
WeiElementOp,
CBiasInElementOp,
DeviceInstance>(do_verification,
init_method,
time_kernel,
conv_param,
out_g_n_k_wos_desc,
wei_g_k_c_xs_desc,
bias_g_n_c_wis_desc,
in_g_n_c_wis_desc,
wei_element_op,
out_element_op,
in_element_op);
}
return 0;
}
add_custom_target(example_grouped_conv_bwd_data)
add_example_executable(example_grouped_conv_bwd_data_fp16 grouped_conv_bwd_data_fp16.cpp)
add_example_executable(example_grouped_conv_bwd_data_bias_relu_fp16 grouped_conv_bwd_data_bias_relu_fp16.cpp)
add_dependencies(example_grouped_conv_bwd_data example_grouped_conv_bwd_data_fp16)
add_dependencies(example_grouped_conv_bwd_data example_grouped_conv_bwd_data_bias_relu_fp16)
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment