Commit ab663329 authored by aska-0096's avatar aska-0096
Browse files

Merge develop

parents 4fec5ad3 8a4253ba
...@@ -352,6 +352,7 @@ struct GridwiseGemmPipelineInterwave_v1<2> : public GridwiseGemmPipeline_v1<2> ...@@ -352,6 +352,7 @@ struct GridwiseGemmPipelineInterwave_v1<2> : public GridwiseGemmPipeline_v1<2>
{ {
}; };
// TODO: deprecate as GridwiseGemmPipeline_Selector covers the functionality
template <index_t NumPrefetch, LoopScheduler LoopSched> template <index_t NumPrefetch, LoopScheduler LoopSched>
constexpr auto GridwiseGemmPipeline_v1_Selector() constexpr auto GridwiseGemmPipeline_v1_Selector()
{ {
......
...@@ -8,7 +8,7 @@ ...@@ -8,7 +8,7 @@
#include "ck/tensor_description/tensor_descriptor.hpp" #include "ck/tensor_description/tensor_descriptor.hpp"
#include "ck/tensor_description/tensor_descriptor_helper.hpp" #include "ck/tensor_description/tensor_descriptor_helper.hpp"
#include "ck/tensor_operation/gpu/grid/block_to_ctile_map.hpp" #include "ck/tensor_operation/gpu/grid/block_to_ctile_map.hpp"
#include "ck/tensor_operation/gpu/grid/gridwise_gemm_pipeline_v1.hpp" #include "ck/tensor_operation/gpu/grid/gridwise_gemm_pipeline_selector.hpp"
#include "ck/tensor_operation/gpu/block/blockwise_gemm_xdlops.hpp" #include "ck/tensor_operation/gpu/block/blockwise_gemm_xdlops.hpp"
#include "ck/tensor_operation/gpu/block/thread_group_tensor_slice_transfer_v4r1.hpp" #include "ck/tensor_operation/gpu/block/thread_group_tensor_slice_transfer_v4r1.hpp"
#include "ck/tensor_operation/gpu/block/thread_group_tensor_slice_transfer_v6r1.hpp" #include "ck/tensor_operation/gpu/block/thread_group_tensor_slice_transfer_v6r1.hpp"
...@@ -142,7 +142,8 @@ template <typename FloatAB, ...@@ -142,7 +142,8 @@ template <typename FloatAB,
typename CReduceThreadClusterLengths_MPerBlock_NPerBlock, typename CReduceThreadClusterLengths_MPerBlock_NPerBlock,
index_t CReduceThreadLds2VGprCopySrcDstScalarPerVector_NPerBlock, index_t CReduceThreadLds2VGprCopySrcDstScalarPerVector_NPerBlock,
index_t CReduceThreadVgpr2GlobalCopySrcDstScalarPerVector_MPerBlock, index_t CReduceThreadVgpr2GlobalCopySrcDstScalarPerVector_MPerBlock,
LoopScheduler LoopSched> LoopScheduler LoopSched,
PipelineVersion PipelineVer = PipelineVersion::v1>
struct GridwiseGemmReduce_k0mk1_k0nk1_mn_xdl_cshuffle_v1 struct GridwiseGemmReduce_k0mk1_k0nk1_mn_xdl_cshuffle_v1
{ {
static constexpr auto I0 = Number<0>{}; static constexpr auto I0 = Number<0>{};
...@@ -162,7 +163,8 @@ struct GridwiseGemmReduce_k0mk1_k0nk1_mn_xdl_cshuffle_v1 ...@@ -162,7 +163,8 @@ struct GridwiseGemmReduce_k0mk1_k0nk1_mn_xdl_cshuffle_v1
using ThisThreadBlock = ThisThreadBlock<BlockSize>; using ThisThreadBlock = ThisThreadBlock<BlockSize>;
using GridwiseGemmPipe = GridwiseGemmPipeline_v1<NumGemmKPrefetchStage>; using GridwiseGemmPipe = remove_cvref_t<decltype(
GridwiseGemmPipeline_Selector<PipelineVer, NumGemmKPrefetchStage>())>;
__host__ __device__ static constexpr auto GetABlockDescriptor_AK0PerBlock_MPerBlock_AK1() __host__ __device__ static constexpr auto GetABlockDescriptor_AK0PerBlock_MPerBlock_AK1()
{ {
...@@ -481,7 +483,7 @@ struct GridwiseGemmReduce_k0mk1_k0nk1_mn_xdl_cshuffle_v1 ...@@ -481,7 +483,7 @@ struct GridwiseGemmReduce_k0mk1_k0nk1_mn_xdl_cshuffle_v1
// gridwise GEMM pipeline // gridwise GEMM pipeline
const auto gridwise_gemm_pipeline = const auto gridwise_gemm_pipeline =
GridwiseGemmPipeline_v1_Selector<NumGemmKPrefetchStage, LoopSched>(); GridwiseGemmPipeline_Selector<PipelineVer, NumGemmKPrefetchStage, LoopSched>();
const index_t num_k_block_main_loop = __builtin_amdgcn_readfirstlane( const index_t num_k_block_main_loop = __builtin_amdgcn_readfirstlane(
(a_grid_desc_ak0_m_ak1.GetLength(I0) * a_grid_desc_ak0_m_ak1.GetLength(I2)) / (a_grid_desc_ak0_m_ak1.GetLength(I0) * a_grid_desc_ak0_m_ak1.GetLength(I2)) /
......
...@@ -8,8 +8,7 @@ ...@@ -8,8 +8,7 @@
#include "ck/tensor_description/tensor_descriptor.hpp" #include "ck/tensor_description/tensor_descriptor.hpp"
#include "ck/tensor_description/tensor_descriptor_helper.hpp" #include "ck/tensor_description/tensor_descriptor_helper.hpp"
#include "ck/tensor_operation/gpu/grid/block_to_ctile_map.hpp" #include "ck/tensor_operation/gpu/grid/block_to_ctile_map.hpp"
#include "ck/tensor_operation/gpu/grid/gridwise_gemm_pipeline_v1.hpp" #include "ck/tensor_operation/gpu/grid/gridwise_gemm_pipeline_selector.hpp"
#include "ck/tensor_operation/gpu/grid/gridwise_gemm_pipeline_v2.hpp"
#include "ck/tensor_operation/gpu/block/blockwise_gemm_xdlops.hpp" #include "ck/tensor_operation/gpu/block/blockwise_gemm_xdlops.hpp"
#include "ck/tensor_operation/gpu/block/thread_group_tensor_slice_transfer_v4r1.hpp" #include "ck/tensor_operation/gpu/block/thread_group_tensor_slice_transfer_v4r1.hpp"
#include "ck/tensor_operation/gpu/block/thread_group_tensor_slice_transfer_v6r1.hpp" #include "ck/tensor_operation/gpu/block/thread_group_tensor_slice_transfer_v6r1.hpp"
...@@ -115,7 +114,8 @@ template <typename FloatAB, ...@@ -115,7 +114,8 @@ template <typename FloatAB,
index_t CShuffleNXdlPerWavePerShuffle, index_t CShuffleNXdlPerWavePerShuffle,
typename CShuffleBlockTransferClusterLengths_MBlock_MPerBlock_NBlock_NPerBlock, typename CShuffleBlockTransferClusterLengths_MBlock_MPerBlock_NBlock_NPerBlock,
index_t CShuffleBlockTransferScalarPerVector_NPerBlock, index_t CShuffleBlockTransferScalarPerVector_NPerBlock,
LoopScheduler LoopSched> LoopScheduler LoopSched,
PipelineVersion PipelineVer = PipelineVersion::v1>
struct GridwiseGemm_k0mk1_k0nk1_mn_xdl_cshuffle_v1 struct GridwiseGemm_k0mk1_k0nk1_mn_xdl_cshuffle_v1
{ {
static constexpr auto I0 = Number<0>{}; static constexpr auto I0 = Number<0>{};
...@@ -136,13 +136,8 @@ struct GridwiseGemm_k0mk1_k0nk1_mn_xdl_cshuffle_v1 ...@@ -136,13 +136,8 @@ struct GridwiseGemm_k0mk1_k0nk1_mn_xdl_cshuffle_v1
using ThisThreadBlock = ThisThreadBlock<BlockSize>; using ThisThreadBlock = ThisThreadBlock<BlockSize>;
// FIXME: pass GridwiseGemmPipe as a template arguement into GridwiseGemm // FIXME: pass GridwiseGemmPipe as a template arguement into GridwiseGemm
using GridwiseGemmPipe = using GridwiseGemmPipe = remove_cvref_t<decltype(
#if 1 GridwiseGemmPipeline_Selector<PipelineVer, NumGemmKPrefetchStage, LoopSched>())>;
remove_cvref_t<decltype(
GridwiseGemmPipeline_v1_Selector<NumGemmKPrefetchStage, LoopSched>())>;
#else
GridwiseGemmPipeline_v2;
#endif
__host__ __device__ static constexpr auto GetABlockDescriptor_AK0PerBlock_MPerBlock_AK1() __host__ __device__ static constexpr auto GetABlockDescriptor_AK0PerBlock_MPerBlock_AK1()
{ {
......
...@@ -8,7 +8,7 @@ ...@@ -8,7 +8,7 @@
#include "ck/tensor_description/tensor_descriptor.hpp" #include "ck/tensor_description/tensor_descriptor.hpp"
#include "ck/tensor_description/tensor_descriptor_helper.hpp" #include "ck/tensor_description/tensor_descriptor_helper.hpp"
#include "ck/tensor_operation/gpu/grid/block_to_ctile_map.hpp" #include "ck/tensor_operation/gpu/grid/block_to_ctile_map.hpp"
#include "ck/tensor_operation/gpu/grid/gridwise_gemm_pipeline_v1.hpp" #include "ck/tensor_operation/gpu/grid/gridwise_gemm_pipeline_selector.hpp"
#include "ck/tensor_operation/gpu/block/blockwise_gemm_xdlops.hpp" #include "ck/tensor_operation/gpu/block/blockwise_gemm_xdlops.hpp"
#include "ck/tensor_operation/gpu/block/thread_group_tensor_slice_transfer_v4r1.hpp" #include "ck/tensor_operation/gpu/block/thread_group_tensor_slice_transfer_v4r1.hpp"
#include "ck/tensor_operation/gpu/block/thread_group_tensor_slice_transfer_v6r1.hpp" #include "ck/tensor_operation/gpu/block/thread_group_tensor_slice_transfer_v6r1.hpp"
...@@ -151,7 +151,8 @@ template <typename FloatAB, ...@@ -151,7 +151,8 @@ template <typename FloatAB,
index_t CShuffleBlockTransferScalarPerVector_NPerBlock, index_t CShuffleBlockTransferScalarPerVector_NPerBlock,
typename CReduceThreadClusterLengths_MPerBlock_NPerBlock, typename CReduceThreadClusterLengths_MPerBlock_NPerBlock,
index_t CReduceThreadCopySrcDstScalarPerVector_NPerBlock, index_t CReduceThreadCopySrcDstScalarPerVector_NPerBlock,
LoopScheduler LoopSched> LoopScheduler LoopSched,
PipelineVersion PipelineVer = PipelineVersion::v1>
struct GridwiseGemmLayernorm_k0mk1_k0nk1_mn_xdl_cshuffle_v1 struct GridwiseGemmLayernorm_k0mk1_k0nk1_mn_xdl_cshuffle_v1
{ {
static constexpr auto I0 = Number<0>{}; static constexpr auto I0 = Number<0>{};
...@@ -171,7 +172,8 @@ struct GridwiseGemmLayernorm_k0mk1_k0nk1_mn_xdl_cshuffle_v1 ...@@ -171,7 +172,8 @@ struct GridwiseGemmLayernorm_k0mk1_k0nk1_mn_xdl_cshuffle_v1
using ThisThreadBlock = ThisThreadBlock<BlockSize>; using ThisThreadBlock = ThisThreadBlock<BlockSize>;
using GridwiseGemmPipe = GridwiseGemmPipeline_v1<NumGemmKPrefetchStage>; using GridwiseGemmPipe = remove_cvref_t<decltype(
GridwiseGemmPipeline_Selector<PipelineVer, NumGemmKPrefetchStage>())>;
__host__ __device__ static constexpr auto GetABlockDescriptor_AK0PerBlock_MPerBlock_AK1() __host__ __device__ static constexpr auto GetABlockDescriptor_AK0PerBlock_MPerBlock_AK1()
{ {
...@@ -519,7 +521,7 @@ struct GridwiseGemmLayernorm_k0mk1_k0nk1_mn_xdl_cshuffle_v1 ...@@ -519,7 +521,7 @@ struct GridwiseGemmLayernorm_k0mk1_k0nk1_mn_xdl_cshuffle_v1
// gridwise GEMM pipeline // gridwise GEMM pipeline
const auto gridwise_gemm_pipeline = const auto gridwise_gemm_pipeline =
GridwiseGemmPipeline_v1_Selector<NumGemmKPrefetchStage, LoopSched>(); GridwiseGemmPipeline_Selector<PipelineVer, NumGemmKPrefetchStage, LoopSched>();
const index_t num_k_block_main_loop = __builtin_amdgcn_readfirstlane( const index_t num_k_block_main_loop = __builtin_amdgcn_readfirstlane(
(a_grid_desc_ak0_m_ak1.GetLength(I0) * a_grid_desc_ak0_m_ak1.GetLength(I2)) / (a_grid_desc_ak0_m_ak1.GetLength(I0) * a_grid_desc_ak0_m_ak1.GetLength(I2)) /
......
...@@ -8,7 +8,7 @@ ...@@ -8,7 +8,7 @@
#include "ck/tensor_description/tensor_descriptor.hpp" #include "ck/tensor_description/tensor_descriptor.hpp"
#include "ck/tensor_description/tensor_descriptor_helper.hpp" #include "ck/tensor_description/tensor_descriptor_helper.hpp"
#include "ck/tensor_operation/gpu/grid/block_to_ctile_map.hpp" #include "ck/tensor_operation/gpu/grid/block_to_ctile_map.hpp"
#include "ck/tensor_operation/gpu/grid/gridwise_gemm_pipeline_v1.hpp" #include "ck/tensor_operation/gpu/grid/gridwise_gemm_pipeline_selector.hpp"
#include "ck/tensor_operation/gpu/block/blockwise_gemm_xdlops.hpp" #include "ck/tensor_operation/gpu/block/blockwise_gemm_xdlops.hpp"
#include "ck/tensor_operation/gpu/block/thread_group_tensor_slice_transfer_v4r1.hpp" #include "ck/tensor_operation/gpu/block/thread_group_tensor_slice_transfer_v4r1.hpp"
#include "ck/tensor_operation/gpu/block/thread_group_tensor_slice_transfer_v6r1.hpp" #include "ck/tensor_operation/gpu/block/thread_group_tensor_slice_transfer_v6r1.hpp"
...@@ -243,7 +243,8 @@ template <index_t BlockSize, ...@@ -243,7 +243,8 @@ template <index_t BlockSize,
typename CBlockTransferClusterLengths_MBlock_MPerBlock_NBlock_NPerBlock, typename CBlockTransferClusterLengths_MBlock_MPerBlock_NBlock_NPerBlock,
bool ABlockLdsExtraM1Wrw = false, bool ABlockLdsExtraM1Wrw = false,
bool BBlockLdsExtraN1Wrw = false, bool BBlockLdsExtraN1Wrw = false,
index_t NumGemmKPrefetchStage = 1> index_t NumGemmKPrefetchStage = 1,
PipelineVersion PipelineVer = PipelineVersion::v1>
struct GridwiseGemm_bk0mk1_bk0nk1_mn_xdlops_bwd_weight struct GridwiseGemm_bk0mk1_bk0nk1_mn_xdlops_bwd_weight
{ {
static constexpr auto I0 = Number<0>{}; static constexpr auto I0 = Number<0>{};
...@@ -258,8 +259,10 @@ struct GridwiseGemm_bk0mk1_bk0nk1_mn_xdlops_bwd_weight ...@@ -258,8 +259,10 @@ struct GridwiseGemm_bk0mk1_bk0nk1_mn_xdlops_bwd_weight
// K1 should be Number<...> // K1 should be Number<...>
static constexpr auto K1 = Number<K1Value>{}; static constexpr auto K1 = Number<K1Value>{};
using ThisThreadBlock = ThisThreadBlock<BlockSize>; using ThisThreadBlock = ThisThreadBlock<BlockSize>;
using GridwiseGemmPipe = GridwiseGemmPipeline_v1<NumGemmKPrefetchStage>;
using GridwiseGemmPipe = remove_cvref_t<decltype(
GridwiseGemmPipeline_Selector<PipelineVer, NumGemmKPrefetchStage>())>;
// M0/M1/M1Padding // M0/M1/M1Padding
static constexpr auto M1PerBlock = Number<ABlockLdsM1PerBlock>{}; static constexpr auto M1PerBlock = Number<ABlockLdsM1PerBlock>{};
......
...@@ -8,7 +8,7 @@ ...@@ -8,7 +8,7 @@
#include "ck/tensor_description/tensor_descriptor.hpp" #include "ck/tensor_description/tensor_descriptor.hpp"
#include "ck/tensor_description/tensor_descriptor_helper.hpp" #include "ck/tensor_description/tensor_descriptor_helper.hpp"
#include "ck/tensor_operation/gpu/grid/block_to_ctile_map.hpp" #include "ck/tensor_operation/gpu/grid/block_to_ctile_map.hpp"
#include "ck/tensor_operation/gpu/grid/gridwise_gemm_pipeline_v1.hpp" #include "ck/tensor_operation/gpu/grid/gridwise_gemm_pipeline_selector.hpp"
#include "ck/tensor_operation/gpu/block/blockwise_gemm_xdlops.hpp" #include "ck/tensor_operation/gpu/block/blockwise_gemm_xdlops.hpp"
#include "ck/tensor_operation/gpu/block/thread_group_tensor_slice_transfer_v4r1.hpp" #include "ck/tensor_operation/gpu/block/thread_group_tensor_slice_transfer_v4r1.hpp"
#include "ck/tensor_operation/gpu/thread/threadwise_tensor_slice_transfer.hpp" #include "ck/tensor_operation/gpu/thread/threadwise_tensor_slice_transfer.hpp"
...@@ -109,7 +109,9 @@ template <index_t BlockSize, ...@@ -109,7 +109,9 @@ template <index_t BlockSize,
typename CThreadTransferSrcDstAccessOrder, typename CThreadTransferSrcDstAccessOrder,
index_t CThreadTransferSrcDstVectorDim, index_t CThreadTransferSrcDstVectorDim,
index_t CThreadTransferDstScalarPerVector, index_t CThreadTransferDstScalarPerVector,
index_t NumGemmKPrefetchStage = 1> index_t NumGemmKPrefetchStage = 1,
LoopScheduler LoopSched = make_default_loop_scheduler(),
PipelineVersion PipelineVer = PipelineVersion::v1>
struct GridwiseGemm_k0mk1_k0nk1_mn_xdlops_v2r3 struct GridwiseGemm_k0mk1_k0nk1_mn_xdlops_v2r3
{ {
static constexpr auto I0 = Number<0>{}; static constexpr auto I0 = Number<0>{};
...@@ -126,7 +128,8 @@ struct GridwiseGemm_k0mk1_k0nk1_mn_xdlops_v2r3 ...@@ -126,7 +128,8 @@ struct GridwiseGemm_k0mk1_k0nk1_mn_xdlops_v2r3
using ThisThreadBlock = ThisThreadBlock<BlockSize>; using ThisThreadBlock = ThisThreadBlock<BlockSize>;
using GridwiseGemmPipe = GridwiseGemmPipeline_v1<NumGemmKPrefetchStage>; using GridwiseGemmPipe = remove_cvref_t<decltype(
GridwiseGemmPipeline_Selector<PipelineVer, NumGemmKPrefetchStage, LoopSched>())>;
__host__ __device__ static constexpr auto GetABlockDescriptor_K0PerBlock_MPerBlock_K1() __host__ __device__ static constexpr auto GetABlockDescriptor_K0PerBlock_MPerBlock_K1()
{ {
...@@ -423,18 +426,18 @@ struct GridwiseGemm_k0mk1_k0nk1_mn_xdlops_v2r3 ...@@ -423,18 +426,18 @@ struct GridwiseGemm_k0mk1_k0nk1_mn_xdlops_v2r3
// c_mtx[MPerBlock, NPerBlock] is distributed among threads, and saved in // c_mtx[MPerBlock, NPerBlock] is distributed among threads, and saved in
// register // register
// sanity check // sanity check
auto blockwise_gemm = BlockwiseGemmXdlops_k0mk1_k0nk1_m0n0m1n1m2m3m4n2_Selector<
auto blockwise_gemm = BlockSize,
BlockwiseGemmXdlops_k0mk1_k0nk1_m0n0m1n1m2m3m4n2_v1<BlockSize, FloatAB,
FloatAB, FloatAcc,
FloatAcc, decltype(a_block_desc_k0_m_k1),
decltype(a_block_desc_k0_m_k1), decltype(b_block_desc_k0_n_k1),
decltype(b_block_desc_k0_n_k1), MPerXDL,
MPerXDL, NPerXDL,
NPerXDL, MXdlPerWave,
MXdlPerWave, NXdlPerWave,
NXdlPerWave, K1,
K1>{}; LoopSched>();
auto c_thread_buf = blockwise_gemm.GetCThreadBuffer(); auto c_thread_buf = blockwise_gemm.GetCThreadBuffer();
......
...@@ -9,7 +9,7 @@ ...@@ -9,7 +9,7 @@
#include "ck/tensor_description/tensor_descriptor.hpp" #include "ck/tensor_description/tensor_descriptor.hpp"
#include "ck/tensor_description/tensor_descriptor_helper.hpp" #include "ck/tensor_description/tensor_descriptor_helper.hpp"
#include "ck/tensor_operation/gpu/grid/block_to_ctile_map.hpp" #include "ck/tensor_operation/gpu/grid/block_to_ctile_map.hpp"
#include "ck/tensor_operation/gpu/grid/gridwise_gemm_pipeline_v1.hpp" #include "ck/tensor_operation/gpu/grid/gridwise_gemm_pipeline_selector.hpp"
#include "ck/tensor_operation/gpu/block/blockwise_gemm_xdlops.hpp" #include "ck/tensor_operation/gpu/block/blockwise_gemm_xdlops.hpp"
#include "ck/tensor_operation/gpu/block/thread_group_tensor_slice_transfer_v4r1.hpp" #include "ck/tensor_operation/gpu/block/thread_group_tensor_slice_transfer_v4r1.hpp"
#include "ck/tensor_operation/gpu/block/thread_group_tensor_slice_transfer_v6r1.hpp" #include "ck/tensor_operation/gpu/block/thread_group_tensor_slice_transfer_v6r1.hpp"
...@@ -117,7 +117,8 @@ template < ...@@ -117,7 +117,8 @@ template <
index_t CShuffleNXdlPerWavePerShuffle, index_t CShuffleNXdlPerWavePerShuffle,
typename CBlockTransferClusterLengths_MBlock_MXdlPerWave_MWaveMPerXdl_NBlock_NXdlPerWave_NWaveNPerXdl, typename CBlockTransferClusterLengths_MBlock_MXdlPerWave_MWaveMPerXdl_NBlock_NXdlPerWave_NWaveNPerXdl,
index_t CBlockTransferScalarPerVector_NWaveNPerXdl, index_t CBlockTransferScalarPerVector_NWaveNPerXdl,
index_t NumGemmKPrefetchStage = 1> index_t NumGemmKPrefetchStage = 1,
PipelineVersion PipelineVer = PipelineVersion::v1>
struct GridwiseGemm_k0mk1_k0nk1_mn_xdlops_v3r1 struct GridwiseGemm_k0mk1_k0nk1_mn_xdlops_v3r1
{ {
static constexpr auto I0 = Number<0>{}; static constexpr auto I0 = Number<0>{};
...@@ -137,7 +138,8 @@ struct GridwiseGemm_k0mk1_k0nk1_mn_xdlops_v3r1 ...@@ -137,7 +138,8 @@ struct GridwiseGemm_k0mk1_k0nk1_mn_xdlops_v3r1
using ThisThreadBlock = ThisThreadBlock<BlockSize>; using ThisThreadBlock = ThisThreadBlock<BlockSize>;
using GridwiseGemmPipe = GridwiseGemmPipeline_v1<NumGemmKPrefetchStage>; using GridwiseGemmPipe = remove_cvref_t<decltype(
GridwiseGemmPipeline_Selector<PipelineVer, NumGemmKPrefetchStage>())>;
__host__ __device__ static constexpr auto GetABlockDescriptor_AK0PerBlock_MPerBlock_AK1() __host__ __device__ static constexpr auto GetABlockDescriptor_AK0PerBlock_MPerBlock_AK1()
{ {
......
...@@ -8,7 +8,7 @@ ...@@ -8,7 +8,7 @@
#include "ck/tensor_description/tensor_descriptor.hpp" #include "ck/tensor_description/tensor_descriptor.hpp"
#include "ck/tensor_description/tensor_descriptor_helper.hpp" #include "ck/tensor_description/tensor_descriptor_helper.hpp"
#include "ck/tensor_operation/gpu/grid/block_to_ctile_map.hpp" #include "ck/tensor_operation/gpu/grid/block_to_ctile_map.hpp"
#include "ck/tensor_operation/gpu/grid/gridwise_gemm_pipeline_v1.hpp" #include "ck/tensor_operation/gpu/grid/gridwise_gemm_pipeline_selector.hpp"
#include "ck/tensor_operation/gpu/block/blockwise_gemm_xdlops.hpp" #include "ck/tensor_operation/gpu/block/blockwise_gemm_xdlops.hpp"
#include "ck/tensor_operation/gpu/block/thread_group_tensor_slice_transfer_v4r1.hpp" #include "ck/tensor_operation/gpu/block/thread_group_tensor_slice_transfer_v4r1.hpp"
#include "ck/tensor_operation/gpu/block/thread_group_tensor_slice_transfer_v6r2.hpp" #include "ck/tensor_operation/gpu/block/thread_group_tensor_slice_transfer_v6r2.hpp"
...@@ -123,7 +123,8 @@ template < ...@@ -123,7 +123,8 @@ template <
index_t CShuffleNXdlPerWavePerShuffle, index_t CShuffleNXdlPerWavePerShuffle,
typename CBlockTransferClusterLengths_MBlock_MXdlPerWave_MWaveMPerXdl_NBlock_NXdlPerWave_NWaveNPerXdl, typename CBlockTransferClusterLengths_MBlock_MXdlPerWave_MWaveMPerXdl_NBlock_NXdlPerWave_NWaveNPerXdl,
index_t CBlockTransferScalarPerVector_NWaveNPerXdl, index_t CBlockTransferScalarPerVector_NWaveNPerXdl,
index_t NumGemmKPrefetchStage = 1> index_t NumGemmKPrefetchStage = 1,
PipelineVersion PipelineVer = PipelineVersion::v1>
struct GridwiseGemm_k0mk1_k0nk1_mn_xdlops_v3r2 struct GridwiseGemm_k0mk1_k0nk1_mn_xdlops_v3r2
{ {
static constexpr auto I0 = Number<0>{}; static constexpr auto I0 = Number<0>{};
...@@ -140,7 +141,8 @@ struct GridwiseGemm_k0mk1_k0nk1_mn_xdlops_v3r2 ...@@ -140,7 +141,8 @@ struct GridwiseGemm_k0mk1_k0nk1_mn_xdlops_v3r2
using ThisThreadBlock = ThisThreadBlock<BlockSize>; using ThisThreadBlock = ThisThreadBlock<BlockSize>;
using GridwiseGemmPipe = GridwiseGemmPipeline_v1<NumGemmKPrefetchStage>; using GridwiseGemmPipe = remove_cvref_t<decltype(
GridwiseGemmPipeline_Selector<PipelineVer, NumGemmKPrefetchStage>())>;
__host__ __device__ static constexpr auto GetABlockDescriptor_K0PerBlock_MPerBlock_K1() __host__ __device__ static constexpr auto GetABlockDescriptor_K0PerBlock_MPerBlock_K1()
{ {
......
...@@ -8,7 +8,7 @@ ...@@ -8,7 +8,7 @@
#include "ck/tensor_description/tensor_descriptor.hpp" #include "ck/tensor_description/tensor_descriptor.hpp"
#include "ck/tensor_description/tensor_descriptor_helper.hpp" #include "ck/tensor_description/tensor_descriptor_helper.hpp"
#include "ck/tensor_operation/gpu/grid/block_to_ctile_map.hpp" #include "ck/tensor_operation/gpu/grid/block_to_ctile_map.hpp"
#include "ck/tensor_operation/gpu/grid/gridwise_gemm_pipeline_v1.hpp" #include "ck/tensor_operation/gpu/grid/gridwise_gemm_pipeline_selector.hpp"
#include "ck/tensor_operation/gpu/block/blockwise_gemm_xdlops.hpp" #include "ck/tensor_operation/gpu/block/blockwise_gemm_xdlops.hpp"
#include "ck/tensor_operation/gpu/block/thread_group_tensor_slice_transfer_v4r1.hpp" #include "ck/tensor_operation/gpu/block/thread_group_tensor_slice_transfer_v4r1.hpp"
#include "ck/tensor_operation/gpu/block/thread_group_tensor_slice_transfer_v6r3.hpp" #include "ck/tensor_operation/gpu/block/thread_group_tensor_slice_transfer_v6r3.hpp"
...@@ -132,7 +132,8 @@ template < ...@@ -132,7 +132,8 @@ template <
index_t CShuffleNXdlPerWavePerShuffle, index_t CShuffleNXdlPerWavePerShuffle,
typename CBlockTransferClusterLengths_MBlock_MXdlPerWave_MWaveMPerXdl_NBlock_NXdlPerWave_NWaveNPerXdl, typename CBlockTransferClusterLengths_MBlock_MXdlPerWave_MWaveMPerXdl_NBlock_NXdlPerWave_NWaveNPerXdl,
index_t CBlockTransferScalarPerVector_NWaveNPerXdl, index_t CBlockTransferScalarPerVector_NWaveNPerXdl,
index_t NumGemmKPrefetchStage = 1> index_t NumGemmKPrefetchStage = 1,
PipelineVersion PipelineVer = PipelineVersion::v1>
struct GridwiseGemm_k0mk1_k0nk1_mn_xdlops_v3r3 struct GridwiseGemm_k0mk1_k0nk1_mn_xdlops_v3r3
{ {
static constexpr auto I0 = Number<0>{}; static constexpr auto I0 = Number<0>{};
...@@ -149,7 +150,8 @@ struct GridwiseGemm_k0mk1_k0nk1_mn_xdlops_v3r3 ...@@ -149,7 +150,8 @@ struct GridwiseGemm_k0mk1_k0nk1_mn_xdlops_v3r3
using ThisThreadBlock = ThisThreadBlock<BlockSize>; using ThisThreadBlock = ThisThreadBlock<BlockSize>;
using GridwiseGemmPipe = GridwiseGemmPipeline_v1<NumGemmKPrefetchStage>; using GridwiseGemmPipe = remove_cvref_t<decltype(
GridwiseGemmPipeline_Selector<PipelineVer, NumGemmKPrefetchStage>())>;
__host__ __device__ static constexpr auto GetABlockDescriptor_K0PerBlock_MPerBlock_K1() __host__ __device__ static constexpr auto GetABlockDescriptor_K0PerBlock_MPerBlock_K1()
{ {
......
...@@ -14,7 +14,7 @@ ...@@ -14,7 +14,7 @@
namespace ck { namespace ck {
// Y = LayerNorm(X, Beta, Gamma) // Y = Normalization(X, Beta, Gamma)
template <typename XDataType, template <typename XDataType,
typename GammaDataType, typename GammaDataType,
typename BetaDataType, typename BetaDataType,
...@@ -36,7 +36,7 @@ template <typename XDataType, ...@@ -36,7 +36,7 @@ template <typename XDataType,
index_t YDstVectorDim, index_t YDstVectorDim,
index_t YDstVectorSize, index_t YDstVectorSize,
bool SweepOnce> bool SweepOnce>
struct GridwiseLayernormNaiveVariance_mk_to_mk struct GridwiseNormalizationNaiveVariance_mk_to_mk
{ {
static_assert((XSrcVectorDim == 0 && MThreadSliceSize % XSrcVectorSize == 0) || static_assert((XSrcVectorDim == 0 && MThreadSliceSize % XSrcVectorSize == 0) ||
(XSrcVectorDim == 1 && KThreadSliceSize % XSrcVectorSize == 0), (XSrcVectorDim == 1 && KThreadSliceSize % XSrcVectorSize == 0),
......
...@@ -11,7 +11,7 @@ ...@@ -11,7 +11,7 @@
namespace ck { namespace ck {
// Y = LayerNorm(X, Beta, Gamma) // Y = Normalization(X, Beta, Gamma)
template <typename XDataType, template <typename XDataType,
typename GammaDataType, typename GammaDataType,
typename BetaDataType, typename BetaDataType,
...@@ -33,7 +33,7 @@ template <typename XDataType, ...@@ -33,7 +33,7 @@ template <typename XDataType,
index_t YDstVectorDim, index_t YDstVectorDim,
index_t YDstVectorSize, index_t YDstVectorSize,
bool SweepOnce> bool SweepOnce>
struct GridwiseLayernormWelfordVariance_mk_to_mk struct GridwiseNormalizationWelfordVariance_mk_to_mk
{ {
static_assert((XSrcVectorDim == 0 && MThreadSliceSize % XSrcVectorSize == 0) || static_assert((XSrcVectorDim == 0 && MThreadSliceSize % XSrcVectorSize == 0) ||
(XSrcVectorDim == 1 && KThreadSliceSize % XSrcVectorSize == 0), (XSrcVectorDim == 1 && KThreadSliceSize % XSrcVectorSize == 0),
......
...@@ -60,6 +60,12 @@ struct ReferenceSoftmax : public device::BaseOperator ...@@ -60,6 +60,12 @@ struct ReferenceSoftmax : public device::BaseOperator
{ {
scalar_lengths.push_back(arg.in_.mDesc.GetLengths()[dim]); scalar_lengths.push_back(arg.in_.mDesc.GetLengths()[dim]);
} }
// max and sum reduction with final reduced values of dim=0 is a scalar so give it
// appropriate lengths of {1}
if(arg.sm_scalar_dims_.size() == 0)
{
scalar_lengths.push_back(1);
}
Tensor<AccDataType> reduce_max(scalar_lengths); Tensor<AccDataType> reduce_max(scalar_lengths);
reduce_max.GenerateTensorValue( reduce_max.GenerateTensorValue(
...@@ -67,6 +73,9 @@ struct ReferenceSoftmax : public device::BaseOperator ...@@ -67,6 +73,9 @@ struct ReferenceSoftmax : public device::BaseOperator
Tensor<AccDataType> reduce_sum(scalar_lengths); Tensor<AccDataType> reduce_sum(scalar_lengths);
reduce_sum.GenerateTensorValue(GeneratorTensor_1<AccDataType>{0}); reduce_sum.GenerateTensorValue(GeneratorTensor_1<AccDataType>{0});
// when final reduced values is of dim=0, the index will be transformed into empty
// std::vector which is actually a valid input for Tensor::operator(std::vector) and
// internally accesses 0'th element
auto to_sm_scalar_idx = [&](auto idx) { auto to_sm_scalar_idx = [&](auto idx) {
std::vector<size_t> sm_scalar_idx; std::vector<size_t> sm_scalar_idx;
for(index_t dim : arg.sm_scalar_dims_) for(index_t dim : arg.sm_scalar_dims_)
......
...@@ -3,10 +3,10 @@ ...@@ -3,10 +3,10 @@
#pragma once #pragma once
#include "ck/utility/data_type.hpp"
#include "ck/utility/tuple.hpp"
#include "ck/tensor_operation/gpu/device/tensor_layout.hpp" #include "ck/tensor_operation/gpu/device/tensor_layout.hpp"
#include "ck/tensor_operation/gpu/element/element_wise_operation.hpp" #include "ck/tensor_operation/gpu/element/element_wise_operation.hpp"
#include "ck/utility/data_type.hpp"
#include "ck/utility/tuple.hpp"
namespace ck { namespace ck {
namespace tensor_operation { namespace tensor_operation {
...@@ -28,6 +28,8 @@ using F16_F16_Tuple = ck::Tuple<F16, F16>; ...@@ -28,6 +28,8 @@ using F16_F16_Tuple = ck::Tuple<F16, F16>;
using F32_Tuple = ck::Tuple<F32>; using F32_Tuple = ck::Tuple<F32>;
using I32_Tuple = ck::Tuple<I32>;
// GEMM layout // GEMM layout
using Row = ck::tensor_layout::gemm::RowMajor; using Row = ck::tensor_layout::gemm::RowMajor;
using Col = ck::tensor_layout::gemm::ColumnMajor; using Col = ck::tensor_layout::gemm::ColumnMajor;
...@@ -75,12 +77,24 @@ using NWGK = ck::tensor_layout::convolution::NWGK; ...@@ -75,12 +77,24 @@ using NWGK = ck::tensor_layout::convolution::NWGK;
using NHWGK = ck::tensor_layout::convolution::NHWGK; using NHWGK = ck::tensor_layout::convolution::NHWGK;
using NDHWGK = ck::tensor_layout::convolution::NDHWGK; using NDHWGK = ck::tensor_layout::convolution::NDHWGK;
//
using GK = ck::tensor_layout::convolution::G_K;
using GK_TUPLE = ck::Tuple<GK>;
// pointwise functor // pointwise functor
using PassThrough = ck::tensor_operation::element_wise::PassThrough; using PassThrough = ck::tensor_operation::element_wise::PassThrough;
using Relu = ck::tensor_operation::element_wise::Relu;
using Scale = ck::tensor_operation::element_wise::Scale; using Scale = ck::tensor_operation::element_wise::Scale;
using Bilinear = ck::tensor_operation::element_wise::Bilinear; using Bilinear = ck::tensor_operation::element_wise::Bilinear;
using AddAddFastGelu = ck::tensor_operation::element_wise::AddAddFastGelu; using AddAddFastGelu = ck::tensor_operation::element_wise::AddAddFastGelu;
template <typename Activation>
using Activation_Mul_Clamp = ck::tensor_operation::element_wise::Activation_Mul_Clamp<Activation>;
template <typename Activation>
using Add_Activation_Mul_Clamp =
ck::tensor_operation::element_wise::Add_Activation_Mul_Clamp<Activation>;
template <typename DeviceOp> template <typename DeviceOp>
struct DeviceOperationInstanceFactory; struct DeviceOperationInstanceFactory;
......
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2022, Advanced Micro Devices, Inc. All rights reserved.
#pragma once
#include <cstdlib>
#include "ck/ck.hpp"
#include "ck/tensor_operation/gpu/device/tensor_layout.hpp"
#include "ck/tensor_operation/gpu/device/device_elementwise_normalization.hpp"
#include "ck/tensor_operation/gpu/element/element_wise_operation.hpp"
#include "ck/library/tensor_operation_instance/device_operation_instance_factory.hpp"
namespace ck {
namespace tensor_operation {
namespace device {
namespace instance {
// FP16
void add_device_elementwise_normalization_rank_2_1_f16_instances(
std::vector<std::unique_ptr<DeviceElementwiseNormalization<ck::Tuple<F16, F16>,
F16,
F16,
F32,
F16,
element_wise::Add,
PassThrough,
2,
1>>>&);
template <typename InDataTypeTuple,
typename GammaDataType,
typename BetaDataType,
typename YDataType,
index_t Rank,
index_t NumReduceDim>
struct DeviceOperationInstanceFactory<ck::tensor_operation::device::DeviceElementwiseNormalization<
InDataTypeTuple,
GammaDataType,
BetaDataType,
F32,
YDataType,
ck::tensor_operation::element_wise::Add,
ck::tensor_operation::element_wise::PassThrough,
Rank,
NumReduceDim>>
{
using DeviceOp = DeviceElementwiseNormalization<InDataTypeTuple,
GammaDataType,
BetaDataType,
F32,
YDataType,
ck::tensor_operation::element_wise::Add,
ck::tensor_operation::element_wise::PassThrough,
Rank,
NumReduceDim>;
static auto GetInstances()
{
std::vector<std::unique_ptr<DeviceOp>> op_ptrs;
if constexpr(is_same_v<GammaDataType, F16> && is_same_v<BetaDataType, F16> &&
is_same_v<YDataType, F16>)
{
if constexpr(Rank == 2 && NumReduceDim == 1)
{
add_device_elementwise_normalization_rank_2_1_f16_instances(op_ptrs);
}
}
return op_ptrs;
}
};
} // namespace instance
} // namespace device
} // namespace tensor_operation
} // namespace ck
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2022, Advanced Micro Devices, Inc. All rights reserved.
#pragma once
#include "ck/ck.hpp"
#include "ck/tensor_operation/gpu/device/tensor_layout.hpp"
#include "ck/tensor_operation/gpu/device/device_grouped_conv_bwd_data.hpp"
#include "ck/tensor_operation/gpu/element/element_wise_operation.hpp"
#include "ck/library/tensor_operation_instance/device_operation_instance_factory.hpp"
namespace ck {
namespace tensor_operation {
namespace device {
namespace instance {
// conv2d backward data
void add_device_grouped_conv2d_bwd_data_xdl_gnhwc_gkyxc_gnhwk_f16_instances(
std::vector<std::unique_ptr<DeviceGroupedConvBwdData<2,
GNHWC,
GKYXC,
GNHWK,
F16,
F16,
F16,
PassThrough,
PassThrough,
PassThrough>>>& instances);
template <ck::index_t NumDimSpatial,
typename InLayout,
typename WeiLayout,
typename OutLayout,
typename InDataType,
typename WeiDataType,
typename OutDataType>
struct DeviceOperationInstanceFactory<ck::tensor_operation::device::DeviceGroupedConvBwdData<
NumDimSpatial,
InLayout,
WeiLayout,
OutLayout,
InDataType,
WeiDataType,
OutDataType,
ck::tensor_operation::element_wise::PassThrough,
ck::tensor_operation::element_wise::PassThrough,
ck::tensor_operation::element_wise::PassThrough>>
{
using DeviceOp = DeviceGroupedConvBwdData<NumDimSpatial,
InLayout,
WeiLayout,
OutLayout,
InDataType,
WeiDataType,
OutDataType,
ck::tensor_operation::element_wise::PassThrough,
ck::tensor_operation::element_wise::PassThrough,
ck::tensor_operation::element_wise::PassThrough>;
static auto GetInstances()
{
std::vector<std::unique_ptr<DeviceOp>> op_ptrs;
if constexpr(NumDimSpatial == 2 && is_same_v<InLayout, GNHWC> &&
is_same_v<WeiLayout, GKYXC> && is_same_v<OutLayout, GNHWK>)
{
if constexpr(is_same_v<InDataType, F16> && is_same_v<WeiDataType, F16> &&
is_same_v<OutDataType, F16>)
{
add_device_grouped_conv2d_bwd_data_xdl_gnhwc_gkyxc_gnhwk_f16_instances(op_ptrs);
}
}
return op_ptrs;
}
};
} // namespace instance
} // namespace device
} // namespace tensor_operation
} // namespace ck
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2022, Advanced Micro Devices, Inc. All rights reserved.
#pragma once
#include <cstdlib>
#include "ck/ck.hpp"
#include "ck/tensor_operation/gpu/device/tensor_layout.hpp"
#include "ck/tensor_operation/gpu/device/device_grouped_conv_fwd_multiple_d.hpp"
#include "ck/tensor_operation/gpu/element/element_wise_operation.hpp"
#include "ck/library/tensor_operation_instance/device_operation_instance_factory.hpp"
namespace ck {
namespace tensor_operation {
namespace device {
namespace instance {
// grouped conv2d forward, GNHWC/GKYXC/GNHWK
void add_device_conv2d_bias_perlayer_quantization_int8_instances(
std::vector<
std::unique_ptr<DeviceGroupedConvFwdMultipleD<2,
GNHWC,
GKYXC,
GK_TUPLE,
GNHWK,
int8_t,
int8_t,
I32_Tuple,
int8_t,
PassThrough,
PassThrough,
Add_Activation_Mul_Clamp<PassThrough>>>>&
instances);
void add_device_conv2d_bias_relu_perlayer_quantization_int8_instances(
std::vector<std::unique_ptr<DeviceGroupedConvFwdMultipleD<2,
GNHWC,
GKYXC,
GK_TUPLE,
GNHWK,
int8_t,
int8_t,
I32_Tuple,
int8_t,
PassThrough,
PassThrough,
Add_Activation_Mul_Clamp<Relu>>>>&
instances);
template <ck::index_t NumDimSpatial,
typename InLayout,
typename WeiLayout,
typename DsLayout,
typename OutLayout,
typename InDataType,
typename WeiDataType,
typename DsDataType,
typename OutDataType,
typename Activation>
struct DeviceOperationInstanceFactory<ck::tensor_operation::device::DeviceGroupedConvFwdMultipleD<
NumDimSpatial,
InLayout,
WeiLayout,
DsLayout,
OutLayout,
InDataType,
WeiDataType,
DsDataType,
OutDataType,
ck::tensor_operation::element_wise::PassThrough,
ck::tensor_operation::element_wise::PassThrough,
Add_Activation_Mul_Clamp<Activation>>>
{
using DeviceOp = DeviceGroupedConvFwdMultipleD<NumDimSpatial,
InLayout,
WeiLayout,
DsLayout,
OutLayout,
InDataType,
WeiDataType,
DsDataType,
OutDataType,
ck::tensor_operation::element_wise::PassThrough,
ck::tensor_operation::element_wise::PassThrough,
Add_Activation_Mul_Clamp<Activation>>;
static auto GetInstances()
{
std::vector<std::unique_ptr<DeviceOp>> op_ptrs;
if constexpr(NumDimSpatial == 2 && is_same_v<InLayout, GNHWC> &&
is_same_v<WeiLayout, GKYXC> && is_same_v<DsLayout, GK_TUPLE> &&
is_same_v<OutLayout, GNHWK>)
{
if constexpr(is_same_v<InDataType, int8_t> && is_same_v<WeiDataType, int8_t> &&
is_same_v<DsDataType, I32_Tuple> && is_same_v<OutDataType, int8_t>)
{
if constexpr(is_same_v<Activation, PassThrough>)
add_device_conv2d_bias_perlayer_quantization_int8_instances(op_ptrs);
else if constexpr(is_same_v<Activation, Relu>)
add_device_conv2d_bias_relu_perlayer_quantization_int8_instances(op_ptrs);
}
}
return op_ptrs;
}
};
} // namespace instance
} // namespace device
} // namespace tensor_operation
} // namespace ck
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2022, Advanced Micro Devices, Inc. All rights reserved.
#pragma once
#include <cstdlib>
#include "ck/ck.hpp"
#include "ck/tensor_operation/gpu/device/tensor_layout.hpp"
#include "ck/tensor_operation/gpu/device/device_conv_fwd.hpp"
#include "ck/tensor_operation/gpu/element/element_wise_operation.hpp"
#include "ck/library/tensor_operation_instance/device_operation_instance_factory.hpp"
namespace ck {
namespace tensor_operation {
namespace device {
namespace instance {
// grouped conv2d forward, GNHWC/GKYXC/GNHWK
void add_device_grouped_conv2d_fwd_dl_gnhwc_gkyxc_gnhwk_f16_instances(
std::vector<std::unique_ptr<DeviceGroupedConvFwd<2,
GNHWC,
GKYXC,
GNHWK,
F16,
F16,
F16,
PassThrough,
PassThrough,
PassThrough>>>& instances);
void add_device_grouped_conv2d_fwd_dl_gnhwc_gkyxc_gnhwk_f32_instances(
std::vector<std::unique_ptr<DeviceGroupedConvFwd<2,
GNHWC,
GKYXC,
GNHWK,
F32,
F32,
F32,
PassThrough,
PassThrough,
PassThrough>>>& instances);
void add_device_grouped_conv2d_fwd_dl_gnhwc_gkyxc_gnhwk_int8_instances(
std::vector<std::unique_ptr<DeviceGroupedConvFwd<2,
GNHWC,
GKYXC,
GNHWK,
int8_t,
int8_t,
int8_t,
PassThrough,
PassThrough,
PassThrough>>>& instances);
template <ck::index_t NumDimSpatial,
typename InLayout,
typename WeiLayout,
typename OutLayout,
typename InDataType,
typename WeiDataType,
typename OutDataType>
struct DeviceOperationInstanceFactory<ck::tensor_operation::device::DeviceGroupedConvFwd<
NumDimSpatial,
InLayout,
WeiLayout,
OutLayout,
InDataType,
WeiDataType,
OutDataType,
ck::tensor_operation::element_wise::PassThrough,
ck::tensor_operation::element_wise::PassThrough,
ck::tensor_operation::element_wise::PassThrough>>
{
using DeviceOp = DeviceGroupedConvFwd<NumDimSpatial,
InLayout,
WeiLayout,
OutLayout,
InDataType,
WeiDataType,
OutDataType,
ck::tensor_operation::element_wise::PassThrough,
ck::tensor_operation::element_wise::PassThrough,
ck::tensor_operation::element_wise::PassThrough>;
static auto GetInstances()
{
std::vector<std::unique_ptr<DeviceOp>> op_ptrs;
if constexpr(NumDimSpatial == 2 && is_same_v<InLayout, GNHWC> &&
is_same_v<WeiLayout, GKYXC> && is_same_v<OutLayout, GNHWK>)
{
if constexpr(is_same_v<InDataType, float> && is_same_v<WeiDataType, float> &&
is_same_v<OutDataType, float>)
{
add_device_grouped_conv2d_fwd_dl_gnhwc_gkyxc_gnhwk_f32_instances(op_ptrs);
}
else if constexpr(is_same_v<InDataType, half_t> && is_same_v<WeiDataType, half_t> &&
is_same_v<OutDataType, half_t>)
{
add_device_grouped_conv2d_fwd_dl_gnhwc_gkyxc_gnhwk_f16_instances(op_ptrs);
}
else if constexpr(is_same_v<InDataType, int8_t> && is_same_v<WeiDataType, int8_t> &&
is_same_v<OutDataType, int8_t>)
{
add_device_grouped_conv2d_fwd_dl_gnhwc_gkyxc_gnhwk_int8_instances(op_ptrs);
}
}
return op_ptrs;
}
};
} // namespace instance
} // namespace device
} // namespace tensor_operation
} // namespace ck
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2022, Advanced Micro Devices, Inc. All rights reserved.
#pragma once
#include <cstdlib>
#include "ck/ck.hpp"
#include "ck/tensor_operation/gpu/device/tensor_layout.hpp"
#include "ck/tensor_operation/gpu/device/device_grouped_conv_fwd_multiple_d.hpp"
#include "ck/tensor_operation/gpu/element/element_wise_operation.hpp"
#include "ck/library/tensor_operation_instance/device_operation_instance_factory.hpp"
namespace ck {
namespace tensor_operation {
namespace device {
namespace instance {
// grouped conv2d forward, GNHWC/GKYXC/GNHWK
void add_device_conv2d_perlayer_quantization_int8_instances(
std::vector<std::unique_ptr<DeviceGroupedConvFwdMultipleD<2,
GNHWC,
GKYXC,
Empty_Tuple,
GNHWK,
int8_t,
int8_t,
Empty_Tuple,
int8_t,
PassThrough,
PassThrough,
Activation_Mul_Clamp<PassThrough>>>>&
instances);
void add_device_conv2d_relu_perlayer_quantization_int8_instances(
std::vector<std::unique_ptr<DeviceGroupedConvFwdMultipleD<2,
GNHWC,
GKYXC,
Empty_Tuple,
GNHWK,
int8_t,
int8_t,
Empty_Tuple,
int8_t,
PassThrough,
PassThrough,
Activation_Mul_Clamp<Relu>>>>&
instances);
template <ck::index_t NumDimSpatial,
typename InLayout,
typename WeiLayout,
typename OutLayout,
typename InDataType,
typename WeiDataType,
typename OutDataType,
typename Activation>
struct DeviceOperationInstanceFactory<ck::tensor_operation::device::DeviceGroupedConvFwdMultipleD<
NumDimSpatial,
InLayout,
WeiLayout,
Empty_Tuple,
OutLayout,
InDataType,
WeiDataType,
Empty_Tuple,
OutDataType,
ck::tensor_operation::element_wise::PassThrough,
ck::tensor_operation::element_wise::PassThrough,
Activation_Mul_Clamp<Activation>>>
{
using DeviceOp = DeviceGroupedConvFwdMultipleD<NumDimSpatial,
InLayout,
WeiLayout,
Empty_Tuple,
OutLayout,
InDataType,
WeiDataType,
Empty_Tuple,
OutDataType,
ck::tensor_operation::element_wise::PassThrough,
ck::tensor_operation::element_wise::PassThrough,
Activation_Mul_Clamp<Activation>>;
static auto GetInstances()
{
std::vector<std::unique_ptr<DeviceOp>> op_ptrs;
if constexpr(NumDimSpatial == 2 && is_same_v<InLayout, GNHWC> &&
is_same_v<WeiLayout, GKYXC> && is_same_v<OutLayout, GNHWK>)
{
if constexpr(is_same_v<InDataType, int8_t> && is_same_v<WeiDataType, int8_t> &&
is_same_v<OutDataType, int8_t>)
{
if constexpr(is_same_v<Activation, PassThrough>)
add_device_conv2d_perlayer_quantization_int8_instances(op_ptrs);
else if constexpr(is_same_v<Activation, Relu>)
add_device_conv2d_relu_perlayer_quantization_int8_instances(op_ptrs);
}
}
return op_ptrs;
}
};
} // namespace instance
} // namespace device
} // namespace tensor_operation
} // namespace ck
...@@ -8,20 +8,13 @@ ...@@ -8,20 +8,13 @@
#include "ck/ck.hpp" #include "ck/ck.hpp"
#include "ck/library/tensor_operation_instance/device_operation_instance_factory.hpp" #include "ck/library/tensor_operation_instance/device_operation_instance_factory.hpp"
#include "ck/tensor_operation/gpu/device/tensor_layout.hpp"
#include "ck/tensor_operation/gpu/device/device_softmax.hpp" #include "ck/tensor_operation/gpu/device/device_softmax.hpp"
#include "ck/tensor_operation/gpu/element/element_wise_operation.hpp"
#include "ck/utility/data_type.hpp"
namespace ck { namespace ck {
namespace tensor_operation { namespace tensor_operation {
namespace device { namespace device {
namespace instance { namespace instance {
using F16 = ck::half_t;
using F32 = float;
using PassThrough = ck::tensor_operation::element_wise::PassThrough;
void add_device_softmax_f16_f16_rank3_instances( void add_device_softmax_f16_f16_rank3_instances(
std::vector<DeviceSoftmaxPtr<F16, F32, F16, PassThrough, PassThrough, 3>>&); std::vector<DeviceSoftmaxPtr<F16, F32, F16, PassThrough, PassThrough, 3>>&);
void add_device_softmax_f16_f16_rank4_instances( void add_device_softmax_f16_f16_rank4_instances(
...@@ -32,6 +25,11 @@ void add_device_softmax_f32_f32_rank3_instances( ...@@ -32,6 +25,11 @@ void add_device_softmax_f32_f32_rank3_instances(
void add_device_softmax_f32_f32_rank4_instances( void add_device_softmax_f32_f32_rank4_instances(
std::vector<DeviceSoftmaxPtr<F32, F32, F32, PassThrough, PassThrough, 4>>&); std::vector<DeviceSoftmaxPtr<F32, F32, F32, PassThrough, PassThrough, 4>>&);
void add_device_softmax_i8_i8_rank3_instances(
std::vector<DeviceSoftmaxPtr<I8, F32, I8, PassThrough, PassThrough, 3>>&);
void add_device_softmax_i8_i8_rank4_instances(
std::vector<DeviceSoftmaxPtr<I8, F32, I8, PassThrough, PassThrough, 4>>&);
template <typename InDataType, typename AccDataType, typename OutDataType, index_t Rank> template <typename InDataType, typename AccDataType, typename OutDataType, index_t Rank>
struct DeviceOperationInstanceFactory< struct DeviceOperationInstanceFactory<
ck::tensor_operation::device:: ck::tensor_operation::device::
...@@ -60,6 +58,14 @@ struct DeviceOperationInstanceFactory< ...@@ -60,6 +58,14 @@ struct DeviceOperationInstanceFactory<
else if constexpr(Rank == 4) else if constexpr(Rank == 4)
add_device_softmax_f32_f32_rank4_instances(op_ptrs); add_device_softmax_f32_f32_rank4_instances(op_ptrs);
} }
else if constexpr(std::is_same_v<InDataType, I8> && std::is_same_v<AccDataType, F32> &&
std::is_same_v<OutDataType, I8>)
{
if constexpr(Rank == 3)
add_device_softmax_i8_i8_rank3_instances(op_ptrs);
else if constexpr(Rank == 4)
add_device_softmax_i8_i8_rank4_instances(op_ptrs);
}
return op_ptrs; return op_ptrs;
} }
......
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2022, Advanced Micro Devices, Inc. All rights reserved.
#pragma once
#include "ck/library/tensor_operation_instance/device_operation_instance_factory.hpp"
#include "ck/tensor_operation/gpu/device/device_softmax.hpp"
namespace ck {
namespace tensor_operation {
namespace device {
namespace instance {
void add_device_softmax_f16_f16_rank3_instances(
std::vector<DeviceSoftmaxPtr<F16, F32, F16, PassThrough, PassThrough, 3>>& instances);
void add_device_softmax_f16_f16_rank4_instances(
std::vector<DeviceSoftmaxPtr<F16, F32, F16, PassThrough, PassThrough, 4>>& instances);
} // namespace instance
} // namespace device
} // namespace tensor_operation
} // namespace ck
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment