Skip to content
GitLab
Menu
Projects
Groups
Snippets
Loading...
Help
Help
Support
Community forum
Keyboard shortcuts
?
Submit feedback
Contribute to GitLab
Sign in / Register
Toggle navigation
Menu
Open sidebar
gaoqiong
composable_kernel
Commits
ab04f22f
Commit
ab04f22f
authored
Jun 25, 2022
by
Jing Zhang
Browse files
add c_permute
parent
ef18bd98
Changes
3
Show whitespace changes
Inline
Side-by-side
Showing
3 changed files
with
185 additions
and
133 deletions
+185
-133
example/24_batched_gemm_c_permute/batched_gemm_c_permute_xdl_fp16.cpp
...atched_gemm_c_permute/batched_gemm_c_permute_xdl_fp16.cpp
+68
-58
include/ck/tensor_operation/gpu/device/device_batched_gemm_c_permute.hpp
...or_operation/gpu/device/device_batched_gemm_c_permute.hpp
+19
-21
include/ck/tensor_operation/gpu/device/device_batched_gemm_c_permute_xdl.hpp
...peration/gpu/device/device_batched_gemm_c_permute_xdl.hpp
+98
-54
No files found.
example/24_batched_gemm_c_permute/batched_gemm_c_permute_xdl_fp16.cpp
View file @
ab04f22f
...
...
@@ -6,16 +6,14 @@
#include "ck/ck.hpp"
#include "ck/tensor_operation/gpu/device/tensor_layout.hpp"
#include "ck/tensor_operation/gpu/device/gemm_specialization.hpp"
#include "ck/tensor_operation/gpu/device/device_batched_gemm_c_permute.hpp"
#include "ck/tensor_operation/gpu/device/device_batched_gemm_c_permute
_xdl
.hpp"
#include "ck/tensor_operation/gpu/element/element_wise_operation.hpp"
#include "ck/library/utility/check_err.hpp"
#include "ck/library/host_tensor/device_memory.hpp"
#include "ck/library/host_tensor/host_tensor.hpp"
#include "ck/library/host_tensor/host_tensor_generator.hpp"
#include "ck/library/reference_tensor_operation/cpu/reference_gemm.hpp"
#include "ck/library/reference_tensor_operation/cpu/reference_batched_gemm.hpp"
template
<
ck
::
index_t
...
Is
>
using
S
=
ck
::
Sequence
<
Is
...
>
;
...
...
@@ -44,7 +42,7 @@ using CElementOp = ck::tensor_operation::element_wise::PassThrough;
static
constexpr
auto
GemmDefault
=
ck
::
tensor_operation
::
device
::
GemmSpecialization
::
Default
;
// clang-format off
using
DeviceGemmInstance
=
ck
::
tensor_operation
::
device
::
DeviceBatchedGemmCPermut
ation
Xdl
using
DeviceGemmInstance
=
ck
::
tensor_operation
::
device
::
DeviceBatchedGemmCPermut
e
Xdl
//######| ALayout| BLayout| AData| BData| CData| AccData| A| B| C| GEMM| Num| Block| MPer| NPer| KPer| AK1| BK1| MPer| NPer| MXdl| NXdl| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockLds| BBlockTransfer| BBlockTransfer| BBlockTransfer| BlockTransfer| BBlockTransfer| BBlockTransfer| BBlockLds| CShuffle| CShuffle| CBlockTransferClusterLengths| CBlockTransfer|
//######| | | Type| Type| Type| Type| Elementwise| Elementwise| Elementwise|Spacialization| Prefetch| Size| Block| Block| Block| | | XDL| XDL| Per| Per| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| AddExtraM| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| AddExtraN| MXdlPerWave| NXdlPerWave| _MBlock_MWaveMPerXdl| ScalarPerVector|
//######| | | | | | | Operation| Operation| Operation| | | | | | | | | | | Wave| Wave| Lengths_K0_M_K1| ArrangeOrder| | | PerVector| PerVector_K1| | Lengths_K0_N_K1| ArrangeOrder| | | PerVector| PerVector_K1| | PerShuffle| PerShuffle| _NBlock_NWaveNPerXdl| _NWaveNPerXdl|
...
...
@@ -52,13 +50,8 @@ using DeviceGemmInstance = ck::tensor_operation::device::DeviceBatchedGemmCPermu
<
Row
,
Col
,
F16
,
F16
,
F16
,
F32
,
PassThrough
,
PassThrough
,
PassThrough
,
GemmDefault
,
1
,
256
,
256
,
128
,
32
,
8
,
8
,
32
,
32
,
4
,
2
,
S
<
4
,
64
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
8
,
8
,
true
,
S
<
4
,
64
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
8
,
8
,
true
,
1
,
1
,
S
<
1
,
32
,
1
,
8
>
,
8
>
;
// clang-format on
using
ReferenceBatchedGemmCPermutationInstance
=
ck
::
tensor_operation
::
host
::
ReferenceBatchedGemmCPermutation
<
ADataType
,
BDataType
,
CDataType
,
AElementOp
,
BElementOp
,
CElementOp
>
;
using
ReferenceBatchedGemmInstance
=
ck
::
tensor_operation
::
host
::
ReferenceBatchedGemm
<
ADataType
,
BDataType
,
CDataType
,
AElementOp
,
BElementOp
,
CElementOp
>
;
int
main
(
int
argc
,
char
*
argv
[])
{
...
...
@@ -66,26 +59,27 @@ int main(int argc, char* argv[])
int
init_method
=
1
;
bool
time_kernel
=
false
;
const
int
M0
=
rand
()
%
4
+
1
;
const
int
M1
=
256
;
const
int
N0
=
rand
()
%
4
+
1
;
const
int
N1
=
256
;
// const int M = 88;
// const int N = 64;
// const int K = 88;
const
int
M
=
M0
*
N1
;
const
int
N
=
N0
*
N1
;
const
int
K
=
128
*
(
rand
()
%
4
+
1
);
const
int
M
=
256
;
const
int
N
=
128
;
const
int
K
=
64
;
const
int
stride_A
=
K
;
const
int
stride_B
=
K
;
// output layout [M0, N0, M1, N1]
const
int
stride_M0
=
N1
*
M1
*
N0
;
const
int
stride_M1
=
N1
;
const
int
stride_N0
=
N1
*
M1
;
const
int
stride_N1
=
1
;
const
int
G0
=
1024
;
const
int
G1
=
10
;
const
int
batch_count
=
G0
*
G1
;
int
batch_count
=
rand
()
%
16
+
1
;
// output layout - [G0, M, G1, N]
const
int
stride_B0
=
M
*
G1
*
N
;
const
int
stride_B1
=
N
;
const
int
stride_M
=
G1
*
N
;
const
int
stride_N
=
1
;
if
(
argc
==
4
)
{
...
...
@@ -102,8 +96,8 @@ int main(int argc, char* argv[])
}
// GEMM shape
ck
::
tensor_operation
::
device
::
GemmTransposeDesc
gemm_transpos
e_desc
{
M
,
N
,
K
,
stride_A
,
stride_B
,
M
0
,
M
1
,
N0
,
N
1
,
stride_
M
0
,
stride_
M
1
,
stride_
N0
,
stride_N
1
};
ck
::
tensor_operation
::
device
::
BatchedGemmCPermuteDesc
batched_gemm_c_permut
e_desc
{
G
0
,
G
1
,
M
,
N
,
stride_
B
0
,
stride_
B
1
,
stride_
M
,
stride_N
};
auto
f_host_tensor_descriptor
=
[](
std
::
size_t
batch_count_
,
std
::
size_t
row
,
...
...
@@ -125,30 +119,28 @@ int main(int argc, char* argv[])
Tensor
<
ADataType
>
a_g_m_k
(
f_host_tensor_descriptor
(
batch_count
,
M
,
K
,
stride_A
,
ALayout
{}));
Tensor
<
BDataType
>
b_g_k_n
(
f_host_tensor_descriptor
(
batch_count
,
K
,
N
,
stride_B
,
BLayout
{}));
auto
f_host_c_tensor_descriptor
=
[](
std
::
size_t
batch_count_
,
std
::
size_t
M0_
,
std
::
size_t
M1_
,
std
::
size_t
N0_
,
std
::
size_t
N1_
,
std
::
size_t
StrideM0_
,
std
::
size_t
StrideM1_
,
std
::
size_t
StrideN0_
,
std
::
size_t
StrideN1_
)
{
auto
f_host_c_tensor_descriptor
=
[](
std
::
size_t
B0_
,
std
::
size_t
B1_
,
std
::
size_t
M_
,
std
::
size_t
N_
,
std
::
size_t
stride_B0_
,
std
::
size_t
stride_B1_
,
std
::
size_t
stride_M_
,
std
::
size_t
stride_N_
)
{
return
HostTensorDescriptor
(
std
::
vector
<
std
::
size_t
>
({
batch_count_
,
M0_
,
M1_
,
N0_
,
N1_
}),
std
::
vector
<
std
::
size_t
>
(
{
M0_
*
M1_
*
N0_
*
N1_
,
StrideM0_
,
StrideM1_
,
StrideN0_
,
StrideN1_
}));
std
::
vector
<
std
::
size_t
>
({
B0_
,
B1_
,
M_
,
N_
}),
std
::
vector
<
std
::
size_t
>
({
stride_B0_
,
stride_B1_
,
stride_M_
,
stride_N_
}));
};
Tensor
<
CDataType
>
c_g
_m
0_
m
1_
n0
_n
1
_host_result
(
f_host_c_tensor_descriptor
(
batch_count
,
M
0
,
M
1
,
N0
,
N
1
,
stride_
M
0
,
stride_
M
1
,
stride_
N0
,
stride_N
1
));
Tensor
<
CDataType
>
c_g0_
g
1_
m
_n_host_result
(
f_host_c_tensor_descriptor
(
G
0
,
G
1
,
M
,
N
,
stride_
B
0
,
stride_
B
1
,
stride_
M
,
stride_N
));
Tensor
<
CDataType
>
c_g
_m
0_
m
1_
n0
_n
1
_device_result
(
f_host_c_tensor_descriptor
(
batch_count
,
M
0
,
M
1
,
N0
,
N
1
,
stride_
M
0
,
stride_
M
1
,
stride_
N0
,
stride_N
1
));
Tensor
<
CDataType
>
c_g0_
g
1_
m
_n_device_result
(
f_host_c_tensor_descriptor
(
G
0
,
G
1
,
M
,
N
,
stride_
B
0
,
stride_
B
1
,
stride_
M
,
stride_N
));
std
::
cout
<<
"a_g_m_k: "
<<
a_g_m_k
.
mDesc
<<
std
::
endl
;
std
::
cout
<<
"b_g_k_n: "
<<
b_g_k_n
.
mDesc
<<
std
::
endl
;
std
::
cout
<<
"c_g_m_n: "
<<
c_g
_m
0_
m
1_
n0
_n
1
_host_result
.
mDesc
<<
std
::
endl
;
std
::
cout
<<
"c_g
0_g1
_m_n: "
<<
c_g0_
g
1_
m
_n_host_result
.
mDesc
<<
std
::
endl
;
switch
(
init_method
)
{
...
...
@@ -165,8 +157,7 @@ int main(int argc, char* argv[])
DeviceMem
a_device_buf
(
sizeof
(
ADataType
)
*
a_g_m_k
.
mDesc
.
GetElementSpace
());
DeviceMem
b_device_buf
(
sizeof
(
BDataType
)
*
b_g_k_n
.
mDesc
.
GetElementSpace
());
DeviceMem
c_device_buf
(
sizeof
(
CDataType
)
*
c_g_m0_m1_n0_n1_device_result
.
mDesc
.
GetElementSpace
());
DeviceMem
c_device_buf
(
sizeof
(
CDataType
)
*
c_g0_g1_m_n_device_result
.
mDesc
.
GetElementSpace
());
a_device_buf
.
ToDevice
(
a_g_m_k
.
mData
.
data
());
b_device_buf
.
ToDevice
(
b_g_k_n
.
mData
.
data
());
...
...
@@ -182,7 +173,12 @@ int main(int argc, char* argv[])
auto
argument
=
gemm
.
MakeArgument
(
static_cast
<
ADataType
*>
(
a_device_buf
.
GetDeviceBuffer
()),
static_cast
<
BDataType
*>
(
b_device_buf
.
GetDeviceBuffer
()),
static_cast
<
CDataType
*>
(
c_device_buf
.
GetDeviceBuffer
()),
gemm_transpose_desc
,
M
,
N
,
K
,
stride_A
,
stride_B
,
batched_gemm_c_permute_desc
,
a_element_op
,
b_element_op
,
c_element_op
,
...
...
@@ -213,22 +209,36 @@ int main(int argc, char* argv[])
if
(
do_verification
)
{
c_device_buf
.
FromDevice
(
c_g
_m
0_
m
1_
n0
_n
1
_device_result
.
mData
.
data
());
c_device_buf
.
FromDevice
(
c_g0_
g
1_
m
_n_device_result
.
mData
.
data
());
auto
ref_batched_gemm
=
ReferenceBatchedGemm
CPermutation
Instance
{};
auto
ref_batched_gemm
=
ReferenceBatchedGemmInstance
{};
auto
ref_invoker
=
ref_batched_gemm
.
MakeInvoker
();
auto
ref_argument
=
ref_batched_gemm
.
MakeArgument
(
a_g_m_k
,
b_g_k_n
,
c_g_m0_m1_n0_n1_host_result
,
a_element_op
,
b_element_op
,
c_element_op
);
Tensor
<
CDataType
>
c_g_m_n_host_result
=
HostTensorDescriptor
(
std
::
vector
<
std
::
size_t
>
({
batch_count
,
M
,
N
}),
std
::
vector
<
std
::
size_t
>
({
M
*
N
,
N
,
1
}));
auto
ref_argument
=
ref_batched_gemm
.
MakeArgument
(
a_g_m_k
,
b_g_k_n
,
c_g_m_n_host_result
,
a_element_op
,
b_element_op
,
c_element_op
);
ref_invoker
.
Run
(
ref_argument
);
pass
=
ck
::
utils
::
check_err
(
c_g_m0_m1_n0_n1_host_result
.
mData
,
c_g_m0_m1_n0_n1_device_result
.
mData
,
for
(
int
g0
=
0
;
g0
<
G0
;
g0
++
)
{
for
(
int
g1
=
0
;
g1
<
G1
;
g1
++
)
{
for
(
int
m
=
0
;
m
<
M
;
m
++
)
{
for
(
int
n
=
0
;
n
<
N
;
n
++
)
{
int
g
=
g0
*
G1
+
g1
;
c_g0_g1_m_n_host_result
(
g0
,
g1
,
m
,
n
)
=
c_g_m_n_host_result
(
g
,
m
,
n
);
}
}
}
}
pass
=
ck
::
utils
::
check_err
(
c_g0_g1_m_n_host_result
.
mData
,
c_g0_g1_m_n_device_result
.
mData
,
"Error: Incorrect results c"
);
}
...
...
include/ck/tensor_operation/gpu/device/device_batched_gemm_c_permute.hpp
View file @
ab04f22f
...
...
@@ -10,17 +10,17 @@ namespace device {
struct
BatchedGemmCPermuteDesc
{
ck
::
index_t
B
0_
,
B
1_
,
M_
,
N_
;
ck
::
index_t
stride_
B
0_
,
stride_
B
1_
,
stride_M_
,
stride_N_
;
ck
::
index_t
G
0_
,
G
1_
,
M_
,
N_
;
ck
::
index_t
stride_
G
0_
,
stride_
G
1_
,
stride_M_
,
stride_N_
;
};
template
<
typename
AElementwiseOperation
,
typename
BElementwiseOperation
,
typename
CElementwiseOperation
>
struct
DeviceBatchedGemmCPermut
at
e
:
public
BaseOperator
struct
DeviceBatchedGemmCPermute
:
public
BaseOperator
{
virtual
std
::
unique_ptr
<
BaseArgument
>
MakeArgumentPointer
(
const
void
*
p_a
,
virtual
std
::
unique_ptr
<
BaseArgument
>
MakeArgumentPointer
(
const
void
*
p_a
,
const
void
*
p_b
,
void
*
p_c
,
index_t
M
,
...
...
@@ -28,7 +28,7 @@ struct DeviceBatchedGemmCPermutate : public BaseOperator
index_t
K
,
index_t
stride_A
,
index_t
stride_B
,
BatchedGemmCPermuteDesc
batched_gemm_c_permute_desc
BatchedGemmCPermuteDesc
batched_gemm_c_permute_desc
,
AElementwiseOperation
a_element_op
,
BElementwiseOperation
b_element_op
,
CElementwiseOperation
c_element_op
,
...
...
@@ -40,10 +40,8 @@ struct DeviceBatchedGemmCPermutate : public BaseOperator
template
<
typename
AElementwiseOperation
,
typename
BElementwiseOperation
,
typename
CElementwiseOperation
>
using
DeviceBatchedGemmCPermutatePtr
=
std
::
unique_ptr
<
DeviceBatchedGemmCPermutate
<
AElementwiseOperation
,
BElementwiseOperation
,
CElementwiseOperation
>>
;
using
DeviceBatchedGemmCPermutePtr
=
std
::
unique_ptr
<
DeviceBatchedGemmCPermute
<
AElementwiseOperation
,
BElementwiseOperation
,
CElementwiseOperation
>>
;
}
// namespace device
}
// namespace tensor_operation
...
...
include/ck/tensor_operation/gpu/device/device_batched_gemm_c_permute_xdl.hpp
View file @
ab04f22f
...
...
@@ -13,8 +13,6 @@
#include "ck/device_utility/device_prop.hpp"
#include "ck/device_utility/kernel_launch.hpp"
namespace
ck
{
namespace
tensor_operation
{
namespace
device
{
...
...
@@ -41,7 +39,7 @@ namespace device {
*
* \note \p Block2CTileMap allows customized mapping between a workgroup and the C-tile it computes.
* Together with \p ComputePtrOffsetOfBatch, we can reuse GridwiseGemm (and GridwiseGemm fusion ) to
* realize BatchedGemmCPermut
at
e and GroupedGemm (and the corresponding GEMM fusion).
* realize BatchedGemmCPermute and GroupedGemm (and the corresponding GEMM fusion).
*
*/
template
<
typename
GridwiseGemm
,
...
...
@@ -160,8 +158,7 @@ template <typename ALayout,
typename
CDEBlockTransferClusterLengths_MBlock_MPerBlock_NBlock_NPerBlock
,
index_t
CDEBlockTransferScalarPerVector_NPerBlock
,
LoopScheduler
LoopSched
=
make_default_loop_scheduler
()>
struct
DeviceBatchedGemmCPermutateXdl
:
public
DeviceBatchedGemmCPermutate
<
AElementwiseOperation
,
struct
DeviceBatchedGemmCPermuteXdl
:
public
DeviceBatchedGemmCPermute
<
AElementwiseOperation
,
BElementwiseOperation
,
CElementwiseOperation
>
{
...
...
@@ -247,14 +244,10 @@ struct DeviceBatchedGemmCPermutateXdl
}
}
static
auto
MakeCGridDescriptor_M_N
(
index_t
M
,
index_t
N
,
index_t
stride_M
,
index_t
stride_N
)
static
auto
MakeCGridDescriptor_M_N
(
index_t
M
,
index_t
N
,
index_t
stride_M
,
index_t
stride_N
)
{
const
auto
c_grid_desc_m_n
=
[
&
]()
{
return
make_naive_tensor_descriptor
(
make_tuple
(
M
,
N
),
make_tuple
(
stride_M
,
stride_N
));
return
make_naive_tensor_descriptor
(
make_tuple
(
M
,
N
),
make_tuple
(
stride_M
,
stride_N
));
}();
if
constexpr
(
GemmSpec
==
GemmSpecialization
::
MNPadding
)
...
...
@@ -279,16 +272,53 @@ struct DeviceBatchedGemmCPermutateXdl
}
}
static
auto
MakeEGridDescriptor_G0_G1_M_N
(
index_t
G0
,
index_t
G1
,
index_t
M
,
index_t
N
,
index_t
stride_G0
,
index_t
stride_G1
,
index_t
stride_M
,
index_t
stride_N
)
{
const
auto
e_grid_desc_g0_g1_m_n
=
[
&
]()
{
return
make_naive_tensor_descriptor
(
make_tuple
(
G0
,
G1
,
M
,
N
),
make_tuple
(
stride_G0
,
stride_G1
,
stride_M
,
stride_N
));
}();
if
constexpr
(
GemmSpec
==
GemmSpecialization
::
MNPadding
)
{
const
auto
PadM
=
(
MPerBlock
-
M
%
MPerBlock
)
%
MPerBlock
;
const
auto
PadN
=
(
NPerBlock
-
N
%
NPerBlock
)
%
NPerBlock
;
return
transform_tensor_descriptor
(
e_grid_desc_g0_g1_m_n
,
make_tuple
(
make_pass_through_transform
(
G0
),
make_pass_through_transform
(
G1
),
make_right_pad_transform
(
M
,
PadM
),
make_right_pad_transform
(
N
,
PadN
)),
make_tuple
(
Sequence
<
0
>
{},
Sequence
<
1
>
{},
Sequence
<
2
>
{},
Sequence
<
3
>
{}),
make_tuple
(
Sequence
<
0
>
{},
Sequence
<
1
>
{},
Sequence
<
2
>
{},
Sequence
<
3
>
{}));
}
else
{
return
e_grid_desc_g0_g1_m_n
;
}
}
using
AGridDesc_K0_M_K1
=
decltype
(
MakeAGridDescriptor_K0_M_K1
(
1
,
1
,
1
));
using
BGridDesc_K0_N_K1
=
decltype
(
MakeBGridDescriptor_K0_N_K1
(
1
,
1
,
1
));
using
CGridDesc_M_N
=
decltype
(
MakeCGridDescriptor_M_N
(
1
,
1
,
1
,
1
,
1
,
1
,
1
,
1
));
using
CGridDesc_M_N
=
decltype
(
MakeCGridDescriptor_M_N
(
1
,
1
,
1
,
1
));
using
EGridDesc_G0_G1_M_N
=
decltype
(
MakeEGridDescriptor_G0_G1_M_N
(
1
,
1
,
1
,
1
,
1
,
1
,
1
,
1
));
struct
ComputePtrOffsetOfStridedBatch
{
ComputePtrOffsetOfStridedBatch
(
index_t
Batchstride_A
,
index_t
Batchstride_B
,
index_t
BatchStrideC
)
:
Batchstride_A_
(
Batchstride_A
),
Batchstride_B_
(
Batchstride_B
),
BatchStrideC_
(
BatchStrideC
)
EGridDesc_G0_G1_M_N
e_grid_desc_g0_g1_m_n
)
:
Batchstride_A_
(
Batchstride_A
),
Batchstride_B_
(
Batchstride_B
),
e_grid_desc_g0_g1_m_n_
(
e_grid_desc_g0_g1_m_n
)
{
}
...
...
@@ -304,13 +334,16 @@ struct DeviceBatchedGemmCPermutateXdl
__host__
__device__
constexpr
long_index_t
GetCPtrOffset
(
index_t
g_idx
)
const
{
return
g_idx
*
static_cast
<
long_index_t
>
(
BatchStrideC_
);
const
index_t
G1
=
e_grid_desc_g0_g1_m_n_
.
GetLength
(
I1
);
index_t
b0
=
g_idx
/
G1
;
index_t
b1
=
g_idx
%
G1
;
return
e_grid_desc_g0_g1_m_n_
.
CalculateOffset
(
make_multi_index
(
b0
,
b1
,
0
,
0
));
}
private:
index_t
Batchstride_A_
;
index_t
Batchstride_B_
;
index_t
BatchStrideC
_
;
EGridDesc_G0_G1_M_N
e_grid_desc_g0_g1_m_n
_
;
};
using
GridwiseGemm
=
GridwiseGemmMultipleD_k0mk1_k0nk1_mn_xdl_cshuffle
<
...
...
@@ -383,20 +416,29 @@ struct DeviceBatchedGemmCPermutateXdl
p_b_grid_
{
p_b_grid
},
p_c_grid_
{
p_c_grid
},
BatchCount_
(
BatchCount
),
a_grid_desc_k0_m_k1_
{
DeviceBatchedGemmCPermutateXdl
::
MakeAGridDescriptor_K0_M_K1
(
M
,
K
,
stride_A
)},
b_grid_desc_k0_n_k1_
{
DeviceBatchedGemmCPermutateXdl
::
MakeBGridDescriptor_K0_N_K1
(
K
,
N
,
stride_B
)},
c_grid_desc_m_n_
{
DeviceBatchedGemmCPermutateXdl
::
MakeCGridDescriptor_M_N
(
a_grid_desc_k0_m_k1_
{
DeviceBatchedGemmCPermuteXdl
::
MakeAGridDescriptor_K0_M_K1
(
M
,
K
,
stride_A
)},
b_grid_desc_k0_n_k1_
{
DeviceBatchedGemmCPermuteXdl
::
MakeBGridDescriptor_K0_N_K1
(
K
,
N
,
stride_B
)},
c_grid_desc_m_n_
{
DeviceBatchedGemmCPermuteXdl
::
MakeCGridDescriptor_M_N
(
batched_gemm_c_permute_desc
.
M_
,
batched_gemm_c_permute_desc
.
N_
,
batched_gemm_c_permute_desc
.
stride_M_
,
batched_gemm_c_permute_desc
.
stride_N_
)},
e_grid_desc_g0_g1_m_n_
{
DeviceBatchedGemmCPermuteXdl
::
MakeEGridDescriptor_G0_G1_M_N
(
batched_gemm_c_permute_desc
.
G0_
,
batched_gemm_c_permute_desc
.
G1_
,
batched_gemm_c_permute_desc
.
M_
,
batched_gemm_c_permute_desc
.
N_
,
batched_gemm_c_permute_desc
.
stride_G0_
,
batched_gemm_c_permute_desc
.
stride_G1_
,
batched_gemm_c_permute_desc
.
stride_M_
,
batched_gemm_c_permute_desc
.
stride_N_
)},
c_grid_desc_mblock_mperblock_nblock_nperblock
{},
compute_ptr_offset_of_batch_
{
type_convert
<
index_t
>
(
a_grid_desc_k0_m_k1_
.
GetElementSpaceSize
()),
type_convert
<
index_t
>
(
b_grid_desc_k0_n_k1_
.
GetElementSpaceSize
()),
type_convert
<
index_t
>
(
c_grid_desc_m_n_
.
GetElementSpaceSize
())
},
e_grid_desc_g0_g1_m_n_
},
block_2_ctile_map_
{
GridwiseGemm
::
MakeDefaultBlock2ETileMap
(
c_grid_desc_m_n_
)},
a_element_op_
{
a_element_op
},
b_element_op_
{
b_element_op
},
...
...
@@ -422,6 +464,7 @@ struct DeviceBatchedGemmCPermutateXdl
AGridDesc_K0_M_K1
a_grid_desc_k0_m_k1_
;
BGridDesc_K0_N_K1
b_grid_desc_k0_n_k1_
;
CGridDesc_M_N
c_grid_desc_m_n_
;
EGridDesc_G0_G1_M_N
e_grid_desc_g0_g1_m_n_
;
CGridDesc_MBlock_MPerBlock_NBlock_NPerBlock
c_grid_desc_mblock_mperblock_nblock_nperblock
;
ComputePtrOffsetOfStridedBatch
compute_ptr_offset_of_batch_
;
Block2CTileMap
block_2_ctile_map_
;
...
...
@@ -433,7 +476,7 @@ struct DeviceBatchedGemmCPermutateXdl
// Invoker
struct
Invoker
:
public
BaseInvoker
{
using
Argument
=
DeviceBatchedGemmCPermut
at
eXdl
::
Argument
;
using
Argument
=
DeviceBatchedGemmCPermuteXdl
::
Argument
;
float
Run
(
const
Argument
&
arg
,
const
StreamConfig
&
stream_config
=
StreamConfig
{})
{
...
...
@@ -456,7 +499,7 @@ struct DeviceBatchedGemmCPermutateXdl
arg
.
block_2_ctile_map_
))
{
throw
std
::
runtime_error
(
"wrong! GridwiseBatchedGemmCPermut
at
e_km_kn_m0m1n0n1_xdlops_v2r3 has invalid "
"wrong! GridwiseBatchedGemmCPermute_km_kn_m0m1n0n1_xdlops_v2r3 has invalid "
"setting"
);
}
...
...
@@ -473,8 +516,8 @@ struct DeviceBatchedGemmCPermutateXdl
GridwiseGemm
,
ADataType
,
// TODO: distiguish A/B datatype
CDataType
,
remove_reference_t
<
DeviceBatchedGemmCPermut
at
eXdl
::
AGridDesc_K0_M_K1
>
,
remove_reference_t
<
DeviceBatchedGemmCPermut
at
eXdl
::
BGridDesc_K0_N_K1
>
,
remove_reference_t
<
DeviceBatchedGemmCPermuteXdl
::
AGridDesc_K0_M_K1
>
,
remove_reference_t
<
DeviceBatchedGemmCPermuteXdl
::
BGridDesc_K0_N_K1
>
,
typename
GridwiseGemm
::
EGridDescriptor_MBlock_MPerBlock_NBlock_NPerBlock
,
AElementwiseOperation
,
BElementwiseOperation
,
...
...
@@ -574,7 +617,8 @@ struct DeviceBatchedGemmCPermutateXdl
static
auto
MakeInvoker
()
{
return
Invoker
{};
}
// polymorphic
std
::
unique_ptr
<
BaseArgument
>
MakeArgumentPointer
(
const
void
*
p_a
,
std
::
unique_ptr
<
BaseArgument
>
MakeArgumentPointer
(
const
void
*
p_a
,
const
void
*
p_b
,
void
*
p_c
,
index_t
M
,
...
...
@@ -615,7 +659,7 @@ struct DeviceBatchedGemmCPermutateXdl
auto
str
=
std
::
stringstream
();
// clang-format off
str
<<
"DeviceBatchedGemmCPermut
at
eXdl"
str
<<
"DeviceBatchedGemmCPermuteXdl"
<<
"<"
<<
BlockSize
<<
", "
<<
MPerBlock
<<
", "
...
...
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
.
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment