Commit aa5859e4 authored by Chao Liu's avatar Chao Liu
Browse files

Merge remote-tracking branch 'origin/develop' into wavelet_model

parents 9bd6cc0e 5ee30459
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2022, Advanced Micro Devices, Inc. All rights reserved.
#include "grouped_convnd_fwd_bias_relu_add_common.hpp"
#include "ck/tensor_operation/gpu/device/device_grouped_conv_fwd_multiple_d_xdl_cshuffle.hpp"
#include "ck/library/utility/convolution_host_tensor_descriptor_helper.hpp"
using InDataType = ck::bhalf_t;
using WeiDataType = ck::bhalf_t;
using AccDataType = float;
using CShuffleDataType = float;
using BiasDataType = ck::bhalf_t;
using ResidualDataType = ck::bhalf_t;
using OutDataType = ck::bhalf_t;
template <ck::index_t... Is>
using S = ck::Sequence<Is...>;
using InElementOp = ck::tensor_operation::element_wise::PassThrough;
using WeiElementOp = ck::tensor_operation::element_wise::PassThrough;
using OutElementOp = ck::tensor_operation::element_wise::AddReluAdd;
static constexpr auto ConvSpec =
ck::tensor_operation::device::ConvolutionForwardSpecialization::Default;
static constexpr auto GemmSpec = ck::tensor_operation::device::GemmSpecialization::MNKPadding;
template <ck::index_t NDimSpatial,
typename InLayout,
typename WeiLayout,
typename BiasLayout,
typename ResidualLayout,
typename OutLayout>
using DeviceGroupedConvNDFwdInstance =
ck::tensor_operation::device::DeviceGroupedConvFwdMultipleD_Xdl_CShuffle<
NDimSpatial,
InLayout,
WeiLayout,
ck::Tuple<BiasLayout, ResidualLayout>,
OutLayout,
InDataType,
WeiDataType,
AccDataType,
CShuffleDataType,
ck::Tuple<BiasDataType, ResidualDataType>,
OutDataType,
InElementOp,
WeiElementOp,
OutElementOp,
ConvSpec, // ConvForwardSpecialization
GemmSpec, // GemmSpecialization
1, //
256, // BlockSize
128, // MPerBlock
256, // NPerBlock
32, // KPerBlock
8, // AK1
8, // BK1
32, // MPerXdl
32, // NPerXdl
2, // MXdlPerWave
4, // NXdlPerWave
S<4, 64, 1>, // ABlockTransferThreadClusterLengths_AK0_M_AK1
S<1, 0, 2>, // ABlockTransferThreadClusterArrangeOrder
S<1, 0, 2>, // ABlockTransferSrcAccessOrder
2, // ABlockTransferSrcVectorDim
8, // ABlockTransferSrcScalarPerVector
8, // ABlockTransferDstScalarPerVector_AK1
1, // ABlockLdsExtraM
S<4, 64, 1>, // BBlockTransferThreadClusterLengths_BK0_N_BK1
S<1, 0, 2>, // BBlockTransferThreadClusterArrangeOrder
S<1, 0, 2>, // BBlockTransferSrcAccessOrder
2, // BBlockTransferSrcVectorDim
8, // BBlockTransferSrcScalarPerVector
8, // BBlockTransferDstScalarPerVector_BK1
1, // BBlockLdsExtraN
1,
1,
S<1, 32, 1, 8>,
8>;
int main(int argc, char* argv[])
{
namespace ctc = ck::tensor_layout::convolution;
print_helper_msg();
bool do_verification = true;
int init_method = 1;
bool time_kernel = false;
// conventional group conv definition
// G = 2
// [N, C, Hi, Wi] = [128, 384, 71, 71]
// [K, C, Y, X] = [512, 192, 3, 3]
// [N, K, Ho, Wo] = [128, 512, 36, 36]
// CK group conv definition
// [G, N, C, Hi, Wi] = [2, 128, 192, 71, 71]
// [G, K, C, Y, X] = [2, 256, 192, 3, 3]
// [G, N, K, Ho, Wo] = [2, 128, 256, 36, 36]
ck::utils::conv::ConvParam conv_param{
2, 2, 128, 256, 192, {3, 3}, {71, 71}, {2, 2}, {1, 1}, {1, 1}, {1, 1}};
if(argc == 1)
{
// use default
}
else if(argc == 4)
{
do_verification = std::stoi(argv[1]);
init_method = std::stoi(argv[2]);
time_kernel = std::stoi(argv[3]);
}
else
{
do_verification = std::stoi(argv[1]);
init_method = std::stoi(argv[2]);
time_kernel = std::stoi(argv[3]);
const ck::index_t num_dim_spatial = std::stoi(argv[4]);
conv_param = ck::utils::conv::parse_conv_param(num_dim_spatial, 5, argv);
}
const auto in_element_op = InElementOp{};
const auto wei_element_op = WeiElementOp{};
const auto out_element_op = OutElementOp{};
if(conv_param.num_dim_spatial_ == 1)
{
using InLayout = ctc::G_NW_C;
using WeiLayout = ctc::G_K_X_C;
using BiasLayout = ctc::G_NW_K;
using ResidualLayout = ctc::G_NW_K;
using OutLayout = ctc::G_NW_K;
const auto in_g_n_c_wis_desc = HostTensorDescriptor(
{conv_param.G_, conv_param.N_, conv_param.C_, conv_param.input_spatial_lengths_[0]},
{
conv_param.C_, // g
conv_param.input_spatial_lengths_[0] * conv_param.G_ * conv_param.C_, // n
1, // c
conv_param.G_ * conv_param.C_ // wi
});
const auto wei_g_k_c_xs_desc = HostTensorDescriptor(
{conv_param.G_, conv_param.K_, conv_param.C_, conv_param.filter_spatial_lengths_[0]},
{
conv_param.K_ * conv_param.filter_spatial_lengths_[0] * conv_param.C_, // g
conv_param.filter_spatial_lengths_[0] * conv_param.C_, // k
1, // c
conv_param.C_ // x
});
const auto bias_g_n_k_wos_desc = HostTensorDescriptor(
{conv_param.G_, conv_param.N_, conv_param.K_, conv_param.output_spatial_lengths_[0]},
{
conv_param.K_, // g
0, // k
1, // c
0 // x
});
const auto residual_g_n_k_wos_desc = HostTensorDescriptor(
{conv_param.G_, conv_param.N_, conv_param.K_, conv_param.output_spatial_lengths_[0]},
{
conv_param.K_, // g
0, // k
1, // c
0 // x
});
const auto out_g_n_k_wos_desc = HostTensorDescriptor(
{conv_param.G_, conv_param.N_, conv_param.K_, conv_param.output_spatial_lengths_[0]},
{
conv_param.K_, // g
conv_param.output_spatial_lengths_[0] * conv_param.G_ * conv_param.K_, // n
1, // k
conv_param.G_ * conv_param.K_ // wo
});
return run_grouped_conv_fwd_bias_relu_add<1,
InDataType,
WeiDataType,
CShuffleDataType,
OutDataType,
InElementOp,
WeiElementOp,
OutElementOp,
DeviceGroupedConvNDFwdInstance<1,
InLayout,
WeiLayout,
BiasLayout,
ResidualLayout,
OutLayout>>(
do_verification,
init_method,
time_kernel,
conv_param,
in_g_n_c_wis_desc,
wei_g_k_c_xs_desc,
bias_g_n_k_wos_desc,
residual_g_n_k_wos_desc,
out_g_n_k_wos_desc,
in_element_op,
wei_element_op,
out_element_op);
}
else if(conv_param.num_dim_spatial_ == 2)
{
using InLayout = ctc::G_NHW_C;
using WeiLayout = ctc::G_K_YX_C;
using BiasLayout = ctc::G_NHW_K;
using ResidualLayout = ctc::G_NHW_K;
using OutLayout = ctc::G_NHW_K;
const auto in_g_n_c_wis_desc = HostTensorDescriptor(
{conv_param.G_,
conv_param.N_,
conv_param.C_,
conv_param.input_spatial_lengths_[0],
conv_param.input_spatial_lengths_[1]},
{
conv_param.C_, // g
conv_param.input_spatial_lengths_[0] * conv_param.input_spatial_lengths_[1] *
conv_param.G_ * conv_param.C_, // n
1, // c
conv_param.input_spatial_lengths_[1] * conv_param.G_ * conv_param.C_, // hi
conv_param.G_ * conv_param.C_ // wi
});
const auto wei_g_k_c_xs_desc =
HostTensorDescriptor({conv_param.G_,
conv_param.K_,
conv_param.C_,
conv_param.filter_spatial_lengths_[0],
conv_param.filter_spatial_lengths_[1]},
{
conv_param.K_ * conv_param.filter_spatial_lengths_[0] *
conv_param.filter_spatial_lengths_[1] * conv_param.C_, // g
conv_param.filter_spatial_lengths_[0] *
conv_param.filter_spatial_lengths_[1] * conv_param.C_, // k
1, // c
conv_param.filter_spatial_lengths_[1] * conv_param.C_, // y
conv_param.C_ // x
});
const auto bias_g_n_k_wos_desc =
HostTensorDescriptor({conv_param.G_,
conv_param.N_,
conv_param.K_,
conv_param.output_spatial_lengths_[0],
conv_param.output_spatial_lengths_[1]},
{
conv_param.K_, // g
0, // n
1, // k
0, // ho
0 // wo
});
const auto residual_g_n_k_wos_desc =
HostTensorDescriptor({conv_param.G_,
conv_param.N_,
conv_param.K_,
conv_param.output_spatial_lengths_[0],
conv_param.output_spatial_lengths_[1]},
{
conv_param.K_, // g
0, // n
1, // k
0, // ho
0 // wo
});
const auto out_g_n_k_wos_desc = HostTensorDescriptor(
{conv_param.G_,
conv_param.N_,
conv_param.K_,
conv_param.output_spatial_lengths_[0],
conv_param.output_spatial_lengths_[1]},
{
conv_param.K_, // g
conv_param.output_spatial_lengths_[0] * conv_param.output_spatial_lengths_[1] *
conv_param.G_ * conv_param.K_, // n
1, // k
conv_param.output_spatial_lengths_[1] * conv_param.G_ * conv_param.K_, // ho
conv_param.G_ * conv_param.K_ // wo
});
return run_grouped_conv_fwd_bias_relu_add<2,
InDataType,
WeiDataType,
CShuffleDataType,
OutDataType,
InElementOp,
WeiElementOp,
OutElementOp,
DeviceGroupedConvNDFwdInstance<2,
InLayout,
WeiLayout,
BiasLayout,
ResidualLayout,
OutLayout>>(
do_verification,
init_method,
time_kernel,
conv_param,
in_g_n_c_wis_desc,
wei_g_k_c_xs_desc,
bias_g_n_k_wos_desc,
residual_g_n_k_wos_desc,
out_g_n_k_wos_desc,
in_element_op,
wei_element_op,
out_element_op);
}
else if(conv_param.num_dim_spatial_ == 3)
{
using InLayout = ctc::G_NDHW_C;
using WeiLayout = ctc::G_K_ZYX_C;
using BiasLayout = ctc::G_NDHW_K;
using ResidualLayout = ctc::G_NDHW_K;
using OutLayout = ctc::G_NDHW_K;
const auto in_g_n_c_wis_desc = HostTensorDescriptor(
{conv_param.G_,
conv_param.N_,
conv_param.C_,
conv_param.input_spatial_lengths_[0],
conv_param.input_spatial_lengths_[1],
conv_param.input_spatial_lengths_[2]},
{
conv_param.C_, // g
conv_param.input_spatial_lengths_[0] * conv_param.input_spatial_lengths_[1] *
conv_param.input_spatial_lengths_[2] * conv_param.G_ * conv_param.C_, // n
1, // c
conv_param.input_spatial_lengths_[1] * conv_param.input_spatial_lengths_[2] *
conv_param.G_ * conv_param.C_, // di
conv_param.input_spatial_lengths_[2] * conv_param.G_ * conv_param.C_, // hi
conv_param.G_ * conv_param.C_ // wi
});
const auto wei_g_k_c_xs_desc = HostTensorDescriptor(
{conv_param.G_,
conv_param.K_,
conv_param.C_,
conv_param.filter_spatial_lengths_[0],
conv_param.filter_spatial_lengths_[1],
conv_param.filter_spatial_lengths_[2]},
{
conv_param.K_ * conv_param.filter_spatial_lengths_[0] *
conv_param.filter_spatial_lengths_[1] * conv_param.filter_spatial_lengths_[2] *
conv_param.C_, // g
conv_param.filter_spatial_lengths_[0] * conv_param.filter_spatial_lengths_[1] *
conv_param.filter_spatial_lengths_[2] * conv_param.C_, // k
1, // c
conv_param.filter_spatial_lengths_[1] * conv_param.filter_spatial_lengths_[2] *
conv_param.C_, // z
conv_param.filter_spatial_lengths_[2] * conv_param.C_, // y
conv_param.C_ // x
});
const auto bias_g_n_k_wos_desc =
HostTensorDescriptor({conv_param.G_,
conv_param.N_,
conv_param.K_,
conv_param.output_spatial_lengths_[0],
conv_param.output_spatial_lengths_[1],
conv_param.output_spatial_lengths_[2]},
{
conv_param.K_, // g
0, // n
1, // k
0, // z
0, // y
0 // x
});
const auto residual_g_n_k_wos_desc =
HostTensorDescriptor({conv_param.G_,
conv_param.N_,
conv_param.K_,
conv_param.output_spatial_lengths_[0],
conv_param.output_spatial_lengths_[1],
conv_param.output_spatial_lengths_[2]},
{
conv_param.K_, // g
0, // n
1, // k
0, // z
0, // y
0 // x
});
const auto out_g_n_k_wos_desc = HostTensorDescriptor(
{conv_param.G_,
conv_param.N_,
conv_param.K_,
conv_param.output_spatial_lengths_[0],
conv_param.output_spatial_lengths_[1],
conv_param.output_spatial_lengths_[2]},
{
conv_param.K_, // g
conv_param.output_spatial_lengths_[0] * conv_param.output_spatial_lengths_[1] *
conv_param.output_spatial_lengths_[2] * conv_param.G_ * conv_param.K_, // n
1, // k
conv_param.output_spatial_lengths_[1] * conv_param.output_spatial_lengths_[2] *
conv_param.G_ * conv_param.K_, // do
conv_param.output_spatial_lengths_[2] * conv_param.G_ * conv_param.K_, // ho
conv_param.G_ * conv_param.K_ // wo
});
return run_grouped_conv_fwd_bias_relu_add<3,
InDataType,
WeiDataType,
CShuffleDataType,
OutDataType,
InElementOp,
WeiElementOp,
OutElementOp,
DeviceGroupedConvNDFwdInstance<3,
InLayout,
WeiLayout,
BiasLayout,
ResidualLayout,
OutLayout>>(
do_verification,
init_method,
time_kernel,
conv_param,
in_g_n_c_wis_desc,
wei_g_k_c_xs_desc,
bias_g_n_k_wos_desc,
residual_g_n_k_wos_desc,
out_g_n_k_wos_desc,
in_element_op,
wei_element_op,
out_element_op);
}
return 0;
}
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2022, Advanced Micro Devices, Inc. All rights reserved.
#include "grouped_convnd_fwd_bias_relu_add_common.hpp"
#include "ck/tensor_operation/gpu/device/device_grouped_conv_fwd_multiple_d_xdl_cshuffle.hpp"
#include "ck/library/utility/convolution_host_tensor_descriptor_helper.hpp"
using InDataType = ck::half_t;
using WeiDataType = ck::half_t;
using AccDataType = float;
using CShuffleDataType = ck::half_t;
using BiasDataType = ck::half_t;
using ResidualDataType = ck::half_t;
using OutDataType = ck::half_t;
template <ck::index_t... Is>
using S = ck::Sequence<Is...>;
using InElementOp = ck::tensor_operation::element_wise::PassThrough;
using WeiElementOp = ck::tensor_operation::element_wise::PassThrough;
using OutElementOp = ck::tensor_operation::element_wise::AddReluAdd;
static constexpr auto ConvSpec =
ck::tensor_operation::device::ConvolutionForwardSpecialization::Default;
static constexpr auto GemmSpec = ck::tensor_operation::device::GemmSpecialization::MNKPadding;
template <ck::index_t NDimSpatial,
typename InLayout,
typename WeiLayout,
typename BiasLayout,
typename ResidualLayout,
typename OutLayout>
using DeviceGroupedConvNDFwdInstance =
ck::tensor_operation::device::DeviceGroupedConvFwdMultipleD_Xdl_CShuffle<
NDimSpatial,
InLayout,
WeiLayout,
ck::Tuple<BiasLayout, ResidualLayout>,
OutLayout,
InDataType,
WeiDataType,
AccDataType,
CShuffleDataType,
ck::Tuple<BiasDataType, ResidualDataType>,
OutDataType,
InElementOp,
WeiElementOp,
OutElementOp,
ConvSpec, // ConvForwardSpecialization
GemmSpec, // GemmSpecialization
1, //
256, // BlockSize
128, // MPerBlock
256, // NPerBlock
32, // KPerBlock
8, // AK1
8, // BK1
32, // MPerXdl
32, // NPerXdl
2, // MXdlPerWave
4, // NXdlPerWave
S<4, 64, 1>, // ABlockTransferThreadClusterLengths_AK0_M_AK1
S<1, 0, 2>, // ABlockTransferThreadClusterArrangeOrder
S<1, 0, 2>, // ABlockTransferSrcAccessOrder
2, // ABlockTransferSrcVectorDim
8, // ABlockTransferSrcScalarPerVector
8, // ABlockTransferDstScalarPerVector_AK1
1, // ABlockLdsExtraM
S<4, 64, 1>, // BBlockTransferThreadClusterLengths_BK0_N_BK1
S<1, 0, 2>, // BBlockTransferThreadClusterArrangeOrder
S<1, 0, 2>, // BBlockTransferSrcAccessOrder
2, // BBlockTransferSrcVectorDim
8, // BBlockTransferSrcScalarPerVector
8, // BBlockTransferDstScalarPerVector_BK1
1, // BBlockLdsExtraN
1,
1,
S<1, 32, 1, 8>,
8>;
int main(int argc, char* argv[])
{
namespace ctc = ck::tensor_layout::convolution;
print_helper_msg();
bool do_verification = true;
int init_method = 1;
bool time_kernel = false;
// conventional group conv definition
// G = 2
// [N, C, Hi, Wi] = [128, 384, 71, 71]
// [K, C, Y, X] = [512, 192, 3, 3]
// [N, K, Ho, Wo] = [128, 512, 36, 36]
// CK group conv definition
// [G, N, C, Hi, Wi] = [2, 128, 192, 71, 71]
// [G, K, C, Y, X] = [2, 256, 192, 3, 3]
// [G, N, K, Ho, Wo] = [2, 128, 256, 36, 36]
ck::utils::conv::ConvParam conv_param{
2, 2, 128, 256, 192, {3, 3}, {71, 71}, {2, 2}, {1, 1}, {1, 1}, {1, 1}};
if(argc == 1)
{
// use default
}
else if(argc == 4)
{
do_verification = std::stoi(argv[1]);
init_method = std::stoi(argv[2]);
time_kernel = std::stoi(argv[3]);
}
else
{
do_verification = std::stoi(argv[1]);
init_method = std::stoi(argv[2]);
time_kernel = std::stoi(argv[3]);
const ck::index_t num_dim_spatial = std::stoi(argv[4]);
conv_param = ck::utils::conv::parse_conv_param(num_dim_spatial, 5, argv);
}
const auto in_element_op = InElementOp{};
const auto wei_element_op = WeiElementOp{};
const auto out_element_op = OutElementOp{};
if(conv_param.num_dim_spatial_ == 1)
{
using InLayout = ctc::G_NW_C;
using WeiLayout = ctc::G_K_X_C;
using BiasLayout = ctc::G_NW_K;
using ResidualLayout = ctc::G_NW_K;
using OutLayout = ctc::G_NW_K;
const auto in_g_n_c_wis_desc = HostTensorDescriptor(
{conv_param.G_, conv_param.N_, conv_param.C_, conv_param.input_spatial_lengths_[0]},
{
conv_param.C_, // g
conv_param.input_spatial_lengths_[0] * conv_param.G_ * conv_param.C_, // n
1, // c
conv_param.G_ * conv_param.C_ // wi
});
const auto wei_g_k_c_xs_desc = HostTensorDescriptor(
{conv_param.G_, conv_param.K_, conv_param.C_, conv_param.filter_spatial_lengths_[0]},
{
conv_param.K_ * conv_param.filter_spatial_lengths_[0] * conv_param.C_, // g
conv_param.filter_spatial_lengths_[0] * conv_param.C_, // k
1, // c
conv_param.C_ // x
});
const auto bias_g_n_k_wos_desc = HostTensorDescriptor(
{conv_param.G_, conv_param.N_, conv_param.K_, conv_param.output_spatial_lengths_[0]},
{
conv_param.K_, // g
0, // k
1, // c
0 // x
});
const auto residual_g_n_k_wos_desc = HostTensorDescriptor(
{conv_param.G_, conv_param.N_, conv_param.K_, conv_param.output_spatial_lengths_[0]},
{
conv_param.K_, // g
0, // k
1, // c
0 // x
});
const auto out_g_n_k_wos_desc = HostTensorDescriptor(
{conv_param.G_, conv_param.N_, conv_param.K_, conv_param.output_spatial_lengths_[0]},
{
conv_param.K_, // g
conv_param.output_spatial_lengths_[0] * conv_param.G_ * conv_param.K_, // n
1, // k
conv_param.G_ * conv_param.K_ // wo
});
return run_grouped_conv_fwd_bias_relu_add<1,
InDataType,
WeiDataType,
CShuffleDataType,
OutDataType,
InElementOp,
WeiElementOp,
OutElementOp,
DeviceGroupedConvNDFwdInstance<1,
InLayout,
WeiLayout,
BiasLayout,
ResidualLayout,
OutLayout>>(
do_verification,
init_method,
time_kernel,
conv_param,
in_g_n_c_wis_desc,
wei_g_k_c_xs_desc,
bias_g_n_k_wos_desc,
residual_g_n_k_wos_desc,
out_g_n_k_wos_desc,
in_element_op,
wei_element_op,
out_element_op);
}
else if(conv_param.num_dim_spatial_ == 2)
{
using InLayout = ctc::G_NHW_C;
using WeiLayout = ctc::G_K_YX_C;
using BiasLayout = ctc::G_NHW_K;
using ResidualLayout = ctc::G_NHW_K;
using OutLayout = ctc::G_NHW_K;
const auto in_g_n_c_wis_desc = HostTensorDescriptor(
{conv_param.G_,
conv_param.N_,
conv_param.C_,
conv_param.input_spatial_lengths_[0],
conv_param.input_spatial_lengths_[1]},
{
conv_param.C_, // g
conv_param.input_spatial_lengths_[0] * conv_param.input_spatial_lengths_[1] *
conv_param.G_ * conv_param.C_, // n
1, // c
conv_param.input_spatial_lengths_[1] * conv_param.G_ * conv_param.C_, // hi
conv_param.G_ * conv_param.C_ // wi
});
const auto wei_g_k_c_xs_desc =
HostTensorDescriptor({conv_param.G_,
conv_param.K_,
conv_param.C_,
conv_param.filter_spatial_lengths_[0],
conv_param.filter_spatial_lengths_[1]},
{
conv_param.K_ * conv_param.filter_spatial_lengths_[0] *
conv_param.filter_spatial_lengths_[1] * conv_param.C_, // g
conv_param.filter_spatial_lengths_[0] *
conv_param.filter_spatial_lengths_[1] * conv_param.C_, // k
1, // c
conv_param.filter_spatial_lengths_[1] * conv_param.C_, // y
conv_param.C_ // x
});
const auto bias_g_n_k_wos_desc =
HostTensorDescriptor({conv_param.G_,
conv_param.N_,
conv_param.K_,
conv_param.output_spatial_lengths_[0],
conv_param.output_spatial_lengths_[1]},
{
conv_param.K_, // g
0, // n
1, // k
0, // ho
0 // wo
});
const auto residual_g_n_k_wos_desc =
HostTensorDescriptor({conv_param.G_,
conv_param.N_,
conv_param.K_,
conv_param.output_spatial_lengths_[0],
conv_param.output_spatial_lengths_[1]},
{
conv_param.K_, // g
0, // n
1, // k
0, // ho
0 // wo
});
const auto out_g_n_k_wos_desc = HostTensorDescriptor(
{conv_param.G_,
conv_param.N_,
conv_param.K_,
conv_param.output_spatial_lengths_[0],
conv_param.output_spatial_lengths_[1]},
{
conv_param.K_, // g
conv_param.output_spatial_lengths_[0] * conv_param.output_spatial_lengths_[1] *
conv_param.G_ * conv_param.K_, // n
1, // k
conv_param.output_spatial_lengths_[1] * conv_param.G_ * conv_param.K_, // ho
conv_param.G_ * conv_param.K_ // wo
});
return run_grouped_conv_fwd_bias_relu_add<2,
InDataType,
WeiDataType,
CShuffleDataType,
OutDataType,
InElementOp,
WeiElementOp,
OutElementOp,
DeviceGroupedConvNDFwdInstance<2,
InLayout,
WeiLayout,
BiasLayout,
ResidualLayout,
OutLayout>>(
do_verification,
init_method,
time_kernel,
conv_param,
in_g_n_c_wis_desc,
wei_g_k_c_xs_desc,
bias_g_n_k_wos_desc,
residual_g_n_k_wos_desc,
out_g_n_k_wos_desc,
in_element_op,
wei_element_op,
out_element_op);
}
else if(conv_param.num_dim_spatial_ == 3)
{
using InLayout = ctc::G_NDHW_C;
using WeiLayout = ctc::G_K_ZYX_C;
using BiasLayout = ctc::G_NDHW_K;
using ResidualLayout = ctc::G_NDHW_K;
using OutLayout = ctc::G_NDHW_K;
const auto in_g_n_c_wis_desc = HostTensorDescriptor(
{conv_param.G_,
conv_param.N_,
conv_param.C_,
conv_param.input_spatial_lengths_[0],
conv_param.input_spatial_lengths_[1],
conv_param.input_spatial_lengths_[2]},
{
conv_param.C_, // g
conv_param.input_spatial_lengths_[0] * conv_param.input_spatial_lengths_[1] *
conv_param.input_spatial_lengths_[2] * conv_param.G_ * conv_param.C_, // n
1, // c
conv_param.input_spatial_lengths_[1] * conv_param.input_spatial_lengths_[2] *
conv_param.G_ * conv_param.C_, // di
conv_param.input_spatial_lengths_[2] * conv_param.G_ * conv_param.C_, // hi
conv_param.G_ * conv_param.C_ // wi
});
const auto wei_g_k_c_xs_desc = HostTensorDescriptor(
{conv_param.G_,
conv_param.K_,
conv_param.C_,
conv_param.filter_spatial_lengths_[0],
conv_param.filter_spatial_lengths_[1],
conv_param.filter_spatial_lengths_[2]},
{
conv_param.K_ * conv_param.filter_spatial_lengths_[0] *
conv_param.filter_spatial_lengths_[1] * conv_param.filter_spatial_lengths_[2] *
conv_param.C_, // g
conv_param.filter_spatial_lengths_[0] * conv_param.filter_spatial_lengths_[1] *
conv_param.filter_spatial_lengths_[2] * conv_param.C_, // k
1, // c
conv_param.filter_spatial_lengths_[1] * conv_param.filter_spatial_lengths_[2] *
conv_param.C_, // z
conv_param.filter_spatial_lengths_[2] * conv_param.C_, // y
conv_param.C_ // x
});
const auto bias_g_n_k_wos_desc =
HostTensorDescriptor({conv_param.G_,
conv_param.N_,
conv_param.K_,
conv_param.output_spatial_lengths_[0],
conv_param.output_spatial_lengths_[1],
conv_param.output_spatial_lengths_[2]},
{
conv_param.K_, // g
0, // n
1, // k
0, // z
0, // y
0 // x
});
const auto residual_g_n_k_wos_desc =
HostTensorDescriptor({conv_param.G_,
conv_param.N_,
conv_param.K_,
conv_param.output_spatial_lengths_[0],
conv_param.output_spatial_lengths_[1],
conv_param.output_spatial_lengths_[2]},
{
conv_param.K_, // g
0, // n
1, // k
0, // z
0, // y
0 // x
});
const auto out_g_n_k_wos_desc = HostTensorDescriptor(
{conv_param.G_,
conv_param.N_,
conv_param.K_,
conv_param.output_spatial_lengths_[0],
conv_param.output_spatial_lengths_[1],
conv_param.output_spatial_lengths_[2]},
{
conv_param.K_, // g
conv_param.output_spatial_lengths_[0] * conv_param.output_spatial_lengths_[1] *
conv_param.output_spatial_lengths_[2] * conv_param.G_ * conv_param.K_, // n
1, // k
conv_param.output_spatial_lengths_[1] * conv_param.output_spatial_lengths_[2] *
conv_param.G_ * conv_param.K_, // do
conv_param.output_spatial_lengths_[2] * conv_param.G_ * conv_param.K_, // ho
conv_param.G_ * conv_param.K_ // wo
});
return run_grouped_conv_fwd_bias_relu_add<3,
InDataType,
WeiDataType,
CShuffleDataType,
OutDataType,
InElementOp,
WeiElementOp,
OutElementOp,
DeviceGroupedConvNDFwdInstance<3,
InLayout,
WeiLayout,
BiasLayout,
ResidualLayout,
OutLayout>>(
do_verification,
init_method,
time_kernel,
conv_param,
in_g_n_c_wis_desc,
wei_g_k_c_xs_desc,
bias_g_n_k_wos_desc,
residual_g_n_k_wos_desc,
out_g_n_k_wos_desc,
in_element_op,
wei_element_op,
out_element_op);
}
return 0;
}
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2022, Advanced Micro Devices, Inc. All rights reserved.
#include "grouped_convnd_fwd_bias_relu_add_common.hpp"
#include "ck/tensor_operation/gpu/device/device_grouped_conv_fwd_multiple_d_xdl_cshuffle.hpp"
#include "ck/library/utility/convolution_host_tensor_descriptor_helper.hpp"
using InDataType = float;
using WeiDataType = float;
using AccDataType = float;
using CShuffleDataType = float;
using BiasDataType = float;
using ResidualDataType = float;
using OutDataType = float;
template <ck::index_t... Is>
using S = ck::Sequence<Is...>;
using InElementOp = ck::tensor_operation::element_wise::PassThrough;
using WeiElementOp = ck::tensor_operation::element_wise::PassThrough;
using OutElementOp = ck::tensor_operation::element_wise::AddReluAdd;
static constexpr auto ConvSpec =
ck::tensor_operation::device::ConvolutionForwardSpecialization::Default;
static constexpr auto GemmSpec = ck::tensor_operation::device::GemmSpecialization::MNKPadding;
template <ck::index_t NDimSpatial,
typename InLayout,
typename WeiLayout,
typename BiasLayout,
typename ResidualLayout,
typename OutLayout>
using DeviceGroupedConvNDFwdInstance =
ck::tensor_operation::device::DeviceGroupedConvFwdMultipleD_Xdl_CShuffle<
NDimSpatial,
InLayout,
WeiLayout,
ck::Tuple<BiasLayout, ResidualLayout>,
OutLayout,
InDataType,
WeiDataType,
AccDataType,
CShuffleDataType,
ck::Tuple<BiasDataType, ResidualDataType>,
OutDataType,
InElementOp,
WeiElementOp,
OutElementOp,
ConvSpec, // ConvForwardSpecialization
GemmSpec, // GemmSpecialization
1, //
256, // BlockSize
128, // MPerBlock
256, // NPerBlock
16, // KPerBlock
4, // AK1
4, // BK1
32, // MPerXdl
32, // NPerXdl
2, // MXdlPerWave
4, // NXdlPerWave
S<4, 64, 1>, // ABlockTransferThreadClusterLengths_AK0_M_AK1
S<1, 0, 2>, // ABlockTransferThreadClusterArrangeOrder
S<1, 0, 2>, // ABlockTransferSrcAccessOrder
2, // ABlockTransferSrcVectorDim
4, // ABlockTransferSrcScalarPerVector
4, // ABlockTransferDstScalarPerVector_AK1
1, // ABlockLdsExtraM
S<4, 64, 1>, // BBlockTransferThreadClusterLengths_BK0_N_BK1
S<1, 0, 2>, // BBlockTransferThreadClusterArrangeOrder
S<1, 0, 2>, // BBlockTransferSrcAccessOrder
2, // BBlockTransferSrcVectorDim
4, // BBlockTransferSrcScalarPerVector
4, // BBlockTransferDstScalarPerVector_BK1
1, // BBlockLdsExtraN
1,
1,
S<1, 16, 1, 16>,
4>;
int main(int argc, char* argv[])
{
namespace ctc = ck::tensor_layout::convolution;
print_helper_msg();
bool do_verification = true;
int init_method = 1;
bool time_kernel = false;
// conventional group conv definition
// G = 2
// [N, C, Hi, Wi] = [128, 384, 71, 71]
// [K, C, Y, X] = [512, 192, 3, 3]
// [N, K, Ho, Wo] = [128, 512, 36, 36]
// CK group conv definition
// [G, N, C, Hi, Wi] = [2, 128, 192, 71, 71]
// [G, K, C, Y, X] = [2, 256, 192, 3, 3]
// [G, N, K, Ho, Wo] = [2, 128, 256, 36, 36]
ck::utils::conv::ConvParam conv_param{
2, 2, 128, 256, 192, {3, 3}, {71, 71}, {2, 2}, {1, 1}, {1, 1}, {1, 1}};
if(argc == 1)
{
// use default
}
else if(argc == 4)
{
do_verification = std::stoi(argv[1]);
init_method = std::stoi(argv[2]);
time_kernel = std::stoi(argv[3]);
}
else
{
do_verification = std::stoi(argv[1]);
init_method = std::stoi(argv[2]);
time_kernel = std::stoi(argv[3]);
const ck::index_t num_dim_spatial = std::stoi(argv[4]);
conv_param = ck::utils::conv::parse_conv_param(num_dim_spatial, 5, argv);
}
const auto in_element_op = InElementOp{};
const auto wei_element_op = WeiElementOp{};
const auto out_element_op = OutElementOp{};
if(conv_param.num_dim_spatial_ == 1)
{
using InLayout = ctc::G_NW_C;
using WeiLayout = ctc::G_K_X_C;
using BiasLayout = ctc::G_NW_K;
using ResidualLayout = ctc::G_NW_K;
using OutLayout = ctc::G_NW_K;
const auto in_g_n_c_wis_desc = HostTensorDescriptor(
{conv_param.G_, conv_param.N_, conv_param.C_, conv_param.input_spatial_lengths_[0]},
{
conv_param.C_, // g
conv_param.input_spatial_lengths_[0] * conv_param.G_ * conv_param.C_, // n
1, // c
conv_param.G_ * conv_param.C_ // wi
});
const auto wei_g_k_c_xs_desc = HostTensorDescriptor(
{conv_param.G_, conv_param.K_, conv_param.C_, conv_param.filter_spatial_lengths_[0]},
{
conv_param.K_ * conv_param.filter_spatial_lengths_[0] * conv_param.C_, // g
conv_param.filter_spatial_lengths_[0] * conv_param.C_, // k
1, // c
conv_param.C_ // x
});
const auto bias_g_n_k_wos_desc = HostTensorDescriptor(
{conv_param.G_, conv_param.N_, conv_param.K_, conv_param.output_spatial_lengths_[0]},
{
conv_param.K_, // g
0, // k
1, // c
0 // x
});
const auto residual_g_n_k_wos_desc = HostTensorDescriptor(
{conv_param.G_, conv_param.N_, conv_param.K_, conv_param.output_spatial_lengths_[0]},
{
conv_param.K_, // g
0, // k
1, // c
0 // x
});
const auto out_g_n_k_wos_desc = HostTensorDescriptor(
{conv_param.G_, conv_param.N_, conv_param.K_, conv_param.output_spatial_lengths_[0]},
{
conv_param.K_, // g
conv_param.output_spatial_lengths_[0] * conv_param.G_ * conv_param.K_, // n
1, // k
conv_param.G_ * conv_param.K_ // wo
});
return run_grouped_conv_fwd_bias_relu_add<1,
InDataType,
WeiDataType,
CShuffleDataType,
OutDataType,
InElementOp,
WeiElementOp,
OutElementOp,
DeviceGroupedConvNDFwdInstance<1,
InLayout,
WeiLayout,
BiasLayout,
ResidualLayout,
OutLayout>>(
do_verification,
init_method,
time_kernel,
conv_param,
in_g_n_c_wis_desc,
wei_g_k_c_xs_desc,
bias_g_n_k_wos_desc,
residual_g_n_k_wos_desc,
out_g_n_k_wos_desc,
in_element_op,
wei_element_op,
out_element_op);
}
else if(conv_param.num_dim_spatial_ == 2)
{
using InLayout = ctc::G_NHW_C;
using WeiLayout = ctc::G_K_YX_C;
using BiasLayout = ctc::G_NHW_K;
using ResidualLayout = ctc::G_NHW_K;
using OutLayout = ctc::G_NHW_K;
const auto in_g_n_c_wis_desc = HostTensorDescriptor(
{conv_param.G_,
conv_param.N_,
conv_param.C_,
conv_param.input_spatial_lengths_[0],
conv_param.input_spatial_lengths_[1]},
{
conv_param.C_, // g
conv_param.input_spatial_lengths_[0] * conv_param.input_spatial_lengths_[1] *
conv_param.G_ * conv_param.C_, // n
1, // c
conv_param.input_spatial_lengths_[1] * conv_param.G_ * conv_param.C_, // hi
conv_param.G_ * conv_param.C_ // wi
});
const auto wei_g_k_c_xs_desc =
HostTensorDescriptor({conv_param.G_,
conv_param.K_,
conv_param.C_,
conv_param.filter_spatial_lengths_[0],
conv_param.filter_spatial_lengths_[1]},
{
conv_param.K_ * conv_param.filter_spatial_lengths_[0] *
conv_param.filter_spatial_lengths_[1] * conv_param.C_, // g
conv_param.filter_spatial_lengths_[0] *
conv_param.filter_spatial_lengths_[1] * conv_param.C_, // k
1, // c
conv_param.filter_spatial_lengths_[1] * conv_param.C_, // y
conv_param.C_ // x
});
const auto bias_g_n_k_wos_desc =
HostTensorDescriptor({conv_param.G_,
conv_param.N_,
conv_param.K_,
conv_param.output_spatial_lengths_[0],
conv_param.output_spatial_lengths_[1]},
{
conv_param.K_, // g
0, // n
1, // k
0, // ho
0 // wo
});
const auto residual_g_n_k_wos_desc =
HostTensorDescriptor({conv_param.G_,
conv_param.N_,
conv_param.K_,
conv_param.output_spatial_lengths_[0],
conv_param.output_spatial_lengths_[1]},
{
conv_param.K_, // g
0, // n
1, // k
0, // ho
0 // wo
});
const auto out_g_n_k_wos_desc = HostTensorDescriptor(
{conv_param.G_,
conv_param.N_,
conv_param.K_,
conv_param.output_spatial_lengths_[0],
conv_param.output_spatial_lengths_[1]},
{
conv_param.K_, // g
conv_param.output_spatial_lengths_[0] * conv_param.output_spatial_lengths_[1] *
conv_param.G_ * conv_param.K_, // n
1, // k
conv_param.output_spatial_lengths_[1] * conv_param.G_ * conv_param.K_, // ho
conv_param.G_ * conv_param.K_ // wo
});
return run_grouped_conv_fwd_bias_relu_add<2,
InDataType,
WeiDataType,
CShuffleDataType,
OutDataType,
InElementOp,
WeiElementOp,
OutElementOp,
DeviceGroupedConvNDFwdInstance<2,
InLayout,
WeiLayout,
BiasLayout,
ResidualLayout,
OutLayout>>(
do_verification,
init_method,
time_kernel,
conv_param,
in_g_n_c_wis_desc,
wei_g_k_c_xs_desc,
bias_g_n_k_wos_desc,
residual_g_n_k_wos_desc,
out_g_n_k_wos_desc,
in_element_op,
wei_element_op,
out_element_op);
}
else if(conv_param.num_dim_spatial_ == 3)
{
using InLayout = ctc::G_NDHW_C;
using WeiLayout = ctc::G_K_ZYX_C;
using BiasLayout = ctc::G_NDHW_K;
using ResidualLayout = ctc::G_NDHW_K;
using OutLayout = ctc::G_NDHW_K;
const auto in_g_n_c_wis_desc = HostTensorDescriptor(
{conv_param.G_,
conv_param.N_,
conv_param.C_,
conv_param.input_spatial_lengths_[0],
conv_param.input_spatial_lengths_[1],
conv_param.input_spatial_lengths_[2]},
{
conv_param.C_, // g
conv_param.input_spatial_lengths_[0] * conv_param.input_spatial_lengths_[1] *
conv_param.input_spatial_lengths_[2] * conv_param.G_ * conv_param.C_, // n
1, // c
conv_param.input_spatial_lengths_[1] * conv_param.input_spatial_lengths_[2] *
conv_param.G_ * conv_param.C_, // di
conv_param.input_spatial_lengths_[2] * conv_param.G_ * conv_param.C_, // hi
conv_param.G_ * conv_param.C_ // wi
});
const auto wei_g_k_c_xs_desc = HostTensorDescriptor(
{conv_param.G_,
conv_param.K_,
conv_param.C_,
conv_param.filter_spatial_lengths_[0],
conv_param.filter_spatial_lengths_[1],
conv_param.filter_spatial_lengths_[2]},
{
conv_param.K_ * conv_param.filter_spatial_lengths_[0] *
conv_param.filter_spatial_lengths_[1] * conv_param.filter_spatial_lengths_[2] *
conv_param.C_, // g
conv_param.filter_spatial_lengths_[0] * conv_param.filter_spatial_lengths_[1] *
conv_param.filter_spatial_lengths_[2] * conv_param.C_, // k
1, // c
conv_param.filter_spatial_lengths_[1] * conv_param.filter_spatial_lengths_[2] *
conv_param.C_, // z
conv_param.filter_spatial_lengths_[2] * conv_param.C_, // y
conv_param.C_ // x
});
const auto bias_g_n_k_wos_desc =
HostTensorDescriptor({conv_param.G_,
conv_param.N_,
conv_param.K_,
conv_param.output_spatial_lengths_[0],
conv_param.output_spatial_lengths_[1],
conv_param.output_spatial_lengths_[2]},
{
conv_param.K_, // g
0, // n
1, // k
0, // z
0, // y
0 // x
});
const auto residual_g_n_k_wos_desc =
HostTensorDescriptor({conv_param.G_,
conv_param.N_,
conv_param.K_,
conv_param.output_spatial_lengths_[0],
conv_param.output_spatial_lengths_[1],
conv_param.output_spatial_lengths_[2]},
{
conv_param.K_, // g
0, // n
1, // k
0, // z
0, // y
0 // x
});
const auto out_g_n_k_wos_desc = HostTensorDescriptor(
{conv_param.G_,
conv_param.N_,
conv_param.K_,
conv_param.output_spatial_lengths_[0],
conv_param.output_spatial_lengths_[1],
conv_param.output_spatial_lengths_[2]},
{
conv_param.K_, // g
conv_param.output_spatial_lengths_[0] * conv_param.output_spatial_lengths_[1] *
conv_param.output_spatial_lengths_[2] * conv_param.G_ * conv_param.K_, // n
1, // k
conv_param.output_spatial_lengths_[1] * conv_param.output_spatial_lengths_[2] *
conv_param.G_ * conv_param.K_, // do
conv_param.output_spatial_lengths_[2] * conv_param.G_ * conv_param.K_, // ho
conv_param.G_ * conv_param.K_ // wo
});
return run_grouped_conv_fwd_bias_relu_add<3,
InDataType,
WeiDataType,
CShuffleDataType,
OutDataType,
InElementOp,
WeiElementOp,
OutElementOp,
DeviceGroupedConvNDFwdInstance<3,
InLayout,
WeiLayout,
BiasLayout,
ResidualLayout,
OutLayout>>(
do_verification,
init_method,
time_kernel,
conv_param,
in_g_n_c_wis_desc,
wei_g_k_c_xs_desc,
bias_g_n_k_wos_desc,
residual_g_n_k_wos_desc,
out_g_n_k_wos_desc,
in_element_op,
wei_element_op,
out_element_op);
}
return 0;
}
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2022, Advanced Micro Devices, Inc. All rights reserved.
#include "grouped_convnd_fwd_bias_relu_add_common.hpp"
#include "ck/tensor_operation/gpu/device/device_grouped_conv_fwd_multiple_d_xdl_cshuffle.hpp"
#include "ck/library/utility/convolution_host_tensor_descriptor_helper.hpp"
using InDataType = int8_t;
using WeiDataType = int8_t;
using AccDataType = int32_t;
using CShuffleDataType = int8_t;
using BiasDataType = int8_t;
using ResidualDataType = int8_t;
using OutDataType = int8_t;
template <ck::index_t... Is>
using S = ck::Sequence<Is...>;
using InElementOp = ck::tensor_operation::element_wise::PassThrough;
using WeiElementOp = ck::tensor_operation::element_wise::PassThrough;
using OutElementOp = ck::tensor_operation::element_wise::AddReluAdd;
static constexpr auto ConvSpec =
ck::tensor_operation::device::ConvolutionForwardSpecialization::Default;
static constexpr auto GemmSpec = ck::tensor_operation::device::GemmSpecialization::MNKPadding;
template <ck::index_t NDimSpatial,
typename InLayout,
typename WeiLayout,
typename BiasLayout,
typename ResidualLayout,
typename OutLayout>
using DeviceGroupedConvNDFwdInstance =
ck::tensor_operation::device::DeviceGroupedConvFwdMultipleD_Xdl_CShuffle<
NDimSpatial,
InLayout,
WeiLayout,
ck::Tuple<BiasLayout, ResidualLayout>,
OutLayout,
InDataType,
WeiDataType,
AccDataType,
CShuffleDataType,
ck::Tuple<BiasDataType, ResidualDataType>,
OutDataType,
InElementOp,
WeiElementOp,
OutElementOp,
ConvSpec, // ConvForwardSpecialization
GemmSpec, // GemmSpecialization
1, //
256, // BlockSize
128, // MPerBlock
256, // NPerBlock
64, // KPerBlock
16, // AK1
16, // BK1
32, // MPerXdl
32, // NPerXdl
2, // MXdlPerWave
4, // NXdlPerWave
S<4, 64, 1>, // ABlockTransferThreadClusterLengths_AK0_M_AK1
S<1, 0, 2>, // ABlockTransferThreadClusterArrangeOrder
S<1, 0, 2>, // ABlockTransferSrcAccessOrder
2, // ABlockTransferSrcVectorDim
16, // ABlockTransferSrcScalarPerVector
16, // ABlockTransferDstScalarPerVector_AK1
1, // ABlockLdsExtraM
S<4, 64, 1>, // BBlockTransferThreadClusterLengths_BK0_N_BK1
S<1, 0, 2>, // BBlockTransferThreadClusterArrangeOrder
S<1, 0, 2>, // BBlockTransferSrcAccessOrder
2, // BBlockTransferSrcVectorDim
16, // BBlockTransferSrcScalarPerVector
16, // BBlockTransferDstScalarPerVector_BK1
1, // BBlockLdsExtraN
1,
1,
S<1, 64, 1, 4>,
16>;
int main(int argc, char* argv[])
{
namespace ctc = ck::tensor_layout::convolution;
print_helper_msg();
bool do_verification = true;
int init_method = 1;
bool time_kernel = false;
// conventional group conv definition
// G = 2
// [N, C, Hi, Wi] = [128, 384, 71, 71]
// [K, C, Y, X] = [512, 192, 3, 3]
// [N, K, Ho, Wo] = [128, 512, 36, 36]
// CK group conv definition
// [G, N, C, Hi, Wi] = [2, 128, 192, 71, 71]
// [G, K, C, Y, X] = [2, 256, 192, 3, 3]
// [G, N, K, Ho, Wo] = [2, 128, 256, 36, 36]
ck::utils::conv::ConvParam conv_param{
2, 2, 128, 256, 192, {3, 3}, {71, 71}, {2, 2}, {1, 1}, {1, 1}, {1, 1}};
if(argc == 1)
{
// use default
}
else if(argc == 4)
{
do_verification = std::stoi(argv[1]);
init_method = std::stoi(argv[2]);
time_kernel = std::stoi(argv[3]);
}
else
{
do_verification = std::stoi(argv[1]);
init_method = std::stoi(argv[2]);
time_kernel = std::stoi(argv[3]);
const ck::index_t num_dim_spatial = std::stoi(argv[4]);
conv_param = ck::utils::conv::parse_conv_param(num_dim_spatial, 5, argv);
}
const auto in_element_op = InElementOp{};
const auto wei_element_op = WeiElementOp{};
const auto out_element_op = OutElementOp{};
if(conv_param.num_dim_spatial_ == 1)
{
using InLayout = ctc::G_NW_C;
using WeiLayout = ctc::G_K_X_C;
using BiasLayout = ctc::G_NW_K;
using ResidualLayout = ctc::G_NW_K;
using OutLayout = ctc::G_NW_K;
const auto in_g_n_c_wis_desc = HostTensorDescriptor(
{conv_param.G_, conv_param.N_, conv_param.C_, conv_param.input_spatial_lengths_[0]},
{
conv_param.C_, // g
conv_param.input_spatial_lengths_[0] * conv_param.G_ * conv_param.C_, // n
1, // c
conv_param.G_ * conv_param.C_ // wi
});
const auto wei_g_k_c_xs_desc = HostTensorDescriptor(
{conv_param.G_, conv_param.K_, conv_param.C_, conv_param.filter_spatial_lengths_[0]},
{
conv_param.K_ * conv_param.filter_spatial_lengths_[0] * conv_param.C_, // g
conv_param.filter_spatial_lengths_[0] * conv_param.C_, // k
1, // c
conv_param.C_ // x
});
const auto bias_g_n_k_wos_desc = HostTensorDescriptor(
{conv_param.G_, conv_param.N_, conv_param.K_, conv_param.output_spatial_lengths_[0]},
{
conv_param.K_, // g
0, // k
1, // c
0 // x
});
const auto residual_g_n_k_wos_desc = HostTensorDescriptor(
{conv_param.G_, conv_param.N_, conv_param.K_, conv_param.output_spatial_lengths_[0]},
{
conv_param.K_, // g
0, // k
1, // c
0 // x
});
const auto out_g_n_k_wos_desc = HostTensorDescriptor(
{conv_param.G_, conv_param.N_, conv_param.K_, conv_param.output_spatial_lengths_[0]},
{
conv_param.K_, // g
conv_param.output_spatial_lengths_[0] * conv_param.G_ * conv_param.K_, // n
1, // k
conv_param.G_ * conv_param.K_ // wo
});
return run_grouped_conv_fwd_bias_relu_add<1,
InDataType,
WeiDataType,
CShuffleDataType,
OutDataType,
InElementOp,
WeiElementOp,
OutElementOp,
DeviceGroupedConvNDFwdInstance<1,
InLayout,
WeiLayout,
BiasLayout,
ResidualLayout,
OutLayout>>(
do_verification,
init_method,
time_kernel,
conv_param,
in_g_n_c_wis_desc,
wei_g_k_c_xs_desc,
bias_g_n_k_wos_desc,
residual_g_n_k_wos_desc,
out_g_n_k_wos_desc,
in_element_op,
wei_element_op,
out_element_op);
}
else if(conv_param.num_dim_spatial_ == 2)
{
using InLayout = ctc::G_NHW_C;
using WeiLayout = ctc::G_K_YX_C;
using BiasLayout = ctc::G_NHW_K;
using ResidualLayout = ctc::G_NHW_K;
using OutLayout = ctc::G_NHW_K;
const auto in_g_n_c_wis_desc = HostTensorDescriptor(
{conv_param.G_,
conv_param.N_,
conv_param.C_,
conv_param.input_spatial_lengths_[0],
conv_param.input_spatial_lengths_[1]},
{
conv_param.C_, // g
conv_param.input_spatial_lengths_[0] * conv_param.input_spatial_lengths_[1] *
conv_param.G_ * conv_param.C_, // n
1, // c
conv_param.input_spatial_lengths_[1] * conv_param.G_ * conv_param.C_, // hi
conv_param.G_ * conv_param.C_ // wi
});
const auto wei_g_k_c_xs_desc =
HostTensorDescriptor({conv_param.G_,
conv_param.K_,
conv_param.C_,
conv_param.filter_spatial_lengths_[0],
conv_param.filter_spatial_lengths_[1]},
{
conv_param.K_ * conv_param.filter_spatial_lengths_[0] *
conv_param.filter_spatial_lengths_[1] * conv_param.C_, // g
conv_param.filter_spatial_lengths_[0] *
conv_param.filter_spatial_lengths_[1] * conv_param.C_, // k
1, // c
conv_param.filter_spatial_lengths_[1] * conv_param.C_, // y
conv_param.C_ // x
});
const auto bias_g_n_k_wos_desc =
HostTensorDescriptor({conv_param.G_,
conv_param.N_,
conv_param.K_,
conv_param.output_spatial_lengths_[0],
conv_param.output_spatial_lengths_[1]},
{
conv_param.K_, // g
0, // n
1, // k
0, // ho
0 // wo
});
const auto residual_g_n_k_wos_desc =
HostTensorDescriptor({conv_param.G_,
conv_param.N_,
conv_param.K_,
conv_param.output_spatial_lengths_[0],
conv_param.output_spatial_lengths_[1]},
{
conv_param.K_, // g
0, // n
1, // k
0, // ho
0 // wo
});
const auto out_g_n_k_wos_desc = HostTensorDescriptor(
{conv_param.G_,
conv_param.N_,
conv_param.K_,
conv_param.output_spatial_lengths_[0],
conv_param.output_spatial_lengths_[1]},
{
conv_param.K_, // g
conv_param.output_spatial_lengths_[0] * conv_param.output_spatial_lengths_[1] *
conv_param.G_ * conv_param.K_, // n
1, // k
conv_param.output_spatial_lengths_[1] * conv_param.G_ * conv_param.K_, // ho
conv_param.G_ * conv_param.K_ // wo
});
return run_grouped_conv_fwd_bias_relu_add<2,
InDataType,
WeiDataType,
CShuffleDataType,
OutDataType,
InElementOp,
WeiElementOp,
OutElementOp,
DeviceGroupedConvNDFwdInstance<2,
InLayout,
WeiLayout,
BiasLayout,
ResidualLayout,
OutLayout>>(
do_verification,
init_method,
time_kernel,
conv_param,
in_g_n_c_wis_desc,
wei_g_k_c_xs_desc,
bias_g_n_k_wos_desc,
residual_g_n_k_wos_desc,
out_g_n_k_wos_desc,
in_element_op,
wei_element_op,
out_element_op);
}
else if(conv_param.num_dim_spatial_ == 3)
{
using InLayout = ctc::G_NDHW_C;
using WeiLayout = ctc::G_K_ZYX_C;
using BiasLayout = ctc::G_NDHW_K;
using ResidualLayout = ctc::G_NDHW_K;
using OutLayout = ctc::G_NDHW_K;
const auto in_g_n_c_wis_desc = HostTensorDescriptor(
{conv_param.G_,
conv_param.N_,
conv_param.C_,
conv_param.input_spatial_lengths_[0],
conv_param.input_spatial_lengths_[1],
conv_param.input_spatial_lengths_[2]},
{
conv_param.C_, // g
conv_param.input_spatial_lengths_[0] * conv_param.input_spatial_lengths_[1] *
conv_param.input_spatial_lengths_[2] * conv_param.G_ * conv_param.C_, // n
1, // c
conv_param.input_spatial_lengths_[1] * conv_param.input_spatial_lengths_[2] *
conv_param.G_ * conv_param.C_, // di
conv_param.input_spatial_lengths_[2] * conv_param.G_ * conv_param.C_, // hi
conv_param.G_ * conv_param.C_ // wi
});
const auto wei_g_k_c_xs_desc = HostTensorDescriptor(
{conv_param.G_,
conv_param.K_,
conv_param.C_,
conv_param.filter_spatial_lengths_[0],
conv_param.filter_spatial_lengths_[1],
conv_param.filter_spatial_lengths_[2]},
{
conv_param.K_ * conv_param.filter_spatial_lengths_[0] *
conv_param.filter_spatial_lengths_[1] * conv_param.filter_spatial_lengths_[2] *
conv_param.C_, // g
conv_param.filter_spatial_lengths_[0] * conv_param.filter_spatial_lengths_[1] *
conv_param.filter_spatial_lengths_[2] * conv_param.C_, // k
1, // c
conv_param.filter_spatial_lengths_[1] * conv_param.filter_spatial_lengths_[2] *
conv_param.C_, // z
conv_param.filter_spatial_lengths_[2] * conv_param.C_, // y
conv_param.C_ // x
});
const auto bias_g_n_k_wos_desc =
HostTensorDescriptor({conv_param.G_,
conv_param.N_,
conv_param.K_,
conv_param.output_spatial_lengths_[0],
conv_param.output_spatial_lengths_[1],
conv_param.output_spatial_lengths_[2]},
{
conv_param.K_, // g
0, // n
1, // k
0, // z
0, // y
0 // x
});
const auto residual_g_n_k_wos_desc =
HostTensorDescriptor({conv_param.G_,
conv_param.N_,
conv_param.K_,
conv_param.output_spatial_lengths_[0],
conv_param.output_spatial_lengths_[1],
conv_param.output_spatial_lengths_[2]},
{
conv_param.K_, // g
0, // n
1, // k
0, // z
0, // y
0 // x
});
const auto out_g_n_k_wos_desc = HostTensorDescriptor(
{conv_param.G_,
conv_param.N_,
conv_param.K_,
conv_param.output_spatial_lengths_[0],
conv_param.output_spatial_lengths_[1],
conv_param.output_spatial_lengths_[2]},
{
conv_param.K_, // g
conv_param.output_spatial_lengths_[0] * conv_param.output_spatial_lengths_[1] *
conv_param.output_spatial_lengths_[2] * conv_param.G_ * conv_param.K_, // n
1, // k
conv_param.output_spatial_lengths_[1] * conv_param.output_spatial_lengths_[2] *
conv_param.G_ * conv_param.K_, // do
conv_param.output_spatial_lengths_[2] * conv_param.G_ * conv_param.K_, // ho
conv_param.G_ * conv_param.K_ // wo
});
return run_grouped_conv_fwd_bias_relu_add<3,
InDataType,
WeiDataType,
CShuffleDataType,
OutDataType,
InElementOp,
WeiElementOp,
OutElementOp,
DeviceGroupedConvNDFwdInstance<3,
InLayout,
WeiLayout,
BiasLayout,
ResidualLayout,
OutLayout>>(
do_verification,
init_method,
time_kernel,
conv_param,
in_g_n_c_wis_desc,
wei_g_k_c_xs_desc,
bias_g_n_k_wos_desc,
residual_g_n_k_wos_desc,
out_g_n_k_wos_desc,
in_element_op,
wei_element_op,
out_element_op);
}
return 0;
}
add_example_executable(example_batched_gemm_gemm_xdl_fp16 batched_gemm_gemm_xdl_fp16.cpp)
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2022, Advanced Micro Devices, Inc. All rights reserved.
/*
Gemm + Gemm fused operation. Computes C_m_o = A_m_k * B0_k_n * B1_n_o
|------------|
Gemm0
|---------------------|
Gemm1
*/
#include <iostream>
#include <numeric>
#include <initializer_list>
#include <cstdlib>
#include "ck/ck.hpp"
#include "ck/tensor_operation/gpu/device/gemm_specialization.hpp"
#include "ck/tensor_operation/gpu/device/device_batched_gemm_gemm_xdl_cshuffle.hpp"
#include "ck/tensor_operation/gpu/element/element_wise_operation.hpp"
#include "ck/library/utility/check_err.hpp"
#include "ck/library/utility/device_memory.hpp"
#include "ck/library/utility/host_tensor.hpp"
#include "ck/library/utility/host_tensor_generator.hpp"
#include "ck/library/reference_tensor_operation/cpu/reference_batched_gemm.hpp"
template <ck::index_t... Is>
using S = ck::Sequence<Is...>;
using F16 = ck::half_t;
using F32 = float;
using Row = ck::tensor_layout::gemm::RowMajor;
using Col = ck::tensor_layout::gemm::ColumnMajor;
using PassThrough = ck::tensor_operation::element_wise::PassThrough;
using ADataType = F16;
using B0DataType = F16;
using B1DataType = F16;
using AccDataType = F32;
using CShuffleDataType = F32;
using CDataType = F16;
using ALayout = Row;
using B0Layout = Col;
using B1Layout = Row;
using CLayout = Row;
using AElementOp = PassThrough;
using B0ElementOp = PassThrough;
using Acc0ElementOp = PassThrough;
using B1ElementOp = PassThrough;
using CElementOp = PassThrough;
static constexpr auto GemmDefault = ck::tensor_operation::device::GemmSpecialization::Default;
using DeviceGemmInstance = ck::tensor_operation::device::DeviceBatchedGemmGemm_Xdl_CShuffle<
ALayout,
B0Layout,
B1Layout,
CLayout,
ADataType,
B0DataType,
B1DataType,
CDataType,
AccDataType,
CShuffleDataType,
AElementOp,
B0ElementOp,
Acc0ElementOp,
B1ElementOp,
CElementOp,
GemmDefault,
1,
256,
128, // MPerBlock
128, // NPerBlock
32, // KPerBlock
128, // Gemm1NPerBlock
32, // Gemm1KPerBlock
8, // AK1
8, // BK1
2, // B1K1
32, // MPerXDL
32, // NPerXDL
1, // MXdlPerWave
4, // NXdlPerWave
4, // Gemm1NXdlPerWave
S<4, 64, 1>, // ABlockTransfer
S<1, 0, 2>,
S<1, 0, 2>,
2,
8,
8,
true,
S<4, 64, 1>, // BBlockTransfer
S<1, 0, 2>,
S<1, 0, 2>,
2,
8,
8,
true,
S<8, 32, 1>, // B1BlockTransfer
S<0, 2, 1>,
S<0, 2, 1>,
1,
4,
2,
false,
1, // CShuffleMXdlPerWavePerShuffle
2, // CShuffleNXdlPerWavePerShuffle
S<1, 32, 1, 8>, // CShuffleBlockTransferClusterLengths_MBlock_MPerBlock_NBlock_NPerBlock
8>; // CShuffleBlockTransferScalarPerVector_NPerBlock
using ReferenceGemm0Instance = ck::tensor_operation::host::ReferenceBatchedGemm<ADataType,
B0DataType,
ADataType,
AccDataType,
AElementOp,
B0ElementOp,
CElementOp>;
using ReferenceGemm1Instance = ck::tensor_operation::host::ReferenceBatchedGemm<ADataType,
B1DataType,
CDataType,
AccDataType,
AElementOp,
B1ElementOp,
CElementOp>;
int main(int argc, char* argv[])
{
bool do_verification = true;
int init_method = 1;
bool time_kernel = false;
// GEMM shape
ck::index_t M = 1024;
ck::index_t N = 1024;
ck::index_t K = 64;
ck::index_t O = 128;
ck::index_t BatchCount = 4;
ck::index_t StrideA = -1;
ck::index_t StrideB0 = -1;
ck::index_t StrideB1 = -1;
ck::index_t StrideC = -1;
ck::index_t BatchStrideA = -1;
ck::index_t BatchStrideB0 = -1;
ck::index_t BatchStrideB1 = -1;
ck::index_t BatchStrideC = -1;
if(argc == 1)
{
// use default case
}
else if(argc == 4)
{
do_verification = std::stoi(argv[1]);
init_method = std::stoi(argv[2]);
time_kernel = std::stoi(argv[3]);
}
else if(argc == 9)
{
do_verification = std::stoi(argv[1]);
init_method = std::stoi(argv[2]);
time_kernel = std::stoi(argv[3]);
M = std::stoi(argv[4]);
N = std::stoi(argv[5]);
K = std::stoi(argv[6]);
O = std::stoi(argv[7]);
BatchCount = std::stoi(argv[8]);
}
else if(argc == 17)
{
do_verification = std::stoi(argv[1]);
init_method = std::stoi(argv[2]);
time_kernel = std::stoi(argv[3]);
M = std::stoi(argv[4]);
N = std::stoi(argv[5]);
K = std::stoi(argv[6]);
O = std::stoi(argv[7]);
BatchCount = std::stoi(argv[8]);
StrideA = std::stoi(argv[9]);
StrideB0 = std::stoi(argv[10]);
StrideB1 = std::stoi(argv[11]);
StrideC = std::stoi(argv[12]);
BatchStrideA = std::stoi(argv[13]);
BatchStrideB0 = std::stoi(argv[14]);
BatchStrideB1 = std::stoi(argv[15]);
BatchStrideC = std::stoi(argv[16]);
}
else
{
printf("arg1: verification (0=no, 1=yes)\n");
printf("arg2: initialization (0=no init, 1=integer value, 2=decimal value)\n");
printf("arg3: time kernel (0=no, 1=yes)\n");
printf("arg4 to 17: M, N, K, O, Batch, StrideA, StrideB0, StrideB1, StrideC, BatchStrideA, "
"BatchStrideB0, BatchStrideB1, BatchStrideC\n");
exit(0);
}
const int DefaultStrideA = ck::is_same_v<ALayout, Row> ? K : M;
const int DefaultStrideB0 = ck::is_same_v<B0Layout, Row> ? N : K;
const int DefaultStrideB1 = ck::is_same_v<B1Layout, Row> ? O : N;
const int DefaultStrideC = ck::is_same_v<CLayout, Row> ? O : M;
StrideA = (StrideA < 0) ? DefaultStrideA : StrideA;
StrideB0 = (StrideB0 < 0) ? DefaultStrideB0 : StrideB0;
StrideB1 = (StrideB1 < 0) ? DefaultStrideB1 : StrideB1;
StrideC = (StrideC < 0) ? DefaultStrideC : StrideC;
const int DefaultBatchStrideA = (ck::is_same_v<ALayout, Col> ? K : M) * StrideA;
const int DefaultBatchStrideB0 = (ck::is_same_v<B0Layout, Col> ? N : K) * StrideB0;
const int DefaultBatchStrideB1 = (ck::is_same_v<B1Layout, Col> ? O : N) * StrideB1;
const int DefaultBatchStrideC = (ck::is_same_v<CLayout, Col> ? O : M) * StrideC;
BatchStrideA = BatchStrideA < 0 ? DefaultBatchStrideA : BatchStrideA;
BatchStrideB0 = BatchStrideB0 < 0 ? DefaultBatchStrideB0 : BatchStrideB0;
BatchStrideB1 = BatchStrideB1 < 0 ? DefaultBatchStrideB1 : BatchStrideB1;
BatchStrideC = BatchStrideC < 0 ? DefaultBatchStrideC : BatchStrideC;
auto f_host_tensor_descriptor = [](std::size_t batch_count,
std::size_t row,
std::size_t col,
std::size_t stride,
std::size_t batch_stride,
auto layout) {
if(std::is_same<decltype(layout), Row>::value)
{
return HostTensorDescriptor(std::vector<std::size_t>({batch_count, row, col}),
std::vector<std::size_t>({batch_stride, stride, 1}));
}
else
{
return HostTensorDescriptor(std::vector<std::size_t>({batch_count, row, col}),
std::vector<std::size_t>({batch_stride, 1, stride}));
}
};
// C_m_o = A_m_k * B0_k_n * B1_n_o
Tensor<ADataType> a_g_m_k(
f_host_tensor_descriptor(BatchCount, M, K, StrideA, BatchStrideA, ALayout{}));
Tensor<B0DataType> b0_g_k_n(
f_host_tensor_descriptor(BatchCount, K, N, StrideB0, BatchStrideB0, B0Layout{}));
Tensor<B1DataType> b1_g_n_o(
f_host_tensor_descriptor(BatchCount, N, O, StrideB1, BatchStrideB1, B1Layout{}));
Tensor<CDataType> c_g_m_o_host_result(
f_host_tensor_descriptor(BatchCount, M, O, StrideC, BatchStrideC, CLayout{}));
Tensor<CDataType> c_g_m_o_device_result(
f_host_tensor_descriptor(BatchCount, M, O, StrideC, BatchStrideC, CLayout{}));
std::cout << "a_g_m_k: " << a_g_m_k.mDesc << std::endl;
std::cout << "b0_g_k_n: " << b0_g_k_n.mDesc << std::endl;
std::cout << "b1_g_n_o: " << b1_g_n_o.mDesc << std::endl;
std::cout << "c_g_m_o: " << c_g_m_o_host_result.mDesc << std::endl;
switch(init_method)
{
case 0: break;
case 1:
a_g_m_k.GenerateTensorValue(GeneratorTensor_2<ADataType>{-5, 5});
b0_g_k_n.GenerateTensorValue(GeneratorTensor_2<B0DataType>{-5, 5});
b1_g_n_o.GenerateTensorValue(GeneratorTensor_2<B1DataType>{-5, 5});
break;
case 2:
a_g_m_k.GenerateTensorValue(GeneratorTensor_3<ADataType>{0.0, 1.0});
b0_g_k_n.GenerateTensorValue(GeneratorTensor_3<B0DataType>{0.0, 1.0});
b1_g_n_o.GenerateTensorValue(GeneratorTensor_3<B1DataType>{-0.5, 0.5});
break;
default:
a_g_m_k.GenerateTensorValue(GeneratorTensor_1<ADataType>{1});
b0_g_k_n.GenerateTensorValue(GeneratorTensor_Sequential<1>{});
b1_g_n_o.GenerateTensorValue(GeneratorTensor_Diagonal<B1DataType>{});
}
DeviceMem a_g_m_k_device_buf(sizeof(ADataType) * a_g_m_k.mDesc.GetElementSize());
DeviceMem b0_g_k_n_device_buf(sizeof(B0DataType) * b0_g_k_n.mDesc.GetElementSize());
DeviceMem b1_g_n_o_device_buf(sizeof(B1DataType) * b1_g_n_o.mDesc.GetElementSize());
DeviceMem c_g_m_o_device_buf(sizeof(CDataType) * c_g_m_o_device_result.mDesc.GetElementSize());
a_g_m_k_device_buf.ToDevice(a_g_m_k.mData.data());
b0_g_k_n_device_buf.ToDevice(b0_g_k_n.mData.data());
b1_g_n_o_device_buf.ToDevice(b1_g_n_o.mData.data());
auto a_element_op = AElementOp{};
auto b0_element_op = B0ElementOp{};
auto acc0_element_op = Acc0ElementOp{};
auto b1_element_op = B1ElementOp{};
auto c_element_op = CElementOp{};
// do GEMM
auto gemm = DeviceGemmInstance{};
auto invoker = gemm.MakeInvoker();
auto argument =
gemm.MakeArgument(static_cast<ADataType*>(a_g_m_k_device_buf.GetDeviceBuffer()),
static_cast<B0DataType*>(b0_g_k_n_device_buf.GetDeviceBuffer()),
static_cast<B1DataType*>(b1_g_n_o_device_buf.GetDeviceBuffer()),
static_cast<CDataType*>(c_g_m_o_device_buf.GetDeviceBuffer()),
M,
N,
K,
O,
BatchCount,
StrideA,
StrideB0,
StrideB1,
StrideC,
BatchStrideA,
BatchStrideB0,
BatchStrideB1,
BatchStrideC,
a_element_op,
b0_element_op,
acc0_element_op,
b1_element_op,
c_element_op);
if(!gemm.IsSupportedArgument(argument))
{
std::cout << gemm.GetTypeString() << " does not support this problem" << std::endl;
return 0;
}
float ave_time = invoker.Run(argument, StreamConfig{nullptr, time_kernel});
std::size_t flop = (size_t(M) * N * K * 2 + size_t(M) * N * O * 2) * BatchCount;
std::size_t num_btype = (sizeof(ADataType) * M * K + sizeof(B0DataType) * K * N +
sizeof(B1DataType) * N * O + sizeof(CDataType) * M * O) *
BatchCount;
float tflops = static_cast<float>(flop) / 1.E9 / ave_time;
float gb_per_sec = num_btype / 1.E6 / ave_time;
std::cout << "Perf: " << ave_time << " ms, " << tflops << " TFlops, " << gb_per_sec << " GB/s, "
<< gemm.GetTypeString() << std::endl;
c_g_m_o_device_buf.FromDevice(c_g_m_o_device_result.mData.data());
if(do_verification)
{
// Output of Gemm0 is input A of Gemm1
Tensor<ADataType> a1_g_m_n(f_host_tensor_descriptor(BatchCount, M, N, N, M * N, Row{}));
auto ref_gemm0 = ReferenceGemm0Instance{};
auto ref_gemm0_invoker = ref_gemm0.MakeInvoker();
auto ref_gemm0_argument = ref_gemm0.MakeArgument(
a_g_m_k, b0_g_k_n, a1_g_m_n, a_element_op, b0_element_op, PassThrough{});
ref_gemm0_invoker.Run(ref_gemm0_argument);
auto ref_gemm1 = ReferenceGemm1Instance{};
auto ref_gemm1_invoker = ref_gemm1.MakeInvoker();
auto ref_gemm1_argument = ref_gemm1.MakeArgument(
a1_g_m_n, b1_g_n_o, c_g_m_o_host_result, PassThrough{}, b1_element_op, c_element_op);
ref_gemm1_invoker.Run(ref_gemm1_argument);
return ck::utils::check_err(c_g_m_o_device_result.mData, c_g_m_o_host_result.mData) ? 0 : 1;
}
return 0;
}
# TODO: add example batched_gemm_gemm_xdl_fp16
add_example_executable(example_batched_gemm_softmax_gemm_xdl_fp16 batched_gemm_softmax_gemm_xdl_fp16.cpp)
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2022, Advanced Micro Devices, Inc. All rights reserved.
/*
Gemm + Gemm fused operation. Computes C_m_o = A_m_k * B0_k_n * B1_n_o
|------------|
Gemm0
|---------------------|
Gemm1
*/
#include <iostream>
#include <numeric>
#include <initializer_list>
#include <cstdlib>
#include "ck/ck.hpp"
#include "ck/tensor_operation/gpu/device/gemm_specialization.hpp"
#include "ck/tensor_operation/gpu/device/device_batched_gemm_softmax_gemm_xdl_cshuffle.hpp"
#include "ck/tensor_operation/gpu/element/element_wise_operation.hpp"
#include "ck/library/utility/check_err.hpp"
#include "ck/library/utility/device_memory.hpp"
#include "ck/library/utility/host_tensor.hpp"
#include "ck/library/utility/host_tensor_generator.hpp"
#include "ck/library/reference_tensor_operation/cpu/reference_batched_gemm.hpp"
#include "ck/library/reference_tensor_operation/cpu/reference_softmax.hpp"
template <ck::index_t... Is>
using S = ck::Sequence<Is...>;
using F16 = ck::half_t;
using F32 = float;
using Row = ck::tensor_layout::gemm::RowMajor;
using Col = ck::tensor_layout::gemm::ColumnMajor;
using PassThrough = ck::tensor_operation::element_wise::PassThrough;
using ADataType = F16;
using B0DataType = F16;
using B1DataType = F16;
using AccDataType = F32;
using CShuffleDataType = F32;
using CDataType = F16;
using ALayout = Row;
using B0Layout = Col;
using B1Layout = Row;
using CLayout = Row;
using AElementOp = PassThrough;
using B0ElementOp = PassThrough;
using Acc0ElementOp = PassThrough;
using B1ElementOp = PassThrough;
using CElementOp = PassThrough;
static constexpr auto GemmDefault = ck::tensor_operation::device::GemmSpecialization::Default;
using DeviceGemmInstance = ck::tensor_operation::device::DeviceBatchedGemmSoftmaxGemm_Xdl_CShuffle<
ALayout,
B0Layout,
B1Layout,
CLayout,
ADataType,
B0DataType,
B1DataType,
CDataType,
AccDataType,
CShuffleDataType,
AElementOp,
B0ElementOp,
Acc0ElementOp,
B1ElementOp,
CElementOp,
GemmDefault,
1,
256,
128, // MPerBlock
128, // NPerBlock
32, // KPerBlock
64, // Gemm1NPerBlock
32, // Gemm1KPerBlock
8, // AK1
8, // BK1
2, // B1K1
32, // MPerXDL
32, // NPerXDL
1, // MXdlPerWave
4, // NXdlPerWave
2, // Gemm1NXdlPerWave
S<4, 64, 1>, // ABlockTransfer
S<1, 0, 2>,
S<1, 0, 2>,
2,
8,
8,
true,
S<4, 64, 1>, // BBlockTransfer
S<1, 0, 2>,
S<1, 0, 2>,
2,
8,
8,
true,
S<16, 16, 1>, // B1BlockTransfer
S<0, 2, 1>,
S<0, 2, 1>,
1,
4,
2,
false,
1, // CShuffleMXdlPerWavePerShuffle
2, // CShuffleNXdlPerWavePerShuffle
S<1, 32, 1, 8>, // CShuffleBlockTransferClusterLengths_MBlock_MPerBlock_NBlock_NPerBlock
8>; // CShuffleBlockTransferScalarPerVector_NPerBlock
// Ref Gemm0: fp16 in, fp32 out
using ReferenceGemm0Instance = ck::tensor_operation::host::ReferenceBatchedGemm<ADataType,
B0DataType,
AccDataType,
AccDataType,
AElementOp,
B0ElementOp,
CElementOp>;
// Ref Softmax: fp32 in, fp16 out
using ReferenceSoftmaxInstance =
ck::tensor_operation::host::ReferenceSoftmax<AccDataType, ADataType, AccDataType>;
// Ref Gemm1: fp16 in, fp16 out
using ReferenceGemm1Instance = ck::tensor_operation::host::ReferenceBatchedGemm<ADataType,
B1DataType,
CDataType,
AccDataType,
AElementOp,
B1ElementOp,
CElementOp>;
int main(int argc, char* argv[])
{
bool do_verification = true;
int init_method = 1;
bool time_kernel = false;
// GEMM shape
ck::index_t M = 1024;
ck::index_t N = 1024;
ck::index_t K = 64;
ck::index_t O = 128;
ck::index_t BatchCount = 4;
ck::index_t StrideA = -1;
ck::index_t StrideB0 = -1;
ck::index_t StrideB1 = -1;
ck::index_t StrideC = -1;
ck::index_t BatchStrideA = -1;
ck::index_t BatchStrideB0 = -1;
ck::index_t BatchStrideB1 = -1;
ck::index_t BatchStrideC = -1;
if(argc == 1)
{
// use default case
}
else if(argc == 4)
{
do_verification = std::stoi(argv[1]);
init_method = std::stoi(argv[2]);
time_kernel = std::stoi(argv[3]);
}
else if(argc == 9)
{
do_verification = std::stoi(argv[1]);
init_method = std::stoi(argv[2]);
time_kernel = std::stoi(argv[3]);
M = std::stoi(argv[4]);
N = std::stoi(argv[5]);
K = std::stoi(argv[6]);
O = std::stoi(argv[7]);
BatchCount = std::stoi(argv[8]);
}
else if(argc == 17)
{
do_verification = std::stoi(argv[1]);
init_method = std::stoi(argv[2]);
time_kernel = std::stoi(argv[3]);
M = std::stoi(argv[4]);
N = std::stoi(argv[5]);
K = std::stoi(argv[6]);
O = std::stoi(argv[7]);
BatchCount = std::stoi(argv[8]);
StrideA = std::stoi(argv[9]);
StrideB0 = std::stoi(argv[10]);
StrideB1 = std::stoi(argv[11]);
StrideC = std::stoi(argv[12]);
BatchStrideA = std::stoi(argv[13]);
BatchStrideB0 = std::stoi(argv[14]);
BatchStrideB1 = std::stoi(argv[15]);
BatchStrideC = std::stoi(argv[16]);
}
else
{
printf("arg1: verification (0=no, 1=yes)\n");
printf("arg2: initialization (0=no init, 1=integer value, 2=decimal value)\n");
printf("arg3: time kernel (0=no, 1=yes)\n");
printf("arg4 to 17: M, N, K, O, Batch, StrideA, StrideB0, StrideB1, StrideC, BatchStrideA, "
"BatchStrideB0, BatchStrideB1, BatchStrideC\n");
exit(0);
}
const int DefaultStrideA = ck::is_same_v<ALayout, Row> ? K : M;
const int DefaultStrideB0 = ck::is_same_v<B0Layout, Row> ? N : K;
const int DefaultStrideB1 = ck::is_same_v<B1Layout, Row> ? O : N;
const int DefaultStrideC = ck::is_same_v<CLayout, Row> ? O : M;
StrideA = (StrideA < 0) ? DefaultStrideA : StrideA;
StrideB0 = (StrideB0 < 0) ? DefaultStrideB0 : StrideB0;
StrideB1 = (StrideB1 < 0) ? DefaultStrideB1 : StrideB1;
StrideC = (StrideC < 0) ? DefaultStrideC : StrideC;
const int DefaultBatchStrideA = (ck::is_same_v<ALayout, Col> ? K : M) * StrideA;
const int DefaultBatchStrideB0 = (ck::is_same_v<B0Layout, Col> ? N : K) * StrideB0;
const int DefaultBatchStrideB1 = (ck::is_same_v<B1Layout, Col> ? O : N) * StrideB1;
const int DefaultBatchStrideC = (ck::is_same_v<CLayout, Col> ? O : M) * StrideC;
BatchStrideA = BatchStrideA < 0 ? DefaultBatchStrideA : BatchStrideA;
BatchStrideB0 = BatchStrideB0 < 0 ? DefaultBatchStrideB0 : BatchStrideB0;
BatchStrideB1 = BatchStrideB1 < 0 ? DefaultBatchStrideB1 : BatchStrideB1;
BatchStrideC = BatchStrideC < 0 ? DefaultBatchStrideC : BatchStrideC;
auto f_host_tensor_descriptor = [](std::size_t batch_count,
std::size_t row,
std::size_t col,
std::size_t stride,
std::size_t batch_stride,
auto layout) {
if(std::is_same<decltype(layout), Row>::value)
{
return HostTensorDescriptor(std::vector<std::size_t>({batch_count, row, col}),
std::vector<std::size_t>({batch_stride, stride, 1}));
}
else
{
return HostTensorDescriptor(std::vector<std::size_t>({batch_count, row, col}),
std::vector<std::size_t>({batch_stride, 1, stride}));
}
};
// C_m_o = A_m_k * B0_k_n * B1_n_o
Tensor<ADataType> a_g_m_k(
f_host_tensor_descriptor(BatchCount, M, K, StrideA, BatchStrideA, ALayout{}));
Tensor<B0DataType> b0_g_k_n(
f_host_tensor_descriptor(BatchCount, K, N, StrideB0, BatchStrideB0, B0Layout{}));
Tensor<B1DataType> b1_g_n_o(
f_host_tensor_descriptor(BatchCount, N, O, StrideB1, BatchStrideB1, B1Layout{}));
Tensor<CDataType> c_g_m_o_host_result(
f_host_tensor_descriptor(BatchCount, M, O, StrideC, BatchStrideC, CLayout{}));
Tensor<CDataType> c_g_m_o_device_result(
f_host_tensor_descriptor(BatchCount, M, O, StrideC, BatchStrideC, CLayout{}));
std::cout << "a_g_m_k: " << a_g_m_k.mDesc << std::endl;
std::cout << "b0_g_k_n: " << b0_g_k_n.mDesc << std::endl;
std::cout << "b1_g_n_o: " << b1_g_n_o.mDesc << std::endl;
std::cout << "c_g_m_o: " << c_g_m_o_host_result.mDesc << std::endl;
switch(init_method)
{
case 0: break;
case 1:
a_g_m_k.GenerateTensorValue(GeneratorTensor_2<ADataType>{-5, 5});
b0_g_k_n.GenerateTensorValue(GeneratorTensor_2<B0DataType>{-5, 5});
b1_g_n_o.GenerateTensorValue(GeneratorTensor_2<B1DataType>{-5, 5});
break;
case 2:
a_g_m_k.GenerateTensorValue(GeneratorTensor_3<ADataType>{0.0, 1.0});
b0_g_k_n.GenerateTensorValue(GeneratorTensor_3<B0DataType>{0.0, 1.0});
b1_g_n_o.GenerateTensorValue(GeneratorTensor_3<B1DataType>{-0.5, 0.5});
break;
case 3:
a_g_m_k.GenerateTensorValue(GeneratorTensor_2<ADataType>{-2, 2});
b0_g_k_n.GenerateTensorValue(GeneratorTensor_Diagonal<B0DataType>{});
b1_g_n_o.GenerateTensorValue(GeneratorTensor_Diagonal<B1DataType>{});
break;
default:
a_g_m_k.GenerateTensorValue(GeneratorTensor_1<ADataType>{1});
b0_g_k_n.GenerateTensorValue(GeneratorTensor_Sequential<1>{});
b1_g_n_o.GenerateTensorValue(GeneratorTensor_Diagonal<B1DataType>{});
}
DeviceMem a_g_m_k_device_buf(sizeof(ADataType) * a_g_m_k.mDesc.GetElementSize());
DeviceMem b0_g_k_n_device_buf(sizeof(B0DataType) * b0_g_k_n.mDesc.GetElementSize());
DeviceMem b1_g_n_o_device_buf(sizeof(B1DataType) * b1_g_n_o.mDesc.GetElementSize());
DeviceMem c_g_m_o_device_buf(sizeof(CDataType) * c_g_m_o_device_result.mDesc.GetElementSize());
a_g_m_k_device_buf.ToDevice(a_g_m_k.mData.data());
b0_g_k_n_device_buf.ToDevice(b0_g_k_n.mData.data());
b1_g_n_o_device_buf.ToDevice(b1_g_n_o.mData.data());
auto a_element_op = AElementOp{};
auto b0_element_op = B0ElementOp{};
auto acc0_element_op = Acc0ElementOp{};
auto b1_element_op = B1ElementOp{};
auto c_element_op = CElementOp{};
// do GEMM
auto gemm = DeviceGemmInstance{};
auto invoker = gemm.MakeInvoker();
auto argument =
gemm.MakeArgument(static_cast<ADataType*>(a_g_m_k_device_buf.GetDeviceBuffer()),
static_cast<B0DataType*>(b0_g_k_n_device_buf.GetDeviceBuffer()),
static_cast<B1DataType*>(b1_g_n_o_device_buf.GetDeviceBuffer()),
static_cast<CDataType*>(c_g_m_o_device_buf.GetDeviceBuffer()),
M,
N,
K,
O,
BatchCount,
StrideA,
StrideB0,
StrideB1,
StrideC,
BatchStrideA,
BatchStrideB0,
BatchStrideB1,
BatchStrideC,
a_element_op,
b0_element_op,
acc0_element_op,
b1_element_op,
c_element_op);
if(!gemm.IsSupportedArgument(argument))
{
std::cout << gemm.GetTypeString() << " does not support this problem" << std::endl;
return 0;
}
float ave_time = invoker.Run(argument, StreamConfig{nullptr, time_kernel});
std::size_t flop = (size_t(M) * N * K * 2 + size_t(M) * N * O * 2) * BatchCount;
std::size_t num_btype = (sizeof(ADataType) * M * K + sizeof(B0DataType) * K * N +
sizeof(B1DataType) * N * O + sizeof(CDataType) * M * O) *
BatchCount;
float tflops = static_cast<float>(flop) / 1.E9 / ave_time;
float gb_per_sec = num_btype / 1.E6 / ave_time;
std::cout << "Perf: " << ave_time << " ms, " << tflops << " TFlops, " << gb_per_sec << " GB/s, "
<< gemm.GetTypeString() << std::endl;
c_g_m_o_device_buf.FromDevice(c_g_m_o_device_result.mData.data());
if(do_verification)
{
// Output of Gemm0 is input A of Gemm1
Tensor<AccDataType> acc0_g_m_n(f_host_tensor_descriptor(BatchCount, M, N, N, M * N, Row{}));
Tensor<ADataType> a1_g_m_n(f_host_tensor_descriptor(BatchCount, M, N, N, M * N, Row{}));
auto ref_gemm0 = ReferenceGemm0Instance{};
auto ref_gemm0_invoker = ref_gemm0.MakeInvoker();
auto ref_gemm0_argument = ref_gemm0.MakeArgument(
a_g_m_k, b0_g_k_n, acc0_g_m_n, a_element_op, b0_element_op, PassThrough{});
ref_gemm0_invoker.Run(ref_gemm0_argument);
auto ref_softmax = ReferenceSoftmaxInstance{};
auto ref_softmax_invoker = ref_softmax.MakeInvoker();
auto ref_softmax_argument = ref_softmax.MakeArgument(acc0_g_m_n, a1_g_m_n, 1, 0, {2});
ref_softmax_invoker.Run(ref_softmax_argument);
auto ref_gemm1 = ReferenceGemm1Instance{};
auto ref_gemm1_invoker = ref_gemm1.MakeInvoker();
auto ref_gemm1_argument = ref_gemm1.MakeArgument(
a1_g_m_n, b1_g_n_o, c_g_m_o_host_result, PassThrough{}, b1_element_op, c_element_op);
ref_gemm1_invoker.Run(ref_gemm1_argument);
return ck::utils::check_err(c_g_m_o_device_result.mData, c_g_m_o_host_result.mData) ? 0 : 1;
}
return 0;
}
......@@ -8,7 +8,7 @@ add_custom_target(examples)
function(add_example_executable EXAMPLE_NAME FILE_NAME)
message("adding example ${EXAMPLE_NAME}")
add_executable(${EXAMPLE_NAME} ${FILE_NAME})
target_link_libraries(${EXAMPLE_NAME} PRIVATE host_tensor)
target_link_libraries(${EXAMPLE_NAME} PRIVATE utility)
add_test(NAME ${EXAMPLE_NAME} COMMAND $<TARGET_FILE:${EXAMPLE_NAME}> ${ARGN})
add_dependencies(examples ${EXAMPLE_NAME})
add_dependencies(check ${EXAMPLE_NAME})
......@@ -17,28 +17,33 @@ endfunction(add_example_executable EXAMPLE_NAME)
function(add_example_executable_no_testing EXAMPLE_NAME FILE_NAME)
message("adding example ${EXAMPLE_NAME}")
add_executable(${EXAMPLE_NAME} ${FILE_NAME})
target_link_libraries(${EXAMPLE_NAME} PRIVATE host_tensor)
target_link_libraries(${EXAMPLE_NAME} PRIVATE utility)
add_dependencies(examples ${EXAMPLE_NAME})
endfunction(add_example_executable_no_testing EXAMPLE_NAME)
add_subdirectory(01_gemm)
add_subdirectory(02_gemm_alpha_beta)
add_subdirectory(02_gemm_bilinear)
add_subdirectory(03_gemm_bias_relu)
add_subdirectory(04_gemm_add_add_fastgelu)
add_subdirectory(06_conv2d_fwd_bias_relu)
add_subdirectory(07_conv2d_fwd_bias_relu_add)
add_subdirectory(09_convnd_fwd)
add_subdirectory(10_conv2d_bwd_data)
add_subdirectory(11_conv2d_bwd_weight)
add_subdirectory(12_reduce)
add_subdirectory(13_pool2d_fwd)
add_subdirectory(14_gemm_xdl_requant_relu_requant)
add_subdirectory(15_grouped_gemm)
add_subdirectory(16_gemm_reduce)
add_subdirectory(17_convnd_bwd_data_xdl)
add_subdirectory(16_gemm_multi_d_multi_reduces)
add_subdirectory(17_convnd_bwd_data)
add_subdirectory(18_batched_gemm_reduce)
add_subdirectory(19_binary_elementwise)
add_subdirectory(20_convnd_bwd_weight_xdl)
add_subdirectory(20_convnd_bwd_weight)
add_subdirectory(21_gemm_layernorm)
add_subdirectory(22_cgemm)
add_subdirectory(23_softmax)
add_subdirectory(24_batched_gemm_e_permute)
add_subdirectory(25_gemm_bias_e_permute)
add_subdirectory(26_contraction)
add_subdirectory(27_layernorm)
add_subdirectory(28_grouped_gemm_bias_e_permute)
add_subdirectory(29_batched_gemm_bias_e_permute)
add_subdirectory(30_grouped_convnd_fwd_bias_relu_add)
add_subdirectory(31_batched_gemm_gemm)
add_subdirectory(32_batched_gemm_softmax_gemm)
......@@ -104,7 +104,12 @@
#define CK_EXPERIMENTAL_STATIC_TENSOR_DESCRIPTOR 0
// experimental feature: buffer load/store/atomic-add/ OOB trick
// This (ifndef) is a hack to use customized behavior for buffer load rather than using default
// setting. Don't use this hack unless absolutely necessary!
// FIXME: make the behavior of buffer load a configurable (template) parameter for each usage
#ifndef CK_EXPERIMENTAL_USE_BUFFER_LOAD_OOB_CHECK_OFFSET_TRICK
#define CK_EXPERIMENTAL_USE_BUFFER_LOAD_OOB_CHECK_OFFSET_TRICK 0
#endif
#define CK_EXPERIMENTAL_USE_BUFFER_STORE_OOB_CHECK_OFFSET_TRICK 1
#define CK_EXPERIMENTAL_USE_BUFFER_ATOMIC_ADD_OOB_CHECK_OFFSET_TRICK 1
#define CK_EXPERIMENTAL_USE_BUFFER_ATOMIC_MAX_OOB_CHECK_OFFSET_TRICK 1
......@@ -143,7 +148,7 @@
// workaround: verifaction failure, due to compiler regression, for conv bwd-data fp16 using some
// tuning parameter
#define CK_WORKAROUND_SWDEV_325164 1
#define CK_WORKAROUND_SWDEV_325164 0
namespace ck {
......@@ -169,16 +174,6 @@ struct InMemoryDataOperationEnumSequence
}
};
#if 0
// TODO: no longer needed, remove this
enum struct ActivTypeEnum
{
None,
LeakyRelu,
Sigmoid
};
#endif
// index type
using index_t = int32_t;
using long_index_t = int64_t;
......
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2022, Advanced Micro Devices, Inc. All rights reserved.
#pragma once
#include <cstdlib>
#include <iostream>
#include <vector>
#include <iterator>
#include "ck/tensor_description/tensor_descriptor.hpp"
template <typename T>
std::ostream& operator<<(std::ostream& os, const std::vector<T>& v)
{
std::copy(std::begin(v), std::end(v), std::ostream_iterator<T>(os, " "));
return os;
}
template <typename T, std::size_t N>
std::ostream& operator<<(std::ostream& os, const std::array<T, N>& v)
{
std::copy(std::begin(v), std::end(v), std::ostream_iterator<T>(os, " "));
return os;
}
template <typename... Ts>
std::ostream& operator<<(std::ostream& os, const ck::TensorDescriptor<Ts...>& desc)
{
constexpr ck::index_t nDim = ck::remove_cvref_t<decltype(desc)>::GetNumOfDimension();
os << "{";
ck::static_for<0, nDim - 1, 1>{}([&](auto i) { os << desc.GetLength(i) << ", "; });
os << desc.GetLength(ck::Number<nDim - 1>{});
os << "}";
return os;
}
......@@ -7,7 +7,7 @@
#include "ck/ck.hpp"
#include "ck/stream_config.hpp"
#include "ck/device_utility/hip_check_error.hpp"
#include "ck/host_utility/hip_check_error.hpp"
template <typename... Args, typename F>
float launch_and_time_kernel(const StreamConfig& stream_config,
......
......@@ -4,6 +4,7 @@
#pragma once
#include "ck/utility/common_header.hpp"
#include "ck/utility/sequence_helper.hpp"
#include "ck/tensor_description/multi_index_transform.hpp"
namespace ck {
......@@ -159,6 +160,12 @@ struct TensorDescriptor
return transforms_[Number<itran>{}].GetUpperLengths()[Number<idim_up>{}];
}
__host__ __device__ constexpr auto GetLengths() const
{
// FIXME: use Tuple of reference instead
return generate_sequence_v2([&](auto I) { return GetLength(I); }, Number<ndim_visible_>{});
}
__host__ __device__ constexpr auto GetElementSize() const { return element_size_; }
__host__ __device__ constexpr auto GetElementSpaceSize() const { return element_space_size_; }
......
......@@ -25,6 +25,22 @@ constexpr LoopScheduler make_default_loop_scheduler()
#endif // if CK_EXPERIMENTAL_INTER_WAVE_SCHEDULING
}
template <index_t MNXdlPerWave, index_t MNWaves, index_t MNPerXdl, typename TileDesc_K0_MN_K1>
__host__ __device__ static constexpr auto
MakeGemmMmaTileDescriptor_MN0_MN1_MN2_K(const TileDesc_K0_MN_K1&)
{
constexpr index_t K0 = TileDesc_K0_MN_K1{}.GetLength(Number<0>{});
constexpr index_t K1 = TileDesc_K0_MN_K1{}.GetLength(Number<2>{});
return transform_tensor_descriptor(
TileDesc_K0_MN_K1{},
make_tuple(make_merge_transform_v3_division_mod(make_tuple(Number<K0>{}, Number<K1>{})),
make_unmerge_transform(
make_tuple(Number<MNXdlPerWave>{}, Number<MNWaves>{}, Number<MNPerXdl>{}))),
make_tuple(Sequence<0, 2>{}, Sequence<1>{}),
make_tuple(Sequence<3>{}, Sequence<0, 1, 2>{}));
}
template <index_t BlockSize,
typename FloatAB,
typename FloatAcc,
......@@ -43,6 +59,7 @@ struct BlockwiseGemmXdlops_k0mk1_k0nk1_m0n0m1n1m2m3m4n2_v1
static constexpr auto I3 = Number<3>{};
using ThisThreadBlock = ThisThreadBlock<BlockSize>;
static constexpr index_t WaveSize = get_warp_size();
static constexpr index_t MPerBlock = AK0MK1BlockDesc{}.GetLength(I1);
......@@ -584,4 +601,361 @@ constexpr auto BlockwiseGemmXdlops_k0mk1_k0nk1_m0n0m1n1m2m3m4n2_Selector()
}
};
// Blockwise gemm supporting
// 1. regular XDL output M2_M3_M4_M2 and transposed XDL output M2_N2_N3_N4
// 2. decoupled input tile descriptor and mma tile descriptor in order to support both vgpr and LDS
// source buffer
// 3. configurable k index starting position and step size after each FMA/XDL instruction
template <index_t BlockSize,
typename FloatAB,
typename FloatAcc,
typename ATileDesc,
typename BTileDesc,
typename AMmaTileDesc,
typename BMmaTileDesc,
index_t MPerBlock,
index_t NPerBlock,
index_t KPerBlock,
index_t MPerXDL,
index_t NPerXDL,
index_t MRepeat,
index_t NRepeat,
index_t KPack,
bool TransposeC = false,
index_t AMmaKStride =
KPack* XdlopsGemm<FloatAB, MPerXDL, NPerXDL, KPack, TransposeC>{}.K0PerXdlops,
index_t BMmaKStride =
KPack* XdlopsGemm<FloatAB, MPerXDL, NPerXDL, KPack, TransposeC>{}.K0PerXdlops>
struct BlockwiseGemmXdlops_v2
{
static constexpr auto I0 = Number<0>{};
static constexpr auto I1 = Number<1>{};
static constexpr auto I2 = Number<2>{};
static constexpr auto I3 = Number<3>{};
using ThisThreadBlock = ThisThreadBlock<BlockSize>;
static constexpr index_t WaveSize = get_warp_size();
static constexpr index_t A_K0 = ATileDesc{}.GetLength(I0);
static constexpr index_t B_K0 = BTileDesc{}.GetLength(I0);
static constexpr index_t A_K1 = ATileDesc{}.GetLength(I2);
static constexpr index_t B_K1 = BTileDesc{}.GetLength(I2);
static constexpr auto xdlops_gemm = XdlopsGemm<FloatAB, MPerXDL, NPerXDL, KPack, TransposeC>{};
static constexpr index_t KPerThread = KPerBlock / xdlops_gemm.K0PerXdlops;
static constexpr index_t MWaves = MPerBlock / (MRepeat * MPerXDL);
static constexpr index_t NWaves = NPerBlock / (NRepeat * NPerXDL);
StaticBufferTupleOfVector<AddressSpaceEnum::Vgpr,
FloatAcc,
MRepeat * NRepeat,
xdlops_gemm.GetRegSizePerXdlops(),
true>
c_thread_buf_;
__host__ __device__ constexpr auto& GetCThreadBuffer() { return c_thread_buf_; }
__device__ static auto GetWaveIdx()
{
const index_t thread_id = ThisThreadBlock::GetThreadId();
constexpr auto threadid_to_wave_idx_adaptor = make_single_stage_tensor_adaptor(
make_tuple(make_merge_transform(make_tuple(MWaves, NWaves, WaveSize))),
make_tuple(Sequence<0, 1, 2>{}),
make_tuple(Sequence<0>{}));
return threadid_to_wave_idx_adaptor.CalculateBottomIndex(make_multi_index(thread_id));
}
__device__ static auto CalculateAThreadOriginDataIndex()
{
const auto wave_idx = GetWaveIdx();
const auto waveId_m = wave_idx[I0];
const auto xdlops_a_idx = xdlops_gemm.CalculateAThreadOriginDataIndex();
return make_tuple(0, waveId_m, xdlops_a_idx[I1], KPack * xdlops_a_idx[I0]);
}
__device__ static auto CalculateBThreadOriginDataIndex()
{
const auto wave_idx = GetWaveIdx();
const auto waveId_n = wave_idx[I1];
const auto xdlops_b_idx = xdlops_gemm.CalculateBThreadOriginDataIndex();
return make_tuple(0, waveId_n, xdlops_b_idx[I1], KPack * xdlops_b_idx[I0]);
}
template <index_t m0, index_t n0, index_t xdlops_i, index_t blk_i>
__device__ static auto
CalculateCThreadOriginDataIndex(Number<m0>, Number<n0>, Number<xdlops_i>, Number<blk_i>)
{
const auto wave_idx = GetWaveIdx();
const auto waveId_m = wave_idx[I0];
const auto waveId_n = wave_idx[I1];
const auto tmp = xdlops_gemm.GetBeginOfThreadBlk(xdlops_i, blk_i);
const auto blk_idx =
TransposeC ? make_multi_index(tmp[I1], tmp[I0]) : make_multi_index(tmp[I0], tmp[I1]);
constexpr auto mrepeat_mwave_mperxdl_to_m_adaptor = make_single_stage_tensor_adaptor(
make_tuple(make_unmerge_transform(make_tuple(MRepeat, MWaves, MPerXDL))),
make_tuple(Sequence<0>{}),
make_tuple(Sequence<0, 1, 2>{}));
constexpr auto nrepeat_nwave_nperxdl_to_n_adaptor = make_single_stage_tensor_adaptor(
make_tuple(make_unmerge_transform(make_tuple(NRepeat, NWaves, NPerXDL))),
make_tuple(Sequence<0>{}),
make_tuple(Sequence<0, 1, 2>{}));
const index_t c_thread_m = mrepeat_mwave_mperxdl_to_m_adaptor.CalculateBottomIndex(
make_tuple(m0, waveId_m, blk_idx[I0]))[I0];
const index_t c_thread_n = nrepeat_nwave_nperxdl_to_n_adaptor.CalculateBottomIndex(
make_tuple(n0, waveId_n, blk_idx[I1]))[I0];
return make_tuple(c_thread_m, c_thread_n);
}
using Tuple4 = decltype(CalculateAThreadOriginDataIndex());
__host__ __device__ BlockwiseGemmXdlops_v2(Tuple4 a_origin = CalculateAThreadOriginDataIndex(),
Tuple4 b_origin = CalculateBThreadOriginDataIndex())
: a_thread_copy_(a_origin), b_thread_copy_(b_origin)
{
static_assert(AMmaTileDesc::IsKnownAtCompileTime() && BMmaTileDesc::IsKnownAtCompileTime(),
"wrong! Desc should be known at compile-time");
static_assert(ThisThreadBlock::GetNumOfThread() == MWaves * NWaves * WaveSize,
"ThisThreadBlock::GetNumOfThread() != MWaves * NWaves * WaveSize\n");
static_assert(MPerBlock % (MPerXDL * MRepeat) == 0 && NPerBlock % (NPerXDL * NRepeat) == 0,
"wrong!");
}
__host__ __device__ BlockwiseGemmXdlops_v2(const BlockwiseGemmXdlops_v2& other)
: a_thread_copy_(other.a_origin), b_thread_copy_(other.b_origin)
{
}
// transposed XDL output supporting C_xdl' = B_xdl' * A_xdl'
__host__ __device__ static constexpr auto GetCThreadDescriptor_M0_N0_M1_N1_M2_N2_N3_N4()
{
constexpr auto c_m0_m1_m2_n_tblk_lens = xdlops_gemm.GetCM0M1M2NThreadBlkLengths();
constexpr auto M0 = c_m0_m1_m2_n_tblk_lens[I0];
constexpr auto M1 = c_m0_m1_m2_n_tblk_lens[I1];
constexpr auto M2 = c_m0_m1_m2_n_tblk_lens[I2];
constexpr auto N = c_m0_m1_m2_n_tblk_lens[I3];
return make_naive_tensor_descriptor_packed(
make_tuple(Number<MRepeat>{}, Number<NRepeat>{}, I1, I1, N, M0, M1, M2));
}
// XDL output supporting C_xdl = A_xdl * B_xdl
__host__ __device__ static constexpr auto GetCThreadDescriptor_M0_N0_M1_N1_M2_M3_M4_N2()
{
constexpr auto c_m0_m1_m2_n_tblk_lens = xdlops_gemm.GetCM0M1M2NThreadBlkLengths();
constexpr auto M0 = c_m0_m1_m2_n_tblk_lens[I0];
constexpr auto M1 = c_m0_m1_m2_n_tblk_lens[I1];
constexpr auto M2 = c_m0_m1_m2_n_tblk_lens[I2];
constexpr auto N = c_m0_m1_m2_n_tblk_lens[I3];
return make_naive_tensor_descriptor_packed(
make_tuple(Number<MRepeat>{}, Number<NRepeat>{}, I1, I1, M0, M1, M2, N));
}
__host__ __device__ static constexpr auto GetCThreadDescriptor_G_M0_N0_M1_N1_M2_M3_M4_N2()
{
constexpr auto c_m0_m1_m2_n_tblk_lens = xdlops_gemm.GetCM0M1M2NThreadBlkLengths();
constexpr auto M0 = c_m0_m1_m2_n_tblk_lens[I0];
constexpr auto M1 = c_m0_m1_m2_n_tblk_lens[I1];
constexpr auto M2 = c_m0_m1_m2_n_tblk_lens[I2];
constexpr auto N = c_m0_m1_m2_n_tblk_lens[I3];
return make_naive_tensor_descriptor_packed(
make_tuple(I1, Number<MRepeat>{}, Number<NRepeat>{}, I1, I1, M0, M1, M2, N));
}
// transposed XDL output supporting C_xdl' = B_xdl' * A_xdl'
__host__ __device__ static constexpr auto GetCBlockDescriptor_M0_N0_M1_N1_M2_N2_N3_N4()
{
constexpr auto c_block_desc_m0_n0_m1_n1_m2_n2 =
make_naive_tensor_descriptor_packed(make_tuple(Number<MRepeat>{},
Number<NRepeat>{},
Number<MWaves>{},
Number<NWaves>{},
Number<MPerXDL>{},
Number<NPerXDL>{}));
return xdlops_gemm.MakeCDescriptor_M0_N0_M1_N1_M2_N2_N3_N4(c_block_desc_m0_n0_m1_n1_m2_n2);
}
// XDL output supporting C_xdl = A_xdl * B_xdl
__host__ __device__ static constexpr auto GetCBlockDescriptor_M0_N0_M1_N1_M2_M3_M4_N2()
{
constexpr auto c_block_desc_m0_n0_m1_n1_m2_n2 =
make_naive_tensor_descriptor_packed(make_tuple(Number<MRepeat>{},
Number<NRepeat>{},
Number<MWaves>{},
Number<NWaves>{},
Number<MPerXDL>{},
Number<NPerXDL>{}));
return xdlops_gemm.MakeCDescriptor_M0_N0_M1_N1_M2_M3_M4_N2(c_block_desc_m0_n0_m1_n1_m2_n2);
}
__host__ __device__ static constexpr auto GetCBlockDescriptor_G_M0_N0_M1_N1_M2_M3_M4_N2()
{
constexpr auto c_block_desc_g_m0_n0_m1_n1_m2_n2 =
make_naive_tensor_descriptor_packed(make_tuple(I1,
Number<MRepeat>{},
Number<NRepeat>{},
Number<MWaves>{},
Number<NWaves>{},
Number<MPerXDL>{},
Number<NPerXDL>{}));
return xdlops_gemm.MakeCDescriptor_G_M0_N0_M1_N1_M2_M3_M4_N2(
c_block_desc_g_m0_n0_m1_n1_m2_n2);
}
template <typename CGridDesc_M_N>
__host__ __device__ static constexpr auto
MakeCGridDescriptor_M0_N0_M1_N1_M2_M3_M4_N2(const CGridDesc_M_N& c_grid_desc_m_n)
{
const auto M = c_grid_desc_m_n.GetLength(I0);
const auto N = c_grid_desc_m_n.GetLength(I1);
const auto c_grid_desc_m0_n0_m1_n1_m2_n2 = transform_tensor_descriptor(
c_grid_desc_m_n,
make_tuple(make_unmerge_transform(make_tuple(M / (MWaves * MPerXDL), MWaves, MPerXDL)),
make_unmerge_transform(make_tuple(N / (NWaves * NPerXDL), NWaves, NPerXDL))),
make_tuple(Sequence<0>{}, Sequence<1>{}),
make_tuple(Sequence<0, 2, 4>{}, Sequence<1, 3, 5>{}));
return xdlops_gemm.MakeCDescriptor_M0_N0_M1_N1_M2_M3_M4_N2(c_grid_desc_m0_n0_m1_n1_m2_n2);
}
template <typename CGridDesc_G_M_N>
__host__ __device__ static constexpr auto
MakeCGridDescriptor_G_M0_N0_M1_N1_M2_M3_M4_N2(const CGridDesc_G_M_N& c_grid_desc_g_m_n)
{
const auto G = c_grid_desc_g_m_n.GetLength(I0);
const auto M = c_grid_desc_g_m_n.GetLength(I1);
const auto N = c_grid_desc_g_m_n.GetLength(I2);
const auto c_grid_desc_g_m0_n0_m1_n1_m2_n2 = transform_tensor_descriptor(
c_grid_desc_g_m_n,
make_tuple(make_pass_through_transform(G),
make_unmerge_transform(make_tuple(M / (MWaves * MPerXDL), MWaves, MPerXDL)),
make_unmerge_transform(make_tuple(N / (NWaves * NPerXDL), NWaves, NPerXDL))),
make_tuple(Sequence<0>{}, Sequence<1>{}, Sequence<2>{}),
make_tuple(Sequence<0>{}, Sequence<1, 3, 5>{}, Sequence<2, 4, 6>{}));
return xdlops_gemm.MakeCDescriptor_G_M0_N0_M1_N1_M2_M3_M4_N2(
c_grid_desc_g_m0_n0_m1_n1_m2_n2);
}
static constexpr AMmaTileDesc a_block_desc_m0_m1_m2_k;
static constexpr BMmaTileDesc b_block_desc_n0_n1_n2_k;
template <typename ABlockBuffer, typename BBlockBuffer, typename CThreadBuffer>
__device__ void Run(const ABlockBuffer& a_block_buf,
const BBlockBuffer& b_block_buf,
CThreadBuffer& c_thread_buf) const
{
auto a_thread_buf = make_static_buffer<AddressSpaceEnum::Vgpr, FloatAB>(
a_thread_desc_.GetElementSpaceSize());
auto b_thread_buf = make_static_buffer<AddressSpaceEnum::Vgpr, FloatAB>(
b_thread_desc_.GetElementSpaceSize());
static_for<0, KPerThread / KPack, 1>{}([&](auto k) { // k=0,1,2 instead of k=0,kpack*1, ...
static_for<0, MRepeat, 1>{}([&](auto m0) {
// read A
a_thread_copy_.Run(a_block_desc_m0_m1_m2_k,
make_tuple(m0, I0, I0, Number<k * AMmaKStride>{}),
a_block_buf,
a_thread_desc_,
make_tuple(I0, I0, I0, I0),
a_thread_buf);
static_for<0, NRepeat, 1>{}([&](auto n0) {
// read B
b_thread_copy_.Run(b_block_desc_n0_n1_n2_k,
make_tuple(n0, I0, I0, Number<k * BMmaKStride>{}),
b_block_buf,
b_thread_desc_,
make_tuple(I0, I0, I0, I0),
b_thread_buf);
vector_type<FloatAB, KPack> a_thread_vec;
vector_type<FloatAB, KPack> b_thread_vec;
static_for<0, KPack, 1>{}([&](auto i) {
a_thread_vec.template AsType<FloatAB>()(i) = a_thread_buf
[Number<a_thread_desc_.CalculateOffset(make_tuple(0, 0, 0, i))>{}];
b_thread_vec.template AsType<FloatAB>()(i) = b_thread_buf
[Number<b_thread_desc_.CalculateOffset(make_tuple(0, 0, 0, i))>{}];
});
using mfma_input_type =
typename vector_type<FloatAB, xdlops_gemm.K1PerXdlops>::type;
constexpr index_t c_offset =
c_thread_desc_.CalculateOffset(make_tuple(m0, n0, 0));
xdlops_gemm.template Run(
a_thread_vec.template AsType<mfma_input_type>(),
b_thread_vec.template AsType<mfma_input_type>(),
c_thread_buf.GetVectorTypeReference(Number<c_offset>{}));
});
});
});
}
protected:
// A[M0, M1, M2, KPerThread]
static constexpr auto a_thread_desc_ =
make_naive_tensor_descriptor_packed(make_tuple(I1, I1, I1, Number<KPerThread>{}));
// B[N0, N1, N2, KPerThread]
static constexpr auto b_thread_desc_ =
make_naive_tensor_descriptor_packed(make_tuple(I1, I1, I1, Number<KPerThread>{}));
// C[M, N, NumRegXdlops]
static constexpr auto c_thread_desc_ = make_naive_tensor_descriptor_packed(
make_tuple(Number<MRepeat>{}, Number<NRepeat>{}, xdlops_gemm.GetRegSizePerXdlops()));
using AThreadCopy = ThreadwiseTensorSliceTransfer_v4<FloatAB,
FloatAB,
decltype(a_block_desc_m0_m1_m2_k),
decltype(a_thread_desc_),
Sequence<1, 1, 1, KPack>,
Sequence<0, 1, 2, 3>,
3,
A_K1,
A_K1>;
using BThreadCopy = ThreadwiseTensorSliceTransfer_v4<FloatAB,
FloatAB,
decltype(b_block_desc_n0_n1_n2_k),
decltype(b_thread_desc_),
Sequence<1, 1, 1, KPack>,
Sequence<0, 1, 2, 3>,
3,
B_K1,
B_K1>;
AThreadCopy a_thread_copy_;
BThreadCopy b_thread_copy_;
};
} // namespace ck
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2022, Advanced Micro Devices, Inc. All rights reserved.
#pragma once
#include "ck/utility/common_header.hpp"
#include "ck/tensor_operation/gpu/thread/threadwise_tensor_slice_transfer.hpp"
#include "ck/tensor_operation/gpu/warp/xdlops_gemm.hpp"
#include "ck/tensor_description/tensor_adaptor.hpp"
namespace ck {
template <index_t BlockSize,
typename FloatAB,
typename FloatAcc,
typename AK0MK1BlockDesc,
typename BK0K0BN0N1N2N3K1BlockDesc,
index_t MPerBlock,
index_t NPerBlock,
index_t K0PerBlock,
index_t MPerXDL,
index_t NPerXDL,
index_t MRepeat,
index_t NRepeat,
index_t KPack>
struct BlockwiseGemmXdlops_k0mk1_k0nk1_m0n0m1n1m2m3m4n2_v1r1
{
static constexpr auto I0 = Number<0>{};
static constexpr auto I1 = Number<1>{};
static constexpr auto I2 = Number<2>{};
static constexpr auto I3 = Number<3>{};
static constexpr index_t WaveSize = 64;
static constexpr index_t KPerBlock = K0PerBlock * KPack;
static constexpr index_t A_K0 = AK0MK1BlockDesc{}.GetLength(I0);
static constexpr index_t A_K1 = AK0MK1BlockDesc{}.GetLength(I2);
static constexpr auto xdlops_gemm = XdlopsGemm<FloatAB, MPerXDL, NPerXDL, KPack>{};
static constexpr index_t KPerThread = KPerBlock / xdlops_gemm.K0PerXdlops;
static constexpr index_t K0PerThread = K0PerBlock / xdlops_gemm.K0PerXdlops;
static constexpr index_t MWaves = MPerBlock / (MRepeat * MPerXDL);
static constexpr index_t NWaves = NPerBlock / (NRepeat * NPerXDL);
StaticBufferTupleOfVector<AddressSpaceEnum::Vgpr,
FloatAcc,
MRepeat * NRepeat,
xdlops_gemm.GetRegSizePerXdlops(),
true>
c_thread_buf_;
__host__ __device__ constexpr auto& GetCThreadBuffer() { return c_thread_buf_; }
__device__ static auto GetWaveIdx()
{
const index_t thread_id = get_thread_local_1d_id();
constexpr auto threadid_to_wave_idx_adaptor = make_single_stage_tensor_adaptor(
make_tuple(make_merge_transform(make_tuple(MWaves, NWaves, WaveSize))),
make_tuple(Sequence<0, 1, 2>{}),
make_tuple(Sequence<0>{}));
return threadid_to_wave_idx_adaptor.CalculateBottomIndex(make_multi_index(thread_id));
}
__device__ static auto CalculateAThreadOriginDataIndex()
{
const auto wave_idx = GetWaveIdx();
const auto waveId_m = wave_idx[I0];
const auto xdlops_a_idx = xdlops_gemm.CalculateAThreadOriginDataIndex();
return make_tuple(0, waveId_m, xdlops_a_idx[I1], KPerThread * xdlops_a_idx[I0]);
}
__device__ static auto CalculateBThreadOriginDataIndex()
{
const auto wave_idx = GetWaveIdx();
const auto waveId_n = wave_idx[I1];
const auto xdlops_b_idx = xdlops_gemm.CalculateBThreadOriginDataIndex();
return make_tuple(0, waveId_n, xdlops_b_idx[I1], KPerThread * xdlops_b_idx[I0]);
}
template <index_t m0, index_t n0, index_t xdlops_i, index_t blk_i>
__device__ static auto
CalculateCThreadOriginDataIndex(Number<m0>, Number<n0>, Number<xdlops_i>, Number<blk_i>)
{
const auto wave_idx = GetWaveIdx();
const auto waveId_m = wave_idx[I0];
const auto waveId_n = wave_idx[I1];
const auto blk_idx = xdlops_gemm.GetBeginOfThreadBlk(xdlops_i, blk_i);
constexpr auto mrepeat_mwave_mperxdl_to_m_adaptor = make_single_stage_tensor_adaptor(
make_tuple(make_unmerge_transform(make_tuple(MRepeat, MWaves, MPerXDL))),
make_tuple(Sequence<0>{}),
make_tuple(Sequence<0, 1, 2>{}));
constexpr auto nrepeat_nwave_nperxdl_to_n_adaptor = make_single_stage_tensor_adaptor(
make_tuple(make_unmerge_transform(make_tuple(NRepeat, NWaves, NPerXDL))),
make_tuple(Sequence<0>{}),
make_tuple(Sequence<0, 1, 2>{}));
const index_t c_thread_m = mrepeat_mwave_mperxdl_to_m_adaptor.CalculateBottomIndex(
make_tuple(m0, waveId_m, blk_idx[I0]))[I0];
const index_t c_thread_n = nrepeat_nwave_nperxdl_to_n_adaptor.CalculateBottomIndex(
make_tuple(n0, waveId_n, blk_idx[I1]))[I0];
return make_tuple(c_thread_m, c_thread_n);
}
__host__ __device__ BlockwiseGemmXdlops_k0mk1_k0nk1_m0n0m1n1m2m3m4n2_v1r1()
{
static_assert(AK0MK1BlockDesc::IsKnownAtCompileTime() &&
BK0K0BN0N1N2N3K1BlockDesc::IsKnownAtCompileTime(),
"wrong! Desc should be known at compile-time");
static_assert(BlockSize == MWaves * NWaves * WaveSize,
"BlockSize != MWaves * NWaves * WaveSize\n");
static_assert(MPerBlock % (MPerXDL * MRepeat) == 0 && NPerBlock % (NPerXDL * NRepeat) == 0,
"wrong!");
}
__host__ __device__ static constexpr auto GetCThreadDescriptor_M0_N0_M1_N1_M2_M3_M4_N2()
{
constexpr auto c_m0_m1_m2_n_tblk_lens = xdlops_gemm.GetCM0M1M2NThreadBlkLengths();
constexpr auto M0 = c_m0_m1_m2_n_tblk_lens[I0];
constexpr auto M1 = c_m0_m1_m2_n_tblk_lens[I1];
constexpr auto M2 = c_m0_m1_m2_n_tblk_lens[I2];
constexpr auto N = c_m0_m1_m2_n_tblk_lens[I3];
return make_naive_tensor_descriptor_packed(
make_tuple(Number<MRepeat>{}, Number<NRepeat>{}, I1, I1, M0, M1, M2, N));
}
__host__ __device__ static constexpr auto GetCThreadDescriptor_G_M0_N0_M1_N1_M2_M3_M4_N2()
{
constexpr auto c_m0_m1_m2_n_tblk_lens = xdlops_gemm.GetCM0M1M2NThreadBlkLengths();
constexpr auto M0 = c_m0_m1_m2_n_tblk_lens[I0];
constexpr auto M1 = c_m0_m1_m2_n_tblk_lens[I1];
constexpr auto M2 = c_m0_m1_m2_n_tblk_lens[I2];
constexpr auto N = c_m0_m1_m2_n_tblk_lens[I3];
return make_naive_tensor_descriptor_packed(
make_tuple(I1, Number<MRepeat>{}, Number<NRepeat>{}, I1, I1, M0, M1, M2, N));
}
__host__ __device__ static constexpr auto GetCBlockDescriptor_M0_N0_M1_N1_M2_M3_M4_N2()
{
constexpr auto c_block_desc_m0_n0_m1_n1_m2_n2 =
make_naive_tensor_descriptor_packed(make_tuple(Number<MRepeat>{},
Number<NRepeat>{},
Number<MWaves>{},
Number<NWaves>{},
Number<MPerXDL>{},
Number<NPerXDL>{}));
return xdlops_gemm.MakeCDescriptor_M0_N0_M1_N1_M2_M3_M4_N2(c_block_desc_m0_n0_m1_n1_m2_n2);
}
__host__ __device__ static constexpr auto GetCBlockDescriptor_G_M0_N0_M1_N1_M2_M3_M4_N2()
{
constexpr auto c_block_desc_g_m0_n0_m1_n1_m2_n2 =
make_naive_tensor_descriptor_packed(make_tuple(I1,
Number<MRepeat>{},
Number<NRepeat>{},
Number<MWaves>{},
Number<NWaves>{},
Number<MPerXDL>{},
Number<NPerXDL>{}));
return xdlops_gemm.MakeCDescriptor_G_M0_N0_M1_N1_M2_M3_M4_N2(
c_block_desc_g_m0_n0_m1_n1_m2_n2);
}
template <typename CGridDesc_M_N>
__host__ __device__ static constexpr auto
MakeCGridDescriptor_M0_N0_M1_N1_M2_M3_M4_N2(const CGridDesc_M_N& c_grid_desc_m_n)
{
const auto M = c_grid_desc_m_n.GetLength(I0);
const auto N = c_grid_desc_m_n.GetLength(I1);
const auto c_grid_desc_m0_n0_m1_n1_m2_n2 = transform_tensor_descriptor(
c_grid_desc_m_n,
make_tuple(make_unmerge_transform(make_tuple(M / (MWaves * MPerXDL), MWaves, MPerXDL)),
make_unmerge_transform(make_tuple(N / (NWaves * NPerXDL), NWaves, NPerXDL))),
make_tuple(Sequence<0>{}, Sequence<1>{}),
make_tuple(Sequence<0, 2, 4>{}, Sequence<1, 3, 5>{}));
return xdlops_gemm.MakeCDescriptor_M0_N0_M1_N1_M2_M3_M4_N2(c_grid_desc_m0_n0_m1_n1_m2_n2);
}
template <typename CGridDesc_G_M_N>
__host__ __device__ static constexpr auto
MakeCGridDescriptor_G_M0_N0_M1_N1_M2_M3_M4_N2(const CGridDesc_G_M_N& c_grid_desc_g_m_n)
{
const auto G = c_grid_desc_g_m_n.GetLength(I0);
const auto M = c_grid_desc_g_m_n.GetLength(I1);
const auto N = c_grid_desc_g_m_n.GetLength(I2);
const auto c_grid_desc_g_m0_n0_m1_n1_m2_n2 = transform_tensor_descriptor(
c_grid_desc_g_m_n,
make_tuple(make_pass_through_transform(G),
make_unmerge_transform(make_tuple(M / (MWaves * MPerXDL), MWaves, MPerXDL)),
make_unmerge_transform(make_tuple(N / (NWaves * NPerXDL), NWaves, NPerXDL))),
make_tuple(Sequence<0>{}, Sequence<1>{}, Sequence<2>{}),
make_tuple(Sequence<0>{}, Sequence<1, 3, 5>{}, Sequence<2, 4, 6>{}));
return xdlops_gemm.MakeCDescriptor_G_M0_N0_M1_N1_M2_M3_M4_N2(
c_grid_desc_g_m0_n0_m1_n1_m2_n2);
}
__host__ __device__ static constexpr auto MakeABlockDescriptor_M0_M1_M2_K()
{
return transform_tensor_descriptor(
AK0MK1BlockDesc{},
make_tuple(
make_merge_transform_v3_division_mod(make_tuple(Number<A_K0>{}, Number<A_K1>{})),
make_unmerge_transform(
make_tuple(Number<MRepeat>{}, Number<MWaves>{}, Number<MPerXDL>{}))),
make_tuple(Sequence<0, 2>{}, Sequence<1>{}),
make_tuple(Sequence<3>{}, Sequence<0, 1, 2>{}));
}
__device__ void MoveABlockSliceWindow()
{
a_thread_copy_.MoveSrcSliceWindow(a_block_desc_m0_m1_m2_k,
make_multi_index(0, 0, 0, K0PerBlock * KPack));
}
__device__ void ResetABlockStartWindow()
{
a_thread_copy_.SetSrcCoord(CalculateAThreadOriginDataIndex());
}
static constexpr auto a_block_desc_m0_m1_m2_k = MakeABlockDescriptor_M0_M1_M2_K();
template <typename ABlockBuffer, typename BBlockBuffer, typename CThreadBuffer>
__device__ void Run(const ABlockBuffer& a_block_buf,
const BBlockBuffer& b_thread_buf,
CThreadBuffer& c_thread_buf) const
{
auto a_thread_buf = make_static_buffer<AddressSpaceEnum::Vgpr, FloatAB>(
a_thread_desc_.GetElementSpaceSize());
static_for<0, MRepeat, 1>{}([&](auto m0) {
// read A
a_thread_copy_.Run(a_block_desc_m0_m1_m2_k,
make_tuple(m0, I0, I0, I0),
a_block_buf,
a_thread_desc_,
make_tuple(I0, I0, I0, I0),
a_thread_buf);
static_for<0, NRepeat, 1>{}([&](auto n0) {
// read B
static_for<0, KPerThread, KPack>{}([&](auto k) {
vector_type<FloatAB, KPack> a_thread_vec;
vector_type<FloatAB, KPack> b_thread_vec;
constexpr index_t k0 = k / KPack;
static_for<0, KPack, 1>{}([&](auto i) {
a_thread_vec.template AsType<FloatAB>()(i) = a_thread_buf
[Number<a_thread_desc_.CalculateOffset(make_tuple(0, 0, 0, k + i))>{}];
b_thread_vec.template AsType<FloatAB>()(i) = b_thread_buf
[Number<b_thread_desc_.CalculateOffset(make_tuple(k0, n0, i))>{}];
});
using mfma_input_type =
typename vector_type<FloatAB, xdlops_gemm.K1PerXdlops>::type;
constexpr index_t c_offset =
c_thread_desc_.CalculateOffset(make_tuple(m0, n0, 0));
xdlops_gemm.template Run(
a_thread_vec.template AsType<mfma_input_type>(),
b_thread_vec.template AsType<mfma_input_type>(),
c_thread_buf.GetVectorTypeReference(Number<c_offset>{}));
});
});
});
}
private:
// A[M0, M1, M2, KPerThread]
static constexpr auto a_thread_desc_ =
make_naive_tensor_descriptor_packed(make_tuple(I1, I1, I1, Number<KPerThread>{}));
// B[N0, N1, N2, KPerThread]
static constexpr auto b_thread_desc_ =
make_naive_tensor_descriptor_packed(make_tuple(Number<K0PerThread>{}, // KPerThread
Number<NRepeat>{}, // repeat
Number<KPack>{}));
// C[M, N, NumRegXdlops]
static constexpr auto c_thread_desc_ = make_naive_tensor_descriptor_packed(
make_tuple(Number<MRepeat>{}, Number<NRepeat>{}, xdlops_gemm.GetRegSizePerXdlops()));
using AThreadCopy = ThreadwiseTensorSliceTransfer_v4<FloatAB,
FloatAB,
decltype(a_block_desc_m0_m1_m2_k),
decltype(a_thread_desc_),
Sequence<1, 1, 1, KPerThread>,
Sequence<0, 1, 2, 3>,
3,
A_K1,
A_K1>;
AThreadCopy a_thread_copy_{CalculateAThreadOriginDataIndex()};
};
} // namespace ck
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2022, Advanced Micro Devices, Inc. All rights reserved.
#pragma once
#include "ck/utility/data_type.hpp"
#include "ck/utility/reduction_common.hpp"
#include "ck/utility/reduction_operator.hpp"
#include "ck/utility/reduction_functions_accumulate.hpp"
#include "ck/tensor_operation/gpu/block/reduction_functions_blockwise.hpp"
#include "ck/tensor_operation/gpu/thread/reduction_functions_threadwise.hpp"
namespace ck {
template <index_t BlockSize,
typename AccDataType,
typename ThreadMap_M_K, // thread_id to m_k
typename ThreadClusterDesc_M_K,
typename ThreadSliceDesc_M_K>
struct BlockwiseSoftmax
{
static constexpr auto I0 = Number<0>{};
static constexpr auto I1 = Number<1>{};
static constexpr index_t MRepeat = ThreadSliceDesc_M_K{}.GetLength(I0);
static constexpr index_t KRepeat = ThreadSliceDesc_M_K{}.GetLength(I1);
using ThreadSliceDesc_M = decltype(
make_naive_tensor_descriptor_packed(make_tuple(ThreadSliceDesc_M_K{}.GetLength(I0))));
using ThreadwiseMaxReduce = ThreadwiseReduction<AccDataType,
ThreadSliceDesc_M_K,
ThreadSliceDesc_M,
reduce::Max,
false>;
using ThreadClusterLengths_M_K = decltype(ThreadClusterDesc_M_K{}.GetLengths());
using BlockwiseMaxReduce = PartitionedBlockwiseReduction_v2<AccDataType,
BlockSize,
ThreadClusterLengths_M_K,
ThreadMap_M_K,
reduce::Max,
false>;
using BlockwiseSumReduce = PartitionedBlockwiseReduction_v2<AccDataType,
BlockSize,
ThreadClusterLengths_M_K,
ThreadMap_M_K,
reduce::Add,
false>;
using ThreadwiseSumReduce = ThreadwiseReduction<AccDataType,
ThreadSliceDesc_M_K,
ThreadSliceDesc_M,
reduce::Add,
false>;
using BufferType = StaticBuffer<AddressSpaceEnum::Vgpr, AccDataType, MRepeat, true>;
template <typename CThreadBuffer, typename WorkspaceBuffer>
__host__ __device__ void Run(CThreadBuffer& in_thread_buf, WorkspaceBuffer& reduce_work_buf)
{
// find max value
static_for<0, MRepeat, 1>{}([&](auto I) {
max_value_buf(I) = reduce::Max::template GetIdentityValue<AccDataType>();
});
ThreadwiseMaxReduce::Reduce(in_thread_buf, max_value_buf);
static_for<0, MRepeat, 1>{}([&](auto I) {
BlockwiseMaxReduce::Reduce(reduce_work_buf, max_value_buf(I));
block_sync_lds();
});
// calculate exp for elements, P=exp(s-max)
static_for<0, MRepeat, 1>{}([&](auto iM) {
static_for<0, KRepeat, 1>{}([&](auto iK) {
auto offset = Number<ThreadSliceDesc_M_K{}.CalculateOffset(make_tuple(iM, iK))>{};
in_thread_buf(offset) = math::exp(in_thread_buf[offset] - max_value_buf(iM));
});
});
// sum data
static_for<0, MRepeat, 1>{}([&](auto I) {
sum_value_buf(I) = reduce::Add::template GetIdentityValue<AccDataType>();
});
ThreadwiseSumReduce::Reduce(in_thread_buf, sum_value_buf);
static_for<0, MRepeat, 1>{}([&](auto I) {
BlockwiseSumReduce::Reduce(reduce_work_buf, sum_value_buf(I));
block_sync_lds();
});
}
BufferType max_value_buf;
BufferType sum_value_buf;
};
} // namespace ck
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2022, Advanced Micro Devices, Inc. All rights reserved.
#pragma once
#include "ck/tensor_description/cluster_descriptor.hpp"
#include "ck/utility/reduction_common.hpp"
namespace ck {
// clang-format off
// Assume:
// 1) work_buffer is buffer (typically LDS) allocated outside as workspace
// 2) work_buffer has T elements, and space size is no less than 3*BlockSize
// 3) mean_value, var_value and count is the input data in vgpr from each thread
// 4) mean_value, var_value and count is the over-written reduced output in vgpr for each thread
// 5) Merge mean and M from ThreadwiseWelford
// clang-format on
template <typename T,
index_t BlockSize,
typename ThreadClusterLengths_M_K,
typename ThreadClusterArrangeOrder,
bool GetActualVariance = true>
struct BlockwiseWelford
{
static_assert(BlockSize == ThreadClusterLengths_M_K::At(0) * ThreadClusterLengths_M_K::At(1),
"The product of cluster lengths should be same as BlockSize!");
static constexpr auto BufferLength_M = ThreadClusterLengths_M_K::At(0);
static constexpr auto BufferLength_K = ThreadClusterLengths_M_K::At(1);
static constexpr auto block_buf_desc_m_k = make_naive_tensor_descriptor_packed(
make_tuple(Number<BufferLength_M>{}, Number<BufferLength_K>{}));
static constexpr auto thread_cluster_desc =
make_cluster_descriptor(ThreadClusterLengths_M_K{}, ThreadClusterArrangeOrder{});
__device__ static inline void
Merge(T& mean_a, T& var_a, int& count_a, T mean_b, T var_b, int count_b)
{
int count = count_a + count_b;
T count_b_over_count = count == 0 ? type_convert<T>(0) : type_convert<T>(count_b) / count;
T delta = mean_b - mean_a;
mean_a += delta * count_b_over_count;
var_a += var_b + delta * delta * count_a * count_b_over_count;
count_a = count;
}
__device__ static void Run(T& mean_value, T& var_value, int& count)
{
__shared__ T mean_block_buf[BlockSize];
__shared__ T var_block_buf[BlockSize];
__shared__ int count_block_buf[BlockSize];
constexpr auto cluster_len_shift = get_shift<BufferLength_K>();
const auto thread_cluster_idx =
thread_cluster_desc.CalculateBottomIndex(make_multi_index(get_thread_local_1d_id()));
const auto thread_m_cluster_id = thread_cluster_idx[Number<0>{}];
const auto thread_k_cluster_id = thread_cluster_idx[Number<1>{}];
index_t offset1 = block_buf_desc_m_k.CalculateOffset(thread_cluster_idx);
mean_block_buf[offset1] = mean_value;
var_block_buf[offset1] = var_value;
count_block_buf[offset1] = count;
block_sync_lds();
static_for<0, cluster_len_shift, 1>{}([&](auto I) {
constexpr index_t indOffset = 1 << (cluster_len_shift - 1 - I());
if(thread_k_cluster_id < indOffset)
{
index_t offset2 = block_buf_desc_m_k.CalculateOffset(thread_cluster_idx +
make_tuple(0, indOffset));
T mean1 = mean_block_buf[offset1];
T var1 = var_block_buf[offset1];
int count1 = count_block_buf[offset1];
T mean2 = mean_block_buf[offset2];
T var2 = var_block_buf[offset2];
int count2 = count_block_buf[offset2];
Merge(mean1, var1, count1, mean2, var2, count2);
mean_block_buf[offset1] = mean1;
var_block_buf[offset1] = var1;
count_block_buf[offset1] = count1;
}
block_sync_lds();
});
index_t offset = block_buf_desc_m_k.CalculateOffset(make_tuple(thread_m_cluster_id, 0));
count = count_block_buf[offset];
mean_value = mean_block_buf[offset];
if constexpr(GetActualVariance)
var_value = var_block_buf[offset] / count;
else
var_value = var_block_buf[offset];
};
};
} // namespace ck
......@@ -82,6 +82,78 @@ struct PartitionedBlockwiseReduction
};
};
// clang-format off
// Assume:
// 1) work_buffer is buffer (typically LDS) allocated outside as workspace, does not include any in/out data
// 2) work_buffer has AccDataType elements, and space size is no less than BlockSize
// 3) in_out_value is the input data in vgpr from each thread
// 4) in_out_value is the over-written reduced output in vgpr for each thread
// clang-format on
template <typename AccDataType,
index_t BlockSize,
typename ThreadClusterLengths_M_K,
typename ThreadClusterDesc,
typename OpReduce,
bool PropagateNan,
typename Accumulation =
detail::AccumulateWithNanCheck<PropagateNan, OpReduce, AccDataType>>
struct PartitionedBlockwiseReduction_v2
{
static_assert(BlockSize == ThreadClusterLengths_M_K::At(0) * ThreadClusterLengths_M_K::At(1),
"The product of cluster lengths should be same as BlockSize!");
static constexpr auto BufferLength_M = ThreadClusterLengths_M_K::At(0);
static constexpr auto BufferLength_K = ThreadClusterLengths_M_K::At(1);
static_assert(BufferLength_K > 1, "Parallel reduction need work on at least two elements");
static constexpr auto block_buf_desc_m_k = make_naive_tensor_descriptor_packed(
make_tuple(Number<BufferLength_M>{}, Number<BufferLength_K>{}));
static constexpr auto thread_cluster_desc = ThreadClusterDesc{};
template <typename BufferType>
__device__ static void Reduce(BufferType& work_buffer, AccDataType& in_out_value)
{
static_assert(is_same<typename BufferType::type, AccDataType>{},
"Buffer data type should be consistent as AccDataType!");
constexpr auto cluster_len_shift = get_shift<BufferLength_K>();
const auto thread_cluster_idx =
thread_cluster_desc.CalculateBottomIndex(make_multi_index(get_thread_local_1d_id()));
const auto thread_m_cluster_id = thread_cluster_idx[Number<0>{}];
const auto thread_k_cluster_id = thread_cluster_idx[Number<1>{}];
work_buffer(block_buf_desc_m_k.CalculateOffset(thread_cluster_idx)) = in_out_value;
__syncthreads();
static_for<0, cluster_len_shift, 1>{}([&](auto I) {
constexpr index_t indOffset = 1 << (cluster_len_shift - 1 - I());
if(thread_k_cluster_id < indOffset)
{
index_t offset1 = block_buf_desc_m_k.CalculateOffset(thread_cluster_idx);
index_t offset2 = block_buf_desc_m_k.CalculateOffset(thread_cluster_idx +
make_tuple(0, indOffset));
AccDataType opData1 = work_buffer[offset1];
AccDataType opData2 = work_buffer[offset2];
Accumulation::Calculate(opData1, opData2);
work_buffer(offset1) = opData1;
}
__syncthreads();
});
index_t offset = block_buf_desc_m_k.CalculateOffset(make_tuple(thread_m_cluster_id, 0));
in_out_value = work_buffer[offset];
};
};
// clang-format off
// Assume:
// 1) work_val_buffer/work_idx_buffer is buffer (typically LDS) allocated outside as workspace, does not include any in/out data
......
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment