Commit aaa44490 authored by Rosty Geyyer's avatar Rosty Geyyer
Browse files

Merge branch 'lwpck-586' of...

Merge branch 'lwpck-586' of https://github.com/ROCmSoftwarePlatform/composable_kernel into lwpck-586
parents b6ba4aac 8da05b38
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2022, Advanced Micro Devices, Inc. All rights reserved.
#pragma once
#include "ck/utility/common_header.hpp"
#include "ck/tensor_description/multi_index_transform_helper.hpp"
#include "ck/tensor_description/tensor_descriptor.hpp"
#include "ck/tensor_description/tensor_descriptor_helper.hpp"
#include "ck/tensor_operation/gpu/grid/block_to_ctile_map.hpp"
#include "ck/tensor_operation/gpu/grid/gridwise_gemm_pipeline_selector.hpp"
#include "ck/tensor_operation/gpu/block/blockwise_gemm_xdlops.hpp"
#include "ck/tensor_operation/gpu/block/thread_group_tensor_slice_transfer_v4r1.hpp"
#include "ck/tensor_operation/gpu/block/thread_group_tensor_slice_transfer_v6r1.hpp"
#include "ck/tensor_operation/gpu/thread/threadwise_tensor_slice_transfer.hpp"
#include "ck/tensor_operation/gpu/element/element_wise_operation.hpp"
#include "ck/tensor_operation/gpu/block/blockwise_softmax.hpp"
namespace ck {
template <typename FloatAB,
typename FloatGemmAcc,
typename FloatCShuffle,
typename FloatC,
typename D0sDataType,
typename AElementwiseOperation,
typename BElementwiseOperation,
typename C0DEElementwiseOperation,
typename B1ElementwiseOperation,
typename C1DEElementwiseOperation,
InMemoryDataOperationEnum CGlobalMemoryDataOperation,
typename AGridDesc_AK0_M_AK1,
typename BGridDesc_BK0_N_BK1,
typename B1GridDesc_BK0_N_BK1,
typename C1GridDesc_M_N,
typename D0sGridDesc_M_N,
index_t NumGemmKPrefetchStage,
index_t BlockSize,
index_t MPerBlock,
index_t NPerBlock,
index_t KPerBlock,
index_t Gemm1NPerBlock,
index_t Gemm1KPerBlock,
index_t AK1Value,
index_t BK1Value,
index_t B1K1Value,
index_t MPerXdl,
index_t NPerXdl,
index_t MXdlPerWave,
index_t NXdlPerWave,
index_t Gemm1NXdlPerWave,
typename ABlockTransferThreadClusterLengths_AK0_M_AK1,
typename ABlockTransferThreadClusterArrangeOrder,
typename ABlockTransferSrcAccessOrder,
index_t ABlockTransferSrcVectorDim,
index_t ABlockTransferSrcScalarPerVector,
index_t ABlockTransferDstScalarPerVector_AK1,
bool AThreadTransferSrcResetCoordinateAfterRun, // ignored
index_t ABlockLdsExtraM,
typename BBlockTransferThreadClusterLengths_BK0_N_BK1,
typename BBlockTransferThreadClusterArrangeOrder,
typename BBlockTransferSrcAccessOrder,
index_t BBlockTransferSrcVectorDim,
index_t BBlockTransferSrcScalarPerVector,
index_t BBlockTransferDstScalarPerVector_BK1,
bool BThreadTransferSrcResetCoordinateAfterRun, // ignored
index_t BBlockLdsExtraN,
typename B1BlockTransferThreadClusterLengths_BK0_N_BK1,
typename B1BlockTransferThreadClusterArrangeOrder,
typename B1BlockTransferSrcAccessOrder,
index_t B1BlockTransferSrcVectorDim,
index_t B1BlockTransferSrcScalarPerVector,
index_t B1BlockTransferDstScalarPerVector_BK1,
bool B1ThreadTransferSrcResetCoordinateAfterRun,
index_t B1BlockLdsExtraN,
index_t CShuffleMXdlPerWavePerShuffle,
index_t CShuffleNXdlPerWavePerShuffle,
typename CShuffleBlockTransferClusterLengths_MBlock_MPerBlock_NBlock_NPerBlock,
index_t CShuffleBlockTransferScalarPerVector_NPerBlock,
LoopScheduler LoopSched,
bool PadN,
bool MaskOutUpperTriangle,
PipelineVersion PipelineVer = PipelineVersion::v1>
struct GridwiseBatchedGemmMultipleDSoftmaxGemm_Xdl_CShuffle
{
static_assert(LoopSched == LoopScheduler::Default,
"Non-default loop scheduler is currently not supported");
static constexpr index_t NumD0Tensor = D0sDataType::Size();
static constexpr auto I0 = Number<0>{};
static constexpr auto I1 = Number<1>{};
static constexpr auto I2 = Number<2>{};
static constexpr auto I3 = Number<3>{};
static constexpr auto I4 = Number<4>{};
static constexpr auto I5 = Number<5>{};
static constexpr auto I6 = Number<6>{};
static constexpr auto I7 = Number<7>{};
// K1 should be Number<...>
// Gemm0
static constexpr auto AK0 = Number<KPerBlock / AK1Value>{};
static constexpr auto BK0 = Number<KPerBlock / BK1Value>{};
static constexpr auto AK1 = Number<AK1Value>{};
static constexpr auto BK1 = Number<BK1Value>{};
static constexpr auto Gemm0MWaves = MPerBlock / (MPerXdl * MXdlPerWave);
static constexpr auto Gemm0NWaves = NPerBlock / (NPerXdl * NXdlPerWave);
// Gemm1
static constexpr auto B1K0 = Number<Gemm1KPerBlock / B1K1Value>{};
static constexpr auto B1K1 = Number<B1K1Value>{};
using ThisThreadBlock = ThisThreadBlock<BlockSize>;
using GridwiseGemmPipe = remove_cvref_t<decltype(
GridwiseGemmPipeline_Selector<PipelineVer, NumGemmKPrefetchStage>())>;
template <typename ABlockDesc_AK0_M_AK1>
__host__ __device__ static constexpr auto
MakeGemm0AMmaTileDescriptor_M0_M1_M2_K(const ABlockDesc_AK0_M_AK1&)
{
constexpr index_t MWaves = MPerBlock / (MXdlPerWave * MPerXdl);
return MakeGemmMmaTileDescriptor_MN0_MN1_MN2_K<MXdlPerWave, MWaves, MPerXdl>(
ABlockDesc_AK0_M_AK1{});
}
template <typename BBlockDesc_BK0_N_BK1>
__host__ __device__ static constexpr auto
MakeGemm0BMmaTileDescriptor_N0_N1_N2_K(const BBlockDesc_BK0_N_BK1&)
{
constexpr index_t NWaves = NPerBlock / (NXdlPerWave * NPerXdl);
return MakeGemmMmaTileDescriptor_MN0_MN1_MN2_K<NXdlPerWave, NWaves, NPerXdl>(
BBlockDesc_BK0_N_BK1{});
}
template <typename ABlockDesc_AK0_M_AK1>
__host__ __device__ static constexpr auto
MakeGemm1AMmaTileDescriptor_M0_M1_M2_K(const ABlockDesc_AK0_M_AK1&)
{
return MakeGemmMmaTileDescriptor_MN0_MN1_MN2_K<MXdlPerWave, 1, 1>(ABlockDesc_AK0_M_AK1{});
}
template <typename BBlockDesc_BK0_N_BK1>
__host__ __device__ static constexpr auto
MakeGemm1BMmaTileDescriptor_N0_N1_N2_K(const BBlockDesc_BK0_N_BK1&)
{
constexpr index_t Gemm1NWaves = Gemm1NPerBlock / (Gemm1NXdlPerWave * NPerXdl);
return MakeGemmMmaTileDescriptor_MN0_MN1_MN2_K<Gemm1NXdlPerWave, Gemm1NWaves, NPerXdl>(
BBlockDesc_BK0_N_BK1{});
}
__host__ __device__ static constexpr auto GetABlockDescriptor_AK0PerBlock_MPerBlock_AK1()
{
// A matrix in LDS memory, dst of blockwise copy
return make_naive_tensor_descriptor(
make_tuple(AK0, Number<MPerBlock>{}, AK1),
make_tuple(Number<MPerBlock + ABlockLdsExtraM>{} * AK1, AK1, I1));
}
__host__ __device__ static constexpr auto GetBBlockDescriptor_BK0PerBlock_NPerBlock_BK1()
{
// B matrix in LDS memory, dst of blockwise copy
return make_naive_tensor_descriptor(
make_tuple(BK0, Number<NPerBlock>{}, BK1),
make_tuple(Number<NPerBlock + BBlockLdsExtraN>{} * BK1, BK1, I1));
}
__host__ __device__ static constexpr auto GetB1BlockDescriptor_BK0PerBlock_NPerBlock_BK1()
{
// B1 matrix in LDS memory, dst of blockwise copy
return make_naive_tensor_descriptor(
make_tuple(B1K0, Number<Gemm1NPerBlock>{}, B1K1),
make_tuple(Number<Gemm1NPerBlock + B1BlockLdsExtraN>{} * B1K1, B1K1, I1));
}
__host__ __device__ static constexpr auto
GetCShuffleBlockDescriptor_MBlock_MPerBlock_NBlock_NPerBlock()
{
constexpr index_t MWave = MPerBlock / (MXdlPerWave * MPerXdl);
constexpr index_t NWave = Gemm1NPerBlock / (Gemm1NXdlPerWave * NPerXdl);
constexpr auto c_shuffle_block_desc_mblock_mperblock_nblock_nperblock =
make_naive_tensor_descriptor_packed(
make_tuple(I1,
Number<CShuffleMXdlPerWavePerShuffle * MWave * MPerXdl>{},
I1,
Number<CShuffleNXdlPerWavePerShuffle * NWave * NPerXdl>{}));
return c_shuffle_block_desc_mblock_mperblock_nblock_nperblock;
}
__host__ __device__ static constexpr index_t GetSharedMemoryNumberOfByte()
{
const index_t gemm0_bytes_end = (SharedMemTrait::a_block_space_size_aligned +
SharedMemTrait::b_block_space_size_aligned) *
sizeof(FloatAB);
const index_t gemm1_bytes_end =
(SharedMemTrait::b1_block_space_offset + SharedMemTrait::b1_block_space_size_aligned) *
sizeof(FloatAB);
const index_t softmax_bytes_end = (SharedMemTrait::reduction_space_offset +
SharedMemTrait::reduction_space_size_aligned) *
sizeof(FloatGemmAcc);
const index_t c_block_bytes_end =
SharedMemTrait::c_block_space_size * sizeof(FloatCShuffle);
return math::max(gemm0_bytes_end, gemm1_bytes_end, softmax_bytes_end, c_block_bytes_end);
}
// block_id to matrix tile idx (m0, n0) mapping are controlled by {M01, N01}
template <typename Block2CTileMap>
__host__ __device__ static constexpr bool
CheckValidity(const AGridDesc_AK0_M_AK1& a_grid_desc_ak0_m_ak1,
const BGridDesc_BK0_N_BK1& b_grid_desc_bk0_n_bk1,
const B1GridDesc_BK0_N_BK1& b1_grid_desc_bk0_n_bk1,
const C1GridDesc_M_N& c1_grid_desc_m_n,
const Block2CTileMap& block_2_ctile_map)
{
static_assert((MPerBlock % (MPerXdl * MXdlPerWave) == 0) &&
(NPerBlock % (NXdlPerWave * NPerXdl)) == 0,
"Invalid tuning param!");
const auto M = a_grid_desc_ak0_m_ak1.GetLength(I1);
const auto N = b_grid_desc_bk0_n_bk1.GetLength(I1);
const auto K = a_grid_desc_ak0_m_ak1.GetLength(I0) * a_grid_desc_ak0_m_ak1.GetLength(I2);
const auto Gemm1N = b1_grid_desc_bk0_n_bk1.GetLength(I1);
if(!(M == c1_grid_desc_m_n.GetLength(I0) && Gemm1N == c1_grid_desc_m_n.GetLength(I1)))
{
return false;
}
if(!(M % MPerBlock == 0 && N % NPerBlock == 0 && K % KPerBlock == 0 &&
Gemm1N % Gemm1NPerBlock == 0))
{
return false;
}
// check gemm0 gridwise gemm pipeline
const auto num_gemm0_k_loop = K / KPerBlock;
if(!GridwiseGemmPipe::IsSupported(num_gemm0_k_loop))
{
return false;
}
// check gemm1 gridwise gemm pipeline
if(!(NPerBlock % Gemm1KPerBlock == 0))
{
return false;
}
const auto num_gemm1_k_inner_loop = NPerBlock / Gemm1KPerBlock;
if(!GridwiseGemmPipe::IsSupported(num_gemm1_k_inner_loop))
{
return false;
}
if(!block_2_ctile_map.CheckValidity(c1_grid_desc_m_n))
{
return false;
}
// TODO: also check validity of all components (blockwise-copy, threadwise-copy, etc)
return true;
}
__host__ __device__ static constexpr bool CalculateHasMainKBlockLoop(index_t K)
{
const index_t num_loop = K / KPerBlock;
return GridwiseGemmPipe::CalculateHasMainLoop(num_loop);
}
__host__ __device__ static constexpr auto
MakeC1GridDescriptor_MBlock_MPerBlock_NBlock_NPerBlock(const C1GridDesc_M_N& c1_grid_desc_m_n)
{
const auto M = c1_grid_desc_m_n.GetLength(I0);
const auto N = c1_grid_desc_m_n.GetLength(I1);
const auto MBlock = M / MPerBlock;
const auto NBlock = N / Gemm1NPerBlock;
const auto c_grid_desc_mblock_mperblock_nblock_nperblock = transform_tensor_descriptor(
c1_grid_desc_m_n,
make_tuple(make_unmerge_transform(make_tuple(MBlock, Number<MPerBlock>{})),
make_unmerge_transform(make_tuple(NBlock, Number<Gemm1NPerBlock>{}))),
make_tuple(Sequence<0>{}, Sequence<1>{}),
make_tuple(Sequence<0, 1>{}, Sequence<2, 3>{}));
return c_grid_desc_mblock_mperblock_nblock_nperblock;
}
// return block_id to C matrix tile idx (m0, n0) mapping
__host__ __device__ static constexpr auto
MakeDefaultBlock2CTileMap(const C1GridDesc_M_N& c1_grid_desc_m_n)
{
return BlockToCTileMap_M00_N0_M01Adapt<MPerBlock, Gemm1NPerBlock, C1GridDesc_M_N>(
c1_grid_desc_m_n);
}
__device__ static auto GetGemm0WaveIdx()
{
const index_t thread_id = get_thread_local_1d_id();
constexpr auto WaveSize = MfmaSelector<FloatAB, MPerXdl, NPerXdl>::selected_mfma.wave_size;
constexpr auto threadid_to_wave_idx_adaptor = make_single_stage_tensor_adaptor(
make_tuple(make_merge_transform(make_tuple(Gemm0MWaves, Gemm0NWaves, WaveSize))),
make_tuple(Sequence<0, 1, 2>{}),
make_tuple(Sequence<0>{}));
return threadid_to_wave_idx_adaptor.CalculateBottomIndex(make_multi_index(thread_id));
}
__device__ static auto GetGemm0WaveMNIdx(const index_t thread_id)
{
constexpr auto WaveSize = MfmaSelector<FloatAB, MPerXdl, NPerXdl>::selected_mfma.wave_size;
constexpr auto wave_threadid_to_mn_idx_adaptor = make_single_stage_tensor_adaptor(
make_tuple(make_merge_transform(make_tuple(WaveSize / MPerXdl, MPerXdl))),
make_tuple(Sequence<0, 1>{}),
make_tuple(Sequence<0>{}));
return wave_threadid_to_mn_idx_adaptor.CalculateBottomIndex(make_multi_index(thread_id));
}
static constexpr auto MakeD0sGridPointer()
{
return generate_tuple(
[&](auto i) {
using D0DataType = remove_cvref_t<tuple_element_t<i.value, D0sDataType>>;
return static_cast<const D0DataType*>(nullptr);
},
Number<NumD0Tensor>{});
}
// D0 desc for source in blockwise copy
template <typename D0GridDesc_M_N>
__host__ __device__ static constexpr auto
MakeGemm0D0GridDescriptor_M0_N0_M1_N1_M2_N2_M3_N3_N4_N5(const D0GridDesc_M_N& d0_grid_desc_m_n)
{
const auto M = d0_grid_desc_m_n.GetLength(I0);
const auto N = d0_grid_desc_m_n.GetLength(I1);
constexpr auto mfma = MfmaSelector<FloatAB, MPerXdl, NPerXdl>::selected_mfma;
constexpr auto N3 = mfma.num_groups_per_blk;
constexpr auto N4 = mfma.num_input_blks;
constexpr auto N5 = mfma.group_size;
return transform_tensor_descriptor(
d0_grid_desc_m_n,
make_tuple(make_unmerge_transform(
make_tuple(M / MPerBlock, MXdlPerWave, Gemm0MWaves, MPerXdl)),
make_unmerge_transform(
make_tuple(N / NPerBlock, NXdlPerWave, Gemm0NWaves, N3, N4, N5))),
make_tuple(Sequence<0>{}, Sequence<1>{}),
make_tuple(Sequence<0, 2, 4, 6>{}, Sequence<1, 3, 5, 7, 8, 9>{}));
}
// D0s desc for source in blockwise copy
__host__ __device__ static constexpr auto
MakeD0sGridDescriptor_M0_N0_M1_N1_M2_N2_M3_N3_N4_N5(const D0sGridDesc_M_N& ds_grid_desc_m_n)
{
return generate_tuple(
[&](auto i) {
return MakeGemm0D0GridDescriptor_M0_N0_M1_N1_M2_N2_M3_N3_N4_N5(ds_grid_desc_m_n[i]);
},
Number<NumD0Tensor>{});
}
using D0sGridPointer = decltype(MakeD0sGridPointer());
using D0sGridDescriptor_M0_N0_M1_N1_M2_N2_M3_N3_N4_N5 = remove_cvref_t<decltype(
MakeD0sGridDescriptor_M0_N0_M1_N1_M2_N2_M3_N3_N4_N5(D0sGridDesc_M_N{}))>;
using C1GridDescriptor_MBlock_MPerBlock_NBlock_NPerBlock = remove_cvref_t<decltype(
MakeC1GridDescriptor_MBlock_MPerBlock_NBlock_NPerBlock(C1GridDesc_M_N{}))>;
using DefaultBlock2CTileMap =
remove_cvref_t<decltype(MakeDefaultBlock2CTileMap(C1GridDesc_M_N{}))>;
struct SharedMemTrait
{
// LDS allocation for A and B: be careful of alignment
static constexpr auto a_block_desc_ak0_m_ak1 =
GetABlockDescriptor_AK0PerBlock_MPerBlock_AK1();
static constexpr auto b_block_desc_bk0_n_bk1 =
GetBBlockDescriptor_BK0PerBlock_NPerBlock_BK1();
static constexpr auto b1_block_desc_bk0_n_bk1 =
GetB1BlockDescriptor_BK0PerBlock_NPerBlock_BK1();
static constexpr auto max_lds_align = math::lcm(math::lcm(AK1, BK1), B1K1);
static constexpr auto a_block_space_size_aligned = math::integer_least_multiple(
a_block_desc_ak0_m_ak1.GetElementSpaceSize(), max_lds_align);
static constexpr auto b_block_space_size_aligned = math::integer_least_multiple(
b_block_desc_bk0_n_bk1.GetElementSpaceSize(), max_lds_align);
static constexpr auto b1_block_space_size_aligned = math::integer_least_multiple(
b1_block_desc_bk0_n_bk1.GetElementSpaceSize(), max_lds_align);
static constexpr auto a_block_space_offset = 0;
static constexpr auto b_block_space_offset = a_block_space_size_aligned.value;
static constexpr auto b1_block_space_offset = 0;
// LDS allocation for reduction
static constexpr index_t reduction_space_size_aligned =
math::integer_least_multiple(BlockSize, max_lds_align);
static constexpr auto reduction_space_offset = 0;
// LDS allocation for C shuffle in LDS
static constexpr auto c_shuffle_block_desc_mblock_mperblock_nblock_nperblock =
GetCShuffleBlockDescriptor_MBlock_MPerBlock_NBlock_NPerBlock();
static constexpr auto c_block_space_size =
c_shuffle_block_desc_mblock_mperblock_nblock_nperblock.GetElementSpaceSize();
};
template <bool HasMainKBlockLoop, typename Block2CTileMap, typename C0MatrixMask>
__device__ static void Run(const FloatAB* __restrict__ p_a_grid,
const FloatAB* __restrict__ p_b_grid,
const FloatAB* __restrict__ p_b1_grid,
FloatC* __restrict__ p_c_grid,
D0sGridPointer p_d0s_grid,
void* __restrict__ p_shared,
const AElementwiseOperation& a_element_op,
const BElementwiseOperation& b_element_op,
const C0DEElementwiseOperation& c0de_element_op,
const B1ElementwiseOperation& b1_element_op,
const C1DEElementwiseOperation& c1de_element_op,
const AGridDesc_AK0_M_AK1& a_grid_desc_ak0_m_ak1,
const BGridDesc_BK0_N_BK1& b_grid_desc_bk0_n_bk1,
const B1GridDesc_BK0_N_BK1& b1_grid_desc_bk0_n_bk1,
const C1GridDescriptor_MBlock_MPerBlock_NBlock_NPerBlock&
c_grid_desc_mblock_mperblock_nblock_nperblock,
const D0sGridDescriptor_M0_N0_M1_N1_M2_N2_M3_N3_N4_N5&
d0s_griddesc_m0_n0_m1_n1_m2_n2_m3_n3_n4_n5,
const Block2CTileMap& block_2_ctile_map,
const C0MatrixMask& c0_matrix_mask)
{
const auto a_grid_buf = make_dynamic_buffer<AddressSpaceEnum::Global>(
p_a_grid, a_grid_desc_ak0_m_ak1.GetElementSpaceSize());
const auto b_grid_buf = make_dynamic_buffer<AddressSpaceEnum::Global>(
p_b_grid, b_grid_desc_bk0_n_bk1.GetElementSpaceSize());
const auto b1_grid_buf = make_dynamic_buffer<AddressSpaceEnum::Global>(
p_b1_grid, b1_grid_desc_bk0_n_bk1.GetElementSpaceSize());
auto c_grid_buf = make_dynamic_buffer<AddressSpaceEnum::Global>(
p_c_grid, c_grid_desc_mblock_mperblock_nblock_nperblock.GetElementSpaceSize());
const auto d0s_grid_buf = generate_tuple(
[&](auto i) {
return make_dynamic_buffer<AddressSpaceEnum::Global>(
p_d0s_grid[i],
d0s_griddesc_m0_n0_m1_n1_m2_n2_m3_n3_n4_n5[i].GetElementSpaceSize());
},
Number<NumD0Tensor>{});
// divide block work by [M, N]
const auto block_work_idx =
block_2_ctile_map.CalculateBottomIndex(make_multi_index(get_block_1d_id()));
if(!block_2_ctile_map.ValidCTileIndex(
block_work_idx,
make_tuple(c_grid_desc_mblock_mperblock_nblock_nperblock.GetLength(I0),
c_grid_desc_mblock_mperblock_nblock_nperblock.GetLength(I2))))
{
return;
}
// HACK: this force m/gemm1_n_block_data_idx_on_grid into SGPR
const index_t m_block_data_idx_on_grid =
__builtin_amdgcn_readfirstlane(block_work_idx[I0] * MPerBlock);
const index_t gemm1_n_block_data_idx_on_grid =
__builtin_amdgcn_readfirstlane(block_work_idx[I1] * Gemm1NPerBlock);
// A matrix in LDS memory, dst of blockwise copy
constexpr auto a_block_desc_ak0_m_ak1 = GetABlockDescriptor_AK0PerBlock_MPerBlock_AK1();
// B matrix in LDS memory, dst of blockwise copy
constexpr auto b_block_desc_bk0_n_bk1 = GetBBlockDescriptor_BK0PerBlock_NPerBlock_BK1();
//
// set up Gemm0
//
// A matrix blockwise copy
auto a_blockwise_copy =
ThreadGroupTensorSliceTransfer_v4r1<ThisThreadBlock,
AElementwiseOperation,
tensor_operation::element_wise::PassThrough,
InMemoryDataOperationEnum::Set,
Sequence<AK0, MPerBlock, AK1>,
ABlockTransferThreadClusterLengths_AK0_M_AK1,
ABlockTransferThreadClusterArrangeOrder,
FloatAB,
FloatAB,
decltype(a_grid_desc_ak0_m_ak1),
decltype(a_block_desc_ak0_m_ak1),
ABlockTransferSrcAccessOrder,
Sequence<1, 0, 2>,
ABlockTransferSrcVectorDim,
2,
ABlockTransferSrcScalarPerVector,
ABlockTransferDstScalarPerVector_AK1,
1,
1,
true, // SrcResetCoord
true, // DstResetCoord
NumGemmKPrefetchStage>(
a_grid_desc_ak0_m_ak1,
make_multi_index(0, m_block_data_idx_on_grid, 0),
a_element_op,
a_block_desc_ak0_m_ak1,
make_multi_index(0, 0, 0),
tensor_operation::element_wise::PassThrough{});
// B matrix blockwise copy
auto b_blockwise_copy =
ThreadGroupTensorSliceTransfer_v4r1<ThisThreadBlock,
BElementwiseOperation,
tensor_operation::element_wise::PassThrough,
InMemoryDataOperationEnum::Set,
Sequence<BK0, NPerBlock, BK1>,
BBlockTransferThreadClusterLengths_BK0_N_BK1,
BBlockTransferThreadClusterArrangeOrder,
FloatAB,
FloatAB,
decltype(b_grid_desc_bk0_n_bk1),
decltype(b_block_desc_bk0_n_bk1),
BBlockTransferSrcAccessOrder,
Sequence<1, 0, 2>,
BBlockTransferSrcVectorDim,
2,
BBlockTransferSrcScalarPerVector,
BBlockTransferDstScalarPerVector_BK1,
1,
1,
true, // SrcResetCoord
true, // DstResetCoord
NumGemmKPrefetchStage>(
b_grid_desc_bk0_n_bk1,
make_multi_index(0, 0, 0), // will loop over GemmN dimension
b_element_op,
b_block_desc_bk0_n_bk1,
make_multi_index(0, 0, 0),
tensor_operation::element_wise::PassThrough{});
// Fused Gemm+Gemm pipeline
// for n in N0:
// for k in K0:
// acc[m][n] += A[m][k] * B0[k][n]
// acc1[m][o] += acc[m][n] * B1[n][o]
// sanity check
constexpr index_t KPack = math::max(
math::lcm(AK1, BK1), MfmaSelector<FloatAB, MPerXdl, NPerXdl>::selected_mfma.k_per_blk);
auto blockwise_gemm = BlockwiseGemmXdlops_v2<
BlockSize,
FloatAB,
FloatGemmAcc,
decltype(a_block_desc_ak0_m_ak1),
decltype(b_block_desc_bk0_n_bk1),
decltype(MakeGemm0AMmaTileDescriptor_M0_M1_M2_K(a_block_desc_ak0_m_ak1)),
decltype(MakeGemm0BMmaTileDescriptor_N0_N1_N2_K(b_block_desc_bk0_n_bk1)),
MPerBlock,
NPerBlock,
KPerBlock,
MPerXdl,
NPerXdl,
MXdlPerWave,
NXdlPerWave,
KPack,
true>{}; // TransposeC
auto acc_thread_buf = blockwise_gemm.GetCThreadBuffer();
// LDS allocation for A and B: be careful of alignment
auto a_block_buf = make_dynamic_buffer<AddressSpaceEnum::Lds>(
static_cast<FloatAB*>(p_shared) + SharedMemTrait::a_block_space_offset,
a_block_desc_ak0_m_ak1.GetElementSpaceSize());
auto b_block_buf = make_dynamic_buffer<AddressSpaceEnum::Lds>(
static_cast<FloatAB*>(p_shared) + SharedMemTrait::b_block_space_offset,
b_block_desc_bk0_n_bk1.GetElementSpaceSize());
constexpr auto a_block_slice_copy_step = make_multi_index(KPerBlock / AK1, 0, 0);
constexpr auto b_block_slice_copy_step = make_multi_index(KPerBlock / BK1, 0, 0);
const auto a_block_reset_copy_step =
make_multi_index(-a_grid_desc_ak0_m_ak1.GetLength(I0), 0, 0);
const auto b_block_reset_copy_step =
make_multi_index(-b_grid_desc_bk0_n_bk1.GetLength(I0), NPerBlock, 0);
// gridwise GEMM pipeline
// Only supports LoopScheduler::Default
const auto gridwise_gemm_pipeline = GridwiseGemmPipeline_Selector<PipelineVer,
NumGemmKPrefetchStage,
LoopScheduler::Default>();
const index_t num_k_block_main_loop = __builtin_amdgcn_readfirstlane(
(a_grid_desc_ak0_m_ak1.GetLength(I0) * a_grid_desc_ak0_m_ak1.GetLength(I2)) /
KPerBlock);
//
// set up Gemm1
//
// Acc matrix threadwise copy: AccVGPR to VGPR and downcast to XDL input data type
constexpr auto acc_thread_desc_m0_n0_m1_n1_m2_n2_n3_n4 =
blockwise_gemm.GetCThreadDescriptor_M0_N0_M1_N1_M2_N2_N3_N4();
constexpr auto m0 = acc_thread_desc_m0_n0_m1_n1_m2_n2_n3_n4.GetLength(I0);
constexpr auto n0 = acc_thread_desc_m0_n0_m1_n1_m2_n2_n3_n4.GetLength(I1);
constexpr auto m1 = acc_thread_desc_m0_n0_m1_n1_m2_n2_n3_n4.GetLength(I2);
constexpr auto n1 = acc_thread_desc_m0_n0_m1_n1_m2_n2_n3_n4.GetLength(I3);
constexpr auto m2 = acc_thread_desc_m0_n0_m1_n1_m2_n2_n3_n4.GetLength(I4);
constexpr auto n2 = acc_thread_desc_m0_n0_m1_n1_m2_n2_n3_n4.GetLength(I5);
constexpr auto n3 = acc_thread_desc_m0_n0_m1_n1_m2_n2_n3_n4.GetLength(I6);
constexpr auto n4 = acc_thread_desc_m0_n0_m1_n1_m2_n2_n3_n4.GetLength(I7);
constexpr auto b1_block_slice_copy_step = make_multi_index(Gemm1KPerBlock / B1K1, 0, 0);
// d0 matrix threadwise copy
constexpr auto d0_thread_desc_m0_n0_m1_n1_m2_n2_m3_n3_n4_n5 =
make_naive_tensor_descriptor_packed(make_tuple(I1, // MBlockId
I1, // NBlockID
I1, // MRepeat
I1, // NRepeat
I1, // MWaveId
I1, // NWaveId
I1, // MPerXdl
I1, // NGroupNum
I1, // NInputNum
n4)); // registerNum
auto d0s_thread_buf = generate_tuple(
[&](auto i) {
using D0DataType = remove_cvref_t<tuple_element_t<i.value, D0sDataType>>;
return StaticBuffer<
AddressSpaceEnum::Vgpr,
D0DataType,
d0_thread_desc_m0_n0_m1_n1_m2_n2_m3_n3_n4_n5.GetElementSpaceSize(),
true>{};
},
Number<NumD0Tensor>{});
const auto wave_id = GetGemm0WaveIdx();
const auto wave_m_n_id = GetGemm0WaveMNIdx(wave_id[I2]); // I2: 0~63
constexpr auto acc0_thread_desc = make_naive_tensor_descriptor_packed(
make_tuple(Number<MXdlPerWave>{}, Number<NXdlPerWave>{}, n2, n4));
auto d0s_threadwise_copy = generate_tuple(
[&](auto i) {
using D0DataType = remove_cvref_t<tuple_element_t<i.value, D0sDataType>>;
return ThreadwiseTensorSliceTransfer_v2<
D0DataType,
D0DataType,
decltype(d0s_griddesc_m0_n0_m1_n1_m2_n2_m3_n3_n4_n5[i]),
decltype(d0_thread_desc_m0_n0_m1_n1_m2_n2_m3_n3_n4_n5),
Sequence<I1, I1, I1, I1, I1, I1, I1, I1, I1, n4>,
Sequence<0, 1, 2, 3, 4, 5, 6, 7, 8, 9>,
9,
n4,
1,
false>(d0s_griddesc_m0_n0_m1_n1_m2_n2_m3_n3_n4_n5[i],
make_multi_index(block_work_idx[I0], // MBlockId
0, // NBlockId
0, // mrepeat
0, // nrepeat
wave_id[I0], // MWaveId
wave_id[I1], // NWaveId
wave_m_n_id[I1], // MPerXdl
0, // group
wave_m_n_id[I0], // NInputIndex
0)); // register number
},
Number<NumD0Tensor>{});
// acc_thread_desc_m0_n0_m1_n1_m2_n2_n3_n4 to acc_thread_desc_k0_m_k1
// n0_n1_n2_n3 -> k0
// m0_m1_m2 -> m
// n4 -> k1
// NOTE: had to use merge_v3 or will spit out compilation errors
constexpr auto acc_thread_desc_k0_m_k1 = transform_tensor_descriptor(
acc_thread_desc_m0_n0_m1_n1_m2_n2_n3_n4,
make_tuple(make_merge_transform_v3_division_mod(make_tuple(n0, n1, n2, n3)),
make_merge_transform_v3_division_mod(make_tuple(m0, m1, m2)),
make_pass_through_transform(n4)),
make_tuple(Sequence<1, 3, 5, 6>{}, Sequence<0, 2, 4>{}, Sequence<7>{}),
make_tuple(Sequence<0>{}, Sequence<1>{}, Sequence<2>{}));
// A1 matrix in AccVGPR
// N2 num_groups_per_blk, N3 num_input_blks, N4 group_size
constexpr auto AccN3 =
blockwise_gemm.GetCBlockDescriptor_M0_N0_M1_N1_M2_N2_N3_N4().GetLength(I6);
constexpr auto A1ThreadSlice_K0_M_K1 =
make_tuple(Number<Gemm1KPerBlock / n4 / AccN3>{}, Number<m0 * m1 * m2>{}, Number<n4>{});
constexpr auto A1ThreadSliceK0 = A1ThreadSlice_K0_M_K1[I0];
constexpr auto A1ThreadSliceM = A1ThreadSlice_K0_M_K1[I1];
constexpr auto A1ThreadSliceK1 = A1ThreadSlice_K0_M_K1[I2];
constexpr auto a1_thread_desc_k0_m_k1 = make_naive_tensor_descriptor(
A1ThreadSlice_K0_M_K1,
make_tuple(A1ThreadSliceM * A1ThreadSliceK1, A1ThreadSliceK1, I1));
// B1 matrix in LDS memory, dst of blockwise copy
constexpr auto b1_block_desc_bk0_n_bk1 = GetB1BlockDescriptor_BK0PerBlock_NPerBlock_BK1();
// A1 matrix blockwise copy
auto a1_blockwise_copy = ThreadwiseTensorSliceTransfer_StaticToStatic<
FloatGemmAcc,
FloatAB,
decltype(acc_thread_desc_k0_m_k1),
decltype(a1_thread_desc_k0_m_k1),
tensor_operation::element_wise::PassThrough,
Sequence<A1ThreadSliceK0, A1ThreadSliceM, A1ThreadSliceK1>,
Sequence<1, 0, 2>,
2,
n4>{tensor_operation::element_wise::PassThrough{}};
// B1 matrix blockwise copy
auto b1_blockwise_copy =
ThreadGroupTensorSliceTransfer_v4r1<ThisThreadBlock,
BElementwiseOperation,
tensor_operation::element_wise::PassThrough,
InMemoryDataOperationEnum::Set,
Sequence<B1K0, Gemm1NPerBlock, B1K1>,
B1BlockTransferThreadClusterLengths_BK0_N_BK1,
B1BlockTransferThreadClusterArrangeOrder,
FloatAB,
FloatAB,
decltype(b1_grid_desc_bk0_n_bk1),
decltype(b1_block_desc_bk0_n_bk1),
B1BlockTransferSrcAccessOrder,
Sequence<1, 0, 2>,
B1BlockTransferSrcVectorDim,
2,
B1BlockTransferSrcScalarPerVector,
B1BlockTransferDstScalarPerVector_BK1,
1,
1,
B1ThreadTransferSrcResetCoordinateAfterRun,
true, // DstResetCoord
NumGemmKPrefetchStage>(
b1_grid_desc_bk0_n_bk1,
make_multi_index(0, gemm1_n_block_data_idx_on_grid, 0),
b1_element_op,
b1_block_desc_bk0_n_bk1,
make_multi_index(0, 0, 0),
tensor_operation::element_wise::PassThrough{});
auto a1_thread_buf = make_static_buffer<AddressSpaceEnum::Vgpr, FloatAB>(
a1_thread_desc_k0_m_k1.GetElementSpaceSize());
// reuse LDS space for gemm0's b_block_buf
auto b1_block_buf = make_dynamic_buffer<AddressSpaceEnum::Lds>(
static_cast<FloatAB*>(p_shared) + SharedMemTrait::b1_block_space_offset,
b1_block_desc_bk0_n_bk1.GetElementSpaceSize());
// selected_mfma.group_size or B1K1 <= Gemm1KPack <= selected_mfma.group_size
// selected_mfma.k_per_blk <= Gemm1KPack
//
// Following similar rationale behind Gemm0KPack, let Gemm1KPack be the lowest common
// multiples of A1K1 (predetermined by selected_mfma.group_size) and B1K1. But in this case
// Gemm1KPack can't be higher than A1K1 itself because A1 matrix is distributed in VGPRs
// with 'group_size' amount of contiguous elements. Having Gemm1KPack greater than A1K1 will
// cause mismatch in summation index for example c[0:7] = a1[[0:3, 8:11]] * b1[0:7].
// therefore we may just as well assign Gemm1KPack = group_size
constexpr index_t Gemm1KPack =
MfmaSelector<FloatAB, MPerXdl, NPerXdl>::selected_mfma.group_size;
auto gemm1_blockwise_gemm = BlockwiseGemmXdlops_v2<
BlockSize,
FloatAB,
FloatGemmAcc,
decltype(a1_thread_desc_k0_m_k1),
decltype(b1_block_desc_bk0_n_bk1),
decltype(MakeGemm1AMmaTileDescriptor_M0_M1_M2_K(a1_thread_desc_k0_m_k1)),
decltype(MakeGemm1BMmaTileDescriptor_N0_N1_N2_K(b1_block_desc_bk0_n_bk1)),
MPerBlock,
Gemm1NPerBlock,
Gemm1KPerBlock,
MPerXdl,
NPerXdl,
MXdlPerWave,
Gemm1NXdlPerWave,
Gemm1KPack,
true, // TransposeC
Gemm1KPack, // AMmaKStride
Gemm1KPack * XdlopsGemm<FloatAB, MPerXdl, NPerXdl, Gemm1KPack, false>{}.K0PerXdlops>{
// BMmaKStride
make_tuple(0, 0, 0, 0)}; // A_origin
auto acc1_thread_buf = gemm1_blockwise_gemm.GetCThreadBuffer();
//
// Blockwise softmax
//
auto workspace_buf = make_dynamic_buffer<AddressSpaceEnum::Lds>(
static_cast<FloatGemmAcc*>(p_shared) + SharedMemTrait::reduction_space_offset,
SharedMemTrait::reduction_space_size_aligned);
// get acc0 8D thread cluster
constexpr auto thread_cluster_m0_n0_m1_n1_m2_n2_n3_n4 =
blockwise_gemm.GetCBlockDescriptor_M0_N0_M1_N1_M2_N2_N3_N4().GetLengths() /
blockwise_gemm.GetCThreadDescriptor_M0_N0_M1_N1_M2_N2_N3_N4().GetLengths();
constexpr auto tm0 = thread_cluster_m0_n0_m1_n1_m2_n2_n3_n4.At(I0);
constexpr auto tn0 = thread_cluster_m0_n0_m1_n1_m2_n2_n3_n4.At(I1);
constexpr auto tm1 = thread_cluster_m0_n0_m1_n1_m2_n2_n3_n4.At(I2);
constexpr auto tn1 = thread_cluster_m0_n0_m1_n1_m2_n2_n3_n4.At(I3);
constexpr auto tm2 = thread_cluster_m0_n0_m1_n1_m2_n2_n3_n4.At(I4);
constexpr auto tn2 = thread_cluster_m0_n0_m1_n1_m2_n2_n3_n4.At(I5);
constexpr auto tn3 = thread_cluster_m0_n0_m1_n1_m2_n2_n3_n4.At(I6);
constexpr auto tn4 = thread_cluster_m0_n0_m1_n1_m2_n2_n3_n4.At(I7);
// get acc0 thread map
constexpr auto m0_n_m1_to_m_n_adaptor = make_single_stage_tensor_adaptor(
make_tuple(make_unmerge_transform(make_tuple(tm0 * tm1, tm2)),
make_pass_through_transform(I1)),
make_tuple(Sequence<0>{}, Sequence<1>{}),
make_tuple(Sequence<0, 2>{}, Sequence<1>{}));
constexpr auto threadid_to_m0_n_m1_adaptor = make_single_stage_tensor_adaptor(
make_tuple(
make_merge_transform(make_tuple(tm0 * tm1, tn0 * tn1 * tn2 * tn3 * tn4, tm2))),
make_tuple(Sequence<0, 1, 2>{}),
make_tuple(Sequence<0>{}));
const auto threadid_to_m_n_thread_cluster_adaptor =
chain_tensor_adaptors(m0_n_m1_to_m_n_adaptor, threadid_to_m0_n_m1_adaptor);
// get acc0 2D thread cluster & 2D thread slice
constexpr auto thread_cluster_desc_m_n = make_naive_tensor_descriptor_packed(
make_tuple(tm0 * tm1 * tm2, tn0 * tn1 * tn2 * tn3 * tn4));
constexpr auto thread_slice_desc_m_n =
make_naive_tensor_descriptor_packed(make_tuple(m0 * m1 * m2, n0 * n1 * n2 * n3 * n4));
auto blockwise_softmax = BlockwiseSoftmax<BlockSize,
FloatGemmAcc,
decltype(threadid_to_m_n_thread_cluster_adaptor),
decltype(thread_cluster_desc_m_n),
decltype(thread_slice_desc_m_n)>{};
const index_t num_gemm1_k_block_outer_loop =
b_grid_desc_bk0_n_bk1.GetLength(I1) / NPerBlock;
constexpr index_t num_gemm1_k_block_inner_loop = NPerBlock / Gemm1KPerBlock;
// Initialize C
StaticBuffer<AddressSpaceEnum::Vgpr, FloatGemmAcc, acc1_thread_buf.Size(), true>
c_thread_buf;
c_thread_buf.Clear();
// Initialize running sum and max of exponentiating row vectors
using SoftmaxBuf = typename decltype(blockwise_softmax)::BufferType;
SoftmaxBuf running_sum, running_sum_new, running_max, running_max_new;
running_sum = 0;
running_sum_new = 0;
running_max = NumericLimits<FloatGemmAcc>::Lowest();
running_max_new = NumericLimits<FloatGemmAcc>::Lowest();
// gemm1 K loop
index_t gemm1_k_block_outer_index = 0;
do
{
auto n_block_data_idx_on_grid =
__builtin_amdgcn_readfirstlane(gemm1_k_block_outer_index * NPerBlock);
if(c0_matrix_mask.IsTileSkippable(
m_block_data_idx_on_grid, n_block_data_idx_on_grid, MPerBlock, NPerBlock))
{
continue;
}
// gemm0
gridwise_gemm_pipeline.template Run<HasMainKBlockLoop>(a_grid_desc_ak0_m_ak1,
a_block_desc_ak0_m_ak1,
a_blockwise_copy,
a_grid_buf,
a_block_buf,
a_block_slice_copy_step,
b_grid_desc_bk0_n_bk1,
b_block_desc_bk0_n_bk1,
b_blockwise_copy,
b_grid_buf,
b_block_buf,
b_block_slice_copy_step,
blockwise_gemm,
acc_thread_buf,
num_k_block_main_loop);
// multiple d
if constexpr(NumD0Tensor)
{
static_for<0, MXdlPerWave, 1>{}([&](auto mr) {
static_for<0, NXdlPerWave, 1>{}([&](auto nr) {
static_for<0, n2, 1>{}([&](auto groupid) {
static_for<0, NumD0Tensor, 1>{}([&](auto i) {
d0s_threadwise_copy(i).Run(
d0s_griddesc_m0_n0_m1_n1_m2_n2_m3_n3_n4_n5[i],
d0s_grid_buf[i],
d0_thread_desc_m0_n0_m1_n1_m2_n2_m3_n3_n4_n5,
make_tuple(I0, I0, I0, I0, I0, I0, I0, I0, I0, I0),
d0s_thread_buf(i));
});
static_for<0, n4, 1>{}([&](auto i) {
constexpr index_t c_offset = acc0_thread_desc.CalculateOffset(
make_tuple(mr, nr, groupid, i));
// get reference to src data
const auto src_data_refs = generate_tie(
// return type should be lvalue
[&](auto iSrc) -> const auto& {
return d0s_thread_buf[iSrc][i];
},
Number<NumD0Tensor>{});
// get reference to dst data
auto dst_data_refs = generate_tie(
// return type should be lvalue
[&](auto) -> auto& {
return acc_thread_buf(Number<c_offset>{});
},
Number<2>{});
unpack2(c0de_element_op, dst_data_refs, src_data_refs);
});
static_for<0, NumD0Tensor, 1>{}([&](auto i) {
d0s_threadwise_copy(i).MoveSrcSliceWindow(
d0s_griddesc_m0_n0_m1_n1_m2_n2_m3_n3_n4_n5[i],
make_multi_index(0, 0, 0, 0, 0, 0, 0, 1, 0, 0));
});
});
static_for<0, NumD0Tensor, 1>{}([&](auto i) {
d0s_threadwise_copy(i).MoveSrcSliceWindow(
d0s_griddesc_m0_n0_m1_n1_m2_n2_m3_n3_n4_n5[i],
make_multi_index(0, 0, 0, 1, 0, 0, 0, -n2.value, 0, 0));
});
});
static_for<0, NumD0Tensor, 1>{}([&](auto i) {
d0s_threadwise_copy(i).MoveSrcSliceWindow(
d0s_griddesc_m0_n0_m1_n1_m2_n2_m3_n3_n4_n5[i],
make_multi_index(0, 0, 1, -NXdlPerWave, 0, 0, 0, 0, 0, 0));
});
});
static_for<0, NumD0Tensor, 1>{}([&](auto i) {
d0s_threadwise_copy(i).MoveSrcSliceWindow(
d0s_griddesc_m0_n0_m1_n1_m2_n2_m3_n3_n4_n5[i],
make_multi_index(0, 1, -MXdlPerWave, 0, 0, 0, 0, 0, 0, 0));
});
}
else
{
static_for<0, acc_thread_buf.Size(), 1>{}(
[&](auto i) { c0de_element_op(acc_thread_buf(i), acc_thread_buf[i]); });
}
// do MNK padding or upper triangular masking
if constexpr(MaskOutUpperTriangle || PadN)
{
// 8d thread_desc in thread scope
constexpr auto c_thread_lengths =
blockwise_gemm.GetCThreadDescriptor_M0_N0_M1_N1_M2_N2_N3_N4().GetLengths();
// 8d block_desc in block scope
constexpr auto c_block_lengths =
blockwise_gemm.GetCBlockDescriptor_M0_N0_M1_N1_M2_N2_N3_N4().GetLengths();
constexpr auto M0 = c_block_lengths[I0];
constexpr auto N0 = c_block_lengths[I1];
constexpr auto M1 = c_block_lengths[I2];
constexpr auto N1 = c_block_lengths[I3];
constexpr auto M2 = c_block_lengths[I4];
constexpr auto N2 = c_block_lengths[I5];
constexpr auto N3 = c_block_lengths[I6];
constexpr auto N4 = c_block_lengths[I7];
// works like multi-dimension static_for (static_ford), but provides both the linear
// index as well as n-d index
using Acc0TileIterator = SpaceFillingCurve<
decltype(c_thread_lengths),
typename arithmetic_sequence_gen<0, c_thread_lengths.Size(), 1>::type,
typename uniform_sequence_gen<c_thread_lengths.Size(), 1>::type,
false>; // SnakeCurved
auto acc0_thread_origin = blockwise_gemm.CalculateCThreadOriginDataIndex8D(
Number<0>{}, Number<0>{}, Number<0>{}, Number<0>{});
constexpr auto block_idx_to_m_n_adaptor = make_single_stage_tensor_adaptor(
make_tuple(make_unmerge_transform(make_tuple(M0, M1, M2)),
make_unmerge_transform(make_tuple(N0, N1, N2, N3, N4))),
make_tuple(Sequence<0>{}, Sequence<1>{}),
make_tuple(Sequence<0, 2, 4>{}, Sequence<1, 3, 5, 6, 7>{}));
static_for<0, Acc0TileIterator::GetNumOfAccess(), 1>{}([&](auto i) {
auto acc0_thread_idx = Acc0TileIterator::GetIndex(i) + acc0_thread_origin;
auto m_local =
block_idx_to_m_n_adaptor.CalculateBottomIndex(acc0_thread_idx)[I0];
auto n_local =
block_idx_to_m_n_adaptor.CalculateBottomIndex(acc0_thread_idx)[I1];
auto m_global = m_local + m_block_data_idx_on_grid;
auto n_global = n_local + n_block_data_idx_on_grid;
if(c0_matrix_mask.IsMaskedElement(m_global, n_global))
{
acc_thread_buf(i) = -ck::NumericLimits<float>::Infinity();
}
});
}
block_sync_lds(); // wait for lds read in gemm0 blockwise gemm
// softmax
SoftmaxBuf& max = blockwise_softmax.max_value_buf;
SoftmaxBuf& sum = blockwise_softmax.sum_value_buf;
blockwise_softmax.Run(acc_thread_buf, workspace_buf);
// TODO: may convert to log domain
running_max_new = mathext::max(max, running_max);
running_sum_new = mathext::exp(running_max - running_max_new) * running_sum +
mathext::exp(max - running_max_new) * sum;
// gemm1
{
// TODO: explore using dynamic buffer for a1 thread buffer
// For a1_blockwise_copy, the goal is to satisfy pipeline requirements RunRead(),
// RunWrite(), and MoveSliceWindow(). But it is impossible to implement given that
// the A1 source buffer is static buffer holding the output of first GEMM and
// requires constexpr offset by design. Therefore, we pass tensor coordinate offset
// explicitly in Run() below.
// Initialize acc1
acc1_thread_buf.Clear();
// preload data into LDS
b1_blockwise_copy.RunRead(b1_grid_desc_bk0_n_bk1, b1_grid_buf);
b1_blockwise_copy.MoveSrcSliceWindow(b1_grid_desc_bk0_n_bk1,
b1_block_slice_copy_step);
block_sync_lds(); // wait for reduction LDS read
b1_blockwise_copy.RunWrite(b1_block_desc_bk0_n_bk1, b1_block_buf);
// main body
if constexpr(num_gemm1_k_block_inner_loop > 1)
{
static_for<0, num_gemm1_k_block_inner_loop - 1, 1>{}([&](auto i) {
a1_blockwise_copy.Run(acc_thread_desc_k0_m_k1,
make_tuple(Number<i * A1ThreadSliceK0>{}, I0, I0),
acc_thread_buf,
a1_thread_desc_k0_m_k1,
make_tuple(I0, I0, I0),
a1_thread_buf);
b1_blockwise_copy.RunRead(b1_grid_desc_bk0_n_bk1, b1_grid_buf);
block_sync_lds();
gemm1_blockwise_gemm.Run(a1_thread_buf, b1_block_buf, acc1_thread_buf);
block_sync_lds();
b1_blockwise_copy.MoveSrcSliceWindow(b1_grid_desc_bk0_n_bk1,
b1_block_slice_copy_step);
b1_blockwise_copy.RunWrite(b1_block_desc_bk0_n_bk1, b1_block_buf);
});
}
// tail
{
a1_blockwise_copy.Run(
acc_thread_desc_k0_m_k1,
make_tuple(
Number<(num_gemm1_k_block_inner_loop - 1) * A1ThreadSliceK0>{}, I0, I0),
acc_thread_buf,
a1_thread_desc_k0_m_k1,
make_tuple(I0, I0, I0),
a1_thread_buf);
block_sync_lds();
gemm1_blockwise_gemm.Run(a1_thread_buf, b1_block_buf, acc1_thread_buf);
}
} // end gemm1
constexpr auto c_thread_desc_m0_n0_m1_n1_m2_n2_n3_n4 =
gemm1_blockwise_gemm.GetCThreadDescriptor_M0_N0_M1_N1_M2_N2_N3_N4();
constexpr auto cm0 = c_thread_desc_m0_n0_m1_n1_m2_n2_n3_n4.GetLength(I0);
constexpr auto cn0 = c_thread_desc_m0_n0_m1_n1_m2_n2_n3_n4.GetLength(I1);
constexpr auto cm1 = c_thread_desc_m0_n0_m1_n1_m2_n2_n3_n4.GetLength(I2);
constexpr auto cn1 = c_thread_desc_m0_n0_m1_n1_m2_n2_n3_n4.GetLength(I3);
constexpr auto cm2 = c_thread_desc_m0_n0_m1_n1_m2_n2_n3_n4.GetLength(I4);
constexpr auto cn2 = c_thread_desc_m0_n0_m1_n1_m2_n2_n3_n4.GetLength(I5);
constexpr auto cn3 = c_thread_desc_m0_n0_m1_n1_m2_n2_n3_n4.GetLength(I6);
constexpr auto cn4 = c_thread_desc_m0_n0_m1_n1_m2_n2_n3_n4.GetLength(I7);
constexpr auto c_thread_slice_desc_m_n = make_naive_tensor_descriptor_packed(
make_tuple(cm0 * cm1 * cm2, cn0 * cn1 * cn2 * cn3 * cn4));
constexpr auto c_thread_buf_slice_m = c_thread_slice_desc_m_n.GetLength(I0);
constexpr auto c_thread_buf_slice_n = c_thread_slice_desc_m_n.GetLength(I1);
static_for<0, c_thread_buf_slice_m, 1>{}([&](auto iM) {
static_for<0, c_thread_buf_slice_n, 1>{}([&](auto iN) {
auto I = Number<c_thread_slice_desc_m_n.CalculateOffset(make_tuple(iM, iN))>{};
FloatGemmAcc acc1 = acc1_thread_buf[I]; // P*V
FloatGemmAcc c = c_thread_buf[I]; // O
FloatGemmAcc c_new =
(running_sum[iM] * math::exp(running_max[iM] - running_max_new[iM]) * c +
math::exp(max[iM] - running_max_new[iM]) * acc1) /
running_sum_new[iM]; // Formula by Dao et al.,
// https://arxiv.org/pdf/2205.14135v2.pdf section 3.1
c_thread_buf(I) = c_new; // O_new
});
});
a_blockwise_copy.MoveSrcSliceWindow(a_grid_desc_ak0_m_ak1,
a_block_reset_copy_step); // rewind K
b_blockwise_copy.MoveSrcSliceWindow(b_grid_desc_bk0_n_bk1,
b_block_reset_copy_step); // rewind K and step N
// update before next j iteration
running_max = running_max_new;
running_sum = running_sum_new;
block_sync_lds(); // wait for gemm1 LDS read
} while(++gemm1_k_block_outer_index < num_gemm1_k_block_outer_loop); // end j loop
// shuffle C and write out
{
static_assert(MXdlPerWave % CShuffleMXdlPerWavePerShuffle == 0 &&
Gemm1NXdlPerWave % CShuffleNXdlPerWavePerShuffle == 0,
"wrong!");
constexpr index_t MWave = MPerBlock / (MXdlPerWave * MPerXdl);
constexpr index_t NWave = Gemm1NPerBlock / (Gemm1NXdlPerWave * NPerXdl);
// TODO: hacky, fix it!
constexpr auto c_thread_desc_m0_n0_m1_n1_m2_n2_n3_n4 =
gemm1_blockwise_gemm.GetCThreadDescriptor_M0_N0_M1_N1_M2_N2_N3_N4();
// TODO: hacky, fix it!
// c_block_desc_m0_n0_m1_n1_m2_n2_n3_n4_tmp is only used to get lengths
constexpr auto c_block_desc_m0_n0_m1_n1_m2_n2_n3_n4_tmp =
gemm1_blockwise_gemm.GetCBlockDescriptor_M0_N0_M1_N1_M2_N2_N3_N4();
constexpr auto M0 = c_block_desc_m0_n0_m1_n1_m2_n2_n3_n4_tmp.GetLength(I0);
constexpr auto N0 = c_block_desc_m0_n0_m1_n1_m2_n2_n3_n4_tmp.GetLength(I1);
constexpr auto M1 = c_block_desc_m0_n0_m1_n1_m2_n2_n3_n4_tmp.GetLength(I2);
constexpr auto N1 = c_block_desc_m0_n0_m1_n1_m2_n2_n3_n4_tmp.GetLength(I3);
constexpr auto M2 = c_block_desc_m0_n0_m1_n1_m2_n2_n3_n4_tmp.GetLength(I4);
constexpr auto N2 = c_block_desc_m0_n0_m1_n1_m2_n2_n3_n4_tmp.GetLength(I5);
constexpr auto N3 = c_block_desc_m0_n0_m1_n1_m2_n2_n3_n4_tmp.GetLength(I6);
constexpr auto N4 = c_block_desc_m0_n0_m1_n1_m2_n2_n3_n4_tmp.GetLength(I7);
constexpr auto c_shuffle_block_desc_mblock_mperblock_nblock_nperblock =
GetCShuffleBlockDescriptor_MBlock_MPerBlock_NBlock_NPerBlock();
auto c_shuffle_block_buf = make_dynamic_buffer<AddressSpaceEnum::Lds>(
static_cast<FloatCShuffle*>(p_shared),
c_shuffle_block_desc_mblock_mperblock_nblock_nperblock.GetElementSpaceSize());
constexpr auto c_block_desc_m0_n0_m1_n1_m2_n2_n3_n4 = transform_tensor_descriptor(
c_shuffle_block_desc_mblock_mperblock_nblock_nperblock,
make_tuple(
make_freeze_transform(I0),
make_unmerge_transform(make_tuple(
Number<CShuffleMXdlPerWavePerShuffle>{}, // M0 (MXdlPerWave) per shuffle
M1, // M1 = MWave
M2)), // M2 = MPerXdl
make_freeze_transform(I0),
make_unmerge_transform(make_tuple(
Number<CShuffleNXdlPerWavePerShuffle>{}, // N0 (NXdlPerWave) per shuffle
N1, // N1 = NWave
N2, // N2 * N3 * N4 = NPerXdl
N3,
N4))),
make_tuple(Sequence<0>{}, Sequence<1>{}, Sequence<2>{}, Sequence<3>{}),
make_tuple(
Sequence<>{}, Sequence<0, 2, 4>{}, Sequence<>{}, Sequence<1, 3, 5, 6, 7>{}));
// calculate origin of thread output tensor on global memory
// blockwise GEMM c matrix starting index
const auto c_thread_mtx_on_block =
gemm1_blockwise_gemm.CalculateCThreadOriginDataIndex(I0, I0, I0, I0);
const index_t m_thread_data_on_block = c_thread_mtx_on_block[I0];
const index_t n_thread_data_on_block = c_thread_mtx_on_block[I1];
const auto m_thread_data_on_block_to_m0_m1_m2_adaptor =
make_single_stage_tensor_adaptor(
make_tuple(make_merge_transform(make_tuple(M0, M1, M2))),
make_tuple(Sequence<0, 1, 2>{}),
make_tuple(Sequence<0>{}));
const auto m_thread_data_on_block_idx =
m_thread_data_on_block_to_m0_m1_m2_adaptor.CalculateBottomIndex(
make_multi_index(m_thread_data_on_block));
const auto n_thread_data_on_block_to_n0_n1_n2_n3_n4_adaptor =
make_single_stage_tensor_adaptor(
make_tuple(make_merge_transform(make_tuple(N0, N1, N2, N3, N4))),
make_tuple(Sequence<0, 1, 2, 3, 4>{}),
make_tuple(Sequence<0>{}));
const auto n_thread_data_on_block_idx =
n_thread_data_on_block_to_n0_n1_n2_n3_n4_adaptor.CalculateBottomIndex(
make_multi_index(n_thread_data_on_block));
// shuffle: threadwise copy C from VGPR to LDS
auto c_thread_copy_vgpr_to_lds =
ThreadwiseTensorSliceTransfer_v1r3<FloatGemmAcc,
FloatCShuffle,
decltype(c_thread_desc_m0_n0_m1_n1_m2_n2_n3_n4),
decltype(c_block_desc_m0_n0_m1_n1_m2_n2_n3_n4),
tensor_operation::element_wise::PassThrough,
Sequence<CShuffleMXdlPerWavePerShuffle,
CShuffleNXdlPerWavePerShuffle,
I1,
I1,
I1,
N2,
I1,
N4>,
Sequence<0, 1, 2, 3, 4, 5, 6, 7>,
7,
1,
InMemoryDataOperationEnum::Set,
1,
true>{
c_block_desc_m0_n0_m1_n1_m2_n2_n3_n4,
make_multi_index(0,
0,
m_thread_data_on_block_idx[I1],
n_thread_data_on_block_idx[I1],
m_thread_data_on_block_idx[I2],
n_thread_data_on_block_idx[I2],
n_thread_data_on_block_idx[I3],
n_thread_data_on_block_idx[I4]),
tensor_operation::element_wise::PassThrough{}};
// shuffle: blockwise copy C from LDS to global
auto c_shuffle_block_copy_lds_to_global = ThreadGroupTensorSliceTransfer_v6r1<
ThisThreadBlock, // ThreadGroup
C1DEElementwiseOperation, // ElementwiseOperation,
CGlobalMemoryDataOperation, // DstInMemOp,
Sequence<1,
CShuffleMXdlPerWavePerShuffle * MWave * MPerXdl,
1,
CShuffleNXdlPerWavePerShuffle * NWave * NPerXdl>, // BlockSliceLengths,
CShuffleBlockTransferClusterLengths_MBlock_MPerBlock_NBlock_NPerBlock,
Sequence<0, 1, 2, 3>, // typename ThreadClusterArrangeOrder,
FloatCShuffle, // typename SrcData,
FloatC, // typename DstData,
decltype(c_shuffle_block_desc_mblock_mperblock_nblock_nperblock),
decltype(c_grid_desc_mblock_mperblock_nblock_nperblock),
Sequence<0, 1, 2, 3>, // typename DimAccessOrder,
3, // index_t VectorDim,
CShuffleBlockTransferScalarPerVector_NPerBlock, // index_t ScalarPerVector,
true, // bool ThreadTransferSrcResetCoordinateAfterRun,
false> // bool ThreadTransferDstResetCoordinateAfterRun>
{c_shuffle_block_desc_mblock_mperblock_nblock_nperblock,
make_multi_index(0, 0, 0, 0),
c_grid_desc_mblock_mperblock_nblock_nperblock,
make_multi_index(block_work_idx[I0], 0, block_work_idx[I1], 0),
c1de_element_op};
// space filling curve for threadwise C in VGPR
constexpr auto sfc_c_vgpr =
SpaceFillingCurve<Sequence<MXdlPerWave, Gemm1NXdlPerWave, 1, 1, 1, N2, 1, N4>,
Sequence<0, 1, 2, 3, 4, 5, 6, 7>,
Sequence<CShuffleMXdlPerWavePerShuffle,
CShuffleNXdlPerWavePerShuffle,
1,
1,
1,
N2,
1,
N4>>{};
// space filling curve for shuffled blockwise C in global mem
constexpr auto sfc_c_global =
SpaceFillingCurve<Sequence<1, MPerBlock, 1, Gemm1NPerBlock>,
Sequence<0, 2, 1, 3>,
Sequence<1,
CShuffleMXdlPerWavePerShuffle * MWave * MPerXdl,
1,
CShuffleNXdlPerWavePerShuffle * NWave * NPerXdl>>{};
constexpr index_t num_access = sfc_c_vgpr.GetNumOfAccess();
static_assert(num_access == sfc_c_global.GetNumOfAccess(), "wrong!");
static_for<0, num_access, 1>{}([&](auto access_id) {
// make sure it's safe to write to LDS
block_sync_lds();
// each thread write its data from VGPR to LDS
c_thread_copy_vgpr_to_lds.Run(c_thread_desc_m0_n0_m1_n1_m2_n2_n3_n4,
sfc_c_vgpr.GetIndexTupleOfNumber(access_id),
c_thread_buf,
c_block_desc_m0_n0_m1_n1_m2_n2_n3_n4,
c_shuffle_block_buf);
// make sure it's safe to read from LDS
block_sync_lds();
// each block copy its data from LDS to global
c_shuffle_block_copy_lds_to_global.Run(
c_shuffle_block_desc_mblock_mperblock_nblock_nperblock,
c_shuffle_block_buf,
c_grid_desc_mblock_mperblock_nblock_nperblock,
c_grid_buf);
if constexpr(access_id < num_access - 1)
{
constexpr auto c_global_step = sfc_c_global.GetForwardStep(access_id);
// move on C
c_shuffle_block_copy_lds_to_global.MoveDstSliceWindow(
c_grid_desc_mblock_mperblock_nblock_nperblock, c_global_step);
}
});
}
}
};
} // namespace ck
...@@ -879,14 +879,6 @@ struct GridwiseBatchedGemmSoftmaxGemm_Xdl_CShuffle ...@@ -879,14 +879,6 @@ struct GridwiseBatchedGemmSoftmaxGemm_Xdl_CShuffle
} }
} // end gemm1 } // end gemm1
// workaround compiler issue; see ck/ck.hpp
if constexpr(CK_WORKAROUND_SWDEV_XXXXXX_BF16_ATTEN_FWD_GFX908_ISSUE == 1 &&
is_same_v<FloatAB, bhalf_t> && MPerBlock == 256 && NPerBlock == 128 &&
Gemm1NPerBlock == 128)
{
__builtin_amdgcn_sched_barrier(0);
}
constexpr auto c_thread_desc_m0_n0_m1_n1_m2_n2_n3_n4 = constexpr auto c_thread_desc_m0_n0_m1_n1_m2_n2_n3_n4 =
gemm1_blockwise_gemm.GetCThreadDescriptor_M0_N0_M1_N1_M2_N2_N3_N4(); gemm1_blockwise_gemm.GetCThreadDescriptor_M0_N0_M1_N1_M2_N2_N3_N4();
constexpr auto cm0 = c_thread_desc_m0_n0_m1_n1_m2_n2_n3_n4.GetLength(I0); constexpr auto cm0 = c_thread_desc_m0_n0_m1_n1_m2_n2_n3_n4.GetLength(I0);
......
// SPDX-License-Identifier: MIT // SPDX-License-Identifier: MIT
// Copyright (c) 2018-2022, Advanced Micro Devices, Inc. All rights reserved. // Copyright (c) 2018-2023, Advanced Micro Devices, Inc. All rights reserved.
#pragma once #pragma once
...@@ -574,4 +574,546 @@ struct GridwiseGemmDl_km_kn_mn_v1r3 ...@@ -574,4 +574,546 @@ struct GridwiseGemmDl_km_kn_mn_v1r3
} }
}; };
template <index_t BlockSize,
typename FloatAB,
typename FloatAcc,
typename FloatC,
InMemoryDataOperationEnum CGlobalMemoryDataOperation,
typename AGridDesc_B_K0_M_K1,
typename BGridDesc_B_K0_N_K1,
typename CGridDesc_M_N,
index_t MPerBlock,
index_t NPerBlock,
index_t K0PerBlock,
index_t K1Value,
index_t M1PerThreadM111,
index_t N1PerThreadN111,
index_t KPerThread,
typename M11N11ThreadClusterM110Xs,
typename M11N11ThreadClusterN110Xs,
typename ABlockTransferThreadSliceLengths_K0_M0_M1_K1,
typename ABlockTransferThreadClusterLengths_K0_M0_M1_K1,
typename ABlockTransferThreadClusterArrangeOrder,
typename ABlockTransferSrcAccessOrder,
typename ABlockTransferSrcVectorTensorLengths_K0_M0_M1_K1,
typename ABlockTransferSrcVectorTensorContiguousDimOrder,
typename ABlockTransferDstVectorTensorLengths_K0_M0_M1_K1,
typename BBlockTransferThreadSliceLengths_K0_N0_N1_K1,
typename BBlockTransferThreadClusterLengths_K0_N0_N1_K1,
typename BBlockTransferThreadClusterArrangeOrder,
typename BBlockTransferSrcAccessOrder,
typename BBlockTransferSrcVectorTensorLengths_K0_N0_N1_K1,
typename BBlockTransferSrcVectorTensorContiguousDimOrder,
typename BBlockTransferDstVectorTensorLengths_K0_N0_N1_K1,
typename CThreadTransferSrcDstAccessOrder,
index_t CThreadTransferSrcDstVectorDim,
index_t CThreadTransferDstScalarPerVector>
struct GridwiseGemmDl_bkm_bkn_mn_v1r3
{
static constexpr auto I0 = Number<0>{};
static constexpr auto I1 = Number<1>{};
static constexpr auto I2 = Number<2>{};
static constexpr auto I3 = Number<3>{};
// K1 should be Number<...>
static constexpr auto K1 = Number<K1Value>{};
__host__ __device__ static constexpr index_t GetSharedMemoryNumberOfByte()
{
// TODO: change this. I think it needs multi-dimensional alignment
constexpr auto max_lds_align = K1;
// TODO: check alignment
// A matrix in LDS memory, dst of blockwise copy
constexpr auto a_block_desc_b_k0_m_k1 = make_naive_tensor_descriptor_aligned(
make_tuple(Number<1>{}, Number<K0PerBlock>{}, Number<MPerBlock>{}, K1), max_lds_align);
// TODO: check alignment
// B matrix in LDS memory, dst of blockwise copy
constexpr auto b_block_desc_b_k0_n_k1 = make_naive_tensor_descriptor_aligned(
make_tuple(Number<1>{}, Number<K0PerBlock>{}, Number<NPerBlock>{}, K1), max_lds_align);
// TODO: check alignment
// LDS allocation for A and B: be careful of alignment
constexpr auto a_block_aligned_space_size = math::integer_least_multiple(
a_block_desc_b_k0_m_k1.GetElementSpaceSize(), max_lds_align);
constexpr auto b_block_aligned_space_size = math::integer_least_multiple(
b_block_desc_b_k0_n_k1.GetElementSpaceSize(), max_lds_align);
return 2 * (a_block_aligned_space_size + b_block_aligned_space_size) * sizeof(FloatAB);
}
__host__ __device__ static constexpr bool
CheckValidity(const AGridDesc_B_K0_M_K1& a_grid_desc_b_k0_m_k1,
const BGridDesc_B_K0_N_K1& b_grid_desc_b_k0_n_k1,
const CGridDesc_M_N& c_grid_desc_m_n)
{
const auto M = a_grid_desc_b_k0_m_k1.GetLength(I2);
const auto N = b_grid_desc_b_k0_n_k1.GetLength(I2);
const auto K0 = a_grid_desc_b_k0_m_k1.GetLength(I1);
const auto KBatch = a_grid_desc_b_k0_m_k1.GetLength(I0);
// TODO: also check validity of all components (blockwise-copy, threadwise-copy, etc)
return (M == c_grid_desc_m_n.GetLength(I0) && N == c_grid_desc_m_n.GetLength(I1) &&
K0 == b_grid_desc_b_k0_n_k1.GetLength(I1) &&
K1 == a_grid_desc_b_k0_m_k1.GetLength(I3) &&
K1 == b_grid_desc_b_k0_n_k1.GetLength(I3)) &&
KBatch == b_grid_desc_b_k0_n_k1.GetLength(I0) &&
(M % MPerBlock == 0 && N % NPerBlock == 0 && K0 % K0PerBlock == 0);
}
__host__ __device__ static constexpr index_t CalculateGridSize(index_t M, index_t N)
{
const index_t grid_size = (M / MPerBlock) * (N / NPerBlock);
return grid_size;
}
__host__ __device__ static constexpr bool CalculateHasMainKBlockLoop(index_t K0)
{
const bool has_main_k_block_loop = (K0 + K0PerBlock) / (2 * K0PerBlock) > 1;
return has_main_k_block_loop;
}
__host__ __device__ static constexpr bool CalculateHasDoubleTailKBlockLoop(index_t K0)
{
const bool has_double_tail_k_block_loop = (K0 / K0PerBlock) % 2 == 0;
return has_double_tail_k_block_loop;
}
__host__ __device__ static constexpr auto
MakeAGridDescriptor_B_K0_M0_M1_K1(const AGridDesc_B_K0_M_K1& a_grid_desc_b_k0_m_k1)
{
const auto KBatch = a_grid_desc_b_k0_m_k1.GetLength(I0);
const auto K0 = a_grid_desc_b_k0_m_k1.GetLength(I1);
const auto M = a_grid_desc_b_k0_m_k1.GetLength(I2);
const auto M1 = Number<MPerBlock>{};
const auto M0 = M / M1;
const auto a_grid_desc_b_k0_m0_m1_k1 = transform_tensor_descriptor(
a_grid_desc_b_k0_m_k1,
make_tuple(make_pass_through_transform(KBatch),
make_pass_through_transform(K0),
make_unmerge_transform(make_tuple(M0, M1)),
make_pass_through_transform(K1)),
make_tuple(Sequence<0>{}, Sequence<1>{}, Sequence<2>{}, Sequence<3>{}),
make_tuple(Sequence<0>{}, Sequence<1>{}, Sequence<2, 3>{}, Sequence<4>{}));
return a_grid_desc_b_k0_m0_m1_k1;
}
__host__ __device__ static constexpr auto
MakeBGridDescriptor_B_K0_N0_N1_K1(const BGridDesc_B_K0_N_K1& b_grid_desc_b_k0_n_k1)
{
const auto KBatch = b_grid_desc_b_k0_n_k1.GetLength(I0);
const auto K0 = b_grid_desc_b_k0_n_k1.GetLength(I1);
const auto N = b_grid_desc_b_k0_n_k1.GetLength(I2);
const auto N1 = Number<NPerBlock>{};
const auto N0 = N / N1;
const auto b_grid_desc_b_k0_n0_n1_k1 = transform_tensor_descriptor(
b_grid_desc_b_k0_n_k1,
make_tuple(make_pass_through_transform(KBatch),
make_pass_through_transform(K0),
make_unmerge_transform(make_tuple(N0, N1)),
make_pass_through_transform(K1)),
make_tuple(Sequence<0>{}, Sequence<1>{}, Sequence<2>{}, Sequence<3>{}),
make_tuple(Sequence<0>{}, Sequence<1>{}, Sequence<2, 3>{}, Sequence<4>{}));
return b_grid_desc_b_k0_n0_n1_k1;
}
__host__ __device__ static constexpr auto
MakeCGridDescriptor_M0_M10_M11_N0_N10_N11(const CGridDesc_M_N& c_grid_desc_m_n)
{
const auto M = c_grid_desc_m_n.GetLength(I0);
const auto N = c_grid_desc_m_n.GetLength(I1);
constexpr auto M1 = Number<MPerBlock>{};
constexpr auto N1 = Number<NPerBlock>{};
const auto M0 = M / M1;
const auto N0 = N / N1;
constexpr auto M11 =
Number<container_reduce(M11N11ThreadClusterM110Xs{}, math::multiplies{}, I1) *
M1PerThreadM111>{};
constexpr auto N11 =
Number<container_reduce(M11N11ThreadClusterN110Xs{}, math::multiplies{}, I1) *
N1PerThreadN111>{};
constexpr auto M10 = M1 / M11;
constexpr auto N10 = N1 / N11;
const auto c_grid_desc_m0_m10_m11_n0_n10_n11 = transform_tensor_descriptor(
c_grid_desc_m_n,
make_tuple(make_unmerge_transform(make_tuple(M0, M10, M11)),
make_unmerge_transform(make_tuple(N0, N10, N11))),
make_tuple(Sequence<0>{}, Sequence<1>{}),
make_tuple(Sequence<0, 1, 2>{}, Sequence<3, 4, 5>{}));
return c_grid_desc_m0_m10_m11_n0_n10_n11;
}
// return block_id to C matrix tile idx (m0, n0) mapping
__host__ __device__ static constexpr auto MakeCBlockClusterAdaptor(
const CGridDesc_M_N& c_m_n_grid_desc, index_t M01, index_t N01, index_t KBatch)
{
return BlockToCTileMap_KSplit_M00_N00_M01_N01<MPerBlock, NPerBlock, CGridDesc_M_N>(
c_m_n_grid_desc, M01, N01, KBatch);
}
using AGridDesc_B_K0_M0_M1_K1 =
decltype(MakeAGridDescriptor_B_K0_M0_M1_K1(AGridDesc_B_K0_M_K1{}));
using BGridDesc_B_K0_N0_N1_K1 =
decltype(MakeBGridDescriptor_B_K0_N0_N1_K1(BGridDesc_B_K0_N_K1{}));
using CGridDesc_M0_M10_M11_N0_N10_N11 =
decltype(MakeCGridDescriptor_M0_M10_M11_N0_N10_N11(CGridDesc_M_N{}));
using CBlockClusterAdaptor = decltype(MakeCBlockClusterAdaptor(CGridDesc_M_N{}, 1, 1, 1));
template <bool HasMainKBlockLoop, bool HasDoubleTailKBlockLoop>
__device__ static void
Run(const FloatAB* __restrict__ p_a_grid,
const FloatAB* __restrict__ p_b_grid,
FloatC* __restrict__ p_c_grid,
FloatAB* __restrict__ p_shared_block,
const AGridDesc_B_K0_M0_M1_K1& a_grid_desc_b_k0_m0_m1_k1,
const BGridDesc_B_K0_N0_N1_K1& b_grid_desc_b_k0_n0_n1_k1,
const CGridDesc_M0_M10_M11_N0_N10_N11& c_grid_desc_m0_m10_m11_n0_n10_n11,
const CBlockClusterAdaptor& c_block_cluster_adaptor,
integral_constant<bool, HasMainKBlockLoop>,
integral_constant<bool, HasDoubleTailKBlockLoop>)
{
const auto a_global_buf = make_dynamic_buffer<AddressSpaceEnum::Global>(
p_a_grid, a_grid_desc_b_k0_m0_m1_k1.GetElementSpaceSize());
const auto b_global_buf = make_dynamic_buffer<AddressSpaceEnum::Global>(
p_b_grid, b_grid_desc_b_k0_n0_n1_k1.GetElementSpaceSize());
auto c_grid_buf = make_dynamic_buffer<AddressSpaceEnum::Global>(
p_c_grid, c_grid_desc_m0_m10_m11_n0_n10_n11.GetElementSpaceSize());
// divide block work by [M, N]
const auto block_work_idx =
c_block_cluster_adaptor.CalculateBottomIndex(make_multi_index(get_block_1d_id()));
const index_t k_batch_id = block_work_idx[I0];
if(!c_block_cluster_adaptor.ValidCTileIndex(
make_tuple(block_work_idx[I1], block_work_idx[I2]),
make_tuple(c_grid_desc_m0_m10_m11_n0_n10_n11.GetLength(I0),
c_grid_desc_m0_m10_m11_n0_n10_n11.GetLength(I3))))
{
return;
}
// HACK: this force m/n_block_data_idx_on_grid into SGPR
const index_t m_block_data_idx_on_grid = __builtin_amdgcn_readfirstlane(block_work_idx[I1]);
const index_t n_block_data_idx_on_grid = __builtin_amdgcn_readfirstlane(block_work_idx[I2]);
// TODO: change this. I think it needs multi-dimensional alignment
constexpr auto max_lds_align = K1;
// TODO: check alignment
// A matrix in LDS memory, dst of blockwise copy
// be careful of LDS alignment
constexpr auto a_block_desc_b_k0_m0_m1_k1 = make_naive_tensor_descriptor_aligned(
make_tuple(I1, Number<K0PerBlock>{}, I1, Number<MPerBlock>{}, K1), max_lds_align);
// TODO: check alignment
// B matrix in LDS memory, dst of blockwise copy
// be careful of LDS alignment
constexpr auto b_block_desc_b_k0_n0_n1_k1 = make_naive_tensor_descriptor_aligned(
make_tuple(I1, Number<K0PerBlock>{}, I1, Number<NPerBlock>{}, K1), max_lds_align);
// TODO: check alignment
// A matrix in LDS memory, dst of blockwise copy
// be careful of LDS alignment
constexpr auto a_block_desc_k0_m0_m1_k1 = make_naive_tensor_descriptor_aligned(
make_tuple(Number<K0PerBlock>{}, I1, Number<MPerBlock>{}, K1), max_lds_align);
// TODO: check alignment
// B matrix in LDS memory, dst of blockwise copy
// be careful of LDS alignment
constexpr auto b_block_desc_k0_n0_n1_k1 = make_naive_tensor_descriptor_aligned(
make_tuple(Number<K0PerBlock>{}, I1, Number<NPerBlock>{}, K1), max_lds_align);
// TODO: check alignment
// A matrix in LDS memory, for blockwise GEMM
constexpr auto a_k0_m_k1_block_desc = make_naive_tensor_descriptor_aligned(
make_tuple(Number<K0PerBlock>{}, Number<MPerBlock>{}, K1), max_lds_align);
// TODO: check alignment
// B matrix in LDS memory, for blockwise GEMM
constexpr auto b_k0_n_k1_block_desc = make_naive_tensor_descriptor_aligned(
make_tuple(Number<K0PerBlock>{}, Number<NPerBlock>{}, K1), max_lds_align);
static_assert(a_block_desc_k0_m0_m1_k1.GetElementSpaceSize() ==
a_k0_m_k1_block_desc.GetElementSpaceSize() &&
b_block_desc_k0_n0_n1_k1.GetElementSpaceSize() ==
b_k0_n_k1_block_desc.GetElementSpaceSize() &&
"wrong!");
// A matrix blockwise copy
auto a_blockwise_copy = BlockwiseTensorSliceTransfer_v5r1<
BlockSize,
InMemoryDataOperationEnum::Set,
Sequence<1, K0PerBlock, 1, MPerBlock, K1.value>,
ABlockTransferThreadSliceLengths_K0_M0_M1_K1,
ABlockTransferThreadClusterLengths_K0_M0_M1_K1,
ABlockTransferThreadClusterArrangeOrder,
FloatAB,
FloatAB,
remove_reference_t<decltype(a_grid_desc_b_k0_m0_m1_k1)>,
decltype(a_block_desc_b_k0_m0_m1_k1),
ABlockTransferSrcAccessOrder,
Sequence<0, 1, 2, 3, 4>,
ABlockTransferSrcVectorTensorLengths_K0_M0_M1_K1, // SrcVectorTensorLengths
ABlockTransferDstVectorTensorLengths_K0_M0_M1_K1, // DstVectorTensorLengths
ABlockTransferSrcVectorTensorContiguousDimOrder, // SrcVectorTensorContiguousDimOrder
Sequence<0, 1, 2, 3, 4>, // DstVectorTensorContiguousDimOrder
false,
true>(a_grid_desc_b_k0_m0_m1_k1,
make_multi_index(k_batch_id, 0, m_block_data_idx_on_grid, 0, 0),
a_block_desc_b_k0_m0_m1_k1,
make_multi_index(0, 0, 0, 0, 0));
// B matrix blockwise copy
auto b_blockwise_copy = BlockwiseTensorSliceTransfer_v5r1<
BlockSize,
InMemoryDataOperationEnum::Set,
Sequence<1, K0PerBlock, 1, NPerBlock, K1.value>,
BBlockTransferThreadSliceLengths_K0_N0_N1_K1,
BBlockTransferThreadClusterLengths_K0_N0_N1_K1,
BBlockTransferThreadClusterArrangeOrder,
FloatAB,
FloatAB,
remove_reference_t<decltype(b_grid_desc_b_k0_n0_n1_k1)>,
decltype(b_block_desc_b_k0_n0_n1_k1),
BBlockTransferSrcAccessOrder,
Sequence<0, 1, 2, 3, 4>,
BBlockTransferSrcVectorTensorLengths_K0_N0_N1_K1, // SrcVectorTensorLengths
BBlockTransferDstVectorTensorLengths_K0_N0_N1_K1, // DstVectorTensorLengths
BBlockTransferSrcVectorTensorContiguousDimOrder, // SrcVectorTensorContiguousDimOrder
Sequence<0, 1, 2, 3, 4>, // DstVectorTensorContiguousDimOrder
false,
true>(b_grid_desc_b_k0_n0_n1_k1,
make_multi_index(k_batch_id, 0, n_block_data_idx_on_grid, 0, 0),
b_block_desc_b_k0_n0_n1_k1,
make_multi_index(0, 0, 0, 0, 0));
// GEMM definition
// c_mtx += transpose(a_mtx) * b_mtx
// a_mtx[K0PerBlock, MPerBlock] is in LDS
// b_mtx[KPerBlocl, NPerBlock] is in LDS
// c_mtx[MPerBlock, NPerBlock] is distributed among threads, and saved in
// register
const auto blockwise_gemm =
BlockwiseGemmDl_A_BK0_BM_BK1_B_BK0_BN_BK1_C_BM0_BM1_BN0_BN1_pipeline_BM0_2_BN0_2<
BlockSize,
FloatAB,
FloatAB,
FloatAcc,
decltype(a_k0_m_k1_block_desc),
decltype(b_k0_n_k1_block_desc),
M1PerThreadM111,
N1PerThreadN111,
KPerThread,
M11N11ThreadClusterM110Xs,
M11N11ThreadClusterN110Xs,
M1PerThreadM111,
N1PerThreadN111>{};
constexpr auto c_m10_m11_n10_n11_thread_tensor_lengths =
decltype(blockwise_gemm)::GetCThreadTensorLengths_BM0_BM1_BN0_BN1();
constexpr auto c_thread_desc_m10_m11_n10_n11 = make_naive_tensor_descriptor_packed(
sequence_to_tuple_of_number(c_m10_m11_n10_n11_thread_tensor_lengths));
// LDS allocation for A and B: be careful of alignment
constexpr auto a_block_aligned_space_size = math::integer_least_multiple(
a_block_desc_k0_m0_m1_k1.GetElementSpaceSize(), max_lds_align);
constexpr auto b_block_aligned_space_size = math::integer_least_multiple(
b_block_desc_k0_n0_n1_k1.GetElementSpaceSize(), max_lds_align);
FloatAB* p_a_block_double = p_shared_block;
FloatAB* p_b_block_double = p_shared_block + 2 * a_block_aligned_space_size;
// register allocation for output
auto c_thread_buf = make_static_buffer<AddressSpaceEnum::Vgpr, FloatAcc>(
c_thread_desc_m10_m11_n10_n11.GetElementSpaceSize());
// Initialize C
c_thread_buf.Clear();
constexpr auto a_block_slice_copy_step = make_multi_index(0, K0PerBlock, 0, 0, 0);
constexpr auto b_block_slice_copy_step = make_multi_index(0, K0PerBlock, 0, 0, 0);
auto a_block_even_buf = make_dynamic_buffer<AddressSpaceEnum::Lds>(
p_a_block_double, a_block_desc_k0_m0_m1_k1.GetElementSpaceSize());
auto b_block_even_buf = make_dynamic_buffer<AddressSpaceEnum::Lds>(
p_b_block_double, b_block_desc_k0_n0_n1_k1.GetElementSpaceSize());
auto a_block_odd_buf = make_dynamic_buffer<AddressSpaceEnum::Lds>(
p_a_block_double + a_block_aligned_space_size,
a_block_desc_k0_m0_m1_k1.GetElementSpaceSize());
auto b_block_odd_buf = make_dynamic_buffer<AddressSpaceEnum::Lds>(
p_b_block_double + b_block_aligned_space_size,
b_block_desc_k0_n0_n1_k1.GetElementSpaceSize());
// LDS double buffer: preload data into LDS
{
a_blockwise_copy.RunRead(a_grid_desc_b_k0_m0_m1_k1, a_global_buf);
b_blockwise_copy.RunRead(b_grid_desc_b_k0_n0_n1_k1, b_global_buf);
a_blockwise_copy.RunWrite(a_block_desc_b_k0_m0_m1_k1, a_block_even_buf);
b_blockwise_copy.RunWrite(b_block_desc_b_k0_n0_n1_k1, b_block_even_buf);
}
if constexpr(HasMainKBlockLoop)
{
const auto K0 = a_grid_desc_b_k0_m0_m1_k1.GetLength(I1);
index_t k_block_data_begin = 0;
// LDS double buffer: main body
// use Do-While loop instead of For loop to simplify control flow
do
{
// even iteration
a_blockwise_copy.MoveSrcSliceWindow(a_grid_desc_b_k0_m0_m1_k1,
a_block_slice_copy_step);
b_blockwise_copy.MoveSrcSliceWindow(b_grid_desc_b_k0_n0_n1_k1,
b_block_slice_copy_step);
// LDS doubel buffer: load next data from device mem
a_blockwise_copy.RunRead(a_grid_desc_b_k0_m0_m1_k1, a_global_buf);
b_blockwise_copy.RunRead(b_grid_desc_b_k0_n0_n1_k1, b_global_buf);
block_sync_lds();
// LDS double buffer: GEMM on current data
blockwise_gemm.Run(c_thread_desc_m10_m11_n10_n11,
a_block_even_buf,
b_block_even_buf,
c_thread_buf);
// LDS double buffer: store next data to LDS
a_blockwise_copy.RunWrite(a_block_desc_b_k0_m0_m1_k1, a_block_odd_buf);
b_blockwise_copy.RunWrite(b_block_desc_b_k0_n0_n1_k1, b_block_odd_buf);
// odd iteration
a_blockwise_copy.MoveSrcSliceWindow(a_grid_desc_b_k0_m0_m1_k1,
a_block_slice_copy_step);
b_blockwise_copy.MoveSrcSliceWindow(b_grid_desc_b_k0_n0_n1_k1,
b_block_slice_copy_step);
// LDS doubel buffer: load next data from device mem
a_blockwise_copy.RunRead(a_grid_desc_b_k0_m0_m1_k1, a_global_buf);
b_blockwise_copy.RunRead(b_grid_desc_b_k0_n0_n1_k1, b_global_buf);
block_sync_lds();
// LDS double buffer: GEMM on current data
blockwise_gemm.Run(
c_thread_desc_m10_m11_n10_n11, a_block_odd_buf, b_block_odd_buf, c_thread_buf);
// LDS double buffer: store next data to LDS
a_blockwise_copy.RunWrite(a_block_desc_b_k0_m0_m1_k1, a_block_even_buf);
b_blockwise_copy.RunWrite(b_block_desc_b_k0_n0_n1_k1, b_block_even_buf);
k_block_data_begin += 2 * K0PerBlock;
} while(k_block_data_begin < K0 - 2 * K0PerBlock);
}
// LDS double buffer: tail
if constexpr(HasDoubleTailKBlockLoop) // if has 2 iteration left
{
a_blockwise_copy.MoveSrcSliceWindow(a_grid_desc_b_k0_m0_m1_k1, a_block_slice_copy_step);
b_blockwise_copy.MoveSrcSliceWindow(b_grid_desc_b_k0_n0_n1_k1, b_block_slice_copy_step);
block_sync_lds();
// LDS double buffer: load last data from device mem
a_blockwise_copy.RunRead(a_grid_desc_b_k0_m0_m1_k1, a_global_buf);
b_blockwise_copy.RunRead(b_grid_desc_b_k0_n0_n1_k1, b_global_buf);
// LDS double buffer: GEMM on 2nd-last data
blockwise_gemm.Run(
c_thread_desc_m10_m11_n10_n11, a_block_even_buf, b_block_even_buf, c_thread_buf);
// LDS double buffer: store last data to LDS
a_blockwise_copy.RunWrite(a_block_desc_b_k0_m0_m1_k1, a_block_odd_buf);
b_blockwise_copy.RunWrite(b_block_desc_b_k0_n0_n1_k1, b_block_odd_buf);
block_sync_lds();
// LDS double buffer: GEMM on last data
blockwise_gemm.Run(
c_thread_desc_m10_m11_n10_n11, a_block_odd_buf, b_block_odd_buf, c_thread_buf);
}
else // if has 1 iteration left
{
__syncthreads();
// LDS double buffer: GEMM on last data
blockwise_gemm.Run(
c_thread_desc_m10_m11_n10_n11, a_block_even_buf, b_block_even_buf, c_thread_buf);
}
// output: register to global memory
{
constexpr auto c_thread_desc_m0_m10_m11_n0_n10_n11 =
make_naive_tensor_descriptor_packed(
make_tuple(I1,
Number<c_m10_m11_n10_n11_thread_tensor_lengths[I0]>{},
Number<c_m10_m11_n10_n11_thread_tensor_lengths[I1]>{},
I1,
Number<c_m10_m11_n10_n11_thread_tensor_lengths[I2]>{},
Number<c_m10_m11_n10_n11_thread_tensor_lengths[I3]>{}));
const auto c_m10_m11_n10_n11_thread_origin_idx_on_block =
blockwise_gemm.CalculateCThreadOriginOnBlock_BM0_BM1_BN0_BN1(
get_thread_local_1d_id());
ThreadwiseTensorSliceTransfer_v1r3<
FloatAcc,
FloatC,
decltype(c_thread_desc_m0_m10_m11_n0_n10_n11),
decltype(c_grid_desc_m0_m10_m11_n0_n10_n11),
ck::tensor_operation::element_wise::PassThrough,
Sequence<1,
c_m10_m11_n10_n11_thread_tensor_lengths[I0],
c_m10_m11_n10_n11_thread_tensor_lengths[I1],
1,
c_m10_m11_n10_n11_thread_tensor_lengths[I2],
c_m10_m11_n10_n11_thread_tensor_lengths[I3]>,
CThreadTransferSrcDstAccessOrder,
CThreadTransferSrcDstVectorDim,
CThreadTransferDstScalarPerVector,
CGlobalMemoryDataOperation,
1,
true>{c_grid_desc_m0_m10_m11_n0_n10_n11,
make_multi_index(m_block_data_idx_on_grid,
c_m10_m11_n10_n11_thread_origin_idx_on_block[I0],
c_m10_m11_n10_n11_thread_origin_idx_on_block[I1],
n_block_data_idx_on_grid,
c_m10_m11_n10_n11_thread_origin_idx_on_block[I2],
c_m10_m11_n10_n11_thread_origin_idx_on_block[I3]),
ck::tensor_operation::element_wise::PassThrough{}}
.Run(c_thread_desc_m0_m10_m11_n0_n10_n11,
make_tuple(I0, I0, I0, I0, I0, I0),
c_thread_buf,
c_grid_desc_m0_m10_m11_n0_n10_n11,
c_grid_buf);
}
}
};
} // namespace ck } // namespace ck
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2022, Advanced Micro Devices, Inc. All rights reserved.
#pragma once
#include "ck/utility/common_header.hpp"
#include "ck/tensor_description/multi_index_transform_helper.hpp"
#include "ck/tensor_description/tensor_descriptor.hpp"
#include "ck/tensor_description/tensor_descriptor_helper.hpp"
#include "ck/tensor_operation/gpu/grid/block_to_ctile_map.hpp"
#include "ck/tensor_operation/gpu/grid/gridwise_gemm_pipeline_selector.hpp"
#include "ck/tensor_operation/gpu/block/blockwise_gemm_wmma.hpp"
#include "ck/tensor_operation/gpu/block/thread_group_tensor_slice_transfer_v4r1.hpp"
#include "ck/tensor_operation/gpu/block/thread_group_tensor_slice_transfer_v7.hpp"
#include "ck/tensor_operation/gpu/thread/threadwise_tensor_slice_transfer.hpp"
#include "ck/tensor_operation/gpu/element/element_wise_operation.hpp"
namespace ck {
template <typename GridwiseOp,
typename ADataType,
typename BDataType,
typename DsPointer,
typename EDataType,
typename AElementwiseOperation,
typename BElementwiseOperation,
typename CDEElementwiseOperation,
typename AGridDesc_AK0_M_AK1,
typename BGridDesc_BK0_N_BK1,
typename DsGridDescriptor_MBlock_MPerBlock_NBlock_NPerBlock,
typename EGridDesc_MBlock_MPerBlock_NBlock_NPerBlock,
typename Block2CTileMap,
typename ComputePtrOffsetOfBatch,
bool HasMainKBlockLoop>
__global__ void
#if CK_USE_LAUNCH_BOUNDS
__launch_bounds__(CK_MAX_THREAD_PER_BLOCK, CK_MIN_BLOCK_PER_CU)
#endif
kernel_grouped_conv_fwd_multiple_d_wmma_cshuffle(
const ADataType* __restrict__ p_a_grid,
const BDataType* __restrict__ p_b_grid,
DsPointer p_ds_grid,
EDataType* __restrict__ p_e_grid,
const AElementwiseOperation a_element_op,
const BElementwiseOperation b_element_op,
const CDEElementwiseOperation cde_element_op,
const index_t batch_count,
const AGridDesc_AK0_M_AK1 a_grid_desc_k0_m_k1,
const BGridDesc_BK0_N_BK1 b_grid_desc_k0_n_k1,
const DsGridDescriptor_MBlock_MPerBlock_NBlock_NPerBlock
ds_grid_desc_mblock_mperblock_nblock_nperblock,
const EGridDesc_MBlock_MPerBlock_NBlock_NPerBlock
e_grid_desc_mblock_mperblock_nblock_nperblock_,
const Block2CTileMap block_2_ctile_map,
const ComputePtrOffsetOfBatch compute_ptr_offset_of_batch)
{
#if(!defined(__HIP_DEVICE_COMPILE__) || defined(__gfx1100__))
// offset base pointer for each work-group
const index_t num_blocks_per_batch =
__builtin_amdgcn_readfirstlane(get_grid_size() / batch_count);
const index_t g_idx = __builtin_amdgcn_readfirstlane(get_block_1d_id() / num_blocks_per_batch);
const long_index_t a_batch_offset = __builtin_amdgcn_readfirstlane(
static_cast<long_index_t>(compute_ptr_offset_of_batch.GetAPtrOffset(g_idx)));
const long_index_t b_batch_offset = __builtin_amdgcn_readfirstlane(
static_cast<long_index_t>(compute_ptr_offset_of_batch.GetBPtrOffset(g_idx)));
const long_index_t e_batch_offset = __builtin_amdgcn_readfirstlane(
static_cast<long_index_t>(compute_ptr_offset_of_batch.GetEPtrOffset(g_idx)));
const auto ds_batch_offset = compute_ptr_offset_of_batch.GetDsPtrOffset(g_idx);
__shared__ char p_shared[GridwiseOp::GetSharedMemoryNumberOfByte()];
DsPointer p_ds_grid_grp;
static constexpr index_t NumDTensor =
DsGridDescriptor_MBlock_MPerBlock_NBlock_NPerBlock::Size();
static_for<0, NumDTensor, 1>{}(
[&](auto i) { p_ds_grid_grp(i) = p_ds_grid[i] + ds_batch_offset[i]; });
GridwiseOp::template Run<HasMainKBlockLoop>(p_a_grid + a_batch_offset,
p_b_grid + b_batch_offset,
p_ds_grid_grp,
p_e_grid + e_batch_offset,
p_shared,
a_grid_desc_k0_m_k1,
b_grid_desc_k0_n_k1,
ds_grid_desc_mblock_mperblock_nblock_nperblock,
e_grid_desc_mblock_mperblock_nblock_nperblock_,
a_element_op,
b_element_op,
cde_element_op,
block_2_ctile_map);
#else
ignore = p_a_grid;
ignore = p_b_grid;
ignore = p_ds_grid;
ignore = p_e_grid;
ignore = batch_count;
ignore = a_grid_desc_k0_m_k1;
ignore = b_grid_desc_k0_n_k1;
ignore = ds_grid_desc_mblock_mperblock_nblock_nperblock;
ignore = e_grid_desc_mblock_mperblock_nblock_nperblock_;
ignore = a_element_op;
ignore = b_element_op;
ignore = cde_element_op;
ignore = compute_ptr_offset_of_batch;
ignore = block_2_ctile_map;
#endif
}
template <typename GridwiseOp,
typename ADataType,
typename BDataType,
typename DsPointer,
typename EDataType,
typename AGridDesc_K0_M_K1,
typename BGridDesc_K0_N_K1,
typename DsGridDescriptor_MBlock_MPerBlock_NBlock_NPerBlock,
typename EGridDescriptor_MBlock_MPerBlock_NBlock_NPerBlock,
typename AElementwiseOperation,
typename BElementwiseOperation,
typename CDEElementwiseOperation,
typename ComputePtrOffsetOfBatch,
typename Block2CTileMap,
bool HasMainKBlockLoop>
__global__ void
#if CK_USE_LAUNCH_BOUNDS
__launch_bounds__(CK_MAX_THREAD_PER_BLOCK, CK_MIN_BLOCK_PER_CU)
#endif
kernel_contraction_multiple_d_wmma_cshuffle(
const ADataType* __restrict__ p_a_grid,
const BDataType* __restrict__ p_b_grid,
DsPointer p_ds_grid,
EDataType* __restrict__ p_e_grid,
const index_t batch_count,
const AGridDesc_K0_M_K1 a_grid_desc_k0_m_k1,
const BGridDesc_K0_N_K1 b_grid_desc_k0_n_k1,
const DsGridDescriptor_MBlock_MPerBlock_NBlock_NPerBlock
ds_grid_desc_mblock_mperblock_nblock_nperblock,
const EGridDescriptor_MBlock_MPerBlock_NBlock_NPerBlock
e_grid_desc_mblock_mperblock_nblock_nperblock,
const AElementwiseOperation a_element_op,
const BElementwiseOperation b_element_op,
const CDEElementwiseOperation cde_element_op,
const ComputePtrOffsetOfBatch compute_ptr_offset_of_batch,
const Block2CTileMap block_2_etile_map)
{
#if(!defined(__HIP_DEVICE_COMPILE__) || defined(__gfx1100__))
// printf("entry kernel launch");
__shared__ char p_shared[GridwiseOp::GetSharedMemoryNumberOfByte()];
const index_t num_blocks_per_batch =
__builtin_amdgcn_readfirstlane(get_grid_size() / batch_count);
const index_t g_idx = __builtin_amdgcn_readfirstlane(get_block_1d_id() / num_blocks_per_batch);
// printf("before compute_ptr_offset call");
const long_index_t a_batch_offset = __builtin_amdgcn_readfirstlane(
static_cast<long_index_t>(compute_ptr_offset_of_batch.GetAPtrOffset(g_idx)));
const long_index_t b_batch_offset = __builtin_amdgcn_readfirstlane(
static_cast<long_index_t>(compute_ptr_offset_of_batch.GetBPtrOffset(g_idx)));
const long_index_t e_batch_offset = __builtin_amdgcn_readfirstlane(
static_cast<long_index_t>(compute_ptr_offset_of_batch.GetEPtrOffset(g_idx)));
const auto ds_batch_offset = compute_ptr_offset_of_batch.GetDsPtrOffset(g_idx);
static constexpr index_t NumDTensor =
DsGridDescriptor_MBlock_MPerBlock_NBlock_NPerBlock::Size();
DsPointer p_ds_grid_grp;
// printf("before allocate pointer d");
static_for<0, NumDTensor, 1>{}(
[&](auto i) { p_ds_grid_grp(i) = p_ds_grid[i] + ds_batch_offset[i]; });
// printf("before entry");
GridwiseOp::template Run<HasMainKBlockLoop>(p_a_grid + a_batch_offset,
p_b_grid + b_batch_offset,
p_ds_grid_grp,
p_e_grid + e_batch_offset,
p_shared,
a_grid_desc_k0_m_k1,
b_grid_desc_k0_n_k1,
ds_grid_desc_mblock_mperblock_nblock_nperblock,
e_grid_desc_mblock_mperblock_nblock_nperblock,
a_element_op,
b_element_op,
cde_element_op,
block_2_etile_map);
#else
ignore = p_a_grid;
ignore = p_b_grid;
ignore = p_ds_grid;
ignore = p_e_grid;
ignore = batch_count;
ignore = a_element_op;
ignore = b_element_op;
ignore = cde_element_op;
ignore = a_grid_desc_k0_m_k1;
ignore = b_grid_desc_k0_n_k1;
ignore = ds_grid_desc_mblock_mperblock_nblock_nperblock;
ignore = e_grid_desc_mblock_mperblock_nblock_nperblock;
ignore = block_2_etile_map;
ignore = compute_ptr_offset_of_batch;
#endif
}
template <typename GridwiseOp,
typename ADataType,
typename BDataType,
typename DsPointer,
typename EDataType,
typename AGridDesc_K0_M_K1,
typename BGridDesc_K0_N_K1,
typename DsGridDescriptor_MBlock_MPerBlock_NBlock_NPerBlock,
typename EGridDescriptor_MBlock_MPerBlock_NBlock_NPerBlock,
typename AElementwiseOperation,
typename BElementwiseOperation,
typename CDEElementwiseOperation,
typename Block2CTileMap,
bool HasMainKBlockLoop>
__global__ void
#if CK_USE_LAUNCH_BOUNDS
__launch_bounds__(CK_MAX_THREAD_PER_BLOCK, CK_MIN_BLOCK_PER_CU)
#endif
kernel_gemm_mupltipe_d_wmma_cshuffle(
const ADataType* __restrict__ p_a_grid,
const BDataType* __restrict__ p_b_grid,
DsPointer p_ds_grid,
EDataType* __restrict__ p_e_grid,
const AGridDesc_K0_M_K1 a_grid_desc_k0_m_k1,
const BGridDesc_K0_N_K1 b_grid_desc_k0_n_k1,
const DsGridDescriptor_MBlock_MPerBlock_NBlock_NPerBlock
ds_grid_desc_mblock_mperblock_nblock_nperblock,
const EGridDescriptor_MBlock_MPerBlock_NBlock_NPerBlock
e_grid_desc_mblock_mperblock_nblock_nperblock,
const AElementwiseOperation a_element_op,
const BElementwiseOperation b_element_op,
const CDEElementwiseOperation cde_element_op,
const Block2CTileMap block_2_ctile_map)
{
#if(!defined(__HIP_DEVICE_COMPILE__) || defined(__gfx1100__))
__shared__ char p_shared[GridwiseOp::GetSharedMemoryNumberOfByte()];
GridwiseOp::template Run<HasMainKBlockLoop>(p_a_grid,
p_b_grid,
p_ds_grid,
p_e_grid,
p_shared,
a_grid_desc_k0_m_k1,
b_grid_desc_k0_n_k1,
ds_grid_desc_mblock_mperblock_nblock_nperblock,
e_grid_desc_mblock_mperblock_nblock_nperblock,
a_element_op,
b_element_op,
cde_element_op,
block_2_ctile_map);
#else
ignore = p_a_grid;
ignore = p_b_grid;
ignore = p_ds_grid;
ignore = p_e_grid;
ignore = a_grid_desc_k0_m_k1;
ignore = b_grid_desc_k0_n_k1;
ignore = ds_grid_desc_mblock_mperblock_nblock_nperblock;
ignore = e_grid_desc_mblock_mperblock_nblock_nperblock;
ignore = a_element_op;
ignore = b_element_op;
ignore = cde_element_op;
ignore = block_2_ctile_map;
#endif // end of if (defined(__gfx1100__))
}
template < // DataType Family
typename ADataType,
typename BDataType,
typename AccDataType,
typename CShuffleDataType,
typename DsDataType,
typename EDataType,
// InMemory Data Descriptor
typename AGridDesc_K0_M_K1,
typename BGridDesc_K0_N_K1,
typename DsGridDesc_M_N,
typename EGridDesc_M_N,
// ElementwiseOp Family
typename AElementwiseOperation,
typename BElementwiseOperation,
typename CDEElementwiseOperation,
InMemoryDataOperationEnum EGlobalMemoryDataOperation,
// Tiling Family
index_t MPerBlock,
index_t NPerBlock,
index_t K0PerBlock,
index_t MPerWmma,
index_t NPerWmma,
index_t K1Value,
index_t MRepeat,
index_t NRepeat,
// ThreadCluster Family
index_t BlockSize,
typename ABlockTransferThreadClusterLengths_K0_M_K1,
typename ABlockTransferThreadClusterArrangeOrder,
typename ABlockTransferSrcAccessOrder,
index_t ABlockTransferSrcVectorDim,
index_t ABlockTransferSrcScalarPerVector,
index_t ABlockTransferDstScalarPerVector_K1,
bool AThreadTransferSrcResetCoordinateAfterRun,
bool ABlockLdsExtraM,
typename BBlockTransferThreadClusterLengths_K0_N_K1,
typename BBlockTransferThreadClusterArrangeOrder,
typename BBlockTransferSrcAccessOrder,
index_t BBlockTransferSrcVectorDim,
index_t BBlockTransferSrcScalarPerVector,
index_t BBlockTransferDstScalarPerVector_K1,
bool BThreadTransferSrcResetCoordinateAfterRun,
bool BBlockLdsExtraN,
index_t CShuffleMRepeatPerShuffle,
index_t CShuffleNRepeatPerShuffle,
typename CDEShuffleBlockTransferClusterLengths_MBlock_MPerBlock_NBlock_NPerBlock,
index_t CDEShuffleBlockTransferScalarPerVector_NPerBlock,
index_t NumGemmKPrefetchStage = 1,
LoopScheduler LoopSched = make_default_loop_scheduler(),
PipelineVersion PipelineVer = PipelineVersion::v1>
struct GridwiseGemmMultipleD_k0mk1_k0nk1_mn_wmma_cshuffle
{
static constexpr index_t NumDTensor = DsDataType::Size();
static constexpr auto I0 = Number<0>{};
static constexpr auto I1 = Number<1>{};
static constexpr auto I2 = Number<2>{};
static constexpr auto I3 = Number<3>{};
static constexpr auto I4 = Number<4>{};
static constexpr auto I5 = Number<5>{};
static constexpr auto I6 = Number<6>{};
static constexpr auto I7 = Number<7>{};
// K1 should be Number<...>
static constexpr auto K1 = Number<K1Value>{};
using ThisThreadBlock = ThisThreadBlock<BlockSize>;
using GridwiseGemmPipe = remove_cvref_t<decltype(
GridwiseGemmPipeline_Selector<PipelineVer, NumGemmKPrefetchStage, LoopSched>())>;
__host__ __device__ static constexpr auto GetABlockDescriptor_K0PerBlock_MPerBlock_K1()
{
constexpr auto max_lds_align = K1;
// A matrix in LDS memory, dst of blockwise copy
constexpr auto a_block_desc_k0perblock_mperblock_k1 = [&]() {
if constexpr(ABlockLdsExtraM)
{
return make_naive_tensor_descriptor(
make_tuple(Number<K0PerBlock>{}, Number<MPerBlock>{}, K1),
make_tuple(Number<MPerBlock + 1>{} * K1, K1, I1));
}
else
{
return make_naive_tensor_descriptor_aligned(
make_tuple(Number<K0PerBlock>{}, Number<MPerBlock>{}, K1), max_lds_align);
}
}();
return a_block_desc_k0perblock_mperblock_k1;
}
__host__ __device__ static constexpr auto GetBBlockDescriptor_K0PerBlock_NPerBlock_K1()
{
constexpr auto max_lds_align = K1;
// B matrix in LDS memory, dst of blockwise copy
constexpr auto b_block_desc_k0perblock_nperblock_k1 = [&]() {
if constexpr(BBlockLdsExtraN)
{
return make_naive_tensor_descriptor(
make_tuple(Number<K0PerBlock>{}, Number<NPerBlock>{}, K1),
make_tuple(Number<NPerBlock + 1>{} * K1, K1, I1));
}
else
{
return make_naive_tensor_descriptor_aligned(
make_tuple(Number<K0PerBlock>{}, Number<NPerBlock>{}, K1), max_lds_align);
}
}();
return b_block_desc_k0perblock_nperblock_k1;
}
__host__ __device__ static constexpr auto
// *Caution Here repeat is shuffle repeat
GetCShuffleBlockDescriptor_MShRepeat_MPerShRepeat_NShRepeat_NPerShRepeat()
{
constexpr index_t MWave = MPerBlock / (MRepeat * MPerWmma);
constexpr index_t NWave = NPerBlock / (NRepeat * NPerWmma);
constexpr auto c_shuffle_block_desc_mshrepeat_mpershrepeat_nshrepeat_npershrepeat =
make_naive_tensor_descriptor_packed(
make_tuple(I1,
Number<CShuffleMRepeatPerShuffle * MWave * MPerWmma>{},
I1,
Number<CShuffleNRepeatPerShuffle * NWave * NPerWmma>{}));
return c_shuffle_block_desc_mshrepeat_mpershrepeat_nshrepeat_npershrepeat;
}
// ck::Tuple<const D0DataType*, const D1DataType*, ...>
static constexpr auto MakeDsGridPointer()
{
return generate_tuple(
[&](auto i) {
using DDataType = remove_cvref_t<tuple_element_t<i.value, DsDataType>>;
return static_cast<const DDataType*>(nullptr);
},
Number<NumDTensor>{});
}
__host__ __device__ static constexpr index_t GetSharedMemoryNumberOfByte()
{
// LDS allocation for A and B: be careful of alignment
constexpr auto a_block_desc_k0perblock_mperblock_k1 =
GetABlockDescriptor_K0PerBlock_MPerBlock_K1();
constexpr auto b_block_desc_k0perblock_nperblock_k1 =
GetBBlockDescriptor_K0PerBlock_NPerBlock_K1();
constexpr auto max_lds_align = K1;
constexpr auto a_block_space_size_aligned = math::integer_least_multiple(
a_block_desc_k0perblock_mperblock_k1.GetElementSpaceSize(), max_lds_align);
constexpr auto b_block_space_size_aligned = math::integer_least_multiple(
b_block_desc_k0perblock_nperblock_k1.GetElementSpaceSize(), max_lds_align);
return (a_block_space_size_aligned * sizeof(ADataType) +
b_block_space_size_aligned * sizeof(BDataType));
}
// block_id to matrix tile idx (m0, n0) mapping are controlled by {M01, N01}
template <typename Block2CTileMap>
__host__ __device__ static constexpr bool
CheckValidity(const AGridDesc_K0_M_K1& a_grid_desc_k0_m_k1,
const BGridDesc_K0_N_K1& b_grid_desc_k0_n_k1,
const DsGridDesc_M_N& ds_grid_desc_m_n,
const EGridDesc_M_N& e_grid_desc_m_n,
const Block2CTileMap& block_2_ctile_map)
{
static_assert(is_known_at_compile_time<remove_cv_t<decltype(K1)>>::value,
"wrong! K1 need to be known at compile-time");
static_assert((MPerBlock % (MPerWmma * MRepeat) == 0) &&
(NPerBlock % (NRepeat * NPerWmma)) == 0,
"Invalid tuning param!");
const auto M = a_grid_desc_k0_m_k1.GetLength(I1);
const auto N = b_grid_desc_k0_n_k1.GetLength(I1);
const auto K0 = a_grid_desc_k0_m_k1.GetLength(I0);
bool valid = true;
static_for<0, NumDTensor, 1>{}([&](auto i) {
valid = valid && (M == ds_grid_desc_m_n[i].GetLength(I0) &&
N == ds_grid_desc_m_n[i].GetLength(I1));
});
if(!valid)
{
return false;
}
if(!(M == e_grid_desc_m_n.GetLength(I0) && N == e_grid_desc_m_n.GetLength(I1) &&
K0 == b_grid_desc_k0_n_k1.GetLength(I0) && K1 == a_grid_desc_k0_m_k1.GetLength(I2) &&
K1 == b_grid_desc_k0_n_k1.GetLength(I2)))
return false;
if(!(M % MPerBlock == 0 && N % NPerBlock == 0 && K0 % K0PerBlock == 0))
return false;
// check gridwise gemm pipeline
const auto num_k_loop = K0 / K0PerBlock;
if(!GridwiseGemmPipe::IsSupported(num_k_loop))
{
return false;
}
if(!block_2_ctile_map.CheckValidity(e_grid_desc_m_n))
{
return false;
}
// TODO: also check validity of all components (blockwise-copy, threadwise-copy, etc)
return true;
}
__host__ __device__ static constexpr bool CalculateHasMainKBlockLoop(index_t K)
{
const index_t num_loop = K / (K0PerBlock * K1);
return GridwiseGemmPipe::CalculateHasMainLoop(num_loop);
}
// E desc for destination in blockwise copy
template <typename EGridDesc_M_N_>
__host__ __device__ static constexpr auto
MakeEGridDescriptor_MBlock_MPerBlock_NBlock_NPerBlock(const EGridDesc_M_N_& e_grid_desc_m_n)
{
const auto M = e_grid_desc_m_n.GetLength(I0);
const auto N = e_grid_desc_m_n.GetLength(I1);
const auto MBlock = M / MPerBlock;
const auto NBlock = N / NPerBlock;
const auto e_grid_desc_mblock_mperblock_nblock_nperblock = transform_tensor_descriptor(
e_grid_desc_m_n,
make_tuple(make_unmerge_transform(make_tuple(MBlock, Number<MPerBlock>{})),
make_unmerge_transform(make_tuple(NBlock, Number<NPerBlock>{}))),
make_tuple(Sequence<0>{}, Sequence<1>{}),
make_tuple(Sequence<0, 1>{}, Sequence<2, 3>{}));
return e_grid_desc_mblock_mperblock_nblock_nperblock;
}
// Ds desc for source in blockwise copy
template <typename DsGridDesc_M_N_>
__host__ __device__ static constexpr auto
MakeDsGridDescriptor_MBlock_MPerBlock_NBlock_NPerBlock(const DsGridDesc_M_N_& ds_grid_desc_m_n)
{
return generate_tuple(
[&](auto i) {
return MakeEGridDescriptor_MBlock_MPerBlock_NBlock_NPerBlock(ds_grid_desc_m_n[i]);
},
Number<NumDTensor>{});
}
// return block_id to C matrix tile idx (m0, n0) mapping
__host__ __device__ static constexpr auto MakeDefaultBlock2CTileMap(
const EGridDesc_M_N& e_grid_desc_m_n, index_t /* M01 */, index_t /* N01 */)
{
return BlockToCTileMap_M00_N0_M01Adapt<MPerBlock, NPerBlock, EGridDesc_M_N>(
e_grid_desc_m_n);
}
using DsGridDescriptor_MBlock_MPerBlock_NBlock_NPerBlock = remove_cvref_t<decltype(
MakeDsGridDescriptor_MBlock_MPerBlock_NBlock_NPerBlock(DsGridDesc_M_N{}))>;
using EGridDescriptor_MBlock_MPerBlock_NBlock_NPerBlock = remove_cvref_t<decltype(
MakeEGridDescriptor_MBlock_MPerBlock_NBlock_NPerBlock(EGridDesc_M_N{}))>;
using DefaultBlock2CTileMap =
remove_cvref_t<decltype(MakeDefaultBlock2CTileMap(EGridDesc_M_N{}, 1, 1))>;
using DsGridPointer = decltype(MakeDsGridPointer());
template <bool HasMainKBlockLoop, typename Block2CTileMap = DefaultBlock2CTileMap>
__device__ static void Run(const ADataType* __restrict__ p_a_grid,
const BDataType* __restrict__ p_b_grid,
DsGridPointer p_ds_grid,
EDataType* __restrict__ p_e_grid,
void* __restrict__ p_shared,
const AGridDesc_K0_M_K1& a_grid_desc_k0_m_k1,
const BGridDesc_K0_N_K1& b_grid_desc_k0_n_k1,
const DsGridDescriptor_MBlock_MPerBlock_NBlock_NPerBlock&
ds_grid_desc_mblock_mperblock_nblock_nperblock,
const EGridDescriptor_MBlock_MPerBlock_NBlock_NPerBlock&
e_grid_desc_mblock_mperblock_nblock_nperblock,
const AElementwiseOperation& a_element_op,
const BElementwiseOperation& b_element_op,
const CDEElementwiseOperation& cde_element_op,
const Block2CTileMap& block_2_ctile_map)
{
// printf("safe entry");
// clang-format off
/*******************************************************************************/
// Memory buffer zone.
const auto a_grid_buf = make_dynamic_buffer<AddressSpaceEnum::Global>(
p_a_grid, a_grid_desc_k0_m_k1.GetElementSpaceSize());
const auto b_grid_buf = make_dynamic_buffer<AddressSpaceEnum::Global>(
p_b_grid, b_grid_desc_k0_n_k1.GetElementSpaceSize());
const auto ds_grid_buf = generate_tuple(
[&](auto i) {
return make_dynamic_buffer<AddressSpaceEnum::Global>(
p_ds_grid[i],
ds_grid_desc_mblock_mperblock_nblock_nperblock[i].GetElementSpaceSize());
},
Number<NumDTensor>{});
auto e_grid_buf = make_dynamic_buffer<AddressSpaceEnum::Global>(
p_e_grid, e_grid_desc_mblock_mperblock_nblock_nperblock.GetElementSpaceSize());
/*******************************************************************************/
// BlockIdx.x -> [BlockId.m, BlockId.n]
const auto block_work_idx = block_2_ctile_map.CalculateBottomIndex(make_multi_index(get_block_1d_id()));
if(!block_2_ctile_map.ValidCTileIndex(
block_work_idx,
make_tuple(e_grid_desc_mblock_mperblock_nblock_nperblock.GetLength(I0),
e_grid_desc_mblock_mperblock_nblock_nperblock.GetLength(I2))))
{ return; }
// Store BlockId into SGPR
const index_t m_block_data_idx_on_grid = __builtin_amdgcn_readfirstlane(block_work_idx[I0] * MPerBlock);
const index_t n_block_data_idx_on_grid = __builtin_amdgcn_readfirstlane(block_work_idx[I1] * NPerBlock);
/*******************************************************************************/
// BlockLevel, A/B Matrix ThreadMapping in LDS, As Destinaion of BlockWise_Copy
const auto K0 = a_grid_desc_k0_m_k1.GetLength(I0);
constexpr auto max_lds_align = K1;
constexpr auto a_block_desc_k0perblock_mperblock_k1 = GetABlockDescriptor_K0PerBlock_MPerBlock_K1();
constexpr auto b_block_desc_k0perblock_nperblock_k1 = GetBBlockDescriptor_K0PerBlock_NPerBlock_K1();
// A matrix blockwise copy
auto a_blockwise_copy =
ThreadGroupTensorSliceTransfer_v4r1< ThisThreadBlock,
/* typename SrcElementwiseOperation, */ AElementwiseOperation,
/* typename DstElementwiseOperation, */ ck::tensor_operation::element_wise::PassThrough,
/* InMemoryDataOperationEnum DstInMemOp, */ InMemoryDataOperationEnum::Set,
/* typename BlockSliceLengths, */ Sequence<K0PerBlock, MPerBlock, K1>,
/* typename ThreadClusterLengths, */ ABlockTransferThreadClusterLengths_K0_M_K1,
/* typename ThreadClusterArrangeOrder, */ ABlockTransferThreadClusterArrangeOrder,
/* typename SrcData, */ ADataType,
/* typename DstData, */ ADataType,
/* typename SrcDesc, */ decltype(a_grid_desc_k0_m_k1),
/* typename DstDesc, */ decltype(a_block_desc_k0perblock_mperblock_k1),
/* typename SrcDimAccessOrder, */ ABlockTransferSrcAccessOrder,
/* typename DstDimAccessOrder, */ Sequence<0, 1, 2>,
/* index_t SrcVectorDim, */ ABlockTransferSrcVectorDim,
/* index_t DstVectorDim, */ 2,
/* index_t SrcScalarPerVector, */ ABlockTransferSrcScalarPerVector,
/* index_t DstScalarPerVector, */ ABlockTransferDstScalarPerVector_K1,
/* index_t SrcScalarStrideInVector, */ 1,
/* index_t DstScalarStrideInVector, */ 1,
/* bool ThreadTransferSrcResetCoordinateAfterRun, */ AThreadTransferSrcResetCoordinateAfterRun,
/* bool ThreadTransferDstResetCoordinateAfterRun, */ true>(
a_grid_desc_k0_m_k1,
make_multi_index(0, m_block_data_idx_on_grid, 0),
a_element_op,
a_block_desc_k0perblock_mperblock_k1,
make_multi_index(0, 0, 0),
ck::tensor_operation::element_wise::PassThrough{});
// B matrix blockwise copy
auto b_blockwise_copy =
ThreadGroupTensorSliceTransfer_v4r1<ThisThreadBlock,
BElementwiseOperation,
ck::tensor_operation::element_wise::PassThrough,
InMemoryDataOperationEnum::Set,
Sequence<K0PerBlock, NPerBlock, K1>,
BBlockTransferThreadClusterLengths_K0_N_K1,
BBlockTransferThreadClusterArrangeOrder,
BDataType,
BDataType,
decltype(b_grid_desc_k0_n_k1),
decltype(b_block_desc_k0perblock_nperblock_k1),
BBlockTransferSrcAccessOrder,
Sequence<0, 1, 2>,
BBlockTransferSrcVectorDim,
2,
BBlockTransferSrcScalarPerVector,
BBlockTransferDstScalarPerVector_K1,
1,
1,
BThreadTransferSrcResetCoordinateAfterRun,
true>(
b_grid_desc_k0_n_k1,
make_multi_index(0, n_block_data_idx_on_grid, 0),
b_element_op,
b_block_desc_k0perblock_nperblock_k1,
make_multi_index(0, 0, 0),
ck::tensor_operation::element_wise::PassThrough{});
/*******************************************************************************/
// GEMM
constexpr auto WmmaK = 16;
constexpr auto KPack = math::integer_least_multiple(K1, WmmaK);
auto blockwise_gemm =
BlockwiseGemmWMMA_k0mk1_k0nk1_m0m1m2n0n1n2m3_CShuffle_FIFO<BlockSize,
ADataType,
BDataType,
AccDataType,
decltype(a_block_desc_k0perblock_mperblock_k1),
decltype(b_block_desc_k0perblock_nperblock_k1),
MPerWmma,
NPerWmma,
MRepeat,
NRepeat,
KPack>{};
// Prepare Register for C matrix
auto c_thread_buf = blockwise_gemm.GetCThreadBuffer();
/*******************************************************************************/
constexpr auto a_block_space_size_aligned = math::integer_least_multiple(a_block_desc_k0perblock_mperblock_k1.GetElementSpaceSize(), max_lds_align);
// LDS allocation for A and B: be careful of alignment
auto a_block_buf = make_dynamic_buffer<AddressSpaceEnum::Lds>(static_cast<ADataType*>(p_shared), a_block_desc_k0perblock_mperblock_k1.GetElementSpaceSize());
auto b_block_buf = make_dynamic_buffer<AddressSpaceEnum::Lds>(static_cast<BDataType*>(p_shared) + a_block_space_size_aligned, b_block_desc_k0perblock_nperblock_k1.GetElementSpaceSize());
// Shift Per SUB_K
constexpr auto a_block_slice_copy_step = make_multi_index(K0PerBlock, 0, 0);
constexpr auto b_block_slice_copy_step = make_multi_index(K0PerBlock, 0, 0);
// gridwise GEMM pipeline
const index_t K0BlockMainLoop = __builtin_amdgcn_readfirstlane(K0 / K0PerBlock);
GridwiseGemmPipe::template Run<HasMainKBlockLoop>(a_grid_desc_k0_m_k1,
a_block_desc_k0perblock_mperblock_k1,
a_blockwise_copy,
a_grid_buf,
a_block_buf,
a_block_slice_copy_step,
b_grid_desc_k0_n_k1,
b_block_desc_k0perblock_nperblock_k1,
b_blockwise_copy,
b_grid_buf,
b_block_buf,
b_block_slice_copy_step,
blockwise_gemm,
c_thread_buf,
K0BlockMainLoop);
/*******************************************************************************/
//printf("safe 1");
// write out to C, implement shuffle
{
constexpr auto c_thread_desc_mrepeat_mwave_msubgroup_nrepeat_nwave_nthreadpersubgroup_maccvgprs =
blockwise_gemm.GetCThreadDescriptor_MRepeat_MWave_MSubGroup_NRepeat_NWave_NThreadPerSubGroup_MAccVgprs();
// This API Provide All dimension (size) you need
constexpr auto c_block_desc_mrepeat_mwave_msubgroup_nrepeat_nwave_nthreadpersubgroup_maccvgprs_tmp =
blockwise_gemm.GetCBlockDescriptor_MRepeat_MWave_MSubGroup_NRepeat_NWave_NThreadPerSubGroup_MAccVgprs();
constexpr auto MWave = c_block_desc_mrepeat_mwave_msubgroup_nrepeat_nwave_nthreadpersubgroup_maccvgprs_tmp.GetLength(I1);
constexpr auto MSubGroup = c_block_desc_mrepeat_mwave_msubgroup_nrepeat_nwave_nthreadpersubgroup_maccvgprs_tmp.GetLength(I2);
constexpr auto NWave = c_block_desc_mrepeat_mwave_msubgroup_nrepeat_nwave_nthreadpersubgroup_maccvgprs_tmp.GetLength(I4);
constexpr auto NThreadPerSubGroup = c_block_desc_mrepeat_mwave_msubgroup_nrepeat_nwave_nthreadpersubgroup_maccvgprs_tmp.GetLength(I5);
constexpr auto MAccVgprs = c_block_desc_mrepeat_mwave_msubgroup_nrepeat_nwave_nthreadpersubgroup_maccvgprs_tmp.GetLength(I6);
// LDS descriptor, shuffle and write out in MRepeat x NRepeat times
constexpr auto c_shuffle_block_desc_mshrepeat_mpershrepeat_nshrepeat_npershrepeat =
GetCShuffleBlockDescriptor_MShRepeat_MPerShRepeat_NShRepeat_NPerShRepeat();
auto c_shuffle_block_buf = make_dynamic_buffer<AddressSpaceEnum::Lds>(
static_cast<CShuffleDataType*>(p_shared),
c_shuffle_block_desc_mshrepeat_mpershrepeat_nshrepeat_npershrepeat.GetElementSpaceSize());
constexpr auto c_block_desc_mrepeat_mwave_msubgroup_nrepeat_nwave_nthreadpersubgroup_maccvgprs = transform_tensor_descriptor(
c_shuffle_block_desc_mshrepeat_mpershrepeat_nshrepeat_npershrepeat,
make_tuple(
make_freeze_transform(I0),
make_unmerge_transform(make_tuple(
Number<CShuffleMRepeatPerShuffle>{}, // MRepeat per shuffle repeat
MWave, // MWave
MSubGroup, // MSubGroup * MAccVgprs = MPerWmma
MAccVgprs)),
make_freeze_transform(I0),
make_unmerge_transform(make_tuple(
Number<CShuffleNRepeatPerShuffle>{}, // NRepeat per shuffle repeat
NWave, // NWave
NThreadPerSubGroup))), // NThreadPerSubGroup = NPerWmma
make_tuple(Sequence<0>{}, Sequence<1>{}, Sequence<2>{}, Sequence<3>{}),
make_tuple(Sequence<>{}, Sequence<0, 1, 2, 6>{}, Sequence<>{}, Sequence<3, 4, 5>{}));
// calculate origin of thread output tensor on global memory
// blockwise GEMM c matrix starting index
const auto c_thread_mtx_on_block = blockwise_gemm.CalculateCThreadOriginDataIndex(I0, I0);
const index_t m_thread_data_on_block = c_thread_mtx_on_block[I0];
const index_t n_thread_data_on_block = c_thread_mtx_on_block[I1];
const auto m_thread_data_on_block_to_mrepeat_mwave_msubgroup_maccvgprs_adaptor =
make_single_stage_tensor_adaptor(
make_tuple(make_merge_transform(make_tuple(MRepeat, MWave, MSubGroup, MAccVgprs))),
make_tuple(Sequence<0, 1, 2, 3>{}),
make_tuple(Sequence<0>{}));
const auto n_thread_data_on_block_to_nrepeat_nwave_nthreadpersubgroup_adaptor =
make_single_stage_tensor_adaptor(
make_tuple(make_merge_transform(make_tuple(NRepeat, NWave, NThreadPerSubGroup))),
make_tuple(Sequence<0, 1, 2>{}),
make_tuple(Sequence<0>{}));
const auto m_thread_data_on_block_idx = m_thread_data_on_block_to_mrepeat_mwave_msubgroup_maccvgprs_adaptor.CalculateBottomIndex(
make_multi_index(m_thread_data_on_block));
const auto n_thread_data_on_block_idx = n_thread_data_on_block_to_nrepeat_nwave_nthreadpersubgroup_adaptor.CalculateBottomIndex(
make_multi_index(n_thread_data_on_block));
// shuffle: threadwise copy C from VGPR to LDS
auto c_thread_copy_vgpr_to_lds =
ThreadwiseTensorSliceTransfer_v1r3<AccDataType,
CShuffleDataType,
decltype(c_thread_desc_mrepeat_mwave_msubgroup_nrepeat_nwave_nthreadpersubgroup_maccvgprs),
decltype(c_block_desc_mrepeat_mwave_msubgroup_nrepeat_nwave_nthreadpersubgroup_maccvgprs),
ck::tensor_operation::element_wise::PassThrough,
Sequence<CShuffleMRepeatPerShuffle,
I1,
I1,
CShuffleNRepeatPerShuffle,
I1,
I1,
MAccVgprs>,
Sequence<0, 1, 2, 3, 4, 5, 6>,
6,
1, // vector write pixel
InMemoryDataOperationEnum::Set,
1,
true>{
c_block_desc_mrepeat_mwave_msubgroup_nrepeat_nwave_nthreadpersubgroup_maccvgprs,
make_multi_index(0,
m_thread_data_on_block_idx[I1],
m_thread_data_on_block_idx[I2],
0,
n_thread_data_on_block_idx[I1],
n_thread_data_on_block_idx[I2],
m_thread_data_on_block_idx[I3]),
ck::tensor_operation::element_wise::PassThrough{}};
// tuple of reference to C/Ds tensor descriptors
const auto c_ds_desc_refs = concat_tuple_of_reference(
tie(c_shuffle_block_desc_mshrepeat_mpershrepeat_nshrepeat_npershrepeat),
generate_tie(
[&](auto i) -> const auto& // return type should be reference
{ return ds_grid_desc_mblock_mperblock_nblock_nperblock[i]; },
Number<NumDTensor>{}));
// tuple of reference to C/Ds tensor buffers
const auto c_ds_buf_refs = concat_tuple_of_reference(
tie(c_shuffle_block_buf),
generate_tie(
[&](auto i) -> const auto& // return type should be reference
{ return ds_grid_buf[i]; },
Number<NumDTensor>{}));
// tuple of starting index of C/Ds blockwise copy
const auto idx_c_ds_block_begin = container_concat(
make_tuple(make_multi_index(0, 0, 0, 0)),
generate_tuple(
[&](auto) {
return make_multi_index(block_work_idx[I0], 0, block_work_idx[I1], 0);
},
Number<NumDTensor>{}));
// shuffle: blockwise copy C from LDS to global
auto cde_shuffle_block_copy_lds_to_global = ThreadGroupTensorSliceTransfer_v7<
ThisThreadBlock, // ThreadGroup
decltype(container_concat(make_tuple(CShuffleDataType{}), DsDataType{})),
Tuple<EDataType>,
decltype(c_ds_desc_refs),
decltype(tie(e_grid_desc_mblock_mperblock_nblock_nperblock)),
CDEElementwiseOperation, // ElementwiseOperation,
Sequence<static_cast<index_t>(EGlobalMemoryDataOperation)>, // DstInMemOp,
Sequence<1,
CShuffleMRepeatPerShuffle * MWave * MPerWmma,
1,
CShuffleNRepeatPerShuffle * NWave * NPerWmma>, // BlockSliceLengths,
CDEShuffleBlockTransferClusterLengths_MBlock_MPerBlock_NBlock_NPerBlock,
Sequence<0, 1, 2, 3>, // typename ThreadClusterArrangeOrder,
Sequence<0, 1, 2, 3>, // typename DimAccessOrder,
3, // index_t VectorDim,
CDEShuffleBlockTransferScalarPerVector_NPerBlock, // index_t ScalarPerVector,
sequence_merge_t<
Sequence<true>,
uniform_sequence_gen_t<NumDTensor,
false>>, // bool ThreadTransferSrcResetCoordinateAfterRun,
Sequence<false>> // bool ThreadTransferDstResetCoordinateAfterRun>
{c_ds_desc_refs,
idx_c_ds_block_begin,
tie(e_grid_desc_mblock_mperblock_nblock_nperblock),
make_tuple(make_multi_index(block_work_idx[I0], 0, block_work_idx[I1], 0)),
cde_element_op};
// space filling curve for local reg & global memory
// space filling curve for threadwise C in VGPR
constexpr auto sfc_c_vgpr =
SpaceFillingCurve<Sequence<MRepeat, 1, 1, NRepeat, 1, 1, MAccVgprs>,
Sequence<0, 1, 2, 3, 4, 5, 6>,
Sequence<CShuffleMRepeatPerShuffle,
1,
1,
CShuffleNRepeatPerShuffle,
1,
1,
MAccVgprs>>{};
// space filling curve for shuffled blockwise C in global mem
constexpr auto sfc_cde_global =
SpaceFillingCurve<Sequence<1, MPerBlock, 1, NPerBlock>,
Sequence<0, 2, 1, 3>,
Sequence<1,
CShuffleMRepeatPerShuffle * MWave * MPerWmma,
1,
CShuffleNRepeatPerShuffle * NWave * NPerWmma>>{};
constexpr index_t num_access = sfc_c_vgpr.GetNumOfAccess();
static_assert(num_access == sfc_cde_global.GetNumOfAccess(), "wrong!");
static_for<0, num_access, 1>{}([&](auto access_id) {
// make sure it's safe to write to LDS
block_sync_lds();
// each thread write its data from VGPR to LDS
c_thread_copy_vgpr_to_lds.Run(c_thread_desc_mrepeat_mwave_msubgroup_nrepeat_nwave_nthreadpersubgroup_maccvgprs,
sfc_c_vgpr.GetIndexTupleOfNumber(access_id),
c_thread_buf,
c_block_desc_mrepeat_mwave_msubgroup_nrepeat_nwave_nthreadpersubgroup_maccvgprs,
c_shuffle_block_buf);
// make sure it's safe to read from LDS
block_sync_lds();
// each block copy its data from LDS to global
cde_shuffle_block_copy_lds_to_global.Run(
c_ds_desc_refs,
c_ds_buf_refs,
tie(e_grid_desc_mblock_mperblock_nblock_nperblock),
tie(e_grid_buf));
if constexpr(access_id < num_access - 1)
{
constexpr auto cde_global_step = sfc_cde_global.GetForwardStep(access_id);
// move on Ds
static_for<0, NumDTensor, 1>{}([&](auto i) {
cde_shuffle_block_copy_lds_to_global.MoveSrcSliceWindow(
c_ds_desc_refs, i + I1, cde_global_step);
});
// move on E
cde_shuffle_block_copy_lds_to_global.MoveDstSliceWindow(
tie(e_grid_desc_mblock_mperblock_nblock_nperblock),
I0,
cde_global_step);
}
});
}
// clang-format on
}
};
} // namespace ck
...@@ -414,7 +414,7 @@ struct GridwiseGemm_k0mk1_k0nk1_mn_wmma ...@@ -414,7 +414,7 @@ struct GridwiseGemm_k0mk1_k0nk1_mn_wmma
constexpr auto KPack = math::integer_least_multiple(K1, WmmaK); constexpr auto KPack = math::integer_least_multiple(K1, WmmaK);
auto blockwise_gemm = auto blockwise_gemm =
BlockwiseGemmWMMA_k0mk1_k0nk1_m0m1m2n0n1n2m3_CShuffle_FIFO<BlockSize, BlockwiseGemmWMMA_k0mk1_k0nk1_m0m1m2n0n1n2m3_CShuffle<BlockSize,
FloatA, FloatA,
FloatB, FloatB,
FloatAcc, FloatAcc,
......
...@@ -4,9 +4,8 @@ ...@@ -4,9 +4,8 @@
#pragma once #pragma once
#include "ck/utility/data_type.hpp" #include "ck/utility/data_type.hpp"
#include "ck/utility/reduction_common.hpp"
#include "ck/utility/reduction_operator.hpp" #include "ck/utility/reduction_operator.hpp"
#include "ck/utility/reduction_functions_accumulate.hpp"
#include "ck/tensor_operation/gpu/block/reduction_functions_blockwise.hpp" #include "ck/tensor_operation/gpu/block/reduction_functions_blockwise.hpp"
#include "ck/tensor_operation/gpu/thread/reduction_functions_threadwise.hpp" #include "ck/tensor_operation/gpu/thread/reduction_functions_threadwise.hpp"
#include "ck/tensor_operation/gpu/thread/threadwise_tensor_slice_transfer.hpp" #include "ck/tensor_operation/gpu/thread/threadwise_tensor_slice_transfer.hpp"
...@@ -19,8 +18,8 @@ template <typename XDataType, ...@@ -19,8 +18,8 @@ template <typename XDataType,
typename GammaDataType, typename GammaDataType,
typename BetaDataType, typename BetaDataType,
typename YDataType, typename YDataType,
typename AccDataType, typename ComputeDataType,
typename AccElementwiseOperation, typename YElementwiseOperation,
typename GridDesc_M_K, typename GridDesc_M_K,
index_t BlockSize, index_t BlockSize,
index_t MThreadClusterSize, index_t MThreadClusterSize,
...@@ -46,6 +45,10 @@ struct GridwiseNormalizationNaiveVariance_mk_to_mk ...@@ -46,6 +45,10 @@ struct GridwiseNormalizationNaiveVariance_mk_to_mk
(YDstVectorDim == 1 && KThreadSliceSize % YDstVectorSize == 0), (YDstVectorDim == 1 && KThreadSliceSize % YDstVectorSize == 0),
"Invalid thread slice sizes and/or vector sizes configuration, please check!"); "Invalid thread slice sizes and/or vector sizes configuration, please check!");
static_assert(XSrcVectorSize == YDstVectorSize);
static_assert(XSrcVectorSize == GammaSrcVectorSize);
static_assert(XSrcVectorSize == BetaSrcVectorSize);
static constexpr bool reorder_thread_cluster = (XSrcVectorDim == 0); static constexpr bool reorder_thread_cluster = (XSrcVectorDim == 0);
using ThreadClusterLengths_M_K = Sequence<MThreadClusterSize, KThreadClusterSize>; using ThreadClusterLengths_M_K = Sequence<MThreadClusterSize, KThreadClusterSize>;
...@@ -59,19 +62,23 @@ struct GridwiseNormalizationNaiveVariance_mk_to_mk ...@@ -59,19 +62,23 @@ struct GridwiseNormalizationNaiveVariance_mk_to_mk
static constexpr auto thread_cluster_desc = static constexpr auto thread_cluster_desc =
make_cluster_descriptor(ThreadClusterLengths_M_K{}, ThreadClusterArrangeOrder{}); make_cluster_descriptor(ThreadClusterLengths_M_K{}, ThreadClusterArrangeOrder{});
using ThreadBufferLengths_M_K = Sequence<MThreadSliceSize, XSrcVectorSize>;
static constexpr auto thread_buffer_desc_m_k = make_naive_tensor_descriptor_packed(
make_tuple(Number<MThreadSliceSize>{}, Number<XSrcVectorSize>{}));
using ThreadReduceSrcDesc_M_K = decltype(make_naive_tensor_descriptor_packed( using ThreadReduceSrcDesc_M_K = decltype(make_naive_tensor_descriptor_packed(
make_tuple(Number<MThreadSliceSize>{}, Number<KThreadSliceSize>{}))); make_tuple(Number<MThreadSliceSize>{}, Number<XSrcVectorSize>{})));
using ThreadReduceDstDesc_M = using ThreadReduceDstDesc_M =
decltype(make_naive_tensor_descriptor_packed(make_tuple(Number<MThreadSliceSize>{}))); decltype(make_naive_tensor_descriptor_packed(make_tuple(Number<MThreadSliceSize>{})));
using BlockwiseSumReduce = PartitionedBlockwiseReduction<AccDataType, using BlockwiseSumReduce = PartitionedBlockwiseReduction<ComputeDataType,
BlockSize, BlockSize,
ThreadClusterLengths_M_K, ThreadClusterLengths_M_K,
ThreadClusterArrangeOrder, ThreadClusterArrangeOrder,
reduce::Add, reduce::Add,
true>; true>;
using ThreadwiseSumReduce = ThreadwiseReduction<AccDataType, using ThreadwiseSumReduce = ThreadwiseReduction<ComputeDataType,
ThreadReduceSrcDesc_M_K, ThreadReduceSrcDesc_M_K,
ThreadReduceDstDesc_M, ThreadReduceDstDesc_M,
reduce::Add, reduce::Add,
...@@ -81,64 +88,70 @@ struct GridwiseNormalizationNaiveVariance_mk_to_mk ...@@ -81,64 +88,70 @@ struct GridwiseNormalizationNaiveVariance_mk_to_mk
static constexpr auto I1 = Number<1>{}; static constexpr auto I1 = Number<1>{};
static constexpr auto I2 = Number<2>{}; static constexpr auto I2 = Number<2>{};
static constexpr index_t M_BlockTileSize = MThreadClusterSize * MThreadSliceSize; static constexpr index_t M_BlockTileSize = MThreadClusterSize * MThreadSliceSize;
static constexpr index_t K_BlockTileSize = KThreadClusterSize * KThreadSliceSize; static constexpr index_t K_BlockTileSize = KThreadClusterSize * KThreadSliceSize;
static constexpr index_t K_BlockTileStepSize = KThreadClusterSize * XSrcVectorSize;
static constexpr auto ThreadBufferNumber = Number<KThreadSliceSize / XSrcVectorSize>{};
__device__ static void Run(const GridDesc_M_K& x_grid_desc_m_k, __device__ static void Run(const GridDesc_M_K& x_grid_desc_m_k,
const GridDesc_M_K& gamma_grid_desc_m_k, const GridDesc_M_K& gamma_grid_desc_m_k,
const GridDesc_M_K& beta_grid_desc_m_k, const GridDesc_M_K& beta_grid_desc_m_k,
const GridDesc_M_K& y_grid_desc_m_k, const GridDesc_M_K& y_grid_desc_m_k,
index_t num_k_block_tile_iteration, index_t num_k_block_tile_iteration,
AccDataType epsilon, ComputeDataType epsilon,
const XDataType* const __restrict__ p_x_global, const XDataType* const __restrict__ p_x_global,
const GammaDataType* const __restrict__ p_gamma_global, const GammaDataType* const __restrict__ p_gamma_global,
const BetaDataType* const __restrict__ p_beta_global, const BetaDataType* const __restrict__ p_beta_global,
YDataType* const __restrict__ p_y_global, YDataType* const __restrict__ p_y_global,
const AccElementwiseOperation acc_elementwise_op) const YElementwiseOperation y_elementwise_op)
{ {
if constexpr(SweepOnce)
{
num_k_block_tile_iteration = 1;
}
// LDS // LDS
__shared__ AccDataType p_reduce_work_buffer[BlockSize]; __shared__ ComputeDataType p_reduce_work_buffer[BlockSize];
auto y_global_val_buf = make_dynamic_buffer<AddressSpaceEnum::Global>(
p_y_global, y_grid_desc_m_k.GetElementSpaceSize());
auto reduce_work_buf = auto reduce_work_buf =
make_dynamic_buffer<AddressSpaceEnum::Lds>(p_reduce_work_buffer, BlockSize); make_dynamic_buffer<AddressSpaceEnum::Lds>(p_reduce_work_buffer, BlockSize);
StaticBuffer<AddressSpaceEnum::Vgpr, AccDataType, MThreadSliceSize * KThreadSliceSize, true> auto y_global_val_buf = make_dynamic_buffer<AddressSpaceEnum::Global>(
x_thread_buf; p_y_global, y_grid_desc_m_k.GetElementSpaceSize());
StaticBuffer<AddressSpaceEnum::Vgpr, AccDataType, MThreadSliceSize * KThreadSliceSize, true>
gamma_thread_buf;
StaticBuffer<AddressSpaceEnum::Vgpr,
AccDataType,
MThreadSliceSize * KThreadSliceSize,
true>& beta_thread_buf = gamma_thread_buf;
StaticBuffer<AddressSpaceEnum::Vgpr, AccDataType, MThreadSliceSize * KThreadSliceSize, true>
y_thread_buf;
StaticBuffer<AddressSpaceEnum::Vgpr,
AccDataType,
MThreadSliceSize * KThreadSliceSize,
true>& x_square_thread_buf = y_thread_buf;
StaticBuffer<AddressSpaceEnum::Vgpr, AccDataType, MThreadSliceSize, true> mean_thread_buf; auto x_thread_buf = generate_tuple(
StaticBuffer<AddressSpaceEnum::Vgpr, AccDataType, MThreadSliceSize, true> [&](auto) {
mean_square_thread_buf; return StaticBuffer<AddressSpaceEnum::Vgpr,
StaticBuffer<AddressSpaceEnum::Vgpr, AccDataType, MThreadSliceSize, true>& var_thread_buf = ComputeDataType,
MThreadSliceSize * XSrcVectorSize,
true>{};
},
Number<ThreadBufferNumber>{});
auto gamma_thread_buf = generate_tuple(
[&](auto) {
return StaticBuffer<AddressSpaceEnum::Vgpr,
ComputeDataType,
MThreadSliceSize * GammaSrcVectorSize,
true>{};
},
Number<ThreadBufferNumber>{});
auto& beta_thread_buf = gamma_thread_buf;
auto y_thread_buf = generate_tuple(
[&](auto) {
return StaticBuffer<AddressSpaceEnum::Vgpr,
ComputeDataType,
MThreadSliceSize * YDstVectorSize,
true>{};
},
Number<ThreadBufferNumber>{});
auto& x_square_thread_buf = y_thread_buf;
StaticBuffer<AddressSpaceEnum::Vgpr, ComputeDataType, MThreadSliceSize, true>
mean_thread_buf;
StaticBuffer<AddressSpaceEnum::Vgpr, ComputeDataType, MThreadSliceSize, true>
mean_square_thread_buf; mean_square_thread_buf;
StaticBuffer<AddressSpaceEnum::Vgpr, ComputeDataType, MThreadSliceSize, true>&
static_for<0, MThreadSliceSize, 1>{}([&](auto I) { var_thread_buf = mean_square_thread_buf;
mean_thread_buf(I) = reduce::Add::template GetIdentityValue<AccDataType>();
mean_square_thread_buf(I) = reduce::Add::template GetIdentityValue<AccDataType>();
});
const index_t thread_local_id = get_thread_local_1d_id(); const index_t thread_local_id = get_thread_local_1d_id();
const index_t block_global_id = get_block_1d_id(); const index_t block_global_id = get_block_1d_id();
...@@ -149,12 +162,8 @@ struct GridwiseNormalizationNaiveVariance_mk_to_mk ...@@ -149,12 +162,8 @@ struct GridwiseNormalizationNaiveVariance_mk_to_mk
const auto thread_m_cluster_id = thread_cluster_idx[I0]; const auto thread_m_cluster_id = thread_cluster_idx[I0];
const auto thread_k_cluster_id = thread_cluster_idx[I1]; const auto thread_k_cluster_id = thread_cluster_idx[I1];
using ThreadBufferLengths_M_K = Sequence<MThreadSliceSize, KThreadSliceSize>;
constexpr auto thread_buffer_desc_m_k = make_naive_tensor_descriptor_packed(
make_tuple(Number<MThreadSliceSize>{}, Number<KThreadSliceSize>{}));
auto threadwise_x_load = ThreadwiseTensorSliceTransfer_v2<XDataType, auto threadwise_x_load = ThreadwiseTensorSliceTransfer_v2<XDataType,
AccDataType, ComputeDataType,
GridDesc_M_K, GridDesc_M_K,
decltype(thread_buffer_desc_m_k), decltype(thread_buffer_desc_m_k),
ThreadBufferLengths_M_K, ThreadBufferLengths_M_K,
...@@ -166,11 +175,11 @@ struct GridwiseNormalizationNaiveVariance_mk_to_mk ...@@ -166,11 +175,11 @@ struct GridwiseNormalizationNaiveVariance_mk_to_mk
x_grid_desc_m_k, x_grid_desc_m_k,
make_multi_index(block_global_id * M_BlockTileSize + make_multi_index(block_global_id * M_BlockTileSize +
thread_m_cluster_id * MThreadSliceSize, thread_m_cluster_id * MThreadSliceSize,
thread_k_cluster_id * KThreadSliceSize)); thread_k_cluster_id * XSrcVectorSize));
auto threadwise_gamma_load = auto threadwise_gamma_load =
ThreadwiseTensorSliceTransfer_v2<GammaDataType, ThreadwiseTensorSliceTransfer_v2<GammaDataType,
AccDataType, ComputeDataType,
GridDesc_M_K, GridDesc_M_K,
decltype(thread_buffer_desc_m_k), decltype(thread_buffer_desc_m_k),
ThreadBufferLengths_M_K, ThreadBufferLengths_M_K,
...@@ -182,11 +191,11 @@ struct GridwiseNormalizationNaiveVariance_mk_to_mk ...@@ -182,11 +191,11 @@ struct GridwiseNormalizationNaiveVariance_mk_to_mk
gamma_grid_desc_m_k, gamma_grid_desc_m_k,
make_multi_index(block_global_id * M_BlockTileSize + make_multi_index(block_global_id * M_BlockTileSize +
thread_m_cluster_id * MThreadSliceSize, thread_m_cluster_id * MThreadSliceSize,
thread_k_cluster_id * KThreadSliceSize)); thread_k_cluster_id * GammaSrcVectorSize));
auto threadwise_beta_load = auto threadwise_beta_load =
ThreadwiseTensorSliceTransfer_v2<BetaDataType, ThreadwiseTensorSliceTransfer_v2<BetaDataType,
AccDataType, ComputeDataType,
GridDesc_M_K, GridDesc_M_K,
decltype(thread_buffer_desc_m_k), decltype(thread_buffer_desc_m_k),
ThreadBufferLengths_M_K, ThreadBufferLengths_M_K,
...@@ -198,14 +207,14 @@ struct GridwiseNormalizationNaiveVariance_mk_to_mk ...@@ -198,14 +207,14 @@ struct GridwiseNormalizationNaiveVariance_mk_to_mk
beta_grid_desc_m_k, beta_grid_desc_m_k,
make_multi_index(block_global_id * M_BlockTileSize + make_multi_index(block_global_id * M_BlockTileSize +
thread_m_cluster_id * MThreadSliceSize, thread_m_cluster_id * MThreadSliceSize,
thread_k_cluster_id * KThreadSliceSize)); thread_k_cluster_id * BetaSrcVectorSize));
auto threadwise_y_store = auto threadwise_y_store =
ThreadwiseTensorSliceTransfer_v1r3<AccDataType, ThreadwiseTensorSliceTransfer_v1r3<ComputeDataType,
YDataType, YDataType,
decltype(thread_buffer_desc_m_k), decltype(thread_buffer_desc_m_k),
GridDesc_M_K, GridDesc_M_K,
AccElementwiseOperation, YElementwiseOperation,
ThreadBufferLengths_M_K, ThreadBufferLengths_M_K,
ThreadBufferDimAccessOrder, ThreadBufferDimAccessOrder,
YDstVectorDim, YDstVectorDim,
...@@ -216,13 +225,10 @@ struct GridwiseNormalizationNaiveVariance_mk_to_mk ...@@ -216,13 +225,10 @@ struct GridwiseNormalizationNaiveVariance_mk_to_mk
y_grid_desc_m_k, y_grid_desc_m_k,
make_multi_index(block_global_id * M_BlockTileSize + make_multi_index(block_global_id * M_BlockTileSize +
thread_m_cluster_id * MThreadSliceSize, thread_m_cluster_id * MThreadSliceSize,
thread_k_cluster_id * KThreadSliceSize), thread_k_cluster_id * YDstVectorSize),
acc_elementwise_op); y_elementwise_op);
// Copy x from Cache constexpr auto thread_copy_fwd_step_m_k = make_multi_index(0, K_BlockTileStepSize);
// one pass: fwd, second pass: bwd
constexpr auto thread_copy_fwd_step_m_k =
make_multi_index(0, SweepOnce ? 0 : K_BlockTileSize);
constexpr auto thread_copy_bwd_step_m_k = constexpr auto thread_copy_bwd_step_m_k =
make_multi_index(0, SweepOnce ? 0 : -K_BlockTileSize); make_multi_index(0, SweepOnce ? 0 : -K_BlockTileSize);
...@@ -239,121 +245,260 @@ struct GridwiseNormalizationNaiveVariance_mk_to_mk ...@@ -239,121 +245,260 @@ struct GridwiseNormalizationNaiveVariance_mk_to_mk
// FIXME: Should not hack the transform from deviceOP // FIXME: Should not hack the transform from deviceOP
int reduce_length = x_grid_desc_m_k.GetTransforms()[I2].GetUpperLengths()[I0]; int reduce_length = x_grid_desc_m_k.GetTransforms()[I2].GetUpperLengths()[I0];
index_t reducedTiles = 0; static_for<0, MThreadSliceSize, 1>{}([&](auto I) {
do mean_thread_buf(I) = reduce::Add::template GetIdentityValue<ComputeDataType>();
{ mean_square_thread_buf(I) = reduce::Add::template GetIdentityValue<ComputeDataType>();
threadwise_x_load.Run(x_grid_desc_m_k, });
x_global_val_buf,
thread_buffer_desc_m_k,
make_tuple(I0, I0),
x_thread_buf);
static_for<0, MThreadSliceSize, 1>{}([&](auto iM) { // Separate sweep once and sweep twice pipeline
static_for<0, KThreadSliceSize, 1>{}([&](auto iK) { if constexpr(SweepOnce)
constexpr auto offset_m_k = {
thread_buffer_desc_m_k.CalculateOffset(make_tuple(iM, iK)); static_for<0, ThreadBufferNumber, 1>{}([&](auto i) {
x_square_thread_buf(Number<offset_m_k>{}) = threadwise_x_load.Run(x_grid_desc_m_k,
x_thread_buf(Number<offset_m_k>{}) * x_thread_buf(Number<offset_m_k>{}); x_global_val_buf,
thread_buffer_desc_m_k,
make_tuple(I0, I0),
x_thread_buf(i));
threadwise_gamma_load.Run(gamma_grid_desc_m_k,
gamma_global_val_buf,
thread_buffer_desc_m_k,
make_tuple(I0, I0),
gamma_thread_buf(i));
static_for<0, MThreadSliceSize, 1>{}([&](auto iM) {
static_for<0, XSrcVectorSize, 1>{}([&](auto iK) {
constexpr auto offset_m_k =
thread_buffer_desc_m_k.CalculateOffset(make_tuple(iM, iK));
x_square_thread_buf(i)(Number<offset_m_k>{}) =
x_thread_buf(i)(Number<offset_m_k>{}) *
x_thread_buf(i)(Number<offset_m_k>{});
});
}); });
});
ThreadwiseSumReduce::Reduce(x_thread_buf, mean_thread_buf); ThreadwiseSumReduce::Reduce(x_thread_buf[i], mean_thread_buf);
ThreadwiseSumReduce::Reduce(x_square_thread_buf, mean_square_thread_buf); ThreadwiseSumReduce::Reduce(x_square_thread_buf[i], mean_square_thread_buf);
threadwise_x_load.MoveSrcSliceWindow(x_grid_desc_m_k, thread_copy_fwd_step_m_k); if constexpr(i != ThreadBufferNumber - 1)
{
threadwise_x_load.MoveSrcSliceWindow(x_grid_desc_m_k, thread_copy_fwd_step_m_k);
threadwise_gamma_load.MoveSrcSliceWindow(gamma_grid_desc_m_k,
thread_copy_fwd_step_m_k);
}
});
++reducedTiles; static_for<0, MThreadSliceSize, 1>{}([&](auto I) {
} while(reducedTiles < num_k_block_tile_iteration); if constexpr(I > 0)
block_sync_lds();
BlockwiseSumReduce::Reduce(reduce_work_buf, mean_thread_buf(I));
mean_thread_buf(I) = mean_thread_buf(I) / reduce_length;
static_for<0, MThreadSliceSize, 1>{}([&](auto I) {
if constexpr(I > 0)
block_sync_lds(); block_sync_lds();
BlockwiseSumReduce::Reduce(reduce_work_buf, mean_thread_buf(I)); BlockwiseSumReduce::Reduce(reduce_work_buf, mean_square_thread_buf(I));
mean_thread_buf(I) = mean_thread_buf(I) / reduce_length; mean_square_thread_buf(I) = mean_square_thread_buf(I) / reduce_length;
// var(x) = E[x^2] - E[x]^2
var_thread_buf(I) =
mean_square_thread_buf(I) - (mean_thread_buf(I) * mean_thread_buf(I));
});
block_sync_lds(); static_for<0, MThreadSliceSize, 1>{}([&](auto iM) {
auto divisor = 1 / ck::math::sqrt(var_thread_buf(iM) + epsilon);
static_for<0, ThreadBufferNumber, 1>{}([&](auto iK0) {
static_for<0, XSrcVectorSize, 1>{}([&](auto iK1) {
constexpr auto offset_m_k =
thread_buffer_desc_m_k.CalculateOffset(make_tuple(iM, iK1));
// normalize
y_thread_buf(iK0)(Number<offset_m_k>{}) =
(x_thread_buf(iK0)(Number<offset_m_k>{}) - mean_thread_buf(iM)) *
divisor;
// gamma & beta
y_thread_buf(iK0)(Number<offset_m_k>{}) =
y_thread_buf(iK0)(Number<offset_m_k>{}) *
gamma_thread_buf(iK0)(Number<offset_m_k>{});
});
});
});
BlockwiseSumReduce::Reduce(reduce_work_buf, mean_square_thread_buf(I)); static_for<0, ThreadBufferNumber, 1>{}([&](auto i) {
mean_square_thread_buf(I) = mean_square_thread_buf(I) / reduce_length; threadwise_beta_load.Run(beta_grid_desc_m_k,
beta_global_val_buf,
thread_buffer_desc_m_k,
make_tuple(I0, I0),
beta_thread_buf(i));
// var(x) = E[x^2] - E[x]^2 if constexpr(i != ThreadBufferNumber - 1)
var_thread_buf(I) = threadwise_beta_load.MoveSrcSliceWindow(beta_grid_desc_m_k,
mean_square_thread_buf(I) - (mean_thread_buf(I) * mean_thread_buf(I)); thread_copy_fwd_step_m_k);
}); });
// y = (x - E[x]) / sqrt(var[x] + epsilon) static_for<0, MThreadSliceSize, 1>{}([&](auto iM) {
auto thread_copy_tail_m_k = (num_k_block_tile_iteration - 1) * thread_copy_fwd_step_m_k; static_for<0, ThreadBufferNumber, 1>{}([&](auto iK0) {
static_for<0, XSrcVectorSize, 1>{}([&](auto iK1) {
constexpr auto offset_m_k =
thread_buffer_desc_m_k.CalculateOffset(make_tuple(iM, iK1));
// beta
y_thread_buf(iK0)(Number<offset_m_k>{}) =
y_thread_buf(iK0)(Number<offset_m_k>{}) +
beta_thread_buf(iK0)(Number<offset_m_k>{});
});
});
});
threadwise_x_load.MoveSrcSliceWindow(x_grid_desc_m_k, thread_copy_bwd_step_m_k); static_for<0, ThreadBufferNumber, 1>{}([&](auto i) {
threadwise_gamma_load.MoveSrcSliceWindow(gamma_grid_desc_m_k, thread_copy_tail_m_k); threadwise_y_store.Run(thread_buffer_desc_m_k,
threadwise_beta_load.MoveSrcSliceWindow(beta_grid_desc_m_k, thread_copy_tail_m_k); make_tuple(I0, I0),
threadwise_y_store.MoveDstSliceWindow(y_grid_desc_m_k, thread_copy_tail_m_k); y_thread_buf(i),
y_grid_desc_m_k,
y_global_val_buf);
reducedTiles = 0; if constexpr(i != ThreadBufferNumber - 1)
do threadwise_y_store.MoveDstSliceWindow(y_grid_desc_m_k,
thread_copy_fwd_step_m_k);
});
} // end of sweep once
else
{ {
if constexpr(!SweepOnce) for(index_t reducedTiles = 0; reducedTiles < num_k_block_tile_iteration; ++reducedTiles)
{ {
threadwise_x_load.Run(x_grid_desc_m_k, static_for<0, ThreadBufferNumber, 1>{}([&](auto i) {
x_global_val_buf, threadwise_x_load.Run(x_grid_desc_m_k,
thread_buffer_desc_m_k, x_global_val_buf,
make_tuple(I0, I0), thread_buffer_desc_m_k,
x_thread_buf); make_tuple(I0, I0),
x_thread_buf(i));
threadwise_x_load.MoveSrcSliceWindow(x_grid_desc_m_k, thread_copy_fwd_step_m_k);
static_for<0, MThreadSliceSize, 1>{}([&](auto iM) {
static_for<0, XSrcVectorSize, 1>{}([&](auto iK) {
constexpr auto offset_m_k =
thread_buffer_desc_m_k.CalculateOffset(make_tuple(iM, iK));
x_square_thread_buf(i)(Number<offset_m_k>{}) =
x_thread_buf(i)(Number<offset_m_k>{}) *
x_thread_buf(i)(Number<offset_m_k>{});
});
});
ThreadwiseSumReduce::Reduce(x_thread_buf[i], mean_thread_buf);
ThreadwiseSumReduce::Reduce(x_square_thread_buf[i], mean_square_thread_buf);
});
} }
threadwise_gamma_load.Run(gamma_grid_desc_m_k, static_for<0, MThreadSliceSize, 1>{}([&](auto I) {
gamma_global_val_buf, if constexpr(I > 0)
thread_buffer_desc_m_k, block_sync_lds();
make_tuple(I0, I0),
gamma_thread_buf);
static_for<0, MThreadSliceSize, 1>{}([&](auto iM) { BlockwiseSumReduce::Reduce(reduce_work_buf, mean_thread_buf(I));
static_for<0, KThreadSliceSize, 1>{}([&](auto iK) { mean_thread_buf(I) = mean_thread_buf(I) / reduce_length;
constexpr auto offset_m_k =
thread_buffer_desc_m_k.CalculateOffset(make_tuple(iM, iK));
// normalize
y_thread_buf(Number<offset_m_k>{}) =
(x_thread_buf(Number<offset_m_k>{}) - mean_thread_buf(iM)) /
sqrt(var_thread_buf(iM) + epsilon);
// gamma
y_thread_buf(Number<offset_m_k>{}) =
y_thread_buf(Number<offset_m_k>{}) * gamma_thread_buf(Number<offset_m_k>{});
});
});
threadwise_beta_load.Run(beta_grid_desc_m_k, block_sync_lds();
beta_global_val_buf,
thread_buffer_desc_m_k,
make_tuple(I0, I0),
beta_thread_buf);
static_for<0, MThreadSliceSize, 1>{}([&](auto iM) { BlockwiseSumReduce::Reduce(reduce_work_buf, mean_square_thread_buf(I));
static_for<0, KThreadSliceSize, 1>{}([&](auto iK) { mean_square_thread_buf(I) = mean_square_thread_buf(I) / reduce_length;
constexpr auto offset_m_k =
thread_buffer_desc_m_k.CalculateOffset(make_tuple(iM, iK));
// beta // var(x) = E[x^2] - E[x]^2
y_thread_buf(Number<offset_m_k>{}) = var_thread_buf(I) =
y_thread_buf(Number<offset_m_k>{}) + beta_thread_buf(Number<offset_m_k>{}); mean_square_thread_buf(I) - (mean_thread_buf(I) * mean_thread_buf(I));
});
}); });
threadwise_y_store.Run(thread_buffer_desc_m_k, auto thread_copy_tail_m_k =
make_tuple(I0, I0), (num_k_block_tile_iteration - 1) * ThreadBufferNumber * thread_copy_fwd_step_m_k;
y_thread_buf,
y_grid_desc_m_k,
y_global_val_buf);
threadwise_x_load.MoveSrcSliceWindow(x_grid_desc_m_k, thread_copy_bwd_step_m_k); threadwise_x_load.MoveSrcSliceWindow(x_grid_desc_m_k, thread_copy_bwd_step_m_k);
threadwise_gamma_load.MoveSrcSliceWindow(gamma_grid_desc_m_k, thread_copy_bwd_step_m_k); threadwise_gamma_load.MoveSrcSliceWindow(gamma_grid_desc_m_k, thread_copy_tail_m_k);
threadwise_beta_load.MoveSrcSliceWindow(beta_grid_desc_m_k, thread_copy_bwd_step_m_k); threadwise_beta_load.MoveSrcSliceWindow(beta_grid_desc_m_k, thread_copy_tail_m_k);
threadwise_y_store.MoveDstSliceWindow(y_grid_desc_m_k, thread_copy_bwd_step_m_k); threadwise_y_store.MoveDstSliceWindow(y_grid_desc_m_k, thread_copy_tail_m_k);
for(index_t reducedTiles = 0; reducedTiles < num_k_block_tile_iteration; ++reducedTiles)
{
static_for<0, ThreadBufferNumber, 1>{}([&](auto i) {
threadwise_x_load.Run(x_grid_desc_m_k,
x_global_val_buf,
thread_buffer_desc_m_k,
make_tuple(I0, I0),
x_thread_buf(i));
threadwise_x_load.MoveSrcSliceWindow(x_grid_desc_m_k, thread_copy_fwd_step_m_k);
});
static_for<0, ThreadBufferNumber, 1>{}([&](auto i) {
threadwise_gamma_load.Run(gamma_grid_desc_m_k,
gamma_global_val_buf,
thread_buffer_desc_m_k,
make_tuple(I0, I0),
gamma_thread_buf(i));
threadwise_gamma_load.MoveSrcSliceWindow(gamma_grid_desc_m_k,
thread_copy_fwd_step_m_k);
});
++reducedTiles; static_for<0, MThreadSliceSize, 1>{}([&](auto iM) {
} while(reducedTiles < num_k_block_tile_iteration); auto divisor = 1 / ck::math::sqrt(var_thread_buf(iM) + epsilon);
static_for<0, ThreadBufferNumber, 1>{}([&](auto iK0) {
static_for<0, XSrcVectorSize, 1>{}([&](auto iK1) {
constexpr auto offset_m_k =
thread_buffer_desc_m_k.CalculateOffset(make_tuple(iM, iK1));
// normalize
y_thread_buf(iK0)(Number<offset_m_k>{}) =
(x_thread_buf(iK0)(Number<offset_m_k>{}) - mean_thread_buf(iM)) *
divisor;
// gamma
y_thread_buf(iK0)(Number<offset_m_k>{}) =
y_thread_buf(iK0)(Number<offset_m_k>{}) *
gamma_thread_buf(iK0)(Number<offset_m_k>{});
});
});
});
static_for<0, ThreadBufferNumber, 1>{}([&](auto i) {
threadwise_beta_load.Run(beta_grid_desc_m_k,
beta_global_val_buf,
thread_buffer_desc_m_k,
make_tuple(I0, I0),
beta_thread_buf(i));
threadwise_beta_load.MoveSrcSliceWindow(beta_grid_desc_m_k,
thread_copy_fwd_step_m_k);
});
static_for<0, MThreadSliceSize, 1>{}([&](auto iM) {
static_for<0, ThreadBufferNumber, 1>{}([&](auto iK0) {
static_for<0, XSrcVectorSize, 1>{}([&](auto iK1) {
constexpr auto offset_m_k =
thread_buffer_desc_m_k.CalculateOffset(make_tuple(iM, iK1));
// beta
y_thread_buf(iK0)(Number<offset_m_k>{}) =
y_thread_buf(iK0)(Number<offset_m_k>{}) +
beta_thread_buf(iK0)(Number<offset_m_k>{});
});
});
});
static_for<0, ThreadBufferNumber, 1>{}([&](auto i) {
threadwise_y_store.Run(thread_buffer_desc_m_k,
make_tuple(I0, I0),
y_thread_buf(i),
y_grid_desc_m_k,
y_global_val_buf);
threadwise_y_store.MoveDstSliceWindow(y_grid_desc_m_k,
thread_copy_fwd_step_m_k);
});
threadwise_x_load.MoveSrcSliceWindow(x_grid_desc_m_k, 2 * thread_copy_bwd_step_m_k);
threadwise_gamma_load.MoveSrcSliceWindow(gamma_grid_desc_m_k,
2 * thread_copy_bwd_step_m_k);
threadwise_beta_load.MoveSrcSliceWindow(beta_grid_desc_m_k,
2 * thread_copy_bwd_step_m_k);
threadwise_y_store.MoveDstSliceWindow(y_grid_desc_m_k,
2 * thread_copy_bwd_step_m_k);
}
} // end of sweep twice
} }
}; };
......
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2022, Advanced Micro Devices, Inc. All rights reserved.
#pragma once
#include "ck/tensor_operation/gpu/grid/gridwise_normalization_naive_variance.hpp"
#include "ck/tensor_operation/gpu/grid/gridwise_normalization_welford_variance.hpp"
namespace ck {
template <typename GridwiseReduction,
typename XDataType,
typename GammaDataType,
typename BetaDataType,
typename YDataType,
typename ComputeDataType,
typename YElementwiseOperation,
typename GridDesc_M_K>
__global__ void kernel_normalization(const GridDesc_M_K x_grid_desc_m_k,
const GridDesc_M_K gamma_grid_desc_m_k,
const GridDesc_M_K beta_grid_desc_m_k,
const GridDesc_M_K y_grid_desc_m_k,
index_t num_k_block_tile_iteration,
ComputeDataType epsilon,
const XDataType* const __restrict__ p_x_global,
const GammaDataType* const __restrict__ p_gamma_global,
const BetaDataType* const __restrict__ p_beta_global,
YDataType* const __restrict__ p_y_global,
const YElementwiseOperation y_elementwise_op)
{
GridwiseReduction::Run(x_grid_desc_m_k,
gamma_grid_desc_m_k,
beta_grid_desc_m_k,
y_grid_desc_m_k,
num_k_block_tile_iteration,
epsilon,
p_x_global,
p_gamma_global,
p_beta_global,
p_y_global,
y_elementwise_op);
};
template <typename XDataType,
typename GammaDataType,
typename BetaDataType,
typename YDataType,
typename ComputeDataType,
typename YElementwiseOperation,
typename GridDesc_M_K,
index_t BlockSize,
index_t MThreadClusterSize,
index_t KThreadClusterSize,
index_t MThreadSliceSize,
index_t KThreadSliceSize,
index_t XSrcVectorDim,
index_t XSrcVectorSize,
index_t GammaSrcVectorDim,
index_t GammaSrcVectorSize,
index_t BetaSrcVectorDim,
index_t BetaSrcVectorSize,
index_t YDstVectorDim,
index_t YDstVectorSize,
bool UseWelford>
auto NormalizationKernelSelector(bool isSweepOnce)
{
using GridwiseNormalizationGenericNaive =
GridwiseNormalizationNaiveVariance_mk_to_mk<XDataType,
GammaDataType,
BetaDataType,
YDataType,
ComputeDataType,
YElementwiseOperation,
GridDesc_M_K,
BlockSize,
MThreadClusterSize,
KThreadClusterSize,
MThreadSliceSize,
KThreadSliceSize,
XSrcVectorDim,
XSrcVectorSize,
GammaSrcVectorDim,
GammaSrcVectorSize,
BetaSrcVectorDim,
BetaSrcVectorSize,
YDstVectorDim,
YDstVectorSize,
false>;
using GridwiseNormalizationSweepOnceNaive =
GridwiseNormalizationNaiveVariance_mk_to_mk<XDataType,
GammaDataType,
BetaDataType,
YDataType,
ComputeDataType,
YElementwiseOperation,
GridDesc_M_K,
BlockSize,
MThreadClusterSize,
KThreadClusterSize,
MThreadSliceSize,
KThreadSliceSize,
XSrcVectorDim,
XSrcVectorSize,
GammaSrcVectorDim,
GammaSrcVectorSize,
BetaSrcVectorDim,
BetaSrcVectorSize,
YDstVectorDim,
YDstVectorSize,
true>;
using GridwiseNormalizationGenericWelford =
GridwiseNormalizationWelfordVariance_mk_to_mk<XDataType,
GammaDataType,
BetaDataType,
YDataType,
ComputeDataType,
YElementwiseOperation,
GridDesc_M_K,
BlockSize,
MThreadClusterSize,
KThreadClusterSize,
MThreadSliceSize,
KThreadSliceSize,
XSrcVectorDim,
XSrcVectorSize,
GammaSrcVectorDim,
GammaSrcVectorSize,
BetaSrcVectorDim,
BetaSrcVectorSize,
YDstVectorDim,
YDstVectorSize,
false>;
using GridwiseNormalizationSweepOnceWelford =
GridwiseNormalizationWelfordVariance_mk_to_mk<XDataType,
GammaDataType,
BetaDataType,
YDataType,
ComputeDataType,
YElementwiseOperation,
GridDesc_M_K,
BlockSize,
MThreadClusterSize,
KThreadClusterSize,
MThreadSliceSize,
KThreadSliceSize,
XSrcVectorDim,
XSrcVectorSize,
GammaSrcVectorDim,
GammaSrcVectorSize,
BetaSrcVectorDim,
BetaSrcVectorSize,
YDstVectorDim,
YDstVectorSize,
true>;
if constexpr(UseWelford)
{
return isSweepOnce ? kernel_normalization<GridwiseNormalizationSweepOnceWelford,
XDataType,
GammaDataType,
BetaDataType,
YDataType,
ComputeDataType,
YElementwiseOperation,
GridDesc_M_K>
: kernel_normalization<GridwiseNormalizationGenericWelford,
XDataType,
GammaDataType,
BetaDataType,
YDataType,
ComputeDataType,
YElementwiseOperation,
GridDesc_M_K>;
}
else
{
return isSweepOnce ? kernel_normalization<GridwiseNormalizationSweepOnceNaive,
XDataType,
GammaDataType,
BetaDataType,
YDataType,
ComputeDataType,
YElementwiseOperation,
GridDesc_M_K>
: kernel_normalization<GridwiseNormalizationGenericNaive,
XDataType,
GammaDataType,
BetaDataType,
YDataType,
ComputeDataType,
YElementwiseOperation,
GridDesc_M_K>;
}
}
} // namespace ck
...@@ -16,8 +16,8 @@ template <typename XDataType, ...@@ -16,8 +16,8 @@ template <typename XDataType,
typename GammaDataType, typename GammaDataType,
typename BetaDataType, typename BetaDataType,
typename YDataType, typename YDataType,
typename AccDataType, typename ComputeDataType,
typename AccElementwiseOperation, typename YElementwiseOperation,
typename GridDesc_M_K, typename GridDesc_M_K,
index_t BlockSize, index_t BlockSize,
index_t MThreadClusterSize, index_t MThreadClusterSize,
...@@ -43,6 +43,10 @@ struct GridwiseNormalizationWelfordVariance_mk_to_mk ...@@ -43,6 +43,10 @@ struct GridwiseNormalizationWelfordVariance_mk_to_mk
(YDstVectorDim == 1 && KThreadSliceSize % YDstVectorSize == 0), (YDstVectorDim == 1 && KThreadSliceSize % YDstVectorSize == 0),
"Invalid thread slice sizes and/or vector sizes configuration, please check!"); "Invalid thread slice sizes and/or vector sizes configuration, please check!");
static_assert(XSrcVectorSize == YDstVectorSize);
static_assert(XSrcVectorSize == GammaSrcVectorSize);
static_assert(XSrcVectorSize == BetaSrcVectorSize);
static constexpr bool reorder_thread_cluster = (XSrcVectorDim == 0); static constexpr bool reorder_thread_cluster = (XSrcVectorDim == 0);
using ThreadClusterLengths_M_K = Sequence<MThreadClusterSize, KThreadClusterSize>; using ThreadClusterLengths_M_K = Sequence<MThreadClusterSize, KThreadClusterSize>;
...@@ -56,15 +60,19 @@ struct GridwiseNormalizationWelfordVariance_mk_to_mk ...@@ -56,15 +60,19 @@ struct GridwiseNormalizationWelfordVariance_mk_to_mk
static constexpr auto thread_cluster_desc = static constexpr auto thread_cluster_desc =
make_cluster_descriptor(ThreadClusterLengths_M_K{}, ThreadClusterArrangeOrder{}); make_cluster_descriptor(ThreadClusterLengths_M_K{}, ThreadClusterArrangeOrder{});
using ThreadBufferLengths_M_K = Sequence<MThreadSliceSize, XSrcVectorSize>;
static constexpr auto thread_buffer_desc_m_k = make_naive_tensor_descriptor_packed(
make_tuple(Number<MThreadSliceSize>{}, Number<XSrcVectorSize>{}));
using ThreadReduceSrcDesc_M_K = decltype(make_naive_tensor_descriptor_packed( using ThreadReduceSrcDesc_M_K = decltype(make_naive_tensor_descriptor_packed(
make_tuple(Number<MThreadSliceSize>{}, Number<XSrcVectorSize>{}))); make_tuple(Number<MThreadSliceSize>{}, Number<XSrcVectorSize>{})));
using ThreadReduceDstDesc_M = using ThreadReduceDstDesc_M =
decltype(make_naive_tensor_descriptor_packed(make_tuple(Number<MThreadSliceSize>{}))); decltype(make_naive_tensor_descriptor_packed(make_tuple(Number<MThreadSliceSize>{})));
using ThreadwiseWelford = using ThreadwiseWelford =
ThreadwiseWelford<AccDataType, ThreadReduceSrcDesc_M_K, ThreadReduceDstDesc_M>; ThreadwiseWelford<ComputeDataType, ThreadReduceSrcDesc_M_K, ThreadReduceDstDesc_M>;
using BlockwiseWelford = BlockwiseWelford<AccDataType, using BlockwiseWelford = BlockwiseWelford<ComputeDataType,
BlockSize, BlockSize,
ThreadClusterLengths_M_K, ThreadClusterLengths_M_K,
ThreadClusterArrangeOrder>; ThreadClusterArrangeOrder>;
...@@ -77,10 +85,7 @@ struct GridwiseNormalizationWelfordVariance_mk_to_mk ...@@ -77,10 +85,7 @@ struct GridwiseNormalizationWelfordVariance_mk_to_mk
static constexpr index_t K_BlockTileSize = KThreadClusterSize * KThreadSliceSize; static constexpr index_t K_BlockTileSize = KThreadClusterSize * KThreadSliceSize;
static constexpr index_t K_BlockTileStepSize = KThreadClusterSize * XSrcVectorSize; static constexpr index_t K_BlockTileStepSize = KThreadClusterSize * XSrcVectorSize;
static constexpr auto XThreadBufferNumber = Number<KThreadSliceSize / XSrcVectorSize>{}; static constexpr auto ThreadBufferNumber = Number<KThreadSliceSize / XSrcVectorSize>{};
static constexpr auto GammaThreadBufferNumber = Number<KThreadSliceSize / XSrcVectorSize>{};
static constexpr auto BetaThreadBufferNumber = Number<KThreadSliceSize / XSrcVectorSize>{};
static constexpr auto YThreadBufferNumber = Number<KThreadSliceSize / XSrcVectorSize>{};
__device__ static int GetKPerThread(const GridDesc_M_K& x_grid_desc_m_k, __device__ static int GetKPerThread(const GridDesc_M_K& x_grid_desc_m_k,
int thread_k_cluster_id) int thread_k_cluster_id)
...@@ -93,7 +98,7 @@ struct GridwiseNormalizationWelfordVariance_mk_to_mk ...@@ -93,7 +98,7 @@ struct GridwiseNormalizationWelfordVariance_mk_to_mk
if(kPerBlockTail > 0) if(kPerBlockTail > 0)
{ {
static_for<0, XThreadBufferNumber, 1>{}([&](auto i) { static_for<0, ThreadBufferNumber, 1>{}([&](auto i) {
int thread_max_len = int thread_max_len =
(thread_k_cluster_id + 1) * XSrcVectorSize + K_BlockTileStepSize * i; (thread_k_cluster_id + 1) * XSrcVectorSize + K_BlockTileStepSize * i;
int delta = thread_max_len - kPerBlockTail; int delta = thread_max_len - kPerBlockTail;
...@@ -110,59 +115,41 @@ struct GridwiseNormalizationWelfordVariance_mk_to_mk ...@@ -110,59 +115,41 @@ struct GridwiseNormalizationWelfordVariance_mk_to_mk
const GridDesc_M_K& beta_grid_desc_m_k, const GridDesc_M_K& beta_grid_desc_m_k,
const GridDesc_M_K& y_grid_desc_m_k, const GridDesc_M_K& y_grid_desc_m_k,
index_t num_k_block_tile_iteration, index_t num_k_block_tile_iteration,
AccDataType epsilon, ComputeDataType epsilon,
const XDataType* const __restrict__ p_x_global, const XDataType* const __restrict__ p_x_global,
const GammaDataType* const __restrict__ p_gamma_global, const GammaDataType* const __restrict__ p_gamma_global,
const BetaDataType* const __restrict__ p_beta_global, const BetaDataType* const __restrict__ p_beta_global,
YDataType* const __restrict__ p_y_global, YDataType* const __restrict__ p_y_global,
const AccElementwiseOperation acc_elementwise_op) const YElementwiseOperation y_elementwise_op)
{ {
if constexpr(SweepOnce)
{
num_k_block_tile_iteration = 1;
}
auto y_global_val_buf = make_dynamic_buffer<AddressSpaceEnum::Global>( auto y_global_val_buf = make_dynamic_buffer<AddressSpaceEnum::Global>(
p_y_global, y_grid_desc_m_k.GetElementSpaceSize()); p_y_global, y_grid_desc_m_k.GetElementSpaceSize());
auto x_thread_buf = generate_tuple( auto x_thread_buf = generate_tuple(
[&](auto) { [&](auto) {
return StaticBuffer<AddressSpaceEnum::Vgpr, return StaticBuffer<AddressSpaceEnum::Vgpr,
AccDataType, ComputeDataType,
MThreadSliceSize * XSrcVectorSize, MThreadSliceSize * XSrcVectorSize,
true>{}; true>{};
}, },
Number<XThreadBufferNumber>{}); Number<ThreadBufferNumber>{});
auto gamma_thread_buf = generate_tuple( auto gamma_thread_buf = generate_tuple(
[&](auto) { [&](auto) {
return StaticBuffer<AddressSpaceEnum::Vgpr, return StaticBuffer<AddressSpaceEnum::Vgpr,
AccDataType, ComputeDataType,
MThreadSliceSize * GammaSrcVectorSize, MThreadSliceSize * GammaSrcVectorSize,
true>{}; true>{};
}, },
Number<GammaThreadBufferNumber>{}); Number<ThreadBufferNumber>{});
auto beta_thread_buf = generate_tuple(
[&](auto) {
return StaticBuffer<AddressSpaceEnum::Vgpr,
AccDataType,
MThreadSliceSize * BetaSrcVectorSize,
true>{};
},
Number<BetaThreadBufferNumber>{});
auto y_thread_buf = generate_tuple( auto& beta_thread_buf = gamma_thread_buf;
[&](auto) { auto& y_thread_buf = x_thread_buf;
return StaticBuffer<AddressSpaceEnum::Vgpr,
AccDataType,
MThreadSliceSize * YDstVectorSize,
true>{};
},
Number<YThreadBufferNumber>{});
StaticBuffer<AddressSpaceEnum::Vgpr, AccDataType, MThreadSliceSize, true> mean_thread_buf; StaticBuffer<AddressSpaceEnum::Vgpr, ComputeDataType, MThreadSliceSize, true>
StaticBuffer<AddressSpaceEnum::Vgpr, AccDataType, MThreadSliceSize, true> var_thread_buf; mean_thread_buf;
StaticBuffer<AddressSpaceEnum::Vgpr, ComputeDataType, MThreadSliceSize, true>
var_thread_buf;
const index_t thread_local_id = get_thread_local_1d_id(); const index_t thread_local_id = get_thread_local_1d_id();
const index_t block_global_id = get_block_1d_id(); const index_t block_global_id = get_block_1d_id();
...@@ -173,12 +160,8 @@ struct GridwiseNormalizationWelfordVariance_mk_to_mk ...@@ -173,12 +160,8 @@ struct GridwiseNormalizationWelfordVariance_mk_to_mk
const auto thread_m_cluster_id = thread_cluster_idx[I0]; const auto thread_m_cluster_id = thread_cluster_idx[I0];
const auto thread_k_cluster_id = thread_cluster_idx[I1]; const auto thread_k_cluster_id = thread_cluster_idx[I1];
using ThreadBufferLengths_M_K = Sequence<MThreadSliceSize, XSrcVectorSize>;
constexpr auto thread_buffer_desc_m_k = make_naive_tensor_descriptor_packed(
make_tuple(Number<MThreadSliceSize>{}, Number<XSrcVectorSize>{}));
auto threadwise_x_load = ThreadwiseTensorSliceTransfer_v2<XDataType, auto threadwise_x_load = ThreadwiseTensorSliceTransfer_v2<XDataType,
AccDataType, ComputeDataType,
GridDesc_M_K, GridDesc_M_K,
decltype(thread_buffer_desc_m_k), decltype(thread_buffer_desc_m_k),
ThreadBufferLengths_M_K, ThreadBufferLengths_M_K,
...@@ -194,7 +177,7 @@ struct GridwiseNormalizationWelfordVariance_mk_to_mk ...@@ -194,7 +177,7 @@ struct GridwiseNormalizationWelfordVariance_mk_to_mk
auto threadwise_gamma_load = auto threadwise_gamma_load =
ThreadwiseTensorSliceTransfer_v2<GammaDataType, ThreadwiseTensorSliceTransfer_v2<GammaDataType,
AccDataType, ComputeDataType,
GridDesc_M_K, GridDesc_M_K,
decltype(thread_buffer_desc_m_k), decltype(thread_buffer_desc_m_k),
ThreadBufferLengths_M_K, ThreadBufferLengths_M_K,
...@@ -210,7 +193,7 @@ struct GridwiseNormalizationWelfordVariance_mk_to_mk ...@@ -210,7 +193,7 @@ struct GridwiseNormalizationWelfordVariance_mk_to_mk
auto threadwise_beta_load = auto threadwise_beta_load =
ThreadwiseTensorSliceTransfer_v2<BetaDataType, ThreadwiseTensorSliceTransfer_v2<BetaDataType,
AccDataType, ComputeDataType,
GridDesc_M_K, GridDesc_M_K,
decltype(thread_buffer_desc_m_k), decltype(thread_buffer_desc_m_k),
ThreadBufferLengths_M_K, ThreadBufferLengths_M_K,
...@@ -225,11 +208,11 @@ struct GridwiseNormalizationWelfordVariance_mk_to_mk ...@@ -225,11 +208,11 @@ struct GridwiseNormalizationWelfordVariance_mk_to_mk
thread_k_cluster_id * BetaSrcVectorSize)); thread_k_cluster_id * BetaSrcVectorSize));
auto threadwise_y_store = auto threadwise_y_store =
ThreadwiseTensorSliceTransfer_v1r3<AccDataType, ThreadwiseTensorSliceTransfer_v1r3<ComputeDataType,
YDataType, YDataType,
decltype(thread_buffer_desc_m_k), decltype(thread_buffer_desc_m_k),
GridDesc_M_K, GridDesc_M_K,
AccElementwiseOperation, YElementwiseOperation,
ThreadBufferLengths_M_K, ThreadBufferLengths_M_K,
ThreadBufferDimAccessOrder, ThreadBufferDimAccessOrder,
YDstVectorDim, YDstVectorDim,
...@@ -241,7 +224,7 @@ struct GridwiseNormalizationWelfordVariance_mk_to_mk ...@@ -241,7 +224,7 @@ struct GridwiseNormalizationWelfordVariance_mk_to_mk
make_multi_index(block_global_id * M_BlockTileSize + make_multi_index(block_global_id * M_BlockTileSize +
thread_m_cluster_id * MThreadSliceSize, thread_m_cluster_id * MThreadSliceSize,
thread_k_cluster_id * YDstVectorSize), thread_k_cluster_id * YDstVectorSize),
acc_elementwise_op); y_elementwise_op);
constexpr auto thread_copy_fwd_step_m_k = make_multi_index(0, K_BlockTileStepSize); constexpr auto thread_copy_fwd_step_m_k = make_multi_index(0, K_BlockTileStepSize);
constexpr auto thread_copy_bwd_step_m_k = constexpr auto thread_copy_bwd_step_m_k =
...@@ -260,67 +243,47 @@ struct GridwiseNormalizationWelfordVariance_mk_to_mk ...@@ -260,67 +243,47 @@ struct GridwiseNormalizationWelfordVariance_mk_to_mk
threadwise_welford.max_count_ = GetKPerThread(x_grid_desc_m_k, thread_k_cluster_id); threadwise_welford.max_count_ = GetKPerThread(x_grid_desc_m_k, thread_k_cluster_id);
static_for<0, MThreadSliceSize, 1>{}([&](auto I) { static_for<0, MThreadSliceSize, 1>{}([&](auto I) {
mean_thread_buf(I) = type_convert<AccDataType>(0.0f); mean_thread_buf(I) = type_convert<ComputeDataType>(0.0f);
var_thread_buf(I) = type_convert<AccDataType>(0.0f); var_thread_buf(I) = type_convert<ComputeDataType>(0.0f);
}); });
for(index_t reducedTiles = 0; reducedTiles < num_k_block_tile_iteration; ++reducedTiles) // Separate sweep once and sweep twice pipeline
if constexpr(SweepOnce)
{ {
static_for<0, XThreadBufferNumber, 1>{}([&](auto i) { static_for<0, ThreadBufferNumber, 1>{}([&](auto i) {
threadwise_x_load.Run(x_grid_desc_m_k, threadwise_x_load.Run(x_grid_desc_m_k,
x_global_val_buf, x_global_val_buf,
thread_buffer_desc_m_k, thread_buffer_desc_m_k,
make_tuple(I0, I0), make_tuple(I0, I0),
x_thread_buf(i)); x_thread_buf(i));
threadwise_x_load.MoveSrcSliceWindow(x_grid_desc_m_k, thread_copy_fwd_step_m_k);
threadwise_welford.Run(x_thread_buf[i], mean_thread_buf, var_thread_buf);
});
}
static_for<0, MThreadSliceSize, 1>{}([&](auto I) {
if constexpr(I > 0)
block_sync_lds();
int count = threadwise_welford.cur_count_;
BlockwiseWelford::Run(mean_thread_buf(I), var_thread_buf(I), count);
});
auto thread_copy_tail_m_k =
(num_k_block_tile_iteration - 1) * XThreadBufferNumber * thread_copy_fwd_step_m_k;
threadwise_x_load.MoveSrcSliceWindow(x_grid_desc_m_k, thread_copy_bwd_step_m_k);
threadwise_gamma_load.MoveSrcSliceWindow(gamma_grid_desc_m_k, thread_copy_tail_m_k);
threadwise_beta_load.MoveSrcSliceWindow(beta_grid_desc_m_k, thread_copy_tail_m_k);
threadwise_y_store.MoveDstSliceWindow(y_grid_desc_m_k, thread_copy_tail_m_k);
for(index_t reducedTiles = 0; reducedTiles < num_k_block_tile_iteration; ++reducedTiles)
{
if constexpr(!SweepOnce)
{
static_for<0, XThreadBufferNumber, 1>{}([&](auto i) {
threadwise_x_load.Run(x_grid_desc_m_k,
x_global_val_buf,
thread_buffer_desc_m_k,
make_tuple(I0, I0),
x_thread_buf(i));
threadwise_x_load.MoveSrcSliceWindow(x_grid_desc_m_k, thread_copy_fwd_step_m_k);
});
}
static_for<0, GammaThreadBufferNumber, 1>{}([&](auto i) {
threadwise_gamma_load.Run(gamma_grid_desc_m_k, threadwise_gamma_load.Run(gamma_grid_desc_m_k,
gamma_global_val_buf, gamma_global_val_buf,
thread_buffer_desc_m_k, thread_buffer_desc_m_k,
make_tuple(I0, I0), make_tuple(I0, I0),
gamma_thread_buf(i)); gamma_thread_buf(i));
threadwise_gamma_load.MoveSrcSliceWindow(gamma_grid_desc_m_k, threadwise_welford.Run(x_thread_buf[i], mean_thread_buf, var_thread_buf);
thread_copy_fwd_step_m_k);
if constexpr(i != ThreadBufferNumber - 1)
{
threadwise_x_load.MoveSrcSliceWindow(x_grid_desc_m_k, thread_copy_fwd_step_m_k);
threadwise_gamma_load.MoveSrcSliceWindow(gamma_grid_desc_m_k,
thread_copy_fwd_step_m_k);
}
});
static_for<0, MThreadSliceSize, 1>{}([&](auto I) {
if constexpr(I > 0)
block_sync_lds();
int count = threadwise_welford.cur_count_;
BlockwiseWelford::Run(mean_thread_buf(I), var_thread_buf(I), count);
}); });
static_for<0, MThreadSliceSize, 1>{}([&](auto iM) { static_for<0, MThreadSliceSize, 1>{}([&](auto iM) {
auto divisor = 1 / ck::math::sqrt(var_thread_buf(iM) + epsilon); auto divisor = 1 / ck::math::sqrt(var_thread_buf(iM) + epsilon);
static_for<0, XThreadBufferNumber, 1>{}([&](auto iK0) { static_for<0, ThreadBufferNumber, 1>{}([&](auto iK0) {
static_for<0, XSrcVectorSize, 1>{}([&](auto iK1) { static_for<0, XSrcVectorSize, 1>{}([&](auto iK1) {
constexpr auto offset_m_k = constexpr auto offset_m_k =
thread_buffer_desc_m_k.CalculateOffset(make_tuple(iM, iK1)); thread_buffer_desc_m_k.CalculateOffset(make_tuple(iM, iK1));
...@@ -330,7 +293,7 @@ struct GridwiseNormalizationWelfordVariance_mk_to_mk ...@@ -330,7 +293,7 @@ struct GridwiseNormalizationWelfordVariance_mk_to_mk
(x_thread_buf(iK0)(Number<offset_m_k>{}) - mean_thread_buf(iM)) * (x_thread_buf(iK0)(Number<offset_m_k>{}) - mean_thread_buf(iM)) *
divisor; divisor;
// gamma // gamma & beta
y_thread_buf(iK0)(Number<offset_m_k>{}) = y_thread_buf(iK0)(Number<offset_m_k>{}) =
y_thread_buf(iK0)(Number<offset_m_k>{}) * y_thread_buf(iK0)(Number<offset_m_k>{}) *
gamma_thread_buf(iK0)(Number<offset_m_k>{}); gamma_thread_buf(iK0)(Number<offset_m_k>{});
...@@ -338,18 +301,20 @@ struct GridwiseNormalizationWelfordVariance_mk_to_mk ...@@ -338,18 +301,20 @@ struct GridwiseNormalizationWelfordVariance_mk_to_mk
}); });
}); });
static_for<0, BetaThreadBufferNumber, 1>{}([&](auto i) { static_for<0, ThreadBufferNumber, 1>{}([&](auto i) {
threadwise_beta_load.Run(beta_grid_desc_m_k, threadwise_beta_load.Run(beta_grid_desc_m_k,
beta_global_val_buf, beta_global_val_buf,
thread_buffer_desc_m_k, thread_buffer_desc_m_k,
make_tuple(I0, I0), make_tuple(I0, I0),
beta_thread_buf(i)); beta_thread_buf(i));
threadwise_beta_load.MoveSrcSliceWindow(beta_grid_desc_m_k,
thread_copy_fwd_step_m_k); if constexpr(i != ThreadBufferNumber - 1)
threadwise_beta_load.MoveSrcSliceWindow(beta_grid_desc_m_k,
thread_copy_fwd_step_m_k);
}); });
static_for<0, MThreadSliceSize, 1>{}([&](auto iM) { static_for<0, MThreadSliceSize, 1>{}([&](auto iM) {
static_for<0, XThreadBufferNumber, 1>{}([&](auto iK0) { static_for<0, ThreadBufferNumber, 1>{}([&](auto iK0) {
static_for<0, XSrcVectorSize, 1>{}([&](auto iK1) { static_for<0, XSrcVectorSize, 1>{}([&](auto iK1) {
constexpr auto offset_m_k = constexpr auto offset_m_k =
thread_buffer_desc_m_k.CalculateOffset(make_tuple(iM, iK1)); thread_buffer_desc_m_k.CalculateOffset(make_tuple(iM, iK1));
...@@ -362,22 +327,134 @@ struct GridwiseNormalizationWelfordVariance_mk_to_mk ...@@ -362,22 +327,134 @@ struct GridwiseNormalizationWelfordVariance_mk_to_mk
}); });
}); });
static_for<0, YThreadBufferNumber, 1>{}([&](auto i) { static_for<0, ThreadBufferNumber, 1>{}([&](auto i) {
threadwise_y_store.Run(thread_buffer_desc_m_k, threadwise_y_store.Run(thread_buffer_desc_m_k,
make_tuple(I0, I0), make_tuple(I0, I0),
y_thread_buf(i), y_thread_buf(i),
y_grid_desc_m_k, y_grid_desc_m_k,
y_global_val_buf); y_global_val_buf);
threadwise_y_store.MoveDstSliceWindow(y_grid_desc_m_k, thread_copy_fwd_step_m_k);
if constexpr(i != ThreadBufferNumber - 1)
threadwise_y_store.MoveDstSliceWindow(y_grid_desc_m_k,
thread_copy_fwd_step_m_k);
});
} // end of sweep once
else
{
for(index_t reducedTiles = 0; reducedTiles < num_k_block_tile_iteration; ++reducedTiles)
{
static_for<0, ThreadBufferNumber, 1>{}([&](auto i) {
threadwise_x_load.Run(x_grid_desc_m_k,
x_global_val_buf,
thread_buffer_desc_m_k,
make_tuple(I0, I0),
x_thread_buf(i));
threadwise_x_load.MoveSrcSliceWindow(x_grid_desc_m_k, thread_copy_fwd_step_m_k);
threadwise_welford.Run(x_thread_buf[i], mean_thread_buf, var_thread_buf);
});
}
static_for<0, MThreadSliceSize, 1>{}([&](auto I) {
if constexpr(I > 0)
block_sync_lds();
int count = threadwise_welford.cur_count_;
BlockwiseWelford::Run(mean_thread_buf(I), var_thread_buf(I), count);
}); });
threadwise_x_load.MoveSrcSliceWindow(x_grid_desc_m_k, 2 * thread_copy_bwd_step_m_k); auto thread_copy_tail_m_k =
threadwise_gamma_load.MoveSrcSliceWindow(gamma_grid_desc_m_k, (num_k_block_tile_iteration - 1) * ThreadBufferNumber * thread_copy_fwd_step_m_k;
2 * thread_copy_bwd_step_m_k);
threadwise_beta_load.MoveSrcSliceWindow(beta_grid_desc_m_k, threadwise_x_load.MoveSrcSliceWindow(x_grid_desc_m_k, thread_copy_bwd_step_m_k);
2 * thread_copy_bwd_step_m_k); threadwise_gamma_load.MoveSrcSliceWindow(gamma_grid_desc_m_k, thread_copy_tail_m_k);
threadwise_y_store.MoveDstSliceWindow(y_grid_desc_m_k, 2 * thread_copy_bwd_step_m_k); threadwise_beta_load.MoveSrcSliceWindow(beta_grid_desc_m_k, thread_copy_tail_m_k);
} threadwise_y_store.MoveDstSliceWindow(y_grid_desc_m_k, thread_copy_tail_m_k);
for(index_t reducedTiles = 0; reducedTiles < num_k_block_tile_iteration; ++reducedTiles)
{
static_for<0, ThreadBufferNumber, 1>{}([&](auto i) {
threadwise_x_load.Run(x_grid_desc_m_k,
x_global_val_buf,
thread_buffer_desc_m_k,
make_tuple(I0, I0),
x_thread_buf(i));
threadwise_x_load.MoveSrcSliceWindow(x_grid_desc_m_k, thread_copy_fwd_step_m_k);
});
static_for<0, ThreadBufferNumber, 1>{}([&](auto i) {
threadwise_gamma_load.Run(gamma_grid_desc_m_k,
gamma_global_val_buf,
thread_buffer_desc_m_k,
make_tuple(I0, I0),
gamma_thread_buf(i));
threadwise_gamma_load.MoveSrcSliceWindow(gamma_grid_desc_m_k,
thread_copy_fwd_step_m_k);
});
static_for<0, MThreadSliceSize, 1>{}([&](auto iM) {
auto divisor = 1 / ck::math::sqrt(var_thread_buf(iM) + epsilon);
static_for<0, ThreadBufferNumber, 1>{}([&](auto iK0) {
static_for<0, XSrcVectorSize, 1>{}([&](auto iK1) {
constexpr auto offset_m_k =
thread_buffer_desc_m_k.CalculateOffset(make_tuple(iM, iK1));
// normalize
y_thread_buf(iK0)(Number<offset_m_k>{}) =
(x_thread_buf(iK0)(Number<offset_m_k>{}) - mean_thread_buf(iM)) *
divisor;
// gamma
y_thread_buf(iK0)(Number<offset_m_k>{}) =
y_thread_buf(iK0)(Number<offset_m_k>{}) *
gamma_thread_buf(iK0)(Number<offset_m_k>{});
});
});
});
static_for<0, ThreadBufferNumber, 1>{}([&](auto i) {
threadwise_beta_load.Run(beta_grid_desc_m_k,
beta_global_val_buf,
thread_buffer_desc_m_k,
make_tuple(I0, I0),
beta_thread_buf(i));
threadwise_beta_load.MoveSrcSliceWindow(beta_grid_desc_m_k,
thread_copy_fwd_step_m_k);
});
static_for<0, MThreadSliceSize, 1>{}([&](auto iM) {
static_for<0, ThreadBufferNumber, 1>{}([&](auto iK0) {
static_for<0, XSrcVectorSize, 1>{}([&](auto iK1) {
constexpr auto offset_m_k =
thread_buffer_desc_m_k.CalculateOffset(make_tuple(iM, iK1));
// beta
y_thread_buf(iK0)(Number<offset_m_k>{}) =
y_thread_buf(iK0)(Number<offset_m_k>{}) +
beta_thread_buf(iK0)(Number<offset_m_k>{});
});
});
});
static_for<0, ThreadBufferNumber, 1>{}([&](auto i) {
threadwise_y_store.Run(thread_buffer_desc_m_k,
make_tuple(I0, I0),
y_thread_buf(i),
y_grid_desc_m_k,
y_global_val_buf);
threadwise_y_store.MoveDstSliceWindow(y_grid_desc_m_k,
thread_copy_fwd_step_m_k);
});
threadwise_x_load.MoveSrcSliceWindow(x_grid_desc_m_k, 2 * thread_copy_bwd_step_m_k);
threadwise_gamma_load.MoveSrcSliceWindow(gamma_grid_desc_m_k,
2 * thread_copy_bwd_step_m_k);
threadwise_beta_load.MoveSrcSliceWindow(beta_grid_desc_m_k,
2 * thread_copy_bwd_step_m_k);
threadwise_y_store.MoveDstSliceWindow(y_grid_desc_m_k,
2 * thread_copy_bwd_step_m_k);
}
} // end of sweep twice
} }
}; };
......
...@@ -83,6 +83,11 @@ static inline __host__ bool isnan(int4_t x) ...@@ -83,6 +83,11 @@ static inline __host__ bool isnan(int4_t x)
}; };
#endif #endif
static inline __host__ half_t sqrt(half_t x)
{
return static_cast<half_t>(std::sqrt(static_cast<float>(x)));
};
static inline __host__ float sqrt(float x) { return std::sqrt(x); }; static inline __host__ float sqrt(float x) { return std::sqrt(x); };
static inline __host__ double sqrt(double x) { return std::sqrt(x); }; static inline __host__ double sqrt(double x) { return std::sqrt(x); };
...@@ -158,9 +163,14 @@ static inline __device__ bool isnan(half_t x) ...@@ -158,9 +163,14 @@ static inline __device__ bool isnan(half_t x)
return (xx & 0x7FFF) > 0x7C00; return (xx & 0x7FFF) > 0x7C00;
}; };
static inline __device__ float sqrt(float x) { return ::sqrtf(x); }; static inline __device__ half_t sqrt(half_t x)
{
return static_cast<half_t>(__builtin_amdgcn_sqrtf(static_cast<float>(x)));
};
static inline __device__ float sqrt(float x) { return __builtin_amdgcn_sqrtf(x); };
static inline __device__ double sqrt(double x) { return ::sqrt(x); }; static inline __device__ double sqrt(double x) { return __builtin_amdgcn_sqrt(x); };
} // namespace math } // namespace math
} // namespace ck } // namespace ck
...@@ -89,8 +89,10 @@ using Scale = ck::tensor_operation::element_wise::Scale; ...@@ -89,8 +89,10 @@ using Scale = ck::tensor_operation::element_wise::Scale;
using Bilinear = ck::tensor_operation::element_wise::Bilinear; using Bilinear = ck::tensor_operation::element_wise::Bilinear;
using AddAddFastGelu = ck::tensor_operation::element_wise::AddAddFastGelu; using AddAddFastGelu = ck::tensor_operation::element_wise::AddAddFastGelu;
using AddFastGelu = ck::tensor_operation::element_wise::AddFastGelu; using AddFastGelu = ck::tensor_operation::element_wise::AddFastGelu;
using AddReluAdd = ck::tensor_operation::element_wise::AddReluAdd;
using FastGelu = ck::tensor_operation::element_wise::FastGelu; using FastGelu = ck::tensor_operation::element_wise::FastGelu;
using AddMultiply = ck::tensor_operation::element_wise::AddMultiply; using AddMultiply = ck::tensor_operation::element_wise::AddMultiply;
using ScaleAdd = ck::tensor_operation::element_wise::ScaleAdd;
template <typename Activation> template <typename Activation>
using Activation_Mul_Clamp = ck::tensor_operation::element_wise::Activation_Mul_Clamp<Activation>; using Activation_Mul_Clamp = ck::tensor_operation::element_wise::Activation_Mul_Clamp<Activation>;
......
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2022, Advanced Micro Devices, Inc. All rights reserved.
#pragma once
#include <cstdlib>
#include "ck/ck.hpp"
#include "ck/tensor_operation/gpu/device/tensor_layout.hpp"
#include "ck/tensor_operation/gpu/device/device_batched_gemm_softmax_gemm_permute.hpp"
#include "ck/tensor_operation/gpu/element/element_wise_operation.hpp"
#include "ck/library/tensor_operation_instance/device_operation_instance_factory.hpp"
namespace ck {
namespace tensor_operation {
namespace device {
namespace instance {
void add_device_batched_gemm_bias_masking_softmax_gemm_permute_xdl_cshuffle_f16_f16_f16_f16_gmk_gnk_gno_gmo_instances(
std::vector<std::unique_ptr<
DeviceBatchedGemmSoftmaxGemmPermute<2,
1,
1,
1,
1,
F16,
F16,
F16,
F16,
ck::Tuple<F16>,
ck::Tuple<>,
PassThrough,
PassThrough,
ScaleAdd,
PassThrough,
PassThrough,
MaskingSpecialization::MaskOutUpperTriangle>>>&
instances);
void add_device_batched_gemm_bias_softmax_gemm_permute_xdl_cshuffle_f16_f16_f16_f16_gmk_gnk_gno_gmo_instances(
std::vector<
std::unique_ptr<DeviceBatchedGemmSoftmaxGemmPermute<2,
1,
1,
1,
1,
F16,
F16,
F16,
F16,
ck::Tuple<F16>,
ck::Tuple<>,
PassThrough,
PassThrough,
ScaleAdd,
PassThrough,
PassThrough,
MaskingSpecialization::MaskDisabled>>>&
instances);
void add_device_batched_gemm_bias_masking_softmax_gemm_permute_xdl_cshuffle_bf16_bf16_bf16_bf16_gmk_gnk_gno_gmo_instances(
std::vector<std::unique_ptr<
DeviceBatchedGemmSoftmaxGemmPermute<2,
1,
1,
1,
1,
BF16,
BF16,
BF16,
BF16,
ck::Tuple<BF16>,
ck::Tuple<>,
PassThrough,
PassThrough,
ScaleAdd,
PassThrough,
PassThrough,
MaskingSpecialization::MaskOutUpperTriangle>>>&
instances);
void add_device_batched_gemm_bias_softmax_gemm_permute_xdl_cshuffle_bf16_bf16_bf16_bf16_gmk_gnk_gno_gmo_instances(
std::vector<
std::unique_ptr<DeviceBatchedGemmSoftmaxGemmPermute<2,
1,
1,
1,
1,
BF16,
BF16,
BF16,
BF16,
ck::Tuple<BF16>,
ck::Tuple<>,
PassThrough,
PassThrough,
ScaleAdd,
PassThrough,
PassThrough,
MaskingSpecialization::MaskDisabled>>>&
instances);
template <typename ADataType,
typename B0DataType,
typename B1DataType,
typename CDataType,
typename Acc0BiasDataType,
MaskingSpecialization MaskingSpec>
struct DeviceOperationInstanceFactory<
ck::tensor_operation::device::DeviceBatchedGemmSoftmaxGemmPermute<2,
1,
1,
1,
1,
ADataType,
B0DataType,
B1DataType,
CDataType,
Acc0BiasDataType,
ck::Tuple<>,
PassThrough,
PassThrough,
ScaleAdd,
PassThrough,
PassThrough,
MaskingSpec>>
{
using DeviceOp = DeviceBatchedGemmSoftmaxGemmPermute<2,
1,
1,
1,
1,
ADataType,
B0DataType,
B1DataType,
CDataType,
Acc0BiasDataType,
ck::Tuple<>,
PassThrough,
PassThrough,
ScaleAdd,
PassThrough,
PassThrough,
MaskingSpec>;
static auto GetInstances()
{
std::vector<std::unique_ptr<DeviceOp>> op_ptrs;
if constexpr(is_same_v<ADataType, half_t> && is_same_v<B0DataType, half_t> &&
is_same_v<B1DataType, half_t> && is_same_v<CDataType, half_t> &&
Acc0BiasDataType::Size() == 1 &&
is_same_v<tuple_element_t<0, Acc0BiasDataType>, half_t>)
{
if constexpr(MaskingSpec == MaskingSpecialization::MaskOutUpperTriangle)
{
add_device_batched_gemm_bias_masking_softmax_gemm_permute_xdl_cshuffle_f16_f16_f16_f16_gmk_gnk_gno_gmo_instances(
op_ptrs);
}
else if(MaskingSpec == MaskingSpecialization::MaskDisabled)
{
add_device_batched_gemm_bias_softmax_gemm_permute_xdl_cshuffle_f16_f16_f16_f16_gmk_gnk_gno_gmo_instances(
op_ptrs);
}
}
else if constexpr(is_same_v<ADataType, BF16> && is_same_v<B0DataType, BF16> &&
is_same_v<B1DataType, BF16> && is_same_v<CDataType, BF16> &&
Acc0BiasDataType::Size() == 1 &&
is_same_v<tuple_element_t<0, Acc0BiasDataType>, BF16>)
{
if constexpr(MaskingSpec == MaskingSpecialization::MaskOutUpperTriangle)
{
add_device_batched_gemm_bias_masking_softmax_gemm_permute_xdl_cshuffle_bf16_bf16_bf16_bf16_gmk_gnk_gno_gmo_instances(
op_ptrs);
}
else if(MaskingSpec == MaskingSpecialization::MaskDisabled)
{
add_device_batched_gemm_bias_softmax_gemm_permute_xdl_cshuffle_bf16_bf16_bf16_bf16_gmk_gnk_gno_gmo_instances(
op_ptrs);
}
}
return op_ptrs;
}
};
} // namespace instance
} // namespace device
} // namespace tensor_operation
} // namespace ck
...@@ -10,7 +10,6 @@ ...@@ -10,7 +10,6 @@
#include "ck/ck.hpp" #include "ck/ck.hpp"
#include "ck/tensor_operation/gpu/device/tensor_layout.hpp" #include "ck/tensor_operation/gpu/device/tensor_layout.hpp"
#include "ck/tensor_operation/gpu/device/device_gemm_multiple_d.hpp" #include "ck/tensor_operation/gpu/device/device_gemm_multiple_d.hpp"
#include "ck/tensor_operation/gpu/element/element_wise_operation.hpp"
#include "ck/library/tensor_operation_instance/device_operation_instance_factory.hpp" #include "ck/library/tensor_operation_instance/device_operation_instance_factory.hpp"
......
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2022, Advanced Micro Devices, Inc. All rights reserved.
#pragma once
#include <vector>
#include <memory>
#include "ck/ck.hpp"
#include "ck/tensor_operation/gpu/device/device_gemm_multiple_d_layernorm.hpp"
#include "ck/library/tensor_operation_instance/device_operation_instance_factory.hpp"
namespace ck {
namespace tensor_operation {
namespace device {
namespace instance {
void add_device_gemm_add_relu_add_xdl_c_shuffle_layernorm_f16_mk_kn_mn_mn_mn_instances(
std::vector<std::unique_ptr<DeviceGemmMultipleDLayernorm<Row,
Row,
Row_Row_Tuple,
Row,
F16,
F16,
F16_F16_Tuple,
F16,
F16,
F16,
PassThrough,
PassThrough,
AddReluAdd,
PassThrough>>>&);
void add_device_gemm_add_relu_add_xdl_c_shuffle_layernorm_f16_mk_nk_mn_mn_mn_instances(
std::vector<std::unique_ptr<DeviceGemmMultipleDLayernorm<Row,
Col,
Row_Row_Tuple,
Row,
F16,
F16,
F16_F16_Tuple,
F16,
F16,
F16,
PassThrough,
PassThrough,
AddReluAdd,
PassThrough>>>&);
void add_device_gemm_add_relu_add_xdl_c_shuffle_layernorm_f16_km_kn_mn_mn_mn_instances(
std::vector<std::unique_ptr<DeviceGemmMultipleDLayernorm<Col,
Row,
Row_Row_Tuple,
Row,
F16,
F16,
F16_F16_Tuple,
F16,
F16,
F16,
PassThrough,
PassThrough,
AddReluAdd,
PassThrough>>>&);
void add_device_gemm_add_relu_add_xdl_c_shuffle_layernorm_f16_km_nk_mn_mn_mn_instances(
std::vector<std::unique_ptr<DeviceGemmMultipleDLayernorm<Col,
Col,
Row_Row_Tuple,
Row,
F16,
F16,
F16_F16_Tuple,
F16,
F16,
F16,
PassThrough,
PassThrough,
AddReluAdd,
PassThrough>>>&);
// GEMM + Add + Relu + Add + Layernorm
template <typename ALayout,
typename BLayout,
typename D0Layout,
typename D1Layout,
typename HLayout,
typename ADataType,
typename BDataType,
typename D0DataType,
typename D1DataType,
typename GammaDataType,
typename BetaDataType,
typename HDataType>
struct DeviceOperationInstanceFactory<ck::tensor_operation::device::DeviceGemmMultipleDLayernorm<
ALayout,
BLayout,
ck::Tuple<D0Layout, D1Layout>,
HLayout,
ADataType,
BDataType,
ck::Tuple<D0DataType, D1DataType>,
GammaDataType,
BetaDataType,
HDataType,
ck::tensor_operation::element_wise::PassThrough,
ck::tensor_operation::element_wise::PassThrough,
ck::tensor_operation::element_wise::AddReluAdd,
ck::tensor_operation::element_wise::PassThrough>>
{
using DeviceOp = DeviceGemmMultipleDLayernorm<ALayout,
BLayout,
ck::Tuple<D0Layout, D1Layout>,
HLayout,
ADataType,
BDataType,
ck::Tuple<D0DataType, D1DataType>,
GammaDataType,
BetaDataType,
HDataType,
ck::tensor_operation::element_wise::PassThrough,
ck::tensor_operation::element_wise::PassThrough,
ck::tensor_operation::element_wise::AddReluAdd,
ck::tensor_operation::element_wise::PassThrough>;
static auto GetInstances()
{
std::vector<std::unique_ptr<DeviceOp>> op_ptrs;
if constexpr(is_same_v<ADataType, half_t> && is_same_v<BDataType, half_t> &&
is_same_v<D0DataType, half_t> && is_same_v<D1DataType, half_t> &&
is_same_v<GammaDataType, half_t> && is_same_v<BetaDataType, half_t> &&
is_same_v<HDataType, half_t>)
{
if constexpr(is_same_v<ALayout, Row> && is_same_v<BLayout, Row> &&
is_same_v<D0Layout, Row> && is_same_v<D1Layout, Row> &&
is_same_v<HLayout, Row>)
{
add_device_gemm_add_relu_add_xdl_c_shuffle_layernorm_f16_mk_kn_mn_mn_mn_instances(
op_ptrs);
}
else if constexpr(is_same_v<ALayout, Row> && is_same_v<BLayout, Col> &&
is_same_v<D0Layout, Row> && is_same_v<D1Layout, Row> &&
is_same_v<HLayout, Row>)
{
add_device_gemm_add_relu_add_xdl_c_shuffle_layernorm_f16_mk_nk_mn_mn_mn_instances(
op_ptrs);
}
else if constexpr(is_same_v<ALayout, Col> && is_same_v<BLayout, Row> &&
is_same_v<D0Layout, Row> && is_same_v<D1Layout, Row> &&
is_same_v<HLayout, Row>)
{
add_device_gemm_add_relu_add_xdl_c_shuffle_layernorm_f16_km_kn_mn_mn_mn_instances(
op_ptrs);
}
else if constexpr(is_same_v<ALayout, Col> && is_same_v<BLayout, Col> &&
is_same_v<D0Layout, Row> && is_same_v<D1Layout, Row> &&
is_same_v<HLayout, Row>)
{
add_device_gemm_add_relu_add_xdl_c_shuffle_layernorm_f16_km_nk_mn_mn_mn_instances(
op_ptrs);
}
}
return op_ptrs;
}
};
} // namespace instance
} // namespace device
} // namespace tensor_operation
} // namespace ck
...@@ -244,6 +244,63 @@ void add_device_grouped_conv3d_fwd_xdl_gndhwc_gkzyxc_gndhwk_int8_instances( ...@@ -244,6 +244,63 @@ void add_device_grouped_conv3d_fwd_xdl_gndhwc_gkzyxc_gndhwk_int8_instances(
PassThrough, PassThrough,
PassThrough>>>& instances); PassThrough>>>& instances);
// grouped conv3d forward, NDHWGC/KZYXGC/NDHWGK
void add_device_grouped_conv3d_fwd_xdl_ndhwgc_kzyxgc_ndhwgk_bf16_instances(
std::vector<std::unique_ptr<DeviceGroupedConvFwdMultipleD<3,
NDHWGC,
KZYXGC,
Empty_Tuple,
NDHWGK,
BF16,
BF16,
Empty_Tuple,
BF16,
PassThrough,
PassThrough,
PassThrough>>>& instances);
void add_device_grouped_conv3d_fwd_xdl_ndhwgc_kzyxgc_ndhwgk_f16_instances(
std::vector<std::unique_ptr<DeviceGroupedConvFwdMultipleD<3,
NDHWGC,
KZYXGC,
Empty_Tuple,
NDHWGK,
F16,
F16,
Empty_Tuple,
F16,
PassThrough,
PassThrough,
PassThrough>>>& instances);
void add_device_grouped_conv3d_fwd_xdl_ndhwgc_kzyxgc_ndhwgk_f32_instances(
std::vector<std::unique_ptr<DeviceGroupedConvFwdMultipleD<3,
NDHWGC,
KZYXGC,
Empty_Tuple,
NDHWGK,
F32,
F32,
Empty_Tuple,
F32,
PassThrough,
PassThrough,
PassThrough>>>& instances);
void add_device_grouped_conv3d_fwd_xdl_ndhwgc_kzyxgc_ndhwgk_int8_instances(
std::vector<std::unique_ptr<DeviceGroupedConvFwdMultipleD<3,
NDHWGC,
KZYXGC,
Empty_Tuple,
NDHWGK,
int8_t,
int8_t,
Empty_Tuple,
int8_t,
PassThrough,
PassThrough,
PassThrough>>>& instances);
template <ck::index_t NumDimSpatial, template <ck::index_t NumDimSpatial,
typename InLayout, typename InLayout,
typename WeiLayout, typename WeiLayout,
...@@ -385,6 +442,31 @@ struct DeviceOperationInstanceFactory<ck::tensor_operation::device::DeviceGroupe ...@@ -385,6 +442,31 @@ struct DeviceOperationInstanceFactory<ck::tensor_operation::device::DeviceGroupe
add_device_grouped_conv3d_fwd_xdl_gndhwc_gkzyxc_gndhwk_int8_instances(op_ptrs); add_device_grouped_conv3d_fwd_xdl_gndhwc_gkzyxc_gndhwk_int8_instances(op_ptrs);
} }
} }
else if constexpr(NumDimSpatial == 3 && is_same_v<InLayout, NDHWGC> &&
is_same_v<WeiLayout, KZYXGC> && is_same_v<OutLayout, NDHWGK>)
{
if constexpr(is_same_v<InDataType, float> && is_same_v<WeiDataType, float> &&
is_same_v<OutDataType, float>)
{
add_device_grouped_conv3d_fwd_xdl_ndhwgc_kzyxgc_ndhwgk_f32_instances(op_ptrs);
}
else if constexpr(is_same_v<InDataType, half_t> && is_same_v<WeiDataType, half_t> &&
is_same_v<OutDataType, half_t>)
{
add_device_grouped_conv3d_fwd_xdl_ndhwgc_kzyxgc_ndhwgk_f16_instances(op_ptrs);
}
else if constexpr(is_same_v<InDataType, ck::bhalf_t> &&
is_same_v<WeiDataType, ck::bhalf_t> &&
is_same_v<OutDataType, ck::bhalf_t>)
{
add_device_grouped_conv3d_fwd_xdl_ndhwgc_kzyxgc_ndhwgk_bf16_instances(op_ptrs);
}
else if constexpr(is_same_v<InDataType, int8_t> && is_same_v<WeiDataType, int8_t> &&
is_same_v<OutDataType, int8_t>)
{
add_device_grouped_conv3d_fwd_xdl_ndhwgc_kzyxgc_ndhwgk_int8_instances(op_ptrs);
}
}
return op_ptrs; return op_ptrs;
} }
......
add_instance_library(device_batched_gemm_softmax_gemm_permute_instance add_instance_library(device_batched_gemm_softmax_gemm_permute_instance
device_batched_gemm_softmax_gemm_permute_xdl_cshuffle_f16_f16_f16_f16_gmk_gnk_gno_gmo_instance.cpp device_batched_gemm_softmax_gemm_permute_xdl_cshuffle_f16_f16_f16_f16_gmk_gnk_gno_gmo_instance.cpp
device_batched_gemm_softmax_gemm_permute_xdl_cshuffle_bf16_bf16_bf16_bf16_gmk_gnk_gno_gmo_instance.cpp device_batched_gemm_softmax_gemm_permute_xdl_cshuffle_bf16_bf16_bf16_bf16_gmk_gnk_gno_gmo_instance.cpp
device_batched_gemm_bias_softmax_gemm_permute_xdl_cshuffle_f16_f16_f16_f16_gmk_gnk_gno_gmo_instance.cpp
device_batched_gemm_bias_softmax_gemm_permute_xdl_cshuffle_bf16_bf16_bf16_bf16_gmk_gnk_gno_gmo_instance.cpp
) )
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2022, Advanced Micro Devices, Inc. All rights reserved.
#include <cstdlib>
#include "ck/ck.hpp"
#include "ck/tensor_operation/gpu/device/tensor_layout.hpp"
#include "ck/tensor_operation/gpu/device/gemm_specialization.hpp"
#include "ck/tensor_operation/gpu/device/impl/device_batched_gemm_softmax_gemm_permute_xdl_cshuffle.hpp"
#include "ck/library/tensor_operation_instance/add_device_operation_instance.hpp"
namespace ck {
namespace tensor_operation {
namespace device {
namespace instance {
using BF16 = ck::bhalf_t;
using F32 = float;
using Row = ck::tensor_layout::gemm::RowMajor;
using Col = ck::tensor_layout::gemm::ColumnMajor;
template <ck::index_t... Is>
using S = ck::Sequence<Is...>;
using PassThrough = ck::tensor_operation::element_wise::PassThrough;
using ScaleAdd = ck::tensor_operation::element_wise::ScaleAdd;
static constexpr auto GemmDefault = ck::tensor_operation::device::GemmSpecialization::Default;
static constexpr auto GemmPadded = ck::tensor_operation::device::GemmSpecialization::MNKOPadding;
static constexpr auto TensorDefault = ck::tensor_operation::device::TensorSpecialization::Default;
// c[g, m, n] = a[g, m, k] * b[g, n, k]
template <index_t NumDimG,
index_t NumDimM,
index_t NumDimN,
index_t NumDimK,
index_t NumDimO,
MaskingSpecialization MaskingSpec>
using device_batched_gemm_bias_softmax_gemm_permute_xdl_cshuffle_bf16_bf16_bf16_bf16_gmk_gnk_gno_gmo_instances =
std::tuple<
// clang-format off
// #############################################| NumDimG| NumDimM| NumDimN| NumDimK| NumDimO| AData| B0Data| B1Data| CData| Acc0BiasData| Acc1BiasData| AccData| CShuffle| A| B0| Acc0| B1| C| GEMM| ATensorSpec| B0TensorSpec| B1TensorSpec| CTensorSpec| NumGemmK| Block| Gemm01| Gemm0| Gemm0| Gemm1| Gemm1| AK1| BK1| B1K1| MPer| NPer| Gemm0| Gemm0| Gemm1| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockLds| B0BlockTransfer| B0BlockTransfer| B0BlockTransfer| B0BlockTransfer| B0BlockTransfer| B0BlockTransfer| B0BlockLds| B1BlockTransfer| B1BlockTransfer| B1BlockTransfer| B1BlockTransfer| B1BlockTransfer| B1BlockTransfer| B1BlockLds| CShuffle| CShuffle| CBlockTransferClusterLengths| CBlockTransfer| MaskingSpec|
// #############################################| | | | | | Type| Type| Type| Type| Type| Type| Type| DataType| Elementwise| Elementwise| Elementwise| Elementwise| Elementwise| Specialization| | | | | Prefetch| Size| MPer| NPer| KPer| NPer| KPer| | | | XDL| XDL| MXdl| NXdl| NXdl| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| AddExtraM| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| AddExtraN| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| AddExtraN| MXdlPerWave| NXdlPerWave| _MBlock_MWaveMPerXdl| ScalarPerVector| |
// #############################################| | | | | | | | | | | | | | Operation| Operation| Operation| Operation| Operation| | | | | | Stage| | Block| Block| Block| Block| Block| | | | | | Per| Per| Per| Lengths_K0_M_K1| ArrangeOrder| | | PerVector| PerVector_K1| | Lengths_K0_N_K1| ArrangeOrder| | | PerVector| PerVector_K1| | Lengths_K0_N_K1| ArrangeOrder| | | PerVector| PerVector_K1| | PerShuffle| PerShuffle| _NBlock_NWaveNPerXdl| _NWaveNPerXdl| |
// #############################################| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | Wave| Wave| Wave| | | | | | | | | | | | | | | | | | | | | | | | | | |
DeviceBatchedGemmSoftmaxGemmPermute_Xdl_CShuffle< NumDimG, NumDimM, NumDimN, NumDimK, NumDimO, BF16, BF16, BF16, BF16, ck::Tuple<BF16>, ck::Tuple<>, F32, BF16, PassThrough, PassThrough, ScaleAdd, PassThrough, PassThrough, GemmDefault, TensorDefault, TensorDefault, TensorDefault, TensorDefault, 1, 256, 256, 128, 32, 64, 32, 8, 8, 2, 32, 32, 2, 4, 2, S<4, 64, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, true, S<4, 64, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, true, S<16, 16, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 4, 2, false, 1, 2, S<1, 32, 1, 8>, 8, MaskingSpec>,
DeviceBatchedGemmSoftmaxGemmPermute_Xdl_CShuffle< NumDimG, NumDimM, NumDimN, NumDimK, NumDimO, BF16, BF16, BF16, BF16, ck::Tuple<BF16>, ck::Tuple<>, F32, BF16, PassThrough, PassThrough, ScaleAdd, PassThrough, PassThrough, GemmDefault, TensorDefault, TensorDefault, TensorDefault, TensorDefault, 1, 256, 256, 128, 32, 128, 32, 8, 8, 2, 32, 32, 2, 4, 4, S<4, 64, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, true, S<4, 64, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, true, S< 8, 32, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 4, 2, false, 1, 2, S<1, 32, 1, 8>, 8, MaskingSpec>,
DeviceBatchedGemmSoftmaxGemmPermute_Xdl_CShuffle< NumDimG, NumDimM, NumDimN, NumDimK, NumDimO, BF16, BF16, BF16, BF16, ck::Tuple<BF16>, ck::Tuple<>, F32, BF16, PassThrough, PassThrough, ScaleAdd, PassThrough, PassThrough, GemmDefault, TensorDefault, TensorDefault, TensorDefault, TensorDefault, 1, 256, 128, 256, 32, 64, 32, 8, 8, 2, 32, 32, 1, 8, 2, S<4, 64, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, true, S<4, 64, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, true, S<16, 16, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 4, 2, false, 1, 2, S<1, 32, 1, 8>, 8, MaskingSpec>,
DeviceBatchedGemmSoftmaxGemmPermute_Xdl_CShuffle< NumDimG, NumDimM, NumDimN, NumDimK, NumDimO, BF16, BF16, BF16, BF16, ck::Tuple<BF16>, ck::Tuple<>, F32, BF16, PassThrough, PassThrough, ScaleAdd, PassThrough, PassThrough, GemmDefault, TensorDefault, TensorDefault, TensorDefault, TensorDefault, 1, 256, 128, 256, 32, 128, 32, 8, 8, 2, 32, 32, 1, 8, 4, S<4, 64, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, true, S<4, 64, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, true, S< 8, 32, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 4, 2, false, 1, 2, S<1, 32, 1, 8>, 8, MaskingSpec>,
DeviceBatchedGemmSoftmaxGemmPermute_Xdl_CShuffle< NumDimG, NumDimM, NumDimN, NumDimK, NumDimO, BF16, BF16, BF16, BF16, ck::Tuple<BF16>, ck::Tuple<>, F32, BF16, PassThrough, PassThrough, ScaleAdd, PassThrough, PassThrough, GemmDefault, TensorDefault, TensorDefault, TensorDefault, TensorDefault, 1, 256, 128, 128, 64, 64, 32, 8, 8, 2, 32, 32, 1, 4, 2, S<8, 32, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, false, S<8, 32, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, false, S<16, 16, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 4, 2, false, 1, 2, S<1, 32, 1, 8>, 8, MaskingSpec>,
DeviceBatchedGemmSoftmaxGemmPermute_Xdl_CShuffle< NumDimG, NumDimM, NumDimN, NumDimK, NumDimO, BF16, BF16, BF16, BF16, ck::Tuple<BF16>, ck::Tuple<>, F32, BF16, PassThrough, PassThrough, ScaleAdd, PassThrough, PassThrough, GemmDefault, TensorDefault, TensorDefault, TensorDefault, TensorDefault, 1, 256, 128, 128, 32, 64, 32, 8, 8, 2, 32, 32, 1, 4, 2, S<4, 64, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, true, S<4, 64, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, true, S<16, 16, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 4, 2, false, 1, 2, S<1, 32, 1, 8>, 8, MaskingSpec>,
DeviceBatchedGemmSoftmaxGemmPermute_Xdl_CShuffle< NumDimG, NumDimM, NumDimN, NumDimK, NumDimO, BF16, BF16, BF16, BF16, ck::Tuple<BF16>, ck::Tuple<>, F32, BF16, PassThrough, PassThrough, ScaleAdd, PassThrough, PassThrough, GemmDefault, TensorDefault, TensorDefault, TensorDefault, TensorDefault, 1, 256, 128, 128, 64, 128, 32, 8, 8, 2, 32, 32, 1, 4, 4, S<8, 32, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, false, S<8, 32, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, false, S< 8, 32, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 4, 2, false, 1, 2, S<1, 32, 1, 8>, 8, MaskingSpec>,
DeviceBatchedGemmSoftmaxGemmPermute_Xdl_CShuffle< NumDimG, NumDimM, NumDimN, NumDimK, NumDimO, BF16, BF16, BF16, BF16, ck::Tuple<BF16>, ck::Tuple<>, F32, BF16, PassThrough, PassThrough, ScaleAdd, PassThrough, PassThrough, GemmDefault, TensorDefault, TensorDefault, TensorDefault, TensorDefault, 1, 256, 128, 128, 32, 128, 32, 8, 8, 2, 32, 32, 1, 4, 4, S<4, 64, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, true, S<4, 64, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, true, S< 8, 32, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 4, 2, false, 1, 2, S<1, 32, 1, 8>, 8, MaskingSpec>,
DeviceBatchedGemmSoftmaxGemmPermute_Xdl_CShuffle< NumDimG, NumDimM, NumDimN, NumDimK, NumDimO, BF16, BF16, BF16, BF16, ck::Tuple<BF16>, ck::Tuple<>, F32, BF16, PassThrough, PassThrough, ScaleAdd, PassThrough, PassThrough, GemmDefault, TensorDefault, TensorDefault, TensorDefault, TensorDefault, 1, 256, 64, 256, 32, 128, 32, 8, 8, 2, 16, 16, 1, 16, 8, S<4, 64, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, true, S<4, 64, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, true, S< 8, 32, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 4, 2, false, 1, 8, S<1, 16, 1,16>, 8, MaskingSpec>,
DeviceBatchedGemmSoftmaxGemmPermute_Xdl_CShuffle< NumDimG, NumDimM, NumDimN, NumDimK, NumDimO, BF16, BF16, BF16, BF16, ck::Tuple<BF16>, ck::Tuple<>, F32, BF16, PassThrough, PassThrough, ScaleAdd, PassThrough, PassThrough, GemmDefault, TensorDefault, TensorDefault, TensorDefault, TensorDefault, 1, 256, 64, 256, 32, 64, 32, 8, 8, 2, 16, 16, 1, 16, 4, S<4, 64, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, true, S<4, 64, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, true, S<16, 16, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 4, 2, false, 1, 4, S<1, 32, 1, 8>, 8, MaskingSpec>,
DeviceBatchedGemmSoftmaxGemmPermute_Xdl_CShuffle< NumDimG, NumDimM, NumDimN, NumDimK, NumDimO, BF16, BF16, BF16, BF16, ck::Tuple<BF16>, ck::Tuple<>, F32, BF16, PassThrough, PassThrough, ScaleAdd, PassThrough, PassThrough, GemmDefault, TensorDefault, TensorDefault, TensorDefault, TensorDefault, 1, 256, 64, 256, 64, 128, 32, 8, 8, 2, 16, 16, 1, 16, 8, S<8, 32, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, true, S<8, 32, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, true, S< 8, 32, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 4, 2, false, 1, 8, S<1, 16, 1,16>, 8, MaskingSpec>,
DeviceBatchedGemmSoftmaxGemmPermute_Xdl_CShuffle< NumDimG, NumDimM, NumDimN, NumDimK, NumDimO, BF16, BF16, BF16, BF16, ck::Tuple<BF16>, ck::Tuple<>, F32, BF16, PassThrough, PassThrough, ScaleAdd, PassThrough, PassThrough, GemmDefault, TensorDefault, TensorDefault, TensorDefault, TensorDefault, 1, 256, 64, 256, 64, 64, 32, 8, 8, 2, 16, 16, 1, 16, 4, S<8, 32, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, true, S<8, 32, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, true, S<16, 16, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 4, 2, false, 1, 4, S<1, 32, 1, 8>, 8, MaskingSpec>,
// Padded fallback kernel
DeviceBatchedGemmSoftmaxGemmPermute_Xdl_CShuffle< NumDimG, NumDimM, NumDimN, NumDimK, NumDimO, BF16, BF16, BF16, BF16, ck::Tuple<BF16>, ck::Tuple<>, F32, BF16, PassThrough, PassThrough, ScaleAdd, PassThrough, PassThrough, GemmPadded, TensorDefault, TensorDefault, TensorDefault, TensorDefault, 1, 256, 128, 128, 64, 128, 32, 8, 8, 2, 32, 32, 1, 4, 4, S<8, 32, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, false, S<8, 32, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, false, S< 8, 32, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 4, 2, false, 1, 2, S<1, 32, 1, 8>, 8, MaskingSpec>,
DeviceBatchedGemmSoftmaxGemmPermute_Xdl_CShuffle< NumDimG, NumDimM, NumDimN, NumDimK, NumDimO, BF16, BF16, BF16, BF16, ck::Tuple<BF16>, ck::Tuple<>, F32, BF16, PassThrough, PassThrough, ScaleAdd, PassThrough, PassThrough, GemmPadded, TensorDefault, TensorDefault, TensorDefault, TensorDefault, 1, 256, 128, 64, 32, 128, 32, 8, 8, 2, 32, 32, 1, 2, 4, S<4, 64, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, true, S<4, 64, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, true, S< 8, 32, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 4, 2, false, 1, 2, S<1, 32, 1, 8>, 8, MaskingSpec>
// clang-format on
>;
void add_device_batched_gemm_bias_masking_softmax_gemm_permute_xdl_cshuffle_bf16_bf16_bf16_bf16_gmk_gnk_gno_gmo_instances(
std::vector<std::unique_ptr<
DeviceBatchedGemmSoftmaxGemmPermute<2,
1,
1,
1,
1,
BF16,
BF16,
BF16,
BF16,
ck::Tuple<BF16>,
ck::Tuple<>,
PassThrough,
PassThrough,
ScaleAdd,
PassThrough,
PassThrough,
MaskingSpecialization::MaskOutUpperTriangle>>>&
instances)
{
add_device_operation_instances(
instances,
device_batched_gemm_bias_softmax_gemm_permute_xdl_cshuffle_bf16_bf16_bf16_bf16_gmk_gnk_gno_gmo_instances<
2,
1,
1,
1,
1,
MaskingSpecialization::MaskOutUpperTriangle>{});
}
void add_device_batched_gemm_bias_softmax_gemm_permute_xdl_cshuffle_bf16_bf16_bf16_bf16_gmk_gnk_gno_gmo_instances(
std::vector<
std::unique_ptr<DeviceBatchedGemmSoftmaxGemmPermute<2,
1,
1,
1,
1,
BF16,
BF16,
BF16,
BF16,
ck::Tuple<BF16>,
ck::Tuple<>,
PassThrough,
PassThrough,
ScaleAdd,
PassThrough,
PassThrough,
MaskingSpecialization::MaskDisabled>>>&
instances)
{
add_device_operation_instances(
instances,
device_batched_gemm_bias_softmax_gemm_permute_xdl_cshuffle_bf16_bf16_bf16_bf16_gmk_gnk_gno_gmo_instances<
2,
1,
1,
1,
1,
MaskingSpecialization::MaskDisabled>{});
}
} // namespace instance
} // namespace device
} // namespace tensor_operation
} // namespace ck
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2022, Advanced Micro Devices, Inc. All rights reserved.
#include <cstdlib>
#include "ck/ck.hpp"
#include "ck/tensor_operation/gpu/device/tensor_layout.hpp"
#include "ck/tensor_operation/gpu/device/gemm_specialization.hpp"
#include "ck/tensor_operation/gpu/device/impl/device_batched_gemm_softmax_gemm_permute_xdl_cshuffle.hpp"
#include "ck/library/tensor_operation_instance/add_device_operation_instance.hpp"
namespace ck {
namespace tensor_operation {
namespace device {
namespace instance {
using F16 = ck::half_t;
using F32 = float;
using Row = ck::tensor_layout::gemm::RowMajor;
using Col = ck::tensor_layout::gemm::ColumnMajor;
template <ck::index_t... Is>
using S = ck::Sequence<Is...>;
using PassThrough = ck::tensor_operation::element_wise::PassThrough;
using ScaleAdd = ck::tensor_operation::element_wise::ScaleAdd;
static constexpr auto GemmDefault = ck::tensor_operation::device::GemmSpecialization::Default;
static constexpr auto GemmPadded = ck::tensor_operation::device::GemmSpecialization::MNKOPadding;
static constexpr auto TensorDefault = ck::tensor_operation::device::TensorSpecialization::Default;
// c[g, m, n] = a[g, m, k] * b[g, n, k]
template <index_t NumDimG,
index_t NumDimM,
index_t NumDimN,
index_t NumDimK,
index_t NumDimO,
MaskingSpecialization MaskingSpec>
using device_batched_gemm_bias_softmax_gemm_permute_xdl_cshuffle_f16_f16_f16_f16_gmk_gnk_gno_gmo_instances =
std::tuple<
// clang-format off
// #############################################| NumDimG| NumDimM| NumDimN| NumDimK| NumDimO| AData| B0Data| B1Data| CData| Acc0BiasData| Acc1BiasData| AccData| CShuffle| A| B0| Acc0| B1| C| GEMM| ATensorSpec| B0TensorSpec| B1TensorSpec| CTensorSpec| NumGemmK| Block| Gemm01| Gemm0| Gemm0| Gemm1| Gemm1| AK1| BK1| B1K1| MPer| NPer| Gemm0| Gemm0| Gemm1| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockLds| B0BlockTransfer| B0BlockTransfer| B0BlockTransfer| B0BlockTransfer| B0BlockTransfer| B0BlockTransfer| B0BlockLds| B1BlockTransfer| B1BlockTransfer| B1BlockTransfer| B1BlockTransfer| B1BlockTransfer| B1BlockTransfer| B1BlockLds| CShuffle| CShuffle| CBlockTransferClusterLengths| CBlockTransfer| MaskingSpec|
// #############################################| | | | | | Type| Type| Type| Type| Type| Type| Type| DataType| Elementwise| Elementwise| Elementwise| Elementwise| Elementwise| Specialization| | | | | Prefetch| Size| MPer| NPer| KPer| NPer| KPer| | | | XDL| XDL| MXdl| NXdl| NXdl| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| AddExtraM| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| AddExtraN| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| AddExtraN| MXdlPerWave| NXdlPerWave| _MBlock_MWaveMPerXdl| ScalarPerVector| |
// #############################################| | | | | | | | | | | | | | Operation| Operation| Operation| Operation| Operation| | | | | | Stage| | Block| Block| Block| Block| Block| | | | | | Per| Per| Per| Lengths_K0_M_K1| ArrangeOrder| | | PerVector| PerVector_K1| | Lengths_K0_N_K1| ArrangeOrder| | | PerVector| PerVector_K1| | Lengths_K0_N_K1| ArrangeOrder| | | PerVector| PerVector_K1| | PerShuffle| PerShuffle| _NBlock_NWaveNPerXdl| _NWaveNPerXdl| |
// #############################################| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | Wave| Wave| Wave| | | | | | | | | | | | | | | | | | | | | | | | | | |
DeviceBatchedGemmSoftmaxGemmPermute_Xdl_CShuffle< NumDimG, NumDimM, NumDimN, NumDimK, NumDimO, F16, F16, F16, F16, ck::Tuple<F16>, ck::Tuple<>, F32, F16, PassThrough, PassThrough, ScaleAdd, PassThrough, PassThrough, GemmDefault, TensorDefault, TensorDefault, TensorDefault, TensorDefault, 1, 256, 256, 128, 32, 64, 32, 8, 8, 2, 32, 32, 2, 4, 2, S<4, 64, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, true, S<4, 64, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, true, S<16, 16, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 4, 2, false, 1, 2, S<1, 32, 1, 8>, 8, MaskingSpec>,
DeviceBatchedGemmSoftmaxGemmPermute_Xdl_CShuffle< NumDimG, NumDimM, NumDimN, NumDimK, NumDimO, F16, F16, F16, F16, ck::Tuple<F16>, ck::Tuple<>, F32, F16, PassThrough, PassThrough, ScaleAdd, PassThrough, PassThrough, GemmDefault, TensorDefault, TensorDefault, TensorDefault, TensorDefault, 1, 256, 256, 128, 32, 128, 32, 8, 8, 2, 32, 32, 2, 4, 4, S<4, 64, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, true, S<4, 64, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, true, S< 8, 32, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 4, 2, false, 1, 2, S<1, 32, 1, 8>, 8, MaskingSpec>,
DeviceBatchedGemmSoftmaxGemmPermute_Xdl_CShuffle< NumDimG, NumDimM, NumDimN, NumDimK, NumDimO, F16, F16, F16, F16, ck::Tuple<F16>, ck::Tuple<>, F32, F16, PassThrough, PassThrough, ScaleAdd, PassThrough, PassThrough, GemmDefault, TensorDefault, TensorDefault, TensorDefault, TensorDefault, 1, 256, 128, 256, 32, 64, 32, 8, 8, 2, 32, 32, 1, 8, 2, S<4, 64, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, true, S<4, 64, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, true, S<16, 16, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 4, 2, false, 1, 2, S<1, 32, 1, 8>, 8, MaskingSpec>,
DeviceBatchedGemmSoftmaxGemmPermute_Xdl_CShuffle< NumDimG, NumDimM, NumDimN, NumDimK, NumDimO, F16, F16, F16, F16, ck::Tuple<F16>, ck::Tuple<>, F32, F16, PassThrough, PassThrough, ScaleAdd, PassThrough, PassThrough, GemmDefault, TensorDefault, TensorDefault, TensorDefault, TensorDefault, 1, 256, 128, 256, 32, 128, 32, 8, 8, 2, 32, 32, 1, 8, 4, S<4, 64, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, true, S<4, 64, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, true, S< 8, 32, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 4, 2, false, 1, 2, S<1, 32, 1, 8>, 8, MaskingSpec>,
DeviceBatchedGemmSoftmaxGemmPermute_Xdl_CShuffle< NumDimG, NumDimM, NumDimN, NumDimK, NumDimO, F16, F16, F16, F16, ck::Tuple<F16>, ck::Tuple<>, F32, F16, PassThrough, PassThrough, ScaleAdd, PassThrough, PassThrough, GemmDefault, TensorDefault, TensorDefault, TensorDefault, TensorDefault, 1, 256, 128, 128, 64, 64, 32, 8, 8, 2, 32, 32, 1, 4, 2, S<8, 32, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, false, S<8, 32, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, false, S<16, 16, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 4, 2, false, 1, 2, S<1, 32, 1, 8>, 8, MaskingSpec>,
DeviceBatchedGemmSoftmaxGemmPermute_Xdl_CShuffle< NumDimG, NumDimM, NumDimN, NumDimK, NumDimO, F16, F16, F16, F16, ck::Tuple<F16>, ck::Tuple<>, F32, F16, PassThrough, PassThrough, ScaleAdd, PassThrough, PassThrough, GemmDefault, TensorDefault, TensorDefault, TensorDefault, TensorDefault, 1, 256, 128, 128, 32, 64, 32, 8, 8, 2, 32, 32, 1, 4, 2, S<4, 64, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, true, S<4, 64, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, true, S<16, 16, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 4, 2, false, 1, 2, S<1, 32, 1, 8>, 8, MaskingSpec>,
DeviceBatchedGemmSoftmaxGemmPermute_Xdl_CShuffle< NumDimG, NumDimM, NumDimN, NumDimK, NumDimO, F16, F16, F16, F16, ck::Tuple<F16>, ck::Tuple<>, F32, F16, PassThrough, PassThrough, ScaleAdd, PassThrough, PassThrough, GemmDefault, TensorDefault, TensorDefault, TensorDefault, TensorDefault, 1, 256, 128, 128, 64, 128, 32, 8, 8, 2, 32, 32, 1, 4, 4, S<8, 32, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, false, S<8, 32, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, false, S< 8, 32, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 4, 2, false, 1, 2, S<1, 32, 1, 8>, 8, MaskingSpec>,
DeviceBatchedGemmSoftmaxGemmPermute_Xdl_CShuffle< NumDimG, NumDimM, NumDimN, NumDimK, NumDimO, F16, F16, F16, F16, ck::Tuple<F16>, ck::Tuple<>, F32, F16, PassThrough, PassThrough, ScaleAdd, PassThrough, PassThrough, GemmDefault, TensorDefault, TensorDefault, TensorDefault, TensorDefault, 1, 256, 128, 128, 32, 128, 32, 8, 8, 2, 32, 32, 1, 4, 4, S<4, 64, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, true, S<4, 64, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, true, S< 8, 32, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 4, 2, false, 1, 2, S<1, 32, 1, 8>, 8, MaskingSpec>,
DeviceBatchedGemmSoftmaxGemmPermute_Xdl_CShuffle< NumDimG, NumDimM, NumDimN, NumDimK, NumDimO, F16, F16, F16, F16, ck::Tuple<F16>, ck::Tuple<>, F32, F16, PassThrough, PassThrough, ScaleAdd, PassThrough, PassThrough, GemmDefault, TensorDefault, TensorDefault, TensorDefault, TensorDefault, 1, 256, 64, 256, 32, 128, 32, 8, 8, 2, 16, 16, 1, 16, 8, S<4, 64, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, true, S<4, 64, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, true, S< 8, 32, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 4, 2, false, 1, 8, S<1, 16, 1,16>, 8, MaskingSpec>,
DeviceBatchedGemmSoftmaxGemmPermute_Xdl_CShuffle< NumDimG, NumDimM, NumDimN, NumDimK, NumDimO, F16, F16, F16, F16, ck::Tuple<F16>, ck::Tuple<>, F32, F16, PassThrough, PassThrough, ScaleAdd, PassThrough, PassThrough, GemmDefault, TensorDefault, TensorDefault, TensorDefault, TensorDefault, 1, 256, 64, 256, 32, 64, 32, 8, 8, 2, 16, 16, 1, 16, 4, S<4, 64, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, true, S<4, 64, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, true, S<16, 16, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 4, 2, false, 1, 4, S<1, 32, 1, 8>, 8, MaskingSpec>,
DeviceBatchedGemmSoftmaxGemmPermute_Xdl_CShuffle< NumDimG, NumDimM, NumDimN, NumDimK, NumDimO, F16, F16, F16, F16, ck::Tuple<F16>, ck::Tuple<>, F32, F16, PassThrough, PassThrough, ScaleAdd, PassThrough, PassThrough, GemmDefault, TensorDefault, TensorDefault, TensorDefault, TensorDefault, 1, 256, 64, 256, 64, 128, 32, 8, 8, 2, 16, 16, 1, 16, 8, S<8, 32, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, true, S<8, 32, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, true, S< 8, 32, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 4, 2, false, 1, 8, S<1, 16, 1,16>, 8, MaskingSpec>,
DeviceBatchedGemmSoftmaxGemmPermute_Xdl_CShuffle< NumDimG, NumDimM, NumDimN, NumDimK, NumDimO, F16, F16, F16, F16, ck::Tuple<F16>, ck::Tuple<>, F32, F16, PassThrough, PassThrough, ScaleAdd, PassThrough, PassThrough, GemmDefault, TensorDefault, TensorDefault, TensorDefault, TensorDefault, 1, 256, 64, 256, 64, 64, 32, 8, 8, 2, 16, 16, 1, 16, 4, S<8, 32, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, true, S<8, 32, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, true, S<16, 16, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 4, 2, false, 1, 4, S<1, 32, 1, 8>, 8, MaskingSpec>,
// Padded fallback kernel
DeviceBatchedGemmSoftmaxGemmPermute_Xdl_CShuffle< NumDimG, NumDimM, NumDimN, NumDimK, NumDimO, F16, F16, F16, F16, ck::Tuple<F16>, ck::Tuple<>, F32, F16, PassThrough, PassThrough, ScaleAdd, PassThrough, PassThrough, GemmPadded, TensorDefault, TensorDefault, TensorDefault, TensorDefault, 1, 256, 128, 128, 64, 128, 32, 8, 8, 2, 32, 32, 1, 4, 4, S<8, 32, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, false, S<8, 32, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, false, S< 8, 32, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 4, 2, false, 1, 2, S<1, 32, 1, 8>, 8, MaskingSpec>,
DeviceBatchedGemmSoftmaxGemmPermute_Xdl_CShuffle< NumDimG, NumDimM, NumDimN, NumDimK, NumDimO, F16, F16, F16, F16, ck::Tuple<F16>, ck::Tuple<>, F32, F16, PassThrough, PassThrough, ScaleAdd, PassThrough, PassThrough, GemmPadded, TensorDefault, TensorDefault, TensorDefault, TensorDefault, 1, 256, 128, 64, 32, 128, 32, 8, 8, 2, 32, 32, 1, 2, 4, S<4, 64, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, true, S<4, 64, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, true, S< 8, 32, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 4, 2, false, 1, 2, S<1, 32, 1, 8>, 8, MaskingSpec>
// clang-format on
>;
void add_device_batched_gemm_bias_masking_softmax_gemm_permute_xdl_cshuffle_f16_f16_f16_f16_gmk_gnk_gno_gmo_instances(
std::vector<std::unique_ptr<
DeviceBatchedGemmSoftmaxGemmPermute<2,
1,
1,
1,
1,
F16,
F16,
F16,
F16,
ck::Tuple<F16>,
ck::Tuple<>,
PassThrough,
PassThrough,
ScaleAdd,
PassThrough,
PassThrough,
MaskingSpecialization::MaskOutUpperTriangle>>>&
instances)
{
add_device_operation_instances(
instances,
device_batched_gemm_bias_softmax_gemm_permute_xdl_cshuffle_f16_f16_f16_f16_gmk_gnk_gno_gmo_instances<
2,
1,
1,
1,
1,
MaskingSpecialization::MaskOutUpperTriangle>{});
}
void add_device_batched_gemm_bias_softmax_gemm_permute_xdl_cshuffle_f16_f16_f16_f16_gmk_gnk_gno_gmo_instances(
std::vector<
std::unique_ptr<DeviceBatchedGemmSoftmaxGemmPermute<2,
1,
1,
1,
1,
F16,
F16,
F16,
F16,
ck::Tuple<F16>,
ck::Tuple<>,
PassThrough,
PassThrough,
ScaleAdd,
PassThrough,
PassThrough,
MaskingSpecialization::MaskDisabled>>>&
instances)
{
add_device_operation_instances(
instances,
device_batched_gemm_bias_softmax_gemm_permute_xdl_cshuffle_f16_f16_f16_f16_gmk_gnk_gno_gmo_instances<
2,
1,
1,
1,
1,
MaskingSpecialization::MaskDisabled>{});
}
} // namespace instance
} // namespace device
} // namespace tensor_operation
} // namespace ck
...@@ -23,6 +23,11 @@ template <typename XElementwise, typename YElementwise, index_t Rank, index_t Re ...@@ -23,6 +23,11 @@ template <typename XElementwise, typename YElementwise, index_t Rank, index_t Re
using device_elementwise_normalization_f16_instances = using device_elementwise_normalization_f16_instances =
std::tuple < std::tuple <
// XDataType, GammaDataType, BetaDataType, AccDataType, YDataType, Rank, NumReduceDim, BlockSize, MThreadClusterSize, KThreadClusterSize, MThreadSliceSize, KThreadSliceSize, XYSrcVectorDim, XSrcVectorSize, GammaSrcVectorDim, GammaSrcVectorSize, BetaSrcVectorDim, BetaSrcVectorSize, YDstVectorSize> // XDataType, GammaDataType, BetaDataType, AccDataType, YDataType, Rank, NumReduceDim, BlockSize, MThreadClusterSize, KThreadClusterSize, MThreadSliceSize, KThreadSliceSize, XYSrcVectorDim, XSrcVectorSize, GammaSrcVectorDim, GammaSrcVectorSize, BetaSrcVectorDim, BetaSrcVectorSize, YDstVectorSize>
DeviceElementwiseNormalizationImpl<ck::Tuple<F16, F16>, F16, F16, F32, F16, XElementwise ,YElementwise, Rank, Reduce, 256, 1, 256, 1, 8, 1, 1, 1, 1, 1, 1, 1>, // fallback kernel for large N
DeviceElementwiseNormalizationImpl<ck::Tuple<F16, F16>, F16, F16, F32, F16, XElementwise ,YElementwise, Rank, Reduce, 256, 1, 256, 1, 8, 1, 2, 1, 2, 1, 2, 2>, // fallback kernel for large N
DeviceElementwiseNormalizationImpl<ck::Tuple<F16, F16>, F16, F16, F32, F16, XElementwise ,YElementwise, Rank, Reduce, 256, 1, 256, 1, 8, 1, 8, 1, 8, 1, 8, 8>, // fallback kernel for large N
DeviceElementwiseNormalizationImpl<ck::Tuple<F16, F16>, F16, F16, F32, F16, XElementwise ,YElementwise, Rank, Reduce, 256, 2, 128, 1, 8, 1, 8, 1, 8, 1, 8, 8>, // fallback kernel for large N
DeviceElementwiseNormalizationImpl<ck::Tuple<F16, F16>, F16, F16, F32, F16, XElementwise ,YElementwise, Rank, Reduce, 256, 4, 64, 1, 8, 1, 1, 1, 1, 1, 1, 1>, // fallback kernel for large N
DeviceElementwiseNormalizationImpl<ck::Tuple<F16, F16>, F16, F16, F32, F16, XElementwise ,YElementwise, Rank, Reduce, 256, 8, 32, 1, 8, 1, 1, 1, 1, 1, 1, 1>, // fallback kernel DeviceElementwiseNormalizationImpl<ck::Tuple<F16, F16>, F16, F16, F32, F16, XElementwise ,YElementwise, Rank, Reduce, 256, 8, 32, 1, 8, 1, 1, 1, 1, 1, 1, 1>, // fallback kernel
DeviceElementwiseNormalizationImpl<ck::Tuple<F16, F16>, F16, F16, F32, F16, XElementwise ,YElementwise, Rank, Reduce, 256, 8, 32, 1, 8, 1, 2, 1, 2, 1, 2, 2>, // fallback kernel DeviceElementwiseNormalizationImpl<ck::Tuple<F16, F16>, F16, F16, F32, F16, XElementwise ,YElementwise, Rank, Reduce, 256, 8, 32, 1, 8, 1, 2, 1, 2, 1, 2, 2>, // fallback kernel
DeviceElementwiseNormalizationImpl<ck::Tuple<F16, F16>, F16, F16, F32, F16, XElementwise ,YElementwise, Rank, Reduce, 256, 8, 32, 1, 8, 1, 4, 1, 4, 1, 4, 4>, // fallback kernel DeviceElementwiseNormalizationImpl<ck::Tuple<F16, F16>, F16, F16, F32, F16, XElementwise ,YElementwise, Rank, Reduce, 256, 8, 32, 1, 8, 1, 4, 1, 4, 1, 4, 4>, // fallback kernel
......
add_instance_library(device_gemm_add_relu_add_layernorm_instance
device_gemm_add_relu_add_xdl_c_shuffle_layernorm_f16_km_kn_mn_mn_mn_instance.cpp
device_gemm_add_relu_add_xdl_c_shuffle_layernorm_f16_km_nk_mn_mn_mn_instance.cpp
device_gemm_add_relu_add_xdl_c_shuffle_layernorm_f16_mk_kn_mn_mn_mn_instance.cpp
device_gemm_add_relu_add_xdl_c_shuffle_layernorm_f16_mk_nk_mn_mn_mn_instance.cpp
)
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2022, Advanced Micro Devices, Inc. All rights reserved.
#include "ck/ck.hpp"
#include "ck/tensor_operation/gpu/device/tensor_layout.hpp"
#include "ck/tensor_operation/gpu/device/gemm_specialization.hpp"
#include "ck/tensor_operation/gpu/device/impl/device_gemm_multiple_d_layernorm_xdl_cshuffle.hpp"
#include "ck/tensor_operation/gpu/element/element_wise_operation.hpp"
#include "ck/library/tensor_operation_instance/add_device_operation_instance.hpp"
namespace ck {
namespace tensor_operation {
namespace device {
namespace instance {
using F16 = ck::half_t;
using F32 = float;
using F16_F16_Tuple = ck::Tuple<F16, F16>;
using Row = ck::tensor_layout::gemm::RowMajor;
using Col = ck::tensor_layout::gemm::ColumnMajor;
using Row_Row_Tuple = ck::Tuple<Row, Row>;
template <ck::index_t... Is>
using S = ck::Sequence<Is...>;
using PassThrough = ck::tensor_operation::element_wise::PassThrough;
using AddReluAdd = ck::tensor_operation::element_wise::AddReluAdd;
static constexpr auto GemmDefault = ck::tensor_operation::device::GemmSpecialization::Default;
static constexpr auto GemmMNKPadding = ck::tensor_operation::device::GemmSpecialization::MNKPadding;
// e = elementwise((a * b), d0, d1)
// h = layernorm(e, gamma, beta)
// outout: h[m, n]
// input: a[k, m], b[k, n], d0[m, n], d1[m, n], gamma[n], beta[n]
template <LoopScheduler GemmLoopScheduler, PipelineVersion GemmPipeline>
using device_gemm_add_relu_add_xdl_c_shuffle_layernorm_f16_km_kn_mn_mn_mn_instances = std::tuple<
// clang-format off
//#######################################| A| B| Ds| H| AData| BData| AccData| CShuffle| DsData| EMeanVarData| GammaData| BetaData| HData| A| B| CDE| H| GEMM| NumGemmK| Block| MPer| NPer| KPer| AK1| BK1| MPer| NPer| MXdl| NXdl| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockLds| BBlockTransfer| BBlockTransfer| BBlockTransfer| BlockTransfer| BBlockTransfer| BBlockTransfer| BBlockLds| CShuffle| CShuffle| PostShuffle| PostShuffle| Layernorm| Layernorm| LoopScheduler| Pipeline|
//#######################################| Layout| Layout| Layout| Layout| Type| Type| Type| DataType| Type| Type| Type| Type| Type| Elementwise| Elementwise| Elementwise| Elementwise| Specialization| Prefetch| Size| Block| Block| Block| | | XDL| XDL| Per| Per| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| AddExtraM| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| AddExtraN| MXdlPerWave| NXdlPerWave| ThreadClusterLengths| ScalarPerVector| ThreadClusterLengths| ThreadSliceSize| | |
//#######################################| | | | | | | | | | | | | | Operation| Operation| Operation| Operation| | Stage| | | | | | | | | Wave| Wave| Lengths_K0_M_K1| ArrangeOrder| | | PerVector| PerVector_K1| | Lengths_K0_N_K1| ArrangeOrder| | | PerVector| PerVector_K1| | PerShuffle| PerShuffle| _M_N| _NWaveNPerXdl| _M_N| _M| | |
//#######################################| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
DeviceGemmMultipleDLayernorm_Xdl_CShuffle< Col, Row, Row_Row_Tuple, Row, F16, F16, F32, F32, F16_F16_Tuple, F16, F16, F16, F16, PassThrough, PassThrough, AddReluAdd, PassThrough, GemmDefault, 1, 256, 256, 128, 32, 2, 2, 32, 32, 4, 2, S<4, 64, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 4, 2, 0, S<8, 32, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 4, 2, 0, 1, 1, S<32, 8>, 8, S<32, 8>, 1, GemmLoopScheduler, GemmPipeline>,
DeviceGemmMultipleDLayernorm_Xdl_CShuffle< Col, Row, Row_Row_Tuple, Row, F16, F16, F32, F32, F16_F16_Tuple, F16, F16, F16, F16, PassThrough, PassThrough, AddReluAdd, PassThrough, GemmDefault, 1, 256, 256, 128, 32, 8, 8, 32, 32, 4, 2, S<4, 64, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 4, 8, 1, S<4, 64, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 2, 8, 1, 1, 1, S<32, 8>, 8, S<32, 8>, 1, GemmLoopScheduler, GemmPipeline>,
DeviceGemmMultipleDLayernorm_Xdl_CShuffle< Col, Row, Row_Row_Tuple, Row, F16, F16, F32, F32, F16_F16_Tuple, F16, F16, F16, F16, PassThrough, PassThrough, AddReluAdd, PassThrough, GemmDefault, 1, 256, 128, 256, 32, 2, 2, 32, 32, 2, 4, S<8, 32, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 4, 2, 0, S<4, 64, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 4, 2, 0, 1, 1, S<32, 8>, 8, S<32, 8>, 1, GemmLoopScheduler, GemmPipeline>,
DeviceGemmMultipleDLayernorm_Xdl_CShuffle< Col, Row, Row_Row_Tuple, Row, F16, F16, F32, F32, F16_F16_Tuple, F16, F16, F16, F16, PassThrough, PassThrough, AddReluAdd, PassThrough, GemmDefault, 1, 256, 128, 256, 32, 8, 8, 32, 32, 2, 4, S<4, 64, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 2, 8, 1, S<4, 64, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 4, 8, 1, 1, 1, S<32, 8>, 8, S<32, 8>, 1, GemmLoopScheduler, GemmPipeline>,
DeviceGemmMultipleDLayernorm_Xdl_CShuffle< Col, Row, Row_Row_Tuple, Row, F16, F16, F32, F32, F16_F16_Tuple, F16, F16, F16, F16, PassThrough, PassThrough, AddReluAdd, PassThrough, GemmDefault, 1, 128, 128, 128, 32, 2, 2, 32, 32, 4, 2, S<4, 32, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 4, 2, 0, S<4, 32, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 4, 2, 0, 1, 1, S<16, 8>, 8, S<16, 8>, 1, GemmLoopScheduler, GemmPipeline>,
DeviceGemmMultipleDLayernorm_Xdl_CShuffle< Col, Row, Row_Row_Tuple, Row, F16, F16, F32, F32, F16_F16_Tuple, F16, F16, F16, F16, PassThrough, PassThrough, AddReluAdd, PassThrough, GemmDefault, 1, 128, 128, 128, 32, 8, 8, 32, 32, 4, 2, S<4, 32, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 4, 8, 1, S<4, 32, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 4, 8, 1, 1, 1, S<16, 8>, 8, S<16, 8>, 1, GemmLoopScheduler, GemmPipeline>,
DeviceGemmMultipleDLayernorm_Xdl_CShuffle< Col, Row, Row_Row_Tuple, Row, F16, F16, F32, F32, F16_F16_Tuple, F16, F16, F16, F16, PassThrough, PassThrough, AddReluAdd, PassThrough, GemmDefault, 1, 256, 128, 128, 32, 2, 2, 32, 32, 2, 2, S<8, 32, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 4, 2, 0, S<8, 32, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 4, 2, 0, 1, 1, S<32, 8>, 8, S<32, 8>, 1, GemmLoopScheduler, GemmPipeline>,
DeviceGemmMultipleDLayernorm_Xdl_CShuffle< Col, Row, Row_Row_Tuple, Row, F16, F16, F32, F32, F16_F16_Tuple, F16, F16, F16, F16, PassThrough, PassThrough, AddReluAdd, PassThrough, GemmDefault, 1, 256, 128, 128, 32, 8, 8, 32, 32, 2, 2, S<4, 64, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 2, 8, 1, S<4, 64, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 2, 8, 1, 1, 1, S<32, 8>, 8, S<32, 8>, 1, GemmLoopScheduler, GemmPipeline>,
DeviceGemmMultipleDLayernorm_Xdl_CShuffle< Col, Row, Row_Row_Tuple, Row, F16, F16, F32, F32, F16_F16_Tuple, F16, F16, F16, F16, PassThrough, PassThrough, AddReluAdd, PassThrough, GemmDefault, 1, 128, 128, 64, 32, 2, 2, 32, 32, 2, 2, S<4, 32, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 4, 2, 0, S<4, 16, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 4, 2, 0, 1, 1, S<32, 4>, 8, S<32, 4>, 1, GemmLoopScheduler, GemmPipeline>,
DeviceGemmMultipleDLayernorm_Xdl_CShuffle< Col, Row, Row_Row_Tuple, Row, F16, F16, F32, F32, F16_F16_Tuple, F16, F16, F16, F16, PassThrough, PassThrough, AddReluAdd, PassThrough, GemmDefault, 1, 128, 128, 64, 32, 8, 8, 32, 32, 2, 2, S<4, 32, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 4, 8, 1, S<4, 32, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 2, 8, 1, 1, 1, S<32, 4>, 8, S<32, 4>, 1, GemmLoopScheduler, GemmPipeline>,
DeviceGemmMultipleDLayernorm_Xdl_CShuffle< Col, Row, Row_Row_Tuple, Row, F16, F16, F32, F32, F16_F16_Tuple, F16, F16, F16, F16, PassThrough, PassThrough, AddReluAdd, PassThrough, GemmDefault, 1, 128, 64, 128, 32, 2, 2, 32, 32, 2, 2, S<8, 16, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 4, 2, 0, S<4, 32, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 4, 2, 0, 1, 1, S<16, 8>, 8, S<16, 8>, 1, GemmLoopScheduler, GemmPipeline>,
DeviceGemmMultipleDLayernorm_Xdl_CShuffle< Col, Row, Row_Row_Tuple, Row, F16, F16, F32, F32, F16_F16_Tuple, F16, F16, F16, F16, PassThrough, PassThrough, AddReluAdd, PassThrough, GemmDefault, 1, 128, 64, 128, 32, 8, 8, 32, 32, 2, 2, S<4, 32, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 2, 8, 1, S<4, 32, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 4, 8, 1, 1, 1, S<16, 8>, 8, S<16, 8>, 1, GemmLoopScheduler, GemmPipeline>,
DeviceGemmMultipleDLayernorm_Xdl_CShuffle< Col, Row, Row_Row_Tuple, Row, F16, F16, F32, F32, F16_F16_Tuple, F16, F16, F16, F16, PassThrough, PassThrough, AddReluAdd, PassThrough, GemmDefault, 1, 256, 128, 64, 32, 2, 2, 32, 32, 2, 1, S<8, 32, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 4, 2, 0, S<16,16, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 4, 2, 0, 1, 1, S<32, 8>, 8, S<32, 8>, 1, GemmLoopScheduler, GemmPipeline>,
DeviceGemmMultipleDLayernorm_Xdl_CShuffle< Col, Row, Row_Row_Tuple, Row, F16, F16, F32, F32, F16_F16_Tuple, F16, F16, F16, F16, PassThrough, PassThrough, AddReluAdd, PassThrough, GemmDefault, 1, 256, 128, 64, 32, 8, 8, 32, 32, 2, 1, S<4, 64, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 2, 8, 1, S<4, 64, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 1, 8, 1, 1, 1, S<32, 8>, 8, S<32, 8>, 1, GemmLoopScheduler, GemmPipeline>,
DeviceGemmMultipleDLayernorm_Xdl_CShuffle< Col, Row, Row_Row_Tuple, Row, F16, F16, F32, F32, F16_F16_Tuple, F16, F16, F16, F16, PassThrough, PassThrough, AddReluAdd, PassThrough, GemmDefault, 1, 256, 64, 128, 32, 2, 2, 32, 32, 1, 2, S<16,16, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 4, 2, 0, S<8, 32, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 4, 2, 0, 1, 1, S<32, 8>, 8, S<32, 8>, 1, GemmLoopScheduler, GemmPipeline>,
DeviceGemmMultipleDLayernorm_Xdl_CShuffle< Col, Row, Row_Row_Tuple, Row, F16, F16, F32, F32, F16_F16_Tuple, F16, F16, F16, F16, PassThrough, PassThrough, AddReluAdd, PassThrough, GemmDefault, 1, 256, 64, 128, 32, 8, 8, 32, 32, 1, 2, S<4, 64, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 1, 8, 1, S<4, 64, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 2, 8, 1, 1, 1, S<32, 8>, 8, S<32, 8>, 1, GemmLoopScheduler, GemmPipeline>
// clang-format on
>;
// irregular tile size
using device_gemm_add_relu_add_xdl_c_shuffle_layernorm_f16_km_kn_mn_mn_mn_irregular_tile_instances =
std::tuple<
// clang-format off
//#######################################| A| B| Ds| H| AData| BData| AccData| CShuffle| DsData| EMeanVarData| GammaData| BetaData| HData| A| B| CDE| H| GEMM| NumGemmK| Block| MPer| NPer| KPer| AK1| BK1| MPer| NPer| MXdl| NXdl| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockLds| BBlockTransfer| BBlockTransfer| BBlockTransfer| BlockTransfer| BBlockTransfer| BBlockTransfer| BBlockLds| CShuffle| CShuffle| PostShuffle| PostShuffle| Layernorm| Layernorm| LoopScheduler| Pipeline|
//#######################################| Layout| Layout| Layout| Layout| Type| Type| Type| DataType| Type| Type| Type| Type| Type| Elementwise| Elementwise| Elementwise| Elementwise| Specialization| Prefetch| Size| Block| Block| Block| | | XDL| XDL| Per| Per| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| AddExtraM| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| AddExtraN| MXdlPerWave| NXdlPerWave| ThreadClusterLengths| ScalarPerVector| ThreadClusterLengths| ThreadSliceSize| | |
//#######################################| | | | | | | | | | | | | | Operation| Operation| Operation| Operation| | Stage| | | | | | | | | Wave| Wave| Lengths_K0_M_K1| ArrangeOrder| | | PerVector| PerVector_K1| | Lengths_K0_N_K1| ArrangeOrder| | | PerVector| PerVector_K1| | PerShuffle| PerShuffle| _M_N| _NWaveNPerXdl| _M_N| _M| | |
//#######################################| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
// pipeline v1, 1 wave
DeviceGemmMultipleDLayernorm_Xdl_CShuffle< Col, Row, Row_Row_Tuple, Row, F16, F16, F32, F32, F16_F16_Tuple, F16, F16, F16, F16, PassThrough, PassThrough, AddReluAdd, PassThrough, GemmMNKPadding, 1, 64, 16, 16, 32, 8, 8, 16, 16, 1, 1, S<4, 16, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 1, 8, 1, S<4, 16, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 1, 8, 1, 1, 1, S<16, 4>, 1, S<16, 4>, 1, LoopScheduler::Default, PipelineVersion::v1>
#if CK_EXPERIMENTAL_INTER_WAVE_INSTANCES
// pipeline v1, 2 waves
,
DeviceGemmMultipleDLayernorm_Xdl_CShuffle< Col, Row, Row_Row_Tuple, Row, F16, F16, F32, F32, F16_F16_Tuple, F16, F16, F16, F16, PassThrough, PassThrough, AddReluAdd, PassThrough, GemmMNKPadding, 1, 64, 16, 16, 32, 8, 8, 16, 16, 1, 1, S<4, 16, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 1, 8, 1, S<4, 16, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 1, 8, 1, 1, 1, S<16, 4>, 1, S<16, 4>, 1, LoopScheduler::Interwave, PipelineVersion::v1>
#endif
#if CK_EXPERIMENTAL_PIPELINE_V2_INSTANCES
// pipeline v2, 1 wave
,
DeviceGemmMultipleDLayernorm_Xdl_CShuffle< Col, Row, Row_Row_Tuple, Row, F16, F16, F32, F32, F16_F16_Tuple, F16, F16, F16, F16, PassThrough, PassThrough, AddReluAdd, PassThrough, GemmMNKPadding, 1, 64, 16, 16, 32, 8, 8, 16, 16, 1, 1, S<4, 16, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 1, 8, 1, S<4, 16, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 1, 8, 1, 1, 1, S<16, 4>, 1, S<16, 4>, 1, LoopScheduler::Default, PipelineVersion::v2>
#endif
// clang-format on
>;
void add_device_gemm_add_relu_add_xdl_c_shuffle_layernorm_f16_km_kn_mn_mn_mn_instances(
std::vector<std::unique_ptr<DeviceGemmMultipleDLayernorm<Col,
Row,
Row_Row_Tuple,
Row,
F16,
F16,
F16_F16_Tuple,
F16,
F16,
F16,
PassThrough,
PassThrough,
AddReluAdd,
PassThrough>>>& instances)
{
add_device_operation_instances(
instances,
device_gemm_add_relu_add_xdl_c_shuffle_layernorm_f16_km_kn_mn_mn_mn_instances<
LoopScheduler::Default,
PipelineVersion::v1>{});
#if CK_EXPERIMENTAL_INTER_WAVE_INSTANCES
add_device_operation_instances(
instances,
device_gemm_add_relu_add_xdl_c_shuffle_layernorm_f16_km_kn_mn_mn_mn_instances<
LoopScheduler::Interwave,
PipelineVersion::v1>{});
#endif
#if CK_EXPERIMENTAL_PIPELINE_V2_INSTANCES
add_device_operation_instances(
instances,
device_gemm_add_relu_add_xdl_c_shuffle_layernorm_f16_km_kn_mn_mn_mn_instances<
LoopScheduler::Default,
PipelineVersion::v2>{});
#endif
add_device_operation_instances(
instances,
device_gemm_add_relu_add_xdl_c_shuffle_layernorm_f16_km_kn_mn_mn_mn_irregular_tile_instances{});
}
} // namespace instance
} // namespace device
} // namespace tensor_operation
} // namespace ck
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment